
Development Documentation

Development Documentation

Samuel Kong, Editor

Copyright © 2008 by Liferay, Inc.

This work is offered under the Creative Commons Attribution-Share Alike Unported license.

You are free:

•to share—to copy, distribute, and transmit the work

•to remix—to adapt the work

Under the following conditions:

•Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that

suggests that they endorse you or your use of the work).

•Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the

same, similar or a compatible license.

The full version of this license appears in the appendix of this book, or you may view it online here:

http://creativecommons.org/licenses/by-sa/3.0

Contributors:

Joseph Shum, Alexander Chow, Redmond Mar, Ed Shin, Rich Sezov, Samuel Kong

Table of Contents

Table of Contents

1. Hot Deploy Development5

Initial Setup5

Introduction to Java Standard Portlets7

Creating A Portlet8

Anatomy of a Portlet9

A Closer Look at the Default JSP Portlet10

http://creativecommons.org/licenses/by-sa/3.0

Creating Liferay Themes12

Theme Concepts13

Anatomy of a Theme13

JavaScript14

Settings15

Color Schemes16

Portal predefined settings17

Deployment18

Advanced Development18

Service Builder18

Define the Database Structure19

Generate Service Layer20

Create the Service Layer Class20

Security and Permissions Service20

2. Customizing Liferay: Developing in the Extension Environment31

Tools Setup31

Java Development Kit31

ANT32

MySQL 32

Liferay Source32

Setup Your Application Server and Liferay Portal32

Create the Extension Environment32

Configuring the Environment33

Setup the Database33

Deploy the Extension Environment34

Customizing Liferay34

File Structure Overview34

Advanced Development36

Liferay Services36

User Service36

Preface

This book was written as a quick guide to getting started developing on the Liferay Enterprise Portal platform. It is

a guide for those who want to get their hands dirty developing for Liferay.

The information contained herein has been organized in a way that hopefully makes it easy to locate information.

Conventions

Sections are broken up into multiple levels of headings, and these make it easy to find information.

Source code and configuration file directives are presented like this.

Italics are used to represent links or buttons to be clicked on in a user interface and to indicate a label or a name

of a Java class.

Bold is used to describe field labels.

Page headers denote the chapters, and footers denote the particular section within the chapter.

Notes

It is our hope that this book will be valuable to you, and that it will be an indispensable resource as you begin to

develop on Liferay's platform. If you need any assistance beyond what is covered in this book, Liferay, Inc. offers

training, consulting, and support services to fill any need that you might have. Please

seehttp://www.liferay.com/web/guest/services for further information about the services we can provide.

As always, we welcome any feedback. If there is any way you think we could make this book better, please feel

free to mention it on our forums. You can also use any of the email addresses on our Contact Us page

(http://www.liferay.com/web/guest/about_us/contact_us). We are here to serve you, our users and customers,

and to help make your experience using Liferay Portal the best it can be.

Hot Deploy Development
This section of the guide is a quick start to plugins development and deployment guide, using Liferay's Plugins

Software Development Kit. Plugins (portlets and themes) are now the preferred way to add functionality to

Liferay, as they have several benefits over using the extension environment:
● Plugins can be composed of multiple smaller portlet and theme projects. This reduces the complexity of

individual projects, allowing developers to more easily divide up project functionality
● Plugins are completely separate from the Liferay core. Portlet plugins written to the JSR-168 standard are

deployable on any portlet container
● Plugins can be hot deployed (i.e., deployed while the server is running) and are available immediately. This

prevents any server downtime for deployments

There are multiple ways to create portlet and theme plugins for Liferay. Many IDEs on the market today support

portlet projects natively, and theme projects are nothing more than standard web modules with style sheets,

images, and optional JavaScript and Velocity templates in them. Because of this, there are many tools which can

be used to create plugins, from text editors to full blown integrated development environments. If you are already

familiar with such a tool, you may use that tool to create plugins.

Because Liferay makes every effort to remain tool agnostic, we provide a Plugins Software Development Kit

(SDK) which may be used to create both portlet and theme plugins. This SDK may be used with any text editor or

IDE to create plugins for Liferay. Though it is not necessary to use this SDK to create plugins, it is the

http://www.liferay.com/web/guest/about_us/contact_us
http://www.liferay.com/web/guest/about_us/contact_us
http://www.liferay.com/web/guest/about_us/contact_us
http://www.liferay.com/web/guest/services
http://www.liferay.com/web/guest/services
http://www.liferay.com/web/guest/services

recommended method.

This section of the document will show you how to create both portlet and theme plugins using Liferay's plugin

SDK. In the process, this will also show you the proper project layout for portlet and theme plugins, allowing you

to use your own tools to create plugins if you wish to do so.

1. Initial Setup

2. Introduction to Java Standard Portlets

3. Creating Liferay Themes

4. Deployment

5. Advanced Development

Initial Setup
Setting up the Plugins SDK is pretty straightforward. Download the archive from Liferay's Additional Files

download page, in the section for developers here:

http://www.liferay.com/web/guest/downloads/additional.

Unzip the file to the location in which you will be doing your work. The two folders you will be working in mostly

are the portlets and the themes folders. It is here that you will place your portlet and theme plugin projects.

But first you will need to create a configuration file and make sure you have some tools installed. Building portlet

and theme projects in the plugins SDK requires that you have Ant 1.7.0 or higher installed on your machine.

Download the latest version of Ant from http://ant.apache.org. Uncompress the archive into an appropriate folder

of your choosing.

Next, set an environment variable called ANT_HOME which points to the folder to which you installed Ant. Use

this variable to add the binaries for Ant to your PATH by adding ANT_HOME/bin to your PATH environment

variable. Set another environment variable called ANT_OPTS with the proper memory settings for building

projects.

You can do this on Linux by modifying your .bash_profile file as follows (assuming you installed Ant in /java):

ANT_HOME=/java/apache-ant-1.7.0

ANT_OPTS="-Xms256M -Xmx512M"

PATH=$PATH:$HOME/bin:$ANT_HOME/bin

export ANT_HOME ANT_OPTS PATH

Log out and log back in to make these settings take effect.

You can do this on Windows by going to Start -> Control Panel, and double-clicking the System icon. Go to

Advanced, and then click the Environment Variables button. Under System Variables, select New. Make the

Variable Name ANT_HOME and the Variable Value the path to which you installed Ant (e.g., c:\java\apache-ant-

1.7.0), and click OK.

Select New again. Make the Variable Name ANT_OPTS and the Variable Value "-Xms256M -Xmx512M" and

click OK.

Scroll down until you find the PATH environment variable. Select it and select Edit. Add %ANT_HOME%\bin to

the end or beginning of the PATH. Select OK, and then select OK again. Open a command prompt and type ant

and press Enter. If you get a build file not found error, you have correctly installed Ant. If not, check your

environment variable settings and make sure they are pointing to the directory to which you unzipped Ant.

You will need a Liferay runtime on which to deploy your plugins to test them. We recommend using the Liferay-

Tomcat bundle which is available from Liferay's web site, as Tomcat is small, fast, and takes up less resources

than most other containers. Download the latest Liferay-Tomcat bundle and unzip it to a folder on your machine.

You can start Tomcat by navigating to the <Tomcat Home>/bin folder and running the startup command (i.e.,

startup.bat for Windows or ./startup.sh for Linux or Mac).

You will notice that the plugins SDK contains a file called build.properties. Open this file in the text editor or IDE

you will be using to create portlets and themes. At the top of the file is a message, "DO NOT EDIT THIS FILE."

This file contains the settings for where you have Liferay installed and where your deployment folder is going to

be, but you don't want to customize this file. Instead, create a new file in the same folder called build.$

{user.name}.properties, where ${user.name} is your user ID on your machine. For example, if your user name is

jsmith (for John Smith), you would create a file called build.jsmith.properties.

You will likely need to customize the following properties:

app.server.dir=

java.compiler=

app.server.dir: This is the folder into which you have installed your application server..

java.compiler: Defaults to the standard Java compiler, modern, from your JDK. However, you can set this to the

Eclipse compiler, ECJ, if you want.

Save the file. You are now ready to start using the plugins SDK.

The plugins SDK can be used to house all of your portlet and theme projects enterprise-wide, or you can have

separate plugins SDK projects for each of your portal projects. For example, if you have an internal Intranet

which uses Liferay and which has some custom written portlets for internal use, you could keep those portlets

and themes in their own plugins SDK project in your source code repository. If you also have an external instance

of Liferay running for your public Internet web site, you could have a separate plugins SDK with those projects

(portlet and theme) in your source code repository. Or you could further separate your projects by having a

different plugins SDK project for each portlet or theme project. It's really up to you.

You could also use the plugins SDK as a simple cross-platform new project generator. You can generate the

project using the ant scripts in the plugins SDK and then copy the resulting project from the portlets or themes

folder to your IDE of choice. You would need to customize the ant script if you wish to do that, but this allows

organizations which have strict standards for their Java projects to adhere to those standards.

Introduction to Java Standard Portlets
Portlets are small web applications that run in a portion of a web page. The heart of any portal imIntroduction

plementation is its portlets, because portlets are where the functionality of any portal resides. Liferay's core is a

portlet container, and this container is only responsible for aggregating the set of portlets that are to appear on

any particular page. This means that all of the features and functionality of your portal application must be in its

portlets.

Portlet applications, like servlet applications, have become a Java standard which various portal server vendors

have implemented. The JSR-168 standard defines the initial portlet specification, while the JSR-286 standard

defines the Portlet 2.0 specification. We will refer to these together as Java Standard portlets. A Java Standard

portlet should be deployable on any portlet container which complies with the standard. Portlets are placed on

the page in a certain order by the end user and are served up dynamically by the portal server. This means that

certain "givens" that apply to servlet-based projects, such as control over URLs or access to the

HttpServletRequest object, don't apply in portlet projects, because the portal server generates these objects

dynamically.

Portal applications come generally in two flavors: 1) portlets can be written to provide small amounts of

functionality and then aggregated by the portal server into a larger application, or 2) whole applications can be

written to reside in only one or a few portlet windows. The choice is up to those designing the application. The

developer only has to worry about what happens inside of the portlet itself; the portal server handles building out

the page as it is presented to the user.

Most developers nowadays like to use certain frameworks to develop their applications, because those

frameworks provide both functionality and structure to a project. For example, Struts enforces the Model-View-

Controller design pattern and provides lots of functionality, such as custom tags and validating functionality, that

make it easier for a developer to implement certain standard features. With Liferay, developers are free to use all

of the leading frameworks in the JavaEE space, including Struts, Spring, and Java Server Faces. This allows

developers familiar with those frameworks to more easily implement portlets, and also facilitates the quick porting

of an application using those frameworks over to a portlet implementation.

Additionally, Liferay allows for the consuming of PHP and Ruby applications as "portlets," so you do not need to

be a Java developer in order to take advantage of Liferay's built-in features (such as user management,

communities, page building and content management). You can use the Plugins SDK to deploy your PHP or

Ruby application as a portlet, and it will run seamlessly inside of Liferay. We have plenty of examples of this; to

see them, check out the Plugins SDK from Liferay's public Subversion repository.

Creating A Portlet

Creating portlets with the plugins SDK is a straightforward process. As noted before, there is a portlets folder

inside of the plugins SDK folder. This is where your portlet projects will reside. To create a new portlet, first decide

what its name is going to be. You need both a project name (without spaces) and a display name (which can

have spaces). When you have decided on your portlet's name, you are ready to create the project. Enter the

following command in the portlets folder:

ant -Dportlet.name=<project name> -Dportlet.display.name="<portlet title>" create

For example:

ant -Dtheme.name=hello-world -Dtheme.display.name="Hello World" create

You should get a BUILD SUCCESSFUL message from Ant, and there will now be a new folder inside of the

portlets folder in your plugins SDK. This folder is your new portlet project. This is where you will be implementing

your own functionality.

Alternatively, if you will not be using the Plugins SDK to house your portlet projects, you can copy your newly

created portlet project into your IDE of choice and work with it there. If you do this, you may need to make sure

the project references some .jar files from your Liferay installation, or you may get compile errors. Since the ant

scripts in the Plugins SDK do this for you automatically, you don't get these errors when working with the Plugins

SDK.

To resolve the dependencies for portlet projects, see the class path entries in the build-common.xml file in the

Plugins SDK project. You will be able to determine from the plugin.classpath and portal.classpath entries which

.jar files are necessary to build your newly created portlet project.

Anatomy of a Portlet

A portlet project is made up at a minimum of three components:

•Java Source

•Configuration files

•Client-side files (*.jsp, *.css, *.js, graphics, etc.)

These files are stored in a standard directory structure which looks like the following.

/PORTLET-NAME/

/docroot/

/css/

/js/

/WEB-INF/

/classes/

/lib/

/src/

liferay-display.xml

liferay-plugin-package.properties

liferay-portlet.xml

portlet.xml

web.xml

icon.png

view.jsp

build.xml

The example is a fully deployable portlet which can be deployed to your configured Liferay server by running the

deploy ant task.

The default portlet is configured as a standard JSR-168 portlet which uses separate JSPs for its three portlet

modes (view, edit, and help). Only the view.jsp is implemented in the example; the code will need to be

customized to enable the other modes.

The Java Source is stored in the docroot/WEB-INF/src folder. You can go in and customize (and rename) the

portlet class and add any classes necessary to implement your functionality.

The Configuration Files are stored in the docroot/WEB-INF folder. The two standard JSR-168 portlet

configuration files, web.xml and portlet.xml are here, as well as three Liferay specific configuration files. The

Liferay specific configuration files are completely optional, but are important if your portlets are going to be

deployed on a Liferay Portal server.

liferay-display.xml: This file describes for Liferay what category the portlet should appear under in the Add

Application window.

liferay-portlet.xml: This file describes some optional Liferay-specific enhancements for JSR-168 portlets that are

installed on a Liferay Portal server. For example, you can set whether a portlet is instanceable, which means that

you can place more than one instance on a page, and each portlet will have its own data. Please see the DTD for

this file for further details, as there are too many settings to list here. The DTD may be found in the definitions

folder in the Liferay source code.

liferay-plugin-package.properties: This file describes the plugin to Liferay's hot deployer. One of the things that

can be configured in this file is dependency .jars. If a portlet plugin has dependencies on particular .jar files that

already come with Liferay, you can specify them in this file and the hot deployer will modify the .war file on

deployment so that those .jars are on the class path.

Client Side Files are the .jsp, .css, and JavaScript files that you write to implement your portlet's user interface.

These files should go in the docroot folder somewhere—either in the root of the folder or in a folder structure of

their own. Remember that with portlets you are only dealing with a portion of the HTML document that is getting

returned to the browser. Any HTML code you have in your client side files should be free of global tags such as

<html> or <head>.

The default portlet project that is created is a simple JSR-168 portlet, with no bells and whistles. You can use this

framework to write your code to the JSR-168 portlet API and implement all the functionality that you need. There

are many portlets that are implemented this way. The standard portlet API is easy to use and straightforward.

Many developers, however, prefer to use a particular framework when developing web applications. Several

frameworks, such as Struts, Spring, or Java Server Faces, make the development of web applications more

straightforward and easier to follow than a standard servlet implementation would be. All three of the frameworks

mentioned can also be used to create portlets. Liferay has many examples of how these frameworks would be

used in our public Subversion repository at SourceForge. You can grab them by checking them out of the

repository or by accessing our Official Plugins page at

http://www.liferay.com/web/guest/downloads/official_plugins.

A Closer Look at the Default JSP Portlet

If you are new to portlet development, this section will take a closer look at the configuration options of a portlet.

docroot/WEB-INF/portlet.xml

<portlet>

<portlet-name>jsp-portlet</portlet-name>

<display-name>JSP Portlet</display-name>

<portlet-class>com.sample.jsp.portlet.JSPPortlet</portlet-class>

<init-param>

<name>view-jsp</name>

<value>/view.jsp</value>

</init-param>

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

</supports>

<portlet-info>

<title>JSP Portlet</title>

<short-title>JSP Portlet</short-title>

<keywords>JSP Portlet</keywords>

</portlet-info>

<security-role-ref>

<role-name>administrator</role-name>

</security-role-ref>

<security-role-ref>

<role-name>user</role-name>

</security-role-ref>

</portlet>

Here is a basic summary of what each of the elements represents:

portlet-name

The portlet-name element contains the canonical name of the portlet. Each portlet name is unique within the

portlet application. (This is also referred within Liferay Portal as the portlet id)

display-name

The display-name type contains a short name that is intended to be displayed by tools. It is used by display-

name elements. The display name need not be unique.

portlet-class

The portlet-class element contains the fully qualified class name of the portlet.

init-param

The init-param element contains a name/value pair as an initialization param of the portlet.

expiration-cache

Expiration-cache defines expiration-based caching for this portlet. The parameter indicates the time in seconds

after which the portlet output expires. -1 indicates that the output never expires.

supports

The supports element contains the supported mime-type. Supports also indicates the portlet modes a portlet

supports for a specific content type. All portlets must support the view mode.

portlet-info

Portlet-info defines portlet information.

security-role-ref

The security-role-ref element contains the declaration of a security role reference in the code of the web

application. Specifically in Liferay, the role-name references which role's can access the portlet. (A Power User

can personalize the portal, whereas a User cannot.)

docroot/WEB-INF/liferay-portlet.xml - In addition to the standard portlet.xml options, there are optional Liferay-

specific enhancements for Java Standard portlets that are installed on a Liferay Portal server.

<liferay-portlet-app>

<portlet>

<portlet-name>jsp-portlet</portlet-name>

<icon>/icon.png</icon>

<instanceable>true</instanceable>

<header-portlet-css>/css/test.css</header-portlet-css>

<header-portlet-javascript>/js/test.js</header-portlet-javascript>

</portlet>

<role-mapper>

<role-name>administrator</role-name>

<role-link>Administrator</role-link>

</role-mapper>

<role-mapper>

<role-name>user</role-name>

<role-link>User</role-link>

</role-mapper>

</liferay-portlet-app>

Here is a basic summary of what some of the elements represents.

portlet-name

The portlet-name element contains the canonical name of the portlet. This needs to be the same as the portlet-

name given in portlet.xml

icon

Path to icon image for this portlet

instanceable

Indicates if multiple instances of this portlet can appear on the same page.

struts-path

Tells the portal that all requests with the path ext/library/* are considered part of this portlet's scope. For example,

a struts-path of ext/library will give us access to /ext/library/view in struts-config.xml, but not /ext/reports/view.

There are may more elements, so you will probably want to look over the DTD for this file since there are many

options you will want to be aware of if you do more advance development. The DTD may be found in the

definitions folder in the Liferay source code.

Creating Liferay Themes
Themes are hot deployable plugins which can completely transform the look and feel of the portal. Theme

creators can make themes to provide an interface that is unique to the site that the portal will serve. Themes

make it possible to change the user interface so completely that it would be difficult or impossible to tell that the

site is running on Liferay. Liferay provides a well organized, modular structure to its themes. This allows the

theme developer to be able to quickly modify everything from the border around a portlet window to every object

on the page, because all of the objects are easy to find. Additionally, theme developers do not have to customize

every aspect of their themes: if the plugin SDK is used, themes become only a list of differences from the default

theme. This allows themes to be smaller and less cluttered with extraneous data that already exists in the default

theme (such as graphics for emoticons for the message boards portlet).

There is a themes folder inside the plugins SDK where all new themes reside. To create a new theme, you run

the following command in this folder:

ant -Dtheme.name=<project name> -Dtheme.display.name="<theme title>" create

For example:

ant -Dtheme.name=newtheme -Dtheme.display.name="My New Theme" create

This command will create a blank theme in your themes folder.

Theme Concepts

Custom themes are based on differences between the custom code and the default Liferay theme, called

Classic. You will notice that there is a _diffs folder inside of your custom theme folder. This is where you will place

your theme code. You only need to customize the parts of your theme that will differ from what is already

displayed in the Classic theme. To do this, you mirror the directory structure of the Classic theme inside of the

_diffs folder, placing only the folders and files you need to customize there.

For example, to customize the Dock (a necessary component of all themes), you would copy just the dock.vm file

from your Liferay installation (the Classic theme is in <Tomcat_Home>/webapps/ROOT/html/themes/classic) into

your theme's _diffs/templates folder. You can then open this file and customize it to your liking. For example, you

might want to change the welcome message to something else, like "Quick Links."

For custom styles, we recommend you create a css folder and place a single file there called custom.css. This is

where you would put all of your new styles and all of your overrides to the default Liferay styles. It is best to do it

this way because of the order in which the .css files are loaded. Custom.css is loaded last, and so anything

inside this file will be guaranteed to override any styles that are in any of the other style sheets.

Anatomy of a Theme

The folders in themes are designed to be easy to navigate and understand. Currently, this is what the new

directory structure looks like:

/THEME_NAME/

/css/

base.css

custom.css

main.css

navigation.css

forms.css

portlet.css

deprecated.css

tabs.css

layout.css

/images/

(many directories)

/javascript/

javascript.js

/templates/

dock.vm

navigation.vm

portal_normal.vm

portal_popup.vm

portlet.vm

/WEB-INF

/META-INF

You can copy any of these files from the default custom theme to your _diffs folder in order to customize that

portion of the theme.

JavaScript

Liferay now includes the jQuery JavaScript library, and theme developers can include any plugins that jQuery

supports. The $ variable, however, is not supported (for better compliance with different portlets). Inside of the

javascript.js file, you will find three different function calls, like this:

jQuery(document).ready(

function() {

//Custom javascript goes here

}

);

Liferay.Portlet.ready(

function(portletId, jQueryObj) {

//Custom javascript goes here

}

);

jQuery(document).last(

function() {

//Custom javascript goes here

}

);

•jQuery(document).ready(fn);

When this gets passed a function (it can be a defined function, or an anonymous one like above), the function

gets executed as soon as the HTML in the page has finished loading (minus any portlets loaded via ajax).

•Liferay.Portlet.ready(fn);

When this gets passed a function (it can be a defined function, or an anonymous one like above), the function

gets executed after each portlet has loaded. The function that gets executed receives two variables, portletId and

jQueryObj. portletId is the id of the current portlet that has loaded, and jQueryObj is the jQuery object of the

current portlet element.

•jQuery(document).last(fn);

When this gets passed a function (it can be a defined function, or an anonymous one like above), the function

gets executed after everything—including AJAX portlets—gets loaded onto the page.

Besides theme-wide JavaScript there is also support for page specific JavaScript. The Page Settings form

provides three separate JavaScript pieces that you can insert anywhere in your theme. Use the following to

include the code from these settings:

$layout.getTypeSettingsProperties().getProperty("javascript-1")

$layout.getTypeSettingsProperties().getProperty("javascript-2")

$layout.getTypeSettingsProperties().getProperty("javascript-3")

The content of the JavaScript settings fields are stored in the database as Java Properties. This means that each

field can only have one line of text. For multi-line scripts, the newlines should be escaped using \, just as in a

normal .properties file.

Settings

Each theme can define a set of settings to make it configurable.

The settings are defined in the liferay-look-and-feel.xml using the following syntax:

<settings>

<setting key="my-setting" value="my-value />

...

</settings>

These settings can be accessed in the theme templates using the following code:

$theme.getSetting("my-setting")

For example, say we need to create two themes that are exactly the same except for some changes in the

header. One of the themes has more details while the other is smaller (and takes less screen real estate).

Instead of creating two different themes, we are going to create only one and use a setting to choose which

header we want.

While developing the theme we get to the header. In the portal_normal.vm template we write:

if ($theme.getSetting("header-type") == "detailed") {

#parse("$full_templates_path/header_detailed.vm")

} else {

#parse("$full_templates_path/header_brief.vm")

}

Then when we write the liferay-look-and-feel.xml, we write two different entries that refer to the

same theme but have a different value for the header-type setting:

<theme id="beauty1" name="Beauty 1">

<root-path>/html/themes/beauty</root-path>

<templates-path>${root-path}/templates</templates-path>

<images-path>${root-path}/images</images-path>

<template-extension>vm</template-extension>

<settings>

<setting key="header-type" value="detailed" />

</settings>

<color-scheme id="01" name="Blue">

<css-class>blue</css-class>

<color-scheme-images-path>

${images-path}/color_schemes/${css-class}

</color-scheme-images-path>

</color-scheme>

...

</theme>

<theme id="beauty2" name="Beauty 2">

<root-path>/html/themes/beauty</root-path>

<templates-path>${root-path}/templates</templates-path>

<images-path>${root-path}/images</images-path>

<template-extension>vm</template-extension>

<settings>

<setting key="header-type" value="brief" />

</settings>

<color-scheme id="01" name="Blue">

<css-class>blue</css-class>

<color-scheme-images-path>

${images-path}/color_schemes/${css-class}

</color-scheme-images-path>

</color-scheme>

...

</theme>

Color Schemes

Color schemes are specified using a CSS class name, with which you can not only change colors, ut also choose

different background images, different border colors, and so on.

In your liferay-look-and-feel.xml (located in WEB-INF), you would specify the class names like so:

<theme id="my_theme" name="My Theme">

<root-path>/my_theme</root-path>

<templates-path>${root-path}/templates</templates-path>

<images-path>${root-path}/images</images-path>

<template-extension>vm</template-extension>

<color-scheme id="01" name="Blue">

<css-class>blue</css-class>

<color-scheme-images-path>

${images-path}/color_schemes/${cssclass}

</color-scheme-images-path>

</color-scheme>

<color-scheme id="02" name="Green">

<css-class>green</css-class>

</color-scheme>

</theme>

Inside of your css folder, create a folder called color_schemes. Inside of that folder, place a .css file for each of

your color schemes. In the case above, we would could either have just one called green.css and let the default

styling handle the first color scheme, or you could have both blue.css and green.css.

Now, inside of your custom.css, you would place the following lines:

@import url(color_schemes/blue.css);

@import url(color_schemes/green.css);

You can identify the styling for the CSS by using prefixes. In blue.css you would prefix all of your css styles like

this:

.blue a {color: #06C;}

.blue h1 (border-bottom: 1px solid #06C}

And in green.css you would prefix all of your CSS styles like this:

.green a {color: #06C;}

.green h1 (border-bottom: 1px solid #06C}

Portal predefined settings

The portal defines some settings that allow the theme to determine certain behaviors. So far there are only two

predefined settings but this number may grow in the future.

•portlet-setup-show-borders-default

If set to false, the portal will turn off borders by default for all the portlets. The default is true.

Example:

<settings>

<setting key="portlet-setup-show-borders-default" value="false" />

</settings>

This default behavior can be overridden for individual portlets using:

• liferay-portlet.xml

• Portlet CSS popup setting

•bullet-style-options

The value must be a comma separated list of valid bullet styles to be used. The default is an empty list. The

navigation portlet will not show any option in the portlet configuration screen.

Example:

<settings>

<setting key="bullet-style-options" value="classic,cool,tablemenu" />

</settings>

The bullet styles referred to in the setting are defined in any of the CSS files of the theme following this pattern:

.nav-menu-style-{BULLET_STYLE_OPTION} {

... CSS selectors ...

}

Here is an example of the HTML code that you would need to style through the CSS code. In this case the bullet

style option is cool:

<div class="nav-menu nav-menu-style-cool">

<h3>Community</h3>

<ul class="layouts">

<li class="">Documentation

<li class=""> Wiki

<li class=""> Forums

</div>

Using your CSS skills and, if desired, some unobtrusive Javascript it's possible to implement anytype of menu.

Deployment
You will notice that when your project was created in the Plugins SDK, an ant script was also created for it. To

deploy a plugin, you run the deploy ant task in your project.

ant deploy

This task will compile your plugin (theme or portlet), store it in a dist folder, and deploy your plugin to your local

Liferay installation.

This is done by copying the plugin .war file to your Liferay hot deploy folder. If your local installation of Liferay is

running, your plugin will be automatically picked up by the server and deployed. Watch your Liferay console for

messages. When you see

<plugin> registered successfully.

in the console, your plugin has been deployed to the server and is ready for use.

If your plugin is a portlet, you can add it to a page by hovering over the Dock and clicking Add Content. Find your

portlet in the category you specified in your liferay-display.xml file. If you have not yet customized the file, your

portlet will be in the Samples category. Simply click the Add button next to it to add it to the page you are

currently viewing.

If your plugin is a theme, you can choose it for the page you are viewing by hovering over the Dock and clicking

Manage Pages. Go to the Look and Feel tab and your theme should be in the list. Select it and it will be applied

to the page you are viewing. You can then click the Return to Full Page link and see your theme applied to the full

page.

Advanced Development

Service Builder

The Service Builder is a tool built by Liferay to automate the creation of interfaces and classes that are used by a

given portal or portlet.

Define the Database Structure

Start by creating a service.xml file in /docroot/WEB-INF and type the following:

<?xml version="1.0"?>

<!DOCTYPE service-builder PUBLIC "-//Liferay//DTD Service Builder 5.0.0//EN"

"http://www.liferay.com/dtd/liferay-service-builder_5_0_0.dtd">

<service-builder package-path="com.sample.portlet.library">

<namespace>Library</namespace>

<entity name="Book" local-service="true" remote-service="false">

<!-- PK fields -->

<column name="bookId" type="long" primary="true" />

<!-- Group instance -->

<column name="groupId" type="long" />

<!-- Audit fields -->

<column name="companyId" type="long" />

<column name="userId" type="long" />

<column name="userName" type="String" />

<column name="createDate" type="Date" />

<column name="modifiedDate" type="Date" />

<!-- Other fields -->

<column name="title" type="String" />

</entity>

</service-builder>

Overview of service.xml

<service-builder package-path="com.sample.portlet.library">

This specifies the package path that the class will generate to. In this example, classes will generate to WEB-

INF/src/com/sample/portlet/library/

<namespace>Library</namespace>

The namespace element must be a unique namespace for this component. Tables names will be prepended with

this namepace.

<entity name="Book" local-service="true" remote-service="false">

The entity name is the database table you want to create.

Generate Service Layer

Open up a command prompt, navigate to your portlet's root folder and type the following command.

ant build-service

The service layer has been generated successfully when you see "BUILD SUCCESSFUL."

Create the Service Layer Class

Open the following file:

/docroot/WEB-INF/src/com/sample/portlet/library/service/impl/BookLocalServiceImpl.java

We will be adding the database interaction methods to this service layer class.

Add the following method to the BookLocalServiceImpl class

public Book addBook(long userId, String title)

throws PortalException, SystemException {

User user = UserUtil.findByPrimaryKey(userId);

Date now = new Date();

long bookId = CounterLocalServiceUtil.increment(Book.class.getName());

Book book = bookPersistence.create(bookId);

book.setTitle(title);

book.setCompanyId(user.getCompanyId());

book.setUserId(user.getUserId());

book.setUserName(user.getFullName());

book.setCreateDate(now);

book.setModifiedDate(now);

book.setTitle(title);

return bookPersistence.update(book);

}

Before you can use the code, you must regenerate the service layer class

Navigate to the root folder of your portlet, and type

ant build-service

You can now add a new book to the database by making the following call

BookLocalServiceUtil.addBook(userId, "A new title");

Security and Permissions Service

Liferay Portal implements a fine-grained permissions system, which developers can use to implement access

security into their custom portlets, giving administrators and users a lot more control over their portlets and

content. This section of the document will provide a reference for implementing security into custom portlets.

•Overview

Adding fine-grained permissions to custom portlets consists of four main steps (also known as DRAC):

•Define all resources and their permissions.

•Register all the resources defined in step 1 into the permissions system. This is also known simply as "adding

resources."

•Associate the necessary permissions to these resources.

•Check permission before returning resources.

•Implementing Permissions

In this section, each of the four main steps in adding Liferay's security feature into custom portlets (built on top of

the Liferay portal) will be explained. The following are two definitions that are important to remember.

Resource - A generic term for any object represented in the portal. Examples of resources include portlets (e.g.,

Message Boards, Calendar, etc.), Java classes (e.g., Message Board Topics, Calendar Events, etc.), and files

(e.g., documents, images, etc.)

Permission - An action acting on a resource. For example, the view in "viewing the calendar portlet" is defined as

a permission in Liferay.

Keep in mind that the permission for a portlet resource is implemented a little differently from the other resources

such as Java classes and files. In each of the subsections below, the permission implementation for the portlet

resource is explained first, then the model (and file) resource.

For your custom portlet, Liferay portal needs to know whether there are resources that require permission and

whether there are custom permissions. The default configuration is encapsulated in an XML file found in the

portal source under the /portal-impl/classes/resource-actions directory; you might use it as a reference to create

a similar file for your portlet. There is also a Sample Permissions portlet available in the Plugins project on

SourceForge. If your portlet only needs the view and the configuration permission, and that the portlet doesn't

use any models with permission, then you do not need to create this XML file. The reason is that all portlets in

Liferay automatically inherit these permissions. However, if your portlet does have custom permission and/or

uses models that have custom permissions, then you will need to create an XML file defining the resources and

actions. Let's take a look at blogs.xml in portal/portal-impl/classes/resource-actions and see how the blogs portlet

defined these resources and actions:

<?xml version="1.0"?>

<resource-action-mapping>

<portlet-resource>

<portlet-name>33</portlet-name>

<supports>

<action-key>ADD_ENTRY</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<community-defaults>

<action-key>VIEW</action-key>

</community-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ADD_ENTRY</action-key>

</guest-unsupported>

</portlet-resource>

<model-resource>

<model-name>com.liferay.portlet.blogs.model.BlogsEntry</model-name>

<portlet-ref>

<portlet-name>33</portlet-name>

</portlet-ref>

<supports>

<action-key>ADD_DISCUSSION</action-key>

<action-key>DELETE</action-key>

<action-key>DELETE_DISCUSSION</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>UPDATE_DISCUSSION</action-key>

<action-key>VIEW</action-key>

</supports>

<community-defaults>

<action-key>ADD_DISCUSSION</action-key>

<action-key>VIEW</action-key>

</community-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ADD_DISCUSSION</action-key>

<action-key>DELETE</action-key>

<action-key>DELETE_DISCUSSION</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>UPDATE_DISCUSSION</action-key>

</guest-unsupported>

</model-resource>

</resource-action-mapping>

In the XML, the first thing defined is the portlet itself. Right under the root element <resource-action-mapping>,

we have a child element called <portlet-resource>. In this element, we define the portlet name, which is 33 in our

case. Next, we list all the actions this portlet supports under the <supports> tag. Keep in mind that this is at the

portlet level. To understand what should be listed here, developers should ask themselves what actions belong to

the portlet itself or what actions are performed on the portlet that may require a security check. In our case, users

need permission to add an entry (ADD_ENTRY), configure blogs portlet settings (CONFIGURATION), and view

the blogs itself (VIEW). Each of these supported permissions is within its own <action-key> tag. After we've

defined all the actions that require a check, we move on to define some of the default permission settings. The

community-defaults tag defines what actions are permitted by default for this portlet on the community (group)

page upon which the portlet resides. To put it another way, what should a user that has access to the community

in which this portlet resides be able to do minimally? For the blogs portlet, a user with access to the community

containing the blogs portlet should be able to view it. Likewise, the guest-defaults tag defines what actions are

permitted by default to guests visiting a layout containing this portlet. So if a guest has access to the community

page that contains a blogs portlet, the guest should, at the very least, be able to view the portlet according to

blogs.xml (not necessarily the content of the portlet). Otherwise, the guest will see an error message within the

portlet. Depending on your custom portlet, you may add more actions here that make sense. The guest-

unsupported tag contains actions that a visiting guest should never be able to do. For example, the guest visiting

the blogs portlet should never be able to add a blog entry since the blog belongs to either a user or a group of

users. So even if a user wants to grant guests the ability to add a blog entry to her blog, there is no way for her to

grant that permission because the blogs.xml doesn't permit such an action for guests.

After defining the portlet as a resource, we move on to define models within the portlet that also require access

check. The model resource is surrounded by the <model-resource> tag. Within this tag, we first define the model

name. This must be the fully qualified Java class name of the model. Next we define the portlet name that this

model belongs to under the portlet-ref tag. Though unlikely, a model can belong to multiple portlets, which you

may use multiple <portlet-name> tags to define. Similar to the portlet resource element, the model resource

element also allows you to define a supported list of actions that require permission to perform. You must list out

all the performable actions that require a permission check. As you can see for a blog entry, a user must have

permission in order to add comments to an entry, delete an entry, change the permission setting of an entry,

update an entry, or simply to view an entry. The <community-defaults> tag, the <guest-defaults> tag, and the

<guest-unsupported> tag are all similar in meaning to what's explained above for a portlet resource.

After defining your permission scheme for your custom portlet, you then need to tell Liferay the location of this

file. For Liferay core, the XML file would normally reside in portal/portal-impl/classes/resource-actions and a

reference to the file would appear in the default.xml file. For a plugin, you should put the file in a directory that is

in the class path for the project. Then create a properties file for your portlet (the one in the Sample Permissions

Portlet is simply called, sample-permissions-portlet.properties) and create a property called

resource.actions.configs with a value that points to the the XML file. Below is an example from the Sample

Permissions Portlet:

resource.actions.configs=resource-actions/sample-permissions-portlet.xml

•Adding Resource

After defining resources and actions, the next task is to write code that adds resources into the permissions

system. A lot of the logic to add resources is encapsulated in the ResourceLocalServiceImpl class. So adding

resources is as easy as calling the add resource method in ResourceLocalServiceUtil class.

public void addResources(

String companyId, String groupId, String userId, String name,

String primKey, boolean portletActions,

boolean addCommunityPermissions, boolean addGuestPermissions);

For all the Java objects that require access permission, you need to make sure that they are added as resources

every time a new one is created. For example, every time a user adds a new entry to her blog, the

addResources(…) method is called to add the new entry to the resource system. Here's an example of the call

from the BlogsEntryLocalServiceImpl class.

ResourceLocalServiceUtil.addResources(

entry.getCompanyId(), entry.getGroupId(), entry.getUserId(),

BlogsEntry.class.getName(), entry.getPrimaryKey().toString(),

false, addCommunityPermissions, addGuestPermissions);

The parameters companyId, groupId, and userId should be self explanatory. The name parameter is the fully

qualified Java class name for the resource object being added. The primKey parameter is the primary key of the

resource object. As for the portletActions parameter, set this to true if you're adding portlet action permissions. In

our example, we set it to false because we're adding a model resource, which should be associated with

permissions related to the model action defined in blogs.xml. The addCommunityPermissions and the

addGuestPermissions parameters are inputs from the user. If set to true, ResourceLocalService will then add the

default permissions to the current community group and the guest group for this resource respectively.

If you would like to provide your user the ability to choose whether to add the default community permission and

the guest permission for the resources within your custom portlet, Liferay has a custom JSP tag you may use to

quickly add that functionality. Simply insert the <liferay-ui:input-permissions /> tag into the appropriate JSP and

the checkboxes will show up on your JSP. Of course, make sure the tag is within the appropriate <form> tags.

To prevent having a lot of dead resources taking up space in the Resource_ database table, you must remember

to remove them from the Resource_ table when the resource is no longer applicable. Simply call the

deleteResource(…) method in ResourceLocalServiceUtil. Here's an example of a blogs entry being removed:

ResourceLocalServiceUtil.deleteResource(

entry.getCompanyId(), BlogsEntry.class.getName(),

Resource.TYPE_CLASS, Resource.SCOPE_INDIVIDUAL,

entry.getPrimaryKey().toString());

•Adding Permission

On the portlet level, no code needs to be written in order to have the permission system work for your custom

portlet. Your custom portlet will automatically have all the permission features. If you've defined any custom

permissions (supported actions) in your portlet-resource tag in section 3.1, those are automatically added to a list

of permissions and users can readily choose them. Of course, for your custom permissions to have any value,

you'll need to show or hide certain functionality in your portlet. You can do that by checking the permission first

before performing the intended functionality.

In order to allow a user to set permissions on the model resources, you will need to expose the permission

interface to the user. This can be done by adding two Liferay UI tags to your JSP. The first one is the <liferay-

security:permissionsURL> tag which returns a URL that takes the user to the page to configure the permission

settings. The second tag is the <liferay-ui:icon> tag that shows a permission icon to the user. Below is an

example found in the file view_entry_content.jspf.

<liferay-security:permissionsURL

modelResource="<%= BlogsEntry.class.getName() %>"

modelResourceDescription="<%= entry.getTitle() %>"

resourcePrimKey="<%= entry.getPrimaryKey().toString() %>"

var="entryURL"

/>

<liferay-ui:icon image="permissions" url="<%= entryURL %>" />

The attributes you need to provide to the first tag are modelResource, modelResourceDescription,

resourcePrimKey, and var. The modelResource attribute is the fully qualified Java object class name. It then gets

translated in Language.properties to a more readable name.

As for the modelResourceDescription attribute, you can pass in anything that best describes this model instance.

In the example, the blogs title was passed in. The resourcePrimKey attribute is simply the primary key of your

model instance. The var attribute is the variable name this URL String will get assigned to. This variable is then

passed to the <liferay-ui:icon> tag so the permission icon will have the proper URL link. There's also an optional

attribute redirect that's available if you want to override the default behavior of the upper right arrow link. That is

all you need to do to enable users to configure the permission settings for model resources.

•Checking Permissions

The last major step to implementing permission to your custom portlet is to check permission. This may be done

in a couple of places. For example, your business layer should check for permission before deleting a resource,

or your user interface should hide a button that adds a model (e.g., a calendar event) if the user does not have

permission to do so.

Similar to the other steps, the default permissions for the portlet resources are automatically checked for you.

You do not need to implement anything for your portlet to discriminate whether a user is allowed to view or to

configure the portlet itself. However, you do need to implement any custom permission you have defined in your

resource-actions XML file. In the blogs portlet example, one custom supported action is ADD_ENTRY. There are

two places in the source code that check for this permission. The first one is in the file view_entries.jsp. The

presence of the add entry button is contingent on whether the user has permission to add entry (and also

whether the user is in tab one).

<%

boolean showAddEntryButton = tabs1.equals("entries") && PortletPermission.contains(permissionChecker,

plid, PortletKeys.BLOGS, ActionKeys.ADD_ENTRY);

%>

The second place that checks for the add entry permission is in the file BlogsEntryServiceImpl. (Notice the

difference between this file and the BlogsEntryLocalServiceImpl.) In the addEntry(…) method, a call is made to

check whether the incoming request has permission to add entry.

PortletPermission.check(

getPermissionChecker(), plid, PortletKeys.BLOGS,

ActionKeys.ADD_ENTRY);

If the check fails, it throws a PrincipalException and the add entry request aborts. You're probably wondering

what the PortletPermission and the PermissionChecker classes do. Let's take a look at these two classes.

The PermissionChecker class has a method called hasPermission(…) that checks whether a user making a

resource request has the necessary access permission. If the user is not signed in (guest user), it checks for

guest permissions. Otherwise, it checks for user permissions. This class is available to you in two places. First in

your business logic layer, you can obtain an instance of the PermissionChecker by calling the

getPermissionChecker() method inside your ServiceImpl class. This method is available because all ServiceImpl

(not LocalServiceImpl) classes extend the PrincipalBean class, which implements the getPermissionChecker()

method. The other place where you can obtain an instance of the PermissionChecker class is in your JSP files. If

your JSP file contains the portlet tag <portlet:defineObjects /> or includes another JSP file that does, you'll have

an instance of the PermissionChecker class available to you via the permissionChecker variable. Now that you

know what the PermissionChecker does and how to obtain an instance of it, let's take a look at Liferay's

convention in using it.

PortletPermission is a helper class that makes it easy for you to check permission on portlet resources (as

opposed to model resources, covered later). It has two static methods called check(…) and another two called

contains(…). They are all essentially the same. The two differences between them are:

•One check(…) method and one contains(…) method take in the portlet layout ID variable (plid).

•The check(…) methods throw a new PrincipalException if user does not have permission, and the contains(…)

methods return a boolean indicating whether user has permission.

The contains(…) methods are meant to be used in your JSP files since they return a boolean instead of throwing

an exception. The check(…) methods are meant to be called in your business layer (ServiceImpl). Let's revisit the

blogs portlet example below. (The addEntry(…) method is found in BlogsEntryServiceImpl.)

public BlogsEntry addEntry(

long plid, String title, String content, int displayDateMonth,

int displayDateDay, int displayDateYear, int displayDateHour,

int displayDateMinute, String[] tagsEntries,

boolean addCommunityPermissions, boolean addGuestPermissions,

ThemeDisplay themeDisplay)

throws PortalException, SystemException {

PortletPermissionUtil.check(

getPermissionChecker(), plid, PortletKeys.BLOGS,

ActionKeys.ADD_ENTRY);

return blogsEntryLocalService.addEntry(

getUserId(), plid, title, content, displayDateMonth, displayDateDay,

displayDateYear, displayDateHour, displayDateMinute, tagsEntries,

addCommunityPermissions, addGuestPermissions, themeDisplay);

}

Before the addEntry(…) method calls BlogsEntryLocalServiceUtil.addEntry(…) to add a blogs entry, it calls

PortletPermission.check(…) to validate user permission. If the check fails, a PrincipalException is thrown and an

entry will not be added. Note the parameters passed into the method. Again, the getPermissionChecker() method

is readily available in all ServiceImpl classes. The plid variable is passed into the method by its caller (most likely

from a PortletAction class). PortletKeys.BLOGS is just a static String indicating that the permission check is

against the blogs portlet. ActionKeys.ADD_ENTRY is also a static String to indicate the action requiring the

permission check. You're encouraged to do likewise with your custom portlet names and custom action keys.

Whether you need to pass in a portlet layout ID (plid) depends on whether your custom portlet supports multiple

instances. Let's take a look at the message board portlet for example. A community may need three separate

page layouts, each having a separate instance of the message board portlet. Only by using the portlet layout ID

will the permission system be able to distinguish the three separate instances of the message board portlet. This

way, permission can be assigned separately in all three instances. Though in general, most portlets won't need to

use the portlet layout ID in relation to the permission system.

Since the ServiceImpl class extends the PrincipalBean class, it has access to information of the current user

making the service request. Therefore, the ServiceImpl class is the ideal place in your business layer to check

user permission. Liferay's convention is to implement the actual business logic inside the LocalServiceImpl

methods, and then the ServiceImpl calls these methods via the LocalServiceUtil class after the permission check

completes successfully. Your PortletAction classes should make calls to ServiceUtil (wrapper to ServiceImpl)

guaranteeing that permission is first checked before the request is fulfilled.

Checking model resource permission is very similar to checking portlet resource permission. The only major

difference is that instead of calling methods found in the PortletPermission class mentioned previously, you need

to create your own helper class to assist you in checking permission. The next section will detail how this is done.

It is advisable to have a helper class to help check permission on your custom models. This custom permission

class is similar to the PortletPermission class but is tailored to work with your custom models. While you can

implement this class however you like, we encourage you to model your implementation after the

PortletPermission class, which contains four static methods. Let's take a look at the BlogsEntryPermission class.

public class BlogsEntryPermission {

public static void check(

PermissionChecker permissionChecker, long entryId, String actionId)

throws PortalException, SystemException {

if (!contains(permissionChecker, entryId, actionId)) {

throw new PrincipalException();

}

}

public static void check(

PermissionChecker permissionChecker, BlogsEntry entry,

String actionId)

throws PortalException, SystemException {

if (!contains(permissionChecker, entry, actionId)) {

throw new PrincipalException();

}

}

public static boolean contains(

PermissionChecker permissionChecker, long entryId, String actionId)

throws PortalException, SystemException {

BlogsEntry entry = BlogsEntryLocalServiceUtil.getEntry(entryId);

return contains(permissionChecker, entry, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, BlogsEntry entry,

String actionId)

throws PortalException, SystemException {

return permissionChecker.hasPermission(

entry.getGroupId(), BlogsEntry.class.getName(), entry.getEntryId(),

actionId);

}

}

Again, the two check(…) methods are meant to be called in your business layer, while the two contains(…)

methods can be used in your JSP files. As you can see, it's very similar to the PortletPermission class. The two

notable differences are:

•Instead of having the portletId as one of the parameters, the methods in this custom class take in either an

entryId or a BlogsEntry object.

•None of the methods need to receive the portlet layout ID (plid) as a parameter. (Your custom portlet may

choose to use the portlet layout ID if need be.)

Let's see how this class is used in the blogs portlet code.

public BlogsEntry getEntry(String entryId) throws PortalException, SystemException {

BlogsEntryPermission.check(

getPermissionChecker(), entryId, ActionKeys.VIEW);

return BlogsEntryLocalServiceUtil.getEntry(entryId);

}

In the BlogsEntryServiceImpl class is a method called getEntry(…). Before this method returns the blogs entry

object, it calls the custom permission helper class to check permission. If this call doesn't throw an exception, the

entry is retrieved and returned to its caller.

<c:if test="<%= BlogsEntryPermission.contains(permissionChecker, entry, ActionKeys.UPDATE) %>">

<portlet:renderURL windowState="<%= WindowState.MAXIMIZED.toString() %>" var="entryURL">

<portlet:param name="struts_action" value="/blogs/edit_entry" />

<portlet:param name="redirect" value="<%= currentURL %>" />

<portlet:param name="entryId" value="<%= entry.getEntryId() %>" />

</portlet:renderURL>

<liferay-ui:icon image="edit" url="<%= entryURL %>" />

</c:if>

In the view_entry_content.jsp file, the BlogsEntryPermission.contains(…) method is called to check whether or

not to show the edit button. That's all there is to it!

Let's review what we've just covered. Implementing permission into your custom portlet consists of four main

steps. First step is to define any custom resources and actions. Next step is to implement code to register (or

add) any newly created resources such as a BlogsEntry object. The third step is to provide an interface for the

user to configure permission. Lastly, implement code to check permission before returning resources or showing

custom features. Two major resources are portlets and Java objects. There is not a lot that needs to be done for

the portlet resource to implement the permission system since Liferay Portal has a lot of that work done for you.

You mainly focus your efforts on any custom Java objects you've built. You're now well on your way to implement

security to your custom Liferay portlets!

Customizing Liferay: Developing in the Extension Environment
This section is intended as a guide for those who want to do extensive customization on top of Liferay Portal. The

extension environment, also known as the ext environment, is a set of tools that allow developers to build portals

and portlets on top of Liferay Portal. It can be seen as a Software Development Kit that is independent of any IDE

but integrates well with all of them thanks to its usage of ant, the most popular and supported build tool. Another

way to think about the extension environment is as a wrapper for Liferay's core source because, in most cases, it

mirrors Liferay's core source directories (i.e. ext-impl/ for portal-impl/, ext-web/ for portal-web/). It allows you to

develop on top of Liferay portal, like a platform, providing help when an upgrade to a new version of Liferay

Portal is needed. The following instructions explain how to use the environment and are meant to keep custom

code separated from the Liferay Portal code so that upgrades can be made easily.

The following instructions will help you get your development environment ready for working with the source

code. These instructions are specific to setting up for deployment to Tomcat 5.5 using a MySQL database and

developing with Java JDK 1.5. Liferay Portal version 5 requires JDK 1.5 or above, while 4.x is also compatible

with Java 1.4. All versions work with a wide array of databases, application servers and containers. You will need

to adjust your development environment according to your platform.

1. Tools Setup

2. Customizing Liferay

3. Advanced Development

Tools Setup

Before we can get started, the following components must be installed on your machine.

Java Development Kit

•Download and install JDK 1.5 or above at http://java.sun.com/j2se/1.5.0/download.jsp

•Set an environment variable called JAVA_HOME pointing to your JDK directory

ANT

•Download and unzip the latest version of ANT from http://ant.apache.org/

•Set an environment variable called ANT_HOME to point to your Ant directory

•Add ANT_HOME\bin to your PATH environment variable

MySQL

Download and install MySQL from http://www.mysql.com/

Liferay Source

•Download Liferay source from Liferay's download page at

•Unzip the source code into a folder called portal

Alternatively, you can download the source code from from Liferay's subversion repository at

https://lportal.svn.sourceforge.net/svnroot/lportal/portal/branches/5.0.x/

Setup Your Application Server and Liferay Portal

The first thing we need to do install Liferay Portal on your application server. You can download and install the

application server and Liferay portal separately, however, the easiest thing thing is to download a Liferay Portal

bundle. The Liferay Portal bundles can be obtained from http://www.liferay.com/web/guest/downloads/portal. The

examples in this guide will assume you are using Tomcat 5.5 bundle, but you can download the bundle that best

fits your need.

Once you have downloaded the file, unzip it to a location of your choice. The example in this guide will assume

you have unzipped the file to

D:/Projects/liferay/tomcat

Create the Extension Environment

Go to the root directory of the Liferay Portal sources and create a file called release.${user.name}.properties

where ${user.name} is the name of the user in your computer. Be sure to write it in the proper letter cases (even

in Windows). Set the property lp.ext.dir to the directory where you would like to create the directory (make sure

that it does not exist yet). If you expect to be using Eclipse, add also a property called lp.eclipse.project.name

with the desired name of the project and lp.eclipse.dir with the desired Eclipse work space: For example:

lp.ext.dir=D:/Projects/liferay/portal/ext

lp.eclipse.dir=D:/Projects/liferay/eclipse/workspace

lp.eclipse.project.name=liferay-ext

After creating the file, execute the following ant targets to build the sources and create the extension directory

structure:

ant start

ant build-ext

You can now go to the directory specified and see the directory structure that has been created. If you use some

type of version control repository such as CVS or Subversion you can upload the directory to it. In the next steps

you will be creating build products that should not be uploaded to the version control repository.

The rest of the document will be referring to the root directory where the extension environment has been

download as /ext.

Configuring the Environment

The extension environment is built around a set of ant build scripts that are highly configurable through properties

files and build scripts. You should create customized versions of the properties files by creating a version with the

same name than the original one but inserting your user name before the extension. The two files that should be

customized are app.server.properties and build.properties.

Create a file customized app.server.properties files be creating a app.server.$(user.name}.properties where $

{user.name} is the name of the user in your computer. Set the following property:

app.server.type=tomcat

app.server.tomcat.dir=D:/Projects/liferay/tomcat

Read app.server.properties to find other properties whose values you may want to override.

Create a file customized build.properties files by creating a build.$(user.name}.properties where ${user.name} is

the name of the user in your computer. In this file you can set the compiler you want to use (the default is

modern), the amount of memory that it will have, some extra class paths, specific WARs that you may want to

deploy, etc. Here is an example that sets these properties:

javac.compiler=modern

javac.debug=off

javac.memoryMaximumSize=128m

classpath.ext=/sharedlibs/mycompanylib.jar

deploy.specific.wars=/sharedportlets/mycompanyportlet.war

You can also set the property jsp.precompile to on in build.properties to precompile JSPs if you are using Jetty,

JBoss+Jetty, JBoss+Tomcat, JOnAS+Jetty (other AP. servers do not support this functionality). This takes a few

minutes and should only be used when deploying to a production server. Read build.properties to look for other

properties that you might be interested in overriding.

Setup the Database

Navigate to your application server find the conf/Catalina/localhost folder. Open ROOT.xml. Comment out the

Hypersonic database resource tag and uncomment the MySQL database resource tag. A resource tag looks like

the following:

<Resource

name="jdbc/LiferayPool"

auth="Container"

type="javax.sql.DataSource"

driverClassName="com.mysql.jdbc.Driver"

url="jdbc:mysql://localhost/lportal?useUnicode=true&characterEncoding=UTF-8"

username=""

password=""

maxActive="20"

/>

Be sure the set the username and/or password if needed.

Deploy the Extension Environment

Navigate to your /ext folder and issue the following command

ant clean deploy

Start up your application server. If you are using Tomcat, navigate to the bin folder and type

startup

Liferay will start as usual, but since no modification has been made in the extension environment, you won't

notice any difference.

Customizing Liferay

File Structure Overview

The following sections explain the purpose of each of the subdirectory and the tasks that can be performed from

them.

/ext

The root directory. From this directory you can build and deploy the whole application to the application server by

running ant deploy. You should not place any extra files here.

/ext/classes

This directory is for internal use and can be ignored.

/ext/ext-impl

This is the folder that will contain all your sources and configuration files (except those related to the web

application). Upon creating of the ext environment several important files will be placed in its subdirectories. The

most significant are:

•/ext/ext-impl/classes/portal-ext.properties: this file can be used to override the values of the properties in the

portal.properties configuration file that ships with Liferay Portal.

•/ext/ext-impl/classes/system-ext.properties: this file can be used to override the values of the properties in the

system.properties configuration file that ships with Liferay Portal.

•/ext/ext-impl/classes/content/Language-ext.properties: this file can be used to add you're own internationalized

text messages or to override the messages that ship with Liferay Portal. You can add variations for other

languages using the Java convention for message bundles. For example the translation to Spanish should be

named Language-ext_es.properties.

Run ant deploy from /ext/ext-impl to compile your source and to deploy your classes to your specified application

server's deployment directory.

/ext/ext-lib

Place any extra dependent libraries in here. They will be copied over to the deployment directory when you run

ant deploy from /ext.

/ext/ext-service

This folder contains the classes that are generated by Liferay's service builder. You can read more about Liferay's

service builder in the Advanced Development section.

/ext/ext-web

This directory will contain your JSPs, HTMLs, images, and all the web application related files inside the docroot

subdirectory. Here are some of the most common activities you will be performing from this directory:

•Run ant deploy to deploy changes in the directory. The script will copy everything from /ext/ext-web/docroot over

to /ext/ext-web/tmp and then copy everything from /ext/ext-web/tmp to the deployment directory of your specified

application server. Do not manipulate the contents of /ext/ext-web/tmp manually. This provides an easy way to

extend the portal without changing the source and makes upgrading very easy.

•Run ant fast-deploy to deploy only changed JSPs. Use this version for quick deployment in the process of

developing a JSP or set of JSPs

•To add entries to the web application configuration file edit /ext/ext-web/docroot/WEB-INF/web.xml.

•To add a portlet, edit /ext/ext-web/docroot/WEB-INF/portlet-ext.xml, /ext/ext-web/docroot/WEB-INF/liferay-

portlet-ext.xml, /ext/ext-web/docroot/WEB-INF/liferay-display.xml and /ext/ext-impl/classes/content/Language-

ext.properties. These *-ext.xml files are read after their parent files are read and override their parent values.

Note that we do not recommend adding portlet in the ext environment; it is far better to write a portlet plugin

instead.

•If you are using StrutsPortlet to develop your portlets, the following files will also be of interest to you: /ext/ext-

web/docroot/WEB-INF/struts-config.xml and /ext/ext-web/docroot/WEB-INF/tiles-defs.xml. Again, it is far better to

write a hot deployable Struts Portlet plugin than to add it to the extension environment.

/ext/lib

This directory contains all of the portal's deployment time dependent libraries and compile time dependent

libraries. It contains the following subdirectories:

•development: contains the libraries that will be used during development but will not be deployed. It also

contains some JDBC drivers that you can manually deploy to the application server for the specific database in

use.

•global: contains the libraries that will be deployed to the global library directory of the application server.

•portal: contains the libraries that will be placed inside the portal EAR.

/ext/modules

This folder contains the Liferay portal source code in .war or .jar format.

/ext/sql

This directory contains all of the portal's database scripts.

/ext/tools

This directory is for internal use and can be ignored.

Advanced Development

Liferay Services

Portlet applications may invoke the services provided by Liferay Portal by using the portal-client.jar client library.

User Service

The User service allows the management of the portal user and it's communities (aka Groups), Roles and

UserGroups. It can be accessed through the static methods of UserServiceUtil. Following is a description of it's

most important methods:

public static com.liferay.portal.model.User addUser(long companyId,

boolean autoPassword, java.lang.String password1,

java.lang.String password2, boolean autoScreenName,

java.lang.String screenName, java.lang.String emailAddress,

java.util.Locale locale, java.lang.String firstName,

java.lang.String middleName, java.lang.String lastName, int prefixId,

int suffixId, boolean male, int birthdayMonth, int birthdayDay,

int birthdayYear, java.lang.String jobTitle, long[] organizationIds,

boolean sendEmail)

throws com.liferay.portal.PortalException,

com.liferay.portal.SystemException, java.rmi.RemoteException;

Add a new user inserting in its profile the provided information

public static com.liferay.portal.model.User updateUser(long userId,

java.lang.String oldPassword, java.lang.String newPassword1,

java.lang.String newPassword2, boolean passwordReset,

java.lang.String screenName, java.lang.String emailAddress,

java.lang.String languageId, java.lang.String timeZoneId,

java.lang.String greeting, java.lang.String comments,

java.lang.String firstName, java.lang.String middleName,

java.lang.String lastName, int prefixId, int suffixId, boolean male,

int birthdayMonth, int birthdayDay, int birthdayYear,

java.lang.String smsSn, java.lang.String aimSn, java.lang.String icqSn,

java.lang.String jabberSn, java.lang.String msnSn,

java.lang.String skypeSn, java.lang.String ymSn,

java.lang.String jobTitle, long[] organizationIds)

throws com.liferay.portal.PortalException,

com.liferay.portal.SystemException, java.rmi.RemoteException;

Update a user's profile with the provided information.

public static void addGroupUsers(long groupId, long[] userIds)

throws com.liferay.portal.PortalException,

com.liferay.portal.SystemException, java.rmi.RemoteException;

Add a set of users to a give community (aka Group) identified by the groupId.

public static void addRoleUsers(long roleId, long[] userIds)

throws com.liferay.portal.PortalException,

com.liferay.portal.SystemException, java.rmi.RemoteException;

Add a set of users to a give Role identified by the roleId.

For more information check the Portal Javadocs.

	Hot Deploy Development
	Initial Setup
	Introduction to Java Standard Portlets
	Creating A Portlet
	Anatomy of a Portlet
	A Closer Look at the Default JSP Portlet

	Creating Liferay Themes
	Theme Concepts
	Anatomy of a Theme
	JavaScript
	Settings
	Color Schemes
	Portal predefined settings

	Deployment
	Advanced Development
	Service Builder
	Define the Database Structure
	Generate Service Layer
	Create the Service Layer Class
	Security and Permissions Service

	Customizing Liferay: Developing in the Extension Environment
	Java Development Kit
	ANT
	MySQL
	Liferay Source
	Setup Your Application Server and Liferay Portal
	Create the Extension Environment
	Configuring the Environment
	Setup the Database
	Deploy the Extension Environment

	Customizing Liferay
	File Structure Overview

	Advanced Development
	Liferay Services
	User Service

