

Jakarta Migration
Field Guide

0

Version History
Date Version Changes

Aug 06 2025 1.0 Initial draft of the field guide.

Aug 18 2025 1.1 Incorporating Lessons from Mastering Liferay project and from Dave
Neginber's blog post (Matheus Monteiro)

Sept 9 2025 1.2 Updated formatting, introductions

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1

Table of Contents
Version History​ 1
Table of Contents​ 2
Purpose of this document​ 3
Introduction​ 3

What is Jakarta EE?​ 3
Why is this change necessary?​ 3
Impact on Liferay​ 4

Migration Steps​ 5
Preparing your Migration Environment​ 5
Migration Setup​ 5
Run Jakarta Transform​ 6
Review Transformation​ 7
Third-Party Dependencies​ 7
Build & Deploy to Bundle​ 8
Database Upgrade​ 9
First Run​ 9

Conclusion​ 10

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 2

Purpose of this document
This field guide is a living document, capturing lessons learned from Liferay internal Jakarta upgrade
projects. It will be continually updated and will serve as the foundation for a future Jakarta Migration
course on learn.liferay.com coming in 2026. Additional resources covering the Jakarta upgrade can be
found on the Jakarta information page on learn.liferay.com.

This document provides both an explanation and a guide to the steps required to move a Liferay DXP
application from Java EE to Jakarta EE.

It outlines:

●​ What is Jakarta EE and what is impacted
●​ What changes must be made
●​ How to prepare for the upgrade to Jakarta EE
●​ How to make the required changes, and the tools that are provided to help
●​ What to look for post-upgrade to ensure that applications are functioning properly
●​ Common issues or pitfalls

Introduction

What is Jakarta EE?
Java EE (Java Platform, Enterprise Edition) was the long-established standard for developing
enterprise Java applications. It defined APIs for building web, REST, messaging, and transactional
systems, and was originally maintained by Sun Microsystems and later Oracle.

In 2017, Oracle transferred the stewardship of Java EE to the Eclipse Foundation, marking a major
milestone in the evolution of the platform. This transition gave rise to Jakarta EE, a community-driven
and open-source continuation of Java EE.

Due to naming rights issues, the latest release of the framework was forced to move away from the
Java EE name and use Jakarta EE in its place.

Why is this change necessary?
Due to naming rights issues, the latest version of the Java Enterprise framework has been renamed
from Java EE to Jakarta EE.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 3

http://learn.liferay.com
https://learn.liferay.com/l/36177075

This impacts any Java-based application that moves to Jakarta because the underlying API is also
renamed - from ‘javax’ to ‘jakarta’. Accordingly, any code that uses the core APIs must be updated from
‘javax’ to ‘jakarta’.

Liferay DXP is moving from Java EE 8 to Jakarta EE 10 from the 2025.Q3 release. The move is beneficial
for all customers because it brings enhanced features, improved performance, more robust security
features and better stability.

Impact on Liferay
Liferay’s own code has been updated starting from the 2025.Q3 release, and as such, any customer
using this version of the platform or any later version, must also make changes to their custom code to
ensure it is compatible, and also to third-party libraries used in that custom code.

Liferay is providing tooling to make this process as easy as possible, along with guides to enable
customers to complete the process and successfully transition to Liferay DXP 2025.Q3 or later.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 4

Migration Steps

Preparing your Migration Environment
Before making any code or data changes, it's crucial to establish a stable and isolated foundation. This
section walks you through preparing your codebase and database to ensure a smooth and reversible
upgrade process.

Prereqs

●​ Git (or VCS) available
●​ Workspace builds clean on current version
●​ Working Liferay DXP version on current version
●​ No unresolved dependencies

Steps

1.​ Checkout all your code
2.​ Create full backup from Production (PRD) data (including Document Library (DL))
3.​ If you use git, create a different branch based on master (or whatever you use in PRD)

Expected

●​ Isolated branch for all upgrade changes
●​ Ability to diff/revert easily

Checklist

​ Branch created
​ Baseline committed or backup archived

Migration Setup
With your environment prepared, the next step is to configure your Liferay workspace to recognize the
new target version and incorporate the necessary upgrade tools provided by Liferay.

Prereqs

●​ Supported version of Blade and Gradle

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 5

●​ Workspace root path known

Steps

1.​ Remove the old bundle
2.​ Upgrade the workspace version in settings.gradle to 14.0.0 at a minimum
3.​ In your gradle.properties file, set liferay.workspace.target.platform.version to the latest patch

release for the quarterly release you are targeting, e.g. dxp-2025.q3.2 ​
Important: Do not use “latest”.

4.​ Initialize the target bundle.

Expected

●​ Formatter knows your target release
●​ A fresh Tomcat 10-based bundle is downloaded for the version target specified

Checklist

​ bundles/ regenerated for the target

Run Jakarta Transform
This is the core automated step of the migration. Here, you will use Liferay's tooling to perform the
bulk of the code modifications, primarily updating the javax.* package namespace to the new jakarta.*
standard across your projects.

Prereqs

●​ Workspace compiles on current baseline.

Steps

1.​ Run the JakartaTransform tool​
 blade gw upgradeJakarta

2.​ Commit changes.

Expected

●​ javax.* → jakarta.* updates across Java, annotations, tags (DB templates may require manual
follow-up).

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 6

Checklist

​ JakartaTransform finished

Review Transformation
The Jakarta Transform tool is only aware of libraries used by Liferay, so there is a chance that the
transformation process may not identify all references to javax.*. It is recommended that before
continuing the migration process you review for any remaining references.

Prereqs
●​ JakartaTransform process has completed successfully

Steps
1.​ Search for ‘javax’ across the entire codebase
2.​ For any identified references, determine the correct replacement.
3.​ Commit changes

Expected
●​ There are no remaining references to javax in the codebase.

Checklist

​ Manual review and replacement finished

Third-Party Dependencies
Your custom code often relies on external libraries, and these must also be compatible with Jakarta EE.
This section addresses the critical task of identifying, updating, or transforming these third-party
dependencies.

Prereqs

●​ Inventory of libraries / Knowledge of Customizations

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 7

Steps

1.​ Substitute or Replace Obsolete Jars with Jakarta Counterparts: Adopt official
Jakarta-compatible versions of your dependencies (and transitive deps). Optionally, contact
maintainers for Jakarta variants if none are published.

a.​ If necessary, transform jars using the Eclipse Transformer to rewrite javax→jakarta for a
quick unblock. This page will guide you through the necessary steps.

Expected

●​ Build unblocked now; sustainable path defined for later.

Checklist

​ Decide: transform now vs upgrade now
​ Transitives mapped
​ Document your changes and plan (read.me file or any other relevant document for your

company/organization)

Build & Deploy to Bundle
After transforming your code and updating dependencies, you must verify that the project still
compiles and deploys without errors. This step confirms that the foundational changes have been
successful before you proceed to runtime testing.

Prereqs

●​ Bundle initialized for the target release.
●​ All prior steps committed.

Steps

1.​ Clean build & deploy modules:​
​
 blade gw clean deploy
Windows: ​
..\..\gradlew.bat clean deploy

Expected

●​ All modules build and deploy to bundles/.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 8

https://learn.liferay.com/w/dxp/development/tooling/liferay-workspace/upgrading-to-jakarta

Checklist

●​ clean deploy completes
●​ All compile errors resolved

Database Upgrade
To align with the new Liferay DXP version, your database schema must also be upgraded. This section
covers running the dedicated tool to bring your data into compliance with the target platform.

Prereqs

●​ Full DB backup.
●​ Access to Documents & Media filestore.

Steps

Follow the steps listed in the official Liferay documentation for using the Database Upgrade tool.

Expected

●​ DB upgraded to match target bundle.

Checklist

●​ Backup verified
●​ DB upgrade completed cleanly

First Run
With the code and database upgraded, it's time for the initial system startup. This section guides you
on what to look for in the server logs and which key functionalities to test to catch any major issues
immediately.

Prereqs

●​ Successful build & DB upgrade.

Steps

1.​ Start Liferay and scan logs for:

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 9

https://learn.liferay.com/w/dxp/self-hosted-installation-and-upgrades/upgrading-liferay/upgrading-the-database/using-the-database-upgrade-tool/database-upgrade-tool-reference?p_l_back_url=https%3A%2F%2Flearn.liferay.com%2Fdocumentation&p_l_back_url_title=Documentation#database-upgrade-tool-usage

○​ Unresolved OSGi references / circular refs.
○​ Template errors (e.g., PropsUtil moved to com.liferay.portal.kernel.util.PropsUtil).

2.​ Navigate functional areas:
○​ Portlets, JSPs, JS behaviors.
○​ FreeMarker templates

It is highly recommended to check the Liferay official breaking changes document for your target
version:

●​ 2025.Q2 Breaking Changes
●​ 2025.Q3 Breaking Changes

There might be unexpected classes, API changes that will affect your templates, fragments and you
might need to deal with it. ​
Analyze the logs and you might find a clue in there.

Expected

●​ No severe startup errors.
●​ Core user functionalities working.

Conclusion
The migration to Jakarta EE represents a significant evolution for Liferay DXP, bringing enhanced
features, improved performance, and a more robust and secure platform. This field guide has outlined
the essential steps, from preparing your environment and transforming code to updating
dependencies and performing initial system checks, all aimed at facilitating a smooth transition. By
following these guidelines and leveraging the provided tooling, you can successfully upgrade your
Liferay DXP applications to Jakarta EE.

This is a living document, and your feedback is invaluable. If you have any questions, encounter issues
not covered here, or have suggestions for improvement, please reach out to
jakarta-questions@liferay.com. Your contributions will help us refine this guide and the future Jakarta
Migration course.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 10

https://learn.liferay.com/w/dxp/self-hosted-installation-and-upgrades/upgrading-liferay/deprecations-and-breaking-changes-reference/2025-deprecations-and-breaking-changes/2025-q2-breaking-changes
https://learn.liferay.com/w/dxp/self-hosted-installation-and-upgrades/upgrading-liferay/deprecations-and-breaking-changes-reference/2025-deprecations-and-breaking-changes/2025-q3-breaking-changes
mailto:jakarta-questions@liferay.com

	
	Jakarta Migration
	Field Guide
	

	Version History
	
	
	Table of Contents
	
	Purpose of this document
	Introduction
	What is Jakarta EE?
	Why is this change necessary?
	Impact on Liferay

	
	Migration Steps
	Preparing your Migration Environment
	Prereqs
	Steps
	Expected
	Checklist

	Migration Setup
	Prereqs
	Steps
	Expected
	Checklist

	Run Jakarta Transform
	Prereqs
	Steps
	Expected
	Checklist

	Review Transformation
	Prereqs
	Steps
	Expected
	Checklist

	Third-Party Dependencies
	Prereqs
	Steps
	Expected
	Checklist

	Build & Deploy to Bundle
	Prereqs
	Steps
	Expected
	Checklist

	Database Upgrade
	Prereqs
	Steps
	Expected
	Checklist

	First Run
	Prereqs
	Steps
	Expected

	Conclusion

