
-and-panels

Developing
Liferay DXP

A Complete Guide

THE LIFERAY DOCUMENTATION TEAM
Richard Sezov, Jr.
Jim Hinkey
Stephen Kostas
Jesse Rao
Cody Hoag
Nicholas Gaskill
MichaelWilliams

Liferay Press

Developing Liferay DXP 7.1
by The Liferay Documentation Team
Copyright ©2018 by Liferay, Inc.

This work is offered under the following license:

Creative Commons Attribution-Share Alike Unported

You are free:

1. to share—to copy, distribute, and transmit the work

2. to remix—to adapt the work

Under the following conditions:

1. Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

2. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under the same, similar or a compatible license.

The full version of this license is here:
http://creativecommons.org/licenses/by-sa/3.0
This book was created out of material from the Liferay Docs repository. Where the content of

this book and the repository differ, the site is more up to date.

http://creativecommons.org/licenses/by-sa/3.0
https://github.com/liferay/liferay-docs

CONTENTS

Contents i

Preface iii
Conventions . iii
Publisher Notes . iii

I Developer Tutorials 1

1 Introduction to Liferay Development 3
1.1 Leveraging a Suite of Products, Frameworks and Libraries 3
1.2 BuildWebsites, Intranets, Collaborative Environments, Mobile Apps, and More . . 5
1.3 Creating Your Own Applications and Extending the Existing Ones 5
1.4 Fundamentals . 5
1.5 Liferay as a Development Platform . 14
1.6 Starting Module Development . 21
1.7 Configuring Dependencies . 28
1.8 Finding Extension Points . 35

2 Introduction to Front-End Development 39
2.1 Lexicon and Clay . 39
2.2 Templates . 40
2.3 Themes . 40
2.4 Front-End Extensions . 40

3 From Liferay Portal 6 to 7 41
3.1 What Hasn’t Changed andWhat Has . 41
3.2 Benefits of 7.1 for Liferay Portal 6 Developers 46

4 OSGi andModularity for Liferay Portal 6 Developers 49
4.1 Modules as an Improvement over Traditional Plugins 49
4.2 Example: Building an OSGi Module . 52
4.3 MoreWays OSGi Improves Development on Liferay 54

i

5 Improved Developer Tooling: LiferayWorkspace, Maven Plugins andMore 55
5.1 From the Plugins SDK to LiferayWorkspace . 56
5.2 Developing Modules with LiferayWorkspace . 59
5.3 What’s New for Maven Users . 61
5.4 Using Other Build Systems and IDEs . 62

6 Planning Plugin Upgrades and Optimizations 65
6.1 Upgrade and Optimization Phases . 66
6.2 Upgrading Code to 7.0 . 68
6.3 Upgrading Your Development Environment . 72
6.4 Migrating Plugins SDK Projects to LiferayWorkspace 73
6.5 Upgrading Build Dependencies . 74
6.6 Fixing Upgrade Problems . 75
6.7 Resolving a Plugin’s Dependencies . 77
6.8 Resolving Breaking Changes . 83

7 Upgrading Hook Plugins 85
7.1 Upgrading Customization Modules . 85
7.2 Upgrading Core JSP Hooks . 86
7.3 Upgrading App JSP Hooks . 86
7.4 Upgrading ServiceWrappers . 88
7.5 Upgrading Core Language Key Hooks . 88
7.6 Upgrading Portlet Language Key Hooks . 89
7.7 Upgrading Model Listener Hooks . 89
7.8 Upgrading Servlet Filter Hooks . 90
7.9 Upgrading Portal Property and Event Action Hooks 90
7.10 Converting StrutsActionWrappers to MVCCommands 91

8 Upgrading 6.2 Themes 93
8.1 Upgrading 6.2 Layout Templates . 93
8.2 Upgrading Frameworks and Features . 93
8.3 Upgrading JNDI Data Source Usage . 94
8.4 Upgrading Service Builder Service Invocation 94
8.5 Upgrading Service Builder . 94
8.6 Migrating Off of Velocity Templates . 96

9 Upgrading Portlet Plugins 97
9.1 Upgrading a GenericPortlet . 97
9.2 Upgrading a Liferay MVC Portlet . 100
9.3 Upgrading Portlets that use Service Builder . 101
9.4 Upgrading a Liferay JSF Portlet . 103
9.5 Upgrading a Servlet-based Portlet . 108
9.6 Upgrading a Spring MVC portlet . 109
9.7 Upgrading a Struts 1 Portlet . 113
9.8 UpgradingWeb Plugins . 114
9.9 Upgrading Ext Plugins . 115
9.10 Upgrading the Liferay Maven Build . 115

ii

10 Optimizing Plugins for 7.0 119
10.1 Migrating Traditional Plugins toWorkspaceWeb Applications 119

11 Modularizing Plugins 123

12 Modularizing an Existing Portlet 125
12.1 Converting Your Application’s Portlet Classes and UI 125
12.2 Converting Your Application’s Service Builder API and Implementation 130
12.3 Building Your Application’s Module JARs for Deployment 132
12.4 Migrating Data Upgrade Processes to the New Framework for Modules 133

13 From Liferay DXP 7.0 to 7.1 137

14 Upgrading plugins from Liferay DXP 7.0 to 7.1 139
14.1 Related Topics . 139

15 Upgrading 7.0 Themes 141
15.1 Upgrading 7.0 Layout Templates . 141

16 Developing aWeb Application 143
16.1 Development Setup Overview . 143

17 Creating aWorking Prototype 147
17.1 Writing Your First Liferay DXP Application . 147
17.2 Creating an Add Entry Button . 151
17.3 Generating Portlet URLs . 152
17.4 Linking to Another Page . 153
17.5 Triggering Portlet Actions . 154
17.6 Creating a Form . 154
17.7 Implementing Portlet Actions . 155
17.8 Displaying Guestbook Entries . 157

18 Generating the Back-end 163
18.1 What is Service Builder? . 163
18.2 Generating Model, Service, and Persistence Layers 165
18.3 Implementing Service Methods . 170

19 Refactoring the Prototype 175
19.1 Organizing Folders for Larger Applications . 175
19.2 Defining the Component Metadata Properties 177
19.3 Creating Portlet Keys . 178
19.4 Integrating the New Back-end . 179
19.5 Updating the View . 182
19.6 Fitting it All Together . 184

20 Writing an Administrative Portlet 189
20.1 Creating the Classes . 189
20.2 Adding Metadata . 191
20.3 Updating Your Service Layer . 193

iii

20.4 Defining Portlet Actions . 194
20.5 Creating a User Interface . 196

21 Displaying Messages and Errors 203
21.1 Creating Language Keys . 203
21.2 Adding Failure and Success Messages . 204
21.3 Adding Messages to JSPs . 205

22 Using Resources and Permissions 207
22.1 Defining Permissions . 207
22.2 Registering Your Defined Permissions . 213
22.3 Assigning Permissions to Resources . 218
22.4 Checking for Permission in JSPs . 221

23 Search and Indexing 225

24 Enabling Search and Indexing for Guestbooks 227
24.1 Understanding Search and Indexing . 228
24.2 Registering Guestbooks with the Search Framework 229
24.3 Indexing Guestbooks . 231
24.4 Querying for Guestbook Documents . 233
24.5 Generating Results Summaries . 234
24.6 Handling Indexing in the Guestbook Service Layer 235

25 Enabling Search and Indexing for Entries 237
25.1 Registering Entries with the Search Framework 238
25.2 Indexing Entries . 239
25.3 Querying for Entry Documents . 242
25.4 Generating Results Summaries . 243
25.5 Handling Indexing in the Entry Service Layer 244

26 Updating Your User Interface For Search 245
26.1 Adding a Search Bar to the Guestbook Portlet . 245
26.2 Creating a Search Results JSP for the Guestbook Portlet 246

27 Assets: Integrating with Liferay’s Framework 253
27.1 Enabling Assets at the Service Layer . 253
27.2 Handling Assets at the Guestbook Service Layer 254
27.3 Handling Assets for Entry Service Layer . 256

28 Implementing Asset Renderers 259
28.1 Implementing a Guestbook Asset Renderer . 259
28.2 Implementing an Entry Asset Renderer . 265

29 Adding Asset Features to Your User Interface 273
29.1 Creating JSPs for Displaying Custom Assets in the Asset Publisher 273
29.2 Enabling Tags, Categories, and Related Assets for Guestbooks 275
29.3 Enabling Tags, Categories, and Related Assets for Guestbook Entries 276
29.4 Enabling Comments and Ratings for Guestbook Entries 278

iv

30 Tooling 283

31 Liferay Dev Studio DXP 285
31.1 Installing Liferay Dev Studio DXP . 285
31.2 Creating a LiferayWorkspace with Dev Studio 290
31.3 Setting Proxy Requirements for Liferay Dev Studio 293
31.4 Updating Liferay Dev Studio . 295
31.5 Creating Modules with Liferay Dev Studio . 296
31.6 Creating Themes with Liferay Dev Studio . 300
31.7 Deploying Projects with Liferay Dev Studio . 302
31.8 Managing Projects with Liferay Dev Studio . 303
31.9 Installing a Server in Liferay Dev Studio . 306
31.10Searching Liferay DXP Source in Liferay Dev Studio 308
31.11Debugging Liferay DXP Source in Liferay Dev Studio 310
31.12Using Gradle in Liferay Dev Studio . 311
31.13Using Maven in Liferay Dev Studio . 315
31.14Enabling Code Assist Features in Your Project 319
31.15Using Front-End Code Assist Features in Dev Studio 321

32 Blade CLI 331
32.1 Installing Blade CLI . 332
32.2 Installing Blade CLI with Proxy Requirements 334
32.3 Creating a LiferayWorkspace with Blade CLI . 334
32.4 Creating Projects with Blade CLI . 336
32.5 Deploying Projects with Blade CLI . 338
32.6 Managing Your Liferay Server with Blade CLI . 339
32.7 Updating Blade CLI . 341
32.8 Converting Plugins SDK Projects with Blade CLI 342

33 LiferayWorkspace 343
33.1 Installing LiferayWorkspace . 343
33.2 Configuring a LiferayWorkspace . 345
33.3 Setting Proxy Requirements for LiferayWorkspace 348
33.4 Development Lifecycle for a LiferayWorkspace 350
33.5 Managing the Target Platform for LiferayWorkspace 354
33.6 Managing Themes in LiferayWorkspace . 357

34 Validating Modules Against the Target Platform 359
34.1 Resolving Your Modules . 359
34.2 Modifying the Target Platform’s Capabilities . 360
34.3 Including the Resolver in Your Gradle Build . 363
34.4 Validating Modules Outside ofWorkspace . 364
34.5 Leveraging Docker . 364
34.6 Updating LiferayWorkspace . 367
34.7 Updating Default Plugins Provided by LiferayWorkspace 367

35 Maven 369
35.1 Installing Liferay Maven Artifacts . 369

v

35.2 Generating New Projects Using Archetypes . 371
35.3 Creating a Module JAR Using Maven . 372
35.4 Deploying a Project Built with Maven to Liferay DXP 374
35.5 Creating a Maven Repository . 376
35.6 Deploying Liferay Maven Artifacts to a Repository 378
35.7 Using Service Builder in a Maven Project . 381
35.8 Compiling Sass Files in a Maven Project . 382
35.9 Building Themes in a Maven Project . 384
35.10MavenWorkspace . 387

36 IntelliJ IDEA 391
36.1 Installing the Liferay IntelliJ Plugin . 391
36.2 Creating a LiferayWorkspace with IntelliJ IDEA 392
36.3 Creating Projects with IntelliJ IDEA . 395
36.4 Installing a Server in IntelliJ IDEA . 396
36.5 Deploying Projects with IntelliJ IDEA . 397

37 Liferay Sample Projects 399
37.1 Liferay Upgrade Planner . 400
37.2 Using the Upgrade Planner with Proxy Requirements 402

38 Portlets 405
38.1 Related Topics . 408

39 Liferay MVC Portlet 409
39.1 MVC Layers and Modularity . 410
39.2 Liferay MVC Command Classes . 410
39.3 Liferay MVC Portlet Component . 410
39.4 A Simpler MVC Portlet . 411

40 Creating anMVC Portlet 413
40.1 Step 1: Configuring aWeb Module . 413
40.2 Step 2: Specifying OSGi Metadata . 414
40.3 Step 3: Creating a Portlet Component . 414
40.4 Writing Controller Code . 415
40.5 Configuring the View Layer . 419
40.6 Beyond the Basics for Portlets . 420
40.7 MVC Action Command . 420
40.8 MVC Render Command . 423
40.9 MVC Resource Command . 425

41 Liferay Soy Portlet 429
41.1 Creating a Soy Portlet . 429

42 The State Object 437
42.1 Understanding The State Object’s Architecture 437
42.2 Configuring Portlet Template Parameter State Properties 438
42.3 Configuring Soy Portlet Template Parameters on the Client Side 439

vi

43 Spring MVC 443
43.1 Configuring a Spring MVC Portlet . 443
43.2 Deploying a Spring MVC Portlet . 447

44 JSF Portlets with Liferay Faces 451
44.1 Generating a JSF Project from the Command Line 453
44.2 Generating a JSF Project Using Dev Studio . 454

45 Creating a JSF Project Manually 457
45.1 Packaging a JSF Application . 457
45.2 Defining a JSF Application’s Structure and Dependencies 458
45.3 Defining JSF Portlet Descriptors . 460
45.4 Defining Resources for a JSF Application . 463
45.5 Developing a JSF Application’s Behavior and UI 464
45.6 Services in JSF . 465
45.7 Making URLs Friendlier . 467

46 Using JavaScript in Your Portlets 471
46.1 Preparing Your JavaScript Files for ES2015+ . 471
46.2 Using ES2015 Modules in your Portlet . 472

47 Using npm in Your Portlets 473
47.1 Formatting Your npmModules for AMD . 473
47.2 Migrating a liferay-npm-bundler Project from 1.x to 2.x 478
47.3 Migrating Your Project to Use liferay-npm-bundler’s New Mode 480
47.4 Creating Custom Loaders for the liferay-npm-bundler 481

48 Using the NPMResolver API in Your Portlets 485
48.1 Referencing an npmModule’s Package to Improve Code Maintenance 485
48.2 Obtaining an OSGi bundle’s Dependency npm Package Descriptors 487

49 Applying Clay Styles to your App 489
49.1 Applying Clay Patterns to Navigation . 489
49.2 Configuring Your Application’s Title and Back Link 491
49.3 Setting Empty Results Messages . 492

50 Implementing the Management Toolbar 495
50.1 Implementing the View Types . 495
50.2 Filtering and Sorting Items with the Management Toolbar 499
50.3 Applying the Add Button Pattern . 501
50.4 Configuring Your Admin App’s Actions Menu . 503
50.5 Automatic Single Page Applications . 506
50.6 Creating Layouts inside Custom Portlets . 511

51 Customizing 517

52 Customizing JSPs 519
52.1 Using Liferay’s API to Override a JSP . 519
52.2 Overriding a JSPWithout Using Liferay’s API . 519

vii

52.3 Customizing JSPs with Dynamic Includes . 520
52.4 JSP Overrides Using Portlet Filters . 522
52.5 JSP Overrides Using OSGi Fragments . 525
52.6 JSP Overrides Using Custom JSP Bag . 528
52.7 Overriding Inline Content Using JSPs . 532

53 Overriding Liferay Services (ServiceWrappers) 537
53.1 Related Topics . 538

54 Overriding OSGi Services 539
54.1 Examining an OSGi Service to Override . 539
54.2 Creating a Custom OSGi Service . 542
54.3 Reconfiguring Components to Use Your OSGi Service 544

55 Overriding Language Keys 547
55.1 Overriding Global Language Keys . 547
55.2 Overriding a Module’s Language Keys . 550

56 Overriding MVC Commands 555
56.1 Adding Logic to MVC Commands . 555
56.2 Overriding MVCRenderCommands . 558
56.3 Overriding MVCActionCommands . 561
56.4 Overriding MVCResourceCommands . 562
56.5 Overriding Liferay DXP’s Default YUI and AUI Modules 563
56.6 Overriding lpkg files . 564
56.7 Creating Model Listeners . 565

57 Dynamic Includes 569
57.1 WYSIWYG Editor Dynamic Includes . 569
57.2 Top Head JSP Dynamic Includes . 571
57.3 Top JS Dynamic Include . 572
57.4 Bottom JSP Dynamic Includes . 573

58 Service Builder 575
58.1 What is Service Builder? . 575

59 Service Builder Persistence 579

60 Defining an Object-Relational Map with Service Builder 581
60.1 Creating the service.xml File . 582
60.2 Defining Global Service Information . 582
60.3 Defining Service Entities . 585
60.4 Defining the Columns (Attributes) for Each Service Entity 586
60.5 Defining Relationships Between Service Entities 588
60.6 Defining Ordering of Service Entity Instances 590
60.7 Defining Service Entity Finder Methods . 590
60.8 Running Service Builder . 592
60.9 Understanding the Code Generated by Service Builder 593
60.10Iterative Development . 598

viii

60.11Understanding ServiceContext . 598
60.12Customizing Model EntitiesWith Model Hints 604
60.13Configuring service.properties . 608
60.14Connecting Service Builder to External Databases 609
60.15Custom SQL . 612

61 Dynamic Query 617
61.1 Defining a Custom Finder Method . 617
61.2 Implementing a Custom Finder Method Using Dynamic Query 618
61.3 Accessing Your Custom Finder Method from the Service Layer 623
61.4 Actionable Dynamic Queries . 624

62 Business Logic with Service Builder 627

63 Creating Local Services 629
63.1 Deciding to Create Local and Remote Services 629
63.2 Implementing an Add Method . 630
63.3 Implementing update and delete Methods . 633
63.4 Implementing Methods to Get and Count Entities 636
63.5 Implementing Any Other Business Logic . 638
63.6 Integrating with Liferay’s Frameworks . 639
63.7 Invoking Local Services . 640
63.8 Invoking Services from Service Builder Code . 643

64 Application Security 647
64.1 Defining Application Permissions . 647
64.2 Defining Resources and Permissions . 648
64.3 Registering Permissions . 652
64.4 Associating Permissions with Resources . 654
64.5 Checking Permissions . 655
64.6 Using JSR Roles in a Portlet . 659

65 Authentication Pipelines 663
65.1 Auto Login . 664
65.2 Password-Based Authentication Pipelines . 665
65.3 Writing a Custom Login Portlet . 671
65.4 Service Access Policies . 673

66 Web Services 679
66.1 Headless REST APIs . 679
66.2 Get Started: Discover the API . 680
66.3 Get Started: Invoke a Service . 681
66.4 Making Authenticated Requests . 683
66.5 Working with Collections of Data . 686
66.6 Getting Collections . 687
66.7 Pagination . 688
66.8 Navigating from a Collection to its Elements . 689
66.9 API Formats and Content Negotiation . 690
66.10OpenAPI Profiles . 693

ix

66.11Filter, Sort, and Search . 695
66.12Restrict Properties . 698
66.13Multipart Requests . 700

67 Service BuilderWeb Services 703
67.1 Creating Remote Services . 703
67.2 Invoking Remote Services . 708
67.3 Service Security Layers . 711
67.4 Registering JSONWeb Services . 713
67.5 Invoking JSONWeb Services . 716
67.6 JSONWeb Services Invoker . 725
67.7 Configuring JSONWeb Services . 729
67.8 SOAPWeb Services . 731

68 JAX-RS and JAX-WS 739
68.1 JAX-RS . 739
68.2 JAX-WS . 742

69 Search 749
69.1 Basic Search Concepts . 749
69.2 Mapping Definitions . 750
69.3 Liferay Search Infrastructure . 750
69.4 Elasticsearch Logging . 750
69.5 Indexing Framework . 752

70 Asset Framework 757
70.1 Related Topics . 757
70.2 Adding, Updating, and Deleting Assets . 758
70.3 Implementing Asset Categorization and Tagging 760
70.4 Relating Assets . 763
70.5 Implementing Asset Priority . 766

71 Rendering an Asset 769
71.1 Prerequisites for Asset Enabling and Application 769
71.2 Creating an Asset Renderer . 770
71.3 Configuring JSP Templates for an Asset Renderer 775
71.4 Creating a Factory for the Asset Renderer . 778

72 Themes and Layout Templates 785

73 Themes 787

74 Creating Themes 789

75 Developing Themes 793
75.1 Using Developer Mode with Themes . 793
75.2 Building Your Theme’s Files . 796
75.3 Deploying Your Theme . 798
75.4 Changing Your Base Theme . 800

x

75.5 Copying an Existing Theme’s Files . 801
75.6 Configuring Your Theme’s App Server . 802
75.7 Listing Your Theme’s Extensions . 803
75.8 Automatically Deploying Theme Changes . 804
75.9 Creating Reusable Pieces of Code for Your Themes 805
75.10Creating a Thumbnail Preview for Your Theme 808
75.11Creating Color Schemes for Your Theme . 809
75.12Making Configurable Theme Settings . 812
75.13Overwriting and Extending Liferay Theme Tasks 815
75.14Compiling and Building Themes with Ant, Gradle, and Maven 817
75.15Injecting Additional Context Variables and Functionality into Your Templates . . . 818
75.16Packaging Independent UI Resources for Your Site 821
75.17Using Liferay DXP’s Macros in Your Theme . 823

76 Importing Resources with a Theme 825
76.1 Preparing and OrganizingWeb Content for the Resources Importer 825

77 Creating a Sitemap for the Resources Importer 829
77.1 Defining Layout Templates in a Sitemap . 832
77.2 Defining Pages in a Sitemap . 833
77.3 Defining Portlets in a Sitemap . 835
77.4 Retrieving Portlet IDs with the Gogo Shell . 837
77.5 Defining Assets for the Resources Importer . 838
77.6 SpecifyingWhere to Import Your Theme’s Resources 838
77.7 Archiving Site Resources . 840

78 Upgrading Your Theme from Liferay Portal 6.2 to 7.1 841
78.1 Running the Gulp Upgrade Task for 6.2 Themes 842
78.2 Updating 6.2 Project Metadata . 844

79 Updating 6.2 CSS Code 847
79.1 Updating CSS File Names for Clay and Sass . 847
79.2 Updating 6.2 CSS Rules and Imports . 848
79.3 Updating the Responsiveness . 850
79.4 Updating 6.2 Theme Templates . 851
79.5 Updating the Resources Importer . 855
79.6 Applying Clay Design Patterns . 860

80 Upgrading Your Theme from Liferay Portal 7.0 to 7.1 863
80.1 Upgrading Themes CreatedWith the Liferay Theme Generator 863
80.2 Updating Project Metadata . 864
80.3 Updating CSS Code . 865
80.4 Updating Theme Templates . 870
80.5 Using the Bootstrap 3 Lexicon CSS Compatibility Layer 872

81 Layout Templates 875
81.1 Creating Layout Templates . 875
81.2 Creating Layout Templates Manually . 877
81.3 Creating Custom Layout Template Thumbnail Previews 879

xi

81.4 Including Layout Templates with a Theme . 879
81.5 Upgrading 6.2 Layout Templates to 7.1 . 881
81.6 Upgrading 7.0 Layout Templates to 7.1 . 881

82 Portlets and Themes 883
82.1 Theming Portlets . 883

83 Creating Configurable Styles for PortletWrappers 887
83.1 Adding Portlet Decorators to a Theme . 888
83.2 Applying Portlet Decorators to Embedded Portlets 892
83.3 Embedding Portlets in Themes . 893

84 Clay CSS and Themes 897
84.1 Importing Clay CSS into a Theme . 897
84.2 Integrating Third Party Themes with Clay . 899

85 Liferay JavaScript APIs 901
85.1 Accessing ThemeDisplay Information . 901
85.2 Working with URLs in JavaScript . 904
85.3 Liferay DXP JavaScript Utilities . 907
85.4 Invoking Liferay Services . 908

86 JavaScript Module Loaders 913
86.1 Loading AMDModules in Liferay . 913
86.2 Using External JavaScript Libraries . 915
86.3 Loading Modules with AUI Script . 916

87 Using Front-End Frameworks in Your portlets 919
87.1 Using React in Your Portlets . 919
87.2 Using Vue in Your Portlets . 922
87.3 Using Angular in Your Portlets . 926
87.4 Creating and Bundling JavaScriptWidgets with JavaScript Tooling 930
87.5 Installing the Bundle Generator and Generating a Bundle 931
87.6 Configuring System Settings and Instance Settings for Your JavaScriptWidget . . . 933
87.7 Localizing YourWidget . 934
87.8 Configuring Portlet Properties for Your JSWidget 935
87.9 Using Translation Features in YourWidget . 936

88 Front-End Taglibs 937

89 Using the Liferay UI Taglib 939
89.1 Liferay UI Icons . 939
89.2 Liferay UI Icon Lists . 942
89.3 Liferay UI Icon Menus . 943
89.4 Liferay UI Tabs . 944
89.5 Liferay UI Icon Help . 945

90 Using Liferay Front-end Taglibs in Your Portlet 949
90.1 Liferay Front-end Add Menu . 949

xii

90.2 Liferay Front-end Cards . 950
90.3 Liferay Front-end Info Bar . 956

91 Liferay Front-endManagement Bar 959
91.1 Including Actions in the Management Bar . 961
91.2 Disabling All or Portions of the Management Bar 963

92 Using the Liferay Util Taglib 965
92.1 Using Liferay Util Body Bottom . 965
92.2 Using Liferay Util Body Top . 966
92.3 Using Liferay Util Buffer . 966
92.4 Using Liferay Util Dynamic Include . 967
92.5 Using Liferay Util Get URL . 968
92.6 Using Liferay Util HTML Bottom . 969
92.7 Using Liferay Util HTML Top . 969
92.8 Using Liferay Util Include . 970
92.9 Using Liferay Util Param . 970
92.10Using Liferay Util Whitespace Remover . 971

93 Using the Clay Taglib in Your portlets 973
93.1 Clay Alerts . 974
93.2 Clay Badges . 976
93.3 Clay Buttons . 979
93.4 Clay Cards . 982
93.5 Clay Dropdown Menus and Action Menus . 988
93.6 Clay Form Elements . 996
93.7 Clay Icons . 997
93.8 Clay Labels and Links . 999
93.9 Clay Management Toolbar . 1003
93.10Clay Navigation Bars . 1010
93.11Clay Progress Bars . 1011
93.12Clay Stickers . 1012

94 Using the Chart Taglib in Your Portlets 1015
94.1 Bar Charts . 1015
94.2 Line Charts . 1017
94.3 Scatter Charts . 1018
94.4 Spline Charts . 1020
94.5 Step Charts . 1022
94.6 Combination Charts . 1024
94.7 Donut Charts . 1026
94.8 Gauge Charts . 1027
94.9 Pie Charts . 1028
94.10Geomap Charts . 1030
94.11Predictive Charts . 1032
94.12Refreshing Charts to Reflect Real Time Data . 1035

95 Using AUI Taglibs 1037

xiii

95.1 Building Forms with AUI Tags . 1037

96 Mobile 1041

97 Android Apps with Liferay Screens 1043
97.1 Preparing Android Projects for Liferay Screens 1043
97.2 Using Screenlets in Android Apps . 1049
97.3 Using Views in Android Screenlets . 1051
97.4 Using Offline Mode in Android . 1053

98 Architecture of Liferay Screens for Android 1055
98.1 High-Level Architecture . 1055
98.2 Core Layer . 1056
98.3 Screenlet Layer . 1058
98.4 View Layer . 1060
98.5 Screenlet Lifecycle . 1062
98.6 Architecture of Offline Mode in Liferay Screens 1062

99 Creating Android Screenlets 1071
99.1 Determining Your Screenlet’s Location . 1072
99.2 Creating the UI . 1072
99.3 Creating the Interactor . 1076
99.4 Defining the Attributes . 1078
99.5 Creating the Screenlet Class . 1079
99.6 Using Your Screenlet . 1082
99.7 Packaging Your Screenlets . 1083

100Creating Android List Screenlets 1085
100.1Pagination . 1085
100.2Creating the Model Class . 1086
100.3Creating the View . 1087
100.4Creating the Interactor . 1090
100.5Creating the Screenlet Class . 1094
100.6Using the List Screenlet . 1096

101Creating Android Views 1099
101.1Determining Your View’s Location . 1099
101.2Themed Views . 1100
101.3Child Views . 1101
101.4Extended Views . 1102
101.5Full Views . 1104
101.6Packaging Your Views . 1105

102Supporting OfflineMode 1107
102.1Create or Update the Event Class . 1107
102.2Update the Listener . 1108
102.3Update the Interactor Class . 1109
102.4Update the Screenlet Class . 1111
102.5Sync the Cache with the Server . 1111

xiv

102.6Supporting Offline Mode in List Screenlets . 1112
102.7Using Liferay Push in Android Apps . 1113
102.8Accessing the Liferay Session in Android . 1116
102.9Adding Custom Interactors to Android Screenlets 1118
102.10RenderingWeb Content in Your Android App . 1121
102.11RenderingWeb Pages in Your Android App . 1124
102.12UsingWeb Screenlet with Cordova in Your Android App 1128
102.13Using OAuth 2 in Liferay Screens for Android . 1131
102.14Android Best Practices . 1133
102.15Liferay Screens for Android Troubleshooting and FAQs 1136

103iOS Apps with Liferay Screens 1139
103.1Preparing iOS Projects for Liferay Screens . 1139
103.2Using Screenlets in iOS Apps . 1143
103.3Using Themes in iOS Screenlets . 1148
103.4Using Offline Mode in iOS . 1151

104Architecture of Liferay Screens for iOS 1153
104.1High Level Architecture of Liferay Screens for iOS 1153
104.2Core Layer of Liferay Screens for iOS . 1154
104.3Screenlet Layer of Liferay Screens for iOS . 1156
104.4Theme Layer of Liferay Screens for iOS . 1158

105Creating iOS Screenlets 1161
105.1Planning Your iOS Screenlet . 1161
105.2Creating the iOS Screenlet’s UI . 1162
105.3Creating the iOS Screenlet’s Interactor . 1164
105.4Creating the iOS Screenlet’s Class . 1166

106Creating iOS List Screenlets 1169
106.1Pagination . 1170
106.2Creating the Model Class . 1170
106.3Creating the iOS List Screenlet’s Theme . 1170
106.4Creating the iOS List Screenlet’s Connector . 1171
106.5Creating the iOS List Screenlet’s Interactor . 1173
106.6Creating the iOS List Screenlet’s Delegate . 1174
106.7Creating the iOS List Screenlet’s Class . 1175

107Creating iOS Themes 1177
107.1Determining Your Theme’s Location . 1177
107.2Creating an iOS Child Theme . 1178
107.3Creating an iOS Extended Theme . 1179
107.4Creating an iOS Full Theme . 1179
107.5Packaging iOS Themes . 1180
107.6Supporting Multiple Themes in Your iOS Screenlet 1183
107.7Adding Screenlet Actions . 1184
107.8Create and Use a Connector with Your Screenlet 1188
107.9Add a Screenlet Delegate . 1193

xv

107.10Using and Creating Progress Presenters . 1194
107.11Creating and Using Your Screenlet’s Model Class 1197
107.12Using Custom Cells with List Screenlets . 1201
107.13Sorting Your List Screenlet . 1203
107.14Creating Complex Lists in Your List Screenlet 1205
107.15Accessing the Liferay Session in iOS . 1208
107.16Adding Custom Interactors to iOS Screenlets . 1211
107.17RenderingWeb Content in Your iOS App . 1212
107.18RenderingWeb Pages in Your iOS App . 1214
107.19UsingWeb Screenlet with Cordova in Your iOS App 1217
107.20Using OAuth 2 in Liferay Screens for iOS . 1219
107.21iOS Best Practices . 1222

108Using Xamarin with Liferay Screens 1227
108.1Preparing Xamarin Projects for Liferay Screens 1227
108.2Using Screenlets in Xamarin Apps . 1230
108.3Using Views in Xamarin.Android . 1233
108.4Using Themes in Xamarin.iOS . 1236
108.5Creating Xamarin Views and Themes . 1237
108.6Liferay Screens for Xamarin Troubleshooting and FAQs 1240

109Mobile SDK 1245

110Creating Android Apps that Use the Mobile SDK 1249
110.1Related Topics . 1249
110.2Making Liferay and Custom Portlet Services Available in Your Android App 1251
110.3Invoking Liferay Services in Your Android App 1252
110.4Invoking Services Asynchronously from Your Android App 1257
110.5Sending Your Android App’s Requests Using Batch Processing 1260
110.6Using OAuth 2 in the Android Mobile SDK . 1261

111Creating iOS Apps that Use the Mobile SDK 1267
111.1Related Topics . 1267
111.2Making Liferay and Custom Portlet Services Available in Your iOS App 1267
111.3Invoking Liferay Services in Your iOS App . 1270
111.4Invoking Services Asynchronously from Your iOS App 1275
111.5Sending Your iOS App’s Requests Using Batch Processing 1277
111.6Using OAuth 2 in the iOS Mobile SDK . 1279
111.7Building Mobile SDKs . 1284

112Tracking Custom Assets 1289
112.1Asset Events . 1289
112.2Required Metadata . 1289
112.3Tracking Asset Events . 1290
112.4Related Topics . 1290

113Web Experience Management 1291

114Developing Page Fragments 1293

xvi

114.1Creating a Fragment . 1293
114.2Fragment Specific Tags . 1294
114.3Recommendations and Best Practices . 1298

115Screen Navigation Framework 1301
115.1Using the Framework for Your Application . 1301
115.2Adding Custom Screens to Liferay Applications 1304

116Product Navigation 1307

117Customizing the Product Menu 1309
117.1Adding Custom Panel Categories . 1309
117.2Adding Custom Panel Apps . 1312

118Customizing the Control Menu 1315
118.1Creating Control Menu Entries . 1316
118.2Defining Icons and Tooltips . 1319
118.3Extending the Simulation Menu . 1320
118.4Providing the User Personal Bar . 1322

119Collaboration 1325

120Item Selector 1327
120.1Understanding the Item Selector API’s Components 1328
120.2Selecting Entities Using an Item Selector . 1329
120.3Creating Custom Item Selector Entities . 1335
120.4Creating Custom Item Selector Views . 1337

121Documents andMedia API 1347
121.1Getting Started with the Documents and Media API 1347

122Creating Files, Folders, and Shortcuts 1351
122.1Creating Files . 1351
122.2Creating Folders . 1353
122.3Creating File Shortcuts . 1354

123Deleting Entities 1357
123.1Deleting Files . 1357
123.2Deleting File Versions . 1358
123.3Deleting File Shortcuts . 1359
123.4Deleting Folders . 1360
123.5Moving Entities to the Recycle Bin . 1361

124Updating Entities 1363
124.1Updating Files . 1363
124.2Updating Folders . 1365
124.3Updating File Shortcuts . 1366

125File Check-out and Check-in 1369
125.1File Check-out . 1369

xvii

125.2File Check-in . 1371
125.3Canceling a Check-out . 1372

126Copying andMoving Entities 1373
126.1Copying Folders . 1373
126.2Moving Folders and Files . 1375

127Getting Entities 1377
127.1Getting Files . 1377
127.2Getting Folders . 1379
127.3Getting Multiple Entity Types . 1380

128Adaptive Media 1383
128.1Displaying Adapted Images in Your App . 1383
128.2Finding Adapted Images . 1385
128.3Changing Adaptive Media’s Image Scaling . 1388

129Social API 1393
129.1Applying Social Bookmarks . 1393
129.2Creating Social Bookmarks . 1395
129.3Adding Comments to Your App . 1397
129.4Rating Assets . 1399
129.5Implementing Ratings Type Selection and Value Transformation 1400
129.6Flagging Inappropriate Asset Content . 1403

130Export/Import and Staging 1407
130.1Decision to Implement Staging . 1408
130.2Understanding Staged Models . 1409
130.3Generating Staged Models Using Service Builder 1411
130.4Creating Staged Models Manually . 1414
130.5Understanding Data Handlers . 1417
130.6Developing Portlet Data Handlers . 1421
130.7Developing Staged Model Data Handlers . 1428

131Providing Entity-Specific Local Services for Staging 1433
131.1Implementing the Staged Model Repository Framework 1433
131.2Using the Staged Model Repository Framework 1436
131.3Using the Export/Import Lifecycle Listener Framework 1438
131.4Initiating New Export/Import Processes . 1439

132Liferay Forms 1443

133Form Field Types 1445
133.1Anatomy of a Field Type Module . 1445
133.2Creating Form Field Types . 1448
133.3Rendering Field Types . 1450
133.4Adding Settings to Form Field Types . 1456
133.5Rendering Form Field Settings . 1460
133.6Forms Storage Adapters . 1464

xviii

134Workflow 1469

135Crafting XMLWorkflow Definitions 1471
135.1ExistingWorkflow Definitions . 1471
135.2Schema . 1472
135.3Metadata . 1472
135.4Workflow Definition Nodes . 1472
135.5Workflow Task Nodes . 1476
135.6Workflow Notifications . 1480
135.7Liferay’sWorkflow Framework . 1482

136Managing User-Associated Data Stored by Custom Applications 1489
136.1Include Dependencies . 1489
136.2Choose Fields to Anonymize . 1490
136.3Run Service Builder! . 1490
136.4Provide Your App’s Name to the UI . 1491

137Configurable Applications 1493

138Making Applications Configurable 1495
138.1Creating A Configuration Interface . 1496
138.2Categorizing the Configuration . 1498
138.3Scoping Configurations . 1499
138.4Reading Configuration Values from a Component 1501
138.5Reading Configuration Values from a MVC Portlet 1502
138.6Reading Configuration Values from a Configuration Provider 1505
138.7Customizing the System Settings User Interface 1507
138.8Configuration Form Renderer . 1510

139Internationalization 1517
139.1Localizing Your Application . 1517
139.2Automatically Generating Language Files . 1522
139.3Using Liferay’s Language Settings . 1525

140Application Display Templates 1531
140.1Implementing Application Display Templates 1531
140.2Recommendations for Using ADTs . 1535

141Audience Targeting 1537
141.1Accessing the Content Targeting API . 1537

142Creating New Audience Targeting Rule Types 1541
142.1Creating a Custom Rule Type . 1543
142.2Defining a Rule’s View/Save Lifecycle . 1544
142.3Evaluating a Rule . 1548
142.4Defining the Rule’s UI . 1550

143Tracking User Actions with Audience Targeting 1553
143.1Related Topics . 1554

xix

143.2Creating a Metric . 1554
143.3Defining a Metric’s View/Save Lifecycle . 1555
143.4Using a Tracking Mechanism . 1559
143.5Defining the Metric’s UI . 1560
143.6Best Practices for Audience Targeting . 1562

144WYSIWYG Editors 1565
144.1Adding aWYSIWYG Editor to a Portlet . 1565
144.2Modifying an Editor’s Configuration . 1567
144.3Adding New Behavior to an Editor . 1570

145AlloyEditor 1573

146Adding Buttons to AlloyEditor’s Toolbars 1575
146.1Creating the OSGi Module and Configuring the EditorConfigContributor Class . . . 1575
146.2Adding a Button to the Add Toolbar . 1577
146.3Adding a Button to a Styles Toolbar . 1578

147Creating New Buttons for AlloyEditor 1585
147.1Creating the AlloyEditor Button’s OSGi Bundle 1586
147.2Creating the Button’s JSX File . 1587
147.3Contributing the Button to AlloyEditor . 1590
147.4Embedding Content in the AlloyEditor . 1591

148Servlets 1595
148.1Servlets in a Module . 1595
148.2Servlet Filters . 1598

149Testing 1603
149.1Injecting Service Components into Integration Tests 1603

150Modularity and OSGi 1605
150.1The Benefits of Modularity . 1605
150.2OSGi and Modularity . 1609
150.3Leveraging Dependencies . 1614
150.4OSGi Services and Dependency Injection with Declarative Services 1617
150.5Dynamic Deployment . 1618
150.6Learning More about OSGi . 1620

151OSGi Basics for Liferay Development 1623
151.1Liferay Portal Classloader Hierarchy . 1623
151.2Bundle Classloading Flow . 1626
151.3Importing Packages . 1627
151.4Exporting Packages . 1630
151.5Resolving Third Party Library Package Dependencies 1631
151.6Waiting on Lifecycle Events . 1634
151.7Using theWAB Generator . 1636
151.8Service Trackers . 1638
151.9Semantic Versioning . 1642

xx

152Troubleshooting FAQ 1645
152.1Modules . 1645
152.2Services and Components . 1647
152.3Resolving Bundle Requirements . 1647
152.4Resolving Bundle-SymbolicName Syntax Issues 1649
152.5Resolving ClassNotFoundException and NoClassDefFoundError in OSGi Bundles . 1649
152.6Identifying Liferay Artifact Versions for Dependencies 1652
152.7Connecting to JNDI Data Sources . 1652
152.8Adjusting Module Logging . 1654
152.9Implementing Logging . 1655
152.10Declaring Optional Import Package Requirements 1656
152.11Why Aren’t my Module’s JavaScript and CSS Changes Showing? 1657
152.12Why Aren’t JSP overrides I Made Using Fragments Showing? 1658
152.13Why doesn’t the package I use from the fragment host resolve? 1659
152.14Sort Order Changed with a Different Database 1659
152.15Disabling Cache for Table Mapper Tables . 1660
152.16Patching DXP Source Code . 1661
152.17Troubleshooting Front-End Development Issues 1664
152.18System Check . 1667
152.19Detecting Unresolved OSGi Components . 1667
152.20Using Files to Configure Module Components 1671
152.21Calling Non-OSGi Code that Uses OSGi Services 1673
152.22Liferay DXP Failed to Initialize Because the DatabaseWasn’t Ready 1673
152.23Using OSGi Services from EXT Plugins . 1674

153Data Upgrades 1675
153.1Creating Data Upgrade Processes for Modules 1675
153.2Upgrade Processes for Former Service Builder Plugins 1682
153.3Meaningful Schema Versioning . 1685
153.4Upgrading Data Schemas in Development . 1686

154Back-end Frameworks 1689

155Portlet Providers 1691
155.1Creating PortletProviders . 1691
155.2Retrieving Portlets for Desired Behaviors . 1693
155.3Related Topics . 1695

156Data Scopes 1697
156.1Scoping Your Entities . 1697
156.2Enabling Scoping . 1697
156.3Accessing Your App’s Scope . 1698
156.4Accessing the Site Scope Across Apps . 1698
156.5Related Topics . 1699

157Message Bus 1701
157.1Messaging Destinations . 1702
157.2Message Listeners . 1707

xxi

157.3Sending Messages . 1710

II Developer Reference 1715

158Development Reference 1717
158.1Java APIs . 1717
158.2Taglibs . 1720
158.3JavaScript and CSS . 1721

159Back-End 1723
159.1Classes Moved from portal-service.jar . 1723

160Front-End 1775

161liferay-npm-bundler 1777
161.1How the Liferay npm BundlerWorks Internally 1777
161.2Configuring liferay-npm-bundler . 1778
161.3How the Default Preset Configures the liferay-npm-bundler 1783
161.4The Structure of OSGi Bundles Containing npm Packages 1785
161.5How the Liferay npm Bundler Publishes npm Packages 1787
161.6Understanding How liferay-npm-bundler Formats JavaScript Modules for AMD . . 1793
161.7Understanding How Liferay AMD Loader Configuration is Exported 1795
161.8What Changed Between Liferay npm Bundler 1.x and 2.x 1797
161.9Understanding liferay-npm-bundler’s Loaders 1798
161.10Default liferay-npm-bundler Loaders . 1799
161.11CKEditor Plugin Reference Guide . 1799
161.12AlloyEditor Button Reference Guide . 1801
161.13Fully Qualified Portlet IDs . 1802
161.14FreeMarker Taglib Macros . 1805
161.15Setting up Your npm Environment . 1807
161.16Liferay JS Generator . 1807
161.17Understanding the JS Portlet Extender Configuration 1807
161.18Liferay JS Generator Commands . 1809
161.19Configuring System Settings for OSGi Bundles Created with the liferay-npm-bundler 1809

162Screenlets in Liferay Screens 1813

163Screenlets in Liferay Screens for Android 1815
163.1Login Screenlet for Android . 1816
163.2Sign Up Screenlet for Android . 1821
163.3Forgot Password Screenlet for Android . 1824
163.4User Portrait Screenlet for Android . 1827
163.5DDL Form Screenlet for Android . 1831
163.6DDL List Screenlet for Android . 1838
163.7Asset List Screenlet for Android . 1842
163.8Web Content Display Screenlet for Android . 1846
163.9Web Content List Screenlet for Android . 1850
163.10Image Gallery Screenlet for Android . 1853

xxii

163.11Rating Screenlet for Android . 1858
163.12Comment List Screenlet for Android . 1861
163.13Comment Display Screenlet for Android . 1865
163.14Comment Add Screenlet for Android . 1868
163.15Asset Display Screenlet for Android . 1871
163.16Blogs Entry Display Screenlet for Android . 1875
163.17Image Display Screenlet for Android . 1879
163.18Video Display Screenlet for Android . 1882
163.19Audio Display Screenlet for Android . 1885
163.20PDF Display Screenlet for Android . 1888
163.21Web Screenlet for Android . 1891
163.22DDM Form Screenlet for Android . 1895

164Screenlets in Liferay Screens for iOS 1901
164.1Login Screenlet for iOS . 1902
164.2Sign Up Screenlet for iOS . 1907
164.3Forgot Password Screenlet for iOS . 1910
164.4User Portrait Screenlet for iOS . 1913
164.5DDL Form Screenlet for iOS . 1917
164.6DDL List Screenlet for iOS . 1923
164.7Asset List Screenlet for iOS . 1927
164.8Web Content Display Screenlet for iOS . 1931
164.9Web Content List Screenlet for iOS . 1935
164.10Image Gallery Screenlet for iOS . 1938
164.11Rating Screenlet for iOS . 1942
164.12Comment List Screenlet for iOS . 1946
164.13Comment Display Screenlet for iOS . 1949
164.14Comment Add Screenlet for iOS . 1953
164.15Asset Display Screenlet for iOS . 1956
164.16Blogs Entry Display Screenlet for iOS . 1960
164.17Image Display Screenlet for iOS . 1963
164.18Video Display Screenlet for iOS . 1967
164.19Audio Display Screenlet for iOS . 1970
164.20PDF Display Screenlet for iOS . 1973
164.21File Display Screenlet for iOS . 1976
164.22Web Screenlet for iOS . 1979
164.23SyncManagerDelegate . 1983

165Themes 1985
165.1Theme Reference Guide . 1985
165.2Theme Components andWorkflow . 1988
165.3Understanding the Page Layout . 1992

166Gradle 1997
166.1Resolving Common Output Errors Reported by the resolve Task 1997
166.2App Javadoc Builder Gradle Plugin . 1999
166.3Baseline Gradle Plugin . 2000
166.4Change Log Builder Gradle Plugin . 2003

xxiii

166.5CSS Builder Gradle Plugin . 2005
166.6DB Support Gradle Plugin . 2007
166.7Dependency Checker Gradle Plugin . 2009
166.8Deployment Helper Gradle Plugin . 2010
166.9Go Gradle Plugin . 2012
166.10Gulp Gradle Plugin . 2014
166.11Jasper JSPC Gradle Plugin . 2014
166.12Javadoc Formatter Gradle Plugin . 2016
166.13JS Module Config Generator Gradle Plugin . 2018
166.14JS Transpiler Gradle Plugin . 2020
166.15JSDoc Gradle Plugin . 2023
166.16Lang Builder Gradle Plugin . 2025
166.17Maven Plugin Builder Gradle Plugin . 2026
166.18Node Gradle Plugin . 2029
166.19REST Builder Gradle Plugin . 2035
166.20Service Builder Gradle Plugin . 2037
166.21Source Formatter Gradle Plugin . 2040
166.22Soy Gradle Plugin . 2043
166.23Target Platform Gradle Plugin . 2045
166.24Theme Builder Gradle Plugin . 2049
166.25TLD Formatter Gradle Plugin . 2051
166.26TLDDoc Builder Gradle Plugin . 2052
166.27Whip Gradle Plugin . 2055
166.28WSDD Builder Gradle Plugin . 2057
166.29WSDL Builder Gradle Plugin . 2059
166.30XML Formatter Gradle Plugin . 2061
166.31XSD Builder Gradle Plugin . 2062

167Maven 2065
167.1Bundle Support Plugin . 2065
167.2CSS Builder Plugin . 2068
167.3DB Support Plugin . 2069
167.4Deployment Helper Plugin . 2070
167.5Javadoc Formatter Plugin . 2071
167.6Lang Builder Plugin . 2072
167.7REST Builder Plugin . 2073
167.8Service Builder Plugin . 2074
167.9Source Formatter Plugin . 2075
167.10Theme Builder Plugin . 2076
167.11TLD Formatter Plugin . 2077
167.12WSDD Builder Plugin . 2078
167.13XML Formatter Plugin . 2079
167.14Content Targeting Report Template . 2080
167.15Content Targeting Rule Template . 2081
167.16Content Targeting Tracking Action Template . 2083

168Sample Projects 2085

xxiv

169Apps 2087

170npm Samples 2089
170.1Angular 6 npm Portlet . 2089
170.2Angular npm Deduplication Sample . 2090
170.3Angular npm Portlet . 2091
170.4Billboard.js npm Portlet . 2092
170.5jQuery npm Portlet . 2094
170.6Metal.js npm Portlet . 2094
170.7React npm Portlet . 2095
170.8Simple npm Portlet . 2096
170.9Vue.js npm Portlet . 2097

171Service Builder Samples 2099
171.1Service Builder Application Demonstrating Actionable Dynamic Query 2099
171.2Service Builder Application Using External Database via JDBC 2102
171.3Service Builder Application Using External Database via JNDI 2104
171.4Greedy Policy Option Application . 2106
171.5Kotlin Portlet . 2112
171.6Shared Language Keys . 2113
171.7Simulation Panel App . 2115
171.8Spring MVC Portlet . 2116

172Extensions 2119
172.1Control Menu Entry . 2119
172.2Document Action . 2120
172.3Gogo Shell Command . 2124
172.4Index Settings Contributor . 2126
172.5Indexer Post Processor . 2128
172.6Model Listener . 2129
172.7Screen Name Validator . 2131
172.8Servlet . 2133

173Overrides 2135
173.1Module JSP Override . 2135
173.2Resource Bundle Override . 2137

174Themes 2139
174.1Simple Theme . 2139
174.2Template Context Contributor . 2140
174.3Theme Contributor . 2141

175Ext 2145
175.1LoginWeb Ext . 2145
175.2Felix Gogo Shell . 2147

176Liferay Faces 2149
176.1Liferay Faces Version Scheme . 2149
176.2Understanding Liferay Faces Bridge . 2152

xxv

176.3Understanding Liferay Faces Alloy . 2153
176.4Understanding Liferay Faces Portal . 2154
176.5Page Fragments . 2155
176.6EmbeddingWidgets in Page Fragments . 2155
176.7JSONWeb Services Invocation Examples . 2156

177Customizing Core Functionality with Ext 2163
177.1Extending Core Classes Using Spring with Ext Plugins 2164
177.2Overriding Core Classes with Ext Plugins . 2165
177.3Adding to the web.xml with Ext Plugins . 2166
177.4Modifying the web.xml with Ext Plugins . 2167
177.5Item Selector Criterion and Return Types . 2168
177.6Breaking Changes . 2169

xxvi

PREFACE

Welcome to the world of the Liferay DXP development platform! This book was written for anyone
who wants to create applications built on Liferay DXP. It contains everything you need to know
about Liferay’s development tools and projects. You’ll learn all you need to know about plugins,
OSGi, the LiferayWorkspace, Service Builder, andmore. Use this book as a handbook for everything
you need to do to get your application running on Liferay DXP, and then keep it by your side as you
update and add features to help your users work more effectively.

Conventions

The information contained herein has been organized in a way that makes it easy to locate in-
formation. The book has two parts. The first part, Developer Tutorials, shows you how to work
step-by-step with Liferay’s technology. The second part, Developer Reference, shows exhaustively
the options and APIs you need.

Sections are broken up into multiple levels of headings, and these are designed to make it easy
to find information.

Source code and configuration file directives are presented monospaced, as below.

Source code appears in a non-proportional font.

Italics represent links or buttons to be clicked on in a user interface.
Monospaced type denotes Java classes, code, or properties within the text.
Bold describes field labels and portlets.
Page headers denote the chapters and the section within the chapter.

Publisher Notes

It is our hope that this book is valuable to you, and that it becomes an indispensable resource as
you work with Liferay DXP. If you need assistance beyond what is covered in this book, Liferay

xxvii

offers training1, consulting2, and support3 services to fill any need that you might have.
For up-to-date documentation on the latest versions of Liferay, please see the documentation

pages on Liferay Learn.4
As always, we welcome feedback. If there is any way you think we could make this book better,

please feel free to mention it on our forums or in the feedback on Liferay Learn. You can also
use any of the email addresses on our Contact Us page.5 We are here to serve you, our users and
customers, and to help make your experience using Liferay DXP the best it can be.

1https://learn.liferay.com
2https://www.liferay.com/consulting
3https://help.liferay.com
4https://learn.liferay.com
5https://www.liferay.com/contact-us

xxviii

http://www.liferay.com/contact-us

Part I

Developer Tutorials

CHAPTER 1

INTRODUCTION TO LIFERAY DEVELOPMENT

Howmany times have you had to start over from scratch? Probably almost as many times as you’ve
started a new project, because each time you have to write not only the code to build the project,
but also the underlying code that supports the project. It’s never a good feeling to have to write the
same kind of code over and over again. But each new project that you do after a while can feel like
that: you’re writing a new set of database tables, a new API, a new set of CSS classes and HTML, a
new set of JavaScript functions.

Wouldn’t it be great if there was a platform that provided a baseline set of features that gave
you a head start on all that repetitive code? Something that lets you get right to the features of your
app or site, rather than making you start over every time with the basic building blocks? There is
such a thing, and it’s called Liferay DXP.

Figure 1.1: With Liferay DXP, you never have to start from scratch.

1.1 Leveraging a Suite of Products, Frameworks and Libraries

Liferay DXP offers you a complete platform for building web apps, mobile apps, and web services
quickly, using features and frameworks designed for rapid development, good performance, and

3

ease of use. The base platform is already there, and it’s built as a robust container for applications
that you can put together in far less time than you would from scratch.

It also ships with a default set of common applications you can make use of right away: web
experience management, collaboration applications such as forums and wikis, documents and
media, blogs, and more. All of these applications are designed to be customized, as is the system
itself. You can also extend them to include your own functionality, and this is no hack: because of
Liferay’s extensible design, customization is by design.

Figure 1.2: Liferay DXP ships with suites of applications to get you started building your site quickly.

In short, Liferay was written by developers for developers, to help you get your work done faster
and more easily, to take the drudgery out of web and mobile app development, so that writing code

4

becomes enjoyable again.

1.2 Build Websites, Intranets, Collaborative Environments, Mobile Apps, and More

One of the most often cited best characteristics of Liferay is how versatile it is. It can be used to
build websites of all sorts, from very large websites with hundreds of thousands of articles, to
smaller, highly dynamic and interactive sites. This includes public sites, internal sites like intranets,
or mixed environments like collaboration platforms.

Developers often choose Liferay for one of these cases and quickly find that it is a great fit for
completely different projects.

1.3 Creating Your Own Applications and Extending the Existing Ones

Liferay DXP is based on the Java platform and can be extended by adding new applications, cus-
tomizing existing applications, modifying its behavior, or creating new themes. You can do this
with any programming language the JVM supports, such as Java itself, Scala, jRuby, Jython, Groovy,
and others. Liferay DXP is lightweight, can be deployed to a variety of Java EE containers and app
servers, and it supports a variety of databases. Because of its ability to be customized, you can add
support for more app servers or databases without modifying its source code: just develop and
deploy a module with the features you need.

Speaking of code and deploying, here are some of the most common ways of expanding or
customizing Liferay DXP’s features:

1. Developing a new full-blown web application. The most common way to develop web ap-
plications for Liferay DXP is with portlets, because they integrate well with other existing
applications. You are not, however, limited to portlets if you don’t need to integrate your apps
with others.

2. Customizing an existing web application or feature. Liferay DXP is designed to be extended.
Many extension points can be leveraged to modify existing behavior, and most of these can
be developed through a single Java class with some annotations (more details later).

3. Creating a new web service for an external system, a mobile app, an IoT device, or anything
else.

4. Developing a mobile app that leverages Liferay as its back-end, which you can write in a
fraction of the normal time thanks to Liferay Screens and Liferay Mobile SDK.

5. Developing a custom theme that adapts the look and feel of the platform to the visual needs
of your project.

The Liferay platform can be used as a headless platform to develop web ormobile apps with any
technology of your choice (Angular, React, Backbone, Cocoa, Android’s Material Design compo-
nents, Apache Cordova, etc). It can also be used as a web integration layer, leveraging technologies
such as portlets to allow several applications to coexist on the same web page.

1.4 Fundamentals

What are the fundamentals that every Liferay developer should know?

5

Figure 1.3: Developers use Liferay DXP in many ways.

6

1. It’s Open Source and puts a strong emphasis on following standards, instead of reinventing
the wheel.

2. It’s based on Java EE and heavily leverages OSGi and several other popular technologies for
the Java Platform.

3. It is based on a modular architecture and facilitates following a modular development
paradigm for your own projects.

4. You can build your own web applications, portlets, or mobile apps on top of it.
5. It provides mature development tools, while staying agnostic so you can use tools you prefer.
6. It’s all about reusing, providing reusable frameworks and libraries and allowing you to create

your own.

Interested? More details below.

Open Source and based on Standards

Liferay DXP is both Open Source and built in the open, following a collaborative development
model. That means that you can follow new development as it’s happening, make comments on it,
and contribute! Here are some tools that you can use to do all this:

1. Our ticketing system. All product changes, including all bug fixes, improvements, and new
features start with a ticket created in JIRA.We have several projects there, but the main one
for tracking Liferay DXP work or for reporting bugs you find (with as many details as you can
and steps to reproduce, of course) is LPS.

2. GitHub: The home of our source code. You can use it to see the code changes as they happen
and also to send pull requests for improvements. There are also many repos, but the main
one is liferay-portal.

3. Forums: It’s where our community gets together to share ideas, discuss, and collaborate. Go
ahead and ask your questions and help others ask theirs.

4. Blogs: Read the latest news, advice, and best practices from key core developers and our
most active community members.

5. Participate: Learn how to get started participating. There are options for all levels of expertise
and time availability.

In addition to being Open Source, Liferay is also heavily based on standards. This is great news
for your project, since it significantly reduces the lock-in on Liferay. That also encourages us to
improve constantly.

Here are some key standards Liferay DXP supports:

• Portlets 1.0 (JSR-168) and Portlets 2.0 (JSR-286): Liferay DXP can run any portlets that follow
these two versions of the specification. Liferay is also heavily involved in the upcoming
Portlets 3.0 specification.

• JSF (JSR-127, JSR-314, JSR-344): The Java standard for building component based web appli-
cations. Liferay is an active contributor to the standard and lead of the JSF-Portlet Bridge
specification.

7

https://issues.liferay.com/browse/LPS
http://github.com/liferay
http://github.com/liferay/liferay-portal
http://forums.liferay.com
http://blogs.liferay.com
https://portal.liferay.dev/participate
https://jcp.org/en/jsr/detail?id=168
https://jcp.org/en/jsr/detail?id=286
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

• EcmaScript 2015: The latest incarnation of the JavaScript standard. Liferay’s tooling provides
the ability to use it in all modern browsers thanks to the integration of Babel JS.

• Content Management Interoperability Services (CMIS): Liferay’s Documents and Media can
behave as an interface for any external Documents Repository that supports this widely
adopted standard.

• Java Content Repository (JSR-170): Files stored in the internal repository of Liferay’s Doc-
uments and Media can be configured to be stored in a JSR-170 compatible repository if
desired.

• WebDAV: Any Documents & Media folder can be mounted anywhereWebDAV is supported,
such asWindows explorer orWebDAV-specific clients.

• SAML and OAuth 1.1: These are the most widely adopted security protocols for SSO and
application sign in, supported through specific Apps that can be installed from Liferay’s
Marketplace.

• JAX-WS and JAX-RS: Incorporated since Liferay 7 as the preferred tooling to create web
services.

• OSGi r6: Liferay supports a wide range of the OSGi family of standards through its own
implementations and also integrates the high quality implementations of the Apache Felix
and Eclipse Equinox projects (which we also collaborate). Here are some of the most relevant
supported standards:

– OSGi runtime: Allowing any OSGi module to run in Liferay DXP
– Declarative Services: Supports a dynamic component model for Liferay development.
– Configuration Admin: Lets you create highly configurable applications that can be re-

configured on the fly. Liferay provides an auto-generated UI to change the configuration
of any component that leverages this standard.

Technologies

Like any open source application, Liferay is built on the shoulders of giants. When we choose the
technology on which to build our platform, it must have the following characteristics:

• Itmust balance beingmodern andbeingmature enough for demanding and critical enterprise
environments.

• It should be widely adopted and have a mature community.
• It should be as easy as possible to contribute back, since we love to contribute to the Open
Source projects we use.

• It should be possible to use only the piece of the project we need if we don’t need the whole
thing. That way, it’s easier to replace that piece in the future if we find something that works
better.

The goal, of course, is to give our developers and users the most up to date, easy-to-use, and
stable platform to build services on.

At its base, Liferay is a JavaEE application that also includes an OSGi container. This offers the
best of both worlds: access to the world’s most robust and fully featured enterprise platform, along
with the benefits of the world’s most fully featured and stable modular container. Now you can

8

http://www.ecma-international.org/ecma-262/6.0/
https://www.oasis-open.org/committees/cmis
https://jcp.org/en/jsr/detail?id=170
http://www.webdav.org
http://saml.xml.org
http://oauth.net/core/1.1
http://marketplace.liferay.com
http://marketplace.liferay.com
https://www.osgi.org

Figure 1.4: Liferay is based on popular, well known, and well supported technologies.

9

develop and deploy enterprise-ready, scalable web and mobile-based applications in a dynamic,
component-based environment.

With Java EE and OSGi at the bottom of the stack, we build the rest of our core on well known
or widely used products:

• Spring for transactions (and Dependency Injection in the core)
• Hibernate for database access (along with direct JDBC access for optimized queries)
• Elasticsearch for indexing and searching
• Ehcache for caching.

In the application layer, developers have access to many of the libraries they’re familiar with
and have been using for years:

• Xalan
• Xerces
• Apache Commons
• Tika
• dom4j

If you’re approaching Liferay DXP with the intention of customizing it, you can know that
most if not all of the tools you’re familiar with are there. If you’re writing applications on Liferay,
the sky’s the limit: you can use any web framework you like, and you can write both servlet and
portlet-based applications. If you’re looking for a recommendation, though, we’re happy to point
you to our MVCPortlet framework.

On the front-end, Liferay has kept pace with the most recent progressions in that space. If
you’ve used Liferay in the past, you can of course continue to use Liferay’s venerable Alloy UI, but
you are also free to use the front-end technologies you love the most:

• Bootstrap
• SaSS
• EcmaScript 2015 (using Babel.js)

You can also use any JavaScript library, including

• Metal.js (developed by Liferay)
• jQuery (included)
• Lodash (included)
• Angular JS or Angular
• React
• Your library of choice

Liferay DXP follows a design language created by our designers at Liferay called Lexicon
Experience Language, which has been implemented for use of the web as Clay.

Clay is automatically made available to you through a set of CSS classes and markup, although
it’s even easier to use our tag library.

For templating, Java EE’s JSP is there as expected as well as FreeMarker, but the modularity of
the platform allows you to use Google’s Soy (aka Closure Templates) or whatever else you like.

Liferay has also chosen build tools that give you freedom to use any development environment.
Gradle along with bnd powers the product’s build, but project layouts are dynamic, which means
you can use anything fromMaven to Ant/Ivy to build applications for Liferay.

10

http://www.ecma-international.org/ecma-262/6.0/
http://metaljs.com/
https://jquery.com/
https://lexicondesign.io/
https://lexicondesign.io/
https://liferay.github.io/clay/

In short, Liferay has done a lot to make sure its users and developers have access to the most
widely used, robust tools possible–as well as the freedom to use the tools they like the most. Know
that Liferay has your back and will do everything we can to provide you with the most flexible
technology platform possible, so that you have the freedom to go and build great things on it–things
we never could have expected or imagined.

Architecture

Liferay’s design goals have from the beginning been to give you all the tools to create exactly the
web presence you have in mind. To achieve this, the product must do these things:

• Provide a usable default configuration and interface
• Ship with best-of-breed apps that you can use to build sites quickly
• Make the UI customizable at any level of detail from small tweaks to a complete replacement
• Make the apps customizable at any level of detail
• Provide a robust development platformuponwhich you canbuild and share newbest-of-breed
apps

These goals are now achieved to the furthest extent ever in Liferay’s history, and it’s all because of
our new modular architecture.

Imagine an environment where every piece of functionality is an independent module. The
modules declare three important things:

• The functionality they implement or define

11

• Their dependency on other modules
• Their priority relative to their functionality

Using this information, the container can start all the modules that fulfill their definitions,
implementations, dependencies, and priorities.

Anything a developer wants to do is implemented as one or more modules. If it’s a new appli-
cation, that application can depend on existing modules and define a dependency on them. This
enables you to use functionality that’s already there without rewriting it yourself for your app. If
it’s a customization, in many cases it’s just a simple matter of defining your customization with a
higher priority than the existing functionality.

This is the power of a modular architecture.

Modules

All new applications, extensions, and customizations built on Liferay are built in a modular way. A
module is the single unit of distribution and deployment in a modular architecture.

In the spirit of following existing standards, Liferay has leveraged a set of very powerful stan-
dards known as OSGi. OSGi defines, among other things, how modules can depend on each other
and communicate. It also defines the packaging format for modules: OSGi bundles. An OSGi
module is just a typical JAR file, familiar to Java developers as a ZIP file containing compiled code,
templates, resources, and some meta information.

Services

One aspect of modern software architecture is the notion of services. These are independently
running pieces of code that provide specific functionality when called. They operate just like
services in the real world do. For example, you might call a service to come mow your lawn. You
know how to call the service and to give it what it needs (money) in order to receive the service (a
mown lawn). Software-based services work the same way.

Liferay’s services are standard services as defined by the OSGi Alliance. Writing anything,
whether it be an application, an interface to a database, or even a “service” as you define it, is easy
to implement as an OSGi service, because they’re both incredibly powerful and easy to develop. If
you understand Java interfaces and how they are implemented–which is introductory Javamaterial–
you already understand more than 90% of what you need to know. First, you define the interface,
or contract for the service: what it returns, and what it needs to return what it returns. Next, you
define an implementation class that implements the contract.

In the services model, a class requests the service that provides the functionality it needs. This
functionality is provided (often injected) with the right implementation automatically. It’s similar to
Spring or EJBs with one important addition: implementations can be changed at runtime, without
restarting the system. This is achieved because when a service is deployed, it becomes part of a
service registry maintained by Liferay’s OSGi container. The container dynamically manages the
lifecycle of the service and can start and stop services when appropriate.

The real power of services shines when they are extended. You can replace existing implemen-
tations or in advanced use cases have several implementations of a service. The developer can then
choose to invoke all implementations or just the one with the highest priority (specified with what
is called the service ranking). This means that if Liferay has a service that does something, you can
customize or override that service by implementing its interface yourself and then deploying it with
a higher ranking than the original service. The container then instantiates your implementation

12

https://www.osgi.org/developer/
https://www.osgi.org/about-us/

when the service is called by existing code. This simple, clean method is how most customizations
are made to Liferay 7.

Components

In OSGi, possibly the best and certainly the easiest way to create services is through Declarative
Services. In Declarative Services (aka DS), you create Components. A Component is a Java class
(marked with an @Component annotation) that provides an implementation of a Service (as described
above) and whose instantiation is handled automatically by DS. This is similar to what you might
be used to if you have used Spring Beans or EJBs. DS also provides dependency injection using
annotations (@Reference). This is convenient because the “wiring” of components is done by the
container but can be changed while the server is running (unlike Spring).

Modules may contain as many service declarations and as many components as desired (or
zero, of course).

In software engineering terms, a component is the smallest buildingblock of a larger application,
and that application is itself made up of many small components. This makes it easier to develop
an application because you only have to deal with small, well-defined, bite-sized chunks of code at
a time.

Real Life Benefits of Modular Development

The next question then becomes, so what? Why is this a big deal? Why should I have components,
and what do I need them for?

It helps to examine two common development scenarios: a customization task and a full-blown
application. Picture this: you have a system that generates a report in PDF format from data in a
database. The data is captured from a web application running in Liferay. You come in to work
in the morning and something’s happened (it doesn’t matter what it is; it could be corrupt data,
the company has been bought, or a national emergency). You need to change that report as fast as
possible, either to insert a new title page, add a warning to the existing title page, or whatever.

In the monolithic model you’d have to modify the application to change the report and then
you’d have to redeploy the complete application. If this was a temporary change, to restore the
application to its original state you’d again have to modify the application and redeploy it.

With a modular and component-based application, you’d fix a simple, small component–
probably one Java class–that provides the functionality you need. You’d then deploy its module
to the server. If you need to roll back that change in the future, you’d just do the same thing in
reverse. In each case, you’re only changing and redeploying the small piece of functionality that
needs to change, not the whole application. At no time would you ever have to redeploy the whole
application or take the server down.

For a full-blown application, the benefits are even greater. Modular development helps devel-
opers be more efficient in three important ways:

• An application made up of components can be written in parallel by multiple developers
working on different components.

• An existing application can be extended by writing new components to implement features
in different ways.

• Components can be enabled and disabled, allowing administrators to choose which features
to enable in production.

13

For example, Liferay’s Documents and Media library is a file repository that supports many
back-ends. Each back-end is a component that can be maintained by different developers. They
can be added and removed on the fly while the server is running.

Similarly, the services provided by the application are independent of the front-end technology.
In fact, there can be multiple front-ends, from the web-based front-end Liferay provides out of the
box, to a new front-end you might develop for either the web or mobile.

As you can see, many components running inside Liferay’s OSGi container form something of
an ecosystem of complementary services. Much of Liferay’s functionality is in components, and
when you deploy your code, it sits in the same ecosystem as Liferay’s, with the same extension
points. You can write components to provide new services or to override existing services with
your own implementation, and the container manages it all. Liferay is an exciting platform that
empowers developers to be more productive.

1.5 Liferay as a Development Platform

If you’ve been reading everything up to this point, you’ve heard all about Liferay DXP’s architecture,
modularity, and technologies. What’s left is to tell you what it’s like to use Liferay’s platform as a
basis for your site by customizing it or by developing applications on it. The platform is designed
to make this easy and pleasant, and to integrate with the tools you use every day.

But you’re likely not interested in a bunch of prolegomena about it. Read on to learn the details.

Web Applications and Portlets

Liferay as a development platform has always provided flexibility for both administrators and
developers by making it easy to have more than one application on a single page. Applications
written this way are called portlets, and are a mainstay of Liferay’s platform. You can use Liferay’s
MVC Portlet framework or common frameworks such as Spring MVC or JSF to write portlets. If
you plan to have a web-based interface to your application, and want its administrator to have a lot
of flexibility configuring it, portlets provide a very powerful model. In this model you can create
several portlets instead of a larger application and let the administrator choose how to combine
them with other pre-existing portlets into a larger interface.

That’s not to say you don’t have other choices. Since Liferay decouples its business logic from
its UI (which is provided in separate modules), you have freedom to implement the UI in any other
technology.

Because of this, you can use Liferay as a headless platform, because it’s easy to create web
services based on Service Builder, JAX-RS, and JAX-WS. Then you can build standalone web appli-
cations using any front-end technology or mobile technology you like.

Extensibility

As you might imagine, the system described above contains all the tools necessary to make a well
designed system that lets you not only create applications based on modules, but also to extend the
existing functionality of the system. Liferay can benefit from this now because the platform on
which it rests is designed for both application development and customization.

Components make developing extensions and customizations convenient. If you compare this
model to other products that aren’t designed for customization, you’ll see just how convenient it
can be.

14

To customize an existing service, the only thing you need to do is deploy a component that
extends the existing implementation. If you want to remove your implementation and revert back
to the default behavior, you simply un-deploy your component.

Compare that with the traditional way of customizing software by downloading its source and
maintaining a set of patches against it. Each time the software is updated, you have to re-download
the source, re-apply your patches, and recompile the software.

With Liferay, your custom code is kept in your own modules, which the container takes care of
applying based on metadata you supply.

Developer Tools

As you learned above, Liferay’s OSGi container gives you these benefits:

• The container can start and stop components.
• A component implements an OSGi service.
• A component may use or consume OSGi services.
• The framework manages the binding of the services a component consumes (just like Spring
or EJBs, but dynamically).

If all of this sounds great to you (as it does to us), there’s only one thing left: how do you get
started developing components? We believe in providing an easy path for new developers while at
the same time preserving flexibility for experienced developers with strong tooling preferences.
To achieve that, Liferay provides some great tools, and if you’re an experienced developer, these
also integrate into what you likely already use. If you use any of the standard build tools like Gradle
or Maven, any text editor or common Java IDEs like Eclipse, intelliJ, or NetBeans, or any testing
framework like Spock or JUnit, you can use them with Liferay to develop components.

Liferay’s tools add some important enhancements:

• Blade CLI speeds you up by creating Gradle-based Liferay projects from templates.
• LiferayWorkspace is an opinionated SDK based on Gradle that uses Blade CLI to integrate
your projects and your runtime into one convenient, distributable and sharable place.

• Liferay IDE is an Eclipse-based development environment that integrates all the convenience
of Blade CLI and LiferayWorkspace into a best-of-breed graphical environment with all the
bells and whistles you’d expect.

• Liferay Developer Studio provides all that Liferay IDE provides, plus additional tools that
enterprise developers need.

• Liferay Service Builder helps you create your back-end faster by generating all your database
tables, local services, and web services from a single XML file.

You can choose to use or ignore Liferay’s tools. The point is you have the freedom to do that,
because Liferay provides an open development framework that’s designed to meet you where you
are. We hate proprietary lock-in as much as you do, so our tools are designed to complement the
tools you’re using already instead of replacing them.

Beyond build tools and IDEs are the frameworks you’ll use to build applications. Liferay’s
development frameworks include a lot of functionality–comments, social relationships, user man-
agement, and lots more–to speed up development of your applications. They help you build
applications out of well-tested, modern, scalable, skinnable building blocks. You wind up not only
with a great, functional application, but also with one that took less time to develop, looks the way

15

you want it to, and performs well. This doesn’t mean you’re limited only to what Liferay provides;
again, you can use third-party frameworks if that’s what you like to use.

To develop portlets, Liferay provides a convenient and easy-to-use framework calledMVCPortlet
to make writing portlets easy, but developers are free to use any other framework, such as Spring
MVC, to create portlets. MVCPortlet uses components to handle requests, benefiting from all the
characteristics described above (lifecycle, extensibility, ease of composition, etc.). If you don’t
have a strong opinion on which framework to use, we recommend that you try it out.

Liferay also includes a utility called Service Builder that makes it easy to create back-end
database tables, an object-relational map in Java for accessing them, and a place to put your
business logic. It can also generate JSON or SOAP web services, giving developers a full stack for
storing and retrieving data using web or mobile clients. But that doesn’t prevent you from using
Java Persistence (JPA) and generating JAX-WS web services.

In addition to the tooling, Liferay also provides many reusable frameworks.

Frameworks and APIs

Liferay’s development platform provides a great framework for application development and also
offers APIs. Lots of them. You can create applications by leveraging Liferay’s many frameworks
that encapsulate features that today’s applications commonly need. For example, a commenting
system lets you attach comments to any asset that you define, whether they be assets you develop or
assets that ship with the system. Assets are shared by the system and are represent many common
elements, such as Users, Organizations, Sites, User Groups, blog entries, and even folders and files.

Liferay also includes many frameworks for operating on assets. A workflow systemmakes it
easy to create applications that require an approval process for users to follow. The recycle bin
stores deleted assets for a specified period of time, making it easy for users to restore data without
the intervention of an administrator. A file storage API with multiple available back-ends makes
storing and sharing files trivial. Search is built into the system as well, and it is designed for you
to integrate it with your applications. Many of the frameworks you might need when developing
complex applications are already in Liferay; you just need to take advantage of them: a Social
Networking API, user-generated forms with data lists, a message bus, an audit system, and much
more.

Example Liferay Projects

Enough theory. It’s time for practice. A good way to get the flavor of developing on Liferay’s
platform across is to show you some projects. First, you’ll see a portlet developed with MVCPortlet,
showcasing the use of components as well. Once you’ve seen that, the next best thing is to see
an extension. Both of these examples show you how easy it is to build functionality following a
modular paradigm.

It would be nice to show you the standard HelloWorld project, Liferay style, but that would be
too easy: the default template that Blade CLI or Liferay IDE creates already does that by default.
Instead, you’ll see the Hello You portlet. This does the same thing as HelloWorld, except it adds
the first name of the user to the message. If your name therefore is John, it returns Hello, John.

Here’s what the project layout looks like:
No new files were created after this project was generated by Liferay’s Blade CLI tool, so this

is as simple as it gets. You have your portlet class, which is in the .java file. You also have two
different kinds of resources: language properties and JSP files. Finally, the bnd.bnd file describes
the application’s metadata for the OSGi container, and the build.gradle file builds the project.

16

Figure 1.5: The Hello You portlet has a simple project structure.

Any web developer that’s familiar with Java can understand the JSPs, but some explanation is
in order because of the style. Liferay’s coding style defines a single init.jsp that contains all the
imports and tag library initializations necessary for the front-end. This way, any JSP can simply
include init.jsp, and all of its imports are satisfied. The init.jsp for this project was not modified
from the generated project, and it looks like this:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://liferay.com/tld/portlet" prefix="liferay-portlet" %>

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme" %>

<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>

<liferay-theme:defineObjects />

<portlet:defineObjects />

As you can see, all it does is declare the tag libraries you probably want to use, and then it calls
a couple of tags that makes objects from the portlet framework available. Since there’s nothing
really interesting here, you’ll want to look at view.jsp next:

<%@ include file="/init.jsp" %>

<jsp:useBean id="userName" type="java.lang.String" scope="request" />

<p>

Hello, <%=userName %>!

</p>

17

Now we’ve got something. The portlet class (the Controller, in MVC terms) has made a userName

string available in the request, and this JSP retrieves it and uses it to say hello to the user. The real
functionality, therefore is in the portlet class:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.display-name=hello-you Portlet",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

public class HelloYouPortlet extends MVCPortlet {

@Override

public void render(RenderRequest renderRequest,

RenderResponse renderResponse)

throws IOException, PortletException

{

ThemeDisplay themeDisplay = (ThemeDisplay)

renderRequest.getAttribute(WebKeys.THEME_DISPLAY);

User user = themeDisplay.getUser();

renderRequest.setAttribute("userName",

user.getFirstName());

super.render(renderRequest, renderResponse);

}

}

Now we’re talking; here’s the real stuff. At the top is the @Component annotation, which tells
the OSGi container how it should treat this module. By specifying immediate=true, you’re saying
that when this module is deployed and all of its dependencies are satisfied, it should be started
immediately instead of being lazy-loaded. Next are several properties specific to portlets: the
category in which it should appear in Liferay’s UI, its display name, its default view, and more.
Finally, the service–which is just a Java Interface–that it implements is defined, which is the portlet
class.

Next, you have the class itself, which extends Liferay’s MVCPortlet class (that extends
GenericPortlet, that implements Portlet). The only method overridden is the render() method,
and Liferay’s API is used to get the user’s first name and put it in a request attribute called userName.

So you can see how this works: the portlet runs and retrieves the user’s first name, puts that in
the request, and then by the use of the template path and view template properties specified in the
@Component annotation, forwards processing to view.jsp, where the user’s first name is retrieved
and displayed.

The only other item of interest is the bnd.bnd file:

Bundle-SymbolicName: com.liferay.docs.hello.you

Bundle-Version: 1.0.0

This declares the name of the module (sometimes also called a bundle). It’s a good practice to
namespace it properly to avoid name conflicts in the container. The version is also declared, which

18

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html

allows the container to manage dependencies down to the version level of a module. This is called
Semantic Versioning, and is a discussion by itself.

That’s all there is to this portlet. Next, you’ll see an extension, which in many cases is even
simpler than a portlet.

Liferay’s UI is divided up into several areas. There’s the control menu and the product menu,
which contains the add menu and the simulation menu. You can extend the UI by deploying a
module that adds what you want. In this example, you’ll add a link to the product menu, which is
the menu that by default sits in the top right of the browser:

Figure 1.6: The product menu appears beneath the user’s profile link.

To this, you’ll add a link to this website:

Figure 1.7: You can add links to the product menu by deploying a component.

As with the portlet project, this project’s layout contains only a few items that are easy to
understand.

As before, you have a build script, a bnd.bnd file that declares the module’s name and version,
and this time, only a Java class and a language properties file.

The Java class defines only four methods:

@Component(

immediate = true,

property = {

"product.navigation.control.menu.category.key=" +

ProductNavigationControlMenuCategoryKeys.USER,

"product.navigation.control.menu.entry.order:Integer=1"

},

service = ProductNavigationControlMenuEntry.class

)

public class DevProductNavigationControlMenuEntry

extends BaseProductNavigationControlMenuEntry

implements ProductNavigationControlMenuEntry {

@Override

19

Figure 1.8: The product menu project is simpler than the portlet was.

public String getIcon(HttpServletRequest request) {

return "link";

}

@Override

public String getLabel(Locale locale) {

ResourceBundle resourceBundle = ResourceBundleUtil.getBundle(

"content.Language", locale, getClass());

return LanguageUtil.get(resourceBundle, "custom-message");

}

@Override

public String getURL(HttpServletRequest request) {

return "https://liferay.com";

}

@Override

public boolean isShow(HttpServletRequest request) throws

PortalException {

return true;

}

}

As before, this project was generated using a template from Blade CLI. The source code is part
of the template; the only thing you’ll need to do is provide the link.

The first method gets the Font Awesome icon you want to use in the menu. The next gets the
“label,” the text that appears when a user hovers the mouse over the link. This text is the value of
the only property in the Language.properties file:

custom-message=Liferay Developer Network

20

The next method returns the URL that’s the destination for this link, and the final method
returns a boolean for showing or hiding the link.

When you deploy this module and the module starts, the link appears in the menu. You don’t
have to mess around looking in Liferay’s JSP or JavaScript files to customize the menu: it’s an
extension point, and it is designed to be customized.

This is the modular paradigm for development. It helps you keep a clean separation of your
code, whether it be applications or extensions, from Liferay’s code, and it gives you the power to
customize the system dynamically, while it’s running, to avoid downtime. It is a different way of
doing things, but we believe it’s a better way. When you start working with modules and see the
benefits you can gain, we think you’ll agree.

1.6 Starting Module Development

Developing modules for Liferay DXP requires:

• Creating a folder structure: A good folder structure facilitates evolving andmaintaining code,
especially in collaboration. Popular tools use pre-defined folder structures you’re familiar
with.

• Writing code and configuration files: A manifest, Java classes, and resources. Modules
stubbed out with them let you focus on implementing logic.

• Compilation: Configuring dependencies and building the module. Common build tools that
manage dependencies include Gradle, Maven, and Ant/Ivy.

• Deployment: Interacting with the runtime environment to install, monitor, and modify
modules.

There are several good build tools for developing modules. This tutorial demonstrates starting
a new module using Liferay Workspace. It’s Liferay’s opinionated build environment based on
Gradle and bnd that simplifies module development and automates much of it.

Note: Liferay lets you develop using your favorite tools. In addition to providing Liferay
Workspace for those who don’t already have a preferred build environment, Liferay provides good
support for Maven and Gradle. The following tutorials and samples demonstrate developing in
these environments.

• Maven in Liferay Dev Studio DXP, Maven tutorials, and samples

• Gradle in Liferay Dev Studio DXP and samples

Note: Themes and Layout Templates are not built as modules. The Themes and Layout Tem-
plates tutorials demonstrate creating them.

Here are the steps for starting module development:

1. Set up a LiferayWorkspace

21

2. Create a module

3. Build and deploy the module

On completing this tutorial you’ll have created a module and deployed it to a local Liferay DXP
bundle.

Setting up a Liferay Workspace

Creating and configuring a LiferayWorkspace (Workspace) is straightforward using a tool called
Blade CLI (Blade). Blade is a command line tool that createsWorkspaces and projects and performs
common tasks.

Install Blade if you don’t already have it.
The blade executable is now in the system path.
You can create aWorkspace in the current directory by executing this command:
blade init [workspaceName]

You’ve created aWorkspace! Its folder structure looks like the one shown in the figure below.

Figure 1.9: Liferay Workspace aggregates projects so they can leverage the Gradle build environment.

Workspace can be configured to use a Liferay DXP installation bundle anywhere on the local
file system. The liferay.workspace.home.dir property in gradle.properties sets the default bundle
location to a folder [workspace]/bundles (not yet created). For convenience it’s suggested to install a
bundle there. If you install it to a different location, uncomment the liferay.workspace.home.dir

property and set it to that location.

Note: User interfaces in Liferay Dev Studio DXP let you create and import LiferayWorkspace
projects.

To create a project, follow the tutorial Creating a LiferayWorkspace Project with Liferay Dev
Studio DXP.

22

To import a project, use the wizard from File → Import → Liferay → Liferay Workspace Project.

TheWorkspace is ready for creating modules.

Creating a Module

Blade provides project templates and sample projects. The templates stub out files for different
types of modules. The samples can be generated in aWorkspace and demonstrate many module
types. Templates and samples help you create modules fast.

Using Module Templates

The Blade command blade create -l lists the project templates.

Figure 1.10: Blade’s create command generates a project based on a template. Executing create -l lists the template names.

Note: Liferay Dev Studio DXP’s module wizard lets you select a module project template.

Here’s the command syntax for creating a module:

blade create [options] moduleName

23

Module templates and their options are described here.
Here’s an example of creating a Liferay MVC Portlet module:

blade create -t mvc-portlet -p com.liferay.docs.mymodule -c MyMvcPortlet my-module

Module projects are created in the modules folder by default.
Here’s the module project anatomy:

• src/main/java/ → Java package root

• src/main/resources/content/ (optional) → Language properties root

• src/main/resources/META-INF/resources/ (optional) → Root for UI templates, such as JSPs

• bnd.bnd → Specifies essential OSGi module manifest headers

• build.gradle → Configures dependencies and more using Gradle

The figure below shows an MVC portlet project.

Figure 1.11: Liferay modules use the standard Maven folder structure.

Sample modules are another helpful development resource.

24

Using Sample Modules

An alternative to creating a module from a template is to generate a sample module. Examine them
or modify them for your purposes.

This command lists the sample names:

blade samples

The figure below shows the listing.

Figure 1.12: The blade samples command lists the sample modules you can create, examine, andmodify to meet your needs.

Here’s the Blade samples command syntax:

blade samples [sampleName]

It creates the sample project in a subfolder.
Building a module and deploying it to Liferay is easy.

Building and Deploying a Module

Liferay Workspace provides Gradle tasks for building and deploying modules. Blade’s blade gw

command lets you invoke the Gradle wrapper from any project folder. You can use blade gw just as
you would invoke gradlew, without having to specify the wrapper path.

Note: For an even simpler Gradle wrapper command, install gw.
(sudo) jpm install gw@1.0.1

Usage: gw <task>

In a module folder, execute this command to list the Gradle tasks available:

blade gw tasks

Workspace uses bnd to generate themodule’s OSGi MANIFEST.MF file and package it in themodule
JAR. To compile the module and generate the module JAR, execute the jar Gradle task:

25

blade gw jar

The generated JAR is in the module project’s build/libs folder and ready for deployment.
Start your Liferay DXP server, if you haven’t already started it.

Tip: To open a new terminal window and theWorkspace’s Liferay DXP server (bundled with
Tomcat or JBoss/Wildfly), execute this command:

blade server start -b

Blade deploys modules to the local Liferay server. It communicates with the OSGi framework
using Felix Gogo shell and deploys modules directly to the OSGi container using Felix File Install
commands. The command above uses the default port 11311.

To deploy the module, execute this command:

blade deploy

It deploys modules in the current folder tree. For example, executing blade deploy in the
[workspace]/modules folder deploys all the modules in that folder and its subfolders.

Liferay Dev Studio DXP lets you deploy modules by dragging them from the Package Explorer
onto the Liferay server. Dev Studio DXP provides access to LiferayWorkspace Gradle tasks too.

Note: Blade CLI directly installs modules into the OSGi container. Blade stores the module
differently in Liferay than if you were to copy the module into the LIFERAY_HOME/deploy folder.

Once you’ve deployed a portlet module, it’s available in the Liferay UI under the application
category and name you specified via the portlet component’s com.liferay.portlet.display-category
and javax.portlet.display-name properties.

Redeploying Module Changes Automatically

Blade lets you set a watch on changes to a module project’s output files. If they’re modified, Blade
redeploys the module automatically. To set a watch on a module at deployment, execute this
command in the module project:

blade deploy -w

Here’s output from deploying (and watching) a module named com.liferay.docs.mymodule:

E:\workspaces\my-liferay-workspace\modules\my-module-project>blade deploy -w

:modules:my-module-project:compileJava UP-TO-DATE

:modules:my-module-project:buildCSS UP-TO-DATE

:modules:my-module-project:processResources UP-TO-DATE

:modules:my-module-project:transpileJS SKIPPED

:modules:my-module-project:configJSModules SKIPPED

:modules:my-module-project:classes UP-TO-DATE

:modules:my-module-project:jar UP-TO-DATE

:modules:my-module-project:assemble UP-TO-DATE

:modules:my-module-project:build

BUILD SUCCESSFUL

Total time: 2.962 secs

install file:/E:/workspaces/my-liferay-workspace/modules/my-module-project/build/libs/com.liferay.docs.mymodule-1.0.0.jar

Bundle ID: 505

26

Figure 1.13: Liferay Dev Studio DXP lets you deploy modules using drag-and-drop.

Figure 1.14: Here’s a bare-bones portlet based on a project template.

27

start 505

Scanning E:\workspaces\my-liferay-workspace\modules\my-module-project

...

Waiting for changes to input files of tasks... (ctrl-d then enter to exit)

The command output indicates that the module is installed and started, reports the module’s
OSGi bundle ID, and stands ready to deploy changes to the module.

Congratulations on a great start to developing your module!

Related Articles

Configuring Dependencies
LiferayWorkspace
Tooling
OSGi Basics for Liferay Development
Portlets

1.7 Configuring Dependencies

Using external artifacts in your project requires configuring their dependencies. To do this, look
up the artifact’s attributes and plug them into dependency entries for your build system (either
Gradle, Maven, or Ant/Ivy). Your build system downloads the dependency artifacts your project
needs to compile successfully.

Before specifying an artifact as a dependency, you must first find its attributes. Artifacts have
these attributes:

• Group ID: Authoring organization
• Artifact ID: Name/identifier
• Version: Release number

Note: The App Manager shows each module’s version number.

This tutorial shows you how to make sure your projects have the right dependencies:

• Find Core Liferay DXP artifacts
• Find Liferay DXP app and independent artifacts
• Configure dependencies

Finding Core Artifacts

Each Liferay artifact is a JAR file whose META-INF/MANIFEST.MF file contains the artifact’s OSGi meta-
data. The manifest also specifies the artifact’s attributes. For example, these two OSGi headers
specify the artifact ID and version:

Bundle-SymbolicName: [artifact ID]

Bundle-Version: [version]

28

https://gradle.org/
https://maven.apache.org/
http://ant.apache.org/ivy/

Important: Artifacts in Liferay DXP fix packs override Liferay DXP installation artifacts. Sub-
folders of a fix pack ZIP file’s binaries folder hold the artifacts. If an installed fix pack provides an
artifact you depend on, specify the version of that fix pack artifact in your dependency.

This table lists the group ID, artifact ID, version, and origin for each core Liferay DXP artifact:
Core Liferay DXP Artifacts:

File Group ID Artifact ID Version Origin

portal-kernel.jar com.liferay.portal com.liferay.portal.kernel(see JAR’s
MANIFEST.MF)

fix pack
ZIP,
Liferay
DXP instal-
lation, or
Liferay
DXP
dependen-
cies ZIP

portal-impl.jar com.liferay.portal com.liferay.portal.impl(see JAR’s
MANIFEST.MF)

fix pack
ZIP or
Liferay
DXP .war

portal-test.jar com.liferay.portal com.liferay.portal.test(see JAR’s
MANIFEST.MF)

fix pack
ZIP or
Liferay
DXP .war

portal-test-

integration.jar

com.liferay.portal com.liferay.portal.test.integration(see JAR’s
MANIFEST.MF)

fix pack
ZIP or
Liferay
DXP .war

util-bridges.jar com.liferay.portal com.liferay.util.bridges(see JAR’s
MANIFEST.MF)

fix pack
ZIP or
Liferay
DXP .war

util-java.jar com.liferay.portal com.liferay.util.java(see JAR’s
MANIFEST.MF)

fix pack
ZIP or
Liferay
DXP .war

util-slf4j.jar com.liferay.portal com.liferay.util.slf4j(see JAR’s
MANIFEST.MF)

fix pack
ZIP or
Liferay
DXP .war

util-taglibs.jar com.liferay.portal com.liferay.util.taglib(see JAR’s
MANIFEST.MF)

fix pack
ZIP or
Liferay
DXP .war

29

File Group ID Artifact ID Version Origin

com.liferay.* JAR
files

com.liferay (see JAR’s
MANIFEST.MF)

(see JAR’s
MANIFEST.MF)

fix pack
ZIP,
Liferay
DXP instal-
lation,
Liferay
DXP
dependen-
cies ZIP, or
the OSGi
ZIP

Next, you’ll learn how to find artifacts for Liferay DXP apps and independent modules.

Finding Liferay App and Independent Artifacts

Independent modules and modules that make up Liferay DXP’s apps aren’t part of the Liferay DXP
core. You must still, however, find their artifact attributes if you want to declare dependencies on
them. The resources below provide the artifact details for Liferay DXP’s apps and independent
modules:

Resource Artifact Type

App Manager Deployed modules
Reference Docs Liferay DXP modules (per release)
Maven Central All artifact types: Liferay DXP and third party, module and

non-module

Important: com.liferay is the group ID for all of Liferay’s apps and independent modules.

The App Manager is the best source for information on deployed modules. You’ll learn about it
next.

App Manager

The App Manager knows what’s deployed on your Liferay instance. You can use it to find whatever
modules you’re looking for.

Follow these steps to get a deployed module’s information:

1. In Liferay DXP, navigate to Control Panel → Apps → App Manager.

2. Search for the module by its display name, symbolic name, or related keywords. You can also
browse for the module in its app. Whether browsing or searching, the App Manager shows
the module’s artifact ID and version number.

If you don’t know a deployed module’s group, use the Felix Gogo Shell to find it:

30

Figure 1.15: You can inspect deployedmodule artifact IDs and version numbers.

Figure 1.16: The App Manager aggregates Liferay and independent modules.

1. Navigate to the Gogo Shell portlet in the Control Panel → Configuration → Gogo Shell. You can
enter commands in the provided Felix Gogo Shell command prompt.

2. Search for the module by its display name (e.g., Liferay Bookmarks API) or a keyword. In the
results, note the module’s number. You can use it in the next step. For example, these results
show the Liferay Bookmarks API module’s number is 52:

g! lb | grep "Liferay Bookmarks API"

52|Active | 10|Liferay Bookmarks API (2.0.1)

3. To list the module’s manifest headers, pass the module number to the headers command. In
the results, note the Bundle-Vendor value: you’ll match it with an artifact group in a later step:

31

g! headers 52

Liferay Bookmarks API (52)

Manifest-Version = 1.0

Bnd-LastModified = 1464725366614

Bundle-ManifestVersion = 2

Bundle-Name = Liferay Bookmarks API

Bundle-SymbolicName = com.liferay.bookmarks.api

Bundle-Vendor = Liferay, Inc.

Bundle-Version = 2.0.1

...

4. Disconnect from the Gogo Shell session:

g! disconnect

5. On Maven Central or MVNRepository, search for the module by its artifact ID.

6. Determine the group ID by matching the Bundle-Vendor value from step 3 with a group listed
that provides the artifact.

Next, you’ll learn how to use Liferay DXP’s reference documentation to find a Liferay DXP app
module’s attributes.

Reference Docs

Liferay DXP’s app Javadoc lists each app module’s artifact ID, version number, and display name.
This is the best place to look up Liferay DXP app modules that aren’t yet deployed to your Liferay
DXP instance.

Note: To find artifact information on a Core Liferay DXP artifact, refer to the previous section
Finding Core artifacts.

Follow these steps to find a Liferay DXP app module’s attributes in the Javadoc:

1. Navigate to Javadoc for an app module class. If you don’t have a link to the class’s Javadoc,
find it by browsing [https://docs.liferay.com/dxp/apps](

2. Copy the class’s package name.

3. Navigate to the Overview page.

4. On the Overview page, search for the package name you copied in step 2.

The heading above the package name shows the module’s artifact ID, version number, and
display name. Remember, the group ID for all app modules is com.liferay.

Note: Module version numbers aren’t currently included in any tag library reference docs.

Next, you’ll learn how to look up artifacts on MVNRepository and Maven Central.

32

https://search.maven.org/
https://mvnrepository.com

Figure 1.17: Liferay DXP app Javadoc overviews list each appmodule’s display name, followed by its group ID, artifact ID, and version number in a colon-separated string.
It’s a Gradle artifact syntax.

Maven Central

Most artifacts, regardless of type or origin, are on MVNRepository and Maven Central.
These sites can help you find artifacts based on class packages. It’s common to include
an artifact’s ID in the start of an artifact’s package names. For example, if you depend
on the class org.osgi.service.component.annotations.Component, search for the package name
org.osgi.service.component.annotations on one of the Maven sites.

Note: Make sure to follow the instructions listed earlier to determine the version of Liferay
artifacts you need.

Now that you have your artifact’s attribute values, you’re ready to configure a dependency on it.

Configuring Dependencies

Specifying dependencies to build systems is straightforward. Edit your project’s build file, specify-
ing a dependency entry that includes the group ID, artifact ID, and version number.

Note: To configure third-party libraries in amodule, see the tutorial AddingThirdParty Libraries
to a Module.

Note that different build systems use different artifact attribute names, as shown below:
Artifact Terminology

33

https://mvnrepository.com/
https://search.maven.org/

Framework Group ID Artifact ID Version

Gradle group name version

Maven groupId artifactId version

Ivy org name rev

The following examples demonstrate configuring a dependency on Liferay’s Journal APImodule
for Gradle, Maven, and Ivy.

Gradle

Here’s the dependency configured in a build.gradle file:

dependencies {

compileOnly group: "com.liferay", name: "com.liferay.journal.api", version: "1.0.1"

...

}

Maven

Here’s the dependency configured in a pom.xml file:

<dependency>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.journal.api</artifactId>

<version>1.0.1</version>

</dependency>

Ivy

Here’s the dependency configured in an ivy.xml file:

<dependency name="com.liferay.journal.api" org="com.liferay" rev="1.0.1" />

Important: Liferay DXP exports many third-party packages. If you’re developing aWAR, deploy
it to check if the packages you’re using are in the OSGi runtime container already. If they are
already in there, specify their corresponding artifacts as being “provided”. Here’s how to specify a
provided dependency:

Maven: <scope>provided</scope>
Gradle: providedCompile
Don’t deploy a provided package’s JAR again or embed the JAR in your project. Exporting the

same package from different JARs leads to “split package” issues, whose side affects differ from
case to case. If the package is in a third-party library (not an OSGi module), refer to [Resolving
Third

Party Library
Dependencies](/docs/7-1/tutorials/-/knowledge_base/t/adding-third-party-libraries-to-a-module).

If you’re developing aWAR that requires a different version of a third-party package that Liferay
DXP or another module exports, specify that package in your Import-Package: list. If the package
provider is an OSGi module, publish its exported packages by deploying that module. Otherwise,
follow the instructions for adding a third-party library (not an OSGi module).

34

Nice! Now you know how to find artifacts and configure them as dependencies. Now that’s a
skill you can depend on!

Related Topics

Using the App Manager
Reference
Resolving Third Party Library Package Dependencies
Tooling
Portlets

1.8 Finding Extension Points

Liferay DXP provides many features that help users accomplish their tasks. Sometimes, however,
you may find it necessary to customize a built-in feature. It’s easy to find an area you want to
customize, but it may seem like a daunting task to figure out how to customize it. Liferay DXP was
developed for easy customization, meaning it has many extension points you can use to add your
own flavor.

There’s a process you can follow that makes finding an extension point a breeze.

1. Locate the bundle (module) that provides the functionality you want to change.
2. Find the components available in the module.
3. Discover the extension points for the components you want to customize.

This tutorial demonstrates finding an extension point. It steps through a simple example that
locates an extension point for importing LDAP users. The example includes using Liferay DXP’s
Application Manager and Felix Gogo Shell.

Locate the Related Module and Component

First think of words that describe the application behavior you want to change. The right keywords
can help you easily track down the desired module and its component. Consider the example for
importing LDAP users. Some candidate keywords for finding the component are import, user, and
LDAP.

The easiest way to discover the module responsible for a particular Liferay feature is to use the
Application Manager. The Application Manager lists app suites and their included modules/compo-
nents in an easy-to-use interface. It even lists third party apps! You’ll use your keywords to target
the applicable component.

1. Open the App Manager by navigating to Control Panel → Apps → App Manager. The top level
lists app suites, independent apps, and independent modules.

2. Navigate the app suites, apps, and modules, or use Search to find components that might
provide your desired extension point. Remember to check for your keywords in element
names and descriptions. The keyword LDAP is found in the Liferay Foundation app suite’s
list of apps and features. Select the app suite.

3. Select the LDAP application from the app listing.

35

Figure 1.18: The Liferay Foundation app suite contains the LDAP Authentication application.

4. The LDAP application only has one module, but typically, applications have more than one
module to inspect. Select the Liferay Portal Security LDAP module.

Figure 1.19: The App Manager lists the module, package name, version, and status.

5. Search through the components, applying your keywords as a guide. Copy the component
name you think best fits the functionality you want to customize; you’ll inspect it later using
the Gogo shell.

Note: When using the Gogo shell later, understand that it can take

several tries to find the component you're looking for; Liferay's naming

conventions facilitate finding extension points in a manageable time frame.

Next, you’ll use the Gogo shell to inspect the component for extension points.

36

Figure 1.20: The component name can be found using the App Manager.

Finding Extension Points in a Component

Once you have the component that relates to the functionality you want to extend, you can use
the Gogo shell’s Service Component Runtime (SCR) commands to inspect it. You can execute SCR
commands using Liferay Blade CLI or in Gogo shell. This tutorial assumes you’re using the Gogo
shell.

Execute the following command:

scr:info [COMPONENT_NAME]

For the LDAP example component you copied previously, the command would look like this:

scr:info com.liferay.portal.security.ldap.internal.messaging.UserImportMessageListener

The output includes a lot of information. For this exercise, you’re interested in services the
component references. They are extension points. For example, here’s the reference for the service
that imports LDAP users:

...

Reference: LdapUserImporter

Interface Name: com.liferay.portal.security.ldap.exportimport.LDAPUserImporter

Cardinality: 1..1

Policy: static

Policy option: reluctant

Reference Scope: bundle

...

The LDAPUserImporter is the extension point for customizing the LDAP user import process! If
none of the references satisfy what you’re looking for, search other components from the App
Manager.

If you plan on overriding the referenced service, you’ll need to understand the reference’s
policy and policy option. If the policy is static and the policy option is reluctant, binding a new
higher ranking service in place of a bound service requires reactivating the component or changing
the target. For information on the other policies and policy options, visit the OSGi specification, in
particular, sections 112.3.5 and 112.3.6. If you want to learn how to override a component’s service
reference, visit the tutorial here.

Important Not all Liferay extension points are available as referenced services. Service refer-
ences are common in Declarative Services (DS) components, but extension points can be exposed
in other ways too. Here’s a brief list of other potential extension points in Liferay DXP:

37

https://osgi.org/download/r6/osgi.enterprise-6.0.0.pdf

• Instances of org.osgi.util.tracker.ServiceTracker<S, T>

• Uses of Liferay’s Registry.getServiceTracker
• Uses of Liferay’s ServiceTrackerMap or ServiceTrackerCollection
• Any other component framework or whiteboard implementation (e.g., HTTP, JAX-RS) that
supports tracking services; Blueprint, ApacheDependencyManager, etc. could also introduce
extension points.

There you have it! In the App Manager, you used keywords to find the module component
whose behavior you wanted to change. Then you used Gogo shell to find the component extension
point for implementing your customization.

38

CHAPTER 2

INTRODUCTION TO FRONT-END DEVELOPMENT

Liferay DXP offers complete developer front-end freedom. Whether you like coding JavaScript by
hand, have used Liferay’s front-end frameworks in the past, or prefer jQuery, Lodash, or modules,
you can use your front-end framework of choice.

Prior users of Liferay DXP can continue to use Liferay’s venerable Alloy UI, but you can also
use the front-end technologies you love the most:

• EcmaScript ES2015+
• Metal.js (developed by Liferay)
• AlloyUI (developed by Liferay)
• jQuery (included)
• Lodash (included)

To load modules, you must know when they are needed, where they are at build time, if you
want to bundle them together or load them independently, and youmust assemble them at runtime.
Keeping track of these tasks can be a hassle. Liferay DXP’s Loaders (YUI/AUI, AMD, and npm in
AMD format) handle loading for you, so you don’t have to worry about all the details. Just provide
a small bit of information about your module, and Liferay DXP’s loaders take care of the rest.

If youwant to use npmpackages in your applications, you can use liferay-npm-bundler. It is built
for just this purpose, and even provides several presets for commonmodule types (AMD, React,
Angular JS, etc.) to save you time. It creates an OSGi bundle for you, extracts all npm dependencies,
and transpiles your code for the Liferay AMD Loader.

While developing JavaScript applications for Liferay DXP, you may need to access Liferay DXP-
specific information or web services. The Liferay global JavaScript Object exposes this information
for you, letting you harness the power of Liferay DXP in your JavaScript applications, while still
using the front-end frameworks and technologies that you love.

2.1 Lexicon and Clay

Liferay DXP uses its own design language, called Lexicon, to provide a common framework for
building consistent UIs and user experiences across the Liferay product ecosystem. The web
implementation of Lexicon (CSS, JS, and HTML) is called Clay. It is automatically available to
application developers through a set of CSS classes or our tag library.

39

https://metaljs.com/
https://alloyui.com/
https://liferay.design/lexicon
https://clayui.com/

2.2 Templates

For templating, you can use Java EE’s JSP, FreeMarker, Google’s Soy (aka Closure Templates), or
whatever else you like.

2.3 Themes

A Liferay DXP Theme provides the look and feel for a site. Themes are a combination of CSS,
JavaScript, HTML, and FreeMarker templates. Although the default themes are nice, you may wish
to create your own look and feel for your site.

From the Theme Builder Gradle Plugin, to the Liferay Theme Generator, to Dev Studio DXP, to
Blade CLI’s Theme Template, you can choose the development tools you like best, so you can focus
on creating a well designed theme.

2.4 Front-End Extensions

Liferay DXP’smodularity hasmany benefits for the front-end developer, in the form of development
customizations and extension points. These extensions assure the stability, conformity, and future
evolution of your applications.

Below are some of the available front-end extensions:

• Theme Contributors
• Context Contributors
• Creating Configurable Styles for Portlet Wrappers
• Dynamic Includes

Read on to learn more.

40

CHAPTER 3

FROM LIFERAY PORTAL 6 TO 7

Becoming familiar with a platform as large and fully featured as Liferay is a big task. You learn
the ins and outs of what it can do, the tips and best practices of the experts, and you work your
way through the APIs. As you do this, you become familiar with how things work, proficient with
the platform, and start to think in terms of how you’d solve problems most effectively using the
platform’s tools.

7.0 was designed as an enhancement that builds off of what you already know. Its Upgrade
Planner and this Learning Path help get your existing plugins running on 7.0 right away. The tool
automates much of the process. After you upgrade your plugins, you can build and deploy them as
you always have.

7.0 has exciting improvements for developers too. Since you already know previous versions of
Liferay Portal, you’re several steps ahead of everybody else.

Here you’ll learn about the benefits of 7.0 for developers compared to previous versions, the
architectural improvements, the benefits that modularity brings, how to develop modules, and
how they differ from traditional plugins. You’ll see all the options for leveraging new developer
features, learn the pros and cons of each, and examine steps for optimizing your existing plugins
for 7.0.

Note: If you want to learn about 7.0’s architectural improvements, OSGi and modularity, and
tooling improvements, read on. If you’re more interested in upgrading your plugins first, skip to
Planning Plugin Upgrades and Optimizations.

You’ll start by seeing the familiar, good things that remain the same and then examine what’s
changed the most since Liferay Portal 6.

3.1 What Hasn't Changed andWhat Has

Liferay 7.0 was a new major version of the Liferay platform and as such it included many im-
provements over previous versions. Having said that, most of the characteristics from Liferay
Portal 6 that you have learned to love are preserved, having been changed only slightly or not at
all. Any experienced Liferay developer will be able to reuse most of his/her existing knowledge to
developing for 7.0.

41

What has not changed? Even though there are many improvements in Liferay 7, there are also
many great familiar aspects from previous versions that have been preserved. Here are some of
the most relevant ones:

1. The Portal Core and each Liferay app continue to use the three layer architecture: pre-
sentation, services, and persistence. The presentation layer is now always provided as an
independent module, making it easier to replace with a different presentation, if desired.

2. Support remains for previously supported standards such as Portlets (JSR-168, JSR-286), CMIS,
WebDAV, LDAP, JCP (JSR-170), etc.

3. Most Liferay APIs have remained functionally similar to those of 6.2, even if many of their
classes have moved to new packages, as part of the modularization effort.

4. Liferay Dev Studio DXP is still the preferred tool to develop for Liferay, even though you are
still free to use tools that best fit your needs.

5. Service Builder and other developer tools and libraries continue to work as they have in 6.2.

6. Traditional plugins for portlets and hooks still work (once they’re adapted to 7.0’s API) through
a compatibility layer.

Here are some key changes of interest to existing Liferay developers:

1. Extraction of many features as modules: So far you have been used to working with Liferay
as a large web application, of which all of it had to be deployed or none of it. In 7.0, many out
of the box portlets, features, and associated APIs have been extracted as OSGi modules. You
can choose which ones to deploy and use.

2. Adoption of modern OSGi standards: OSGi is a set of standards for building modular systems.
It’s very powerful. Although it was previously difficult to learn and use, its modernized
standards, such as Declarative Services, have made learning and using it much easier.

3. Core Public APIs are provided through portal-kernel (previously known as portal-service); all
other public APIs are provided by their own modules.

4. You can reuse modules and libraries, and manage the dependencies among them.

5. Registration of classes implementing extension points is now simpler and more consistent;
it’s based on the standard @Component annotation instead of declarations in portal.properties

or portlet.xml. Note, previous registration mechanisms have been preserved where possible.
See the Breaking Changes article to examine where extensions and configurations that have
not kept backwards compatibility.

6. Third party extensions and applications are now first-class citizens. Traditional plugins had
some limitations that developments done in the core (or done as Ext Plugins) did not have.
Modules don’t have these limitations and are much more powerful than plugins ever were.

7. Complete integration of Liferay specific tools (such as Service Builder) within Maven and
Gradle. Additionally we’ve adopted some new tools such as bnd.

42

8. The Plugins SDK is no longer available. Visit the Deprecated Apps in 7.1: What To Do article
for more information on the Plugins SDK removal. Liferay Workspace, is now Liferay’s
opinionated development environment.

Since the modularization of the Liferay web application is the change most relevant to you as a
developer, let’s dig deeper into that change and how it affects Liferay’s architecture.

Embracing a Modular Architecture

The largest improvement in Liferay’s architecture is the adoption of a modular development
paradigm. Within each Liferay module (or group of modules that form an app), as well as within
what remains as Liferay’s core, the existing great characteristics of previous versions of Liferay
prevail.

Tiered Architecture

Liferay Portal 6’s architecture diagrams often focused on the tiers for the frontend, services layer
(for the business logic), and persistence layer (mostly auto-generated by Service Builder). These
layers still exist and have been embraced throughout the modularization effort.

Figure 3.1: Liferay Portal 6’s architecture, shown in this figure, is still generally valid in 7.0.

The most significant change (and improvement) over this architecture is that the portal is no
longer a single large Java EEWeb Application. Liferay Portal has been broken down into many
modules to benefit from the Modular Development Paradigm. Those benefits are described in the
next section. The modules are often grouped into apps (such asWiki or Message Boards) and the
main apps are grouped into suites (such asWeb Experience, Collaboration, and Forms &Workflow).

43

Modular Architecture

The figure below represents 7.0’s architecture from a structural perspective.

Figure 3.2: 7.0 is composed of the Liferay Core, independent application modules, and App Suites, each with their own set of application and framework modules.

Liferay Core As its name implies, it’s 7.0’s central and most important part. The Liferay Core is a
Java EE application in charge of bootstrapping the system and receiving and delegating all requests.
It also contains Liferay’s OSGi Engine on top of which all applications run.

44

Foundation The Foundation suite sits on top of the core, providing administrative interfaces
and familiar development building blocks. It includes modules for user and role administration,
LDAP integration, authentication, licensing, upgrades, clustering, DAO, and front-end mainstays
for themes, CSS, taglibs, and JavaScript. The Foundation suite’s modules depend on Liferay Core,
as do all the App Suites and non-core modules.

Most of the apps, frameworks, and APIs you’ve come to know and love have been aggregated in
App Suites. The suites are available in Liferay bundles and are also available on the Marketplace.
Here are the different App Suites:

LiferayWeb Experience Contains apps such asWeb Content and Site management, Web Content
Display, Asset Publisher, and Breadcrumbs and features and frameworks such as Application
Display Templates, Tags, and Recycle Bin.

Liferay Collaboration Comprises Liferay’s social apps and collaboration apps, such as Message
Boards, Wiki, and Blogs. It also contains Liferay’s Documents & Media Library.

Liferay Forms andWorkflow Provides apps such as Forms (New!), Dynamic Data Lists, Kaleo
Workflow, and Calendar. It also contains the Dynamic Data Mapping framework used by Web
Content and Documents & Media to provide custom form and templating capabilities.

Independent Apps Last but not least, Liferay’s independent apps and modules also play a part.
They provide unique functionality and stand on their own; it would be unnatural to add any one of
them to a particular suite. Apps such as Liferay Sync, the Marketplace Client, Knowledge Base, and
many more apps available on the Marketplace are independent Liferay apps.

The beauty of the Liferay ecosystem is that it is made up of simple easy-to-use modules that
depend on and communicate with each other. And you as a third-party developer can create and
deploy your own modules into the mix.

You can continue developing traditionalWAR-style apps for Liferay too. The Portlet Compatibil-
ity Layer converts each pluginWAR to aWeb Application Bundle (WAB), which is a module.

Let’s consider the structure of a Liferay DXP modular app.

The Structure of a Modular App

As mentioned, each app can be formed by one or more modules. This section explains the most
common way to structure an app.

The best practice for structuring an app is in several modules. In particular the following
modules are the often the best way of structuring an app:

• Service: Contains the service (business logic) and persistence implementations.

• API: Contains the public API of the application. By being separate from the service, it’s simpler
and faster to deploy new versions of the implementation without affecting any module using
the API. It also allows changing the versioning of the implementation independent from the
versioning of the API.

• Web: Contains the presentation tier, very often the portlets provided by this app.

• Test: Contains the tests. These are not included in the app for production.

45

• Specific purpose modules: Other modules are also often created for specific purposes or to
provide alternative implementations of some of the app’s features. For example theWiki app
has one module for each of the supportedWiki Engines.

All the modules in an app usually sit in folders next to each other in the source to facilitate
referencing them.

For deployment to production Liferay provides the LPKG packaging format that allows bundling
a set of modules into a single file and add additional metadata about it. This format can also be
used to upload apps to Liferay’s Marketplace.

Now you have a basic understanding of the architectural changes introduced in Liferay 7 and
have become acquainted with the new structure used in Liferay’s apps. You have learned some
key concepts that are new for Liferay Portal 6 developers and have been assured about developer
features you’ve used in previous Liferay releases that have been carried into Liferay 7.

Next, you’ll explore how these new concepts and the newmodular architecture benefit you as a
developer.

3.2 Benefits of 7.1 for Liferay Portal 6 Developers

More than in any other Liferay release, 7.0 centers on you, the developer. Liferay’s platform was
rebuilt in Liferay 7.0, making it easier to build on andmaintain, and providing more new developer
features than any previous Liferay release.

Here are some key benefits of this release for developers:

1. Simpler and Leaner

2. Modular Development Paradigm

3. Enhanced Reusability

4. More extensible, easier to maintain

5. Optimized for your tooling of choice

6. Powerful Configurability

Let’s consider how they make development easier for you.

Simpler and Leaner

Liferay has always been simple and lean, compared to the proprietary alternatives; Liferay 7 widens
the gap even more.

Liferay 7 is simpler than its predecessors, thanks to a streamlined and modular architecture. In
addition, many Liferay specific ways of creating extensions and applications have evolved to follow
official or de-facto standards. As a result, you can now more easily reuse your existing knowledge
and use what you learn developing for Liferay outside of it.

Liferay 7 is also leaner. Its modularized core allows developers and system administrators to
remove parts they don’t need or don’t want; this facilitates deployment, reduces startup times and
memory footprints, and results in more efficiencies and performance improvements.

46

http://marketplace.liferay.com

Modular Development Paradigm

If you have been using Liferay, you’ve already experienced some of the benefits of modular devel-
opment, thanks to plugins. 7.0 takes these benefits to a whole new level.

In addition to building plugins as you have previously, you can take advantage of a completemod-
ule development and runtime system based on OSGi standards. 7.0 facilitates creating applications
of all types by composing and reusing modules.

And don’t worry, modules are easy to understand. A module is distributed as a JAR file and can
be as small as one Java class or as large as any application you can think of. An application for
Liferay can comprise one single module or as many modules as you want. The cool thing is that
modules can cooperate, allowing you to build applications by combining smaller pieces that are
easier to develop, deploy, maintain, and reuse.

Enhanced Reusability

If you have worked on large developments on top of Liferay you have probably experienced situa-
tions in which you wanted to share a subset of classes from from one plugin with another.

Java EE does not provide any standard way to achieve this, but Liferay provided certain capabil-
ities to achieve it with a mechanism known as CLP that used class loader magic to allow plugins to
invoke services in other plugins created with Service Builder. This mechanism, however, is still a
bit limited (Java EE’s class loader doesn’t allow for much more) and doesn’t give you the freedom
to specify any or all classes from one module to use from within another module.

7.0 enables greater reusability, both in code and runtimememory, several folds. For any desired
reusable functionality you just create a module (remember, it’s just a JAR file with some metadata)
with the classes you want and deploy it. Other modules need only declare that they use the classes
in that module (by specifying their packages) and 7.0 automatically wires them together. All
invocations are regular Java calls! Try it out; it’s beautiful. :)

This mechanism eliminates the dreaded “JAR/classpath hell” issue. No longer do you have to
jockey JAR files in classpaths; nor do you have to implement intricate class loaders. The runtime
environment uses separate class spaces per module; it even accommodates using multiple versions
of libraries in the same application (as long as they can coexist).

More Extensible, Easier to Maintain

Whenever we ask Liferay developers what is their favorite characteristic of Liferay, “Great extensi-
bility” is one of the top three most popular responses. You can customize almost every detail and
add your own functionality on top.

Is 7.0 more extensible? You bet! Many more extension points have been added. But not only
that, all new extension points and many existing ones which have been upgraded, use a new
extension mechanism based on OSGi’s service model. Here are some of the mechanism’s benefits:

1. Simpler: An implementation of an extension point is now always a Java class that implements
an interface and has one annotation (@Component). That’s it; it couldn’t be any easier.

2. Easier to maintain: Extension points are now more strictly defined through a Java interface
that uses Semantic Versioning rules. This means that your extensions can work without
changes, even across several Liferay versions, as long as the specific extension API is back-
wards compatible.

47

3. Dynamic: Extensions can be loaded and removed at any time during development or in
production.

But that is not all. Your own developments can now also leverage this model and become
extensible. You can create simple extension points by just creating an interface and annotating a
setter method with an annotation (@Reference). Implementing extensibility has never been easier.

Optimized for Your Tooling of Choice

7.0 empowers you to use the tools you like.
If you don’t have strong preferences and are open to our suggestions, we offer LiferayWorkspace.

It provides an opinionated folder structure and build system based on Gradle and bnd. Liferay
Workspace can be used standalone through the command line or with Liferay Dev Studio DXP,
which runs on Eclipse.

If you have an investment in a specific build tool, such as Maven, developing on Liferay will
be easier than ever before. We have built Maven plugins for typical Liferay-specific development
tasks (such as using Service Builder) and provide a collection of new archetypes.

The Plugins SDK is no longer available for 7.0. LiferayWorkspace, is now Liferay’s opinionated
development environment. You can transition from a Plugins SDK by adding it to your workspace
and migrating projects at your own pace. See the Using a Plugins SDK from YourWorkspace article
for more information.

Finally, we have also developed a lightweight tool called Blade CLI, which facilitates starting
new projects from templates – it’s especially useful for Gradle which doesn’t have Maven’s concept
of archetypes. Blade CLI also offers commands to start/stop the server and deploy and administer
modules.

Powerful Configurability

Creating configurable code is a breeze with 7.0. And applications that use Liferay’s new Configura-
tion API allow administrators to change the configuration on the fly, through an auto-generated
user interface called System Settings.

Now you understand how 7.0 enriches your experience as a developer and makes developing
apps and customizations fun.

Next, we’ll take a look at OSGi and modularity to discuss key concepts and demonstrate how
easy and gratifying it is to build modules.

48

CHAPTER 4

OSGI AND MODULARITY FOR LIFERAY PORTAL 6
DEVELOPERS

To create a powerful, reliable platform for developing modular applications, Liferay sought best-of-
breed standards-based frameworks and technologies. It was imperative not only to meet demands
for enterprise digital experiences but also to offer developers, both experienced with Liferay and
new to Liferay, a clear and elegant way to create apps.

Here were some of the key goals:

• Allow breaking down a large system into smaller pieces of code, whose boundaries and
relationships could be clearly defined.

• Explicitly differentiate public APIs from private APIs.

• Facilitate extensibility of existing code.

• Modernize the development environment, leveraging more state-of-the-art tools to provide a
great developer experience.

It wasn’t long before Liferay discovered that OSGi and its supporting tools/technologies fit the
bill!

Before setting up your tools and upgrading your plugins, you’ll learn how 7.0 uses OSGi to meet
the objectives listed above. And equally important, you’ll discover how easy and fun modular
development can be.

4.1 Modules as an Improvement over Traditional Plugins

In 7.0, you can develop applications using OSGi modules or using traditional Liferay plugins (WAR-
style portlets, hooks, EXT, and web applications). Liferay’s Plugin Compatibility Layer (explained
later) makes it possible to deploy traditional plugins to the OSGi runtime framework. To benefit
from all Liferay DXP and OSGi offer, however, you should use OSGi modules.

Modules offer these benefits:

49

• Better Encapsulation - The only classes a module exposes publicly are those in packages it
exports explicitly. This lets you define internal public classes transparent to external clients.

• Dependencies by Package - Dependencies are specified by Java package, not by JAR file. In
traditional plugins, you had to add all of a JAR file’s classes to the classpath to use any of its
classes. With OSGi, you need only import packages containing the classes you need. Only the
classes in those packages are added to the module’s classpath.

• Lightweight - A module can be as small as you want it to be. In contrast to a traditional
plugin, which may require several descriptor files, a module requires only a single descriptor
file–a standard JAR manifest. Also, traditional plugins are typically larger than modules and
deployed on app server startup, which can slow down that process considerably. Modules
deploy more quickly and require minimal overhead cost.

• Easy Reuse - Modules lend themselves well to developing small, highly cohesive chunks
of code. They can be combined to create applications that are easier to test and maintain.
Modules can be distributed publicly (e.g., on Maven Central) or privately. And since modules
are versioned, you can specify precisely the modules you want to use.

• In-Context Descriptors -Where plugins use descriptor files (e.g., web.xml, portlet.xml, etc.) to
describe classes, module classes use OSGi annotations to describe themselves. For example,
a module portlet class can use OSGi Service annotation properties to specify its name, display
name, resource bundle, public render parameters, and much more. Instead of specifying
that information in descriptor files separate from the code, you specify them in context in
the code.

These are just a few ways modules outshine traditional plugins. Note, however, that developers
experienced with Liferay plugins have the best of both worlds. 7.0 supports traditional plugins
and modules. Existing Liferay developers can find comfort in the simplicity of modules and their
similarities with plugins.

Here are some fundamental characteristics modules share with plugins:

• Developers use them to create applications (portlets for Liferay)

• They’re zipped up packages of classes and resources

• They’re packaged as a standard Java JARs

Now that you’ve compared and contrasted modules with plugins, it’s time to tour the module
anatomy.

Module Structure: A JAR File with a Manifest

Amodule’s structure is extremely simple. It has one mandatory file: META-INF/MANIFEST.MF. You add
code and resources to the module and organize them as desired.

Here’s the essential structure of a module JAR file:

• [Project root]

– [Module's files]

– META-INF

50

https://search.maven.org/

* MANIFEST.MF

The MANIFEST.MF file describes the module to the system. The manifest’s OSGi headers identify
the module and its relationship to other modules.

Here are some of the most commonly used headers:

• Bundle-Name: User friendly name of the module.

• Bundle-SymbolicName: Globally unique identifier for the module. Java package conventions
(e.g., com.liferay.journal.api) are commonly used.

• Bundle-Version: Version of the module.

• Export-Package: Packages from this module to make accessible to other modules.

• Import-Package: Packages this module requires that other modules provide.

Other headers can be used to specify more characteristics, such as how the module was built,
development tools used, etc.

For example, here are some headers from the Liferay JournalWeb module manifest:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Liferay Journal Web

Bundle-SymbolicName: com.liferay.journal.web

Bundle-Vendor: Liferay, Inc.

Bundle-Version: 1.1.2

Export-Package:\

com.liferay.journal.web.asset,\

com.liferay.dynamic.data.mapping.util,\

com.liferay.journal.model,

com.liferay.journal.service,com.liferay.journal.util, [..]

Import-Package:\

aQute.bnd.annotation.metatype,\

com.liferay.announcements.kernel.model,

com.liferay.application.list,\

com.liferay.asset.kernel,\

com.liferay.asset.kernel.exception, [..]

Note: to remove unnecessary “noise” from this example, some headers have been abbreviated
([..]) and some have been removed.

You can organize and build a module’s Java code and resources however you like. You’re free to
use any folder structure conventions, such as those used in Maven or by your development team.
And you can use any build tool, such as Gradle or Maven, to manage dependencies.

LiferayWorkspace is an environment for managing module projects (and theme projects). A
default Workspace provides Gradle build scripts and aWorkspace created from the Liferay Project
TemplatesWorkspace archetype providesMaven build scripts for developing on Liferay. Workspace
can be used from the command line or from within Liferay Dev Studio DXP. Note also that Liferay
Dev Studio DXP provides plugins for Gradle, Maven, and BndTools. Tooling details are covered
later in this series.

Now that you’re familiar with the module structure and manifest, it’s time to explore how to
build modules.

51

https://www.osgi.org/bundle-headers-reference/

Building Modules with bnd

The most common way to build modules is with a little tool called bnd. It’s an engine that, among
other things, simplifies generating manifest metadata. Instead of manually creating a MANIFEST.MF

file, developers use bnd to generate it. bnd can be used on its own or along with other build tools,
such as Gradle or Maven. LiferayWorkspace uses bnd together with Gradle or Maven.

One of bnd’s best features is that it automatically transverses a module’s code to identify
external classes the module uses and adds them to the manifest’s list of packages to import. bnd
also provides several OSGi-specific operations that simplify module development.

bnd generates themanifest based on a file called bnd.bnd in the project root. This file’s header list
is similar to (but shorter than) that of the MANIFEST.MF. Compare the Liferay JournalWeb module’s
bnd.bnd file content (simplified a bit) below to its MANIFEST.MF file content that was listed earlier:

Bundle-Name: Liferay Journal Web

Bundle-SymbolicName: com.liferay.journal.web

Bundle-Version: 1.1.2

Export-Package:\

com.liferay.journal.web.asset,\

com.liferay.journal.web.dynamic.data.mapping.util,\

com.liferay.journal.web.social,\

com.liferay.journal.web.util

The main difference is that the bnd.bnd file doesn’t specify an Import-Package header. It’s unnec-
essary because bnd generates it in the MANIFEST.MF file automatically. It’s metadata made easy!

bnd plugins are available to use with Gradle and Maven. And since LiferayWorkspace includes
bnd, you can use bnd from the command line and from Liferay @ide@.

It’s time to get hands-on experience creating and deploying an OSGi module. That’s next.

4.2 Example: Building an OSGi Module

Theprevious sections explained someof themost important concepts for Liferay Portal 6 developers
to understand aboutOSGi andmodularity. Now it’s time to put this knowledge to practice by creating
and deploying a module.

The module includes a Java class that implements an OSGi service using Declarative Services.
The project uses Gradle and bnd, and can be built and deployed from within a LiferayWorkspace.

Here’s the module project’s anatomy:

• bnd.bnd

• build.gradle

• src/main/java/com/liferay/docs/service/MyService.java

On building the module JAR, bnd generates the module manifest automatically.
Here’s the Java class:

package com.liferay.docs.service;

import org.osgi.service.component.annotations.Activate;

import org.osgi.service.component.annotations.Component;

@Component(

immediate = true,

52

http://bnd.bndtools.org/

service = MyService.class

)

public class MyService {

@Activate

void activate() throws Exception {

System.out.println("Activating " + this.getDescription());

}

public String getDescription() {

return this.getClass().getSimpleName();

}

}

It contains these methods:

• getDescription - returns the class’s name

• activate - prints the console message Activating MyService. The @Activate annotation signals
the OSGi runtime environment to invoke this method on component activation.

The @Component annotation defines the class as an OSGi service component. The following
properties specify its details:

• service=MyService.class - designates the component to be a service component for registering
under the type MyService. In this example, the class implements a service of itself. Note,
service components typically implement services for interface classes.

• immediate=true - signals the Service Component Runtime to activate the component immedi-
ately after the component’s dependencies are resolved.

The bnd.bnd file is next:

Bundle-SymbolicName: my.service.project

Bundle-Version: 1.0.0

The Bundle-SymbolicName is the arbitrary name for themodule. Themodule’s version value 1.0.0

is appropriate.
bnd generates the module’s OSGi manifest to the file META-INF/MANIFEST.MF in the module’s JAR.

In this project, the JAR is created in the build/libs folder.
The last file to create is the Gradle build file build.gradle:

dependencies {

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

Since the MyService class uses the @Component annotation, the project depends on theOSGi service
component annotations module. The build script is so simple because LiferayWorkspace module
projects leverage theWorkspace’s Gradle build infrastructure.

Although this module project was created for development in a LiferayWorkspace, it can easily
be modified to use in other build environments.

Place the project files in a subfolder of your Liferay Workspace’s modules folder (e.g.,
[Liferay_Workspace]/modules/my.service.project).

To build the module JAR and deploy it to Liferay DXP, execute the deploy Gradle task:

53

../../gradlew deploy

Note: If Blade is installed (recommended), Gradle can be executed by entering blade gw followed
by a task name (e.g., blade gw deploy). For details on Blade commands, see Blade CLI.

On deploying the module, the following message is printed to the server console:
Activating MyService

Congratulations! You’ve successfully built and deployed an OSGi module to Liferay DXP.
Now that you’ve seen an OSGimodule in action, you can appreciatemore of the waysmodularity

and OSGi improves development on Liferay. They’re explained next.

4.3 More Ways OSGi Improves Development on Liferay

Here are more ways OSGi meets the developer experience goals mentioned earlier. These topics
apply to both new and veteran Liferay developers, so you should become familiar with them. After
reading each one, make sure to COME BACK HERE to continue with the next tutorial listed or,
when you’ve finished reading all of them, continue this Learning Path.

1. Leveraging Dependencies: In 7.0, you can both declare dependencies among modules and
combine modules to create applications. Since leveraging dependencies provides huge
benefits, there’s an entire tutorial for it.

2. OSGi Services and Dependency Injection: OSGi includes a powerful concept called OSGi
Services (also known asmicroservices). OSGi’s Declarative Services standard provides a clean
way to inject dependencies in a dynamic environment. It’s similar to Spring DI, except the
changes happen while the system is running. It also offers an elegant extensibility model
that 7.0 leverages extensively.

3. Dynamic Deployment: Module deployment is managed by 7.0 (not the application server).
This section demonstrates how to use dynamic deployment for better control and efficiency.

Liferay’s developer tooling for 7.0 compliments module development. It supports traditional
plugin development and facilitates moving applications to modules. There are improvements for
developing themes and using Maven and Gradle build systems, and there’s even a Upgrade Planner
tool that adapts existing code to 7.0’s API and automates much of the plugin upgrade process.
Developer tooling improvements are next.

54

CHAPTER 5

IMPROVED DEVELOPER TOOLING: LIFERAY
WORKSPACE, MAVEN PLUGINS AND MORE

Creating applications is fun when you have the right tools. Here are some key ingredients:

• Rich templates for stubbing out projects
• Extensible build environments that offer state-of-the-art plugins
• Deployment and runtime management tools
• Application upgrade automation

LiferayWorkspace (Workspace) has all these things. It’s a Gradle-based development environ-
ment that integrates with Liferay Dev Studio DXP and can be used in conjunction with other IDEs,
such as a “vanilla” Eclipse, IntelliJ, or NetBeans. You can extendWorkspace’s Gradle environment
with additional Gradle plugins for testing, code coverage analysis, and more.

If you prefer Maven over Gradle, you can use the Maven-basedWorkspace instead. 7.0’s’ lean
artifacts and new project archetypes and Maven plugins make Liferay DXP development with
Maven easier than ever.

Workspace comes with Blade CLI: a command line tool for creating and deploying projects,
managing the runtime environment, and more. It provides all kinds of project templates, to create
modules for developing in any Gradle or Maven environment.

Liferay’s tools also streamline the application upgrade process. Liferay Dev Studio DXP’s
Upgrade Planner adapts traditional plugins to 7.0 APIs. The Liferay Theme Generator migrates
themes and layout templates to use the new Liferay JS Theme Toolkit and adapts them to 7.0.

Here are the tooling improvement topics:

• Moving from the Plugins SDK to LiferayWorkspace
• Developing projects with LiferayWorkspace
• What’s new for Maven Users
• Using other build systems and IDEs

5.1 From the Plugins SDK to Liferay Workspace

55

The Liferay Plugins SDK is not available for 7.0. Visit the Deprecated Apps in 7.1: What To Do
article for more information on the Plugins SDK removal. LiferayWorkspace succeeds the Plugins
SDK as Liferay’s opinionated development environment. You should use it if you’re not using an
alternative build system like Gradle or Maven.

Here areWorkspace’s key features:

• Module and component templates
• Sample projects
• Portal server configurations
• Project validation
• Integration testing
• Folder structure flexibility
• Commands to migrate plugins, install Liferay DXP bundles, and start/stop Portal instances

The plugin upgrade tutorials later in this series show how Liferay Dev Studio automatically
adapts existing plugins to 7.0. There’s also a tutorial that demonstrates how you can optionally
migrate traditional plugins toWorkspace.

Figure 5.1: Liferay Dev Studio DXP’s Upgrade Planner automates many aspects of the plugin upgrade process.

Here’s an exampleWorkspace folder structure:
Here’s theWorkspace anatomy:

• bundles/ (generated) → default folder for Liferay DXP bundles
• configs/ → holds Portal server configurations
• ext/ → holds Ext modules and ExtWAR files
• gradle/ → holds the Gradle wrapper files
• modules/ → holds module projects
• plugins-sdk/ (generated) → holds plugins from previous releases

56

Figure 5.2: Liferay Workspace aggregates projects to use the same server configurations and Gradle build environment.

• themes/ → holds theme projects created with the Liferay Theme Generator, which use the
Liferay JS Theme Toolkit

• wars/ → holds traditional web application projects
• build.gradle → common Gradle build file
• gradle-local.properties → sets user-specific properties for your workspace
• gradle.properties → specifies the Portal server configuration and project locations
• gradlew / gradlew.bat → executes the Gradle command wrapper
• pom.xml (only inWorkspaces generated by Maven) → common Maven build file
• settings.gradle → applies plugins to theWorkspace and configures its dependencies

Workspace module, theme, andWAR projects use the same Portal server configurations. De-
velopers can create configurations for module development, user acceptance testing, production,
and more.

Each subfolder under configs holds a Portal server configuration defined by its portal-

ext.properties file. The Gradle property liferay.workspace.environment in Workspace’s
gradle.properties file specifies the configuration to use. See the Testing Projects section
for more details.

Other Gradle properties set root locations for the Liferay DXP bundle, modules, themes, and
a Plugins SDK. See the GradleWorkspace Properties section for a list of all availableWorkspace
properties.

Workspace Folder Structure Properties

Property Description

liferay.workspace.environment Name of a configs subfolder holding the Portal server
configuration to use

liferay.workspace.ext.dir Ext projects root folder
liferay.workspace.home.dir Liferay DXP bundle root folder
liferay.workspace.modules.dir Module projects root folder
liferay.workspace.plugins.sdk.dir Plugins SDK root folder
liferay.workspace.themes.dir Theme projects root folder
liferay.workspace.wars.dir WAR-style projects root folder

Workspace has Gradle tasks equivalent to the Plugins SDK Ant targets.

57

Plugins SDK to Workspace Task Map

Plugins SDK Ant Target Workspace Gradle Task Task Description

build-css buildCSS Builds CSS files
build-lang buildLang Translates language

keys using Language
Builder

build-service buildService Runs Service Builder
clean clean Deletes all build

outputs
compile classes Compiles classes
deploy deploy (or blade deploy) Installs the current

project to Liferay
DXP’s OSGi
framework

jar jar Compiles the project
and packages it as a
JAR file

war assemble Assembles project
output

OtherWorkspace Gradle tasks provide additional functionality.

Workspace Gradle Task Task Description

buildDB Builds database SQL scripts from the
generic SQL scripts

buildSoy Compiles Closure Templates in
JavaScript functions

components Lists the project’s components
configJSModules Generates the config file needed to load

AMD files via combo loader in Liferay
DXP

dependencies Lists the project’s declared
dependencies

formatSource Runs Liferay Source Formatter to
format project files

initBundle Downloads and installs a Liferay DXP
bundle

model Lists the project’s configuration model
projects Lists the project’s sub-projects
properties Lists the project’s
replaceSoyTranslation Replaces goog.getMsg definitions
transpileJS Transpiles the project’s JavaScript files

This is just a subset of available Gradle commands in a LiferayWorkspace. Run gradlew tasks

from a project in workspace for a full list of Gradle commands.

58

5.2 Developing Modules with Liferay Workspace

Workspace is a great Liferay module development environment because of these features:

• Templates that bootstrap module creation
• Gradle and Maven build systems for managing dependencies and assembling modules
• Module deployment and runtime management capabilities

Blade CLI (Blade), which is a part ofWorkspace, has over thirty templates for Gradle andMaven-
based module projects–and more are being added. The templates stub out classes and resource
files for you to fill in with business logic and key information.

Here are some of the template’s names:

• Activator
• API
• Content Targeting Report
• Content Targeting Rule
• Content Targeting Tracking Action
• Control Menu Entry
• MVC Portlet
• Panel App
• Portlet
• Portlet Configuration Icon
• Portlet Provider
• Portlet Toolbar Contributor
• Service
• Service Builder
• ServiceWrapper
• Simulation Panel Entry
• Template Context Contributor
• etc..

Blade creates modules based on these templates. For a full list of these templates, visit the
Project Templates reference section.

For example, the following Blade command creates a Liferay MVC Portlet module called my-

module:

blade create -t mvc-portlet -p com.liferay.docs.mymodule -c MyMvcPortlet my-module

Liferay Dev Studio DXP’s module project wizard createsWorkspacemodules from the templates
too.

Liferay Dev Studio DXP’s component wizard facilitates creating component classes for portlets,
service wrappers, Struts actions, and more.

Building and deploying modules in aWorkspace is a snap using Liferay Dev Studio DXP and
Blade. Workspace uses BndTools to generate eachmodule’s OSGi headers in a META-INF/MANIFEST.MF

file. Workspace deploys modules to the OSGi container using Felix File Install commands.
Liferay Dev Studio DXP lets you deploy modules by dragging them onto your Portal server.
To learn more aboutWorkspace and using it in Liferay Dev Studio DXP, see this tutorial.

59

Figure 5.3: Liferay Dev Studio DXP lets developers select templates to stub out modules.

Figure 5.4: Liferay Dev Studio DXP’s component wizard facilitates creating component classes.

60

Figure 5.5: Liferay Dev Studio DXP lets you deploy modules using drag-and-drop.

In a terminal, you can deploy modules using Blade’s deploy command. For example, the
following command deploys the current module and “watches” for module changes to redeploy
automatically.

blade deploy -w

Make sure to check out the tutorial Starting Module Development for even more information
on module development.

5.3 What's New for Maven Users

Liferay Portal 7.0+ and Liferay DXP fully support Maven development and offers several new and
improved features:

• LiferayWorkspace for Maven
• New archetypes
• New Maven plugins

61

• More granular dependency management

The new archetype com.liferay.project.templates.workspace generates a Liferay Workspace
that includes a POM file for developing inWorkspace using Maven. You can develop modules and
themes in theWorkspace subfolders.

7.0 provides many newMaven archetypes for various Liferay module projects. There are over
thirty Maven archetypes for 7.0, and more are in development. Here are some popular ones:

• Configuration Icons
• Fragments
• Menu Buttons
• Portlets

– MVC
– npm
– Soy
– Spring MVC

• Service Builder
• Themes
• etc…

Liferay’s Maven archetypes cover many different Liferay frameworks and service types. These
make Maven a first-class tool for creating Liferay modules and themes. Visit the Generating New
Projects Using Archetypes tutorial to learn more about Liferay’s Maven archetypes and how to use
them.

Liferay also provides several new and updated Maven plugins that simplify the build process.
For example, the following plugins build style sheets, services, and themes respectively:

• CSS Builder
• Service Builder
• Theme Builder

7.0’s modularity provides a more granular dependency management experience. You no longer
need to depend on portal-impl or portal-service (now portal-kernel) for everything. For exam-
ple, to use Liferay DXP’s Wiki framework, you need only depend on the Wiki module. You set
dependencies on concise modules that provide the functionality you want without inheriting extra
baggage.

Liferay’s newWorkspace environment, Maven archetypes, Maven plugins, and streamlined
modules make developing on Liferay DXP easier than ever. To learn more, see the Maven tutorials.

5.4 Using Other Build Systems and IDEs

Liferay DXP is tool agnostic–you can use whatever tools you like to develop on it. You can use any
IDE and even use Gradle, Bnd, or BndTools if you don’t want to useWorkspace. The drawback is
you lose the Liferay-specific project templates that you get with Blade andWorkspace.

Blade lets you create modules to develop anywhere, not only in LiferayWorkspace.
Here are some new Gradle features Liferay provides that are independent ofWorkspace:

62

• Liferay’s Gradle plugins
• Buildship plugins in Liferay Dev Studio DXP
• Liferay Dev Studio DXP’s new Gradle views for developing modules and working with Gradle
tasks

Liferay hasworkedhard tomakeLiferayDXP IDE-agnostic. There are Liferaymodule developers
who use IntelliJ and some enjoy using NetBeans.

Finally, you can copy and modify Liferay sample projects to serve as templates in place of the
Blade templates. They’re available for these build systems:

• Gradle
• LiferayWorkspace
• Maven

Liferay’s approach to tooling has vastly improved for 7.0. Our tools help you upgrade to 7.0,
continue developing traditional plugins theway youhave been, andmigrate to optimal development
environments. LiferayWorkspace and the improvedMaven support facilitate module development.
And developing on Liferay DXP using other tools is easier than ever. Your tool options are wide
open.

63

CHAPTER 6

PLANNING PLUGIN UPGRADES AND OPTIMIZATIONS

If you’ve explored 7.0’s features and possibly created new portlet modules themes with Liferay’s
new tooling and techniques, you may be wondering how you’d upgrade existing plugins. The great
thing is that Liferay has automated much of the upgrade process. In addition, you can continue
developing plugins in traditional ways and adopt new development tooling and techniques when
you’re ready.

This tutorial guides you through phases of upgrading plugins and optionally optimizing them.
Upgrade: A process for deploying an existing plugin on 7.0 with minimal changes.
Optimization: An optional but recommended process for modifying a plugin or migrating it to

a new environment to improve the plugin or facilitate developing it.
Importantly, you should upgrade a plugin before applying any optimizations to it.
The good news is that upgrading plugins to 7.0 is straightforward. For Plugins SDK and Maven

projects, Liferay Dev Studio DXP’s Upgrade Planner automates much of the process. In addition,
the upgrade tutorials demonstrate any remaining upgrade steps.

You can deploy plugins to 7.0 as you have for previous releases (e.g., ant clean deploy). Since
everything in 7.0 runs as OSGi modules, however, you might wonder how traditionalWAR-style
plugins can run on it. The answer: Liferay’s Plugin Compatibility Layer.

The Plugin Compatibility Layer converts standardWARs toWeb Application Bundles (WABs).
WABs are full-fledged OSGi modules. The Plugin Compatibility Layer’s WAB Generator supports
deploying traditional plugins and web applications that contain Servlets, JSPs, and other Java web
technologies without making any OSGi specific changes to them.

Note, you can still use an application server’s mechanisms to deploy regular web applications
along with Liferay DXP, without using the Plugin Compatibility Layer.

After upgrading your plugins you can consider optimizations such as these:

• Migrating plugins to Gradle or Maven to leverage their development commands and rich
Liferay plugin templates.

• Migrating themes to the Liferay Theme Generator to add Themelets (new) and to leverage
Node.js, Yeoman, and Gulp.

• Converting plugins to modules to leverage Declarative Services, extendability, and more
modularity benefits.

• Using the Clay, to apply a clean consistent application user experience.

See the optimization tutorials for more options and details.

65

The Plugins SDK is no longer available to develop plugins for 7.0. Visit the Deprecated Apps in
7.1: What To Do article for more information on the Plugins SDK removal.

In light of the removal, you should consider migrating plugins from the Plugins SDK to one of
the new environments:

• Liferay Workspace is a Gradle environment that supports developing modules and tradi-
tional plugins. Blade’s migrateWar commandmoves Plugins SDK portlets to LiferayWorkspace
(Workspace) in a snap.

• Liferay’s Maven plugins and archetypes support developing modules and traditional plugins.
There’s also a LiferayWorkspace archetype for generating aWorkspace that uses Maven.

Liferay Dev Studio DXP supports developing inWorkspaces using Gradle or Maven.
Properly planned upgrades and optimizations reduce the time and effort they take. To help

guide you through the upgrade and optimization tutorials, you get these things:

• Upgrade and optimization phase descriptions
• Upgrade and optimization paths

6.1 Upgrade and Optimization Phases

Follow these upgrade and optimization phases:

1. Read the applicable upgrade tutorials for your plugin. Examine the upgrade and optimization
paths.

2. Upgrade the plugin, making only the minimal changes necessary for it to work on 7.0.

3. (Optional) Identify and apply only the most beneficial optimizations for your plugin.

4. (Optional) Apply additional optimizations as desired.

Plugin Upgrade and Optimization Paths

Plugin Upgrade path Optimizations (optional)

Ext Customization with
Ext Plugins

None

Hook - Language files - Upgrading Core
Language Key
Hooks- Upgrading
Portlet Language
Key Hooks

Same

Hook - Override a Liferay DXP
Core JSP

Upgrading Core JSP
Hooks

Same

Hook - Override an app’s JSP Upgrading App JSP
Hooks

Same

66

Plugin Upgrade path Optimizations (optional)

Hook - Event Actions
(Portal/Session/Servlet
Service/Shutdown/Startup)

Upgrading Portal
Property and Event
Action Hooks

None

Hook - Model Listeners Upgrading Model
Listener Hooks

Same

Hook - Portal Properties Upgrading Portal
Property and Event
Action Hooks

Same

Hook - Properties - If the property is
now a System
Setting, edit it there
and/or use a .config

file- If the property
is in the
liferay-hook.xml’s
DTD, then adapt
code to API and
resolve
dependencies

None

Hook - ServiceWrappers Upgrading Service
Wrappers

None

Hook - Servlet Filter Upgrading Servlet
Filter Hooks

None

Hook - Struts actions - StrutsAction →
StrutsActionWrap-
per - processAction
→ MVCActionCom-
mand - render →
MVCRenderCom-
mand -
serveResource →
MVCResourceCom-
mand

Same

Layout Template 1. Adapt code to
API2. Resolve
dependencies3.
Update Layout
Template

- Migrate to Liferay Theme Generator
(Node.js/Gulp/Yeoman)

Portlet - GenericPortlet Upgrading a
GenericPortlet

- Migrate toWorkspace/Gradle- Apply
Clay- Convert to OSGi modules

Portlet - JSF Upgrading a Liferay
JSF Portlet

None

Portlet - Liferay MVC Upgrading a Liferay
MVC Portlet

- Migrate toWorkspace/Gradle- Apply
Clay- Convert to OSGi modules

Portlet - Servlet/JSP Upgrading a
Servlet-based Portlet

None

67

https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-hook_7_1_0.dtd.html
https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-hook_7_1_0.dtd.html

Plugin Upgrade path Optimizations (optional)

Portlet - Spring MVC Upgrading a Spring
MVC Portlet

None

Portlet - Struts 1 Upgrading a Struts
Portlet

Converting StrustActionWrappers to
MVCCommands

Theme 1. Adapt code to
API2. Resolve
dependencies3.
Upgrade Theme

- Migrate to Liferay Theme Generator
(Node.js/Gulp/Yeoman)- Use Themelets

Web plugin 1. Adapt code to
API2. Resolve
dependencies

Convert to OSGi module, e.g.,
portlet-x-web

Feature Upgrade and Optimization Paths

Feature Upgrade path Optimizations (optional)

JNDI data source Use Liferay DXP’s
classloader to access
the app server’s
JNDI API

None

Services - Invoke a service
from Liferay DXP Core or
another portlet or module

Implement a Service
Tracker

Invoke Liferay services from a module

Services - Module dependency Copy x-service.jar

to WEB-INF/lib

- Migrate to Gradle/Maven and add
dependency on the OSGi service

Services - Service Builder Upgrading Portlets
that use Service
Builder

Convert to OSGi modules, e.g., x-api and
x-service

Services - Web services 1. Adapt code to
API2. Resolve
dependencies

Use a Service Builder service with JAX-RS
with a REST service in front

Template - FreeMarker - Adapt code to API-
Adapt Theme
templates

None

Template - Velocity
(deprecated)

Adapt code to API Convert to FreeMarker

Now you have a game plan and a cheat sheet for upgrading and optimizing plugins with confi-
dence.

6.2 Upgrading Code to 7.0

Upgrading to 7.0 involves migrating your installation and code (your custom apps) to the new
version. You’ll learn how to upgrade your code in this section.

68

The first upgrade process step is to adapt your existing plugin’s code to 7.0’s APIs. The great
news is that Liferay’s Upgrade Planner makes this easier than ever. It identifies Liferay API changes
affecting your code, explains the API changes, and offers resolution steps. And the tool offers
auto-correction where it can.

You might be tempted to optimize your existing plugins right away to benefit from the new
things Liferay DXP offers, but you shouldn’t. It’s much better to upgrade your plugins according to
these tutorials. In this way, you’ll get your plugins running in Liferay DXP as fast as possible, and
at the same time you’ll have prepared the plugins for the optimizations you can implement later.

These tutorials assume you’re using the Liferay Upgrade Planner. To follow along with this
section, install the planner and step through the upgrade instructions.

For convenience, this tutorial section also references documentation and outlined steps to aid
those opting to upgrade their code manually.

Here are the code upgrade steps:

1. Upgrade Your Development Environment
Legacy project environments should be upgraded to the latest version of LiferayWorkspace
to ensure you leverage all available features.

1. Set Up LiferayWorkspace
A LiferayWorkspace is a generated environment that is built to hold and manage your
Liferay projects. Create/import a workspace to get started.

1. Create New LiferayWorkspace
If you don’t have an existing 7.x LiferayWorkspace, you must create one. Skip to
the next step if you have an existing workspace.

2. Import Existing LiferayWorkspace
Import an existing LiferayWorkspace. If you don’t have one, revisit the previous
step.

2. Configure LiferayWorkspace Settings
Set the Liferay DXP version in workspace’s configuration you intend to upgrade to.

1. Configure Bundle URL
Configure your bundle URL that the Liferay DXP bundle is downloaded from.

2. Configure Target Platform Version
Configure your Target Platform version, which provides the specific artifacts associ-
ated with a Liferay DXP release.

3. Initialize Server Bundle
Download the Liferay DXP bundle you’re upgrading to.

2. Migrate Plugins SDK Projects
Copy your Plugins SDK projects into workspace and convert them to Gradle/Maven projects.

1. Import Existing Plugins SDK Projects
Import your existing Plugins SDK projects.

2. Migrate Existing Plugins toWorkspace
Migrate your existing plugins to workspace. This involves moving the plugin to
workspace and converting it to the workspace’s build environment.

69

3. Upgrade Build Dependencies
Optimize your workspace’s build environment for themost efficient code upgrade experience.

1. Update Repository URL
Update your repository URL to Liferay’s frequently updated CDN repository.

2. UpdateWorkspace Plugin Version
Update your Workspace plugin version to leverage the latest features of Liferay
Workspace.

3. Remove Dependency Versions
Remove the project’s dependency versions since it’s leveraging target platform.

4. Fix Upgrade Problems
Fix common upgrade problems dealing with your project’s dependencies and breaking
changes.

1. Auto-Correct Upgrade Problems
Auto-correct straightforward upgrade problems.

2. Find Upgrade Problems
Find upgrade problems. These are problems that cannot be auto-corrected; you can
update themmanually according to the breaking changes documentation.

3. Resolve Upgrade Problems
Mark upgrade problems as resolved after addressing them.

4. Remove ProblemMarkers
After fixing your upgrade problems, remove the problemmarkers.

5. Resolving a Plugin’s Dependencies
6. Resolving Breaking Changes

5. Upgrade Customization Plugins
Upgrade your customization plugins so they’re deployable to 7.0.

1. Upgrade Customization Modules
2. Upgrade Core JSP Hooks
3. Upgrade Portlet JSP Hooks
4. Upgrade ServiceWrapper Hooks
5. Upgrade Core Language Key Hooks
6. Upgrade Portlet Language Key Hooks
7. Upgrade Model Listener Hooks
8. Upgrade Event Action Hooks
9. Upgrade Servlet Filter Hooks
10. Upgrade Portal Properties Hooks
11. Upgrade Struts Action Hooks

70

6. Upgrade Themes

Upgrade your themes so they’re deployable to 7.0.

7. Upgrade Layout Templates

Upgrade your layout templates so they’re deployable to 7.0.

8. Upgrade Frameworks & Features

1. Upgrade JNDI Data Source Usage
Use Liferay DXP’s class loader to access the app server’s JNDI API.

2. Upgrade Service Builder Service Invocation
For Service Builder logic remaining in aWAR, you must implement a service tracker to
call services. For logic divided into OSGi modules, you can leverage Declarative Services.

3. Upgrade Service Builder
Adapt your app to account for Service Builder-specific changes.

4. Migrate Off of Velocity Templates
Velocity template usage is deprecated for 7.0. You should convert your template to
FreeMarker.

9. Upgrade Portlets

Upgrade your portlets so they’re deployable to 7.0.

1. Upgrade Generic Portlets

2. Upgrade Liferay MVC Portlets

3. Upgrade JSF Portlets

4. Upgrade Servlet-based Portlets

5. Upgrading Spring MVC Portlets

6. Upgrade Struts 1 Portlets

10. UpgradeWeb Plugins

Upgrade web plugins previously stored in the webs folder of your legacy Plugins SDK.

11. Upgrade Ext Plugins

Attempt to leverage an extension point instead of upgrading your Ext plugin. If an Ext plugin
is necessary, you must review all changes between the previous Liferay Portal instance you
were using and 7.0, and then manually modify your Ext plugin to merge your changes with
Liferay DXP’s.

Once you’ve finished the code upgrade steps, your custom apps will be compatible with 7.0!

71

6.3 Upgrading Your Development Environment

A Liferay Workspace is a generated environment that is built to hold and manage your Liferay
projects. It is intended to aid in the management of Liferay projects by providing various build
scripts and configured properties.

LiferayWorkspace is the recommended environment for your code migration; therefore, it will
be the assumed development environment in this section.

Continue on to set up a workspace.

Setting Up Liferay Workspace

You must set up your workspace development environment before you begin upgrading your
custom apps. If you don’t have an existing workspace, follow the step for creating one. If you have
an existing workspace, follow the step on importing it into the Upgrade Planner.

Creating New Liferay Workspace

Initiating this step in the Upgrade Planner loads the LiferayWorkspace Project wizard.

1. Give your new workspace a name.

2. Choose the build type (Gradle or Maven) you prefer for your workspace environment and
future Liferay projects.

3. Click Finish.

You now have a new LiferayWorkspace available in the Upgrade Planner!
For more information on creating a LiferayWorkspace outside the planner, see the Creating a

LiferayWorkspace section.

Importing Existing Liferay Workspace

If you already have an existing 7.x LiferayWorkspace, you should import it into the planner. Once
you initiate this step, you’re given a File Explorer/Manager to select your existing workspace. After
selecting it, the workspace is imported into the Project Explorer.

For more information importing a workspace into your IDE, see this article.

Configuring Liferay Workspace Settings

You must configure your workspace with the Liferay DXP version you intend to upgrade to. You
should verify the workspace’s

• Bundle URL
• Target Platform Version

The bundle URL version and target platform version must match.
Visit these steps to begin.

72

Configuring Bundle URL

The bundleURLpoints to the LiferayDXP version youwantworkspace to download. When initiating
this step, your workspace’s Bundle URL property is updated to the latest release of 7.0.

For more information on configuring a workspace’s bundle URL, see the Adding a Liferay
Bundle to LiferayWorkspace article.

Configuring Target Platform Version

The target platform is the Liferay DXP version you intend to develop for in your workspace. This is
used to specify dependencies associated with a specific release. You set the target platform, define
your dependencies, and workspace automatically assigns the dependency versions based on the
set Liferay DXP version. When initiating this step, your workspace’s Target Platform property is
updated to the latest release of 7.0.

For more information on this, see the Managing the Target Platform article.

Initializing Server Bundle

Once your workspace is configured for the Liferay DXP version you’re upgrading to, you can
initialize the server bundle. This involves downloading the bundle and extracting it into its folder
(e.g., bundles). If you have an existing workspace already equipped with an older Liferay bundle,
this deletes the old bundle and initializes the new one.

If you’re upgrading your code manually and working in Dev Studio, you can do this by right-
clicking the workspace project and selecting Liferay → Initialize Server Bundle. See the Installing
a Server in IntelliJ article if you use IntelliJ instead. Visit the Managing Your Liferay Server with
Blade CLI article for information on how to do this via the command line.

6.4 Migrating Plugins SDK Projects to Liferay Workspace

The Plugins SDKwas deprecated for Liferay DXP 7.0 and removed for Liferay DXP 7.1. Therefore, to
upgrade your custom apps to 7.0, youmust migrate them to a new environment. LiferayWorkspace
is the recommended environment for your code migration and will be the assumed choice in this
section.

There are two steps you must follow to migrate your custom code to workspace:

1. Import the Plugins SDK project into the Upgrade Planner.

2. Convert the Plugins SDK project to a supported workspace build type.

You’ll step through importing a Plugins SDK project first.

Importing Existing Plugins SDK Projects

Initiating this step in the Upgrade Planner imports your Plugins SDK projects into the Upgrade
Planner. These projects originate from the Plugins SDK you set when the Upgrade Planner process
was started.

If you’re manually upgrading your code, you can skip this step.
You’re now ready to migrate your Plugins SDK projects to your new workspace!

73

Migrating Existing Plugins to Workspace

LiferayWorkspace can be generated as a Gradle or Maven environment, but it does not support the
Plugins SDK’s Ant build. Because of this, you must convert your projects to one of the supported
build tools:

• Gradle
• Maven

When initiating this step for a Gradle-based workspace, your Ant-based Plugins SDK project is
copied to the applicable workspace folder based on its project type (e.g., wars) and is converted to a
Gradle project. There is also a Blade CLI command that completes this via the command line. Visit
the Converting Plugins SDK Projects with Blade CLI article for more information.

If you’re migrating your Ant project to a Maven workspace, you must manually copy the project
to the applicable folder based on the project type (e.g., wars). The majority of Plugins SDK projects
belong in the workspace’s wars folder. You can consult the Workspace Anatomy section for a full
overview of a workspace’s folder structure and choose where your custom app should reside. Once
you’ve made the decision, copy your custom app to the applicable workspace folder.

Then you must convert your project from Ant to Maven. You’ll have to complete this conversion
manually.

Once you’re finished, you should have your project(s) residing in the applicable workspace
folders as Gradle/Maven projects.

6.5 Upgrading Build Dependencies

Now that your projects are readily available in a workspace, you must ensure your project build
dependencies are upgraded. Your workspace streamlines the build dependency upgrade process
by only requiring three modifications:

• Update the repository URL (Gradle only)
• Update the workspace plugin version
• Remove your project’s build dependency versions (Gradle only)

If you’re upgrading a recently created workspace, only a subset of these tasks may be required.
You’ll start by updating the repository URL.

Updating the Repository URL

Initiating this step in the Upgrade Planner updates the repository URL used to download artifacts
for your workspace.

If you’re using a Gradle-based workspace, the repository URL is updated to point to the latest
Liferay CDN repository. This is set in your workspace’s settings.gradle file within the buildscript

block like this:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

74

Once the repository URL is set to the proper CDN repository, your build dependencies will be
downloaded from Liferay’s own managed repo.

For Maven-based workspaces, Maven Central is the default repository, so no action is required.

Updating the Workspace Plugin Version

For the best upgrade experience, you should ensure you’re leveraging the latest LiferayWorkspace
version so all the latest features are available to you. Initiate this step to upgrade the appropriate
plugin.

See the Updating LiferayWorkspace article to do this for Gradle-based workspaces manually.
For Maven-based workspaces, make sure you set the latest Bundle Support plugin version in your
root pom.xml file.

Removing Your Project's Build Dependency Versions

Note: This step only applies to Gradle-based workspaces since the target platform feature is
only available for Gradle projects at this time.

Since your workspace is leveraging the target platform feature, there is no need to set your
plugin’s dependency versions in its build.gradle file. This is because the target platform version
you set already defines the artifact versions your project uses. Therefore, if dependency versions
are present in any of your projects’ build.gradle files, you must remove them.

Initiate this step to remove your dependency versions from your project’s build.gradle file
As an example of what a build.gradle’s dependencies block should look like, see the below

snippet:

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib"

compileOnly group: "javax.portlet", name: "portlet-api"

compileOnly group: "javax.servlet", name: "javax.servlet-api"

compileOnly group: "jstl", name: "jstl"

compileOnly group: "org.osgi", name: "osgi.cmpn"

}

If you have not set the target platform feature in your workspace, see the Managing the Target
Platform article for more information.

Great! You’ve successfully upgraded your build dependencies! You likely have compile errors
in your project; this is because your dependencies may have changed. You’ll learn how to update
that and more next.

6.6 Fixing Upgrade Problems

Now that your development environment build configuration is settled, you can start upgrading
your project(s). The two most common upgrade problems are

• Broken project dependencies
• Breaking changes

75

Visit these upgrade problem tutorials for tips on how to fix them.
This tutorial is heavily focused on the Liferay Upgrade Planner. If you’re upgrading your code

manually, continue to the listed tutorials above to fix your code upgrade problems.
You’ll begin auto-correcting upgrade problems first.

Auto-Correcting Upgrade Problems

Initiate this step to auto-correct straightforward updates like

• package imports
• JSP tag names
• Liferay descriptor versions
• XML descriptor content
• etc.

If you choose to preview the auto-correct upgrade problems first, you can view them in the
Project Explorer under the Liferay Upgrade Problems dropdown. If you click one of the upgrade
problems listed with the preview, you’re offered documentation in the Liferay Upgrade Plan Info
window on the proposed change.

Once you’ve performed this step, the result list is removed.

Finding Upgrade Problems

Initiating this step finds the upgrade problems that were not eligible for auto-correction. The
problems are listed under the Liferay Upgrade Problems dropdown. If you click one of the upgrade
problems listed with the preview, you’re offered documentation in the Liferay Upgrade Plan Info
window on the proposed change.

These upgrade problems are available in the breaking changes for the version upgrade you’re
performing.

The next step is resolving the reported upgrade problems.

Resolving Upgrade Problems

Now that the upgrade problems have been located, you must resolve them. As you select each
upgrade problem, the documentation for how to adapt your code is displayed in the Liferay Upgrade
Plan Info window.

For each upgrade problem node, you’re also given the version the upgrade problem applies
to (e.g., when upgrading to Liferay DXP 7.2 from Liferay Portal 6.2, you could have upgrade
problems from the 7.0, 7.1, or 7.2 upgrade). As you step through the reported problems, mark them
as resolved/skipped using the context menu. You can right-click on the problem in the Project
Explorer and choose from four options:

• Mark done
• Mark undone
• Ignore
• Ignore all problems of this type

Leave this step marked as Incomplete until you have resolved all upgrade problems accordingly.

76

Removing ProblemMarkers

After resolving all the reported upgrade problems, you must remove all previously found markers
because, in most cases, the line number and other accompanying marker information are out of
date and must be removed before continuing. Initiate this step to remove all the problemmarkers.

Great! You’ve fixed all the upgrade problems that could be automatically detected by the
Upgrade Planner. Next, you’ll take a deeper look at resolving project dependency errors.

6.7 Resolving a Plugin's Dependencies

Now that you’ve imported your plugin project to Liferay Dev Studio DXP, you probably see compile
errors for some of the Liferay classes it uses. These classes are listed as undefined classes or unre-
solved symbols because they’ve been moved, renamed, or removed. As a part of modularization in
Liferay DXP, many of these classes reside in new modules.

You must resolve all of these Liferay classes for your plugin. Some of the class changes are
quick and easy to fix. Changes involving the new modules require more effort to resolve, but doing
so is still straightforward.

Liferay class changes and required adaptations are described here:

1. Class moved to a package that’s in the classpath: This change is common and easy to fix.
Since themodule is already on your classpath, you need only update the class import. You can
do this by using the Liferay Code Upgrade Tool or by organizing imports in Dev Studio DXP.
The Upgrade Planner reports each moved class for you to address one by one. Organizing
imports in Dev Studio DXP automatically resolves multiple classes at once.

It’s typically faster to resolvemoved classes using thementioned Eclipse feature. Since Liferay
Dev Studio DXP is based on Eclipse, you can generate imports of classes in your classpath with
the Organize Imports keyboard sequence Ctrl-Shift-o. Comment out or remove any imports
marked as errors, then press Ctrl-Shift-o. If there’s only one match for the import, Dev Studio
DXP automatically generates its import statement. Otherwise, a wizard appears that lets you
select the correct import.

2. Class moved to amodule that’s not in the classpath: You must resolve the newmodule as
a dependency for your project. This requires identifying the module and specifying your
project’s dependency on it.

3. Class replaced or removed: The class has been replaced by another class or removed from
the product. The Upgrade Planner (discussed later) explains what happened to the class, how
to handle the change, and why the change was made.

Resolving a class that’s moved within your classpath is straightforward. Consider resolving
such classes first. The remainder of this tutorial explains how to resolve the last two cases and
starts with configuring your plugin project to declare the modules it needs.

Identifying Module Dependencies

Before 7.0, all the platformAPIs were in portal-service.jar. Many of these APIs are now in indepen-
dent modules. Modularization has resulted in many benefits, as described in the article Benefits
of 7.0 for Liferay Portal 6 Developers. One such advantage is that these API modules can evolve

77

separately from the platform kernel. They also simplify future upgrades. For example, instead of
having to check all of Liferay’s APIs, each module’s Semantic Versioning indicates whether the
module contains any backwards-incompatible changes. You need only adapt your code to such
modules (if any).

As part of the modularization, portal-service.jar has been renamed appropriately to portal-

kernel.jar, as it continues to hold the portal kernel’s APIs.

Figure 6.1: Liferay refactored the portal-service JAR for 7.0. Application APIs now exist in their ownmodules, and the portal-service JAR is now portal-kernel.

Each appmodule consists of a set of classes that are highly cohesive and have a specific purpose,
such as providing the app’s API, implementation, or UI. The app modules are therefore much
easier to understand. Next, you’ll track down the modules that now hold the classes referenced by
your plugin.

The reference article Classes Moved from portal-service.jar contains a table that maps each
classmoved from portal-service.jar to its newmodule. The table includes each class’s newpackage
and symbolic name (artifact ID). You’ll use this information to configure your plugin’s dependencies
on these modules.

Your plugin might reference classes that are in Liferay utility modules formerly known as
util-java, util-bridges, util-taglib, or util-slf4j.

The following table shows each Liferay utility module’s symbolic name.

Liferay Utility Symbolic Name (Artifact ID)

util-bridges com.liferay.util.bridges

util-java com.liferay.util.java

util-slf4j com.liferay.util.slf4j

util-taglib com.liferay.util.taglib

78

http://semver.org

You can use Liferay DXP’s App Manager, Felix Gogo Shell, or module JAR file manifests to find
versions of modules deployed on your Liferay DXP instance.

Note: Previous versions of the Plugins SDK made portal-service.jar available to projects. The
Liferay Portal 7.0 Plugins SDK similarly makes portal-kernel.jar available. If you’re using a Liferay
DXP bundle (Liferay DXP pre-installed on an app server), the Liferay utility modules are already
on your classpath. If you manually installed Liferay DXP on your app server, the Liferay utility
modules might not be on your classpath. If a utility module you need is not on your classpath, note
its symbolic name (artifact ID) and version.

Resolving Dependencies

Now that you have the module artifact IDs and versions, you can make the modules available to
your plugin project. The modules your plugin uses must be available to it at compile time and run
time. Here are two options for resolving module dependencies in your traditional plugin project:

Option 1: Use a dependencymanagement tool
Option 2: Manage dependencies manually
The next sections explain and demonstrate these options.

Using a Dependency Management Tool

Dependency management tools such as Ant/Ivy, Maven, and Gradle facilitate acquiring Java arti-
facts that provide packages your plugins need. They can download artifacts frompublic repositories
or from internal repositories you configure as a proxies. From internal repositories you can audit
dependencies.

The following links provide proxy details:

• Ant/Ivy - See documentation on proxy configuration, the Setproxy task, and resolvers
• Maven
• LiferayWorkspace (Gradle)
• Setting proxies in Liferay Dev Studio DXP

The Liferay Plugins SDK provides an Ant/Ivy infrastructure. You declare your dependencies in
an ivy.xml file in your plugin project’s root folder. The Plugins SDK’s Ant tasks leverage the ivy.xml

file and the Plugins SDK’s Ivy scripts to download the specified modules and their dependencies
and make them available to your plugin.

Note: You can use Gradle or Maven in place of Ivy for dependency management, but this isn’t
in this tutorial’s scope. Liferay’s Maven and LiferayWorkspace tutorials demonstrate using these
tools.

Additionally, LiferayWorkspace provides a command for migrating Ant/Ivy projects to Gradle-
based Liferay Workspace projects. See the tutorial Migrating Traditional Plugins to Workspace
Web Applications.

Here’s an example dependency element for the Liferay Journal API module, version 2.0.1:

79

http://ant.apache.org/ivy/
https://gradle.org/
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html

<dependency name="com.liferay.journal.api" org="com.liferay" rev="2.0.1" />

Each dependency includes the module’s name (name), organization (org), and revision number
(rev). The Configuring Dependencies tutorial explains how to determine the module’s organization
(org).

At compile time, Ivy downloads the dependency JAR files to a cache folder so you can compile
against them.

At deployment, Liferay DXP’sWAB Generator creates an OSGiWeb Application Bundle (WAB)
for the plugin. The WAB generator detects the Java packages your plugin uses and declares de-
pendencies on them. Your plugin can use the packages once a registered OSGi service provides
them.

If your project doesn’t already have an ivy.xml file, you can get one by creating a new plugin
project in Liferay Dev Studio DXP and copying the ivy.xml file it generates.

Here’s an example of an ivy.xml file from the Liferay Portal 6.2 Knowledge Base portlet:

<?xml version="1.0"?>

<ivy-module

version="2.0"

xmlns:m2="http://ant.apache.org/ivy/maven"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://ant.apache.org/ivy/schemas/ivy.xsd"

>

<info module="knowledge-base-portlet" organisation="com.liferay">

<extends extendType="configurations,description,info" location="${sdk.dir}/ivy.xml" module="com.liferay.sdk" organisation="com.liferay" revision="latest.integration" />

</info>

<dependencies defaultconf="default">

<dependency org="com.liferay" name="com.liferay.markdown.converter" rev="1.0.2" />

</dependencies>

</ivy-module>

The Plugins SDK works with project Ivy files to store artifacts and make them accessible to your
plugin projects.

If you don’t want to use Ivy or some other dependency management framework, you can store
dependency JARs within your plugin project manually. You’ll learn about this next.

Managing Plugin Dependencies Manually

Plugins rely on their dependencies’ availability at compile time and run time. To compile your
plugin, youmustmake sure the dependencies are available in the plugin’s WEB-INF/lib folder. To run
your plugin, the container must be able to find them: either 1) the dependency Java packages must
already be active in Liferay DXP’s OSGi framework or 2) the dependency JARs must be included
in theWAB generated for the plugin. Your plugin can use both the JARs it currently has and the
packages Liferay DXP exports.

Using Packages Portal Exports The Plugins SDK for Liferay Portal 6 provided a way to compile
against JARs it had. You’d specify these JARs in the portal-dependency-jars property in your liferay-
plugin-package.properties file. On seeing a plugin’s portal-dependency-jars list, the Liferay Plugins
SDK copied the JARs into the plugin’s WEB-INF/lib. The Plugins SDK refrained from adding the
JARs to the pluginWAR. This kept theWARs small for deploying faster. It was especially useful for
deployingWARs remotely or to cluster nodes.

80

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/liferay-plugin-package_7_1_0.properties.html
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/liferay-plugin-package_7_1_0.properties.html

In 7.0, the portal-dependency-jars property is deprecated and behaves differently from previous
versions. Because importing and exporting Java packages has replaced wholesale use of JARs,
modules andWABs can import packages without concerning themselves with JARs. This means
that Liferay DXP can’t make available to plugins the same Java classes it did in the past.

These files list the packages that the portal exports:

• modules/core/portal-bootstrap/system.packages.extra.bnd file in the GitHub repository. It
lists exported packages on separate lines, making them easy to read.

• META-INF/system.packages.extra.mffile in [LIFERAY_HOME]/osgi/core/com.liferay.portal.bootstrap.jar.
The file is available in Liferay DXP bundles. It lists exported packages in a paragraph wrapped
at 70 columns–they’re harder to read here than in the system.packages.extra.bnd file.

If you’re still using the portal-dependency-jars property, you may run into one of the scenarios
below. Follow the instructions below the scenario to fix the issue.

1. I’ve specified a JAR, but in 7.0 none of the classes are available to my plugin.

Some JARs that Liferay Portal 6.2 usedwere removed in 7.0. If you specify them in your portal-
dependency-jars, Liferay DXP can’t provide them. If you still need them, remove them from
the portal-dependency-jars property and add the JARs you need to your plugin’s WEB-INF/lib
folder.

2. I’ve specified JARs, and 7.0 also exports all the JAR’s packages my plugin imports

Keep the JAR in your portal-dependency-jars list. The Plugins SDK copies the JAR to your
plugin’s WEB-INF/lib folder at compile time but refrains from adding the JAR to the plugin
WAB. TheWAB generated for the plugin imports the packages from a registered provider at
run time.

3. 7.0 provides the JAR but doesn’t export a packagemy plugin imports

Keep the JAR in your portal-dependency-jars property. The Plugins SDK copies the JAR to your
plugin’s WEB-INF/lib folder at compile time and adds the JAR to the pluginWAB at deployment.

Understanding Excluded JARs Portal property module.framework.web.generator.excluded.paths

declares JARs that are stripped from all Liferay DXP generatedWABs. These JARs are excluded from
WABs because Liferay DXP provides them already. All JARs listed for this property are excluded
from theWABs, even if the plugins listed the JAR in their portal-dependency-jars property.

If your plugin requires different versions of the packages Liferay DXP exports, you must in-
clude them in JARs named differently from the ones module.framework.web.generator.excluded.paths
excludes.

For example, Liferay DXP’s system.packages.extra.bnd file exports Spring Framework version
4.1.9 packages:

Export-Package:\

...

org.springframework.*;version='4.1.9',\

...

Liferay DXP uses the module.framework.web.generator.excluded.paths portal property to exclude
their JARs.

81

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/core/portal-bootstrap/system.packages.extra.bnd
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/core/portal-bootstrap/system.packages.extra.bnd

module.framework.web.generator.excluded.paths=\

...

WEB-INF/lib/spring-aop.jar,\

WEB-INF/lib/spring-aspects.jar,\

WEB-INF/lib/spring-beans.jar,\

WEB-INF/lib/spring-context.jar,\

WEB-INF/lib/spring-context-support.jar,\

WEB-INF/lib/spring-core.jar,\

WEB-INF/lib/spring-expression.jar,\

WEB-INF/lib/spring-jdbc.jar,\

WEB-INF/lib/spring-jms.jar,\

WEB-INF/lib/spring-orm.jar,\

WEB-INF/lib/spring-oxm.jar,\

WEB-INF/lib/spring-tx.jar,\

WEB-INF/lib/spring-web.jar,\

WEB-INF/lib/spring-webmvc.jar,\

WEB-INF/lib/spring-webmvc-portlet.jar,\

...

To use a different Spring Framework version in yourWAB, you must name the corresponding
SpringFramework JARsdifferently from the glob-patterned JARs module.framework.web.generator.excluded.paths
lists.

For example, to use Spring Framework version 3.0.7’s Spring AOP JAR, include it in your plugin’s
WEB-INF/lib but name it something other than spring-aop.jar. Adding the version to the JAR name
(i.e., spring-aop-3.0.7.RELEASE.jar) differentiates it from the excluded JAR and prevents it from
being stripped from theWAB.

Using Packages Portal Doesn’t Export Youmust download and install to your plugin’s WEB-INF/lib
folder JARs that provide packages Liferay DXP doesn’t export that your plugin requires.

Follow these steps to do this:

1. Go to Maven Central at https://search.maven.org/.

2. Search for the module by its artifact ID and group ID.

3. Navigate the search results to find the version of the module you want.

4. Click the jar link to download the module’s JAR file.

5. Add the JAR to your project’s WEB-INF/lib folder.

As you manage module JARs, make sure not to deploy any OSGi framework JARs or Liferay
module JARs (e.g., com.liferay.journal.api.jar). If you deploy these, they’ll conflict with the JARs
already installed in the OSGi framework. Identical JARs in two different classloaders can cause
class cast exceptions. The easiest way to exclude such JARs from your plugin’s deployment is
to list them in a deploy-excludes property in your plugin’s liferay-plugin-package.properties. You
must otherwise remove the JARs manually from the plugin WAR file. To exclude JARs in your
plugin’s liferay-plugin-package.properties file, add an entry like the one below, replacing the
square-bracketed items with the names of JAR files to exclude:

deploy-excludes=\

⁎⁎/WEB-INF/lib/[module-artifact.jar],\

⁎⁎/WEB-INF/lib/[another-module-artifact.jar]

For example, here’s an example property that excludes the OSGi framework JAR osgi.core.jar

and the Liferay app module JAR com.liferay.journal.api.jar:

82

https://search.maven.org/

Figure 6.2: After searching Maven Central, download an artifact’s JAR file by clicking the jar link.

deploy-excludes=\

⁎⁎/WEB-INF/lib/com.liferay.portal.journal.api.jar,\

⁎⁎/WEB-INF/lib/org.osgi.core.jar

How do you know what modules are already installed in Liferay DXP? If your Liferay DXP
instance has a particular Liferay app suite installed, then don’t deploy module JARs you know are
in that app suite. For example, if theWeb Experience Management App Suite is already installed
(which is the case for a Liferay DXP bundle), then don’t deployWeb Content module JARs such as
com.liferay.journal.api.jar. Searching for a module in Liferay DXP’s App Manager is a sure-fire
way to verify existing module installations.

6.8 Resolving Breaking Changes

Liferay goes to great lengths to maintain backwards compatibility. Sometimes, breaking changes
are necessary to improve Liferay DXP. There may be cases where breaking changes affect your
code upgrade process and must be resolved. A breaking change can include

• Functionality that is removed or replaced
• API incompatibilities: Changes to public Java or JavaScript APIs
• Changes to context variables available to templates
• Changes in CSS classes available to Liferay themes and portlets
• Configuration changes: Changes in configurationfiles, like portal.properties, system.properties,
etc.

• Execution requirements: Java version, J2EE Version, browser versions, etc.
• Deprecations or end of support: For example, warning that a certain feature or API will be
dropped in an upcoming version.

• Recommendations: For example, recommending using a newly introduced API that replaces
an old API, in spite of the old API being kept in Liferay Portal for backwards compatibility.

Liferay provides a list of breaking changes for every major release to ensure you can easily
adapt your code during the upgrade process.

• Liferay DXP 7.0 Breaking Changes

83

• 7.0 Breaking Changes
• Liferay DXP 7.2 Breaking Changes

The easiest way to resolve breaking changes is by using the Liferay Upgrade Planner. It auto-
matically finds all documented breaking changes and can automatically resolve some of them on
its own.

If you’re resolving breaking changes manually, make sure to investigate each breaking change
document if you’re upgrading code across multiple versions. For example, if you’re upgrading from
Liferay Portal 6.2 to 7.0, you must resolve all the breaking changes listed in the three documents
listed above.

Now that you’ve resolved your breaking changes, you’ll learn how to upgrade service builder
services next.

84

CHAPTER 7

UPGRADING HOOK PLUGINS

Liferay DXP has more extension points than ever, and connecting existing hook plugins to them
takes very few steps. In most cases, after you upgrade your hook using the Liferay Upgrade Planner,
it’s ready to run on Liferay DXP. The following tutorials show you how to upgrade each type of hook
plugin.

• Override/Extension Modules
• Core JSP Hooks
• App JSP Hooks
• ServiceWrapper Hooks
• Core Language Key Hooks
• Portlet Language Key Hooks
• Model Listener Hooks
• Servlet Filter Hooks
• Portal Property and Event Action Hooks
• Struts Action Hooks

Continue on to get started!

7.1 Upgrading Customization Modules

Customization modules include any module extension or override used to customize another
module. For examples of these types of modules, visit the extensions and overrides sample projects.

Getting a customization module running on 7.0 takes two steps:

1. Adapt your code to 7.0’s API using the Liferay Upgrade Planner. When you ran the planner’s
Fix Upgrade Problems step, many of the existing issues were autocorrected or flagged. For any
remaining errors, consult the Resolving a Plugin’s Dependencies article.

2. Deploy your module.

85

https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/extensions
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/overrides

Note: A fragment was a common customization module in past versions of Liferay DXP. Frag-
ments are no longer recommended; you should upgrade a fragment to a dynamic include or portlet
filter. For more information on recommended ways of customizing JSPs in 7.0, see the Customizing
JSPs section.

Great! Your customization module is upgraded for 7.0!

7.2 Upgrading Core JSP Hooks

Getting a core JSP hook running on 7.0 takes two steps:

1. Adapt your code to 7.0’s API using the Liferay Upgrade Planner. When you ran the planner’s
Fix Upgrade Problems step, many of the existing issues were autocorrected or flagged. For any
remaining errors, consult the Resolving a Plugin’s Dependencies article.

2. Deploy your hook plugin.

Liferay DXP’s Plugin Compatibility Layer converts the pluginWAR to aWeb Application Bundle
(WAB) and installs it to Liferay’s OSGi Runtime.

It’s just that easy!

Related Topics

Customizing JSPs
Upgrading App JSP Hooks
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

7.3 Upgrading App JSP Hooks

JSPs in OSGi modules can be customized using module fragments. The module fragment attaches
to the host module to alter the JSPs. To the OSGi runtime, the fragment is part of the host module.
Section 3.14 of the OSGi Alliance’s core specification document explains module fragments in
detail. This tutorial shows you how to upgrade your app JSP hooks to 7.0.

Liferay Upgrade Planner’s Fixing Upgrade Problems step generates module fragments from app
JSP hook plugins. The tool creates module fragments in the same folder as your Plugins SDK root
if your hook is in a Plugins SDK or in the [liferay_workspace]/modules folder if your hook is in a
LiferayWorkspace.

Module fragments follow this name convention: [plugin_name]-[app]-fragment. For example,
if the plugin’s name is app-jsp-hook and it modifies a JSP in the Blogs app, the Upgrade Planner
generates a module fragment named app-jsp-hook-blogs-fragment.

Here are the steps for upgrading app JSP hook plugins:

1. Declare the Fragment Host
2. Update the JSP

86

https://www.osgi.org/developer/downloads/release-6/

Declare the Fragment Host

The module fragment’s bnd.bnd file must specify an OSGi header Fragment-Host set to the host
module name and version.

If the host module belongs to one of Liferay DXP’s app suites, the Code Upgrade Tool generates
a bnd.bnd file that specifies an appropriate Fragment-Host header automatically.

For example, here’s a Fragment-Host that attaches a module fragment to the BlogsWeb module.

Fragment-Host: com.liferay.blogs.web;bundle-version="1.1.9"

Updating the JSP is straightforward too.

Update the JSP

The Upgrade Planner creates a module fragment that contains an upgraded version of your custom
app JSP.

The following table shows the old and new JSP paths.
LiferayPortal version | JSPFile Path |6.2 | docroot/META-INF/custom_jsps/html/portlet/[jsp_file_path]

7.1 | src/main/resources/META-INF/resources/[jsp_file_path]
For example, the Upgrade Planner generates a customized version of the Blogs app’s init-

ext.jsp file here:

src/main/resources/META-INF/resources/blogs/init-ext.jsp

The tool’s Fixing Upgrade Problems step lets you compare custom JSPs with originals:

• Compare your custom 6.2 JSP with the original 6.2 JSP.
• Compare your custom 7.1 JSP with your custom 6.2 JSP.

Make any additional needed changes in your 7.1 custom JSP. Then deploy yourmodule fragment.
This stops the host module momentarily, attaches the fragment to the host, and then restarts the
host module. The console output reflects this process.

Here’s output from deploying a module fragment that attaches to the Blogs web module.

19:23:11,740 INFO [Refresh Thread: Equinox Container: 00ce6547-2355-0017-1884-846599e789c4][BundleStartStopLogger:38] STOPPED com.liferay.blogs.web_1.1.9 [535]

19:23:12,910 INFO [Refresh Thread: Equinox Container: 00ce6547-2355-0017-1884-846599e789c4][BundleStartStopLogger:35] STARTED com.liferay.blogs.web_1.1.9 [535]

Your custom JSP is live.

Related Topics

Customizing JSPs
Upgrading Core JSP Hooks
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

87

7.4 Upgrading Service Wrappers

Upgrading traditional service wrapper hook plugins to 7.0 is quick and easy.

1. Adapt your code to 7.0’s API using the Liferay Upgrade Planner. When you ran the planner’s
Fix Upgrade Problems step, many of the existing issues were autocorrected or flagged. For any
remaining errors, consult the Resolving a Plugin’s Dependencies article.

2. Deploy the plugin.

Liferay DXP’s Plugin Compatibility Layer converts the pluginWAR to aWeb Application Bundle
(WAB) and installs it to Liferay’s OSGi Runtime.

Related Articles

Overriding Liferay Services (ServiceWrappers)
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

7.5 Upgrading Core Language Key Hooks

Here are the steps for upgrading a core language key hook to 7.0.

1. Create a new module based on the Blade sample resource-bundle in Gradle or Maven.

Here are the main parts of the module folder structure:

• src/main/java/[resource bundle path] → Custom resource bundle class goes here
• src/main/resources/content

– Language.properties

– Language_xx.properties

– …

2. Copyall yourplugin’s languageproperties files into themodule folder src/main/resources/content/.

3. Create a resource bundle loader.

4. Deploy your module.

Your core language key customizations are deployed to 7.0.

Related Topics

Overriding Global Language Keys
Upgrading Portlet Language Key Hooks
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

88

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions/resource-bundle
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/extensions/resource-bundle

7.6 Upgrading Portlet Language Key Hooks

You can upgrade your portlet language key hooks to 7.0 by following these steps:

1. Create a new module based on the Blade sample resource-bundle (Gradle or Maven project).

Here are the module folder structure’s main files:

• src/main/java/[resource bundle path] → ResourceBundleLoader extension goes here
• src/main/resources/content

– Language.properties

– Language_xx.properties

– …

2. Copy your language properties files into module folder src/main/resources/content/.

3. In your bnd.bnd file, specify OSGi manifest headers that target the portlet module’s resource
bundle, but prioritize yours.

4. Deploy your module.

Your portlet language key customizations are deployed in your new module on 7.0.

Related Topics

Overriding a Module’s Language Keys
Upgrading Core Language Key Hooks
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

7.7 Upgrading Model Listener Hooks

Developers have been creatingmodel listeners for several Liferay Portal versions. UpgradingModel
Listener Hooks from previous portal versions has never been easier.

1. Adapt your code to 7.0’s API using the Liferay Upgrade Planner. When you ran the planner’s
Fix Upgrade Problems step, many of the existing issues were autocorrected or flagged. For any
remaining errors, consult the Resolving a Plugin’s Dependencies article.

2. Deploy the plugin.

Liferay DXP’s Plugin Compatibility Layer converts the pluginWAR to aWeb Application Bundle
(WAB) and installs it to Liferay’s OSGi Runtime.

Your model listener hook is “all ears” and ready to act.

89

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions/resource-bundle
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/extensions/resource-bundle
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/

Related Topics

Creating Model Listeners
Resolving a Plugin’s Dependencies
Configuring Dependencies
Upgrading the Liferay Maven Build

7.8 Upgrading Servlet Filter Hooks

If you have Servlet Filter Hooks ready to be upgraded, this tutorial’s for you. The process is quite
simple:

1. Adapt your code to 7.0’s API using the Liferay Upgrade Planner. When you ran the planner’s
Fix Upgrade Problems step, many of the existing issues were autocorrected or flagged. For any
remaining errors, consult the Resolving a Plugin’s Dependencies article.

2. Deploy the plugin.

Liferay DXP’s Plugin Compatibility Layer converts the pluginWAR to aWeb Application Bundle
(WAB) and installs it to Liferay’s OSGi Runtime.

Your Servlet Filter is running on 7.0!

Related Topics

Resolving a Plugin’s Dependencies
Configuring Dependencies
Upgrading the Liferay Maven Build

7.9 Upgrading Portal Property and Event Action Hooks

All portal properties in Liferay Portal 6.2 that are also used in 7.0 can be overridden. Portal property
and portal event action hooks that use these properties can be upgraded by following these steps:

1. Adapt your code to 7.0’s API using the Liferay Upgrade Planner. When you ran the planner’s
Fix Upgrade Problems step, many of the existing issues were autocorrected or flagged. For any
remaining errors, consult the Resolving a Plugin’s Dependencies article.

2. Deploy your hook plugin.

Liferay DXP’s Plugin Compatibility Layer converts the pluginWAR to aWeb Application Bundle
(WAB) and installs it to Liferay’s OSGi Runtime.

Your custom property values and actions are live.

Related Topics

Liferay Dev Studio DXP
Resolving a Plugin’s Dependencies
Configuring Dependencies
Upgrading the Liferay Maven Build

90

7.10 Converting StrutsAction Wrappers to MVCCommands

In Liferay Portal 6.1 and 6.2, developers could customize the Portal and Portlet Struts Actions using
a Hook and StrutsAction wrapper. For example, the liferay-hook.xml file for a hook that overrode
the login portlet’s login action had this entry:

<struts-action>

 <struts-action-path>/login/login</struts-action-path>

 <struts-action-impl>

 com.liferay.sample.hook.action.ExampleStrutsPortletAction

 </struts-action-impl>

</struts-action>

The liferay-hook.xml contains the Struts mapping and the new class that overrides the default
login action.

The wrapper could extend either BaseStrutsAction or BaseStrutsPortletAction, depending on
whether the Struts Action was a portal or portlet action respectively.

Since 7.0, this mechanism no longer applies for most portlets because they no longer use Struts
Actions, but instead use Liferay MVCCommands.

This tutorial demonstrates how to convert your existing StrutsAction wrappers to MVCCommands.

Converting Your old wrapper to MVCCommands

Converting StrutsAction wrappers to MVCCommands is easier than you may think.
As a review, legacy StrutsAction wrappers implemented all methods, such as processAction,

render, and serveResource, even if only one method was being customized. Each of these methods
can now be customized independently using different classes, making the logic simpler and easier
to maintain. Depending on the method you customized in your StrutsAction wrapper, you need to
use the matching MVCCommand interface shown below:

• processAction → MVCActionCommand
• render → MVCRenderCommand
• serveResource → MVCResourceCommand

Look at the ExampleStrutsPortletAction class for a StrutsActionwrapper example. Depending
on the actions overridden, the user must use different MVCCommands. In this example, the action
and render were overridden, so to migrate to the new pattern, you would create two classes: an
MVCActionCommand and MVCRenderCommand.

Next you’ll determine the mapping the MVCCommand uses.

Mapping Your MVCCommand URLs

For most cases, the MVCCommandmapping is the same mapping defined in the legacy Struts Action.
Using the beginning login example once again, the struts-action-pathmapping, /login/login,

remains the same for the MVCCommandmapping in 7.0, but some of the mappings may have changed.
It’s best to check Liferay DXP’s source code to determine the correct mapping.

Map to your MVCCommand URLs using portlet URL tags:

• MVCRenderCommand URLs go in mvcRenderCommandName parameters. For example:

91

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCCommand.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCActionCommand.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderCommand.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCResourceCommand.html

<portlet:renderURL var="editEntryURL">

<portlet:param name="mvcRenderCommandName" value="/hello/edit_entry"

/>

<portlet:param name="entryId" value="<%= String.valueOf(

entry.getEntryId()) %>" />

</portlet:renderURL>

• MVCActionCommandURLsgo in actionURL tag name attributes or in aparameter ActionRequest.ACTION_NAME.
For example:

<portlet:actionURL name="/blogs/edit_entry" var="editEntryURL" />

• MVCResourceCommand URLs go in resourceURL tag id attributes. For example:

<portlet:resourceURL id="/login/captcha" var="captchaURL" />

Once you have this information, you can override the MVCCommand by following the instructions
found in these MVCCommand tutorials:

• Adding Logic to MVCCommands
• Overriding MVCRenderCommands
• Overriding MVCActionCommands
• Overriding MVCResourceCommands

Now you know how to convert your StrutsActionWrappers to MVCCommands!

Related Topics

Overriding MVC Commands
Liferay MVC Portlet
Resolving a Plugin’s Dependencies
Configuring Dependencies
Upgrading the Liferay Maven Build

92

CHAPTER 8

UPGRADING 6.2 THEMES

If you’ve developed themes in Liferay DXP 6.2, as part of your upgrade you’ll want to use them
in 7.0. The upgrade process requires several modifications. The Liferay Theme Generator helps
automate this process.

The following tutorials show you how to upgrade your Liferay Portal 6.2 themes to 7.0:

• Upgrading 6.2 Themes to 7.1

8.1 Upgrading 6.2 Layout Templates

If you’ve developed layout templates in Liferay DXP 6.2, you can upgrade them for 7.0. The upgrade
process requires minimal changes.

The following tutorial shows you how to upgrade your Liferay Portal 6.2 layout templates to 7.0:

• Upgrading 6.2 Layout Templates to 7.1

8.2 Upgrading Frameworks and Features

Your upgrade process not only relies on portlet technology, themes, and customization plugins,
but also the frameworks your project leverages. The following frameworks and their upgrade
processes are discussed in this section:

• JNDI data source usage
• Service Builder service invocation
• Service Builder
• Velocity templates

Continue on to learn more about upgrading these frameworks.

93

8.3 Upgrading JNDI Data Source Usage

In Liferay DXP’s OSGi environment, you must use the portal’s class loader to load the application
server’s JNDI classes. An OSGi bundle’s attempt to connect to a JNDI data source without using
Liferay DXP’s class loader results in a java.lang.ClassNotFoundException.

For more information on how to do this, see the Connecting to JNDI Data Sources article.

8.4 Upgrading Service Builder Service Invocation

When upgrading a portlet leveraging Service Builder, you must first decide if you’re building your
Service Builder logic as aWAR or modularizing it.

Note: Service Builder portlets automatically migrated to LiferayWorkspace using the Upgrade
Planner or Blade CLI’s convert command automatically have its Service Builder logic converted to
API and implementation modules. This is a best practice for 7.0.

If you prefer keeping your Service Builder logic as aWAR, youmust implement a service tracker
to call services. See the Service Trackers article for more information.

If you’re optimizing your Service Builder logic to invoke Liferay services from a module, see
the Invoking Local Services article for more information.

8.5 Upgrading Service Builder

7.0 continues to use Service Builder, so you can focus on your application’s business logic instead of
its persistence details. It still generates model classes, local and remote services, and persistence.

Upgrading most Service Builder portlets involves these steps:

1. Adapt the code to 7.0’s API
2. Resolve dependencies
3. Build the services

Start by adapting the code.

Step 1: Adapt the Code to 7.0's API

Adapt the portlet to 7.0’s API using the Upgrade Planner. When running the planner’s Fix Upgrade
Problems step, many of the existing issues are autocorrected. For remaining issues, the planner
identifies code affected by the new API and ways to adapt it.

For example, consider an example portlet with the following compilation error:

/html/guestbook/view.jsp(58,1) PWC6131: Attribute total invalid for tag search-container-results according to TLD

The view.jsp file specifies a tag library attribute total that doesn’t exist in 7.0’s liferay-ui tag
library. Notice the second attribute total.

94

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId,

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>"

total="<%=EntryLocalServiceUtil.getEntriesCount(scopeGroupId,

guestbookId)%>" />

Remove the total attribute assignment to make the tag like this:

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId,

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>" />

Resolve these error types and others until your code is adapted to the new API.

Step 2: Resolve Dependencies

To adapt your app’s dependencies, refer to the Resolving a Plugin’s Dependencies tutorial. Once
your dependencies are upgraded, rebuild your services!

Step 3: Build the Services

To rebuild your portlet’s services, see the Running Service Builder article.
An example change where upgrading legacy Service Builder code can produce differing results

is explained below.
A Liferay Portal 6.2 portlet’s service.xml file specifies exception class names in exception ele-

ments like this:

<service-builder package-path="com.liferay.docs.guestbook">

...

<exceptions>

<exception>GuestbookName</exception>

<exception>EntryName</exception>

<exception>EntryMessage</exception>

<exception>EntryEmail</exception>

</exceptions>

</service-builder>

In Liferay Portal 6.2, Service Builder generates exception classes to the path attribute package-

path specifies. In 7.0, Service Builder generates them to [package-path]/exception.
Old path:

[package-path]

New path:

[package-path]/exception

For example, the example portlet’s package path is com.liferay.docs.guestbook. Its exception
class for exception element GuestbookName is generated to docroot/WEB-INF/service/com/liferay/docs/guestbook/exception.
Classes that use the exceptionmust import com.liferay.docs.guestbook.exception.GuestbookNameException.
If this upgrade is required in your Service Builder project, you must update the references to your
portlet’s exception classes.

Once your Service Builder portlet is upgraded, deploy it.

95

Note: Service Builder portlets automatically migrated to LiferayWorkspace using the Upgrade
Planner or Blade CLI’s convert command automatically has its Service Builder logic converted to
API and implementation modules. This is a best practice for 7.0.

The portlet is now available on Liferay DXP. Congratulations on upgrading a portlet that uses
Service Builder!

8.6 Migrating Off of Velocity Templates

Velocity templates were deprecated in Liferay Portal 7.0 and are now removed in favor of
FreeMarker templates in 7.0. Below are the key reasons for this move:

• FreeMarker is developed and maintained regularly, while Velocity is no longer actively being
developed.

• FreeMarker is faster and supports more sophisticated macros.

• FreeMarker supports using taglibs directly rather than requiring a method to represent them.
You can pass body content to them, parameters, etc.

Although Velocity templates still work in 7.0, we highly recommend migrating to FreeMarker
templates. For more information on this topic, see the Upgrading Layout Templates section.

96

CHAPTER 9

UPGRADING PORTLET PLUGINS

All portlet plugin types developed for Liferay Portal 6 can be upgraded and deployed to 7.0.
Upgrading most portlets involves these steps:

1. Adapt the code to 7.0’s API
2. Resolve dependencies

Liferay’s Upgrade Planner helps you adapt your code to 7.0’s API. And resolving a portlet’s
dependencies is straightforward. In most cases, after you finish the above steps, you can deploy
your portlet to Liferay DXP.

The portlet upgrade tutorials show you how to upgrade the following common portlets:

• GenericPortlet
• Liferay MVC Portlet
• Portlet that uses Service Builder
• Liferay JSF Portlet
• Servlet-based portlet
• Struts Portlet
• Spring MVC Portlet

The tutorials provide example portlet source code from before and after upgrading the example
portlet. Each tutorial’s steps were applied to the example portlet. You can refer to example code as
you upgrade your portlet.

Let’s get your portlet running on 7.0!

9.1 Upgrading a GenericPortlet

It’s common to create portlets that extend javax.portlet.GenericPortlet. After all, GenericPortlet
provides a default javax.portlet.Portlet interface implementation. Upgrading a GenericPortlet is
straightforward and takes only two steps:

1. Adapt the portlet to 7.0’s API using the Liferay Upgrade Planner.

97

2. Resolve its dependencies.

This tutorial demonstrates upgrading a Liferay Plugins SDK 6.2 sample portlet called Sample
DAO (project sample-dao-portlet).

Figure 9.1: The sample-dao-portlet lets users manage food items.

The sample portlet lets users view, add, edit, and delete food items from a listing. For reference,
you can download the pre-upgraded portlet code and the upgraded code.

The sample portlet has the following characteristics:

• Extends GenericPortlet
• View layer implemented by JSPs
• Persists models using the Data Access Object (DAO) design pattern
• Specifies database connection information in a properties file
• Manages dependencies via Ant/Ivy
• Developed in a Liferay Plugins SDK 6.2

The portlet uses a traditional Plugins SDK portlet project folder structure.
Upgrading most GenericPortlet portlets involves these steps:

1. Adapt the code to 7.0’s API
2. Resolve dependencies

Since the sample portlet’s dependencies haven’t changed, upgrading it involves only adapting
the code to 7.0’s API. The Liferay Upgrade Planner facilitates updating the code and resolving
compilation issues quickly.

Note: Refer to tutorial Resolving a Plugin’s Dependencies if you need to adapt to dependency
changes.

Youdeploy a GenericPortlet to 7.0 in the sameway youdeploy to Portal 6.x. When thepluginWAR
file lands in the [Liferay_Home]/deploy folder, Liferay DXP’s Plugin Compatibility Layer converts
theWAR to aWeb Application Bundle (WAB) and installs the portlet as aWAB to Liferay DXP’s OSGi
runtime.

On deploying an upgraded portlet, the server prints messages that indicate the following portlet
status:

98

https://portal.liferay.dev/documents/113763090/114000186/sample-dao-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000653/sample-dao-portlet-post-7-1-upgrade.zip

Figure 9.2: The sample-dao-portlet project uses a typical Plugins SDK portlet folder structure

99

• WAR processing
• WAB startup
• Availability to users

Deploying the sample portlet produces messages like these:

2018-03-21 17:44:59.179 INFO [com.liferay.portal.kernel.deploy.auto.AutoDeployScanner][AutoDeployDir:262] Processing sample-

dao-portlet-7.1.0.1.war

...

2018-03-21 17:45:09.959 INFO [Refresh Thread: Equinox Container: 0012cbb0-7e2c-0018-146e-95a4d71cdf95][PortletHotDeployListener:298] 1 portlet for sample-

dao-portlet is available for use

...

2018-03-21 17:45:10.151 INFO [Refresh Thread: Equinox Container: 0012cbb0-7e2c-0018-146e-95a4d71cdf95][BundleStartStopLogger:35] STARTED sample-

dao-portlet_7.1.0.1 [655]

The portlet is now available on Liferay DXP.
You’ve learned how to upgrade and deploy a portlet that extends GenericPortlet. You adapt the

code, resolve dependencies, and deploy the portlet as you always have. It’s just that easy!
Related Topics
Migrating Plugins SDK Projects toWorkspace and Gradle
Using Dependency Management Tools
Using theWAB Generator
Migrating Data Upgrade Processes

9.2 Upgrading a Liferay MVC Portlet

Liferay’s MVC Portlet framework is used extensively in Liferay’s portlets and is a popular choice
for Liferay Portal 6.2 portlet developers. The MVCPortlet class is a lightweight extension of
javax.portlet.GenericPortlet. Its init method saves you from writing a lot of boilerplate code.
MVC portlets can upgraded to 7.0 without a hitch.

To upgrade a Liferay MVC Portlet, adapt your code to 7.0’s API using the Liferay Upgrade
Planner. When you ran the planner’s Fix Upgrade Problems step, many of the existing issues were
autocorrected or flagged. For any remaining errors, consult the Resolving a Plugin’s Dependencies
article.

Liferay’s Upgrade Planner identifies code affected by the new API, explains the API changes
and how to adapt to them, and in many cases, provides options for adapting the code automatically.

After you upgrade your portlet, deploy it the same way you always do.
The server prints messages that indicate the following portlet status:

• WAR processing
• WAB startup
• Availability to users

You’ve upgraded and deployed your LiferayMVC Portlet on your 7.0 instance. Have fun showing
off your upgraded portlet!

Related Topics
Migrating Plugins SDK Projects toWorkspace and Gradle
Using Dependency Management Tools
Using theWAB Generator
Migrating Data Upgrade Processes

100

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html

9.3 Upgrading Portlets that use Service Builder

7.0 continues to use Service Builder, so you can focus on your application’s business logic instead of
its persistence details. It still generates model classes, local and remote services, and persistence.

This tutorial demonstrates upgrading a Liferay Plugins SDK 6.2 portlet called Guestbook portlet
(project guestbook-portlet). It’s from the Writing a Data-Driven Application section of the Liferay
Portal 6.2 Learning Path Writing a Liferay MVC Application.

Figure 9.3: The Guestbook portlet models guestbooks and guestbook entries.

To get the most from this tutorial, you can download and refer to the original portlet source
code and the upgraded source code.

The Guestbook portlet has the following characteristics:

• Extends MVCPortlet
• Separate Model, View, and Controller layers
• Persistence by Hibernate under Service Builder
• View layer implemented by JSPs
• Relies on manual dependency management
• Developed in a Liferay Plugins SDK 6.2

Upgrading most Service Builder Portlets involves these steps:

1. Adapt the code to 7.0’s API
2. Resolve dependencies
3. Build the services

Start by adapting the code.

1. Adapt the code to 7.0's API

Use the Liferay Upgrade Planner to update the code and resolve compilation issues quickly. Then
fix any remaining compilation errors manually.

The Guestbook portlet has the following compilation error:

101

https://portal.liferay.dev/documents/113763090/114000186/guestbook-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000186/guestbook-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000653/guestbook-portlet-post-7-1-upgrade.zip

/html/guestbook/view.jsp(58,1) PWC6131: Attribute total invalid for tag search-container-results according to TLD

The view.jsp file specifies a tag library attribute total that doesn’t exist in 7.0’s liferay-ui tag
library. Notice the second attribute total.

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId,

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>"

total="<%=EntryLocalServiceUtil.getEntriesCount(scopeGroupId,

guestbookId)%>" />

Remove the total attribute assignment to make the tag like this:

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId,

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>" />

That’s the Guestbook portlet’s only compilation error you need to fix manually.

2. Resolve dependencies

Since the Guestbook portlet’s dependencies haven’t changed, there aren’t any dependencies to
resolve.

If you need to adapt a portlet’s dependencies, refer to tutorial Resolving a Plugin’s Dependencies.

3. Build the services

Build the services as you did in Liferay Portal 6.2.
The Guestbook portlet’s service.xml file specifies exception class names in exception elements.

<service-builder package-path="com.liferay.docs.guestbook">

...

<exceptions>

<exception>GuestbookName</exception>

<exception>EntryName</exception>

<exception>EntryMessage</exception>

<exception>EntryEmail</exception>

</exceptions>

</service-builder>

In Liferay Portal 6.2, Service Builder generates exception classes to the path attribute package-

path specifies. In 7.0, Service Builder generates them to [package-path]/exception.
Old path:

[package-path]

New path:

[package-path]/exception

For example, the Guestbook portlet’s package path is com.liferay.docs.guestbook. Its exception
class for exception element GuestbookName is generated to docroot/WEB-INF/service/com/liferay/docs/guestbook/exception.
Classes that use the exceptionmust import com.liferay.docs.guestbook.exception.GuestbookNameException.

Update references to your portlet’s exception classes.
Deploy the portlet as you normally would. The server prints messages indicating the following

portlet status:

102

• WAR processing
• WAB startup
• Availability to users

Deploying the Guestbook portlet produces these messages:

2018-03-21 18:23:10.032 INFO [com.liferay.portal.kernel.deploy.auto.AutoDeployScanner][AutoDeployDir:262] Processing guestbook-

portlet-7.1.0.1.war

2018-03-21 18:23:15.355 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][BaseAutoDeployListener:43] Copying portlets for C:\portals\liferay-

ce-portal-7.1-m1\tomcat-8.0.32\temp\20180321182315333UGEPAGTR\guestbook-portlet.war

2018-03-21 18:23:15.829 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][BaseDeployer:876] Deploying guestbook-

portlet.war

2018-03-21 18:23:17.797 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][BaseAutoDeployListener:50] Portlets for C:\portals\liferay-

ce-portal-7.1-m1\tomcat-8.0.32\temp\20180321182315333UGEPAGTR\guestbook-portlet.war copied successfully

2018-03-21 18:23:19.621 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][HotDeployImpl:226] Deploying guestbook-

portlet from queue

2018-03-21 18:23:19.621 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][PluginPackageUtil:1003] Reading plugin package for guestbook-

portlet

2018-03-21 18:23:19.642 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][ServiceComponentLocalServiceImpl:598] Running GB SQL scripts

21-Mar-2018 18:23:19.669 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war] org.apache.catalina.core.ApplicationContext.log Initializing Spring root WebApplicationContext

2018-03-21 18:23:20.066 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][PortletHotDeployListener:186] Registering portlets for guestbook-

portlet

2018-03-21 18:23:20.271 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][PortletHotDeployListener:298] 1 portlet for guestbook-

portlet is available for use

2018-03-21 18:23:20.468 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][BundleStartStopLogger:35] STARTED guestbook-

portlet_7.1.0.1 [657]

The portlet is now available on Liferay DXP.
Congratulations on upgrading and deploying a portlet that uses Service Builder.

Related Topics

Migrating Plugins SDK Projects toWorkspace and Gradle
Using Dependency Management Tools
Using theWAB Generator
Migrating Data Upgrade Processes

9.4 Upgrading a Liferay JSF Portlet

Liferay JSF portlets are easy to upgrade and require few changes. They interface with the Liferay
Faces project, which encapsulates Liferay DXP’s Java API and JavaScript code. Because of this,
upgrading JSF portlets to 7.0 requires only updating dependencies.

There are two ways to find a JSF portlet’s dependencies for 7.0:

• The http://liferayfaces.org/ home page lets you look up the dependencies (Gradle or Maven)
by Liferay DXP version, JSF version, and component suites.

• The Liferay Faces Version Scheme article’s tables list artifacts by Liferay DXP version, JSF
version, portlet version, and AlloyUI and Metal component suite version.

In this tutorial, you’ll see how easy it is to upgrade a Liferay Portal 6.2 JSF portlet (JSF 2.2) to 7.0
by upgrading the sample JSF Applicant portlet. This portlet provides a job application users can
submit.

For reference, you can download the pre-upgraded portlet code and the upgrade portlet code.
This sample project uses Maven.

Follow these steps to upgrade your Liferay JSF portlet.

103

http://liferayfaces.org/
https://portal.liferay.dev/documents/113763090/114000186/jsf-applicant-portlet-6.2.zip
https://portal.liferay.dev/documents/113763090/114000653/jsf-applicant-portlet-7.1.zip

Figure 9.4: The JSF Applicant portlet provides a job application for users to submit.

104

1. Open your Liferay JSF portlet’s build file (e.g., pom.xml, build.gradle) to where the dependen-
cies are configured.

2. Navigate to the http://liferayfaces.org/ site and generate a dependency list by choosing the
environment to which you want to upgrade your portlet.

Figure 9.5: The Liferay Faces site gives you options to generate dependencies for many environments.

3. Compare the generated dependencies with your portlet’s dependencies and make any neces-
sary updates. For the sample JSF Applicant portlet, the Mojarra dependency and two Liferay
Faces dependencies require updating:

105

http://liferayfaces.org/

<dependency>

<groupId>org.glassfish</groupId>

<artifactId>javax.faces</artifactId>

<version>2.2.13</version>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>com.liferay.faces</groupId>

<artifactId>com.liferay.faces.bridge.ext</artifactId>

<version>3.0.0</version>

</dependency>

<dependency>

<groupId>com.liferay.faces</groupId>

<artifactId>com.liferay.faces.bridge.impl</artifactId>

<version>4.0.0</version>

</dependency>

Update the dependencies according to the http://liferayfaces.org/ dependency list. For
example,

<dependency>

<groupId>org.glassfish</groupId>

<artifactId>javax.faces</artifactId>

<version>2.2.18</version>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>com.liferay.faces</groupId>

<artifactId>com.liferay.faces.bridge.ext</artifactId>

<version>5.0.3</version>

</dependency>

<dependency>

<groupId>com.liferay.faces</groupId>

<artifactId>com.liferay.faces.bridge.impl</artifactId>

<version>4.1.2</version>

</dependency>

That’s it! Your Liferay JSF portlet is upgraded and deployable to 7.0!
You deploy a Liferay JSF portlet to 7.0 the same way you deploy to Portal 6.x. When the

pluginWAR file lands in the [Liferay_Home]/deploy folder, Liferay DXP’s Plugin Compatibility Layer
converts theWAR to aWeb Application Bundle (WAB) and installs the portlet as aWAB to Liferay
DXP’s OSGi runtime.

On deploying an upgraded portlet, the server prints messages that indicate the following portlet
status:

• WAR processing
• WAB startup
• Availability to users

Deploying a Liferay JSF portlet produces messages like these:

13:41:43,690 INFO ... [com.liferay.portal.kernel.deploy.auto.AutoDeployScanner][AutoDeployDir:252] Processing com.liferay.faces.demo.jsf.applicant.portlet-

1.0.war

...

13:42:03,522 INFO [fileinstall-C:/liferay-ce-portal-7.1-ga1/osgi/war][BundleStartStopLogger:35] STARTED com.liferay.faces.demo.jsf.applicant.portlet-

1.0_4.1.0 [503]

...

13:42:05,169 INFO [fileinstall-C:/liferay-ce-portal-7.1-ga1/osgi/war][PortletHotDeployListener:293] 1 portlet for com.liferay.faces.demo.jsf.applicant.portlet-

1.0 is available for use

106

http://liferayfaces.org/

Figure 9.6: You’ve successfully updated the JSF Applicant portlet for 7.0!

107

After the portlet deployment is complete, it’s available on Liferay DXP.
You’ve learned how to upgrade and deploy a Liferay JSF portlet. You resolved dependencies

and deployed the portlet as you always have. It’s just that easy!

9.5 Upgrading a Servlet-based Portlet

This tutorial shows you how to upgrade servlet-based portlets. It refers to code from before and
after upgrading a sample servlet-based portlet called Sample JSON (project sample-json-portlet).
The portlet shows a Click me link. When users click the link, the Liferay logo appears.

Figure 9.7: The Sample JSON portlet displays text stating Click me that you can click to initiate an action.

To get the most from this tutorial, download and refer to the original sample portlet source
code and the upgraded source code.

Here are the sample portlet’s characteristics:

• Processes requests using a servlet that extends javax.servlet.HttpServlet
• View layer implemented by JSPs
• Processes data using JSON objects
• Relies on manual dependency management
• Depends on third-party libraries that Liferay Portal 6.2 provides
• Embeds additional dependencies in its WEB-INF/lib folder
• Developed in a Liferay Plugins SDK 6.2

To upgrade a servlet-base Portlet, adapt your code to 7.0’s API using the Liferay Upgrade
Planner. When you ran the planner’s Fix Upgrade Problems step, many of the existing issues were
autocorrected or flagged. For any remaining errors, consult the Resolving a Plugin’s Dependencies
article.

Liferay’s Upgrade Planner identifies code affected by the new API, explains the API changes
and how to adapt to them, and in many cases, provides options for adapting the code automatically.

The sample portlet relied on Liferay Portal to provide several dependency JAR files. Here’s the
portal-dependency-jars property from the portlet’s liferay-plugin-package.properties file:

portal-dependency-jars=\

dom4j.jar,\

jabsorb.jar,\

json-java.jar

Instructions for using packages that Liferay DXP exports are found here. 7.0’s core system
exports the package this portlet needs from each of the above dependency JARs.

108

https://portal.liferay.dev/documents/113763090/114000186/sample-json-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000186/sample-json-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000653/sample-json-portlet-post-7-1-upgrade.zip

The upgraded sample portlet continues to specify these JARs in the portal-dependency-jars

property. They’re made available to the portlet at compile time. But to keep compile time packages
from conflicting with the core system’s exported packages, the Liferay Plugins SDK 7.0 excludes
the JARs from the pluginWAR.

Next, deploy your portlet as you always have.
The server prints messages that indicate the following portlet status:

• WAR processing
• WAB startup
• Availability to users

Note: On deploying the sample upgraded portlet, the WAB processor warns that the portal-

dependency-jars property is deprecated.

21:40:25,347 WARN [fileinstall-...][WabProcessor:564] The property "portal-dependency-jars" is deprecated. Specified JARs may not be included in the class path.

For running on 7.0, it’s fine to specify theportal-dependency-jars property per the instructions
for using packages that Liferay DXP exports. After upgrading, consider using a dependency
management tool in your project. This helps prepare it for future Liferay DXP versions and
facilitates managing dependencies.

The portlet is installed to Liferay’s OSGi runtime and is available to users.

Figure 9.8: Clicking on the sample portlet’s Click me link shows the Liferay logo.

Congratulations! You’ve upgraded and deployed your servlet-based portlet to 7.0.
Related Topics
Migrating Plugins SDK Projects toWorkspace and Gradle
Using Dependency Management Tools
Using theWAB Generator
Migrating Data Upgrade Processes

9.6 Upgrading a Spring MVC portlet

The Spring Portlet MVC framework facilitates injecting dependencies and implementing the Model
View Controller pattern in portlets. If you use this framework in a portlet for Liferay Portal 6.x,
you can upgrade it to 7.0.

109

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/portlet.html

This tutorial demonstrates upgrading a Spring MVC portlet called My Spring MVC (project my-
spring-mvc-portlet). It’s a bare-bones portlet created from the Plugins SDK’s spring_mvc template.

Figure 9.9: My Spring MVC portlet shows its name and Liferay DXP’s information.

To follow along, download and refer to the original source code and the upgraded source code.
The figure below shows the my-spring-mvc-portlet project.

Figure 9.10: The my-spring-mvc-portlet project has traditional Liferay plugin files, Spring Portlet MVC application contexts (in spring-context/), and a controller class
MySpringMVCPortletviewController.

These files have Spring-related content:

• view.jsp → Shows the portlet’s name and Liferay DXP’s release information.
• my-spring-mvc-portlet.xml → Liferay DXP uses this context file for the portlet.
• portlet-applications-context.xml → Spring’s SpringContextLoaderListener class uses this con-
text file.

• MySpringMVCPortletviewController → Maps VIEW requests to the view.jsp and assigns Liferay
DXP release information to a model attribute.

• portlet.xml → References context configuration file my-spring-mvc-portlet.xml and specifies
a dispatcher for registered portlet request handlers.

• web.xml→References context configuration file portlet-application-context.xml and specifies
a ViewRendererServlet to convert portlet requests and responses to HTTP servlet requests and
responses.

Here are the Spring MVC portlet upgrade steps:

110

https://portal.liferay.dev/documents/113763090/114000186/my-spring-mvc-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000653/my-spring-mvc-portlet-post-7-1-upgrade.zip

1. Adapt the code to 7.0’s API

2. Resolve dependencies

Adapt the code to liferay's API

The Liferay Upgrade Planner facilitates updating the code and resolving compilation issues quickly.
The Upgrade Planner detects if the value of the liferay-versions property in your plugin’s

liferay-plugin-package.properties file needs updating, and it provides an option to fix it automati-
cally. This is the only code adaptation required by my-spring-mvc-portlet.

Resolve Dependencies

In Liferay Portal 6.2, my-spring-mvc-portlet leveraged Portal’s JARs by specifying them in the
liferay-plugin-package.properties file’s portal-dependency-jars property. Since the property is dep-
recated in 7.0, you should acquire dependencies using a dependency management framework,
such as Gradle, Maven, or Apache Ant/Ivy.

Converting the sample portlet plugin from a traditional plugin to a Liferay Workspace web
application facilitated resolving its dependencies.

Here’s the updated my-spring-mvc-portlet’s build.gradle file:

dependencies {

compileOnly group: 'aopalliance', name: 'aopalliance', version: '1.0'

compileOnly group: 'commons-logging', name: 'commons-logging', version: '1.2'

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compile group: 'org.jboss.arquillian.junit', name: 'arquillian-junit-container', version: '1.1.3.Final'

compile group: 'org.jboss.arquillian.container', name: 'arquillian-tomcat-remote-7', version: '1.0.0.CR6'

compile group: 'com.liferay', name: 'com.liferay.ant.arquillian', version: '1.0.0-SNAPSHOT'

compile group: 'org.springframework', name: 'spring-aop', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-beans', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-context', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-core', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-expression', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-web', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-webmvc', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-webmvc-portlet', version: '4.1.9.RELEASE'

}

Some of my-spring-mvc-portlet’s dependency artifacts have new names.

Old name New name

spring-web-portlet spring-webmvc-portlet

spring-web-servlet spring-webmvc

Maven Central provides artifact dependency information.

Note: If the Spring Framework version you’re using differs from the version Liferay DXP uses,
you must name your Spring Framework JARs differently from Liferay DXP’s Spring Framework
JARs. If you don’t rename your JARs, Liferay DXP assumes you’re using its Spring Framework
JARs and excludes yours from the generated WAB (Web Application Bundle). Portal property

111

https://search.maven.org/
https://docs.liferay.com/ce/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://docs.liferay.com/ce/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework

module.framework.web.generator.excluded.paths lists Liferay DXP’s Spring Framework JARs. Un-
derstanding Excluded JARs explains how to detect the Spring Framework version Liferay DXP
uses.

Note: If a dependency is an OSGi module JAR and Liferay DXP already exports your plugin’s
required packages, exclude the JAR from your plugin’sWAR file. This prevents your plugin from
exporting the same package(s) that Liferay is already exporting. This prevents class loader col-
lisions. To exclude a JAR from deployment, add its name to the your project’s liferay-plugin-

package.properties file’s deploy-excludes property.

deploy-excludes=\

⁎⁎/WEB-INF/lib/module-a.jar,\

⁎⁎/WEB-INF/lib/module-b.jar

Since my-spring-mvc-portlet’s dependencies aren’t OSGi modules, no JARs must be excluded.

To import class packages referenced by your portlet’s descriptor files, add the packages to an
Import-Package header in the liferay-plugin-package.properties file. See Deploying a Spring MVC
Portlet for details.

If you depend on a package from Java’s rt.jar other than its java.* packages, override portal
property org.osgi.framework.bootdelegation and add it to the property’s list. Go here for details.

Note: SpringMVC portlets whose embedded JARs contain properties files (e.g., spring.handlers,
spring.schemas, spring.tooling) might be affected by issue LPS-75212. The last JAR that has proper-
ties files is the only JAR whose properties are added to the resultingWAB’s classpath. Properties in
other JARs aren’t added.

Depploying a Spring MVC Portlet explains how to add all the embedded JAR properties.

The portlet is ready to deploy. Deploy it as you always have.
Liferay DXP’s WAB Generator converts the portlet WAR to aWeb Application Bundle (WAB) and

installs theWAB to Liferay’s OSGi Runtime Framework.

2018-04-12 19:28:36.810 INFO [com.liferay.portal.kernel.deploy.auto.AutoDeployScanner][AutoDeployDir:262] Processing my-spring-

mvc-portlet.war

2018-04-12 19:28:42.182 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][BaseAutoDeployListener:43] Copying portlets for C:\portals\liferay-

ce-portal-7.1-m1\tomcat-8.0.32\temp\20180412192842100ZSINUETA\my-spring-mvc-portlet.war

2018-04-12 19:28:42.706 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][BaseDeployer:876] Deploying my-spring-

mvc-portlet.war

2018-04-12 19:28:47.708 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][BaseAutoDeployListener:50] Portlets for C:\portals\liferay-

ce-portal-7.1-m1\tomcat-8.0.32\temp\20180412192842100ZSINUETA\my-spring-mvc-portlet.war copied successfully

2018-04-12 19:28:56.600 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][HotDeployImpl:226] Deploying my-spring-

mvc-portlet from queue

2018-04-12 19:28:56.601 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][PluginPackageUtil:1003] Reading plugin package for my-

spring-mvc-portlet

2018-04-12 19:28:56.700 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][PortletHotDeployListener:186] Registering portlets for my-

spring-mvc-portlet

2018-04-12 19:28:56.955 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][PortletHotDeployListener:298] 1 portlet for my-

spring-mvc-portlet is available for use

2018-04-12 19:28:57.114 INFO [fileinstall-C:/portals/liferay-ce-portal-7.1-m1/osgi/war][BundleStartStopLogger:35] STARTED my-

spring-mvc-portlet_7.1.0.1 [658]

You’ve upgraded a Spring MVC portlet to 7.0. Way to go!

112

https://docs.liferay.com/ce/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://docs.liferay.com/ce/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://issues.liferay.com/browse/LPS-75212

Related Topics

Spring MVC
Migrating Plugins SDK Projects toWorkspace and Gradle
Using Dependency Management Tools
Using theWAB Generator

9.7 Upgrading a Struts 1 Portlet

Struts is a stable, widely adopted framework that implements the Model View Controller (MVC)
design pattern. If you have a Struts portlet for previous versions of Liferay Portal, you can upgrade
it to 7.0.

Upgrading Struts portlets to 7.0 is easier than you might think. Liferay DXP lets you continue
working with Struts portlets as Java EE web applications.

This tutorial demonstrates how to upgrade a portlet that uses the Struts 1 Framework.
Here’s a sample Struts portlet’s folder structure with file/folder descriptions:

• sample-struts-portlet

– docroot/

* html/portlet/sample_struts_portlet/ → JSPs

* WEB-INF/

· lib/ → Required third-party libraries unavailable in the Liferay DXP system
· src/

· com/liferay/samplestruts/model/ →Model classes
· com/liferay/samplestruts/servlet/ → Test servlet and servlet context listener
· com/liferay/samplestruts/struts/

· action/ → Action classes that return View pages to the client
· form/ → ActionForm classes for model interaction
· render/ → Action classes that present additional pages and handle input
· SampleException.java → Exception class
· content/test/ → Resource bundles
· META-INF/ → Javadoc
· tld/ → Tag library definitions
· liferay-display.xml → Sets the application category
· liferay-plugin-package.properties → Sets metadata and portal dependencies
· liferay-portlet.xml →Maps descriptive role names to roles
· liferay-releng.properties → (internal) Release properties
· portlet.xml → Defines the portlet and its initialization parameters and security
roles

· struts-config.xml → Struts configuration
· tiles-defs.xml → Struts Tile definitions
· validation.xml → Defines form inputs for validation
· validation-rules.xml → Struts validation rules
· web.xml →Web application descriptor

– build.xml → Apache Ant build file

113

Upgrading a Struts 1 portlet involves these steps:

1. Adapt the portlet to 7.0’s API using the Liferay Upgrade Planner. When running the planner’s
Fix Upgrade Problems step, many of the existing issues are autocorrected. For remaining
issues, the planner identifies code affected by the new API and ways to adapt it.

2. Resolve its dependencies

You’ve resolved the Sample Struts portlet’s dependencies. It’s ready to deploy.

Important: Setting Portal property jsp.page.context.force.get.attribute (described in the JSP
section) to true (default) forces calls to com.liferay.taglib.servlet.PageContextWrapper#findAttribute(String)
to use getAttribute(String). Although this improves performance by avoiding unnecessary
fall-backs, it can cause attribute lookup problems in Struts portlets. To use Struts portlets in your
sites, makes sure to set the Portal property jsp.page.context.force.get.attribute to false in a file
[Liferay-Home]/portal-ext.properties.

jsp.page.context.force.get.attribute=false

On deploying a Struts portlet Web Application aRchive (WAR), Liferay DXP’sWeb Application
Bundle (WAB) Generator creates an OSGi module (bundle) for the portlet and installs it to Liferay’s
OSGi framework. The server prints messages indicating the following portlet status:

• WAR processing
• WAB startup
• Availability to users

The Struts portlet is now available on your Liferay DXP instance. The Struts portlet behaves
just as it did on previous versions on your 7.0 site.

Congratulations on upgrading your Struts portlet to 7.0!

9.8 Upgrading Web Plugins

Web plugins are regular Java EE web modules designed to work with Liferay DXP. These plugins
were stored in the webs folder of the legacy Plugins SDK.

Upgrading a Liferay web plugin involves these steps:

1. Adapt the plugin to 7.0’s API using the Liferay Upgrade Planner. When running the planner’s
Fix Upgrade Problems step, many of the existing issues are autocorrected. For remaining
issues, the planner identifies code affected by the new API and ways to adapt it.

2. Resolve its dependencies

3. Deploy it.

After deploying the upgraded portlet, the server prints messages that indicate the following
portlet status:

• WAR processing

114

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#JSP
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#JSP
https://docs.oracle.com/cd/E19226-01/820-7627/bnadx/index.html

• WAB startup
• Availability to users

You’ve upgraded and deployed your Liferay web plugin on your 7.0 instance. Great job!

9.9 Upgrading Ext Plugins

Ext plugins let you use internal APIs and even let you overwrite Liferay DXP core files. This puts
your deployment at risk of being incompatible with security, performance, or feature updates
released by Liferay. When upgrading to a new version of Liferay DXP, you must review all changes
and manually modify your Ext projects to merge your changes with Liferay DXP’s.

During your upgrade to 7.0, it’s highly recommended to leverage an extension point to customize
Liferay DXP instead of using you existing Ext plugin, if possible. 7.0 provides many extension
points that let you customize almost every detail of Liferay DXP. If there’s a way to customize
what you want with an extension point, do it that way instead. See the More Extensible, Easier to
Maintain section for more details on the advantages of using Liferay DXP’s extension points.

For more information on Ext projects, how to decide if you need one, and how to manage them,
see the Customization with Ext section.

9.10 Upgrading the Liferay Maven Build

If you’re an avid Maven user and have been using it for Liferay Portal 6.2 project development, you
must upgrade your Maven build to be compatible with 7.0 development. There are two main parts
of the Maven environment upgrade process that you must address:

• Upgrading to new 7.0 Maven plugins
• Updating Liferay Maven artifact dependencies

For more information on using Maven with 7.0, see the Maven tutorial section. For a guided
and expedited upgrade process for your Maven build, try the Liferay Upgrade Planner.

Liferay also offers a Maven development environment tailored specifically for 7.0 development.
Learn more about this in the MavenWorkspace tutorial.

You’ll start off by upgrading your Maven environment’s Liferay Maven plugins.

Upgrading to New 7.0 Maven Plugins

The biggest change for your project’s build plugins is the removal of the liferay-maven-plugin.
Liferay now provides several individual Maven plugins that accomplish specific tasks. For example,
you can configure Maven plugins for Liferay’s CSS Builder, Service Builder, Theme Builder, etc.
With smaller plugins available to accomplish specific tasks in your project, you no longer have to
rely on one large plugin that provides many things you may not want.

For example, suppose your Liferay Portal 6.2 project was using the liferay-maven-plugin for Lif-
eray CSS Builder only. First, you should remove the legacy liferay-maven-plugin plugin dependency
from your project’s pom.xml file:

115

<plugin>

<groupId>com.liferay.maven.plugins</groupId>

<artifactId>liferay-maven-plugin</artifactId>

<version>${liferay.version}</version>

<configuration>

<autoDeployDir>${liferay.auto.deploy.dir}</autoDeployDir>

<liferayVersion>${liferay.version}</liferayVersion>

<pluginType>portlet</pluginType>

</configuration>

</plugin>

Then, add the CSS Builder plugin dependency to your project’s pom.xml file:

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.css.builder</artifactId>

<version>1.0.21</version>

<executions>

<execution>

<id>default-build</id>

<phase>generate-sources</phase>

<goals>

<goal>build</goal>

</goals>

</execution>

</executions>

<configuration>

<docrootDirName>src/main/webapp</docrootDirName>

</configuration>

</plugin>

Some common Liferay Maven plugins are listed below, with their corresponding artifact IDs
and tutorials explaining how to configure them:

Common Liferay Maven Plugins

Name Artifact ID Tutorial

Bundle Support com.liferay.portal.tools.bundle.support Coming Soon
CSS Builder com.liferay.css.builder Compiling SASS Files in a

Maven Project
DB Support com.liferay.portal.tools.db.support DB Support Plugin
Deployment
Helper

com.liferay.deployment.helper Coming Soon

Javadoc Formatter com.liferay.javadoc.formatter Coming Soon
Lang Builder com.liferay.lang.builder Coming Soon
Service Builder com.liferay.portal.tools.service.builder Service Builder Plugin
Source Formatter com.liferay.source.formatter Source Formatter Plugin
Theme Builder com.liferay.portal.tools.theme.builder Theme Builder Plugin
TLD Formatter com.liferay.tld.formatter Coming Soon
WSDD Builder com.liferay.portal.tools.wsdd.builder Coming Soon
XML Formatter com.liferay.xml.formatter Coming Soon

In Liferay Portal 6.2, you were also required to specify all your app server configuration settings.
For example, your parent POM probably contained settings similar to these:

<properties>

<liferay.app.server.deploy.dir>

116

https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.portal.tools.bundle.support
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.css.builder
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.portal.tools.db.support
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.deployment.helper
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.javadoc.formatter
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.lang.builder
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.portal.tools.service.builder
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.source.formatter
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.portal.tools.theme.builder
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.tld.formatter
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.portal.tools.wsdd.builder
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.xml.formatter

E:\liferay-portal-6.2.0-ce-ga1\tomcat-7.0.42\webapps

</liferay.app.server.deploy.dir>

<liferay.app.server.lib.global.dir>

E:\liferay-portal-6.2.0-ce-ga1\tomcat-7.0.42\lib\ext

</liferay.app.server.lib.global.dir>

<liferay.app.server.portal.dir>

E:\liferay-portal-6.2.0-ce-ga1\tomcat-7.0.42\webapps\root

</liferay.app.server.portal.dir>

<liferay.auto.deploy.dir>

E:\liferay-portal-6.2.0-ce-ga1\deploy

</liferay.auto.deploy.dir>

<liferay.version>

6.2.0

</liferay.version>

<liferay.maven.plugin.version>

6.2.0

</liferay.maven.plugin.version

</properties>

This is no longer required in 7.0 because Liferay’s Maven tools no longer rely on your Liferay
DXP installation’s specific versions. You should remove them from your POM file.

Awesome! You’ve learned about the newMaven plugins available to you for 7.0 development.
Next, you’ll learn about updating your Liferay Maven artifacts.

Updating Liferay Maven Artifact Dependencies

Many Liferay Portal 6.2 artifact dependencies you were using have changed in 7.0. See the table
below for popular Liferay Maven artifacts that have changed:

Liferay Portal 6.2 Artifact ID 7.0 Artifact ID

portal-service com.liferay.portal.kernel

util-bridges com.liferay.util.bridges

util-java com.liferay.util.java

util-slf4j com.liferay.util.slf4j

util-taglib com.liferay.util.taglib

For more information on resolving dependencies in 7.0, see the Resolving a Plugin’s Dependen-
cies tutorial.

Of course, you must also update the artifacts you’re referencing for your projects. If you’re
using the Central Repository to install Liferay Maven artifacts, you won’t need to do anything more
than update the artifacts in your POMs. If, however, you’re working behind a proxy or don’t have
Internet access, youmust update your company-shared or local repository with the latest 7.0 Maven
artifacts. See the Installing Liferay Maven Artifacts tutorial for instructions.

With these updates, you can easily upgrade your Liferay Maven build so you can begin develop-
ing traditional plugin projects for 7.0.

117

CHAPTER 10

OPTIMIZING PLUGINS FOR 7.0

Once you’ve upgraded your plugin, you can optimize it to take advantage of all 7.0 offers. If you
haven’t yet familiarized yourself with what’s changed from Liferay Portal 6, the new benefits for
developers, OSGi and modularity, and the improved tooling, make sure to do so as they’ll help you
understand and appreciate the optional improvements for plugins and plugin development these
tutorials demonstrate.

Here are some common optimizations to consider:

• Migrating to environments that help you develop and test more quickly, such as the Liferay
Theme Generator for themes and LiferayWorkspace for modules and web applications.

• Adapting plugins to Liferay’s modular architecture and updated frameworks, such as Service
Builder.

• Styling your app consistently using Clay –theweb implementation of Lexicon, Liferay’s design
language.

• Modularizing apps to reap the benefits of modularity.

10.1 Migrating Traditional Plugins to Workspace Web Applications

After you’ve adapted your traditional plugin to Liferay DXP’s API, you can continue maintaining
it in the Plugins SDK 7.0. The Plugins SDK, however, is no longer available for 7.0. Visit the
Deprecated Apps in 7.1: What To Do article for more information on the Plugins SDK removal.
Liferay Workspace replaces the Plugins SDK, providing a comprehensive Gradle development
environment and more. A simple command migrates traditional plugins (such as portlets) to
Gradle-based web application projects. From there you can build and deploy them to Liferay DXP
asWeb ARchives (WARs).

Running the Migration Command

Blade CLI’s convert command migrates Plugins SDK plugins to web application projects in
Workspace’s wars folder. Plugin files are re-organized to follow the standard web application folder
structure.

StandardWeb Application Anatomy:

119

• [project root]

– src

* main

· webapp

· WEB-INF

· classes

· lib → Libraries
· descriptor files

· css → CSS files
· js → JavaScript files
· icons

· JSP files

* java → Java source

– build files

From the command line, navigate to the LiferayWorkspace root folder. Then pass your Plugins
SDK project’s name to Blade’s convert command:

blade convert [PLUGIN_PROJECT_NAME]

Blade extracts the plugin from the Plugins SDK and reorganizes it in a standard web application
project inWorkspace’s wars folder.

Note: Executing blade convert -l lists Plugins SDK projects that can be migrated toWorkspace
web apps. Run blade convert --all to migrate all the plugin projects.

The image below shows the plugin files before and after they’re migrated toWorkspace web
apps.

The following table maps traditional plugin source files to the standard web application folder
structureWorkspace uses.

Plugins SDK folders to web application folders:

Files Plugins SDK folder (old) Web app folder (new)

Java docroot/WEB-INF/src src/main/java

JSPs docroot src/main/webapp

icons docroot src/main/webapp

CSS docroot/css src/main/webapp/css

JS docroot/js src/main/webapp/js

descriptors docroot/WEB-INF src/main/webapp/WEB-INF

libraries docroot/WEB-INF/lib src/main/webapp/lib

From your plugin’s new location, you can invoke Workspace Gradle tasks on it and build its
.war file.

blade gw war
To deploy the .war, copy it from the plugin’s build/libs folder to the [LIFERAY_HOME]/deploy

folder.
Welcome to your plugin’s new home inWorkspace!

120

Figure 10.1: The convert commandmigrates a Plugins SDK project to a Workspace web application project. It moves Java source files to src/main/java and all other
files/folders to src/main/webapp.

Related Topics

Workspace Development lifecycle
Workspace Gradle Tasks

121

CHAPTER 11

MODULARIZING PLUGINS

As described in Benefits of Liferay 7 for Liferay 6 Developers, applications that comprise OSGi
modules offer considerable advantages over monolithic applications.

The main benefit is that modular development practices structure code in ways that reduce
maintenance costs. These practices involve, for example, defining contracts (such as APIs) more
clearly, hiding internal classes, and handling dependencies more carefully. Related to this, Java
package dependencies are explicitly listed within a module. Modules run only when all their
dependencies are met. This eliminates many obscure run time errors.

Splitting large applications into small independent modules lets you focus on smaller release
cycles for those modules. Individual modules can be updated independently of the others. For
instance, you might fix a JSP’s security issue in an application’s web (client) module. The issue only
affects that module–none of the application’s other modules need change.

The scenarios described below can help you decide whether to convert an application to
modules.

When not to convert?

• You have a portlet that’s JSR-168/286 compatible and you still want to be able to deploy it
to another portlet container. In this case, it’s best to stay with the traditional WAR model.
(To eliminate this reason for not converting, Liferay is discussing with other vendors the
possibility of making modular portlets a standard.)

• You’re using a complex web framework that is heavily tied to the Java EE programming
model and the amount of effort necessary to make it work with OSGi is more than you feel is
necessary or warranted.

• You want to minimize effort to get your application working on 7.0.

When to convert?

• You have a very large application with many lines of code. If you have lots of developers
making changes, separating the code intomodules canmake it easier and faster to get releases
out.

• Your application has reusable parts that you want to consume outside of it. For instance,
your application has business logic that you’re reusing in different projects. Modules let you
consume their services from other modules.

• In general, you want to start reaping the benefits of modular development.

123

You can nowmake an informed decision on whether to stick with your upgraded traditional
application as is or modularize it to leverage modularity.

124

CHAPTER 12

MODULARIZING AN EXISTING PORTLET

An application with properly modularized plugins offers several benefits. You can release individ-
ually its plugins without releasing the entire application. External clients can consume services
from particular plugins without having to depend on an entire application. And by splitting up
large amounts of code into concise modules, teams can more easily focus on particular areas of
the application. These are just a few reasons to modularize application plugins.

In these tutorials, you’ll learn how to convert your traditional application into modules. Before
getting started, it’s important to reiterate that the module structure shown in these tutorials is
just one of many ways for structuring your application’s modules. Also applications come in all
different shapes and sizes. There may be special actions that some applications require. These
tutorials provide the general process for converting to modules using Liferay’s module structure.

Here’s what’s involved:

• Converting portlet classes and the UI
• Converting Service Builder interfaces and implementations
• Building and deploying modules

The instructions apply to portlets for both Liferay DXP Digital Enterprise and Liferay Portal CE.
The first thing you’ll do is create your application’s web (client) module.

12.1 Converting Your Application's Portlet Classes and UI

The first thing you’ll do is create your application’s root folder and the folder structure for its
web client module. This module holds portlet classes and the web UI. Before you start creating
a skeleton structure for the modules, determine the modules that comprise this version of your
application. If your application provides service API and implementation classes (which is the case
for all Liferay Service Builder applications), you’ll create separate modules for them. This tutorial
assumes the Maven project model, although any build tools or folder structure is permissible.

Note: You should use the build plugin versions that support the latest OSGi features. The fol-
lowing Gradle or Maven build plugin versions should be used in their respective build frameworks:

Gradle

125

• biz.aQute.bnd:biz.aQute.bnd.gradle:3.2.0 or
• org.dm.gradle:gradle-bundle-plugin:0.9.0

Maven

• biz.aQute.bnd:bnd-maven-plugin:3.2.0

Here are the steps for creating the folder structure:

1. Create the root folder. It is the new home for your application’s independent modules and
configuration files. For example, if your application’s name is Tasks, then your root folder
could be tasks.
If your application uses Liferay Service Builder, use the following Blade CLI command to
generate the parent folder and service implementation and service API modules in it. If the
parent folder already exists, it must be empty. This command names the parent folder after
the APPLICATION_NAME:

blade create -t service-builder -p [ROOT_PACKAGE] [APPLICATION_NAME]

The *-service and *-apimodule folders are described later in this tutorial.

2. Create the folder structure for your web client module. Blade CLI andMaven generate project
folder structures based on project templates.
For example, navigate to the root folder (e.g., tasks) and run the following Blade CLI command
to generate a generic web client module structure:

blade create -t mvc-portlet [APPLICATION_NAME]-web

3. In your *-web module, replace the /src/main/java/[APPLICATION_NAME] folder with your root
Java package. For example, if your application’s root package name is com.liferay.tasks.web,
your class’s folder should be /src/main/java/com/liferay/tasks/web. Also, remove the init.jsp
and view.jsp files from the src/main/resources/META-INF/resources folder. You’ll use your ex-
isting application’s JSPs instead of these generated default JSPs.

4. Verify that your *-web module folder resides in your application’s root folder (marked by
[APPLICATION_NAME] below)’s and your *-webmodule’s folder structure looks like this:

• [APPLICATION_NAME]

– [APPLICATION_NAME]-web

* src

· main

· java

· [ROOT_PACKAGE]

· resources

126

· content

· Language.properties

· META-INF

· resources

* bnd.bnd

* build.gradle

The remaining steps affect the web client module (*-webmodule).

5. The bnd.bnd file is used to generate yourmodule’s MANIFEST.MF file when you build your project.
Open it and change it to fit your application. There’s further documentation about configuring
your module’s bnd.bnd. For example, here’s the Liferay dictionary-webmodule’s bnd.bnd:

Bundle-Name: Liferay Dictionary Web

Bundle-SymbolicName: com.liferay.dictionary.web

Bundle-Version: 1.0.6

For a more advanced example, examine the journal-webmodule’s bnd.bnd:

Bundle-Name: Liferay Journal Web

Bundle-SymbolicName: com.liferay.journal.web

Bundle-Version: 2.0.0

Export-Package:\

com.liferay.journal.web.asset,\

com.liferay.journal.web.dynamic.data.mapping.util,\

com.liferay.journal.web.social,\

com.liferay.journal.web.util

Liferay-JS-Config: /META-INF/resources/js/config.js

Liferay-Releng-Module-Group-Description:

Liferay-Releng-Module-Group-Title: Web Content

Web-ContextPath: /journal-web

6. Open the build.gradle file. Specify all your module’s dependencies here. The one gener-
ated for you is pre-populated with content and default dependencies. Add your module’s
dependencies in the dependencies {...} block.
Finding Liferay API Modules lists common Liferay API module’s symbolic names. The
Javadoc overviews for 7.0 and Liferay apps list eachmodule’s symbolic name and version. The
Configuring Dependencies tutorial demonstrates finding artifact information and specifying
dependencies. Liferay DXP provides many Java packages and entire artifacts at runtime
in the OSGi container. Your module is activated after installation once all its dependencies
resolve. Unresolved dependencies appear in the log. Here’s an example message:

! could not resolve the bundles: ... Unresolved requirement: Import-Package: ... Unresolved requirement: Require-

Capability ...

7. Copy your traditional application’s JSP files into the /src/main/resources/META-INF/resources

folder. In most cases, all of your application’s JSP files belong in the web client module.

8. Copy your portlet classes and supporting classes that aren’t related to Service Builder into their
respective package folders in the web client module. Organizing classes into sub-packages
can make them easier to manage.
For example, here’s the journal-webmodule’s Java source folder structure:

127

http://bnd.bndtools.org/
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/
https://docs.liferay.com/dxp/apps/7.1-latest/javadocs

• journal-web

– …
– src/main/java/com/liferay/journal/web/

* asset

· [classes]

* configuration

· [classes]

* dynamic/data/mapping/util

· [classes]

* internal

· application/list

· [classes]

· custom/attributes

· [classes]

· dao/search

· [classes]

· …

* social

· [classes]

* util

· [classes]

– …

Note: Many applications have API and implementation classes. These

classes belong in API and implementation modules. The next tutorial

demonstrates copying those classes into modules.

128

9. Now that the necessary classes are in your client module, you must make them comply
with OSGi. If you’re a beginner, we recommend using the Declarative Services component
framework because Liferay DXP uses it. This tutorial assumes that you’re using Declarative
Services. You can, however, use any other OSGi component framework.
Review your traditional application’s XML files and migrate the configuration and metadata
information to the portlet class as component properties. You can do this by adding the
@Component annotation to your portlet class and adding the necessary properties to that anno-
tation. Examine the mapping of the portlet descriptors to component properties. The end
result should look similar to the following example:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.icon=/icon.png",

"javax.portlet.name=1",

"javax.portlet.display-name=Tasks Portlet",

"javax.portlet.security-role-ref=administrator,guest,power-user",

"javax.portlet.init-param.clear-request-parameters=true",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.expiration-cache=0",

"javax.portlet.supports.mime-type=text/html",

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.info.title=Tasks Portlet",

"javax.portlet.info.short-title=Tasks",

"javax.portlet.info.keywords=Tasks",

},

service = Portlet.class

)

public class TasksPortlet extends MVCPortlet {

...

}

10. Convert all references of the portletId (e.g., 58_INSTANCE_4gtH) to the class name of the portlet,
replacing all periods with underscores (e.g., com_liferay_web_proxy_portlet_WebProxyPortlet).

11. Migrate your traditional application’s resource actions (if it has any), into your client module.
Create the /src/main/resources/resource-actions/default.xml file, and copy your resource
actions there. Make sure to create the src/portlet.properties file and add the following
property:

resource.actions.configs=resource-actions/default.xml

As an example, see the Directory application’s default.xml.
Note that the permissions API has changed in 7.1; adapt your permissions helpers accordingly.

12. Add your language keys to the src/main/resources/content/Language.properties file. Only in-
clude the language keys unique to your application. Liferay DXP’s language keys are available
to all portlet applications.

Awesome! You’ve created your application’s web client module and completed some of the
most common tasks for modularizing your portlet classes and UI. To convert other parts of your
application this tutorial hasn’t covered, examine the Liferay DXP developer tutorials to see how
those parts fit into application modules. The tutorials are divided into popular areas so you can
easily find the topical information you need.

129

https://osgi.org/specification/osgi.cmpn/7.0.0/service.component.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/directory/directory-web/src/main/resources/resource-actions/default.xml

Lastly, the table below is a quick reference guide that maps files and Java packages from a
traditional portlet plugin to a module for a fictitious application called tasks-portlet.

Traditional Plugin | Module | tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.asset |
tasks-web/src/main/java/com.liferay.tasks.asset | tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.portlet
| tasks-web/src/main/java/com.liferay.tasks.portlet | tasks-portlet/docroot/WEB-INF/src/content
| tasks-web/src/main/resources/content | tasks-portlet/docroot/WEB-INF/src/resource-actions |
tasks-web/src/main/resources/resource-actions | tasks-portlet/docroot/WEB-INF/src/portlet.properties
| tasks-web/src/main/resources/portlet.properties | tasks-portlet/docroot/init.jsp | tasks-

web/src/main/resources/META-INF/resources/init.jsp | tasks-portlet/docroot/tasks | tasks-

web/src/main/resources/META-INF/resources/tasks | tasks-portlet/docroot/upcoming_tasks | tasks-
web/src/main/resources/META-INF/resources/upcoming_tasks |

Many applications only have a web client module. Larger, more complex applications, such
as Liferay Service Builder applications, require additional modules to hold their service API and
service implementation logic. You’ll learn how to create these modules next.

12.2 Converting Your Application's Service Builder API and Implementation

In this tutorial, you’ll learn about converting a Liferay Portal 6 Service Builder application to a 7.0
style application. In the previous tutorial, you learned how to generate your implementation and
APImodules. If you haven’t yet run the service-builderBlade CLI command outlined in step 2 of the
previous tutorial, run it now. The API module holds your application’s Service Builder-generated
API and the implementation module holds your application’s Service Builder implementation.

Before you begin editing the API and implementation modules, you must configure your root
project (e.g., tasks) to recognize the multiple modules residing there. A multi-module Gradle
project must have a settings.gradle file in the root project for building purposes. When you
generated your Service Builder project’s modules using Blade CLI, the settings.gradle file was
inserted and pre-configured for the api and servicemodules. You should add your webmodule into
the Service Builder project’s generated parent folder and define it in the settings.gradle file too.
You’ll configure your webmodule via Gradle settings later, but for now, copy the module into the
project generated by the service-builder template. An example tasks project’s root folder would
look like this:

• tasks

– gradle

– tasks-api

– tasks-service

– tasks-web

– build.gradle

– gradlew

– settings.gradle

Your root project folder should now be in good shape. Next, use Service Builder to generate
your application’s service API and service implementation code.

130

1. Copy your traditional application’s service.xml file into the implementation module’s root
folder (e.g., tasks/tasks-service).

2. Blade CLI generated a bnd.bnd file for your service implementation module. Edit this bnd.bnd
file to fit your application. For an example of a service implementation module’s bnd file,
examine the export-import-servicemodule’s bnd below:

Bundle-Name: Liferay Export Import Service

Bundle-SymbolicName: com.liferay.exportimport.service

Bundle-Version: 4.0.0

Export-Package:\

com.liferay.exportimport.content.processor.base,\

com.liferay.exportimport.controller,\

com.liferay.exportimport.data.handler.base,\

com.liferay.exportimport.lar,\

com.liferay.exportimport.lifecycle,\

com.liferay.exportimport.messaging,\

com.liferay.exportimport.portlet.preferences.processor.base,\

com.liferay.exportimport.portlet.preferences.processor.capability,\

com.liferay.exportimport.search,\

com.liferay.exportimport.staged.model.repository.base,\

com.liferay.exportimport.staging,\

com.liferay.exportimport.xstream

Liferay-Releng-Module-Group-Description:

Liferay-Releng-Module-Group-Title: Data Management

Liferay-Require-SchemaVersion: 1.0.0

-includeresource: content=../../staging/staging-lang/src/main/resources/content

3. Blade CLI also generated your service implementation module’s build.gradle file. In this file,
Service Builder is already configured to generate code both in this module and in your service
API module. When you run Service Builder, Java classes, interfaces, and related files are
generated in your *api and *servicemodules. Open your service implementation module’s
build.gradle file to view the default configuration.
As you’ve learned already, you don’t have to accept the generated build files’ defaults. Blade
CLI simply generated some standard OSGi and Liferay configurations.
For example, Service Builder is already available for you by default. Blade CLI applies the
Service Builder plugin automatically when a project contains the service.xml file. With the
Service Builder plugin already available, you don’t have to worry about configuring it in your
project.

4. Another important part of your service implementation module’s build.gradle file is the
buildService{...} block. This block configures how Service Builder runs for your project.
The current configuration generates your API module successfully, but extra configuration
might be necessary in certain cases.

5. Navigate to your root project folder. Then run gradlew buildService.
Your service API, implementation classes, and configuration (SQL, Hibernate, Spring, etc.)
are generated from your service.xml file in their respective modules. The Service Builder
Gradle Plugin has multiple options.

6. Now that you’ve run Service Builder, copy your business logic classes into your implementa-
tion module. The table below highlights popular Liferay Portal 6 classes and packages and
where to place them in your application. This table suggests how to organize your classes
and configuration files; however, remember to follow the organizational methodologies that

131

make the most sense for your application. One size does not fit all with your modules’ folder
schemes.

Plugin Package | Module Package |

----------------|----------------|

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.model.impl` | `tasks-service/src/main/java/com.liferay.tasks.model.impl` |

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.service.impl` | `tasks-service/src/main/java/com.liferay.tasks.service.impl` |

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.service.permission` | `tasks-service/src/main/java/com.liferay.tasks.service.permission` |

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.service.persistence.impl` | `tasks-service/src/main/java/com.liferay.tasks.service.persistence.impl` |

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.social` | `tasks-service/src/main/java/com.liferay.tasks.social` |

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.util` | `tasks-service/src/main/java/com.liferay.tasks.util` |

`tasks-portlet/docroot/WEB-INF/src/custom-sql` | `tasks-service/src/main/resources/META-INF/custom-sql` |

7. Once you’ve copied your business logic, run gradlew buildService again to generate the re-
maining services.

Now that your services are generated, you must wire up your modules so they can reference
each other when deployed to Liferay’s OSGi container. Blade CLI has already partially completed
this task. For example, it assumes that the service implementation module depends on the service
API module.

You still need to associate the client module with the api and servicemodules, since they were
generated separately. To do this, follow the steps below:

1. In your root project’s settings.gradlefile, add the webmodulewith the api and servicemodules
so it’s included in the Gradle build lifecycle:

include "tasks-api", "tasks-service", "tasks-web"

2. Add the api and servicemodules as dependencies in you client module:

dependencies {

compileOnly project(':tasks-api')

compileOnly project(':tasks-service')

}

Excellent! You’ve successfully generated your application’s services using Service Builder. They
now reside in modules, and can be deployed to 7.0.

12.3 Building Your Application's Module JARs for Deployment

Now it’s time to build and deploy your modules. To build your project, run gradlew build from your
application project’s root folder.

Now check all of your modules’ /build/libs folders. There should be a newly generated JAR file
in each, which is the file to deploy. You can deploy each JAR by running blade deploy from each
module’s root folder.

132

Note: If you deploy yourmodules out of order, youmight receive errormessages. For instance, if
you try deploying yourweb clientmodule first, errors occur if it relies on the service implementation
and service API modules. Once each module’s dependencies are met, they deploy in Liferay. Felix
Gogo Shell commands let you check module dependencies.

Once you’ve successfully deployed your modules, you can list them from the Gogo shell as
shown below.

Figure 12.1: Once you’ve connected to your Liferay instance in your Gogo shell prompt, run lb to list your new converted modules.

These tutorials explained how to convert your traditional application into the modular format
of a 7.0 style application. Specifically, you learned how to

• Create a web client (*-web) module that holds your application’s portlet classes and UI.
• Create a service implementation module (*-service) and a service API module (*-api).
• Run Service Builder to generate code for your application’s service and API modules.
• Wire your modules together by declaring their dependencies on each another.
• Build your modules and deploy them to your Liferay DXP installation.

Great job!
Related Topics
Portlets
Service Builder

12.4 Migrating Data Upgrade Processes to the New Framework for Modules

When you make database changes to your application, you must use a data upgrade process to
migrate users’ existing data to the new database schema. While the old framework required several
classes, the new framework can orchestrate the upgrade steps from a single class. Managing the
steps from one class facilitates developing upgrade processes. The data upgrade framework you
use depends on your development framework. This tutorial shows you how to migrate to the new
framework.

• If your upgraded plugin is a traditionalWAR, you don’t need to do anything special; existing
upgrade processes adapted to 7.0’s API work as is. The new data upgrade framework is for
modules only.

• If you converted your upgraded plugin to a module or you have an upgraded module, you
must migrate any upgrade processes you want to continue using to the new data upgrade
framework.

133

You can migrate any number of old upgrade processes (starting with the most recent ones) to
the new framework. For example, if your module has versions 1.0, 1.1, 1.2, and 1.3, but you only
expect customers on versions 1.2 and newer to upgrade, you might migrate upgrade processes for
versions 1.2 and 1.3 only.

Before beginning, make sure you know how to create an upgrade process that uses the new
framework.

Note: Liferay Portal 6 plugins may also include verify processes. Although you can migrate
the verify processes to 7.0 without any changes, it’s a best practice to perform verification in your
upgrade processes instead.

First, you’ll review how Liferay Portal 6 upgrade processes work.

Understanding Liferay Portal 6 Upgrade Processes

Before getting started, it’s important to understand how Liferay Portal 6 upgrade processes are
structured. As an example, you’ll use the Liferay Portal 6.2 upgrade process for the Knowledge
Base Portlet.

In Liferay Portal 6 upgrade processes, the upgrade step classes for each schema version are
in folders named after their schema version. For example, the Knowledge Base Portlet’s upgrade
step classes are in folders named v1_0_0, v1_1_0, v1_2_0, and so on. Each upgrade step class ex-
tends UpgradeProcess and overrides the doUpgrade method. The code in doUpgrade performs the
upgrade. For example, the Knowledge Base Portlet’s v1_0_0/UpgradeRatingsEntry upgrade step ex-
tends UpgradeProcess and performs the upgrade via the updateRatingsEntries() call in its doUpgrade
method:

public class UpgradeRatingsEntry extends UpgradeProcess {

@Override

protected void doUpgrade() throws Exception {

updateRatingsEntries();

}

...

protected void updateRatingsEntries() throws Exception {

// Upgrade code

}

...

}

The upgrade process classes are on the same level as the folders containing the upgrade steps
and are also named after their schema version. For example, the Knowledge Base Portlet’s up-
grade process classes are named UpgradeProcess_1_0_0, UpgradeProcess_1_1_0, UpgradeProcess_1_2_0,
and so on. Each upgrade process class also extends UpgradeProcess and runs the upgrade pro-
cess in the doUpgrade method. It runs the upgrade process by passing the appropriate upgrade
step to the upgrade method. For example, the doUpgrade method in the Knowledge Base Portlet’s
UpgradeProcess_1_0_0 class runs the upgrade steps UpgradeRatingsEntry and UpgradeRatingsStats via
the upgrademethod:

@Override

protected void doUpgrade() throws Exception {

134

https://github.com/liferay/liferay-plugins/tree/6.2.x/portlets/knowledge-base-portlet/docroot/WEB-INF/src/com/liferay/knowledgebase/hook/upgrade
https://github.com/liferay/liferay-plugins/blob/6.2.x/portlets/knowledge-base-portlet/docroot/WEB-INF/src/com/liferay/knowledgebase/hook/upgrade/v1_0_0/UpgradeRatingsEntry.java
https://github.com/liferay/liferay-plugins/blob/6.2.x/portlets/knowledge-base-portlet/docroot/WEB-INF/src/com/liferay/knowledgebase/hook/upgrade/UpgradeProcess_1_0_0.java

upgrade(UpgradeRatingsEntry.class);

upgrade(UpgradeRatingsStats.class);

}

Now that you know how Liferay Portal 6 upgrade processes are defined, you’ll learn how to
convert them to the new upgrade process framework in 7.0.

Converting your Liferay Portal 6 Upgrade Process to 7.0

So how do Liferay Portal 6 upgrade processes compare to those that use the new upgrade process
framework? First, the upgrade step classes are the same, so you can leave them unchanged. Here
are the big changes in the new upgrade processes:

• A single registrator class replaces upgrade process classes.
• Service Builder services require a Bundle Activator.

Start your conversion by creating a registrator class.

Create a Registrator Class

The newdata upgrade framework requires using registrator class instead of upgrade process classes.
You must combine your upgrade process classes’ functionality into a single registrator class. Recall
from the data upgrade process tutorial that registrators define an upgrade process that the upgrade
process framework executes. Each registry.register call in the registrator registers the appropriate
upgrade steps for each schema version. You must therefore transfer the functionality of your old
upgrade process classes’ doUpgrademethods into a registrator’s registry.register calls.

For example, click here to see the Knowledge Base Portlet’s new 7.0 upgrade process in GitHub.
Besides some additional upgrade step classes to handle changes made to the portlet

for 7.0, the only difference in this upgrade process is that it contains a single registra-
tor class, KnowledgeBaseServiceUpgrade, instead of multiple upgrade process classes. The
KnowledgeBaseServiceUpgrade class, like all registrators, calls the appropriate upgrade steps for each
schema version in its registry.register calls. For example, the first registry.register call registers
the upgrade process for the 1.0.0 schema version:

registry.register(

"com.liferay.knowledge.base.service", "0.0.1", "1.0.0",

new com.liferay.knowledge.base.internal.upgrade.v1_0_0.

UpgradeRatingsEntry(),

new com.liferay.knowledge.base.internal.upgrade.v1_0_0.

UpgradeRatingsStats());

Compare this to the above doUpgrademethod from the corresponding Liferay Portal 6 upgrade
process class UpgradeProcess_1_0_0. Both call the same upgrade steps.

Next, create a Bundle Activator if your modularized plugin uses Service Builder.

Create a Bundle Activator

If your module implements Service Builder services, it needs a Bundle Activator to initialize a
record in the release table. Creating a Bundle Activator is straightforward.

That’s it! For instructions on creating new upgrade processes for 7.0, including complete steps
on creating a registrator, click here.

135

https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/knowledge-base/knowledge-base-service/src/main/java/com/liferay/knowledge/base/internal/upgrade
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/knowledge-base/knowledge-base-service/src/main/java/com/liferay/knowledge/base/internal/upgrade/KnowledgeBaseServiceUpgrade.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/knowledge-base/knowledge-base-service/src/main/java/com/liferay/knowledge/base/internal/upgrade/KnowledgeBaseServiceUpgrade.java
https://github.com/liferay/liferay-plugins/blob/6.2.x/portlets/knowledge-base-portlet/docroot/WEB-INF/src/com/liferay/knowledgebase/hook/upgrade/UpgradeProcess_1_0_0.java
https://github.com/liferay/liferay-plugins/blob/6.2.x/portlets/knowledge-base-portlet/docroot/WEB-INF/src/com/liferay/knowledgebase/hook/upgrade/UpgradeProcess_1_0_0.java

Related Topics

Creating Data Upgrade Processes for Modules
Upgrading Plugins to 7.0
From Liferay Portal 6 to 7

136

CHAPTER 13

FROM LIFERAY DXP 7.0 TO 7.1

7.0 offers new and improved frameworks and APIs that make your plugins faster, more secure, and
easier to maintain. Upgrading plugins from Liferay DXP 7.0 to 7.1 is easier than ever too. These
tutorials show you how:

• Upgrading Plugins
• Upgrading Themes
• Upgrading Layout Templates

Upgrading plugins (portlets, customizations, and extensions) is up first.

137

CHAPTER 14

UPGRADING PLUGINS FROM LIFERAY DXP 7.0 TO 7.1

LiferayWorkspace’s Target Platform feature and Upgrade Planner take a lot of manual intervention
out of upgrading to 7.0. Target Platform facilitates updating dependencies to 7.0, and the Upgrade
Planner helps you adapt plugins to 7.0’s API. This tutorial explains the plugin upgrade steps.

Note: Blade CLI’s convert command migrates traditional plugins to LiferayWorkspace, so you
can leverageWorkspace’s upgrade features.

Here are the plugin upgrade steps:

1. Update your LiferayWorkspace to that latest version.

2. Update your Liferay DXP-related dependencies by setting your Target Platform to the latest
version of 7.0. (Optional)

3. Update your plugin’s remaining dependencies.

4. Adapt your code to 7.0’s API using the Upgrade Planner. The Upgrade Tool shows you where
breaking changes affect your code and addresses many of them automatically.

Congratulations! Your upgraded plugin is ready to deploy to 7.0.

Note: If your plugin resides outside of aWorkspace, apply the Target Platform Gradle plugin to
your project so you can set that project’s Target Platform.

14.1 Related Topics

LiferayWorkspace
Managing Target Platforms forWorkspace
Configuring Dependencies
Liferay Dev Studio

139

CHAPTER 15

UPGRADING 7.0 THEMES

If you’ve developed themes in Liferay DXP 7.0, as part of your upgrade you’ll want to use them
in 7.0. The upgrade process requires several modifications. The Liferay Theme Generator helps
automate this process.

The following tutorials show you how to upgrade your Liferay Portal 7.0 themes to 7.0:

• Upgrading 7.0 Themes to 7.1

15.1 Upgrading 7.0 Layout Templates

If you’ve developed layout templates in Liferay DXP 7.0, you can upgrade them for 7.0. The upgrade
process requires minimal changes.

The following tutorial shows you how to upgrade your Liferay Portal 7.0 layout templates to 7.0:

• Upgrading 7.0 Layout Templates to 7.1

141

CHAPTER 16

DEVELOPING A WEB APPLICATION

In this Learning Path, you’ll create the Liferay Guestbook Web Application from scratch using
tools like Liferay Dev Studio DXP and Blade tools. As you create this application, you’ll learn how
to create a back-end database, web services, a security model, UI, and more using all the best
practices and standards. Completing this Learning Path prepares you to write your own application
and further explore Liferay’s APIs.

To develop a web application with Liferay, start at the beginning: setting up a Liferay devel-
opment environment. Though you can use anything from a text editor and the command line to
your Java IDE of choice, Liferay Dev Studio DXP optimizes development on Liferay’s platform. It
integrates Liferay’s Blade tools for modular development.

Once you set up your development environment, you can create the application. Frommodeling
data to Service Builder, you’ll learn everything you need to know to create and run your application.

From there you’ll see everything from UI standards to providing remote services. Once every-
thing is completed and wrapped up with a bow, you can distribute the application on Marketplace.

Let’s Go!

16.1 Development Setup Overview

Liferay’s development tools help you get started fast. The basic steps for installing Liferay Dev
Studio DXP are

• Download a Liferay Dev Studio DXP bundle.

• Unzip the downloaded package to a location on your system.

• Start Dev Studio DXP.

You’ll follow these steps and then generate an environment for developing your first Liferay
DXP application.

Installing a Liferay Dev Studio DXP Bundle

Follow these steps:

143

1. Download and install the Java Development Kit (JDK). Liferay DXP runs on Java. The JDK is
required because you’ll be developing Liferay DXP apps in Liferay Dev Studio DXP. The JDK
is an enhanced version of the Java Environment used for developing new Java technology.
Use JDK 8 or JDK 11.

2. Download and install Liferay Dev Studio DXP Installing it is easy: unzip it to a convenient
location on your system.

3. To run Liferay Dev Studio DXP, run the LiferayDeveloperStudio executable.

The first time you start Liferay Dev Studio DXP, it prompts you to select an Eclipse workspace. If
you specify an empty folder, Liferay Dev Studio DXP creates a new workspace in that folder. Follow
these steps to create a new workspace:

1. When prompted, indicate your workspace’s path. Name your new workspace guestbook-

workspace and click OK.

2. When Liferay Dev Studio DXP first launches, it presents a welcome page. Click the Workbench
icon to continue.

Nice job! Your development environment is installed and your workspace is set up.

Creating a Liferay Workspace

Now you’ll create another kind of workspace—a LiferayWorkspace. By holding and managing your
Liferay DXP projects, a LiferayWorkspace provides a simplified, straightforward way to develop
Liferay DXP applications. In the background, a LiferayWorkspace uses Blade CLI and Gradle to
manage dependencies and organize your build environment. Note that to avoid configuration
issues, you can only create one LiferayWorkspace for each EclipseWorkspace.

Follow these steps to create a LiferayWorkspace in Liferay Dev Studio DXP:

1. Select File → New → Liferay Workspace Project. Note: you may have to select File → New → Other,
then choose Liferay Workspace Project in the Liferay category.
A New Liferay Workspace dialog appears, which presents several configuration options.

2. Give your workspace the name com-liferay-docs-guestbook.

3. Next, choose your workspace’s location. Leave the default setting checked. This places your
LiferayWorkspace inside your Eclipse workspace.

4. For Liferay Version select 7.1.

5. Check the Download Liferay bundle checkbox to download and unzip a Liferay DXP instance
in your workspace automatically. When prompted, name the server liferay-tomcat-bundle.

6. Click Finish to create your LiferayWorkspace. This may take a while because Liferay Liferay
DXP downloads the Liferay DXP bundle in the background.

A dialog appears prompting you to open the LiferayWorkspace perspective. Click Yes, and your
perspective switches to LiferayWorkspace.

Congratulations! Your development environment is ready! Next, you’ll get started developing
your first Liferay DXP application.

144

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://gradle.org/

Figure 16.1: By selecting Liferay Workspace, you begin the process of creating a new workspace for your Liferay DXP projects.

145

Figure 16.2: Liferay Dev Studio DXP provides an easy-to-followmenu to create your Liferay Workspace.

146

CHAPTER 17

CREATING A WORKING PROTOTYPE

So far, you’ve installed Liferay Dev Studio DXP and created a LiferayWorkspace. Next, you’ll create
your application and start adding features to it. Here’s what you’ll do:

• Create your application and deploy it to your Liferay DXP instance.
• Create a functional button for adding and removing guestbook entries.
• Create a form for users to create and edit guestbook entries.
• Create a UI for displaying guestbook entries.
• Implement a prototype storage system (to be replaced later) for storing guestbook entries.

At the end, you’ll have a fully functional prototype application ready to be enhanced later!
There’s no time like now to get started.

Let’s Go!

17.1 Writing Your First Liferay DXP Application

<p id="stepTitle">Developing Your First Portlet</p><p>Step 1 of 8</p>

Now you’ll learn step-by-step how to create your project and deploy your application to Liferay
DXP. Before you know it, you’ll have your application deployed alongside those that come with
Liferay DXP.

Your first application is simple: you’ll build a guestbook application that looks like this:
By default, it shows guestbook messages that users leave on your website. To add a message,

you click the Add Entry button to show a form for entering and saving a message.
Ready to write your first Liferay DXP application?

Creating Your First Liferay DXP Application

Your first step is to create a Liferay Module Project. Modules are the core building blocks of Liferay
DXP applications. Every application ismade from one ormoremodules. Eachmodule encapsulates
a functional piece of an application. Multiple modules form a complete application.

These modules are OSGi modules. The OSGi container in Liferay DXP can run any OSGi module.
Each module is packaged as a JAR file that contains a manifest file. The manifest is needed for

147

https://www.osgi.org/

Figure 17.1: You’ll create this simple application.

the container to recognize the module. Technically, a module that contains only a manifest is still
valid. Of course, such a module wouldn’t be very interesting.

Now you’ll create your first module. For the purpose of this Learning Path, you’ll create your
modules inside your Liferay Workspace. Follow these instructions to create your first Liferay
Module Project:

1. In the Project Explorer in Liferay Dev Studio DXP, right click on your LiferayWorkspace and
select New → Liferay Module Project.

2. Complete the first screen of the wizard with the following information:

• Enter guestbook-web for the Project name.
• Use the Gradle Build type.
• Select mvc-portlet for the Project Template.

Click Next.

3. On the second screen of the wizard, enter Guestbook for the component class name, and
com.liferay.docs.guestbook.portlet for the package name. Click Finish.

Note that it may take a while for Dev Studio DXP to create your project, because Gradle down-
loads your project’s dependencies for you during project creation. Once this is done, you have a
module project named guestbook-web. The mvc-portlet template configured the project with the
proper dependencies and generated all the files you need to get started:

• The portlet class (in the package you specified)
• JSP files (in /src/main/resources)
• Language properties (also in /src/main/resources)

Your new module project is a portlet application. Next, you’ll learn exactly what a portlet is.

148

Figure 17.2: Your newmodule project appears in your Liferay Workspace’s modules folder.

What is a Portlet?

Web applications can be simple: they might show you one piece of information, such as an article.
A complex application might track your taxes as you enter lots of data into an application that
calculates whether you owe or are due a refund. These applications run on a platform that provides
application developers the building blocks they need to make applications.

Liferay DXP provides a platform that contains common features needed by today’s applications,
including user management, security, user interfaces, services, andmore. Portlets are one of those
basic building blocks. Often a web application takes up the entire page. If you want, you can do
this with applications in Liferay DXP as well. Portlets, however, let you serve many applications on
the same page at the same time. Liferay DXP’s framework takes this into account at every step. For
example, features like platform-generated URLs exist to support Liferay’s ability to serve multiple
applications on the same page.

What is a Component?

Portlets created in Liferay Module Projects are generated as Components. If a module (sometimes
also called a bundle) encapsulates pieces of your application, a component is the object that
contains the core functionality. A Component is managed by a component framework or container.
Components are deployed inside modules, and they’re created, started, stopped, and destroyed as
needed by the container. What a perfect model for a web application! It can be made available
only when needed, and when it’s not, the container can make sure it doesn’t use resources needed
by other components.

In this case, you created a Declarative Services (DS) component. With Declarative Services, you
declare that an object is a component, and you define data about the component so the container
knows how to manage it. A default configuration was created for you; you’ll examine it later.

Deploying the Application

Even though all you’ve done is generate it, the guestbook-web project is ready to be built and deployed.

149

Figure 17.3: Many Liferay applications can run at the same time on the same page.

1. Make sure that your server is running, and if it isn’t, select it in Dev Studio DXP’s Servers
pane and click the start button ().

2. After it starts, drag and drop the guestbook-web project from the Project Explorer to the server.

Figure 17.4: Drag and drop the module.

3. Open a browser and navigate to Liferay DXP (http://localhost:8080 by default).

If this is your first time starting Liferay DXP, you’ll go through a short wizard to set up your
server. In this wizard, make sure you use the default database (Hypersonic). Although this
database isn’t intended for production use, it works fine for development and testing.

4. To add an application to a page, click Add () in the upper right hand corner.

150

http://localhost:8080

5. SelectWidgets. In the Applications list, your application should appear in the Sample category.
Its name is Guestbook.

Figure 17.5: This is the default Liferay home page. It contains the Hello World widget and the initial version of the Guestbook application that you created.

Now you’re ready to jump in and start developing your Guestbook portlet.

17.2 Creating an Add Entry Button

<p id="stepTitle">Developing Your First Portlet</p><p>Step 2 of 8</p>

A guestbook application is pretty simple, right? People come to your site and post their names
and brief messages. Other users can read these entries and post their own.

When you created your project, it generated a file named view.jsp in your project’s
src/main/resources/META-INF/resources folder. This file contains the default view for users when
the portlet is added to the page. Right now it contains sample content:

<%@ include file="/init.jsp" %>

<p>

<liferay-ui:message key="guestbook-web.caption"/>

</p>

First, view.jsp imports init.jsp. By convention, imports and tag library declarations are in
an init.jsp file. The other JSP files in the application import init.jsp. This lets you handle JSP
dependency management in a single file.

Besides importing init.jsp, view.jsp displays a message defined by a language key. This key
and its value are declared in your project’s src/main/resources/content/Language.properties file.

It’s time to start developing theGuestbook application. First, users need away to add a guestbook
entry. In view.jsp, follow these steps to add this button:

151

1. Remove everything under the include for init.jsp.

2. Below the include, add the following AlloyUI tags to display an Add Entry button inside of a
button row:

<aui:button-row>

<aui:button value="Add Entry"></aui:button>

</aui:button-row>

You can use aui tags in view.jsp since init.jsp declares the AlloyUI tag library by default (as
well as other important imports and tags):

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://liferay.com/tld/portlet" prefix="liferay-portlet" %>

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme" %>

<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>

<portlet:defineObjects />

<liferay-theme:defineObjects />

Your application now displays a button instead of a message, but the button doesn’t do anything.
Next, you’ll create a URL for your button.

Figure 17.6: Your new button is awesome, but it doesn’t work yet.

17.3 Generating Portlet URLs

<p id="stepTitle">Developing Your First Portlet</p><p>Step 3 of 8</p>

Recall that users can place multiple portlets on a single page. As a developer, you have no idea
what other portlets may share a page with yours. This means that you can’t define URLs for various
functions in your application like you otherwise would.

For example, consider a Calendar application that a user puts on the same page as a Blog
application. To implement the functionality for deleting calendar events and blog entries in the
respective application, both application developers append the del parameter to the URL and give

152

http://alloyui.com/

it a primary key value so the application can look up and delete the calendar event or blog entry.
Since both applications read this parameter, their delete functionality clashes.

System-generated URLs prevent this. If the system generates a unique URL for each piece of
functionality, multiple applications can coexist in perfect harmony.

In view.jsp, follow these steps to create system-generated URLs in your portlet:

1. Add these tags below <%@ include file="/init.jsp" %>, but above the <aui:button-row> tag:

<portlet:renderURL var="addEntryURL">

<portlet:param name="mvcPath" value="/edit_entry.jsp"></portlet:param>

</portlet:renderURL>

2. Add this attribute to the <aui:button> tag, before value="Add Entry":

onClick="<%= addEntryURL.toString() %>"

Your view.jsp page should now look like this:

<%@ include file="/init.jsp" %>

<portlet:renderURL var="addEntryURL">

<portlet:param name="mvcPath" value="/edit_entry.jsp"></portlet:param>

</portlet:renderURL>

<aui:button-row>

<aui:button onClick="<%= addEntryURL.toString() %>" value="Add Entry"></aui:button>

</aui:button-row>

The <portlet:renderURL> tag’s var attribute creates the addEntryURL variable to hold the system-
generated URL. The <portlet:param> tag defines a URL parameter to append to the URL. In this
example, a URL parameter named mvcPath with a value of /edit_entry.jsp is appended to the URL.

Note that your GuestbookPortlet class (located in your guestbook-webmodule’s com.liferay.docs.guestbook.portlet
package) extends Liferay’s MVCPortlet class. In a Liferay MVC portlet, the mvcPath URL parameter
indicates a page within your portlet. To navigate to another page in your portlet, use a portal URL
with the parameter mvcPath to link to the specific page.

In the example above, you created a renderURL that points to your application’s edit_entry.jsp
page, which you haven’t yet created. Note that using an AlloyUI button to follow the generated
URL isn’t required. You can use any HTML construct that contains a link. Users can click your
button to access your application’s edit_entry.jsp page. This currently produces an error since no
edit_entry.jsp exists yet. Creating edit_entry.jsp is your next step.

17.4 Linking to Another Page

<p id="stepTitle">Developing Your First Portlet</p><p>Step 4 of 8</p>

In the same folder your view.jsp is in, create the edit_entry.jsp file:

1. Right-click your project’s src/main/resources/META-INF/resources folder and choose New →
File.

2. Name the file edit_entry.jsp and click Finish.

153

3. Add this line to the top of the file:

<%@ include file="init.jsp" %>

Remember, it’s a best practice to add all JSP imports and tag library declarations to a single
file that’s imported by your application’s other JSP files. For edit_entry.jsp, you need these
imports to access the portlet tags that create URLs and the Alloy tags that create the form.

4. You’ll create two URLs: one to submit the form and one to go back to the view.jsp. To create
the URL to go back to view.jsp, add the following tag below the first line you added:

<portlet:renderURL var="viewURL">

<portlet:param name="mvcPath" value="/view.jsp"></portlet:param>

</portlet:renderURL>

Next, you must create a new URL for submitting the form. Before you do, you must learn about
portlet actions.

17.5 Triggering Portlet Actions

<p id="stepTitle">Developing Your First Portlet</p><p>Step 5 of 8</p>

Recall that portlets run in a portion of a page, and a page can containmultiple portlets. Because
of this, portlets have phases of operation. Here, you’ll learn about the most important two. The
first phase is the one you’ve already used: the render phase. All this means is that the portlet draws
itself, using the JSPs you write for it.

The other phase is called the action phase. This phase runs once, when a user triggers a portlet
action. The portlet performs whatever action the user triggered, such as performing a search or
adding a record to a database. Then the portlet goes back to the render phase and re-renders itself
according to its new state.

To save a guestbook entry, you must trigger a portlet action. For this, you’ll create an action
URL.

Add the following tag in edit_entry.jsp after the closing </portlet:renderURL> tag:

<portlet:actionURL name="addEntry" var="addEntryURL"></portlet:actionURL>

You now have the two required URLs for your form.

17.6 Creating a Form

<p id="stepTitle">Developing Your First Portlet</p><p>Step 6 of 8</p>

The form for creating guestbook entries has two fields: one for the name of the person submit-
ting the entry and one for the entry itself.

Add the following tags to the end of your edit_entry.jsp file:

154

<aui:form action="<%= addEntryURL %>" name="<portlet:namespace />fm">

<aui:fieldset>

<aui:input name="name"></aui:input>

<aui:input name="message"></aui:input>

</aui:fieldset>

<aui:button-row>

<aui:button type="submit"></aui:button>

<aui:button type="cancel" onClick="<%= viewURL.toString() %>"></aui:button>

</aui:button-row>

</aui:form>

Save edit_entry.jsp and redeploy your application. If you refresh the page and click the Add
Entry button, your form appears. If you click the Cancel button, you go back to view.jsp, but don’t
try the Save button yet. You haven’t yet created the action that saves a guestbook entry, so clicking
Save produces an error.

Figure 17.7: This is the Guestbook application’s form for adding entries.

Implementing the portlet action (what happens when the user clicks Save) is your next task.

17.7 Implementing Portlet Actions

<p id="stepTitle">Developing Your First Portlet</p><p>Step 7 of 8</p>

When users submit the form, your application stores the form data for display in the guestbook.
To keep this first application simple, you’ll implement this using a part of the Portlet API called
Portlet Preferences. Normally, of course, you’d use a database, and you’ll refactor this into a
database later. For now, however, you can create the first iteration of your guestbook application
using portlet preferences.

To make your portlet do anything other than re-render itself, you must implement portlet
actions. An action defines some processing, usually based on user input, that the portlet must
perform before it renders itself. In the case of the guestbook portlet, the action you’ll implement

155

next saves a guestbook entry that a user typed into the form. Saved guestbook entries can be
retrieved and displayed later.

Since you’re using Liferay’s MVC Portlet framework, you have an easy way to implement actions.
Portlet actions are implemented in the portlet class, which acts as the controller. In the form you
just created, you made an action URL, and you called it addEntry. To create a portlet action, you
create a method in the portlet class with the same name. MVCPortlet calls that method when a user
triggers its matching URL.

1. Open GuestbookPortlet. The project template generated this classwhen you created the portlet
project.

2. Create a method with the following signature:

public void addEntry(ActionRequest request, ActionResponse response) {

}

3. Press [CTRL]+[SHIFT]+O to organize imports and import the required javax.portlet.ActionRequest

and javax.portlet.ActionResponse classes.

You’ve now created a portlet action. It doesn’t do anything, but at least you won’t get an error
now if you submit your form. Next, you should make the action save the form data.

Because of the limitations of the portlet preferences API, you must store each guestbook entry
as a String in a string array. Since your form has two fields, you must use a delimiter to determine
where the user name ends and the guestbook entry begins. The caret symbol (^) makes a good
delimiter because users are highly unlikely to use that symbol in a guestbook entry.

Note: The portlet preferences API is used here for prototyping purposes only. In most cases,
you’ll need a more robust solution for storing data. You’ll learn how to implement such a solution
later in the Service Builder section.

The following method implements adding a guestbook entry to a portlet preference called
guestbook-entries:

public void addEntry(ActionRequest request, ActionResponse response) {

try {

PortletPreferences prefs = request.getPreferences();

String[] guestbookEntries = prefs.getValues("guestbook-entries",

new String[1]);

ArrayList<String> entries = new ArrayList<String>();

if (guestbookEntries[0] != null) {

entries = new ArrayList<String>(Arrays.asList(prefs.getValues(

"guestbook-entries", new String[1])));

}

String userName = ParamUtil.getString(request, "name");

String message = ParamUtil.getString(request, "message");

String entry = userName + "^" + message;

entries.add(entry);

String[] array = entries.toArray(new String[entries.size()]);

156

prefs.setValues("guestbook-entries", array);

try {

prefs.store();

}

catch (IOException ex) {

Logger.getLogger(GuestbookPortlet.class.getName()).log(

Level.SEVERE, null, ex);

}

catch (ValidatorException ex) {

Logger.getLogger(GuestbookPortlet.class.getName()).log(

Level.SEVERE, null, ex);

}

}

catch (ReadOnlyException ex) {

Logger.getLogger(GuestbookPortlet.class.getName()).log(

Level.SEVERE, null, ex);

}

}

1. Replace your existing addEntrymethod with the above method.

2. Press [CTRL]+[SHIFT]+O to organize imports and select the javax.portlet.PortletPreferences,
java.util.logging.Logger, and java.util.logging.Level when prompted (not their Liferay
equivalents).

First, the preferences are retrieved. Then the guestbook-entries preference is retrieved and
converted to an ArrayList so that you can add an entry without worrying about exceeding the size
of the array. Next, the name and message fields from your form are retrieved. Notice how Liferay’s
ParamUtil class makes it easy to retrieve URL parameters.

Finally, the fields are combined into a String delimited by a caret, and the new entry is added
to the ArrayList, which is then converted back to an array so it can be stored as a preference. The
try/catch blocks are required by the portlet preferences API.

This isn’t the normal way to use portlet preferences, but it provides a quick and easy way for you
to store guestbook entries in this first version of your application. In a later step, you’ll implement
a robust way to store guestbook entries in a database.

The next and final feature to implement is a mechanism for viewing guestbook entries.

17.8 Displaying Guestbook Entries

<p id="stepTitle">Developing Your First Portlet</p><p>Step 8 of 8</p>

To display guestbook entries, you must do the reverse of what you did to store them: retrieve
them from portlet preferences, loop through them, and present them on the page. The best way to
do this with MVC Portlet is to use the Model-View-Controller paradigm. You already have the view
(your JSP files) and your controller (your portlet class). Now you need your model.

Creating Your Model

1. Create a new package called com.liferay.docs.guestbook.model. To do this, right-click your
src/main/java folder and select New → Package. Then enter the package name in the dialog
box that appears.

157

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

2. Next, create your model class. This class models a guestbook entry. To do this, right-click
your new package and select New → Class. Name the class Entry, and click Finish.
You now have a Java class for your guestbook entries. Next, you’ll give it the fields you need
to store entries.

3. Create two private String variables: name and message.

private String name;

private String message;

4. Right-click a blank area of the editor and select Source → Generate Getters and Setters. Click
Select All in the dialog that pops up, and then click Generate.

5. Next, provide two constructors: one that initializes the class with no values for the two fields,
and one that takes the two fields as parameters and sets their values:

public Entry() {

this.name = null;

this.message = null;

}

public Entry(String name, String message) {

setName(name);

setMessage(message);

}

Your completed model class looks like this:

package com.liferay.docs.guestbook.model;

public class Entry {

private String name;

private String message;

public Entry() {

this.name = null;

this.message = null;

}

public Entry(String name, String message) {

setName(name);

setMessage(message);

}

public String getName() {

return name;

}

public String getMessage() {

return message;

}

public void setName(String name) {

this.name = name;

}

public void setMessage(String message) {

this.message = message;

}

}

158

Now that you have your model, you have an easy way of encapsulating guestbook entries so
they can be processed by the controller layer and displayed by the view layer. Your next step is to
enhance the controller (your portlet class) so that guestbook entries are processed and ready to
display when users see the guestbook application.

Customizing How Your Application is Rendered

As mentioned earlier, your application uses two portlet phases: render and action. To make the
guestbook show the saved guestbook entries when users view the application, you must customize
your portlet’s render functionality, which it’s currently inheriting from its parent class, MVCPortlet.

1. Add the following method that converts the array to a List of your model objects:

private List<Entry> parseEntries(String[] guestbookEntries) {

List<Entry> entries = new ArrayList<Entry>();

for (String entry : guestbookEntries) {

String[] parts = entry.split("\\^", 2);

Entry gbEntry = new Entry(parts[0], parts[1]);

entries.add(gbEntry);

}

return entries;

}

As you can see, this method splits the entries in the String array into two parts based on the
caret (^) character.

2. Open GuestbookPortlet and add the following method below your addEntrymethod:

@Override

public void render(RenderRequest renderRequest, RenderResponse renderResponse)

throws PortletException, IOException {

PortletPreferences prefs = renderRequest.getPreferences();

String[] guestbookEntries = prefs.getValues("guestbook-entries", new String[1]);

if (guestbookEntries[0] != null) {

List<Entry> entries = parseEntries(guestbookEntries);

renderRequest.setAttribute("entries", entries);

}

super.render(renderRequest, renderResponse);

}

This method retrieves the guestbook entries from the configuration, calls parsEntries to
convert it to a List of Entry objects, and places that List into the request object. It then calls
the parent class’s rendermethod.

3. Press [CTRL]+[SHIFT]+O to organize imports.

Note: When you are prompted to choose imports, here are some guidelines:

• Always use org.osgi... packages instead of aQute.bnd...

• Generally use java.util... or javax.portlet... packages.

159

• You never use java.awt... in this project.

• Only use com.liferay... when it is for a Liferay specific implementation or your custom
implementation of a concept.

For example:

• If you are given the choice between javax.portlet.Portlet and com.liferay.portlet.Portlet

choose javax.portlet.Portlet.

• If you are given the choice between org.osgi.component and aQute.bnd.annotation.component

choose org.osgi.component

• However, if you are given the choicebetween java.util.Map.Entry and com.liferay.docs.guestbook.model.Entry

(the custom class you created) choose com.liferay.docs.guestbook.model.Entry

If at some point you think you chose an incorrect import, but you’re not sure what it might be,
you can erase all of the imports from the file and press [CTRL]+[SHIFT]+O again and see if you can
identify where you went wrong.

Now that you have your controller preparing your data for display, your next step is to implement
the view so users can see guestbook entries.

Displaying Guestbook Entries

Liferay’s development framework makes it easy to loop through data and display it nicely to the
end user. You’ll use a Liferay UI construct called Search Container to make this happen.

1. Add these tags to your view.jsp in between the </portlet:renderURL> and <aui:button-row>

tags:

<jsp:useBean id="entries" class="java.util.ArrayList" scope="request"/>

<liferay-ui:search-container>

<liferay-ui:search-container-results results="<%= entries %>" />

<liferay-ui:search-container-row

className="com.liferay.docs.guestbook.model.Entry"

modelVar="entry"

>

<liferay-ui:search-container-column-text property="message" />

<liferay-ui:search-container-column-text property="name" />

</liferay-ui:search-container-row>

<liferay-ui:search-iterator />

</liferay-ui:search-container>

Save your work, deploy your application, and try adding some guestbook entries.
Awesome! You’ve finished your prototype! You have a working application that adds and saves

guestbook entries.
The way you’re saving the entries isn’t the best way to persist data in your application. Next,

you’ll use Service Builder to generate your persistence classes and the methods you need to store
your application data in the database.

160

Figure 17.8: You have a form to enter information.

Figure 17.9: Submitted entries are displayed here..

161

CHAPTER 18

GENERATING THE BACK-END

So far, you have a prototype application that uses Liferay’s Model-View-Controller (MVC) portlet
framework. MVC is a great design pattern for web applications because it splits your application
into three parts (the model, the view, and the controller). This lets you swap out those parts if
necessary.

A persistence layer and a service layer are added to these three parts of your application. To get
the prototype working, you used Portlet Properties to create a rudimentary persistence layer. Since
this isn’t a long-term solution, you’ll now replace that layer by persisting your guestbooks and their
entries to a database.

Service Builder is Liferay’s code generation tool for defining object models and mapping those
models to SQL databases. By defining your model in a single XML file, you can generate your object
model (the M in MVC), your service layer, and your persistence layer all in one shot. At the same
time, you can generate web services (more on that later) and support every database Liferay DXP
supports.

Ready to begin?
Let’s Go!

18.1 What is Service Builder?

<p id="stepTitle">Generating the Back-end</p><p>Step 1 of 3</p>

Now you’ll use Service Builder to generate create, read, update, delete, and find operations for
your application. You’ll also use Service Builder to generate the necessary model, persistence, and
service layers for your application. Then you can add your application’s necessary business logic.

Guestbook Application Design

In the prototype application, you defined a single guestbook’s entries and displayed them in a list.
The full application will handle multiple Guestbooks and their entries. To make this work, you’ll
create two tables in the database: one for guestbooks and one for guestbook entries.

163

Figure 18.1: Service Builder generates the shaded layers of your application.

Figure 18.2: When you’re done, the Guestbook supports multiple guestbooks andmakes use of many Liferay features.

164

Service Layer

This application is data-driven. It uses services for storing and retrieving data. The application
asks for data, and the service fetches it from the persistence layer. The application can then display
this data to the user, who reads or modifies it. If the data is modified, the application passes it back
to the service, and which calls the persistence layer to store it. The application doesn’t need to
know anything about how the service does what it does.

To get started, you’ll create a Service Builder project and populate its service.xml file with all
the necessary entities to generate this code:

1. In Liferay Dev Studio DXP, click File → New → Liferay Module Project.

2. Name the project guestbook.

3. Select service-builder for the Project Template Name.

4. Click Next.

5. Enter com.liferay.docs.guestbook for the Package Name.

6. Click Finish.

This creates two modules: an API module (guestbook-api) and a service module (guestbook-
service). Next, you’ll learn how to use them.

Figure 18.3: Your current project structure.

18.2 Generating Model, Service, and Persistence Layers

<p id="stepTitle">Generating the Back-end</p><p>Step 2 of 3</p>

The persistence layer saves and retrieves your model data. The service layer is a buffer between
your application and persistence layers: having it lets you swap out your persistence layer for a
different implementation without modifying anything but the calls in the service layer.

To model the guestbooks and entries, you’ll create guestbook and entry model classes. But you
won’t do this directly in Java. Instead, you’ll define them in Service Builder, which generates your
object model and maps it to all the SQL databases Liferay DXP supports.

This application’s design allows for multiple guestbooks, each containing different sets of
entries. All users with permission to access the application can add entries, but only administrative
users can add guestbooks.

It’s time to get started. You’ll create the Guestbook entity first:

165

1. In your guestbook-service project, open service.xml. Make sure the Source tab is selected.

2. When Liferay Dev Studio DXP generated your project, it filled this file with dummy entities,
which you’ll replace. First replace the file’s opening contents (below the DOCTYPE) with the
following code:

<service-builder auto-namespace-tables="true" package-path="com.liferay.docs.guestbook">

<author>liferay</author>

<namespace>GB</namespace>

<entity name="Guestbook" local-service="true" uuid="true">

This defines the author, namespace, and the entity name. The namespace keeps the database
field names from conflicting. The last tag is the opening tag for the Guestbook entity definition.
In this tag, you enable local services for the entity, define its name, and specify that it should
have a universally unique identifier (UUID).

3. Next, replace the PK fields section:

<column name="guestbookId" primary="true" type="long" />

This defines guestbookId as the entity’s primary key of the type long.

4. The group instance can be left alone.

<column name="groupId" type="long" />

This defines the ID of the Site in Liferay DXP that the entity instance belongs to (more on this
in a moment).

5. Leave the Audit Fields section alone. Add status fields:

<!-- Status fields -->

<column name="status" type="int" />

<column name="statusByUserId" type="long" />

<column name="statusByUserName" type="String" />

<column name="statusDate" type="Date" />

The Audit section defines Liferay DXP metadata. The companyId is the primary key of a portal
instance. The userId is the primary key of a user. The createDate and modifiedDate store the
respective dates on which the entity instance is created and modified. The Status section is
used later to implement workflow.

6. In the Other fields section, replace the generated fields with this one:

<column name="name" type="String" />

7. Next, remove everything else from the Guestbook entity. Before the closing </entity> tag,
add this finder definition:

<finder name="GroupId" return-type="Collection">

<finder-column name="groupId" />

</finder>

166

https://en.wikipedia.org/wiki/Universally_unique_identifier

A finder generates a get method you’ll use to retrieve Guestbook entities. The fields used
by the finder define the scope of the data retrieved. This finder gets all Guestbooks by their
groupId, which corresponds to the Site the application is on. This lets administrators put
Guestbooks on multiple Sites, and each Guestbook has its own data scoped to its Site.

The Guestbook entity is finished for now. Next, you’ll create the Entry entity:

1. Add the opening entity tag:

<entity name="Entry" local-service="true" uuid="true">

As with the Guestbook entity, you enable local services, define the entity’s name, and specify
that it should have a UUID.

2. Add the tag to define the primary key and the groupId:

<column name="entryId" primary="true" type="long" />

<column name="groupId" type="long" />

3. Add audit fields to match the fields in the Guestbook entity:

<column name="companyId" type="long" />

<column name="userId" type="long" />

<column name="userName" type="String" />

<column name="createDate" type="Date" />

<column name="modifiedDate" type="Date" />

4. Add status fields like you did for the guestbook:

<!-- Status fields -->

<column name="status" type="int" />

<column name="statusByUserId" type="long" />

<column name="statusByUserName" type="String" />

<column name="statusDate" type="Date" />

5. Add the fields that define an Entry:

<column name="name" type="String" />

<column name="email" type="String" />

<column name="message" type="String" />

<column name="guestbookId" type="long" />

The name, email, and message fields comprise an Entry. These fields define the name of the
person creating the entry, an email address, and the Guestbook message, respectively. The
guestbookId is assigned automatically by code you’ll write, and is a Guestbook foreign key. This
ties the Entry to a specific Guestbook.

6. Add your finder and closing entity tag:

167

<finder name="G_G" return-type="Collection">

<finder-column name="groupId" />

<finder-column name="guestbookId" />

</finder>

</entity>

Here, you define a finder that gets guestbook entries by groupId and guestbookId. As before, the
groupId corresponds to the Site the application is on. The guestbookId defines the guestbook
the entries come from. This finder returns a Collection of entries.

7. Define your exception types outside the <entity> tags, just before the closing </service-

builder> tag:

<exceptions>

<exception>EntryEmail</exception>

<exception>EntryMessage</exception>

<exception>EntryName</exception>

<exception>GuestbookName</exception>

</exceptions>

These generate exception classes you’ll use later in try/catch statements.

8. Save your service.xml file.

Now you’re ready to run Service Builder to generate yourmodel, service, and persistence layers!

1. In the Gradle Tasks pane on the right side of Dev Studio DXP, open guestbook-service → build.

2. Run buildService by right-clicking it and selecting Run Gradle Tasks. Make sure you’re con-
nected to the Internet, as Gradle downloads dependencies the first time you run it.

3. In the Project Explorer, right-click the guestbook-servicemodule and select Refresh. Repeat
this step for the guestbook-api module. This ensures that the new classes and interfaces
generated by Service Builder show up in Dev Studio DXP.

4. In the Project Explorer, right-click the guestbook-servicemodule and select Gradle → Refresh
Gradle Project. Repeat this step for the guestbook-apimodule. This ensures that your modules’
Gradle dependencies are up to date.

Service Builder is based on a design philosophy called loose coupling. It generates three layers
of your application: the model, the service, and the persistence layers. Loose coupling means you
can swap out the persistence layer with little to no change in the model and service layers. The
model is in the -apimodule, and the service and persistence layers are in the -servicemodule.

Each layer is implemented using Java Interfaces and implementations of those interfaces.
Rather than have one Entry class that represents your model, Service Builder generates a system of
classes that include a Guestbook interface, a GuestbookBaseImpl abstract class that Service Builder
manages, and a GuestbookImpl class that you can customize. This design lets you customize your
model, while Service Builder generates code that’s tedious to write. That’s why Service Builder is a
code generator for code generator haters.

Next, you’ll create the service implementations.

168

Figure 18.4: The Model, Service, and Persistence Layer comprise a loose coupling design.

169

18.3 Implementing Service Methods

<p id="stepTitle">Generating the Back-end</p><p>Step 3 of 3</p>

When you use Service Builder, you implement the services in the service module. Because
your application’s projects are components, you can reference your service layer from your web
module.

You’ll implement services for guestbooks and entries in the guestbook-service module’s
GuestbookLocalServiceImpl and EntryLocalServiceImpl, respectively.

Follow these steps to implement services for guestbooks in GuestbookLocalServiceImpl:

1. In the com.liferay.docs.guestbook.service.impl package, open GuestbookLocalServiceImpl.
Then add this addGuestbookmethod:

public Guestbook addGuestbook(

long userId, String name, ServiceContext serviceContext)

throws PortalException {

long groupId = serviceContext.getScopeGroupId();

User user = userLocalService.getUserById(userId);

Date now = new Date();

validate(name);

long guestbookId = counterLocalService.increment();

Guestbook guestbook = guestbookPersistence.create(guestbookId);

guestbook.setUuid(serviceContext.getUuid());

guestbook.setUserId(userId);

guestbook.setGroupId(groupId);

guestbook.setCompanyId(user.getCompanyId());

guestbook.setUserName(user.getFullName());

guestbook.setCreateDate(serviceContext.getCreateDate(now));

guestbook.setModifiedDate(serviceContext.getModifiedDate(now));

guestbook.setName(name);

guestbook.setExpandoBridgeAttributes(serviceContext);

guestbookPersistence.update(guestbook);

return guestbook;

}

This method adds a guestbook to the database. It retrieves metadata from the environment
(such as the current user’s ID, the group ID, etc.), along with data passed from the user. It
validates this data and uses it to construct a Guestbook object. The method then persists this
object to the database and returns the object. You only implement the business logic here
because Service Builder already generated the model and all the code that maps that model
to the database.

2. Add the methods for getting Guestbook objects:

public List<Guestbook> getGuestbooks(long groupId) {

170

return guestbookPersistence.findByGroupId(groupId);

}

public List<Guestbook> getGuestbooks(long groupId, int start, int end,

OrderByComparator<Guestbook> obc) {

return guestbookPersistence.findByGroupId(groupId, start, end, obc);

}

public List<Guestbook> getGuestbooks(long groupId, int start, int end) {

return guestbookPersistence.findByGroupId(groupId, start, end);

}

public int getGuestbooksCount(long groupId) {

return guestbookPersistence.countByGroupId(groupId);

}

These call the finders you generated with Service Builder. The first method retrieves a list
of guestbooks from the Site specified by groupId. The next two methods get paginated lists,
optionally in a particular order. The final method gives you the total number of guestbooks
for a given site.

3. Finally, add the guestbook validator method:

protected void validate(String name) throws PortalException {

if (Validator.isNull(name)) {

throw new GuestbookNameException();

}

}

Thismethod uses Liferay DXP’s Validator tomake sure the user entered text for the guestbook
name.

4. Press [CTRL]+[SHIFT]+O to organize imports and select the following classes when prompted:

• java.util.Date

• com.liferay.portal.kernel.service.ServiceContext

• com.liferay.docs.guestbook.model.Entry

• com.liferay.portal.kernel.util.Validator

Now you’re ready to implement services for entries in EntryLocalServiceImpl. Do so now by
following these steps:

1. In the com.liferay.docs.guestbook.service.impl package, open EntryLocalServiceImpl. Add
this addEntrymethod:

public Entry addEntry(

long userId, long guestbookId, String name, String email,

String message, ServiceContext serviceContext)

throws PortalException {

long groupId = serviceContext.getScopeGroupId();

User user = userLocalService.getUserById(userId);

171

Date now = new Date();

validate(name, email, message);

long entryId = counterLocalService.increment();

Entry entry = entryPersistence.create(entryId);

entry.setUuid(serviceContext.getUuid());

entry.setUserId(userId);

entry.setGroupId(groupId);

entry.setCompanyId(user.getCompanyId());

entry.setUserName(user.getFullName());

entry.setCreateDate(serviceContext.getCreateDate(now));

entry.setModifiedDate(serviceContext.getModifiedDate(now));

entry.setExpandoBridgeAttributes(serviceContext);

entry.setGuestbookId(guestbookId);

entry.setName(name);

entry.setEmail(email);

entry.setMessage(message);

entryPersistence.update(entry);

return entry;

}

Like the addGuestbookmethod, addEntry takes data from the current context along with data
the user entered, validates it, and creates a model object. That object is then persisted to the
database and returned.

2. Add this updateEntrymethod:

public Entry updateEntry (

long userId, long guestbookId, long entryId, String name, String email,

String message, ServiceContext serviceContext)

throws PortalException, SystemException {

Date now = new Date();

validate(name, email, message);

Entry entry = getEntry(entryId);

User user = userLocalService.getUserById(userId);

entry.setUserId(userId);

entry.setUserName(user.getFullName());

entry.setModifiedDate(serviceContext.getModifiedDate(now));

entry.setName(name);

entry.setEmail(email);

entry.setMessage(message);

entry.setExpandoBridgeAttributes(serviceContext);

entryPersistence.update(entry);

return entry;

}

This method first retrieves the entry and updates its data to reflect what the user submitted,
including its date modified.

3. Add this deleteEntrymethod:

172

public Entry deleteEntry (long entryId, ServiceContext serviceContext)

throws PortalException {

Entry entry = getEntry(entryId);

entry = deleteEntry(entryId);

return entry;

}

This method retrieves the entry object defined by entryId, deletes it from the database, and
then returns the deleted object.

4. Add the methods for getting Entry objects:

public List<Entry> getEntries(long groupId, long guestbookId) {

return entryPersistence.findByG_G(groupId, guestbookId);

}

public List<Entry> getEntries(long groupId, long guestbookId, int start, int end)

throws SystemException {

return entryPersistence.findByG_G(groupId, guestbookId, start, end);

}

public List<Entry> getEntries(

long groupId, long guestbookId, int start, int end, OrderByComparator<Entry> obc) {

return entryPersistence.findByG_G(groupId, guestbookId, start, end, obc);

}

public int getEntriesCount(long groupId, long guestbookId) {

return entryPersistence.countByG_G(groupId, guestbookId);

}

These methods, like the getters in GuestbookLocalServiceImpl, call the finders you generated
with Service Builder. These getEntries*methods, however, retrieve entries from a specified
guestbook and Site. The first method gets a list of entries. The next method gets a paginated
list. The third method sorts the paginated list, and the last method gets the total number of
entries as an integer.

5. Add the validatemethod:

protected void validate(String name, String email, String entry)

throws PortalException {

if (Validator.isNull(name)) {

throw new EntryNameException();

}

if (!Validator.isEmailAddress(email)) {

throw new EntryEmailException();

}

if (Validator.isNull(entry)) {

throw new EntryMessageException();

}

}

This method makes sure the user entered relevant data when creating an entry.

173

6. Press [CTRL]+[SHIFT]+O to organize imports and select the following classes when prompted:

• java.util.Date

• com.liferay.portal.kernel.service.ServiceContext

• com.liferay.docs.guestbook.model.Entry

• com.liferay.portal.kernel.util.Validator

Nice work! These local service methods implement the services that are referenced in the
portlet class.

Updating Generated Classes

Now that you’ve implemented the service methods, you must make them available to the rest of
your application. To do this, run buildService again:

1. In Gradle Tasks → guestbook-service → build, right-click buildService and select Run Gradle Tasks.
In the utility classes, Service Builder populates calls to your newly created service methods.

2. In the Project Explorer, right-click the guestbook-servicemodule and select Refresh. Repeat
this step for the guestbook-apimodule. This ensures that the changesmade by Service Builder
show up in Liferay Dev Studio DXP.

3. In the Project Explorer, right-click the guestbook-servicemodule and select Gradle → Refresh
Gradle Project. Repeat this step for the guestbook-apimodule. This ensures that your modules’
Gradle dependencies are up to date.

Tip: If something goes awry when working with Service Builder, repeat these steps to run
Service Builder again and refresh your API and service modules.

Excellent! Your new back-end has been generated. Now it’s time to refactor your prototype to
use it.

174

CHAPTER 19

REFACTORING THE PROTOTYPE

Earlier, you created a Guestbook portlet prototype. Then you wrote a service.xml file to define
your application’s data model, and used Service Builder to generate the back-end code (the model,
service, and persistence layers). You also added service methods using the appropriate extension
points: your entities’ *LocalServiceImpl classes. Now youmust integrate the original prototype with
the new back-end to create a fully functional application.

There are many differences between the prototype and the application you’ll create. In the
back-end, you’ve already accounted for one big difference: users can create multiple Guestbooks
that each have their own entries. In the front-end, however, only Site administrators should be
able to create guestbooks. Therefore, you’ll create another portlet called Guestbook Admin and
place it in the Content menu for Sites.

To turn this application from a prototype into a full-fledged Liferay web application, you’ll make
these changes:

• Modify your view layer’s folder structure to account for the administrative portlet
• Set the Display Category so users can find the application more easily
• Create a file to store the application’s text keys
• Change the controller to call your new Service Builder-based back-end
• Update the view so it can display multiple Guestbooks in tabs

Ready to begin?
Let’s Go!

19.1 Organizing Folders for Larger Applications

<p id="stepTitle">Refactoring the Prototype</p><p>Step 1 of 6</p>

In larger projects, it is important to have all of your files and modules well organized. You’ll
make two changes to help better organize your project:

1. Move the guestbook-webmodule into the guestbook folder so that it’s in the same place as the
guestbook-service and guestbook-apimodules that you created.

2. Since you’ll now have two portlets, reorganize your JSPs to group them by portlet.

175

Moving guestbook-web

The best way to move modules around is to use Dev Studio DXP’s Refactor function. The refactor
function scans for and updates project dependencies and links.

1. In the Project Explorer, right-click on guestbook-web and select Refactor → Move.

2. In the window that appears, click Browse, navigate to the guestbook folder and then click New
Folder.

3. Name the new folder guestbook-web.

4. Click Open and then OK to confirm.

Your guestbook-web folder now appears in the structure with the other modules.

Figure 19.1: After youmove it using the Refactor function, all of your modules are in the same folder..

Reorganizing JSPs

Currently, all your JSPs sit in your web module’s src/main/resources/META-INF/resources folder,
which serves as the context root folder. To make a clear separation between the Guestbook portlet
and the Guestbook Admin portlet, youmust place the files thatmake up their view layers in separate
folders:

1. In the guestbook-web project, right click the src/main/resources/META-INF/resources folder and
select New → Folder. Name the new folder guestbookwebportlet and click Finish.

2. Copy view.jsp and edit_entry.jsp into the new folder by dragging and dropping them there.

3. Open both files and change the init.jsp location at the top of the file:

<%@include file="../init.jsp"%>

4. Check the other references to JSPs within the files to make sure that they point to the new
locations.

As you update your view layer to take full advantage of the new back-end, you’ll update any
references to the old paths. In addition, you must update the resource location in your component
properties. In the next step, you’ll update all of those properties, including the one that defines the
resource location.

176

19.2 Defining the Component Metadata Properties

<p id="stepTitle">Refactoring the Prototype</p><p>Step 2 of 6</p>

When users add applications to a page, they pick them from a list of display categories.

Figure 19.2: Users choose applications from a list of display categories.

A portlet’s display category is defined in its component class as a metadata property. Since
the Guestbook portlet lets users communicate with each other, you’ll add it to the Social category.
Only one Guestbook portlet should be added to a page, so you’ll also define it as a non-instanceable
portlet. Such a portlet can appear only once on a page or Site, depending on its scope.

1. Open the GuestbookPortlet class and update the component class metadata properties to
match this configuration:

@Component(

immediate = true,

property = {

177

"com.liferay.portlet.display-category=category.social",

"com.liferay.portlet.instanceable=false",

"com.liferay.portlet.scopeable=true",

"javax.portlet.display-name=Guestbook",

"javax.portlet.expiration-cache=0",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/guestbookwebportlet/view.jsp",

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user",

"javax.portlet.supports.mime-type=text/html"

},

service = Portlet.class

)

The com.liferay.portlet.display-category=category.social property sets the Guestbook port-
let’s display category to Social. The com.liferay.portlet.instanceable=false property specifies that
the Guestbook portlet is non-instanceable, so only one instance of the portlet can be added to a
page. In the property javax.portlet.init-param.view-template, you also update the location of the
main view.jsp to its new location in /guestbookwebportlet.

Since you edited the portlet’s metadata, you must remove and re-add the portlet to the page
before continuing:

1. Go to localhost:8080 in your web browser.

2. Sign in to your administrative account.

3. The Guestbook portlet now shows an error on the page. Click its portlet menu (at the top-right
of the portlet), then select Remove and click OK to confirm.

4. Open the Add menu and select Applications.

5. Open the Social category and drag and drop the Guestbook application onto the page.

Great! Now the Guestbook portlet appears in an appropriate category. Though you were able to
add it to the page before, the user experience is better.

19.3 Creating Portlet Keys

<p id="stepTitle">Refactoring the Prototype</p><p>Step 3 of 6</p>

PortletKeys manage important things like the portlet name or other repeatable, commonly
used variables in one place. This way, if you need to change the portlet’s name, you can do it in
one place, and then reference it in every class that needs it. Keys must be referenced first as a
component property, and then as a class.

Follow these steps to create your application’s PortletKeys:

1. In your guestbook-web module, open the GuestbookPortlet class and update the component
class metadata properties by adding one new property:

"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK,

178

Note that you need the trailing comma if you’ve added the property to the middle of the list.
If you’ve added it to the end of the last, leave it off (but add a trailing comma to the prior
property!).

2. Save GuestbookPortlet. It now shows an error because you haven’t added the key to the class.

3. Open the com.liferay.docs.guestbook.constants package.

4. Open GuestbookPortletKeys and create a public, static, final String called GUESTBOOK with a
value of com_liferay_docs_guestbook_portlet_GuestbookPortlet:

public static final String GUESTBOOK =

"com_liferay_docs_guestbook_portlet_GuestbookPortlet";

5. Save the file.

Now GuestbookPortlet’s error has disappeared, and your application can be deployed again.
Nice job!

Next, you’ll integrate your application with the new back-end you generated with Service
Builder.

19.4 Integrating the New Back-end

<p id="stepTitle">Refactoring the Prototype</p><p>Step 4 of 6</p>

It’s a good practice to start with a working prototype as a proof of concept, but eventually that
prototype must transform into a real application. Up to this point, you’ve made all the preparations
to do that, and now it’s time to replace the prototype back-end with the real, database-driven
back-end you created with Service Builder.

For the prototype, you manually created the application’s model. The first thing you want to do
is remove it, because Service Builder generated a new one:

1. Find the com.liferay.docs.guestbook.model package in the guestbook-webmodule.

2. Delete it. You’ll see errors in your project, but that’s because you haven’t replaced the model
yet.

Now you get to do some dependency management. For the webmodule to access the generated
services, youmust make it aware of the API and service modules. Then you can update the addEntry

method in GuestbookPortlet to use the new services:

1. First, open guestbook-web’s build.gradle file and add these dependencies:

compileOnly project(":modules:guestbook:guestbook-api")

compileOnly project(":modules:guestbook:guestbook-service")

2. Right-click on the guestbook-web project and select Gradle → Refresh Gradle Project.

3. Now you must add references to the Service Builder services you need. To do this, add them as
class variables with @Reference annotations on their setter methods. Open GuestbookPortlet

and add these references to the bottom of the file:

179

@Reference(unbind = "-")

protected void setEntryService(EntryLocalService entryLocalService) {

_entryLocalService = entryLocalService;

}

@Reference(unbind = "-")

protected void setGuestbookService(GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

private EntryLocalService _entryLocalService;

private GuestbookLocalService _guestbookLocalService;

Note that it’s Liferay’s code style to add class variables this way. The @Reference annotation on
the setters allows Liferay’s OSGi container to inject references to your generated services so
you can use them. The unbind parameter tells the container there’s no method for unbinding
these services: the references can die with the class during garbage collection when they’re
no longer needed.

4. Now you can modify the addEntrymethod to use these service references:

public void addEntry(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Entry.class.getName(), request);

String userName = ParamUtil.getString(request, "name");

String email = ParamUtil.getString(request, "email");

String message = ParamUtil.getString(request, "message");

long guestbookId = ParamUtil.getLong(request, "guestbookId");

long entryId = ParamUtil.getLong(request, "entryId");

if (entryId > 0) {

try {

_entryLocalService.updateEntry(

serviceContext.getUserId(), guestbookId, entryId, userName,

email, message, serviceContext);

response.setRenderParameter(

"guestbookId", Long.toString(guestbookId));

}

catch (Exception e) {

System.out.println(e);

PortalUtil.copyRequestParameters(request, response);

response.setRenderParameter(

"mvcPath", "/guestbookwebportlet/edit_entry.jsp");

}

}

else {

try {

_entryLocalService.addEntry(

serviceContext.getUserId(), guestbookId, userName, email,

message, serviceContext);

SessionMessages.add(request, "entryAdded");

180

response.setRenderParameter(

"guestbookId", Long.toString(guestbookId));

}

catch (Exception e) {

SessionErrors.add(request, e.getClass().getName());

PortalUtil.copyRequestParameters(request, response);

response.setRenderParameter(

"mvcPath", "/guestbookwebportlet/edit_entry.jsp");

}

}

}

This addEntrymethod gets the name, message, and email fields that the user submits in the
JSP and passes them to the service to be stored as entry data. The if-else logic checkswhether
there’s an existing entryId. If there is, the update service method is called, and if not, the add

service method is called. In both cases, it sets a render parameter with the Guestbook ID so
the application can display the guestbook’s entries after this one has been added. This is all
done in try...catch statements.

5. Now add deleteEntry, which you didn’t have before:

public void deleteEntry(ActionRequest request, ActionResponse response) throws PortalException {

long entryId = ParamUtil.getLong(request, "entryId");

long guestbookId = ParamUtil.getLong(request, "guestbookId");

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Entry.class.getName(), request);

try {

response.setRenderParameter(

"guestbookId", Long.toString(guestbookId));

_entryLocalService.deleteEntry(entryId, serviceContext);

}

catch (Exception e) {

Logger.getLogger(GuestbookPortlet.class.getName()).log(

Level.SEVERE, null, e);

}

}

This method retrieves the entry object (using its ID from the request) and calls the service to
delete it.

6. Next you must replace the rendermethod:

@Override

public void render(RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

try {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), renderRequest);

long groupId = serviceContext.getScopeGroupId();

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

181

List<Guestbook> guestbooks = _guestbookLocalService.getGuestbooks(

groupId);

if (guestbooks.isEmpty()) {

Guestbook guestbook = _guestbookLocalService.addGuestbook(

serviceContext.getUserId(), "Main", serviceContext);

guestbookId = guestbook.getGuestbookId();

}

if (guestbookId == 0) {

guestbookId = guestbooks.get(0).getGuestbookId();

}

renderRequest.setAttribute("guestbookId", guestbookId);

}

catch (Exception e) {

throw new PortletException(e);

}

super.render(renderRequest, renderResponse);

}

This new rendermethod checks for any guestbooks in the current Site. If there aren’t any, it
creates one. Either way, it grabs the first guestbook so its entries can be displayed by your
view layer.

7. Remove the parseEntriesmethod. It’s a remnant of the prototype application.

8. Hit Ctrl-Shift-O to organize your imports.

Awesome! You’ve updated your controller to use services. Next, you’ll tackle the view.

19.5 Updating the View

<p id="stepTitle">Refactoring the Prototype</p><p>Step 5 of 6</p>

You updated more than just the mechanism behind creating entries: you completely changed
the method and structure. You must, therefore, update the UI as well. To do that, you must create a
new JSP for managing guestbooks and update the existing JSPs.

1. First, youmust update your dependencies. In your guestbook-webmodule, open init.jsp from
/src/main/resources/META-INF/resources/. In this file, add the following additional dependen-
cies:

<%@ taglib uri="http://liferay.com/tld/frontend" prefix="liferay-frontend" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://liferay.com/tld/security" prefix="liferay-security" %>

<%@ page import="java.util.List" %>

<%@ page import="com.liferay.portal.kernel.util.ParamUtil" %>

<%@ page import="com.liferay.portal.kernel.util.HtmlUtil" %>

<%@ page import="com.liferay.petra.string.StringPool" %>

<%@ page import="com.liferay.portal.kernel.model.PersistedModel" %>

<%@ page import="com.liferay.portal.kernel.dao.search.SearchEntry" %>

<%@ page import="com.liferay.portal.kernel.dao.search.ResultRow" %>

<%@ page import="com.liferay.docs.guestbook.model.Guestbook" %>

<%@ page import="com.liferay.docs.guestbook.service.EntryLocalServiceUtil" %>

<%@ page import="com.liferay.docs.guestbook.service.GuestbookLocalServiceUtil" %>

<%@ page import="com.liferay.docs.guestbook.model.Entry" %>

182

2. Open the view.jsp file found in /resources/META-INF/resources/guestbookwebportlet. Replace
this file’s contents with the following code:

<%@include file="../init.jsp"%>

<%

long guestbookId = Long.valueOf((Long) renderRequest

.getAttribute("guestbookId"));

%>

<aui:button-row cssClass="guestbook-buttons">

<portlet:renderURL var="addEntryURL">

<portlet:param name="mvcPath" value="/guestbookwebportlet/edit_entry.jsp" />

<portlet:param name="guestbookId"

value="<%=String.valueOf(guestbookId)%>" />

</portlet:renderURL>

<aui:button onClick="<%=addEntryURL.toString()%>" value="Add Entry"></aui:button>

</aui:button-row>

<liferay-ui:search-container total="<%=EntryLocalServiceUtil.getEntriesCount()%>">

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId.longValue(),

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>" />

<liferay-ui:search-container-row

className="com.liferay.docs.guestbook.model.Entry" modelVar="entry">

<liferay-ui:search-container-column-text property="message" />

<liferay-ui:search-container-column-text property="name" />

</liferay-ui:search-container-row>

<liferay-ui:search-iterator />

</liferay-ui:search-container>

This view.jsp now retrieves the entries from the guestbook it gets from the rendermethod. It
does this inside a Liferay DXP construct called a Search Container. This is a front-end component
that makes it easy to display data in rows and columns. The EntryLocalServiceUtil call retrieves
the data from your new Service Builder-based back-end. Otherwise, this JSP is much the same: you
still have an Add Entry button with its corresponding URL.

Next, you need to edit the edit_entry.jsp:

1. Open edit_entry.jsp and replace the existing code with this:

<%@include file="../init.jsp" %>

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

Entry entry = null;

if (entryId > 0) {

entry = EntryLocalServiceUtil.getEntry(entryId);

}

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

183

%>

<portlet:renderURL var="viewURL">

<portlet:param name="mvcPath" value="/guestbookwebportlet/view.jsp"></portlet:param>

</portlet:renderURL>

<portlet:actionURL name="addEntry" var="addEntryURL"></portlet:actionURL>

<aui:form action="<%= addEntryURL %>" name="<portlet:namespace />fm">

<aui:model-context bean="<%= entry %>" model="<%= Entry.class %>" />

<aui:fieldset>

<aui:input name="name" />

<aui:input name="email" />

<aui:input name="message" />

<aui:input name="entryId" type="hidden" />

<aui:input name="guestbookId" type="hidden" value='<%= entry == null ? guestbookId : entry.getGuestbookId() %>'/>

</aui:fieldset>

<aui:button-row>

<aui:button type="submit"></aui:button>

<aui:button type="cancel" onClick="<%= viewURL.toString() %>"></aui:button>

</aui:button-row>

</aui:form>

This is much the same form, though there are more fields now. Using some AlloyUI tags, the
form is linked to your Entry entity. The two hidden fields contain the new entryId and the
guestbookId for the guestbook the new entry belongs to. The submit button is an ActionURL

that executes the addEntrymethod in the controller (your portlet class).

Congratulations! You’ve now successfully replaced your prototype back-end with a real,
database-driven back-end. Next, you’ll do a quick review and deploy your application.

19.6 Fitting it All Together

<p id="stepTitle">Refactoring the Prototype</p><p>Step 6 of 6</p>

You’ve created a complete data-driven application from the back-end to the display. It’s a great
time to review how everything connects together.

The Entry

First, you defined your model in Service Builder’s configuration file, service.xml. The main part of
this is your Entry object:

<entity local-service="true" name="Entry" uuid="true">

<!-- PK fields -->

<column name="entryId" primary="true" type="long" />

184

<!-- Group instance -->

<column name="groupId" type="long" />

<!-- Audit fields -->

<column name="companyId" type="long" />

<column name="userId" type="long" />

<column name="userName" type="String" />

<column name="createDate" type="Date" />

<column name="modifiedDate" type="Date" />

<column name="name" type="String" />

<column name="email" type="String" />

<column name="message" type="String" />

<column name="guestbookId" type="long" />

<finder name="G_G" return-type="Collection">

<finder-column name="groupId" />

<finder-column name="guestbookId" />

</finder>

</entity>

Next, you created a service implementation in EntryLocalServiceImpl that defined how to get
and store the entry. Every field you defined was accounted for in the addEntrymethod.

public Entry addEntry(long userId, long guestbookId, String name, String email,

String message, ServiceContext serviceContext)

throws PortalException {

long groupId = serviceContext.getScopeGroupId();

User user = userLocalService.getUserById(userId);

Date now = new Date();

validate(name, email, message);

long entryId = counterLocalService.increment();

Entry entry = entryPersistence.create(entryId);

entry.setUuid(serviceContext.getUuid());

entry.setUserId(userId);

entry.setGroupId(groupId);

entry.setCompanyId(user.getCompanyId());

entry.setUserName(user.getFullName());

entry.setCreateDate(serviceContext.getCreateDate(now));

entry.setModifiedDate(serviceContext.getModifiedDate(now));

entry.setExpandoBridgeAttributes(serviceContext);

entry.setGuestbookId(guestbookId);

entry.setName(name);

entry.setEmail(email);

entry.setMessage(message);

entryPersistence.update(entry);

return entry;

}

Notice that all the fields you described in Service Builder (including things like the uuid) are
present here.

You also added ways to get entries:

public List<Entry> getEntries(long groupId, long guestbookId) {

185

return entryPersistence.findByG_G(groupId, guestbookId);

}

public List<Entry> getEntries(

long groupId, long guestbookId, int start, int end, OrderByComparator<Entry> obc) {

return entryPersistence.findByG_G(groupId, guestbookId, start, end, obc);

}

public List<Entry> getEntries(long groupId, long guestbookId, int start, int end)

throws SystemException {

return entryPersistence.findByG_G(groupId, guestbookId, start, end);

}

In service.xml you defined groupId and guestbookId as the two finder fields, and in thesemethods
you called methods generated to the persistence layer.

After you implemented all that, Service Builder propagated your implementation to the inter-
faces, so they could be called. Then, in the portlet class, you created references to the service
classes that Service Builder generated, and used those references to access the service to add an
entry:

_entryLocalService.addEntry(serviceContext.getUserId(), guestbookId,

userName, email,message, serviceContext);

Finally, you wrapped all this up in a user interface that lets users enter the information they
want, and displays the data they’ve entered.

Now that you’ve built the application, and you can see a clear picture of how it all works, it’s
time to test it.

Deploying and Testing the Application

1. Drag and drop the guestbook-apimodule onto the server.

2. Drag and drop the guestbook-servicemodule onto the server.

3. Look for the STARTEDmessages from the console.

4. Go to your Liferay DXP instance at localhost:8080 in your browser to test your updated
application.

5. Click Add Entry.

6. Enter a Name, Message, and Email Address.

7. Click Submit.

8. Verify that your entry appears.

What's Next?

You’ve created a working web application and deployed it on Liferay DXP. If you’ve created web
applications before, though, you know that it’s missing some important features: security, front-
end validation, and an interface for administrators to create multiple guestbooks per portlet. In
the next section, you’ll begin adding these features.

186

Figure 19.3: Your first guestbook and entry appears. Nice job!

187

CHAPTER 20

WRITING AN ADMINISTRATIVE PORTLET

Like the prototype, the real application lets users add and view guestbook entries. The application’s
back-end, however, is much more powerful. It can support many guestbooks and their associated
entries. Despite this, there’s no UI to support these added features. When you create this UI, you
must also make sure that only administrators can add guestbooks.

To accomplish this, you must create a Guestbook Admin portlet and place it in Liferay DXP’s
administrative interface—specifically, within the Content menu. This way, the Guestbook Admin
portlet is accessible only to Site Administrators, and users can use the Guestbook portlet to create
entries.

In short, this is a simple application with a simple interface:

Figure 20.1: The Guestbook Admin portlet lets administrators manage Guestbooks.

Are you ready to begin?
Let’s Go!

20.1 Creating the Classes

<p id="stepTitle">Writing the Guestbook Admin App</p><p>Step 1 of 5</p>

189

Because the Guestbook and Guestbook Admin applications should be bundled together, you’ll
create the new applicationmanually inside the guestbook-web project, rather than by using a wizard.
If you disagree with this design decision, you can create a separate project for Guestbook Admin;
the project template you’d use is panel-app. For now, however, it’s better to go through the process
manually to learn how it all works:

1. Right-click the com.liferay.docs.guestbook.portlet package in the guestbook-web project and
select New → Class.

2. Name the class GuestbookAdminPortlet.

3. Click Browse next to the Superclass and search for MVCPortlet. Click it and select OK.

4. Click Finish.

You now have your Guestbook Admin application’s portlet class. For an administrative applica-
tion, however, you need at least one more component.

Panels and Categories

Asdescribed in theproductmenu tutorial, there are three sections of theproductmenuas illustrated
below.

Figure 20.2: The product menu is split into three sections: the Control Panel, the User menu, and the Sites menu.

Each section is called a panel category. A panel category can hold various menu items called
panel apps. In the illustration above, the Sites menu is open to reveal its panel apps and categories
(yes, you can nest them).

The most natural place for the Guestbook Admin portlet is in the Content panel category
with Liferay DXP’s other content-based apps. This integrates it nicely in the spot where Site
administrators expect it to be. This also means you don’t have to create a new category for it: you
can just create the panel entry, which is what you’ll do next. If you’d like to learn more about panel
categories and apps after this, see the product menu tutorial and the control menu tutorial.

Follow these steps to create the panel entry for the Guestbook Admin portlet:

1. Add the dependency you need to extend Liferay DXP’s panel categories and apps. To do this,
open guestbook-web’s build.gradle file and add this dependency:

190

compileOnly group: "com.liferay", name: "com.liferay.application.list.api", version: "2.0.0"

2. Right-click guestbook-web and select Gradle → Refresh Gradle Project.

3. Right-click src/main/java in the guestbook-web project and select New → Package. Name the
package com.liferay.docs.guestbook.application.list and click Finish.

4. Right-click your new package and select New → Class. Name the class GuestbookAdminPanelApp.

5. Click Browse next to Superclass, search for BasePanelApp, select it, and click OK. Then click
Finish.

Great! You’ve created the classes you need, and you’re ready to begin working on them.

20.2 Adding Metadata

<p id="stepTitle">Writing the Guestbook Admin App</p><p>Step 2 of 5</p>

Now that you’ve generated the classes, you must turn them into OSGi components. Remember
that because components are container-managed objects, you must provide metadata that tells
Liferay DXP’s OSGi container how to manage their life cycles.

Follow these steps:

1. Add the following portlet key to the GuestbookPortletKeys class:

public static final String GUESTBOOK_ADMIN =

"com_liferay_docs_guestbook_portlet_GuestbookAdminPortlet";

2. Open the GuestbookAdminPortlet class and add the @Component annotation immediately above
the class declaration:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.hidden",

"com.liferay.portlet.scopeable=true",

"javax.portlet.display-name=Guestbooks",

"javax.portlet.expiration-cache=0",

"javax.portlet.init-param.portlet-title-based-navigation=true",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/guestbookadminportlet/view.jsp",

"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK_ADMIN,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=administrator",

"javax.portlet.supports.mime-type=text/html",

"com.liferay.portlet.add-default-resource=true"

},

service = Portlet.class

)

3. Hit [CTRL]+[SHIFT]+O to add the javax.portlet.Portlet and other imports.

191

There are only a few new things here. Note the value of the javax.portlet.display-name prop-
erty: Guestbooks. This is the name that appears in the Site menu. Also note the value of the
javax.portlet.name property: + GuestbookPortletKeys.GUESTBOOK_ADMIN. This specifies the portlet’s
title via the GUESTBOOK_ADMIN portlet key that you just created.

Pay special attention to the following metadata property:

com.liferay.portlet.display-category=category.hidden

This is the same property you used before with the Guestbook portlet. You placed that portlet
in the Social category. The value category.hidden specifies a special category that doesn’t appear
anywhere. You’re putting the Guestbook Admin portlet here because it’ll be part of the Site menu,
and you don’t want users adding it to a page. This prevents them from doing that.

Next, you can configure the Panel app class. Follow these steps:

1. Open the GuestbookAdminPanelApp class and add the @Component annotation immediately above
the class declaration:

@Component(

immediate = true,

property = {

"panel.app.order:Integer=300",

"panel.category.key=" + PanelCategoryKeys.SITE_ADMINISTRATION_CONTENT

},

service = PanelApp.class

)

The panel.category.keymetadata property determines where to place the Guestbook Admin
portlet in the Product Menu. Remember that the Product Menu is divided into three main
sections: the Control Panel, the User Menu, and the Site Administration area. The value
of the panel.category.key property is PanelCategoryKeys.SITE_ADMINISTRATION_CONTENT, which
means Guestbook Admin is in Site Administration → Content. The key is provided by the
PanelCategoryKeys class. The panel.app.order value determines the rank for the Guestbook
Admin portlet in the list.

2. Finally, update the class to use the proper name and portlet keys:

public class GuestbookAdminPanelApp extends BasePanelApp {

@Override

public String getPortletId() {

return GuestbookPortletKeys.GUESTBOOK_ADMIN;

}

@Override

@Reference(

target = "(javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK_ADMIN + ")",

unbind = "-"

)

public void setPortlet(Portlet portlet) {

super.setPortlet(portlet);

}

}

3. Hit [CTRL]+[SHIFT]+O to organize imports. This time, import com.liferay.portal.kernel.model.Portlet
instead of javax.portlet.Portlet.

192

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/application-list/application-list-api/src/main/java/com/liferay/application/list/constants/PanelCategoryKeys.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/application-list/application-list-api/src/main/java/com/liferay/application/list/constants/PanelCategoryKeys.java

Now that the configuration is out of the way, you’re free to implement the app’s functionality:
adding, editing, and deleting guestbooks. That’s the next step.

20.3 Updating Your Service Layer

<p id="stepTitle">Writing the Guestbook Admin App</p><p>Step 3 of 5</p>

In an earlier section, you wrote an addGuestbook service method in GuestbookLocalServiceImpl,
but you never used it. To have full functionality over guestbooks, you must also add methods for
updating and deleting guestbooks, as well as for returning the number of guestbooks in a Site.

Adding Guestbook Service Methods

Remember that when working with Service Builder, you define your service in the *Impl classes.
After you add, remove a method, or change the signature of a method in an *Impl class, you must
run Service Builder. Service Builder updates the affected interfaces and any other generated code.

Follow these steps to add the required guestbook service methods:

1. Go to the guestbook-service project and open GuestbookLocalServiceImpl.java in the
com.liferay.docs.guestbook.service.impl package. Add the following method for updating a
guestbook:

public Guestbook updateGuestbook(long userId, long guestbookId,

String name, ServiceContext serviceContext) throws PortalException,

SystemException {

Date now = new Date();

validate(name);

Guestbook guestbook = getGuestbook(guestbookId);

User user = userLocalService.getUser(userId);

guestbook.setUserId(userId);

guestbook.setUserName(user.getFullName());

guestbook.setModifiedDate(serviceContext.getModifiedDate(now));

guestbook.setName(name);

guestbook.setExpandoBridgeAttributes(serviceContext);

guestbookPersistence.update(guestbook);

return guestbook;

}

The updateGuestbookmethod retrieves the Guestbook by its ID, replaces its data with what the
user entered, and then calls the persistence layer to save it back to the database.

2. Next, add the following method for deleting a guestbook:

public Guestbook deleteGuestbook(long guestbookId,

ServiceContext serviceContext) throws PortalException,

SystemException {

Guestbook guestbook = getGuestbook(guestbookId);

193

List<Entry> entries = entryLocalService.getEntries(

serviceContext.getScopeGroupId(), guestbookId);

for (Entry entry : entries) {

entryLocalService.deleteEntry(entry.getEntryId());

}

guestbook = deleteGuestbook(guestbook);

return guestbook;

}

It’s important to consider what should happen if you delete a guestbook that has existing
entries. If you just deleted the guestbook, the guestbook’s entries would still exist in the
database, but they’d be orphaned. Your deleteGuestbook service method makes a service call
to delete a guestbook’s entries before deleting that guestbook. This way, guestbook entries
are never orphaned.

3. Use [CTRL]+[SHIFT]+O to update your imports, then save GuestbookLocalServiceImpl.java.

4. In the Gradle Tasks pane on the right side in Liferay Dev Studio DXP, run Service Builder by
opening the guestbook-servicemodule and double-clicking buildService.

Now that you’ve finished updating the service layer, it’s time to work on the Guestbook Admin
portlet itself.

20.4 Defining Portlet Actions

<p id="stepTitle">Writing the Guestbook Admin App</p><p>Step 4 of 5</p>

The Guestbook Admin portlet now needs action methods for adding, updating, and deleting
guestbooks. As with the Guestbook portlet, actionmethods call the corresponding servicemethods.
Note that since your services and applications are all running in the same container, any application
can call the Guestbook services. This is an advantage of Liferay DXP’s OSGi-based architecture:
different applications or modules can call services published by other modules. If a service is
published, it can be used via @Reference. You’ll take advantage of this here in the Guestbook Admin
portlet to consume one of the same services consumed by the Guestbook portlet (the addGuestbook

service).

Adding Three Portlet Actions

The Guestbook Admin portlet must let administrators add, update, and delete Guestbook objects.
You’ll create portlet actions to meet these requirements. Open GuestbookAdminPortlet.java and
follow these steps:

1. Add the following action method and instance variables needed for adding a new guestbook:

public void addGuestbook(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

194

String name = ParamUtil.getString(request, "name");

try {

_guestbookLocalService.addGuestbook(

serviceContext.getUserId(), name, serviceContext);

}

catch (PortalException pe) {

Logger.getLogger(GuestbookAdminPortlet.class.getName()).log(

Level.SEVERE, null, pe);

response.setRenderParameter(

"mvcPath", "/guestbookadminportlet/edit_guestbook.jsp");

}

}

private GuestbookLocalService _guestbookLocalService;

@Reference(unbind = "-")

protected void setGuestbookService(GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

Since addGuestbook is a portlet action method, it takes ActionRequest and ActionResponse pa-
rameters. To make the service call to add a new guestbook, the guestbook’s name must be
retrieved from the request. The serviceContextmust also be retrieved from the request and
passed as an argument in the service call. If an exception is thrown, you should display the
Add Guestbook form and not the default view. That’s why you add this line in the catch block:

response.setRenderParameter("mvcPath",

"/guestbookadminportlet/edit_guestbook.jsp");

Later, you’ll use this for field validation and to show error messages to the user. Note that
/guestbookadminportlet/edit_guestbook.jsp doesn’t exist yet; you’ll create it in the next section
when you’re designing the Guestbook Admin portlet’s user interface.

2. Add the following action method for updating an existing guestbook:

public void updateGuestbook(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

String name = ParamUtil.getString(request, "name");

long guestbookId = ParamUtil.getLong(request, "guestbookId");

try {

_guestbookLocalService.updateGuestbook(

serviceContext.getUserId(), guestbookId, name, serviceContext);

} catch (PortalException pe) {

Logger.getLogger(GuestbookAdminPortlet.class.getName()).log(

Level.SEVERE, null, pe);

response.setRenderParameter(

"mvcPath", "/guestbookadminportlet/edit_guestbook.jsp");

}

}

195

This method retrieves the guestbook name, ID, and the serviceContext from the request.
The updateGuestbook service call uses the guestbook’s ID to identify the guestbook to update.
If there’s a problem with the service call, the Guestbook Admin portlet displays the Edit
Guestbook form again so that the user can edit the form and resubmit:

response.setRenderParameter("mvcPath",

"/guestbookadminportlet/edit_guestbook.jsp");

Note that the Edit Guestbook form uses the same JSP as the Add Guestbook form to avoid
duplication of code.

3. Add the following action method for deleting a guestbook:

public void deleteGuestbook(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

long guestbookId = ParamUtil.getLong(request, "guestbookId");

try {

_guestbookLocalService.deleteGuestbook(guestbookId, serviceContext);

}

catch (PortalException pe) {

Logger.getLogger(GuestbookAdminPortlet.class.getName()).log(

Level.SEVERE, null, pe);

}

}

This method uses the service layer to delete the guestbook by its ID. Since the deleteGuestbook

action is invoked from the Guestbook Admin portlet’s default view, there’s no need to set
the mvcPath render parameter to point to a particular JSP if there was a problem with the
deleteGuestbook service call.

4. Hit [CTRL]+[SHIFT]+O to organize imports. Save the file.

You now have your service methods and portlet action methods in place. Your last task is to
implement the Guestbook Admin portlet’s user interface.

20.5 Creating a User Interface

<p id="stepTitle">Writing the Guestbook Admin App</p><p>Step 5 of 5</p>

It’s time to create the Guestbook Admin portlet’s user interface. The portlet’s default view has a
button for adding new guestbooks. It must also display the guestbooks that already exist.

Each guestbook’s name is displayed along with an Actions button. The Actions button reveals
options for editing the guestbook, configuring its permissions, or deleting it.

196

Creating JSPs for the Guestbook Admin Portlet's User Interface

The Guestbook Admin portlet’s user interface ismade up of three JSPs: the default view, the Actions
button, and the form for adding or editing a guestbook.

Create the default view first:

1. Create a folder for the Guestbook Admin portlet’s JSPs. In src/main/resources/META-

INF/resources, create a folder called guestbookadminportlet.

2. Create a file in this folder called view.jsp and fill it with this code:

<%@include file="../init.jsp"%>

<liferay-ui:search-container

total="<%= GuestbookLocalServiceUtil.getGuestbooksCount(scopeGroupId) %>">

<liferay-ui:search-container-results

results="<%= GuestbookLocalServiceUtil.getGuestbooks(scopeGroupId,

searchContainer.getStart(), searchContainer.getEnd()) %>" />

<liferay-ui:search-container-row

className="com.liferay.docs.guestbook.model.Guestbook" modelVar="guestbook">

<liferay-ui:search-container-column-text property="name" />

<liferay-ui:search-container-column-jsp

align="right"

path="/guestbookadminportlet/guestbook_actions.jsp" />

</liferay-ui:search-container-row>

<liferay-ui:search-iterator />

</liferay-ui:search-container>

<aui:button-row cssClass="guestbook-admin-buttons">

<portlet:renderURL var="addGuestbookURL">

<portlet:param name="mvcPath"

value="/guestbookadminportlet/edit_guestbook.jsp" />

<portlet:param name="redirect" value="<%= "currentURL" %>" />

</portlet:renderURL>

<aui:button onClick="<%= addGuestbookURL.toString() %>"

value="Add Guestbook" />

</aui:button-row>

First is the standard init.jsp include to gain access to the imports.

Next is a button row with a single button for adding new guestbooks: <aui:button-row

cssClass="guestbook-admin-buttons">. The cssClass attribute lets you specify a custom CSS
class for additional styling. The <portlet:renderURL> tag constructs a URL that points to
the edit_guestbook.jsp. You haven’t created this JSP yet, but you’ll use it for adding a new
guestbook and editing an existing one.

Finally, a Liferay search container is used to display the list of guestbooks. Three sub-tags
define the search container:

• <liferay-ui:search-container-results>

• <liferay-ui:search-container-row>

• <liferay-ui:search-iterator>

197

The <liferay-ui:search-container-results> tag’s results attribute uses a service call to retrieve
the guestbooks in the scope. The total attribute uses another service call to get a count of
guestbooks.
The <liferay-ui:search-container-row> tag defines what rows contain. In this case, the
className attribute defines com.liferay.docs.guestbook.model.Guestbook. The modelVar

attribute defines guestbook as the variable for the currently iterated guestbook. In the
search container row, two columns are defined. The <liferay-ui:search-container-

column-text property="name" /> tag specifies the first column. This tag displays text.
Its property="name" attribute specifies that the text to be displayed is the current
guestbook object’s name attribute. The tag <liferay-ui:search-container-column-jsp

path="/guestbookadminportlet/guestbook_actions.jsp" align="right" /> specifies the second
(and last) column. This tag includes another JSP file within a search container column. Its
path attribute specifies the path to the JSP file that should be displayed: guestbook_actions.jsp.
Finally, the <liferay-ui:search-iterator /> tag iterates through and displays the list of guest-
books. Using Liferay’s search container makes the Guestbook Admin portlet look like a native
Liferay DXP portlet. It also provides built-in pagination so that your portlet can automatically
display large numbers of guestbooks on one Site.
Your next step is to add the guestbook_actions.jsp file that displays the list of possible actions
for each guestbook.

3. Create a new file called guestbook_actions.jsp in your project’s /guestbookadminportlet folder.
Paste in this code:

<%@include file="../init.jsp"%>

<%

String mvcPath = ParamUtil.getString(request, "mvcPath");

ResultRow row = (ResultRow) request

.getAttribute("SEARCH_CONTAINER_RESULT_ROW");

Guestbook guestbook = (Guestbook) row.getObject();

%>

<liferay-ui:icon-menu>

<portlet:renderURL var="editURL">

<portlet:param name="guestbookId"

value="<%=String.valueOf(guestbook.getGuestbookId()) %>" />

<portlet:param name="mvcPath"

value="/guestbookadminportlet/edit_guestbook.jsp" />

</portlet:renderURL>

<liferay-ui:icon image="edit" message="Edit"

url="<%=editURL.toString() %>" />

<portlet:actionURL name="deleteGuestbook" var="deleteURL">

<portlet:param name="guestbookId"

value="<%= String.valueOf(guestbook.getGuestbookId()) %>" />

</portlet:actionURL>

<liferay-ui:icon-delete url="<%=deleteURL.toString() %>" />

</liferay-ui:icon-menu>

This JSP comprises the pop-up actionsmenu that shows thepossible actions users canperform
on a guestbook: editing it or deleting it. First, init.jsp is included because it contains all the

198

JSP imports. Because guestbook_actions.jsp is included for every Search Container row, it
retrieves the guestbook in the current iteration. The scriptlet grabs that guestbook so its ID
can be supplied to the menu tags.
The <liferay-ui:icon-menu> tag dominates guestbook_actions.jsp. It’s a container for menu
items, of which there are currently only two (you’ll add more later). The Edit menu item
displays the Edit icon and the message Edit:

<liferay-ui:icon image="edit" message="Edit"

url="<%=editURL.toString() %>" />

The editURL variable comes from the <portlet:renderURL var="editURL"> tag with two parame-
ters: guestbookId and mvcPath. The guestbookId parameter specifies the guestbook to edit (it’s
the one from the selected search container result row), and the mvcPath parameter specifies
the Edit Guestbook form’s path.
The Delete menu item displays a delete icon and the default message Delete:

<liferay-ui:icon-delete url="<%=deleteURL.toString() %>" />

Unlike the editURL, which is a render URL that links to the edit_guestbook.jsp, the deleteURL

is an action URL that invokes the portlet’s deleteGuestbook action. The tag <portlet:actionURL

name="deleteGuestbook" var="deleteURL"> creates this action URL, which only takes one pa-
rameter: the guestbookId of the guestbook to be deleted.
Now there’s just onemore JSP file left to create: the edit_guestbook.jsp that contains the form
for adding a new guestbook and editing an existing one.

4. Create a new file called edit_guestbook.jsp in your project’s /guestbookadminportlet directory.
Then add the following code to it:

<%@include file = "../init.jsp" %>

<%

long guestbookId = ParamUtil.getLong(request, "guestbookId");

Guestbook guestbook = null;

if (guestbookId > 0) {

guestbook = GuestbookLocalServiceUtil.getGuestbook(guestbookId);

}

%>

<portlet:renderURL var="viewURL">

<portlet:param name="mvcPath" value="/guestbookadminportlet/view.jsp" />

</portlet:renderURL>

<portlet:actionURL name='<%= guestbook == null ? "addGuestbook" : "updateGuestbook" %>' var="editGuestbookURL" />

<aui:form action="<%= editGuestbookURL %>" name="fm">

<aui:model-context bean="<%= guestbook %>" model="<%= Guestbook.class %>" />

<aui:input type="hidden" name="guestbookId"

value='<%= guestbook == null ? "" : guestbook.getGuestbookId() %>' />

<aui:fieldset>

<aui:input name="name" />

</aui:fieldset>

199

<aui:button-row>

<aui:button type="submit" />

<aui:button onClick="<%= viewURL %>" type="cancel" />

</aui:button-row>

</aui:form>

After the init.jsp import, you declare a null guestbook variable. If there’s a guestbookId

parameter in the request, then you know that you’re editing an existing guestbook, and you
use the guestbookId to retrieve the corresponding guestbook via a service call. Otherwise, you
know that you’re adding a new guestbook.
Next is a view URL that points to the Guestbook Admin portlet’s default view. This URL is
invoked if the user clicks Cancel on the Add Guestbook or Edit Guestbook form. After that, you
create an action URL that invokes either the Guestbook Admin portlet’s addGuestbookmethod
or its updateGuestbookmethod, depending on whether the guestbook variable is null.
If a guestbook is being edited, the current guestbook’s name should appear in the form’s
name field. You use the following tag to define a model of the guestbook that can be used in
the AlloyUI form:

<aui:model-context bean="<%= guestbook %>" model="<%= Guestbook.class %>" />

The form itself is created with the following tag:

<aui:form action="<%= editGuestbookURL %>" name="<portlet:namespace />fm">

When the form is submitted, the editGuestbookURL is invoked, which calls the Guestbook
Admin portlet’s addGuestbook or updateGuestbookmethod, as discussed above.
The guestbookId must appear on the form so that it can be submitted. The user, however,
doesn’t need to see it. Thus, you specify type="hidden":

<aui:input type="hidden" name="guestbookId"

value='<%= guestbook == null ? "" : guestbook.getGuestbookId() %>' />

The name, of course, should be editable by the user so it’s not hidden.
The last item on the form is a button row with two buttons. The Submit button submits
the form, invoking the editGuestbookURL which, in turn, invokes either the addGuestbook or
updateGuestbook method. The Cancel button invokes the viewURL which displays the default
view.

Excellent! You’ve now finished creating the UI for the Guestbook Admin portlet. It should now
match the figure below:

Test out the Guestbook Admin portlet! Try adding, editing, and deleting guestbooks.
Now all the Guestbook application’s primary functions work. There are still many missing

features, however. For example, if there’s ever an error, users never see it: all the code written so
far just prints messages in the logs. Next, you’ll learn how to display those errors to the user.

200

Figure 20.3: The Guestbook Admin portlet lets administrators add or edit guestbooks, configure their permissions, or delete them.

201

CHAPTER 21

DISPLAYING MESSAGES AND ERRORS

When users interact with your application, they perform tasks it defines, like saving or editing
things. The Guestbook application is no different. Your application should also provide feedback on
these operations so users can know if they worked. Up to now, you’ve been placing this information
in logs that only administrators can access. Wouldn’t it be better to show users these messages?

Figure 21.1: You can use Liferay’s APIs to display helpful messages.

That’s exactly what you’ll do next, in three steps:

1. Create language keys for your messages.
2. Add the error messages to your action methods.
3. Report those error messages in your JSPs.

Ready to get started?
Let’s Go!

21.1 Creating Language Keys

<p id="stepTitle">Displaying Messages and Errors</p><p>Step 1 of 3</p>

Any modern application should place its messages and form field labels in a language keys
file that can be duplicated and then translated into multiple languages. Here, you’ll learn how
to provide a default set of English language keys for your application. For more information on
language keys and providing automatically translated language keys, see this tutorial.

Language keys are stored in the Language.properties file included in your guestbook-web

module. Language.properties is the default, but you can create a number of translations by
appending the ISO-639 language code to the file name (e.g., Language_es.properties for Spanish or
Language_de.properties for German). For now, stick to the default language keys.

Follow these steps to create your language keys:

203

1. Open /src/main/resources/content/Language.properties in your guestbook-web module. Re-
move the default keys in this file.

2. Paste in the following keys:

entry-added=Entry added successfully.

entry-deleted=Entry deleted successfully.

guestbook-added=Guestbook added successfully.

guestbook-updated=Guestbook updated successfully.

guestbook-deleted=Guestbook deleted successfully.

3. Save the file.

Your messages are now in place, and your application can use them. Next, you’ll add them to
your action methods.

21.2 Adding Failure and Success Messages

<p id="stepTitle">Displaying Messages and Errors</p><p>Step 2 of 3</p>

To display feedback to users properly, you must edit your portlet classes to use Liferay DXP’s
SessionMessages and SessionErrors classes. These classes collect messages that the view layer shows
to the user through a tag.

You’ll add these messages to code that runs when the user triggers a system function that
can succeed or fail, such as creating, editing, or deleting an entry or guestbook. This generally
happens in action methods. You must update these methods to handle failure and success states in
GuestbookPortlet.java and GuestbookAdminPortlet.java. Start by updating addEntry and deleteEntry

in GuestbookPortlet.java:

1. Find the addEntrymethod in GuestbookPortlet.java. In the first try...catch block’s try section,
and add the success message just before the closing }:

SessionMessages.add(request, "entryAdded");

This uses Liferay’s SessionMessages API to add a success message whenever a Guestbook is
successfully added. It looks up the message you placed in the Language.properties file and
inserts the message for the key entry-added (it automatically converts the key from camel
case).

2. Below that, in the catch block, find the following code:

System.out.println(e);

3. Beneath it, paste this line:

SessionErrors.add(request, e.getClass().getName());

Now you not only log the message to the console, you also use the SessionErrors object to
show the message to the user.

204

Next, do the same for the deleteEntrymethod:

1. After the logic to delete the entry, add a success message:

SessionMessages.add(request, "entryDeleted");

2. Find the same Logger... block of code in the deleteEntrymethod and after it, paste this line:

SessionErrors.add(request, e.getClass().getName());

3. Hit [CTRL]+[SHIFT]+O to import com.liferay.portal.kernel.servlet.SessionErrors and
com.liferay.portal.kernel.servlet.SessionMessages. Save the file.

Well done! You’ve added the messages to GuestbookPortlet. Now you must update
GuestbookAdminPortlet.java:

1. Open GuestbookAdminPortlet.java and look for the same cues.

2. Add the appropriate success messages to the try section of the try...catch in addGuestbook,
updateGuestbook, and deleteGuestbook, respectively:

SessionMessages.add(request, "guestbookAdded");

SessionMessages.add(request, "guestbookUpdated");

SessionMessages.add(request, "guestbookDeleted");

3. In the catch section of those same methods, find Logger.getlogger... and paste the
SessionErrors block beneath it:

SessionErrors.add(request, pe.getClass().getName());

4. Hit [CTRL]+[SHIFT]+O to import SessionErrors and SessionMessages. Save the file.

Great! The controller now makes relevant and detailed feedback available. Now all you need to
do is publish this feedback in the view layer.

21.3 Adding Messages to JSPs

<p id="stepTitle">Displaying Messages and Errors</p><p>Step 3 of 3</p>

Any messages the user should see are now stored in either SessionMessages or SessionErrors.
Next, you’ll make these messages appear in your JSPs.

1. In the guestbook-webmodule, open guestbookwebportlet/view.jsp. Add the following block of
success messages to the top of the file, just below the init.jsp include statement:

<liferay-ui:success key="entryAdded" message="entry-added" />

<liferay-ui:success key="entryDeleted" message="entry-deleted" />

205

This tag accesses what’s stored in SessionMessages. It has two attributes. The first is the
SessionMessages key that you provided in the GuestbookPortlet.java class’s add and delete
methods. The second looks up the specified key in the Language.properties file. You could
have specified a hard-coded message here, but it’s far better to provide a localized key.

2. Now open guestbookadminportlet/view.jsp. Add the following block of success messages in
the same spot below the include:

<liferay-ui:success key="guestbookAdded" message="guestbook-added" />

<liferay-ui:success key="guestbookUpdated" message="guestbook-updated" />

<liferay-ui:success key="guestbookDeleted" message="guestbook-deleted" />

Figure 21.2: Now the message displays the value you specified in Language.properties.

Congratulations! You’ve added useful feedback for operations in your application.
Your application is shaping up, but it is missing another important feature: permissions. Next,

you’ll add permission checking for your guestbooks and entries.

206

CHAPTER 22

USING RESOURCES AND PERMISSIONS

You now have an application that uses the database for data storage. This is a great foundation
to build on. What comes next? What if users want a Guestbook that’s limited to certain trusted
people? To do that, you have to implement permissions.

Thankfully, with Liferay DXP you don’t have to write an entire permissions system from scratch:
the framework provides a robust and well-tested permissions system that you can implement
quickly. You’ll follow Liferay’s well-defined process for implementing permissions, called DRAC:

• Define all resources and permissions
• Register all defined resources in the permissions system
• Associate permissions with resources
• Check for permission before returning resources

Ready to start?
Let’s Go!

22.1 Defining Permissions

<p id="stepTitle">Implementing Permissions</p><p>Step 1 of 4</p>

Liferay DXP’s permissions framework is configured declaratively, like Service Builder. You
define all your permissions in an XML file that by convention is called default.xml (but you could
really call it whatever you want). Then you implement permissions checks in the following places
in your code:

• In the view layer, when showing links or buttons to protected functionality
• In the actions, before performing a protected action
• Later, in your service, before calling the remote service

You should first define the permissions you want. To get started, think of your application’s use
cases and how access to that functionality should be controlled:

• The Add Guestbook button should be available only to administrators.

207

• The Guestbook tabs should be filtered by permissions so administrators can control who can
see them.

• To prevent anonymous users from spamming the guestbook, the Add Entry button should be
available only to Site members.

• Users should be able to set permissions on their own entries.

Now you’re ready to create the permissions configuration. Objects in your application (such as
Guestbook and Entry) are defined as resources, and resource actions manage how users can interact
with those resources. There are therefore two kinds of permissions: portlet permissions and
resource (or model) permissions. Portlet permissions protect access to global functions, such as
Add Entry. If users don’t have permission to access that global function, they’re missing a portlet
permission. Resource permissions protect access to objects, such as Guestbook and Entry. A user
may have permission to view one Entry, view and edit another Entry, and may not be able to access
another Entry at all. This is due to a resource permission.

First, create the permissions file in the guestbook-service project:

1. In the META-INF folder, create a subfolder called resource-actions.

2. Create a new file in this folder called default.xml.

3. Click the Source tab. Add the following DOCTYPE declaration to the top of the file:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action

Mapping 7.1.0//EN" "http://www.liferay.com/dtd/liferay-resource-action-mapping_7_1_0.dtd">

4. Place the following wrapper tags into your default.xml file, below the DOCTYPE declaration:

<resource-action-mapping>

</resource-action-mapping>

You’ll define your resource and model permissions inside these tags.

5. Next, place the permissions for your com.liferay.docs.guestbook package between the
<resource-action-mapping> tags:

<model-resource>

<model-name>com.liferay.docs.guestbook</model-name>

<portlet-ref>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookPortlet</portlet-name>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookAdminPortlet</portlet-name>

</portlet-ref>

<root>true</root>

<permissions>

<supports>

<action-key>ADD_GUESTBOOK</action-key>

<action-key>ADD_ENTRY</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>ADD_ENTRY</action-key>

</site-member-defaults>

<guest-defaults>

208

Figure 22.1: Portlet permissions and resource permissions cover different parts of the application.

209

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ADD_GUESTBOOK</action-key>

<action-key>ADD_ENTRY</action-key>

</guest-unsupported>

</permissions>

</model-resource>

This defines the baseline configuration for the Guestbook and Entry entities. The supported
actions are ADD_GUESTBOOK and ADD_ENTRY. Site members can ADD_ENTRY by default, while guests
can’t perform either action (but they can view).

6. Below that, but above the closing </resource-action-mapping>, place the Guestbookmodel per-
missions:

<model-resource>

<model-name>com.liferay.docs.guestbook.model.Guestbook</model-name>

<portlet-ref>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookPortlet</portlet-name>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookAdminPortlet</portlet-name>

</portlet-ref>

<permissions>

<supports>

<action-key>ADD_ENTRY</action-key>

<action-key>DELETE</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>ADD_ENTRY</action-key>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>UPDATE</action-key>

</guest-unsupported>

</permissions>

</model-resource>

This defines the Guestbook specific actions, including adding, deleting, updating, and viewing.
By default, site members and guests can view guestbooks, but guests can’t update them.

7. Below the Guestbookmodel permissions, but still above the closing </resource-action-mapping>,
place the Entrymodel permissions:

<model-resource>

<model-name>com.liferay.docs.guestbook.model.Entry</model-name>

<portlet-ref>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookPortlet</portlet-name>

</portlet-ref>

<permissions>

<supports>

<action-key>DELETE</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

210

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>UPDATE</action-key>

</guest-unsupported>

</permissions>

</model-resource>

This defines Entry specific actions. By default, a Site member can add or view an entry, and a
guest can only view an entry.

8. Save the file.

Next, you must tell the framework where your permissions are defined. You’ll define resource
and model permissions in the module where your model is defined:

1. In guestbook-service’s src/main/resources folder, create a file called portlet.properties.

2. In this file, place the following property:

resource.actions.configs=META-INF/resource-actions/default.xml

This property defines the name and location of your permissions definition file.
You now have permissions defined at the model level, but you must also define portlet permis-

sions. These are managed in the guestbook-webmodule, which contains the portlet class. Follow
these steps to add the portlet permissions in the guestbook-webmodule:

1. Create a subfolder called resource-actions in the src/main/resources/META-INF folder.

2. Create a new file in this folder called default.xml.

3. Add the following DOCTYPE declaration to the top of the file:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action

Mapping 7.1.0//EN" "http://www.liferay.com/dtd/liferay-resource-action-mapping_7_1_0.dtd">

4. Below the DOCTYPE declaration, add the following resource-action-mapping tags:

<resource-action-mapping>

</resource-action-mapping>

You’ll define your portlet permissions inside these tags.

5. Insert this block of code inside the resource-action-mapping tags:

211

<portlet-resource>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookAdminPortlet</portlet-name>

<permissions>

<supports>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

</guest-unsupported>

</permissions>

</portlet-resource>

This defines the default permissions for the Guestbook Admin portlet. It supports the actions
ACCESS_IN_CONTROL_PANEL, CONFIGURATION, and VIEW. While anyone can view the app, guests and
Site members can’t configure it or access it in the Control Panel. Since it’s a Control Panel
portlet, this effectively means that only administrators can access it.

6. Below the Guestbook Admin permissions, insert this block of code:

<portlet-resource>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookPortlet</portlet-name>

<permissions>

<supports>

<action-key>ADD_TO_PAGE</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported />

</permissions>

</portlet-resource>

This defines permissions for the Guestbook portlet. It supports the actions ADD_TO_PAGE,
CONFIGURATION, and VIEW. Site members and guests get the VIEW permission by default.

7. Save the file.

8. In guestbook-web’s src/main/resources folder, create a file called portlet.properties.

9. In this file, place the following property:

resource.actions.configs=META-INF/resource-actions/default.xml

10. Save the file.

Great job! You’ve now successfully designed and implemented a permissions scheme for your
application. Next, you’ll create the Java code to support permissions in the service layer.

212

22.2 Registering Your Defined Permissions

<p id="stepTitle">Implementing Permissions</p><p>Step 2 of 4</p>

The last step introduced the concept of resources. Resources are data stored with your entities
that define how they can be accessed. For example, when the configuration in your default.xml
files is applied to your application’s entities in the database, resources are created. These resources
are then used in conjunction with Liferay DXP’s permissions system to determine who can do what
to the entities.

To use these resources, Liferay DXPmust know about them. To do that you register the resources
with the system, both in the database and with the running permissions system in the OSGi
container.

Registering Permissions in the Database

Liferay DXP provides a complete API for managing resources that’s integrated with Service Builder.
This API is injected into your implementation classes automatically. To manage the resources, you
need only call the API in the service’s add and delete methods. Follow these steps to do this in your
application:

1. In your guestbook-service module, open GuestbookLocalServiceImpl.java from the
com.liferay.docs.guestbook.service.impl package.

2. Just before the addGuestbookmethod’s return statement, add this code:

resourceLocalService.addResources(user.getCompanyId(), groupId, userId,

Guestbook.class.getName(), guestbookId, false, true, true);

Note that the resourceLocalService object is already there, ready for you to use. This is one of
several utilities that are injected automatically by Service Builder. You’ll see the rest in the
future.
This code adds a resource to Liferay DXP’s database to correspond with your entity (note that
the guestbookId is included in the call). The three booleans at the end are settings. The first is
whether to add portlet action permissions. This should only be true if the permission is for
a portlet resource. Since this permission is for a model resource (an entity), it’s false. The
other two are settings for adding group and guest permissions. If you set these to true, you’ll
add the default permissions you defined in the permissions configuration file (default.xml)
in the previous step. Since you definitely want to do this, these booleans are set to true.

3. Next, go to the updateGuestbookmethod. Adda similar bit of code inbetween guestbookPersistence.update(guestbook);

and the return statement:

resourceLocalService.updateResources(serviceContext.getCompanyId(),

serviceContext.getScopeGroupId(),

Guestbook.class.getName(), guestbookId,

serviceContext.getGroupPermissions(),

serviceContext.getGuestPermissions());

4. Now you’ll do the same for deleteGuestbook. Add this code in between guestbook =

deleteGuestbook(guestbook); and the return statement:

213

resourceLocalService.deleteResource(serviceContext.getCompanyId(),

Guestbook.class.getName(), ResourceConstants.SCOPE_INDIVIDUAL,

guestbookId);

5. Hit [CTRL]+[SHIFT]+O to organize the imports and save the file.

6. Now you’ll add resources for the Entry entity. Open EntryLocalServiceImpl.java from the same
package. For addEntry, add a line of code that adds resources for this entity, just before the
return statement:

resourceLocalService.addResources(user.getCompanyId(), groupId, userId,

Entry.class.getName(), entryId, false, true, true);

7. For deleteEntry, add this code just before the return statement:

resourceLocalService.deleteResource(

serviceContext.getCompanyId(), Entry.class.getName(),

ResourceConstants.SCOPE_INDIVIDUAL, entryId);

8. Finally, find updateEntry and add its resource action, also just before the return statement:

resourceLocalService.updateResources(

user.getCompanyId(), serviceContext.getScopeGroupId(),

Entry.class.getName(), entryId, serviceContext.getGroupPermissions(),

serviceContext.getGuestPermissions());

That’s all it takes to add permissions resources to the database. Future entities added to the
database are fully permissions-enabled. Note, however, that any entities you’ve already added
to your Guestbook application in the portal don’t have resources and thus can’t be protected by
permissions. You’ll fix this at the end of this section. Now you must register permissions with the
permissions system, so it knows how to check for them.

Registering Your Entities with the Permissions Service

A running service checks permissions, but since the Guestbook portlet, Guestbooks, and Guestbook
Entries are new to the system, it must be taught about them. You do this by creating permis-
sions registrar classes. These follow what you did in default.xml: you need one for your portlet
permissions and one for each of your entities. First, you must do a little reorganization.

1. In yourAPImodule, create a GuestbookConstants class in anewpackage called com.liferay.docs.guestbook.constants:

package com.liferay.docs.guestbook.constants;

public class GuestbookConstants {

public static final String RESOURCE_NAME = "com.liferay.docs.guestbook";

}

The RESOURCE_NAME string must match exactly your resource name from default.xml. You’ll see
why in a moment.

214

2. You have a GuestbookPortletKeys class in your web module. These keys must now be ac-
cessible to all modules, so drag this class from the web module and drop it into the new
com.liferay.docs.guestbook.constants package in your API module.

Now you’re ready to create your permissions registrar classes.

3. In your service bundle, create apackage that by convention ends in internal.security.permission.resource.

4. Create a class in this package called GuestbookModelResourcePermissionRegistrar with the con-
tents below.

package com.liferay.docs.guestbook.internal.security.permission.resource;

import java.util.Dictionary;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;

import org.osgi.service.component.annotations.Activate;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Deactivate;

import org.osgi.service.component.annotations.Reference;

import com.liferay.docs.guestbook.constants.GuestbookConstants;

import com.liferay.docs.guestbook.constants.GuestbookPortletKeys;

import com.liferay.docs.guestbook.model.Guestbook;

import com.liferay.docs.guestbook.service.GuestbookLocalService;

import com.liferay.exportimport.kernel.staging.permission.StagingPermission;

import com.liferay.portal.kernel.security.permission.resource.ModelResourcePermission;

import com.liferay.portal.kernel.security.permission.resource.ModelResourcePermissionFactory;

import com.liferay.portal.kernel.security.permission.resource.PortletResourcePermission;

import com.liferay.portal.kernel.security.permission.resource.StagedModelPermissionLogic;

import com.liferay.portal.kernel.security.permission.resource.WorkflowedModelPermissionLogic;

import com.liferay.portal.kernel.service.GroupLocalService;

import com.liferay.portal.kernel.util.HashMapDictionary;

import com.liferay.portal.kernel.workflow.permission.WorkflowPermission;

@Component (immediate=true)

public class GuestbookModelResourcePermissionRegistrar {

@Activate

public void activate(BundleContext bundleContext) {

Dictionary<String, Object> properties = new HashMapDictionary<>();

properties.put("model.class.name", Guestbook.class.getName());

_serviceRegistration = bundleContext.registerService(

ModelResourcePermission.class,

ModelResourcePermissionFactory.create(

Guestbook.class, Guestbook::getGuestbookId,

_guestbookLocalService::getGuestbook, _portletResourcePermission,

(modelResourcePermission, consumer) -> {

consumer.accept(

new StagedModelPermissionLogic<>(

_stagingPermission, GuestbookPortletKeys.GUESTBOOK,

Guestbook::getGuestbookId));

consumer.accept(

new WorkflowedModelPermissionLogic<>(

_workflowPermission, modelResourcePermission,

_groupLocalService, Guestbook::getGuestbookId));

}),

properties);

}

@Deactivate

215

public void deactivate() {

_serviceRegistration.unregister();

}

@Reference

private GuestbookLocalService _guestbookLocalService;

@Reference(target = "(resource.name=" + GuestbookConstants.RESOURCE_NAME + ")")

private PortletResourcePermission _portletResourcePermission;

private ServiceRegistration<ModelResourcePermission> _serviceRegistration;

@Reference

private StagingPermission _stagingPermission;

@Reference

private WorkflowPermission _workflowPermission;

@Reference

private GroupLocalService _groupLocalService;

}

This class registers a chain of permission logic classes for checking permissions for Guestbook
entities. Since this functionality is the same for all entities, all that’s necessary is to specify yours
in addition to the standard Liferay ones for staging and workflow. Introspection is done on your
entity by the factory to create the necessary permissions service. You implemented the constants
class so you can specify the resource model name you defined in default.xml. The model.class.name

is set so that any module needing this service can find this model resource permission by its type.
Now create the registrar for the Entry entity:

1. Create a class in the same package called GuestbookEntryModelResourcePermissionRegistrar.

2. The only difference between this class and the one above is that it operates on Entry entities
instead of Guestbook entities (the imports have been left off in the snippet below):

@Component(immediate = true)

public class GuestbookEntryModelResourcePermissionRegistrar {

@Activate

public void activate(BundleContext bundleContext) {

Dictionary<String, Object> properties = new HashMapDictionary<>();

properties.put("model.class.name", Entry.class.getName());

_serviceRegistration = bundleContext.registerService(

ModelResourcePermission.class,

ModelResourcePermissionFactory.create(

Entry.class, Entry::getEntryId,

_entryLocalService::getEntry, _portletResourcePermission,

(modelResourcePermission, consumer) -> {

consumer.accept(

new StagedModelPermissionLogic<>(

_stagingPermission, GuestbookPortletKeys.GUESTBOOK,

Entry::getEntryId));

consumer.accept(

new WorkflowedModelPermissionLogic<>(

_workflowPermission, modelResourcePermission,

_groupLocalService, Entry::getEntryId));

}),

properties);

}

216

@Deactivate

public void deactivate() {

_serviceRegistration.unregister();

}

@Reference

private EntryLocalService _entryLocalService;

@Reference(target = "(resource.name=" + GuestbookConstants.RESOURCE_NAME + ")")

private PortletResourcePermission _portletResourcePermission;

private ServiceRegistration<ModelResourcePermission> _serviceRegistration;

@Reference

private StagingPermission _stagingPermission;

@Reference

private WorkflowPermission _workflowPermission;

@Reference

private GroupLocalService _groupLocalService;

}

Finally, create the registrar for the portlet permissions:

1. Create a class in the same package called GuestbookPortletResourcePermissionRegistrar.

2. This class is simpler because you don’t have to tell it how to retrieve primary keys from any
entity:

@Component (immediate = true)

public class GuestbookPortletResourcePermissionRegistrar {

@Activate

public void activate(BundleContext bundleContext) {

Dictionary<String, Object> properties = new HashMapDictionary<>();

properties.put("resource.name", GuestbookConstants.RESOURCE_NAME);

_serviceRegistration = bundleContext.registerService(

PortletResourcePermission.class,

PortletResourcePermissionFactory.create(

GuestbookConstants.RESOURCE_NAME,

new StagedPortletPermissionLogic(

_stagingPermission, GuestbookPortletKeys.Guestbook)),

properties);

}

@Deactivate

public void deactivate() {

_serviceRegistration.unregister();

}

private ServiceRegistration<PortletResourcePermission> _serviceRegistration;

@Reference

private StagingPermission _stagingPermission;

}

You’ve now completed step two: the R in DRAC: registering permissions. Next, you’ll enable
users to associate permissions with resources.

217

22.3 Assigning Permissions to Resources

<p id="stepTitle">Implementing Permissions</p><p>Step 3 of 4</p>

You’ve now defined your permissions and registered them in the container and in the database
so permissions can be checked. Now you’ll create a UI for users to assign permissions along with
helper classes to make it easy to check permissions in the next step.

Here’s how it works. You have a permission, such as ADD_ENTRY, and a resource, such as a
Guestbook. For a user to add an entry to a guestbook, you must check if that user has the ADD_ENTRY

permission for that guestbook. Helper classes make it easier to check permissions:

1. Right-click the guestbook-web module and select New → Package. To follow Liferay’s prac-
tice, name the package com.liferay.docs.guestbook.web.security.permission.resource. This
is where you’ll place your helper classes.

2. Right-click the new package and select New → Class. Name the class GuestbookPermission.

3. Replace this class’s contents with the following code:

package com.liferay.docs.guestbook.web.security.permission.resource;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import com.liferay.docs.guestbook.constants.GuestbookConstants;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import com.liferay.portal.kernel.security.permission.resource.PortletResourcePermission;

@Component(immediate=true)

public class GuestbookPermission {

public static boolean contains(PermissionChecker permissionChecker, long groupId, String actionId) {

return _portletResourcePermission.contains(permissionChecker, groupId, actionId);

}

@Reference(

target="(resource.name=" + GuestbookConstants.RESOURCE_NAME + ")",

unbind="-"

)

protected void setPortletResourcePermission(PortletResourcePermission portletResourcePermission) {

_portletResourcePermission = portletResourcePermission;

}

private static PortletResourcePermission _portletResourcePermission;

}

This class is a component defining one static method (so you don’t have to instantiate the class)
that encapsulates the model you’re checking permissions for. Liferay’s PermissionChecker class
does most of the work: give it the proper resource and action, such as ADD_ENTRY, and it returns
whether the permission exists or not.

There’s only one method: a check method that throws an exception if the user doesn’t have
permission.

Next, you’ll create helpers for your two entities:

218

1. Create a class in the same package called GuestbookModelPermission.java.

2. Replace this class’s contents with the following code:

package com.liferay.docs.guestbook.web.security.permission.resource;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import com.liferay.docs.guestbook.model.Guestbook;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import com.liferay.portal.kernel.security.permission.resource.ModelResourcePermission;

@Component(immediate = true)

public class GuestbookModelPermission {

public static boolean contains(

PermissionChecker permissionChecker, Guestbook guestbook, String actionId) throws PortalException {

return _guestbookModelResourcePermission.contains(permissionChecker, guestbook, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, long guestbookId, String actionId) throws PortalException {

return _guestbookModelResourcePermission.contains(permissionChecker, guestbookId, actionId);

}

@Reference(

target = "(model.class.name=com.liferay.docs.guestbook.model.Guestbook)",

unbind = "-")

protected void setEntryModelPermission(ModelResourcePermission<Guestbook> modelResourcePermission) {

_guestbookModelResourcePermission = modelResourcePermission;

}

private static ModelResourcePermission<Guestbook>_guestbookModelResourcePermission;

}

As you can see, this class is similar to GuestbookPermission. The difference is that
GuestbookModelPermission is for the model/resource permission, so you supply the entity or
its primary key (guestbookId).

Your final class is almost identical to GuestbookModelPermission, but it’s for the Entry entity.
Follow these steps to create it:

1. Create a class in the same package called GuestbookEntryPermission.java.

2. Replace this class’s contents with the following code:

package com.liferay.docs.guestbook.web.security.permission.resource;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import com.liferay.docs.guestbook.model.Entry;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import com.liferay.portal.kernel.security.permission.resource.ModelResourcePermission;

@Component(immediate = true)

219

public class GuestbookEntryPermission {

public static boolean contains(

PermissionChecker permissionChecker, Entry entry, String actionId) throws PortalException {

return _guestbookEntryModelResourcePermission.contains(permissionChecker, entry, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, long entryId, String actionId) throws PortalException {

return _guestbookEntryModelResourcePermission.contains(permissionChecker, entryId, actionId);

}

@Reference(

target = "(model.class.name=com.liferay.docs.guestbook.model.Entry)",

unbind = "-")

protected void setEntryModelPermission(ModelResourcePermission<Entry> modelResourcePermission) {

_guestbookEntryModelResourcePermission = modelResourcePermission;

}

private static ModelResourcePermission<Entry>_guestbookEntryModelResourcePermission;

}

This class is almost identical to GuestbookModelPermission. The only difference is that
GuestbookEntryPermission is for the Entry entity.

Now you can expose the permissions UI to your users so they can assign permissions:

1. Go to the init.jsp in your guestbook-web project. Add the following imports to the file:

<%@ page import="com.liferay.docs.guestbook.web.security.permission.resource.GuestbookModelPermission" %>

<%@ page import="com.liferay.docs.guestbook.web.security.permission.resource.GuestbookPermission" %>

<%@ page import="com.liferay.docs.guestbook.web.security.permission.resource.GuestbookEntryPermission" %>

<%@ page import="com.liferay.portal.kernel.util.WebKeys" %>

<%@ page import="com.liferay.portal.kernel.security.permission.ActionKeys" %>

The first three are the permissions helper classes you just created.

2. Open guestbook_actions.jsp. Add this code just after the <liferay-ui:icon-delete> tag:

<c:if

test="<%=GuestbookModelPermission.contains(permissionChecker, guestbook.getGuestbookId(), ActionKeys.PERMISSIONS) %>">

<liferay-security:permissionsURL

modelResource="<%= Guestbook.class.getName() %>"

modelResourceDescription="<%= guestbook.getName() %>"

resourcePrimKey="<%= String.valueOf(guestbook.getGuestbookId()) %>"

var="permissionsURL" />

<liferay-ui:icon image="permissions" url="<%= permissionsURL %>" />

</c:if>

3. Save the file.

You just added an action button that displays Liferay’s permissions UI for Guestbooks. On top
of that, you used the permissions helper you just created to test whether users can even see the
action button. It only appears if users have the permissions permission.

220

You’ll implement this for Guestbook entries in the next step.
Congratulations! You’ve now created helper classes for your permissions, and you’ve enabled

users to associate permissions with their resources. The only thing left is to implement permission
checks in the application’s view layer. You’ll do this next.

22.4 Checking for Permission in JSPs

<p id="stepTitle">Implementing Permissions</p><p>Step 4 of 4</p>

You’ve already seen how user interface components can be wrapped in permission checks
pretty easily. In this step, you’ll implement the rest.

Checking Permissions in the UI

Recall that you want to restrict access to three areas in your application:

• The guestbook tabs across the top of your application
• The Add Guestbook button
• The Add Entry button

First, you’ll create the guestbook tabs and check permissions for them:

1. Open /guestbookwebportlet/view.jsp and find the scriptlet that gets the guestbookId from the
request. Just below this, add the following code:

<aui:nav cssClass="nav-tabs">

<%

List<Guestbook> guestbooks = GuestbookLocalServiceUtil.getGuestbooks(scopeGroupId);

for (int i = 0; i < guestbooks.size(); i++) {

Guestbook curGuestbook = guestbooks.get(i);

String cssClass = StringPool.BLANK;

if (curGuestbook.getGuestbookId() == guestbookId) {

cssClass = "active";

}

if (GuestbookModelPermission.contains(

permissionChecker, curGuestbook.getGuestbookId(), "VIEW")) {

%>

<portlet:renderURL var="viewPageURL">

<portlet:param name="mvcPath" value="/guestbookwebportlet/view.jsp" />

<portlet:param name="guestbookId"

value="<%=String.valueOf(curGuestbook.getGuestbookId())%>" />

</portlet:renderURL>

<aui:nav-item cssClass="<%=cssClass%>" href="<%=viewPageURL%>"

label="<%=HtmlUtil.escape(curGuestbook.getName())%>" />

<%

}

221

}

%>

</aui:nav>

This code gets a list of guestbooks from the database, iterates through them, checks the
permission for each against the current user’s Roles, and adds the guestbooks the user can
access to a list of tabs.
You’ve now implemented your first permission check. As you can see, it’s relatively straight-
forward thanks to the static methods in your helper classes. The code above shows the tab
only if the current user has the VIEW permission for the guestbook.
Next, you’ll add permission checks to the Add Entry button.

2. Scroll down to the line that reads <aui:button-row cssClass="guestbook-buttons">. Just below
this line, add the following line of code to check for the ADD_ENTRY permission:

<c:if test='<%= GuestbookPermission.contains(permissionChecker, scopeGroupId, "ADD_ENTRY") %>'>

3. After this is the code that creates the addEntryURL and the Add Entry button. After the
aui:button tag and above the </aui:button-row> tag, add the closing tag for the <c:if> state-
ment:

</c:if>

You’ve now implemented your permission check for the Add Entry button by using JSTL tags.

Next, you’ll implement an entry_actions.jsp that’s much like the one in the Guestbook Admin
portlet. This determines what options appear for logged in users who can see the actions menu in
the portlet. Just like before, you’ll wrap each renderURL in a if statement that checks the permissions
against available actions. To do this, follow these steps:

1. In src/main/resources/META-INF/resources/guestbookwebportlet, create a file called
entry_actions.jsp.

2. In this file, add the following code:

<%@include file="../init.jsp"%>

<%

String mvcPath = ParamUtil.getString(request, "mvcPath");

ResultRow row = (ResultRow)request.getAttribute(WebKeys.SEARCH_CONTAINER_RESULT_ROW);

Entry entry = (Entry)row.getObject();

%>

<liferay-ui:icon-menu>

<c:if

test="<%= GuestbookEntryPermission.contains(permissionChecker, entry.getEntryId(), ActionKeys.UPDATE) %>">

<portlet:renderURL var="editURL">

<portlet:param name="entryId"

value="<%= String.valueOf(entry.getEntryId()) %>" />

<portlet:param name="mvcPath" value="/guestbookwebportlet/edit_entry.jsp" />

222

</portlet:renderURL>

<liferay-ui:icon image="edit" message="Edit"

url="<%=editURL.toString() %>" />

</c:if>

<c:if

test="<%=GuestbookEntryPermission.contains(permissionChecker, entry.getEntryId(), ActionKeys.PERMISSIONS) %>">

<liferay-security:permissionsURL

modelResource="<%= Entry.class.getName() %>"

modelResourceDescription="<%= entry.getMessage() %>"

resourcePrimKey="<%= String.valueOf(entry.getEntryId()) %>"

var="permissionsURL" />

<liferay-ui:icon image="permissions" url="<%= permissionsURL %>" />

</c:if>

<c:if

test="<%=GuestbookEntryPermission.contains(permissionChecker, entry.getEntryId(), ActionKeys.DELETE) %>">

<portlet:actionURL name="deleteEntry" var="deleteURL">

<portlet:param name="entryId"

value="<%= String.valueOf(entry.getEntryId()) %>" />

<portlet:param name="guestbookId"

value="<%= String.valueOf(entry.getGuestbookId()) %>" />

</portlet:actionURL>

<liferay-ui:icon-delete url="<%=deleteURL.toString() %>" />

</c:if>

</liferay-ui:icon-menu>

This code defines action buttons updating, setting permissions on, and deleting entities. Each
button is protected by a permissions check. If the current user can’t perform the given action,
the action doesn’t appear.

3. Finally, in view.jsp, you must add the entry_actions.jsp as the last column in the Search
Container. Find the line defining the Search Container row. It looks like this:

<liferay-ui:search-container-row

className="com.liferay.docs.guestbook.model.Entry" modelVar="entry">

Below that line are two columns. After the second column, add a third:

<liferay-ui:search-container-column-jsp path="/guestbookwebportlet/entry_actions.jsp" align="right" />

4. Save all JSP files.

Excellent! You’ve now implemented all the permissions checks for the Guestbook portlet.
When testing the application, remember that any guestbook entries you created without re-

sources won’t work with permissions. Add new guestbooks and entries to test your application with
different users. Administrative users see all the buttons, regular users see the Add Entry button,
and guests see no buttons at all (but can navigate).

Note: You may see an error where the Guestbook portlet doesn’t appear at all, and you see this
error in the log:

223

Someone may be trying to circumvent the permission checker.

This is because any data you currently have in the Guestbook application doesn’t have resources.
In this case, you must drop and re-create your database. To do this, find your LiferayWorkspace on
your file system (it should be inside your Eclipse workspace). Inside the bundles/data folder is a
hypersonic folder. Shut down Liferay DXP, remove everything from this folder, and then restart.
After adding guestbook to a page, the portlet will work normally.

Now see if you can do the same for the Guestbook Admin portlet. Don’t worry if you can’t: at
the end of this Learning Path is a link to the completed project for you to examine.

Great! The next step is to integrate search and indexing into your application. This is a prereq-
uisite for the much more powerful stuff to come.

224

CHAPTER 23

SEARCH AND INDEXING

The Guestbook and Guestbook Admin portlets are up and running. The Guestbook portlet lets
users add, edit, delete, and configure permissions for Guestbook Entries. The Guestbook Admin
portlet lets Site administrators create, edit, delete, and configure permissions for Guestbooks. In
the case of a very popular event (maybe a Lunar Luau dinner at the Lunar Resort), there could be
many Guestbook Entries in the portlet, and users might want to search for Entries that mentioned
the delicious low-gravity ham that was served (melts in your mouth). Searching for the word ham
should display these Entries. In short, Guestbook Entries must be searchable via a search bar in
the Guestbook portlet.

Note: In previous versions of Liferay DXP, search was only permissions aware (indexed with
the entity’s permissions and searched with those permissions intact) if the application developer
specified this line in the Indexer class’s constructor:

setPermissionAware(true);

Now, search is permissions aware by default if the new permissions approach, as described in the
previous step of this Learning Path and in these tutorials, is implemented for an application.

To enable search, you must index Guestbooks and their Entries. Although you probably won’t
have enough Guestbooks in a Site to warrant searching the Guestbook Admin portlet, indexing
Guestbooks has other benefits. In a later section, you’ll asset-enable Guestbooks and Guestbook
Entries so the Asset Publisher can display them. Enabling search is a prerequisite for this—you
must index any entity that you want to make an asset.

But assets are for later. Right now it’s time to index those Guestbooks. Ready?
Let’s Go!

225

Figure 23.1: Add a search bar so users can search for Guestbook Entries. If a message or namematches the search query, the Entry is displayed in the search results.

226

CHAPTER 24

ENABLING SEARCH AND INDEXING FOR
GUESTBOOKS

In this section, you’ll create the classes that control these aspects of the search functionality:

• Registration:

– GuestbookSearchRegistrar registers the search services to the search framework for the
Guestbook entity.

• Indexing:

– GuestbookModelDocumentContributor controls which Guestbook fields are indexed in the
search engine.

– GuestbookModelIndexerWriterContributor configures the re-indexing and batch re-
indexing behavior for Guestbooks.

• Querying:

– GuestbookKeywordQueryContributor contributes clauses to the ongoing search query.

– GuestbookModelPreFilterContributor controls how search results are filtered before
they’re returned from the search engine.

• Generating Result Summaries:

– GuestbookModelSummaryContributor constructs the result summary for Guestbooks, in-
cluding specifying which fields to use.

227

After creating the search classes, you’ll modify the service layer to update the search indexwhen
a guestbook is persisted. Specifically, GuestbookLocalServiceImpl’s addGuestbook, updateGuestbook,
and deleteGuestbookmethods are updated to invoke the guestbook indexer.

In prior versions of Liferay DXP, search and indexing was accomplished with one *Indexer class
that extended BaseIndexer. In 7.0 is a new pattern that relies on composition instead of inheritance.
If you want to use the old approach, feel free to extend BaseIndexer. It’s still supported.

Since there’s no reason to search for guestbooks in the UI, only back-end work is necessary.
Let’s Go!

24.1 Understanding Search and Indexing

<p id="stepTitle">Enabling Search and Indexing for Guestbooks</p><p>Step 1 of 6</p>

By default, Liferay DXP uses Elasticsearch, a search engine backed by the popular Lucene search
library, to implement its search and indexing functionality. You could search the database, but
that requires resource-hogging table merges. Instead, a search engine like Elasticsearch converts
searchable entities into documents. In Elasticsearch, documents are searchable database entities
converted into JSON objects. After you implement indexing for guestbook entries, Liferay DXP
creates a document for each entry. The indexing code specifies which guestbook entry fields to add
to each guestbook entry document, and it adds all the guestbook entry documents to an index. A
search returns a hits object containing pointers to documentsmatching the search query. Searching
for entities with a search engine via an index is faster than searching for entities in the database.
Elasticsearch provides some additional features like relevancy scoring and fuzzy search queries.

Along with the search engine, Liferay DXP has its own search infrastructure. Liferay DXP adds
the following features to the existing Elasticsearch API:

• Indexed documents include the fields needed by Liferay DXP (e.g., entryClassName,
entryClassPK, assetTagNames, assetCategories, companyId, groupId, staging status).

• It ensures the scope of returned search results is appropriate by applying the right filters to
search requests.

• It provides permission checking and hit summaries to display in the search portlet.

To understand how the search and indexing code presented here makes your custommodels
seamlessly searchable, you must know how to influence each portion of the search and indexing
cycle:

Indexing: Model entities store data fields in the database. For example, Guestbooks store the
name field. During the cycle’s Indexing step, you prepare the model entity to be searchable by
defining the model’s fields that are sent to the search engine, later used during a search.

To influence the waymodel entity fields are indexed in search engine documents,
ModelDocumentContributor classes specify which database fields are indexed in themodel entity’s

search engine documents. This class’s contribute method is called each time the add and update

methods in the entity’s service layer are called.
ModelIndexerWriterContributor classes configure the re-indexing and batch re-indexing behavior

for the model entity. This class’s method is called when a re-index is triggered from the Search
administrative application found in Control Panel → Configuration → Search.

Searching: Most searches start with a user entering keywords into a search bar. The entered
keywords are processed by the back-end search infrastructure, transformed into a query the search
engine can understand, and used to match against each search document’s fields.

228

https://stackoverflow.com/questions/2399544/difference-between-inheritance-and-composition

To exert control over the way yourmodel entity documents are searched,
KeywordQueryContributor classes contribute clauses to the ongoing search query. This is called

at search time, and ensures that all the fields you indexed are also the ones searched. For example,
if you index fields with the Site locale appended to them (title_en_us, for example), you want the
search query to include the same locale when the document is searched. If the search query contain
another locale (like title_es_ES) or searches the plain field (title), inaccurate results are returned.

ModelPreFilterContributors control how search results are filtered before they’re returned
from the search engine. For example, adding the workflow status to the query ensures that
an entity in the trash isn’t returned in the search results. For the Guestbook application, a
ModelPrefilterContributor isn’t necessary until you get to the section on workflow-enabling Guest-
books.

ReturningResults: When amodel entity’s indexed search document is obtained during a search
request, it’s converted into a summary of the model entity.

To influence the result summaries for your model entity documents,
ModelSummaryContributor classes get the Summary object created for each search document, so you

can manipulate it by adding specific fields or setting the length of the displayed content.
ModelVisibilityContributor classes control the visibility of model entities that can be attached

to other asset types (for example, File Entries can be attached toWiki Pages), in the search context.
Since Guestbooks and Guestbook entries won’t be attached to other assets, a model visibility
contributor isn’t necessary.

One important step must occur to make sure the above classes are discovered by the search
framework.

Registration
To register the model entity with Liferay’s search framework,
SearchRegistrars use the search framework’s registry to define certain things about your model

entity’s ModelSearchDefinition: which fields are used by default to retrieve documents from the
search engine, and which optional search services are registered for your entity. Registration
occurs as soon as the Component is activated (during portal startup).

Let’s index some Guestbooks, shall we?

24.2 Registering Guestbooks with the Search Framework

<p id="stepTitle">Enabling Search and Indexing for Guestbooks</p><p>Step 2 of 6</p>

First, update your build.gradle to have all of the necessary imports.

1. Open the build.gradle file in your guestbook-service project.

2. Add the Search Service Provider Interface and API dependencies to the build.gradle file:

compileOnly group: "com.liferay", name: "com.liferay.portal.search.spi", version: "2.0.0"

compileOnly group: "com.liferay", name: "com.liferay.portal.search.api", version: "2.0.0"

3. Save the file and run Refresh Gradle Project.

Once the dependency is configured, register the Search services that build the entity’s
ModelSearchDefinition.

229

A *SearchRegistrar specifies the classes that the entity uses to contribute to building a
ModelSearchDefinition. Activation of the SearchRegistrar component results in a cascade of activity
in the search framework, culminating with the building of a DefaultIndexer. The DefaultIndexer is
registered under the class name defined in the registrar, and then used for indexing/searching
objects of that class.

Create the GuestbookSearchRegistrar:

1. Create a new package in the guestbook-service module project’s src/main/java folder
called com.liferay.docs.guestbook.search. In this package, create a new class called
GuestbookSearchRegistrar and populate it with two methods, activate and deactivate.

@Component(immediate = true)

public class GuestbookSearchRegistrar {

@Activate

protected void activate(BundleContext bundleContext) {

_serviceRegistration = modelSearchRegistrarHelper.register(

Guestbook.class, bundleContext, modelSearchDefinition -> {

modelSearchDefinition.setDefaultSelectedFieldNames(

Field.ASSET_TAG_NAMES, Field.COMPANY_ID, Field.CONTENT,

Field.ENTRY_CLASS_NAME, Field.ENTRY_CLASS_PK,

Field.GROUP_ID, Field.MODIFIED_DATE, Field.SCOPE_GROUP_ID,

Field.TITLE, Field.UID);

modelSearchDefinition.setModelIndexWriteContributor(

modelIndexWriterContributor);

modelSearchDefinition.setModelSummaryContributor(

modelSummaryContributor);

});

}

@Deactivate

protected void deactivate() {

_serviceRegistration.unregister();

}

The annotations @Activate and Deactivate ensure each method is invoked as soon as the
Component is started (activated) or when it’s about to be stopped (deactivated). On activation
of the Component, a chain of search and indexing classes is registered for the Guestbook
entity. Set the default selected field names used to retrieve results documents from the search
engine. Then set the contributors used to build a model search definition.

2. Specify the service references for the class:

@Reference(target = "(indexer.class.name=com.liferay.docs.guestbook.model.Guestbook)")

protected ModelIndexerWriterContributor<Guestbook> modelIndexWriterContributor;

@Reference

protected ModelSearchRegistrarHelper modelSearchRegistrarHelper;

@Reference(target = "(indexer.class.name=com.liferay.docs.guestbook.model.Guestbook)")

protected ModelSummaryContributor modelSummaryContributor;

private ServiceRegistration<?> _serviceRegistration;

}

230

Target the Guestbook model while looking up a reference to the contributor classes. Later,
when you create these contributor classes, you’ll specify the model name again to complete
the circle.

3. Add the imports by Organizing Imports (Ctrl-Shift-O).

4. Export the com.liferay.docs.guestbook.search package in the guestbook-service module’s
bnd.bnd file. The export section should look like this:

Export-Package: com.liferay.docs.guestbook.search

The Guestbook search and indexing class registration is completed. Next write the search and
indexing logic.

24.3 Indexing Guestbooks

<p id="stepTitle">Enabling Search and Indexing for Guestbooks</p><p>Step 3 of 6</p>

To control how Guestbook objects are translated into search engine documents, create two
classes in the new search package:

1. Implement a ModelDocumentContributor that “contributes” fields to a search document indexed
by the search engine. The main searchable field for guestbooks is the guestbook name.

2. ModelIndexerWriterContributor configures the batch indexing behavior for Guestbooks. This
code is executed when Guestbooks are re-indexed from the Search administration section of
the Control Panel.

Implementing ModelDocumentContributor

Create GuestbookModelDocumentContributor and populate it with this:

@Component(

immediate = true,

property = "indexer.class.name=com.liferay.docs.guestbook.model.Guestbook",

service = ModelDocumentContributor.class

)

public class GuestbookModelDocumentContributor

implements ModelDocumentContributor<Guestbook> {

@Override

public void contribute(Document document, Guestbook guestbook) {

try {

document.addDate(Field.MODIFIED_DATE, guestbook.getModifiedDate());

Locale defaultLocale = PortalUtil.getSiteDefaultLocale(

guestbook.getGroupId());

String localizedTitle = LocalizationUtil.getLocalizedName(

Field.TITLE, defaultLocale.toString());

document.addText(localizedTitle, guestbook.getName());

} catch (PortalException pe) {

if (_log.isWarnEnabled()) {

_log.warn(

"Unable to index guestbook " + guestbook.getGuestbookId(), pe);

231

}

}

}

private static final Log _log = LogFactoryUtil.getLog(

GuestbookModelDocumentContributor.class);

}

Because Liferay DXP supports localization, you should too. The above code gets the default
locale from the Site by passing the Guestbook’s group ID to the getSiteDefaultLocalemethod, then
using it to get the localized name of the Guestbook’s title field. The retrieved Site locale is appended
to the field (e.g., title_en_US), so the field gets passed to the search engine and goes through the
right analysis and tokenization.

Implementing ModelIndexerWriterContributor

Create GuestbookModelIndexerWriterContributor and populate it with this:

@Component(

immediate = true,

property = "indexer.class.name=com.liferay.docs.guestbook.model.Guestbook",

service = ModelIndexerWriterContributor.class

)

public class GuestbookModelIndexerWriterContributor

implements ModelIndexerWriterContributor<Guestbook> {

@Override

public void customize(

BatchIndexingActionable batchIndexingActionable,

ModelIndexerWriterDocumentHelper modelIndexerWriterDocumentHelper) {

batchIndexingActionable.setPerformActionMethod((Guestbook guestbook) -> {

Document document = modelIndexerWriterDocumentHelper.getDocument(

guestbook);

batchIndexingActionable.addDocuments(document);

});

}

@Override

public BatchIndexingActionable getBatchIndexingActionable() {

return dynamicQueryBatchIndexingActionableFactory.getBatchIndexingActionable(

guestbookLocalService.getIndexableActionableDynamicQuery());

}

@Override

public long getCompanyId(Guestbook guestbook) {

return guestbook.getCompanyId();

}

@Override

public void modelIndexed(Guestbook guestbook) {

entryBatchReindexer.reindex(

guestbook.getGuestbookId(), guestbook.getCompanyId());

}

@Reference

protected DynamicQueryBatchIndexingActionableFactory

dynamicQueryBatchIndexingActionableFactory;

@Reference

protected EntryBatchReindexer entryBatchReindexer;

232

https://www.elastic.co/guide/en/elasticsearch/reference/2.4/analysis-tokenizers.html

@Reference

protected GuestbookLocalService guestbookLocalService;

}

First look at the customize method. Configure the batch indexing behavior for the entity’s
documents by calling BatchIndexingActionablemethods. This code uses the Guestbook’s actionable
dynamic query helper method to retrieve all Guestbooks in the virtual instance (identified by the
Company ID). Service Builder generated this query method for you when you built the services.
Each Guestbook’s document is then retrieved and added to a collection.

When you write the indexing classes for Entries, you’ll add the Guestbook title to the Entry
document. Thus, you must provide a way to update the indexed Entry documents if a Guestbook
title is changed. The modelIndexed method calls a reindex method from an interface that will be
created later for Entries.

Once the re-indexing behavior is in place, you can move on to controlling how Guestbook
documents are queried from the search engine.

24.4 Querying for Guestbook Documents

<p id="stepTitle">Enabling Search and Indexing for Guestbooks</p><p>Step 4 of 6</p>

The code is in place for for indexing Guestbooks to the search engine. Next, you’ll code the
behavior necessary for querying the indexed documents.

Implement two interfaces:

1. KeywordQueryContributor contributes clauses to the ongoing search query.

2. ModelPreFilterContributor controls how search results are filtered before they’re returned
from the search engine.

Implementing KeywordQueryContributor

Create GuestbookKeywordQueryContributor:

@Component(

immediate = true,

property = "indexer.class.name=com.liferay.docs.guestbook.model.Guestbook",

service = KeywordQueryContributor.class

)

public class GuestbookKeywordQueryContributor

implements KeywordQueryContributor {

@Override

public void contribute(

String keywords, BooleanQuery booleanQuery,

KeywordQueryContributorHelper keywordQueryContributorHelper) {

SearchContext searchContext =

keywordQueryContributorHelper.getSearchContext();

queryHelper.addSearchLocalizedTerm(

booleanQuery, searchContext, Field.TITLE, false);

}

@Reference

protected QueryHelper queryHelper;

233

}

This class adds Guestbook fields to the search query constructed by the Search application in
Liferay DXP. Later, when you asset enable Guestbooks, this code will allow indexed Guestbooks
to be searched from the Search application when a keyword is entered into the search bar. Use
the query helper to add search terms to the query that allow Guestbooks to be found. Here it’s
important to note that adding the localized search term is important. Since the localized Guestbook
title was indexed, you must retrieve the localized value from the search engine.

Once the query code is in place, define how returned Guestbook documents are summarized.

24.5 Generating Results Summaries

<p id="stepTitle">Enabling Search and Indexing for Guestbooks</p><p>Step 5 of 6</p>

The Search application and the Asset Publisher application must display results retrieved from
the search engine. Control the summarized content by implementing a ModelSummaryContributor.

A summary is a condensed, text-based version of the entity’s document that can be displayed
generically. You create it by combining key parts of the entity’s data so users can browse through
search resmlts to find the entity they want.

Create a GuestbookModelSummaryContributor:

@Component(

immediate = true,

property = "indexer.class.name=com.liferay.docs.guestbook.model.Guestbook",

service = ModelSummaryContributor.class

)

public class GuestbookModelSummaryContributor

implements ModelSummaryContributor {

@Override

public Summary getSummary(

Document document, Locale locale, String snippet) {

Summary summary = createSummary(document);

summary.setMaxContentLength(200);

return summary;

}

private Summary createSummary(Document document) {

String prefix = Field.SNIPPET + StringPool.UNDERLINE;

String title = document.get(prefix + Field.TITLE, Field.TITLE);

return new Summary(title, StringPool.BLANK);

}

}

First override getSummary and set the maximum summary length on the summary returned.
The value 200 is a Liferay standard. Control the summary creation in a utility method called
createSummary. Create a prefix variable using two constants, Field.SNIPPET and Stringpool.UNDERLINE.
The snippet_title field is returned from the document.get call, and added to the summary. Using
the snippet field provides two benefits:

234

1. Snippet text can be highlighted so matching keywords are emphasized.

2. Snippet text can be shortened automatically by the Search application so a sensible portion
of the field’s text is displayed in the search results.

Guestbook titles are likely short, so only the highlighting behavior is useful for the title field
of Guestbooks. For longer fields (like some content fields), the clipping behavior is more useful.
Additional highlighting behavior can be configured via the index.search.highlight.* properties in
portal.properties.

Create summaries by combining key parts of the entity’s data so users can browse through
search results to find the entity they want.

Once all the search and indexing logic is in place, update the service layer so add, update, and
delete service calls trigger the new logic.

24.6 Handling Indexing in the Guestbook Service Layer

<p id="stepTitle">Enabling Search and Indexing for Guestbooks</p><p>Step 6 of 6</p>

Whenever a Guestbook database entity is added, updated, or deleted, the search index must
be updated accordingly. The Liferay DXP annotation @Indexable combines with the IndexableType

to mark your service methods so documents can be updated or deleted. Annotate addGuestbook,
updateGuestbook, and deleteGuestbook service methods.

1. Open GuestbookLocalServiceImpl in the guestbook-servicemodule’s com.liferay.docs.guestbook.service.impl
package, and add the following annotation above the method signature for the addGuestbook

and updateGuestbookmethods:

@Indexable(type = IndexableType.REINDEX)

public Guestbook addGuestbook(...)

@Indexable(type = IndexableType.REINDEX)

public Guestbook updateGuestbook(...)

The @Indexable annotation indicates that an index update is required following the method
execution. The indexing classes control the type of index: setting the @Indexable annotation
type to IndexableType.REINDEX updates the document in the index that corresponds to the
updated Guestbook.

2. Add the following annotation above the method signature for the deleteGuestbookmethod:

@Indexable(type = IndexableType.DELETE)

public Guestbook deleteGuestbook(...)

When a Guestbook is deleted from the database, its document shouldn’t remain in the search
index. This ensures that it is deleted.

3. Add the necessary imports:

import com.liferay.portal.kernel.search.Indexable;

import com.liferay.portal.kernel.search.IndexableType;

235

https://docs.liferay.com/portal/7.1-latest/propertiesdoc/portal.properties.html#Lucene%20Search

Save the file.

4. In the Gradle Tasks pane on the right-hand side of Liferay Dev Studio DXP, double-click
buildService in guestbook-service → build. This re-runs Service Builder to incorporate your
changes to GuestbookLocalServiceImpl.

Next, you’ll enable search and indexing for Guestbook Entries.

236

CHAPTER 25

ENABLING SEARCH AND INDEXING FOR ENTRIES

In this section, you’ll create the classes that control these aspects of the search functionality:

• Registration:

– EntrySearchRegistrar registers the search service for the Entry entity.

• Indexing:

– EntryModelDocumentContributor controls which Entry fields are indexed in the search
engine.

– EntryModelIndexerWriterContributor configures the re-indexing and batch re-indexing
behavior for Entries.

– EntryBatchReindexer, an interface, and its EntryBatchReindexerImpl, for re-indexing En-
tries when their Guestbook is updated.

• Querying:

– EntryKeywordQueryContributor contributes clauses to the ongoing search query.

– EntryModelPreFilterContributor controls how search results are filtered before they’re
returned from the search engine.

• Generating Result Summaries:

– EntryModelSummaryContributor constructs the result summary for Entries, including spec-
ifying which fields to use.

After creating the search classes, modify the service layer to update the search index when an
Entry is persisted:

237

• Update EntryLocalServiceImpl’s addEntry, updateEntry, and deleteEntrymethods to update the
index so it matches the databse.

Note: In prior versions of Liferay DXP, search and indexing was accomplishedwith one *Indexer
class that extended BaseIndexer. This Learning Path demonstrates a new pattern that relies on
composition instead of inheritance. If you desire to use the old approach, feel free to extend
BaseIndexer. It’s still supported.

Let’s Go!

25.1 Registering Entries with the Search Framework

<p id="stepTitle">Enabling Search and Indexing for Entries</p><p>Step 1 of 5</p>

The search registrar for Entries is very similar to the one created for Guestbooks. You’ll even
put it in the same package (com.liferay.docs.guestbook.search).

Create the EntrySearchRegistrar:

1. In com.liferay.docs.guestbook.search, create a new class called EntrySearchRegistrar and pop-
ulate it with two methods, activate and deactivate.

@Component(immediate = true)

public class EntrySearchRegistrar {

@Activate

protected void activate(BundleContext bundleContext) {

_serviceRegistration = modelSearchRegistrarHelper.register(

Entry.class, bundleContext, modelSearchDefinition -> {

modelSearchDefinition.setDefaultSelectedFieldNames(

Field.COMPANY_ID, Field.ENTRY_CLASS_NAME,

Field.ENTRY_CLASS_PK, Field.UID,

Field.SCOPE_GROUP_ID, Field.GROUP_ID);

modelSearchDefinition.setDefaultSelectedLocalizedFieldNames(

Field.TITLE, Field.CONTENT);

modelSearchDefinition.setModelIndexWriteContributor(

modelIndexWriterContributor);

modelSearchDefinition.setModelSummaryContributor(

modelSummaryContributor);

modelSearchDefinition.setSelectAllLocales(true);

});

}

@Deactivate

protected void deactivate() {

_serviceRegistration.unregister();

}

As you did with Guestbooks, set the default selected field names used to retrieve results docu-
ments from the search engine. For Entries, call setDefaultSelectedLocalizedFieldNames for the title
and content fields. This ensures that the localized version of the field is searched and returned.
The only other difference with Entries is the call to setSelectAllLocales(true). It takes the fields

238

https://stackoverflow.com/questions/2399544/difference-between-inheritance-and-composition

set in setDefaultSelectedLocalizedFieldNames and sets those fields for each available locale in the
stored_fields parameter of the search request. If not set to true, only a single locale is searched.

2. Specify the service references for the class:

@Reference(target = "(indexer.class.name=com.liferay.docs.guestbook.model.Entry)")

protected ModelIndexerWriterContributor<Entry> modelIndexWriterContributor;

@Reference

protected ModelSearchRegistrarHelper modelSearchRegistrarHelper;

@Reference(target = "(indexer.class.name=com.liferay.docs.guestbook.model.Entry)")

protected ModelSummaryContributor modelSummaryContributor;

private ServiceRegistration<?> _serviceRegistration;

}

Target the Entrymodel while looking up a reference to the contributor classes. Later, when
you create these contributor classes, you’ll specify the model name again to complete the
circle.

The Entry search and indexing class registration is completed. Next write the search and
indexing logic.

25.2 Indexing Entries

<p id="stepTitle">Enabling Search and Indexing for Entries</p><p>Step 2 of 5</p>

To control how Entry objects are translated into search engine documents, create these classes
in the search package:

1. ModelDocumentContributor: The main searchable fields for Entries are Name and Message. The
Guestbook name associated with the entry is indexed, too.

2. ModelIndexerWriterContributor configures the batch indexing behavior for Entries. This code
is executedwhen Entries are re-indexed from the Search administration section of the Control
Panel.

3. A new interface, EntryBatchReindexer, with its implementation, EntryBatchReindexerImpl.
These classes contain code to ensure that Entries are re-indexed when their Guestbook is
updated.

Implementing ModelDocumentContributor

Create EntryModelDocumentContributor and populate it with this:

@Component(

immediate = true,

property = "indexer.class.name=com.liferay.docs.guestbook.model.Entry",

service = ModelDocumentContributor.class

)

public class EntryModelDocumentContributor

implements ModelDocumentContributor<Entry> {

239

@Override

public void contribute(Document document, Entry entry) {

try {

Locale defaultLocale = PortalUtil.getSiteDefaultLocale(

entry.getGroupId());

document.addDate(Field.MODIFIED_DATE, entry.getModifiedDate());

document.addText("entryEmail", entry.getEmail());

String localizedTitle = LocalizationUtil.getLocalizedName(

Field.TITLE, defaultLocale.toString());

String localizedContent = LocalizationUtil.getLocalizedName(

Field.CONTENT, defaultLocale.toString());

document.addText(localizedTitle, entry.getName());

document.addText(localizedContent, entry.getMessage());

long guestbookId = entry.getGuestbookId();

Guestbook guestbook = _guestbookLocalService.getGuestbook(

guestbookId);

String guestbookName = guestbook.getName();

String localizedGbName = LocalizationUtil.getLocalizedName(

Field.NAME, defaultLocale.toString());

document.addText(localizedGbName, guestbookName);

} catch (PortalException pe) {

if (_log.isWarnEnabled()) {

_log.warn("Unable to index entry " + entry.getEntryId(), pe);

}

} catch (Exception e) {

e.printStackTrace();

}

}

private static final Log _log = LogFactoryUtil.getLog(

EntryModelDocumentContributor.class);

@Reference

private GuestbookLocalService _guestbookLocalService;

}

As with Guestbooks, add the localized values for fields that might be translated. The Site locale
is appended to the field (e.g., title_en_US), so the field gets passed to the search engine and goes
through the right analysis and tokenization.

Implementing ModelIndexerWriterContributor

Create EntryModelIndexerWriterContributor and populate it with this:

@Component(

immediate = true,

property = "indexer.class.name=com.liferay.docs.guestbook.model.Entry",

service = ModelIndexerWriterContributor.class

)

public class EntryModelIndexerWriterContributor

implements ModelIndexerWriterContributor<Entry> {

@Override

public void customize(

BatchIndexingActionable batchIndexingActionable,

240

https://www.elastic.co/guide/en/elasticsearch/reference/2.4/analysis-tokenizers.html

ModelIndexerWriterDocumentHelper modelIndexerWriterDocumentHelper) {

batchIndexingActionable.setPerformActionMethod((Entry entry) -> {

Document document = modelIndexerWriterDocumentHelper.getDocument(

entry);

batchIndexingActionable.addDocuments(document);

});

}

@Override

public BatchIndexingActionable getBatchIndexingActionable() {

return dynamicQueryBatchIndexingActionableFactory.getBatchIndexingActionable(

entryLocalService.getIndexableActionableDynamicQuery());

}

@Override

public long getCompanyId(Entry entry) {

return entry.getCompanyId();

}

@Reference

protected DynamicQueryBatchIndexingActionableFactory

dynamicQueryBatchIndexingActionableFactory;

@Reference

protected EntryLocalService entryLocalService;

}

The interesting work is done in the customizemethod, where all Entries are retrieved and added
to a collection.

Implementing EntryBatchReindexer

Create a new interface class, EntryBatchReindexer, with one method called reindex:

package com.liferay.docs.guestbook.search;

public interface EntryBatchReindexer {

public void reindex(long guestbookId, long companyId);

}

Then create the implementation class, EntryBatchReindexerImpl:

@Component(immediate = true, service = EntryBatchReindexer.class)

public class EntryBatchReindexerImpl implements EntryBatchReindexer {

@Override

public void reindex(long guestbookId, long companyId) {

BatchIndexingActionable batchIndexingActionable =

indexerWriter.getBatchIndexingActionable();

batchIndexingActionable.setAddCriteriaMethod(dynamicQuery -> {

Property guestbookIdPropery = PropertyFactoryUtil.forName(

"guestbookId");

dynamicQuery.add(guestbookIdPropery.eq(guestbookId));

});

batchIndexingActionable.setCompanyId(companyId);

241

batchIndexingActionable.setPerformActionMethod((Entry entry) -> {

Document document = indexerDocumentBuilder.getDocument(entry);

batchIndexingActionable.addDocuments(document);

});

batchIndexingActionable.performActions();

}

@Reference(target = "(indexer.class.name=com.liferay.docs.guestbook.model.Entry)")

protected IndexerDocumentBuilder indexerDocumentBuilder;

@Reference(target = "(indexer.class.name=com.liferay.docs.guestbook.model.Entry)")

protected IndexerWriter<Entry> indexerWriter;

}

The `reindex` method of the interface is called when a Guestbook is updated.

The entry documents are re-indexed to include the update Guestbook title.

Once the re-indexing behavior is in place, move on to the code for controlling how Entry
documents are queried from the search engine.

25.3 Querying for Entry Documents

<p id="stepTitle">Enabling Search and Indexing for Entries</p><p>Step 3 of 5</p>

The code is in place for indexing Entries to the search engine. Next code the behavior necessary
for querying the indexed documents.

Implement two classes:

1. EntryKeywordQueryContributor contributes clauses to the ongoing search query.

2. EntryModelPreFilterContributor controls how search results are filtered before they’re re-
turned from the search engine.

Implementing KeywordQueryContributor

Create EntryKeywordQueryContributor and populate it with this:

@Component(

immediate = true,

property = "indexer.class.name=com.liferay.docs.guestbook.model.Entry",

service = KeywordQueryContributor.class

)

public class EntryKeywordQueryContributor implements KeywordQueryContributor {

@Override

public void contribute(

String keywords, BooleanQuery booleanQuery,

KeywordQueryContributorHelper keywordQueryContributorHelper) {

SearchContext searchContext =

keywordQueryContributorHelper.getSearchContext();

queryHelper.addSearchLocalizedTerm(

booleanQuery, searchContext, Field.TITLE, false);

queryHelper.addSearchLocalizedTerm(

242

booleanQuery, searchContext, Field.CONTENT, false);

queryHelper.addSearchLocalizedTerm(

booleanQuery, searchContext, "entryEmail", false);

}

@Reference

protected QueryHelper queryHelper;

}

Adding the localized search terms is important. For all localized Entry fields in the index,
retrieve the localized value from the search engine.

Now that the query code is in place, you can define how returned Entry documents are summa-
rized.

25.4 Generating Results Summaries

<p id="stepTitle">Enabling Search and Indexing for Entries</p><p>Step 3 of 5</p>

The Search application and the Asset Publisher application display results retrieved from the
search engine. You can control the display by implementing a ModelSummaryContributor.

Create a EntryModelSummaryContributor:

@Component(

immediate = true,

property = "indexer.class.name=com.liferay.docs.guestbook.model.Entry",

service = ModelSummaryContributor.class

)

public class EntryModelSummaryContributor implements ModelSummaryContributor {

@Override

public Summary getSummary(

Document document, Locale locale, String snippet) {

Summary summary = createSummary(document);

summary.setMaxContentLength(128);

return summary;

}

private Summary createSummary(Document document) {

String prefix = Field.SNIPPET + StringPool.UNDERLINE;

String title = document.get(prefix + Field.TITLE, Field.CONTENT);

String content = document.get(prefix + Field.CONTENT, Field.CONTENT);

return new Summary(title, content);

}

}

First override getSummary, and set the maximum summary length on the summary returned.
The value 200 is a Liferay standard. Control the summary creation in a utility method called
createSummary. Guestbooks only included the title in the summary, but Entries use the title and the
content (the Entry message field) to populate the summary.

Create summaries by combining key parts of the entity’s data.
Now that the search and indexing logic is in place, you can update the service layer so add,

update, and delete service calls trigger the new logic.

243

25.5 Handling Indexing in the Entry Service Layer

<p id="stepTitle">Enabling Search and Indexing for Entries</p><p>Step 5 of 5</p>

Whenever an Entry is added, updated, or deleted, the corresponding document should also be
updated or deleted. A minor update to each of the addEntry, updateEntry, and deleteEntry service
methods for Entries is all it takes.

Follow these steps to update the methods:

1. Open EntryLocalServiceImpl in the guestbook-servicemodule’s com.liferay.docs.guestbook.service.impl
package, and add the annotation @Indexable(type = IndexableType.REINDEX) above the signa-
ture for the addEntry and updateEntrymethods:

@Indexable(type = IndexableType.REINDEX)

public Entry addEntry(...)

@Indexable(type = IndexableType.REINDEX)

public Entry updateEntry(...)

The @Indexable annotation indicates that an index update is required followingmethod execu-
tion. The indexing classes control exactly how the indexing happens. Setting the @Indexable

annotation’s type to IndexableType.REINDEX updates the indexed document that corresponds
to the updated Entry.

2. Add the @Indexable(type = IndexableType.DELETE) annotation above the signature for the
deleteEntry method. The indexable type IndexableType.DELETE ensures that the Entry is
deleted from the index:

@Indexable(type = IndexableType.DELETE)

public Entry deleteEntry(...)

3. Add the required imports:

import com.liferay.portal.kernel.search.Indexable;

import com.liferay.portal.kernel.search.IndexableType;

Save the file.

4. In the Gradle Tasks pane on the right-hand side of Liferay Dev Studio DXP, double-click
buildService in guestbook-service → build. This re-runs Service Builder to incorporate your
changes to EntryLocalServiceImpl.

Guestbooks and their Entries now have search and indexing support in the back-end. Next,
you’ll enable search in the Guestbook portlet’s front-end.

244

CHAPTER 26

UPDATING YOUR USER INTERFACE FOR SEARCH

Updating the Guestbook portlet’s user interface for search takes two steps:

1. Update the Guestbook portlet’s default view JSP to display a search bar for submitting queries.

2. Create a new JSP for the Guestbook portlet to display search results.

You’ll start by updating the Guestbook portlet’s view JSP.
Let’s Go!

26.1 Adding a Search Bar to the Guestbook Portlet

<p id="stepTitle">Updating Your UI for Search</p><p>Step 1 of 2</p>

Create the search bar UI for the Guestbook portlet:

1. In guestbook-web, open thefile src/main/resources/META-INF/resources/guestbookwebportlet/view.jsp.
Add a render URL near the top of the file, just after the scriptlet that gets the guestbookId

from the request:

<portlet:renderURL var="searchURL">

<portlet:param name="mvcPath"

value="/guestbookwebportlet/view_search.jsp" />

</portlet:renderURL>

The render URL points to /guestbookwebportlet/view_search.jsp (created in the next step).
You construct the URL first to specify what happens when the user submits a search query.

2. Right after the render URL, create an AUI form that adds an input field for search keywords
and a Submit button that executes the form action, which is mapped to the searchURL.

<aui:form action="${searchURL}" name="fm">

<div class="row">

<div class="col-md-8">

<aui:input inlineLabel="left" label="" name="keywords" placeholder="search-entries" size="256" />

245

</div>

<div class="col-md-4">

<aui:button type="submit" value="search" />

</div>

</div>

</aui:form>

The body of the search form consists of a <div> with one row containing two fields: an input
field, named keywords and a Submit button. Its name="keywords" attribute specifies the name
of the URL parameter that contains the search query. The <aui:button> tag defines the search
button. The type="submit" attribute specifies that when the button is clicked (or the Enter key
is pressed), the AUI form is submitted. The value="search" attribute specifies the name that
appears on the button.

That’s all there is to the search form! When the form is submitted, the mvcPath parameter
pointing to the view_search.jsp is included in the URL alongwith the keywords parameter containing
the search query. Next create the view_search.jsp file to display the search results.

26.2 Creating a Search Results JSP for the Guestbook Portlet

<p id="stepTitle">Updating Your UI for Search</p><p>Step 2 of 2</p>

There are several design goals to implement in the search results JSP:

• Use a search container to display guestbook entries matching a search query.
• Make the Actions button available for each guestbook entry in the results, like it is in the
main view’s search container.

• Include the search bar so that users can edit and resubmit their queries without having to
click the back link to go to the portlet’s default view.

Figure 26.1: The search results should appear in a search container, and the Actions button should appear for each entry. The search bar should also be displayed.

Follow these steps to create the search results JSP:

1. Create a new file called view_search.jsp in your guestbook-webmodule’s /guestbookwebportlet
folder. In this file, include the init.jsp:

246

<%@include file="../init.jsp"%>

2. Extract the keywords and guestbookId parameters from the request. The keywords parameter
contains the search query, and the guestbookId parameter contains the ID of the guestbook
being searched:

<%

String keywords = ParamUtil.getString(request, "keywords");

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

%>

3. Define the searchURL and viewURL as renderURLs. Both use the mvcPath parameter that’s available
to Liferay MVC Portlets:

<portlet:renderURL var="searchURL">

<portlet:param name="mvcPath"

value="/guestbookwebportlet/view_search.jsp" />

</portlet:renderURL>

<portlet:renderURL var="viewURL">

<portlet:param

name="mvcPath"

value="/guestbookwebportlet/view.jsp"

/>

</portlet:renderURL>

The searchURL points to the current JSP: view_search.jsp. The viewURL points back to the
Guestbook portlet’s main view. These URLs are used in the AUI form that you’ll create next.

4. Add this AUI form:

<aui:form action="${searchURL}" name="fm">

<liferay-ui:header backURL="${viewURL}" title="back" />

<div class="row">

<div class="col-md-8">

<aui:input inlineLabel="left" label="" name="keywords" placeholder="search-entries" size="256" />

</div>

<div class="col-md-4">

<aui:button type="submit" value="search" />

</div>

</div>

</aui:form>

This form is identical to the one that you added to the Guestbook portlet’s view.jsp, except
that this one contains a <liferay-ui:header> tag that displays the Back icon next to the word
Back. The backURL attribute in the header uses the viewURL defined above. Submitting the
form invokes the searchURL with the user’s search query added to the URL in the keywords

parameter.

5. Start a scriptlet to get a search context and set some attributes in it:

247

<%

SearchContext searchContext = SearchContextFactory.getInstance(request);

searchContext.setKeywords(keywords);

searchContext.setAttribute("paginationType", "more");

searchContext.setStart(0);

searchContext.setEnd(10);

To execute a search, you need a SearchContext object. SearchContextFactory creates a
SearchContext from the request object. Add the user’s search query to the SearchContext by
passing the keywords URL parameter to the setKeywordsmethod. Then specify details about
pagination and how the search results should be displayed.

6. Still in the scriptlet, obtain an Indexer to run a search. Retrieve the entry indexer from the
map in Liferay DXP’s indexer registry by passing in the indexer’s class or class name:

Indexer indexer = IndexerRegistryUtil.getIndexer(Entry.class);

7. In the same scriptlet, use the indexer and the search context to run a search:

Hits hits = indexer.search(searchContext);

List<Entry> entries = new ArrayList<Entry>();

for (int i = 0; i < hits.getDocs().length; i++) {

Document doc = hits.doc(i);

long entryId = GetterUtil

.getLong(doc.get(Field.ENTRY_CLASS_PK));

Entry entry = null;

try {

entry = EntryLocalServiceUtil.getEntry(entryId);

} catch (PortalException pe) {

_log.error(pe.getLocalizedMessage());

} catch (SystemException se) {

_log.error(se.getLocalizedMessage());

}

entries.add(entry);

}

The search results return as Hits objects containing pointers to documents that correspond
to guestbook entries. You then loop through the hit documents, retrieving the corresponding
guestbook entries and adding them to a list.

8. Finish the scriptlet by retrieving a list of all the guestbooks that exist in the current site.
Create a map between the guestbook IDs and the guestbook names.

List<Guestbook> guestbooks = GuestbookLocalServiceUtil.getGuestbooks(scopeGroupId);

Map<String, String> guestbookMap = new HashMap<String, String>();

for (Guestbook guestbook : guestbooks) {

guestbookMap.put(Long.toString(guestbook.getGuestbookId()), guestbook.getName());

}

%>

248

Making this single service call and creating a map is more efficient than making separate
service calls for each guestbook.

9. Display the search results in a search container:

<liferay-ui:search-container delta="10"

emptyResultsMessage="no-entries-were-found"

total="<%= entries.size() %>">

<liferay-ui:search-container-results

results="<%= entries %>"

/>

This specifies three attributes for the <liferay-ui:search-container> tag:

• delta="10": specifies that at most, 10 entries can appear per page.
• emptyResultsMessage: specifies the message indicating there are no results.
• total: specifies the number of search results.

The results attribute of the tag <liferay-ui:search-container-results> specifies the search
results. This is easy since you stored the entries resulting from the search in the entries list.

10. Use the <liferay-ui:search-container-row> tag to set the name of the class whose properties
are displayed in each row:

<liferay-ui:search-container-row

className="com.liferay.docs.guestbook.model.Entry"

keyProperty="entryId" modelVar="entry" escapedModel="<%=true%>">

This uses the className attribute for the class name and specifies the entity’s primary key
attribute in the keyProperty attribute. The modelVar property specifies the name of the Entry

variable that’s available to each search container row. To ensure that each field of the Entry

variable is escaped (sanitized), the escapedModel is true. This prevents potential hacks that
could occur if users submitted malicious code into the Add Guestbook form, for example.

11. Inside the <liferay-ui:search-container-row> tag, specify the four columns to display: the
guestbook entry’s guestbook name, message, entry name, and the actions JSP. The guestbook
name is retrieved from the map created in the scriptlet:

<liferay-ui:search-container-column-text name="guestbook"

value="<%=guestbookMap.get(Long.toString(entry.getGuestbookId()))%>" />

<liferay-ui:search-container-column-text property="message" />

<liferay-ui:search-container-column-text property="name" />

<liferay-ui:search-container-column-jsp

path="/guestbookwebportlet/entry_actions.jsp"

align="right" />

</liferay-ui:search-container-row>

12. Use the <liferay-ui:search-iterator> tag to iterate through the search results and handle
pagination. Close the search container tag:

249

<liferay-ui:search-iterator />

</liferay-ui:search-container>

13. At the bottom of view_search.jsp, declare a Log object. You used this log in the catch clauses of
the try clause that calls the EntryLocalServiceUtil.getEntrymethod to retrieve the guestbook
entries. If this service call throws an exception, it’s best to log the error so a server adminis-
trator can determine what went wrong. Liferay DXP’s convention is to declare custom logs
for individual classes or JSPs at the bottom of the file:

<%!

private static Log _log = LogFactoryUtil.getLog("html.guestbookwebportlet.view_search_jsp");

%>

14. Finally, your view_search.jsp requires some extra imports. Add the following imports to
init.jsp:

<%@ page import="com.liferay.portal.kernel.dao.search.SearchContainer" %>

<%@ page import="com.liferay.portal.kernel.exception.PortalException" %>

<%@ page import="com.liferay.portal.kernel.exception.SystemException" %>

<%@ page import="com.liferay.portal.kernel.language.LanguageUtil" %>

<%@ page import="com.liferay.portal.kernel.log.Log" %>

<%@ page import="com.liferay.portal.kernel.log.LogFactoryUtil" %>

<%@ page import="com.liferay.portal.kernel.search.Indexer" %>

<%@ page import="com.liferay.portal.kernel.search.IndexerRegistryUtil" %>

<%@ page import="com.liferay.portal.kernel.search.SearchContext" %>

<%@ page import="com.liferay.portal.kernel.search.SearchContextFactory" %>

<%@ page import="com.liferay.portal.kernel.search.Hits" %>

<%@ page import="com.liferay.portal.kernel.search.Document" %>

<%@ page import="com.liferay.portal.kernel.search.Field" %>

<%@ page import="com.liferay.portal.kernel.util.StringPool" %>

<%@ page import="com.liferay.portal.kernel.util.GetterUtil" %>

<%@ page import="com.liferay.portal.kernel.util.Validator" %>

<%@ page import="com.liferay.portal.kernel.util.PortalUtil" %>

<%@ page import="java.util.ArrayList" %>

<%@ page import="java.util.Map" %>

<%@ page import="java.util.HashMap" %>

<%@ page import="javax.portlet.PortletURL" %>

Good work! The Guestbook portlet now supports search! Now your users can find those
Guestbook Entries they were looking for.

Once indexing is in place, the asset framework can be added to the Guestbook application. It
provides functionality that’s shared across different types of content like blog posts, message board
posts, wiki articles, and more. This is the heart of integration with Liferay DXP’s development
platform.

250

Figure 26.2: The Guestbook Application now supports searching for indexed Guestbook Entries.

251

CHAPTER 27

ASSETS: INTEGRATING WITH LIFERAY’S
FRAMEWORK

The asset framework transforms entities into a common format that can be published anywhere in
your Site. Web content articles, blog posts, wiki articles, and documents are some asset-enabled
entities that come out-of-the-box. By asset-enabling your own applications, you can take advantage
of Liferay DXP’s functionality for publishing your application’s data across your Site in the form of
asset publisher entries, notifications, social activities, and more.

The asset framework includes the following features:

• Tags and categories
• Comments and ratings
• Related assets (a.k.a. Asset links)
• Faceted search
• Integration with the Asset Publisher portlet
• Integration with the Search portlet
• Integration with the Tags Navigation, Tag Cloud, and Categories Navigation portlets

Now you’ll asset-enable the guestbook and guestbook entry entities. You’ll implement tags,
categories, and related assets for guestbooks and guestbook entries. You’ll implement comments
and ratings in guestbook entries. You’ll also learn how asset-enabled guestbooks and guestbook
entries integrate with core portlets like the Asset Publisher, Tags Navigation, Tag Cloud, and
Categories Navigation portlets. Ready to start?

Let’s Go!

27.1 Enabling Assets at the Service Layer

<p>Enabling Assets at the Service Layer</p><p>Step 1 of 3</p>

Each row in the AssetEntry table represents an asset. It has an entryId primary key along with
classNameId and classPK foreign keys. The classNameId specifies the asset’s type. For example, an
asset with a classNameId of JournalArticle means that the asset represents a web content article

253

(JournalArticle is the back-end name for a web content article). An asset’s classPK is the primary
key of the entity represented by the asset.

Follow these steps to make asset services available to your entities’ service layers:

1. In the guestbook-servicemodule’s service.xmlfile, add the following references directly above
the closing </entity> tags for Guestbook and Entry:

<reference package-path="com.liferay.portlet.asset" entity="AssetEntry" />

<reference package-path="com.liferay.portlet.asset" entity="AssetLink" />

As mentioned above, you must use the AssetEntry service so your application can add asset
entries corresponding to guestbooks and guestbook entries. You also use the AssetLink service
to support related assets. Asset links are Liferay DXP’s back-end term for related assets.

2. You must add finders—two for Guestbooks and two for Entitys—so your assets show in Asset
Publisher, because it searches for entities by status (i.e., is it Workflow-approved?) and by
groupId (i.e., is it in this Site?). Add these below the existing finders for the Guestbook and
Entry entities:

<finder name="Status" return-type="Collection">

<finder-column name="status" />

</finder>

<finder name="G_S" return-type="Collection">

<finder-column name="groupId" />

<finder-column name="status" />

</finder>

3. Run the buildService Gradle task. This task injects the objects referenced above into your
services for use.

4. Right-click build.gradle and select Gradle → Refresh Gradle Project.

Great! Next, you’ll handle assets in your service layer.

27.2 Handling Assets at the Guestbook Service Layer

<p id="stepTitle">Enabling Assets at the Service Layer</p><p>Step 2 of 3</p>

Before you can update the Service Layer to add the Asset Renderers, you must update your
build.gradle to provide the portlet-api and javax.servlet-api libraries that the asset link service
needs to function.

1. Open the build.gradle file in your guestbook-servicemodule.

2. Add the following two lines in the dependencies section:

compileOnly group: "javax.portlet", name: "portlet-api", version: "3.0.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

Now you’ll update the guestbook service layer to use assets. You must update the add, update,
and deletemethods of your project’s GuestbookLocalServiceImpl:

254

1. Open your project’s GuestbookLocalServiceImpl class and find the addGuestbookmethod. Add
the call to add the asset entries below the call that adds resources:

AssetEntry assetEntry = assetEntryLocalService.updateEntry(userId,

groupId, guestbook.getCreateDate(),

guestbook.getModifiedDate(), Guestbook.class.getName(),

guestbookId, guestbook.getUuid(), 0,

serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(), true, true, null, null, null, null,

ContentTypes.TEXT_HTML, guestbook.getName(), null, null, null,

null, 0, 0, null);

assetLinkLocalService.updateLinks(userId, assetEntry.getEntryId(),

serviceContext.getAssetLinkEntryIds(),

AssetLinkConstants.TYPE_RELATED);

Calling assetEntryLocalService.updateEntry adds a new row (corresponding to the
guestbook that’s being added) to the AssetEntry table in Liferay DXP’s database.
AssetEntryLocalServiceImpl’s updateEntry method both adds and updates asset entries
because it checks to see whether the asset entry already exists in the database and then takes
the appropriate action. If you check the Javadoc for AssetEntryLocalServiceUtil.updateEntry,
you’ll see that this method is overloaded. Now, why did you use a version of this method
with such a long method signature? Because there’s only one version of updateEntry that
takes a title parameter (to set the asset entry’s title). Since you want to set the asset title to
guestbook.getName(), that’s the version you use.
Later, you’ll update the Guestbook Admin portlet’s form for adding guestbooks to allow
the selection of related assets, which are stored in the database’s AssetLink table. The
assetLinkLocalService.updateLinks call adds the appropriate entries to the table so related
assets work for your guestbook entities. The updateEntry method adds and updates asset
entries the same way updateLink adds and updates asset links.

2. Next, add the asset calls to GuestbookLocalServiceImpl’s updateGuestbookmethod, directly after
the resource call:

AssetEntry assetEntry = assetEntryLocalService.updateEntry(guestbook.getUserId(),

guestbook.getGroupId(), guestbook.getCreateDate(),

guestbook.getModifiedDate(), Guestbook.class.getName(),

guestbookId, guestbook.getUuid(), 0,

serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(), true, true, guestbook.getCreateDate(),

null, null, null, ContentTypes.TEXT_HTML, guestbook.getName(), null, null,

null, null, 0, 0, serviceContext.getAssetPriority());

assetLinkLocalService.updateLinks(serviceContext.getUserId(),

assetEntry.getEntryId(), serviceContext.getAssetLinkEntryIds(),

AssetLinkConstants.TYPE_RELATED);

Here, assetEntryLocalService.updateEntryupdates anexisting asset entry and assetLinkLocalService.updateLinks

adds or updates that entry’s asset links (related assets).

3. Next, add the asset calls to the deleteGuestbookmethod, directly after the resource calls:

AssetEntry assetEntry = assetEntryLocalService.fetchEntry(

Guestbook.class.getName(), guestbookId);

assetLinkLocalService.deleteLinks(assetEntry.getEntryId());

assetEntryLocalService.deleteEntry(assetEntry);

255

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portlet/asset/service/impl/AssetEntryLocalServiceImpl.html

Here, you use the guestbook’s class name and ID to retrieve the corresponding asset entry.
Then you delete that asset entry’s asset links and the asset entry itself.

4. Finally, organize your imports, save the file, and run Service Builder to apply the changes.

Next, you’ll do the same thing for guestbook entries.

27.3 Handling Assets for Entry Service Layer

<p id="stepTitle">Enabling Assets at the Service Layer</p><p>Step 3 of 3</p>

Now you must update the guestbook entry entity’s service methods. In these methods, the
calls you’ll make to assetEntryLocalService and assetLinkLocalService are identical to the ones you
made in the guestbook entity’s service methods, except you’re specifying assets for Entry entities.

1. Open EntryLocalServiceImpl and add the asset calls to the addEntrymethod after the resource
calls:

AssetEntry assetEntry = assetEntryLocalService.updateEntry(userId,

groupId, entry.getCreateDate(), entry.getModifiedDate(),

Entry.class.getName(), entryId, entry.getUuid(), 0,

serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(), true, true, null, null, null, null,

ContentTypes.TEXT_HTML, entry.getMessage(), null, null, null,

null, 0, 0, null);

assetLinkLocalService.updateLinks(userId, assetEntry.getEntryId(),

serviceContext.getAssetLinkEntryIds(),

AssetLinkConstants.TYPE_RELATED);

2. Next, add the asset calls to the updateEntrymethod after the resource calls:

AssetEntry assetEntry = assetEntryLocalService.updateEntry(userId,

serviceContext.getScopeGroupId(),

entry.getCreateDate(), entry.getModifiedDate(),

Entry.class.getName(), entryId, entry.getUuid(),

0, serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(), true, true,

entry.getCreateDate(), null, null, null,

ContentTypes.TEXT_HTML, entry.getMessage(), null,

null, null, null, 0, 0,

serviceContext.getAssetPriority());

assetLinkLocalService.updateLinks(userId, assetEntry.getEntryId(),

serviceContext.getAssetLinkEntryIds(),

AssetLinkConstants.TYPE_RELATED);

3. Add the asset calls to the deleteEntrymethod after the resource calls:

AssetEntry assetEntry = assetEntryLocalService.fetchEntry(

Entry.class.getName(), entryId);

assetLinkLocalService.deleteLinks(assetEntry.getEntryId());

assetEntryLocalService.deleteEntry(assetEntry);

256

4. Organize your imports, save the file, and run Service Builder.

5. Finally, add these languagekeys to the guestbook-web/src/main/resources/content/Language.properties
file:

model.resource.com.liferay.docs.guestbook.model.Guestbook=Guestbook

model.resource.com.liferay.docs.guestbook.model.Entry=Guestbook Entry

Excellent! You’ve asset-enabled your guestbook and guestbook entry entities at the service layer.
Your next step is to implement asset renderers for these entities so they can be fully integrated into
the asset framework. Every asset needs an asset renderer class so the Asset Publisher portlet can
display it.

257

CHAPTER 28

IMPLEMENTING ASSET RENDERERS

Assets are display versions of entities, so they contain fields like title, description, and summary.
Liferay DXP uses these fields to display assets. Asset Renderers translate an entity into an asset via
these fields. You must therefore create and register Asset Renderer classes for your guestbook and
guestbook entry entities. Without these classes, Liferay DXP can’t display your entities in Asset
Publisher, Notifications, Activities, or anywhere else that displays assets.

Your next task is to create these Asset Renderers. Ready to begin?
Let’s Go!

28.1 Implementing a Guestbook Asset Renderer

<p id="stepTitle">Implementing Asset Renderers</p><p>Step 1 of 2</p>

LiferayDXP’s asset renderers follow the factorypattern, so youmust create a GuestbookAssetRendererFactory
that instantiates the GuestbookAssetRenderer’s private guestbook object. Here, you’ll create both
classes.

You’ll create the Asset Renderer class first.

Creating the AssetRenderer Class

Follow these steps to create the GuestbookAssetRenderer class:

1. Create a new package called com.liferay.docs.guestbook.web.internal.asset in the guestbook-

webmodule’s src/main/java folder. In this package, create a GuestbookAssetRenderer class that
extends Liferay DXP’s BaseJSPAssetRenderer class. Extending this class gives you a head-start
on implementing the AssetRenderer interface:

public class GuestbookAssetRenderer extends BaseJSPAssetRenderer<Guestbook> {

}

2. Add the constructor, the guestbook class variable, and the permissions model resource. Most
of the methods in this class are getters that return fields from the private _guestbook object.
Methods requiring a permission check use _guestbookModelResourcePermission:

259

public GuestbookAssetRenderer(Guestbook guestbook, ModelResourcePermission<Guestbook> modelResourcePermission) {

_guestbook = guestbook;

_guestbookModelResourcePermission = modelResourcePermission;

}

private Guestbook _guestbook;

private final ModelResourcePermission<Guestbook> _guestbookModelResourcePermission;

private Logger logger = Logger.getLogger(this.getClass().getName());

3. The BaseJSPAssetRenderer abstract class that you’re extending contains dummy implemen-
tations of the hasEditPermission and hasViewPermissionmethods that you must override with
actual permission checks using the permissions resources that you created earlier:

@Override

public boolean hasEditPermission(PermissionChecker permissionChecker)

{

try {

return _guestbookModelResourcePermission.contains(

permissionChecker, _guestbook, ActionKeys.UPDATE);

}

catch (Exception e) {

}

return false;

}

@Override

public boolean hasViewPermission(PermissionChecker permissionChecker)

{

try {

return _guestbookModelResourcePermission.contains(

permissionChecker, _guestbook, ActionKeys.VIEW);

}

catch (Exception e) {

}

return true;

}

4. Add the following getter methods to retrieve information about the guestbook asset:

@Override

public Guestbook getAssetObject() {

return _guestbook;

}

@Override

public long getGroupId() {

return _guestbook.getGroupId();

}

@Override

public long getUserId() {

return _guestbook.getUserId();

}

@Override

public String getUserName() {

return _guestbook.getUserName();

}

@Override

260

public String getUuid() {

return _guestbook.getUuid();

}

@Override

public String getClassName() {

return Guestbook.class.getName();

}

@Override

public long getClassPK() {

return _guestbook.getGuestbookId();

}

@Override

public String getSummary(PortletRequest portletRequest, PortletResponse

portletResponse) {

return "Name: " + _guestbook.getName();

}

@Override

public String getTitle(Locale locale) {

return _guestbook.getName();

}

@Override

public boolean include(HttpServletRequest request, HttpServletResponse

response, String template) throws Exception {

request.setAttribute("GUESTBOOK", _guestbook);

request.setAttribute("HtmlUtil", HtmlUtil.getHtml());

request.setAttribute("StringUtil", new StringUtil());

return super.include(request, response, template);

}

The final method makes several utilities and the Guestbook entity available in the
HttpServletRequest object.

5. Override the getJspPath method. It returns a string representing the path to the JSP that
renders the guestbook asset. When the Asset Publisher displays an asset’s full content, it in-
vokes the asset renderer class’s getJspPathmethod and passes a template string parameter that
equals "full_content". This returns /asset/guestbook/full_content.jspwhen the full_content
template string is passed as a parameter. You’ll create this JSP later when updating your
application’s user interface:

@Override

public String getJspPath(HttpServletRequest request, String template) {

if (template.equals(TEMPLATE_FULL_CONTENT)) {

request.setAttribute("gb_guestbook", _guestbook);

return "/asset/guestbook/" + template + ".jsp";

} else {

return null;

}

}

6. Override the getURLEditmethod. This method returns a URL for editing the asset:

@Override

public PortletURL getURLEdit(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse) throws Exception {

PortletURL portletURL = liferayPortletResponse.createLiferayPortletURL(

261

getControlPanelPlid(liferayPortletRequest), GuestbookPortletKeys.GUESTBOOK,

PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/edit_guestbook");

portletURL.setParameter("guestbookId", String.valueOf(_guestbook.getGuestbookId()));

portletURL.setParameter("showback", Boolean.FALSE.toString());

return portletURL;

}

7. Override the getURLViewInContextmethod. This method returns a URL to view the asset in its
native application:

@Override

public String getURLViewInContext(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse, String noSuchEntryRedirect) throws Exception {

try {

long plid = PortalUtil.getPlidFromPortletId(_guestbook.getGroupId(),

GuestbookPortletKeys.GUESTBOOK);

PortletURL portletURL;

if (plid == LayoutConstants.DEFAULT_PLID) {

portletURL = liferayPortletResponse.createLiferayPortletURL(getControlPanelPlid(liferayPortletRequest),

GuestbookPortletKeys.GUESTBOOK, PortletRequest.RENDER_PHASE);

} else {

portletURL = PortletURLFactoryUtil.create(liferayPortletRequest,

GuestbookPortletKeys.GUESTBOOK, plid, PortletRequest.RENDER_PHASE);

}

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/view");

portletURL.setParameter("guestbookId", String.valueOf(_guestbook.getGuestbookId()));

String currentUrl = PortalUtil.getCurrentURL(liferayPortletRequest);

portletURL.setParameter("redirect", currentUrl);

return portletURL.toString();

} catch (PortalException e) {

logger.log(Level.SEVERE, e.getMessage());

} catch (SystemException e) {

logger.log(Level.SEVERE, e.getMessage());

}

return noSuchEntryRedirect;

}

8. Override the getURLViewmethod. This method returns a URL to view the asset from within
the Asset Publisher:

@Override

public String getURLView(LiferayPortletResponse liferayPortletResponse,

WindowState windowState) throws Exception {

return super.getURLView(liferayPortletResponse, windowState);

}

9. Organize imports (Ctrl-Shift-O) and save the file. Choose com.liferay.petra.* libraries
when prompted, to avoid the deprecated ones in Liferay’s kernel. For logging, choose
java.util.logging.Logger and java.util.logging.Level.

262

Next you can create the AssetRendererFactory class.

Creating the GuestbookAssetRendererFactory Class

Follow these steps to create the GuestbookAssetRendererFactory:

1. In the com.liferay.docs.guestbook.web.internal.asset package, create a class called
GuestbookAssetRendererFactory that extends Liferay DXP’s BaseAssetRendererFactory class,
and overwrite the generated constructor and class variables with this:

@Component(immediate = true,

property = {"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK},

service = AssetRendererFactory.class

)

public class GuestbookAssetRendererFactory extends

BaseAssetRendererFactory<Guestbook> {

public GuestbookAssetRendererFactory() {

setClassName(CLASS_NAME);

setLinkable(_LINKABLE);

setPortletId(GuestbookPortletKeys.GUESTBOOK); setSearchable(true);

setSelectable(true);

}

private ServletContext _servletContext;

private GuestbookLocalService _guestbookLocalService;

private static final boolean _LINKABLE = true;

public static final String CLASS_NAME = Guestbook.class.getName();

public static final String TYPE = "guestbook";

private Logger logger = Logger.getLogger(this.getClass().getName());

private ModelResourcePermission<Guestbook>

_guestbookModelResourcePermission;

This code contains the class declaration, the constructor, and the class variables. It sets the
class name it creates an AssetRenderer for, a portlet ID, and a true boolean (_LINKABLE). The
boolean denotes implemented methods that provide URLs in the generated AssetRenderer.

2. Implement the getAssetRenderer method, which constructs new GuestbookAssetRenderer in-
stances for particular guestbooks. It uses the classPK (primary key) parameter to retrieve the
guestbook from the database. It then calls the GuestbookAssetRenderer’s constructor, passing
the retrieved guestbook and permissions resource model as arguments:

@Override

public AssetRenderer<Guestbook> getAssetRenderer(long classPK, int type)

throws PortalException {

Guestbook guestbook = _guestbookLocalService.getGuestbook(classPK);

GuestbookAssetRenderer guestbookAssetRenderer =

new GuestbookAssetRenderer(guestbook, _guestbookModelResourcePermission);

guestbookAssetRenderer.setAssetRendererType(type);

guestbookAssetRenderer.setServletContext(_servletContext);

return guestbookAssetRenderer;

}

3. You’re extending BaseAssetRendererFactory, an abstract class that implements the
AssetRendererFactory interface. To ensure that your custom asset is associated with

263

the correct entity, each asset renderer factory must implement the getClassName and getType

methods (among others):

@Override

public String getClassName() {

return CLASS_NAME;

}

@Override

public String getType() {

return TYPE;

}

4. Implement the hasPermissionmethod via the GuestbookPermission class:

@Override

public boolean hasPermission(PermissionChecker permissionChecker,

long classPK, String actionId) throws Exception {

Guestbook guestbook = _guestbookLocalService.getGuestbook(classPK);

long groupId = guestbook.getGroupId();

return GuestbookPermission.contains(permissionChecker, groupId,

actionId);

}

5. Add the remaining code to create the portlet URL for the asset and specify whether it’s
linkable:

@Override

public PortletURL getURLAdd(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse, long classTypeId) {

PortletURL portletURL = null;

try {

ThemeDisplay themeDisplay = (ThemeDisplay)

liferayPortletRequest.getAttribute(WebKeys.THEME_DISPLAY);

portletURL = liferayPortletResponse.createLiferayPortletURL(getControlPanelPlid(themeDisplay),

GuestbookPortletKeys.GUESTBOOK, PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/edit_guestbook");

portletURL.setParameter("showback", Boolean.FALSE.toString());

} catch (PortalException e) {

logger.log(Level.SEVERE, e.getMessage());

}

return portletURL;

}

@Override

public boolean isLinkable() {

return _LINKABLE;

}

@Override

public String getIconCssClass() {

return "bookmarks";

}

@Reference(target = "(osgi.web.symbolicname=com.liferay.docs.guestbook.portlet)",

unbind = "-")

264

public void setServletContext(ServletContext servletContext) {

_servletContext = servletContext;

}

@Reference(unbind = "-")

protected void setGuestbookLocalService(GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

}

6. Organize imports (Ctrl-Shift-O). Select the org.osgi packages (not a.Qute) when prompted and
save the file.

Great! The guestbook asset renderer is complete. Next, you’ll create the entry asset renderer.

28.2 Implementing an Entry Asset Renderer

<p id="stepTitle">Implementing Asset Renderers</p><p>Step 2 of 2</p>

The classes you’ll create here are nearly identical to the GuestbookAssetRenderer and
GuestbookAssetRendererFactory classes you created for guestbooks in the previous step. This step
provides the code needed for guestbook entries. Please review the previous sections to learn how
this code works.

Creating the EntryAssetRenderer Class

In the com.liferay.docs.guestbook.web.internal.asset package, create an EntryAssetRenderer

class that extends Liferay DXP’s BaseJSPAssetRenderer class. Replace the contents of your
EntryAssetRenderer class with the following code:

package com.liferay.docs.guestbook.web.internal.asset;

import com.liferay.asset.kernel.model.BaseJSPAssetRenderer;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.exception.SystemException;

import com.liferay.portal.kernel.model.LayoutConstants;

import com.liferay.portal.kernel.portlet.LiferayPortletRequest;

import com.liferay.portal.kernel.portlet.LiferayPortletResponse;

import com.liferay.portal.kernel.portlet.PortletURLFactoryUtil;

import com.liferay.portal.kernel.security.permission.ActionKeys;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import com.liferay.portal.kernel.security.permission.resource.ModelResourcePermission;

import com.liferay.portal.kernel.util.HtmlUtil;

import com.liferay.portal.kernel.util.PortalUtil;

import com.liferay.petra.string.StringUtil;

import com.liferay.docs.guestbook.constants.GuestbookPortletKeys;

import com.liferay.docs.guestbook.model.Entry;

import java.util.Locale;

import javax.portlet.PortletRequest;

import javax.portlet.PortletResponse;

import javax.portlet.PortletURL;

import javax.portlet.WindowState;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class EntryAssetRenderer extends BaseJSPAssetRenderer<Entry> {

public EntryAssetRenderer(Entry entry, ModelResourcePermission<Entry> modelResourcePermission) {

265

_entry = entry;

_entryModelResourcePermission = modelResourcePermission;

}

@Override

public boolean hasViewPermission(PermissionChecker permissionChecker)

{

try {

return _entryModelResourcePermission.contains(

permissionChecker, _entry, ActionKeys.VIEW);

}

catch (Exception e) {

}

return true;

}

@Override

public Entry getAssetObject() {

return _entry;

}

@Override

public long getGroupId() {

return _entry.getGroupId();

}

@Override

public long getUserId() {

return _entry.getUserId();

}

@Override

public String getUserName() {

return _entry.getUserName();

}

@Override

public String getUuid() {

return _entry.getUuid();

}

@Override

public String getClassName() {

return Entry.class.getName();

}

@Override

public long getClassPK() {

return _entry.getEntryId();

}

@Override

public String getSummary(PortletRequest portletRequest,

PortletResponse portletResponse) {

return "Name: " + _entry.getName() + ". Message: " + _entry.getMessage();

}

@Override

public String getTitle(Locale locale) {

return _entry.getMessage();

}

@Override

public boolean include(HttpServletRequest request,

HttpServletResponse response, String template) throws Exception {

266

request.setAttribute("ENTRY", _entry);

request.setAttribute("HtmlUtil", HtmlUtil.getHtml());

request.setAttribute("StringUtil", new StringUtil());

return super.include(request, response, template);

}

@Override

public String getJspPath(HttpServletRequest request, String template) {

if (template.equals(TEMPLATE_FULL_CONTENT)) {

request.setAttribute("gb_entry", _entry);

return "/asset/entry/" + template + ".jsp";

} else {

return null;

}

}

@Override

public PortletURL getURLEdit(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse) throws Exception {

PortletURL portletURL = liferayPortletResponse.createLiferayPortletURL(

getControlPanelPlid(liferayPortletRequest), GuestbookPortletKeys.GUESTBOOK,

PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/edit_entry");

portletURL.setParameter("entryId", String.valueOf(_entry.getEntryId()));

portletURL.setParameter("showback", Boolean.FALSE.toString());

return portletURL;

}

@Override

public String getURLViewInContext(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse, String noSuchEntryRedirect)

throws Exception {

try {

long plid = PortalUtil.getPlidFromPortletId(_entry.getGroupId(),

GuestbookPortletKeys.GUESTBOOK);

PortletURL portletURL;

if (plid == LayoutConstants.DEFAULT_PLID) {

portletURL = liferayPortletResponse.createLiferayPortletURL(getControlPanelPlid(liferayPortletRequest),

GuestbookPortletKeys.GUESTBOOK, PortletRequest.RENDER_PHASE);

} else {

portletURL = PortletURLFactoryUtil.create(liferayPortletRequest,

GuestbookPortletKeys.GUESTBOOK, plid, PortletRequest.RENDER_PHASE);

}

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/view");

portletURL.setParameter("entryId", String.valueOf(_entry.getEntryId()));

String currentUrl = PortalUtil.getCurrentURL(liferayPortletRequest);

portletURL.setParameter("redirect", currentUrl);

return portletURL.toString();

} catch (PortalException e) {

} catch (SystemException e) {

}

return noSuchEntryRedirect;

}

@Override

public String getURLView(LiferayPortletResponse liferayPortletResponse,

WindowState windowState) throws Exception {

267

return super.getURLView(liferayPortletResponse, windowState);

}

@Override

public boolean isPrintable() {

return true;

}

private final ModelResourcePermission<Entry> _entryModelResourcePermission;

private Entry _entry;

}

This class is similar to the GuestbookAssetRenderer class. For the EntryAssetRenderer.getSummary

method, you return a summary that displays the entry name (the name of the user who created the
entry) and the entry message.

GuestbookAssetRenderer.getSummary returns a summary that displays the guestbook name.
EntryAssetRenderer.getTitle returns the entry message. GuestbookAssetRenderer.getTitle returns
the guestbook name. The other methods of EntryAssetRenderer are nearly identical to those of
GuestbookAssetRenderer.

Creating the EntryAssetRendererFactory Class

Next, youmust create the guestbook entry asset renderer’s factory class. In the com.liferay.docs.guestbook.web.internal.asset
package, create a class called EntryAssetRendererFactory that extendsLiferayDXP’s BaseAssetRendererFactory
class. Replace its content with the following code:

package com.liferay.docs.guestbook.web.internal.asset;

import com.liferay.asset.kernel.model.AssetRenderer;

import com.liferay.asset.kernel.model.AssetRendererFactory;

import com.liferay.asset.kernel.model.BaseAssetRendererFactory;

import com.liferay.docs.guestbook.constants.GuestbookPortletKeys;

import com.liferay.docs.guestbook.model.Entry;

import com.liferay.docs.guestbook.service.EntryLocalService;

import com.liferay.docs.guestbook.web.internal.security.permission.resource.GuestbookEntryPermission;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.portlet.LiferayPortletRequest;

import com.liferay.portal.kernel.portlet.LiferayPortletResponse;

import com.liferay.portal.kernel.portlet.LiferayPortletURL;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import com.liferay.portal.kernel.security.permission.resource.ModelResourcePermission;

import com.liferay.portal.kernel.theme.ThemeDisplay;

import com.liferay.portal.kernel.util.WebKeys;

import javax.portlet.PortletRequest;

import javax.portlet.PortletURL;

import javax.portlet.WindowState;

import javax.portlet.WindowStateException;

import javax.servlet.ServletContext;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

@Component(

immediate = true,

property = {"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK},

service = AssetRendererFactory.class

)

public class EntryAssetRendererFactory extends BaseAssetRendererFactory<Entry> {

public EntryAssetRendererFactory() {

setClassName(CLASS_NAME);

setLinkable(_LINKABLE);

268

setPortletId(GuestbookPortletKeys.GUESTBOOK);

setSearchable(true);

setSelectable(true);

}

@Override

public AssetRenderer<Entry> getAssetRenderer(long classPK, int type)

throws PortalException {

Entry entry = _entryLocalService.getEntry(classPK);

EntryAssetRenderer entryAssetRenderer = new EntryAssetRenderer(entry, _entryModelResourcePermission);

entryAssetRenderer.setAssetRendererType(type);

entryAssetRenderer.setServletContext(_servletContext);

return entryAssetRenderer;

}

@Override

public String getClassName() {

return CLASS_NAME;

}

@Override

public String getType() {

return TYPE;

}

@Override

public boolean hasPermission(PermissionChecker permissionChecker,

long classPK, String actionId) throws Exception {

Entry entry = _entryLocalService.getEntry(classPK);

return GuestbookEntryPermission.contains(permissionChecker, entry, actionId);

}

@Override

public PortletURL getURLAdd(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse, long classTypeId) {

PortletURL portletURL = null;

try {

ThemeDisplay themeDisplay = (ThemeDisplay) liferayPortletRequest.getAttribute(WebKeys.THEME_DISPLAY);

portletURL = liferayPortletResponse.createLiferayPortletURL(getControlPanelPlid(themeDisplay),

GuestbookPortletKeys.GUESTBOOK, PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/edit_entry");

portletURL.setParameter("showback", Boolean.FALSE.toString());

} catch (PortalException e) {

}

return portletURL;

}

@Override

public PortletURL getURLView(LiferayPortletResponse liferayPortletResponse, WindowState windowState) {

LiferayPortletURL liferayPortletURL

= liferayPortletResponse.createLiferayPortletURL(

GuestbookPortletKeys.GUESTBOOK, PortletRequest.RENDER_PHASE);

try {

liferayPortletURL.setWindowState(windowState);

} catch (WindowStateException wse) {

269

}

return liferayPortletURL;

}

@Override

public boolean isLinkable() {

return _LINKABLE;

}

@Override

public String getIconCssClass() {

return "pencil";

}

@Reference(target = "(osgi.web.symbolicname=com.liferay.docs.guestbook.portlet)",

unbind = "-")

public void setServletContext (ServletContext servletContext) {

_servletContext = servletContext;

}

@Reference(unbind = "-")

protected void setEntryLocalService(EntryLocalService entryLocalService) {

_entryLocalService = entryLocalService;

}

private EntryLocalService _entryLocalService;

private ServletContext _servletContext;

private static final boolean _LINKABLE = true;

public static final String CLASS_NAME = Entry.class.getName();

public static final String TYPE = "entry";

private ModelResourcePermission<Entry>

_entryModelResourcePermission;

}

Exporting the Asset Package

The container makes the asset renderers and their factories available to Liferay DXP when it needs
them. You must export the package to the container.

Open the guestbook-servicemodule’s bnd.bndfile and add the asset package to the Export-Package
declaration. When you’re finished, it should look like this:

Export-Package: com.liferay.docs.guestbook.asset,\

com.liferay.docs.guestbook.service.permission,\

com.liferay.docs.guestbook.web.internal.security.permission.resource,\

com.liferay.docs.guestbook.search

Now your guestbook project’s entities are fully asset-enabled. To test the functionality, add the
Asset Publisher portlet to a page. Then add and edit guestbooks and guestbook entries. Then check
the Asset Publisher portlet. The Asset Publisher dynamically displays assets of any kind from the
current Site.

Confirm that the Asset Publisher displays the guestbooks and guestbook entries that you added.
Great! Next, you’ll update your portlets’ user interfaces to use several asset framework features:

comments, ratings, tags, categories, and related assets.

270

Figure 28.1: After you’ve implemented and registered your asset renderers for your custom entities, the Asset Publisher can display your entities.

271

CHAPTER 29

ADDING ASSET FEATURES TO YOUR USER
INTERFACE

<p id="stepTitle">Adding Asset Features to Your UI</p><p>Step 1 of 5</p>

Now that your guestbook and guestbook entry entities are asset-enabled, you can add asset
functionality to your application. You’ll start by implementing comments, ratings, tags, categories,
and related assets for guestbooks. Then you’ll do the same for guestbook entries. All the back-end
support for these features is already implemented. Your only task is to update your applications’
user interfaces to use these features.

Now you’ll create several new JSPs that need new imports. Add the following imports to the
guestbook-webmodule project’s init.jsp file:

<%@ taglib uri="http://liferay.com/tld/asset" prefix="liferay-asset" %>

<%@ taglib uri="http://liferay.com/tld/comment" prefix="liferay-comment" %>

<%@ page import="java.util.Map" %>

<%@ page import="java.util.HashMap" %>

<%@ page import="com.liferay.asset.kernel.service.AssetEntryLocalServiceUtil" %>

<%@ page import="com.liferay.asset.kernel.service.AssetTagLocalServiceUtil" %>

<%@ page import="com.liferay.asset.kernel.model.AssetEntry" %>

<%@ page import="com.liferay.asset.kernel.model.AssetTag" %>

<%@ page import="com.liferay.portal.kernel.util.ListUtil" %>

<%@ page import="com.liferay.portal.kernel.comment.Discussion" %>

<%@ page import="com.liferay.portal.kernel.comment.CommentManagerUtil" %>

<%@ page import="com.liferay.portal.kernel.service.ServiceContextFunction" %>

Add these imports now so you don’t run into errors as you work through this section.

29.1 Creating JSPs for Displaying Custom Assets in the Asset Publisher

<p id="stepTitle">Adding Asset Features to Your UI</p><p>Step 2 of 5</p>

Before proceeding, you must tie up a loose end from the previous step. Remember that
you implemented getJspPath methods in your GuestbookAssetRenderer and EntryAssetRenderer

classes to JSPs that don’t exist yet. These methods return paths to JSPs the Asset Publisher
uses to display the assets’ full content. The getJspPathmethod of GuestbookAssetRenderer returns

273

"/asset/guestbook/full_content.jsp", and the getJspPath method of EntryAssetRenderer returns
"/asset/entry/full_content.jsp". It’s time to create these JSPs.

Follow these steps:

1. In the guestbook-web module project, create a new folder called asset under the
resources/META-INF/resources folder. Add two folders to this new folder: entry and
guestbook.

2. Create a new file called full_content.jsp in the /asset/guestbook folder. This JSP displays a
guestbook asset’s full content. Add the following code to this file:

<%@include file="../../init.jsp"%>

<%

Guestbook guestbook = (Guestbook)request.getAttribute("gb_guestbook");

guestbook = guestbook.toEscapedModel();

%>

<dl>

<dt>Name</dt>

<dd><%= guestbook.getName() %></dd>

</dl>

This JSP grabs the guestbook object from the request and displays the guestbook’s name. In
GuestbookAssetRenderer, the getJspPathmethod added the gb_guestbook request attribute:

request.setAttribute("gb_guestbook", _guestbook);

The guestbook’s toEscapedModelmethod belongs to the GuestbookModelImpl class, which was
generated by Service Builder. This method returns a safe guestbook object (a guestbook in
which each field is HTML-escaped). Calling guestbook = guestbook.toEscapedModel() before
displaying the guestbook name ensures that your JSP won’t display malicious code that’s
masquerading as a guestbook name.

3. Next, in the /asset/entry folder, create a full_content.jsp for displaying a guestbook entry
asset’s full content. Add the following code to this file:

<%@include file="../../init.jsp"%>

<%

Entry entry = (Entry)request.getAttribute("gb_entry");

entry = entry.toEscapedModel();

%>

<dl>

<dt>Guestbook</dt>

<dd><%= GuestbookLocalServiceUtil.getGuestbook(entry.getGuestbookId()).getName() %></dd>

<dt>Name</dt>

<dd><%= entry.getName() %></dd>

<dt>Message</dt>

<dd><%= entry.getMessage() %></dd>

</dl>

274

Figure 29.1: When you click the title for a guestbook or guestbook entry in the Asset Publisher, your full_content.jsp should be displayed.

This JSP shows a combination of fields from the Guestbook and the selected Entry.
After deploying your changes, test your new JSPs by clicking a guestbook’s or guestbook entry’s

title in the Asset Publisher. The Asset Publisher renders full_content.jsp:
By default, when displaying an asset’s full view, the Asset Publisher displays additional links for

social media so you can publicize your asset. The Back icon and the View in Context link return you
to the Asset Publisher’s default view.

29.2 Enabling Tags, Categories, and Related Assets for Guestbooks

<p id="stepTitle">Adding Asset Features to Your UI</p><p>Step 3 of 5</p>

Since you already asset-enabled guestbooks at the service layer, guestbook entities can now
support tags and categories. All that’s left is to enable them in the UI. In this step, you’ll update the
Guestbook Admin portlet’s edit_guestbook.jsp so administrators can add, edit, or remove tags and
categories when adding or updating a guestbook.

Enabling Asset Features

Follow these steps:

1. In the guestbook-web module’s /guestbookadminportlet/edit_guestbook.jsp, add the tags
<liferay-ui:asset-categories-error /> and <liferay-ui:asset-tags-error/> to the aui:form

below the closing </aui:button-row> tag:

<liferay-ui:asset-categories-error />

<liferay-ui:asset-tags-error />

These tags display error messages if an error occurs with the tags or categories submitted in
the form.

2. Below the error tags, add a <liferay-ui:panel> tag with the following attributes:

<liferay-ui:panel defaultState="closed" extended="<%= false %>"

id="guestbookCategorizationPanel" persistState="<%= true %>"

title="categorization">

</liferay-ui:panel>

275

The <liferay-ui:panel> tag generates a collapsible section.

3. Add input fields for tags and categories inside the panel section you just created. Specify
the assetCategories and assetTags types for the <aui:input /> tags. These input tags repre-
sent asset categories and asset tags. You can group related input fields together with an
<aui:fieldset> tag. The tags generate the appropriate selectors for tags and categories and
displays those that have already been added to the guestbook:

<aui:fieldset>

<liferay-asset:asset-categories-selector className="<%= Guestbook.class.getName() %>" classPK="<%= guestbook %>" />

<liferay-asset:asset-tags-selector className="<%= Guestbook.class.getName() %>" classPK="<%= guestbook %>" />

</aui:fieldset>

4. Add a second <liferay-ui:panel> tag under the existing one. In this new tag, add an
<aui:fieldset> tag containing a <liferay-ui:asset-links> tag. To display the correct asset
links (the selected guestbook’s related assets), set the className and classPK attributes:

<liferay-ui:panel defaultState="closed" extended="<%= false %>"

id="guestbookAssetLinksPanel" persistState="<%= true %>"

title="related-assets">

<aui:fieldset>

<liferay-ui:input-asset-links

className="<%= Guestbook.class.getName() %>"

classPK="<%= guestbookId %>" />

</aui:fieldset>

</liferay-ui:panel>

Test the updated edit_guestbook.jsp page by navigating to the Guestbook Admin portlet in the
Control Panel and clicking Add Guestbook. You’ll see a field for adding tags and a selector for
selecting related assets.

Don’t do anything with these fields yet, because you’re not done implementing assets. Next,
you’ll enable tags and categories for guestbook entries.

29.3 Enabling Tags, Categories, and Related Assets for Guestbook Entries

<p id="stepTitle">Adding Asset Features to Your UI</p><p>Step 4 of 5</p>

Enabling tags, categories, and related assets for guestbook entries is similar to enabling them
for guestbooks. Please refer back to the previous step for a detailed explanation.

Open your guestbook-webmodule’s guestbookwebportlet/edit_entry.jsp file. Replace its content
with the following code:

<%@ include file="../init.jsp" %>

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

Entry entry = null;

if (entryId > 0) {

entry = EntryLocalServiceUtil.getEntry(entryId);

}

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

%>

276

Figure 29.2: Once you’ve updated your Guestbook Admin portlet’s edit_guestbook.jsp page, you’ll see forms for adding tags and selecting related assets.

<portlet:renderURL var="viewURL">

<portlet:param

name="mvcPath"

value="/guestbookwebportlet/view.jsp"

/>

</portlet:renderURL>

<liferay-ui:header

backURL="<%= viewURL.toString() %>"

title="<%= entry == null ? "Add Entry" : entry.getName() %>"

/>

<portlet:actionURL name="addEntry" var="addEntryURL" />

<aui:form action="<%= addEntryURL %>" name="fm">

<aui:model-context bean="<%= entry %>" model="<%= Entry.class %>" />

<aui:fieldset>

<aui:input name="name" />

<aui:input name="email" />

<aui:input name="message" />

<aui:input name="entryId" type="hidden" />

<aui:input name="guestbookId" type="hidden"

value=

"<%= entry == null ? guestbookId : entry.getGuestbookId() %>" />

</aui:fieldset>

277

<liferay-ui:asset-categories-error />

<liferay-ui:asset-tags-error />

<liferay-ui:panel defaultState="closed"

extended="<%= false %>" id="entryCategorizationPanel"

persistState="<%= true %>" title="categorization">

<aui:fieldset>

<liferay-asset:asset-categories-selector className="<%= Entry.class.getName() %>" classPK="<%= entryId %>" />

<liferay-asset:asset-tags-selector className="<%= Entry.class.getName() %>" classPK="<%= entryId %>" />

</aui:fieldset>

</liferay-ui:panel>

<liferay-ui:panel defaultState="closed"

extended="<%= false %>" id="entryAssetLinksPanel"

persistState="<%= true %>" title="related-assets">

<aui:fieldset collapsed="<%= true %>" collapsible="<%= true %>" label="related-assets">

<liferay-asset:input-asset-links

className="<%= Entry.class.getName() %>"

classPK="<%= entryId %>"

/>

</aui:fieldset>

</liferay-ui:panel>

<aui:button-row>

<aui:button type="submit" />

<aui:button onClick="<%= viewURL.toString() %>" type="cancel" />

</aui:button-row>

</aui:form>

Test your JSP by using the Guestbook portlet to add and update Guestbook entries. Add and
remove tags, categories, and related assets.

Note: Setting your custom asset as the Main Asset of a page is required to display related assets
in the Related Assets portlet. This is done when creating Friendly URLs in a later step.

Well done! Next, you’ll enable comments and ratings for guestbook entries.

29.4 Enabling Comments and Ratings for Guestbook Entries

<p id="stepTitle">Adding Asset Features to Your UI</p><p>Step 5 of 5</p>

The asset framework lets users comment on and rate assets. As with tags, categories, and
related assets, youmust update the user interface to expose these features. Good application design
requires that you have a View page where users can rate and comment on assets. Follow these
steps to enable comments and ratings on guestbook entries:

1. Create anewfile called view_entry.jsp in your guestbook-webmoduleproject’s /guestbookwebportlet
folder.

2. Add a Java scriptlet to the file you just created. In this scriptlet, use an entryId request
attribute to get an entry object. For security reasons, convert this object to an escaped model
as discussed in the earlier step Creating JSPs for Displaying Custom Assets in the Asset
Publisher:

278

<%@ include file="../init.jsp"%>

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

Entry entry = null;

if (entryId > 0) {

entry = EntryLocalServiceUtil.getEntry(entryId);

entryId = entry.getEntryId();

}

entry = EntryLocalServiceUtil.getEntry(entryId);

entry = entry.toEscapedModel();

AssetEntry assetEntry =

AssetEntryLocalServiceUtil.getEntry(Entry.class.getName(),

entry.getEntryId());

3. Next, update the breadcrumb entry with the current entry’s name:

String currentURL = PortalUtil.getCurrentURL(request);

PortalUtil.addPortletBreadcrumbEntry(request, entry.getMessage(),

currentURL);

4. At the end of the scriptlet, add the names of the current entry’s existing asset tags as keywords
to the portal page. These tag names appear in a <meta content="[tag names here]" lang="en-

US" name="keywords" /> element in your portal page’s <head> section. These keywords can
help search engines find and index your page:

PortalUtil.setPageSubtitle(entry.getMessage(), request);

PortalUtil.setPageDescription(entry.getMessage(), request);

List<AssetTag> assetTags =

AssetTagLocalServiceUtil.getTags(Entry.class.getName(),

entry.getEntryId());

PortalUtil.setPageKeywords(ListUtil.toString(assetTags, "name"),

request);

%>

5. After the scriptlet, specify the URLs for the page and back link:

<liferay-portlet:renderURL varImpl="viewEntryURL">

<portlet:param name="mvcPath"

value="/guestbookwebportlet/view_entry.jsp" />

<portlet:param name="entryId" value="<%=String.valueOf(entryId)%>" />

</liferay-portlet:renderURL>

<liferay-portlet:renderURL varImpl="viewURL">

<portlet:param name="mvcPath"

value="/guestbookwebportlet/view.jsp" />

</liferay-portlet:renderURL>

<liferay-ui:header backURL="<%=viewURL.toString()%>"

title="<%=entry.getName()%>"

/>

279

6. Next, define the page’s main content. Display the guestbook’s name, and the entry’s name
and message with the <dl>, <dt>, and <dd> tags:

<dl>

<dt>Guestbook</dt>

<dd><%=GuestbookLocalServiceUtil.getGuestbook(entry.getGuestbookId()).getName()%></dd>

<dt>Name</dt>

<dd><%=entry.getName()%></dd>

<dt>Message</dt>

<dd><%=entry.getMessage()%></dd>

</dl>

This is the samewayyoudefined thepage’smain content in /guestbookwebportlet/full_content.jsp.

7. Next, use a <liferay-ui:panel-container> tag to create a panel container. Inside this tag, use
a <liferay-ui:panel> tag to create a panel to display the comments and ratings components:

<liferay-ui:panel-container extended="<%=false%>"

id="guestbookCollaborationPanelContainer" persistState="<%=true%>">

<liferay-ui:panel collapsible="<%=true%>" extended="<%=true%>"

id="guestbookCollaborationPanel" persistState="<%=true%>"

title="Collaboration">

8. Add the ratings component with the <liferay-ui:ratings> tag:

<liferay-ui:ratings className="<%=Entry.class.getName()%>"

classPK="<%=entry.getEntryId()%>" type="stars" />

9. Next you need to add a scriptlet to retrieve the comments discussion object:

<% Discussion discussion =

CommentManagerUtil.getDiscussion(user.getUserId(),

scopeGroupId, Entry.class.getName(),

entry.getEntryId(), new ServiceContextFunction(request));

%>

10. Below that add the tag for tracking the number of comments:
” key=‘<%= (discussion.getDiscussionCommentsCount() == 1) ? “x-comment” : “x-comments”
%>’ />

11. Create the liferay-comment:discussion tag, which creates the comments form, Reply button,
and retrieves the discussion content. It also handles the form action of posting the comment
without requiring you to create a portlet action URL.

<liferay-comment:discussion

className="<%= Entry.class.getName() %>"

classPK="<%= entry.getEntryId() %>"

discussion="<%= discussion %>"

formName="fm2"

ratingsEnabled="true"

redirect="<%= currentURL %>"

userId="<%= entry.getUserId() %>"

/>

</liferay-ui:panel>

</liferay-ui:panel-container>

280

12. To restrict comments and ratings access to logged-in users, wrap the whole panel container
in a <c:if> tag that tests the expression themeDisplay.isSignedIn():

<c:if test="<%= themeDisplay.isSignedIn() %>">

... your panel container ...

</c:if>

Make sure you add the closing </c:if> tag after the closing </liferay-ui:panel-container> tag.

Note: Discussions (comments) are implemented as message board messages. In the MBMessage

table, there’s a classPK column. This classPK represents the guestbook entry’s entryId, linking the
comment to the guestbook. Ratings are stored in the RatingsEntry table. Similarly, the RatingsEntry

table contains a classPK column that links the guestbook entry to the rating. Using a classPK foreign
key in one table to represent the primary key of another table is a common pattern throughout
Liferay DXP.

Next, you’ll update the guestbook actions to use the new view.

Updating the Entry Actions JSP

Your view_entry.jsp page is currently orphaned. Fix this by adding the View option to the Actions
Menu. Open the /guestbookwebportlet/entry_actions.jsp and find the following line:

<liferay-ui:icon-menu>

Add the following lines below it:

<portlet:renderURL var="viewEntryURL">

<portlet:param name="entryId"

value="<%= String.valueOf(entry.getEntryId()) %>" />

<portlet:param name="mvcPath"

value="/guestbookwebportlet/view_entry.jsp" />

</portlet:renderURL>

<liferay-ui:icon message="View" url="<%= viewEntryURL.toString() %>" />

Here, you create a URL that points to view_entry.jsp. Test this link by selecting the View option
in a guestbook entry’s Actions Menu. Then test your comments and ratings.

Excellent! You’ve asset-enabled the guestbook and guestbook entry entities and enabled tags,
categories, and related assets for both entities. You’ve also enabled comments and ratings for
guestbook entry entities! Great job!

Your next task is to generate web services. This makes it possible to write other clients (such as
mobile applications) for the Guestbook application.

281

Figure 29.3: Now you can see comments, rating, and the full range of asset features.

282

CHAPTER 30

TOOLING

You can write code for Liferay using any standard toolset. Liferay is tool-agnostic, rather than
pigeonholing you into something specific. This frees you to work with whatever you’re already
productive using.

Liferay has also created its own tools that streamline Liferay DXP development. These tools
integrate with popular build environments (e.g., Gradle and Maven). They include

• Liferay Dev Studio DXP: an Eclipse-based IDE supporting development for Liferay DXP.
• Blade CLI: a command line interface bootstrapped on to a Gradle based environment that is
used to build and manage LiferayWorkspaces and Liferay DXP projects.

• LiferayWorkspace: a generated environment built to hold and manage Liferay DXP projects.
• Liferay IntelliJ plugin: a plugin providing support for Liferay DXP development with IntelliJ
IDEA.

Liferay also provides a plethora of Gradle and Maven plugins you can apply to your projects.
Many of these are already built into tools such as LiferayWorkspace.

Want samples or predefined project templates? Liferay has you covered with 30+ project
templates and many more project samples.

If you’re a newbie looking for the best development tool for Liferay DXP, or even a seasoned
veteran looking for a tool you may like more than your current setup, this section will answer your
tooling questions.

283

CHAPTER 31

LIFERAY DEV STUDIO DXP

Liferay Dev Studio DXP provides an all-in-one, integrated development environment based on
Eclipse for Liferay DXP. Dev Studio includes Liferay IDE plugins paired with a pre-installed Liferay
Digital Enterprise server.

@ide@ works with build tools such as Gradle and Maven and configuration tools like BndTools.
Dev Studio makes Liferay development easier. There are editors for Service Builder files,

workflow definitions, POM files, and more. You’ll find wizards for creating every kind of Liferay
project there is, snippets for tag libraries, and auto-deploy of changes to plugins.

In this section of tutorials, you’ll learnhow to install LiferayDev StudioDXP anddevelop/manage
modules using LiferayWorkspace and other technologies.

31.1 Installing Liferay Dev Studio DXP

Liferay Dev Studio DXP is a plugin for Eclipse that provides many Liferay-specific features and
additional enterprise only features. You can install it into your existing Eclipse environment, or
Liferay provides a bundled version. Before beginning the installation process, view Dev Studio’s
Compatibility Matrix to get acquainted with its supported Liferay versions and application servers.

In this tutorial, you’ll learn the different methods available for installing Liferay Dev Studio:

• install the Dev Studio bundle from scratch
• install Dev Studio into an existing Eclipse instance using an update URL
• install Dev Studio into an existing Eclipse instance using a ZIP file

Important: If you’re installing Dev Studio into an existing Eclipse environment, you must
be on Eclipse Oxygen or newer. For instructions on upgrading to Oxygen, see Eclipse’s upgrade
documentation. With this particular upgrade, you should also deactivate the current available
update sites in the Window → Preferences → Install/Update → Available Software Sites menu to ensure a
successful upgrade (e.g., Neon).

Install the Liferay Dev Studio Bundle

1. Download and install Java. Liferay DXP runs on Java, so you’ll need it to run everything else.
Because you’ll be developing apps for Liferay DXP in Liferay Dev Studio, the Java Development

285

https://web.liferay.com/group/customer/dxp/support/compatibility-matrix/developer-tools
https://wiki.eclipse.org/FAQ_How_do_I_upgrade_Eclipse_IDE%3F#Upgrading_existing_Eclipse_IDE_and_Installed_Features_to_newer_release
https://wiki.eclipse.org/FAQ_How_do_I_upgrade_Eclipse_IDE%3F#Upgrading_existing_Eclipse_IDE_and_Installed_Features_to_newer_release
http://java.oracle.com

Kit (JDK) is required. It is an enhanced version of the Java Environment used for developing
new Java technology. You can download the Java SE JDK from the Java Downloads page.

2. Download Liferay’s latest 3.2.x Project SDK with Dev Studio DXP executable that correlates to
your operating system. The Project SDK includes Dev Studio DXP, LiferayWorkspace, and
Blade CLI.
You may be prompted for your liferay.com username and password before downloading the
Liferay DXP installer. Since Dev Studio DXP includes access to Liferay DXP, you must verify
that you have rights to use it.
Your credentials are not saved locally; they’re saved as a token in the ~/.liferay folder. The
token is used by your Dev Studio’s Liferay Workspace if you ever decide to redownload a
Liferay DXP bundle. Furthermore, the Liferay DXP bundle that was downloaded in your
workspace is also copied to your ~/.liferay/bundles folder, so if you decide to initialize another
Liferay DXP instance of the same version, the bundle is not re-downloaded. See the Adding a
Liferay Bundle to aWorkspace for more information on this topic.
Important: The token generator sometimes has issues generating a token for workspaces
built behind a proxy. If you’re unable to automatically generate a workspace token, you can
generate one manually.

3. Run the installer. You may need to allow permission for the installer to run, depending on
your operating system and where you want to install it.

4. Select the Java Runtime to use for the installation process. Then click Next.

5. Click Next to begin the installation process. Select the installation folder for your Liferay Dev
Studio instance. Then click Next.

Figure 31.1: Choose the folder your Dev Studio instance should reside.

6. Input the Liferay DXP activation key to set up the Liferay DXP bundle packaged with Dev
Studio DXP. Then click Next.
Dev Studio installs LiferayWorkspace by default, which is a developer environment used to
build andmanage LiferayDXPprojects. The installer automatically installs LiferayWorkspace
and its dedicated command line tool (Blade CLI).

286

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://sourceforge.net/projects/lportal/files/Liferay%20IDE/

7. Configure proxy settings for your Project SDK. If you must use Dev Studio behind a firewall,
you may want to configure the proxy settings. See the Liferay IDE Proxy Settings and Liferay
Workspace Proxy Settings tutorials for more information. Skip this step if you don’t need this.

Figure 31.2: Configure your Project SDK’s proxy settings, if necessary.

8. Click Next to finish the installation process for your Dev Studio instance.

Congratulations! You’ve installed Liferay Dev Studio DXP! It’s now available in the folder you
specified. To run Dev Studio, execute the DeveloperStudio executable. A LiferayWorkspace has also
been initialized in that same folder.

Install Liferay Dev Studio into Eclipse Environment

To install Dev Studio using an update URL, follow these steps:

1. In Eclipse, go to Help → Install New Software….

2. In the Work with field, copy in the URL http://releases.liferay.com/tools/ide/latest/milestone/.

3. You’ll see the Dev Studio components in the list below. Check them off and click Next.

4. Accept the terms of the agreements. ClickNext, and Dev Studio is installed. Like other Eclipse
plugins, you must restart Eclipse to use them.

Liferay Dev Studio is now installed in your existing Eclipse environment.

Install Liferay Dev Studio into Eclipse from a ZIP File

To install Dev Studio using a Zip file, follow these steps:

1. Go to the LiferayDev StudioDXPdownloads page. From the drop-downmenu, selectDeveloper
Studio Updatesite Zip and click Download.

2. In Eclipse, go to Help → Install New Software….

3. In the Add dialog, click the Archive button and browse to the location of the downloaded
Liferay Dev Studio Update Site .zip file. Then press OK.

4. You’ll see the Dev Studio components in the list below. Check them off and click Next.

287

https://web.liferay.com/group/customer/dxp/downloads/developer-tools

Figure 31.3: Make sure to check all the Dev Studio components you wish to install.

5. Accept the terms of the agreements and click Next, and Developer Studio is installed. Like
other Eclipse plugins, you must restart Eclipse to use them.

Awesome! You’ve installed Liferay Dev Studio in your existing Eclipse environment.

Generating a Workspace Token Manually

If you run into any issues with generating your token automatically, you can follow the steps below
to manually create one.

1. Navigate to www.liferay.com and log in to your account.

2. Hover over your profile picture in the top-right corner and select Account Home.

3. Select Account Settings from the left menu.

4. Click Authorization Tokens from the right menu under the Miscellaneous heading.

5. Select Add Token, give it a device name, and click Generate. The device name can be set to any
string; it’s for bookkeeping purposes only.

6. Create a file named ~/.liferay/token and copy the generated token into that file.

Make sure there are no new lines or white space in the file. It should only be one line.

288

https://www.liferay.com/

Figure 31.4: You canmanually create your workspace token in the Authorization Tokens menu.

289

Figure 31.5: The generated token is available to copy.

You’ve successfully generated your token manually and it’s now available for your installer
to access. If you haven’t run the installer, you can do so now. If you’ve already run the installer,
you can set the DXP bundle to download in the gradle.properties file of your workspace. See the
Adding a Liferay Bundle to aWorkspace tutorial for details.

31.2 Creating a Liferay Workspace with Dev Studio

In this tutorial, you’ll learn how to generate a LiferayWorkspace using Liferay Dev Studio, which
runs on the Blade CLI behind the scenes. Dev Studio gives you a graphical interface instead of the
command prompt, which can streamline your workflow. To learn more about LiferayWorkspaces,
visit its dedicated tutorial section.

!PVideo Thumbnail
Before creating your LiferayWorkspace, you should understand the new perspectives designed

for Liferay DXP development: the Liferay Workspace and Liferay Plugins perspectives. If you plan
on using a Liferay Workspace for your Liferay DXP development, you should select the Liferay
Workspace perspective (default). This offers development tools that are helpful when using a Liferay
Workspace. The Liferay Plugins perspective is for developers using Ant-based development tools
such as the Plugins SDK. Since the Plugins SDK is only provided for Liferay Portal/DXP 7.0 and
older development, this should not be used for 7.0 development.

To create a LiferayWorkspace in Dev Studio, select File → New → Liferay Workspace Project.
A New LiferayWorkspace dialog appears, presenting several configuration options. Follow the

instructions below to create your workspace.

1. Give your workspace project a name.

2. Choose the location where you’d like your workspace to reside. Checking the Use default
location checkbox places your LiferayWorkspace in the Eclipse workspace you’re working in.

3. Select the build tool you want your workspace to be build with (i.e., Gradle or Maven).

290

https://portal.liferay.dev/documents/113763090/113919826/vid-ide-thumbnail.png

Figure 31.6: By selecting Liferay Workspace, you begin the process of creating a new workspace for your Liferay projects.

4. Choose the Liferay DXP version you plan to develop for (i.e., 7.1 or 7.0).

5. Select the specific target platform version corresponding to the GA release you’re developing
for (e.g., 7.1.0 → 7.1 GA1). Formore information on target platform benefits, see theManaging
the Target Platform for LiferayWorkspace articles.

6. Check the Download Liferay bundle checkbox if you’d like to auto-generate a Liferay instance
in your workspace. You’ll be prompted to name the server and provide the server’s download
URL, if selected. This Liferay bundle is generated the same way as described in the previous
section.

Note: If you'd like to configure a pre-existing Liferay bundle to your

workspace, you can create a directory for the bundle in your workspace and

configure it in the workspace's `gradle.properties` file by setting the

`liferay.workspace.home.dir` property.

7. Check the Add project to working set checkbox if you want the workspace to be a part of a
larger working set you’ve already created in Dev Studio. For more information on working
sets, visit Eclipse Help.

8. Click Finish to create your LiferayWorkspace.

291

http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fcworkset.htm

Figure 31.7: Liferay Dev Studio provides an easy-to-followmenu to create your Liferay Workspace.

A dialog appears prompting you to open the LiferayWorkspace perspective. Click Yes, and your
perspective will switch to LiferayWorkspace.

Note: You can also create a LiferayWorkspace during the initial start-up of a Liferay Developer
Studio instance.

Awesome! You’ve successfully created a LiferayWorkspace in Dev Studio!

Liferay Workspace Settings in Dev Studio

The Liferay Workspace perspective is intended for Gradle or Maven projects for Liferay DXP.
Since LiferayWorkspaces are used for Gradle/Maven based development and the Liferay Plugins
perspective is intended for the Plugins SDK and Ant based development, the two perspectives are
independent of each other.

You’ll find your new workspace in the Project Explorer and your Liferay server (if you created
it) in the Servers menu. It’s important to note that an Eclipse workspace can only have one Liferay
Workspace project.

You can configure your workspace’s module presentation by switching between the default
Hierarchical or Flat views. To do this, navigate to the Project Explorer’s View Menu (), select
Projects Presentation and then select the presentation mode you’d like to display. The Hierarchical
view displays subfolders and subprojects under the workspace project, whereas the Flat view
displays the workspace’s modules separately from the workspace.

292

Figure 31.8: The Liferay Workspace perspective is preferred for 7.0 and OSGi module development.

If you’ve already created a LiferayWorkspace and you’d like to import it into your existing Dev
Studio, you can do so by navigating to File → Import → Liferay → Liferay Workspace Project. Then click
Next and browse for your workspace project. Once you’ve selected you workspace, click Finish.

Congratulations! You’ve learned how to create and configure a LiferayWorkspace using Liferay
Dev Studio. Now that your workspace is created, you can begin creating Liferay projects.

!VVideo Tutorial

31.3 Setting Proxy Requirements for Liferay Dev Studio

If you have proxy server requirements and want to configure your http(s) proxy
to work with Liferay Dev Studio, follow the instructions below.

1. Navigate to Eclipse’s Window → Preferences → General → Network Connections menu.

2. Set the Active Provider drop-down selector to Manual.

293

https://portal.liferay.dev/documents/113763090/113919826/getting-started-with-liferay-ide.mp4%7Chttps://portal.liferay.dev/documents/113763090/113919826/getting-started-with-liferay-ide.webm

Figure 31.9: A Dev Studio workspace only supports one Liferay Workspace project. If you create another, you’ll be given an error message.

3. Under Proxy entries, configure both proxy HTTP and HTTPS by clicking the field and selecting
the Edit button.

4. For each schema (HTTP and HTTPS), enter your proxy server’s host, port, and authentication
settings (if necessary).

Note: Do not leave whitespace at the end of your proxy host or port settings.

5. Once you’ve configured your proxy entry, click OK → OK.

If you’re working with a LiferayWorkspace in Dev Studio, you’ll need to configure your proxy
settings for that environment too. See the Setting Proxy Requirements for LiferayWorkspace for
more details.

Awesome! You’ve successfully configured Dev Studio’s proxy settings!

294

Figure 31.10: The Hierarchical project presentation mode is set, by default.

Additional Proxy Settings

Some Eclipse plugins do not properly check the core.net proxy infrastructure when setting proxy
settings via Window → Preferences → General → Network Connections. Therefore, you may need to
configure additional proxy settings.

To do so, open the eclipse.inifile associatedwith your Eclipse installation and add the following
entries:

-vmargs

-Dhttp.proxyHost=www.somehost.com

-Dhttp.proxyPort=1080

-Dhttp.proxyUser=userId

-Dhttp.proxyPassword=somePassword

-Dhttps.proxyHost=www.somehost.com

-Dhttps.proxyPort=1080

-Dhttps.proxyUser=userId

-Dhttps.proxyPassword=somePassword

After saving the file, restart Eclipse. Now your additional proxy settings are applied!

31.4 Updating Liferay Dev Studio

If you’re already using Liferay Dev Studio but need to update your environment, follow the steps
below:

1. In Dev Studio, go to Help → Install New Software….

295

Figure 31.11: You can import an existing Liferay Workspace into your current Dev Studio session.

2. In the Work with field, copy in the URL http://releases.liferay.com/tools/ide/latest/stable/.

3. You’ll see the Dev Studio components in the list below. Check them off and click Next.

4. Accept the terms of the agreements. Click Next, and Dev Studio is updated. You must restart
Dev Studio for the updates to take effect.

You’re now on the latest version of Liferay Dev Studio!

31.5 Creating Modules with Liferay Dev Studio

Dev Studio provides a Module Project Wizard for users to create a variety of different module
projects. You can create a new Liferay module project by navigating to File → New → Liferay Module
Project.

296

Figure 31.12: You can configure your proxy settings in Dev Studio’s Network Connections menu.

Figure 31.13: Make sure to check all the Dev Studio components you wish to install.

297

Figure 31.14: When selecting New → Liferay Module Project, a Module Project Wizard appears.

You’re given options for project name, location, build type, and template type. You can build
your project using Gradle or Maven. If you’re unsure for which template type to choose, see the
Project Templates reference section. Click Next and you’re given additional configuration options
based on the project template you selected. For example, if you selected a template that requires a
component class, you must configure it in the wizard.

You can specify your component class’s name, package name, and its properties. The properties
you assign are the ones found in the @Component annotation’s property = {...} assignment. See
more about creating a component class in Liferay Dev Studio in the Creating Component Classes
section.

Once you’ve configured your module, click Finish to create your project.
Now that you’ve created your module project, you can configure your project’s presentation

in the Dev Studio’s Project Explorer. To change the project’s presentation, select the default
Hierarchical or Flat views. To do this, navigate to the Project Explorer’s View Menu (), select
Projects Presentation and then select the presentation mode you’d like to display. The Hierarchical
view displays subfolders and subprojects under the project, whereas the Flat view displays the
modules separately from their project.

You now have the knowledge to create a Liferay module project from Liferay Dev Studio.

Creating Component Classes

You can also create a new component class for a pre-existing module project. Navigate to File →
New → Liferay Component Class. This is a similar wizard to the previous component class wizard,

298

Figure 31.15: Specify your component class’s details in the Portlet Component Class Wizard.

Figure 31.16: The Hierarchical project presentation mode is set, by default.

299

except you can select a component class template. There aremany templates in the Component Class

Template list:

• Auth Failures: processes a verify login failure
• Auth Max Failure: processes maximum number of login failures
• Authenticator: authenticates processing
• Friendly URL Mapper: processes Friendly URLs
• GOGO Command: creates a custom Gogo command
• Indexer Post Processor: creates a new Indexer Post Processor
• Login Pre Action: creates a login pre action
• MVC Portlet: creates a newMVC portlet
• Model Listener: sets a model listener
• Poller Processor: creates a new poller processor
• Portlet: creates a new portlet class file
• Portlet Action Command: creates a new portlet action command
• Portlet Filter: creates a new portlet filter
• Rest: calls and wraps inner service in the way of Rest
• Service Wrapper: creates a new service wrapper
• Struts in Action: creates a new struts action
• Struts Portlet Action: creates a new struts portlet action

Next you’ll learn how to import existing projects into Dev Studio.

Importing Existing Module Projects

Dev Studio also provides a method to import existing module projects. You can import a module
project by navigating to File → Import → Liferay → Liferay Module Project(s). Then point to the project
location and click Finish.

You’re now equipped to import module projects into Liferay Dev Studio. Now go out there and
get stuff done!

31.6 Creating Themes with Liferay Dev Studio

Liferay Dev Studio lets you create and configure Liferay theme projects. You can create a theme
standalone or in a LiferayWorkspace. You can even create a Gradle or Maven based theme! Read
on to learn more about creating themes in Dev Studio.

1. In Dev Studio, navigate to File → New → Liferay Module Project.

2. In the New Liferay Module Project wizard, give your project a name and select the theme
project template. Also choose your theme’s build type by selecting either Gradle or Maven.

3. Select Finish.

That’s it! You’ve created a theme project in Dev Studio! Learn how to deploy it in this tutorial.
If you’ve configured a LiferayWorkspace in your Dev Studio instance, your theme is available

in the workspace’s wars folder by default. If you don’t have a workspace configured in Dev Studio,
it’s available in the root of Dev Studio’s Project Explorer.

300

Figure 31.17: Select the Liferay Module Project(s) to import a module project.

Figure 31.18: Use the theme project template to create a Liferay theme in Dev Studio.

301

Note that themes created in Dev Studio follow aWAR-style layout. Although the wizard can be
misleading by calling the theme a newmodule project, it is aWAR.

To modify a theme created in Dev Studio, mirror the folder structure of the files you wish to
change and copy them into your theme’s webapp folder.

Important: Under the hood, Dev Studio is using the theme project template. TheWAR-style
theme created by Dev Studio is Gradle/Maven based; this differs from themes created with the
Liferay Theme Generator that use the Liferay JS Theme Toolkit. Do not mix these two development
strategies. See the Managing Themes in LiferayWorkspace tutorial for more information on how
these two strategies are used inWorkspace and Dev Studio.

If you’re interested in creating Liferay themes using the Liferay Theme Generator, see its
dedicated tutorial. For more general information on Liferay themes, visit their dedicated tutorial
section Themes and Layout Templates.

31.7 Deploying Projects with Liferay Dev Studio

Deploying projects in Liferay Dev Studio is a cinch. Before deploying your project, make sure you
have a Liferay server configured in Dev Studio. To see how to do this, see the Installing a Server in
Liferay Dev Studio

There are two ways to deploy a project to your Liferay server. You should start your Liferay
server before attempting to deploy to it.

1. Select the project from the Package Explorer window and drag it to your Liferay server in the
Servers window.

2. Right-click the server from the Servers window and select Add and Remove…. Add the
project(s) you’d like to deploy from the Available window to the Configured window. Then
click Finish.

Note: For a legacy Maven application, you were able to deploy it by right-clicking it in the
Package Explorer and selecting Liferay → Maven → liferay:deploy. This is no longer possible because
Liferay’s Maven archetypes no longer rely on the legacy liferay-maven-plugin. To deploy Maven
projects in Dev Studio, make sure to follow the methods described above.

If you’re deploying a project using LiferayWorkspace, the watch Blade CLI task is used to deploy
your project. This watches your local project and quickly propagates any saved changes to the
deployed project. With this, project updates are viewable almost instantaneously from your Liferay
server. For more info on the watch task, see the Deploying Projects with Blade CLI article.

Note: You can deploy standalone projects not residing in a LiferayWorkspace with the watch

task by right-clicking the project and selecting Liferay → watch.

That’s it! Once your project is deployed to the Liferay server, you can verify its installation in
Dev Studio’s Console window.

302

https://github.com/liferay/liferay-themes-sdk/tree/master/packages

Figure 31.19: You can use the drag-and-dropmethod to deploy your project to Liferay DXP.

31.8 Managing Projects with Liferay Dev Studio

Liferay Dev Studio provides the ability to manage Liferay projects from a GUI. Before you begin
learning about managing your projects from Liferay Dev Studio, you should make sure a Liferay
server is configured in your Eclipse workspace so you can deploy and run your projects. You can
learn how to create a Liferay bundle and link it to your Liferay workspace in the Creating a Liferay
Workspace with Liferay Dev Studio tutorial.

Once you’ve created projects, you can deploy them using Dev Studio. First, make sure your
Liferay server is started by clicking the Start Server button (). Then navigate to your project from
the Project Explorer and drag-and-drop it onto the configured Liferay bundle in the Servers menu.
If at any time you’d like to stop your Liferay server, click the Stop Server button (). Awesome!
You’ve deployed a project to your running Liferay instance!

For the deployed project, you can check if it has been deployed successfully by using the Gogo
Shell. Right-click the started portal in your Server view and select Open Gogo Shell.

A Gogo shell terminal appears, allowing you to enter Gogo commands to inspect your Liferay
instance and the projects deployed to it. Enter the lb command to view a list of deployed bundles.

303

Figure 31.20: Using the this deployment method is convenient when deploying multiple projects.

Figure 31.21: Select Open Gogo Shell to open a terminal window in Dev Studio using Gogo shell.

304

If the project status is active, then it deployed successfully.

Figure 31.22: You can check to see if your project deployed successfully to Liferay using the Gogo shell.

Dev Studio’s Gogo shell usage requires Developer Mode to be enabled. Developer Mode is
enabled in LiferayWorkspace by default.

Since the LiferayWorkspace perspective inDev Studio is Gradle-based, youhave some additional
Gradle features you can take advantage of. The Gradle Tasks toolbar presents Gradle commands
for your workspace that you can execute with a click of the mouse.

Figure 31.23: The Gradle Task toolbar offers Gradle tasks and their descriptions, which can be executed by double-clicking them.

You can also access various Gradle build operations intended for Liferaymodule projects. Right-
click your module project and select Liferay and then the build command you want to execute.

To learn more about Gradle development in Liferay Dev Studio, see the Using Gradle in Liferay
Dev Studio tutorial.

Excellent! You’ve learned how to manage your Gradle-based Liferay Workspace using Dev
Studio.

31.9 Installing a Server in Liferay Dev Studio

305

Figure 31.24: You can execute build operations by right-clicking the Gradle project in the Project Explorer.

Installing a server in Liferay Dev Studio is easy. In just a few steps you’ll have your server up and
running. Follow these steps to install your server:

1. In the Servers view, click theNo Servers are available link. If you already have a server installed,
you can install a new server by right-clicking in the Servers view and selecting New → Server.
This brings up a wizard that walks you through the process of defining a new server.

2. Select the type of server you would like to create from the list of available options. For a
standard server, open the Liferay, Inc. folder and select the Liferay 7.x option. You can change
the server name to something more unique too; this is the name displayed in the Servers
view. Then click Next. If you’re creating a server for the first time, continue to the next step.

Note: If you’ve already configured previous Liferay servers, you’ll be provided the Server
runtime environment field, which lets you choose previously configured runtime environments.
If you want to re-add an existing server, select one from the dropdown menu. You can also
add a new server by selecting Add, or you can edit existing servers by selecting Configure
runtime environments. Once you’ve configured the server runtime environment, select Finish.
If you selected an existing server, your server installation is finished; you can skip steps 3-5.

3. Enter a name for your server. This is the name for the Liferay DXP runtime configuration
used by Dev Studio. This is not the display name used in the Servers tab.

4. Browse to the installation folder of the Liferay DXP bundle. For example, C:\liferay-ce-
portal-7.1-m1\tomcat-8.0.32.

5. Select a runtime JRE and click Finish. Your new server appears under the Servers view.

Your server is now available in Liferay Dev Studio!
For reference, here’s how the Dev Studio server buttons work with your Liferay DXP instance:

• Start (): Starts the server.
• Stop (): Stops the server.
• Debug (): Starts the server in debug mode. For more information on debugging in Dev
Studio, see the Debugging Liferay DXP source in Liferay Dev Studio article.

Now you’re ready to use your server in Liferay Dev Studio!

306

Figure 31.25: Choose the type of server you want to create.

307

Figure 31.26: Specify the installation folder of the bundle.

Figure 31.27: Your new server appears under the Servers view.

31.10 Searching Liferay DXP Source in Liferay Dev Studio

In Liferay Dev Studio, you can search through Liferay DXP’s source code to aid in the development
of your project. Liferay provides great resources to help with development (e.g., official documenta-
tion, docs.liferay.com, sample projects, etc.), but sometimes, searching through Liferay’s codebase
(i.e., platform and official apps) for patterns is just as useful. For example, if you’re creating a
custom app that extends a class provided in Liferay’s portal-kernel JAR, you can inspect that class
and research how it’s used in other areas of Liferay DXP’s codebase.

To do this, youmust be developing in a LiferayWorkspace. LiferayWorkspace is able to provide
this functionality by targeting a specific Liferay DXP version, which indexes the configured Liferay
DXP source code to provide advanced search. See the Managing the Target Platform in Liferay
Workspace tutorial for more information on how this works.

Workspace does not perform portal source indexing by default. You must enable this function-
ality by adding the following property to your workspace’s gradle.properties file:

target.platform.index.sources=true

308

https://docs.liferay.com/

Note: Portal source indexing is disabled in Gradle workspace version 2.0.3+ (Target Platform
plugin version 2.0.0+).

In this tutorial, you’ll explore three use cases where advanced search would be useful.

• Search class hierarchy
• Search declarations
• Search references

These examples are just a small subset of what you can search in Liferay Dev Studio. See
Eclipse’s documentation on Java Search for a comprehensive guide.

Search Class Hierarchy

Inspecting classes that extend a similar superclass can help you find useful patterns and examples
for how you can develop your own app. For example, suppose your app extends the MVCPortlet
class. You an search classes that extend that same class inDev Studio by right-clicking the MVCPortlet
declaration and selecting Open Type Hierarchy. This opens a window that lets you inspect all classes
residing in the target platform that extend MVCPortlet.

Figure 31.28: Browse the Type Hierarchy window and open the provided classes for examples on how to extend a class.

Great! Now you can search for all extensions and implementations of a class/interface to aid in
your quest for developing the perfect app.

Search Method Declarations

Sometimes you want a search to be more granular, exploring the declarations of a specific
method provided by a class/interface. Liferay Dev Studio’s advanced search has no limits; Liferay
Workspace’s target platform indexing provides method exploration too!

Suppose in the MVCPortlet class you’re extending, you’d like to search for declarations of its
doViewmethod you’re overriding. You can do this by right-clicking the doViewmethod declaration
in your custom app’s class and selecting Declarations → Workspace.

Figure 31.29: All declarations of the method are returned in the Search window.

309

http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fconcept-java-search.htm&resultof=%22%6a%61%76%61%22%20
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html

The rendered Search window displays the other occurrences in the target platform where that
method was overridden.

Search Annotation References

Annotations used in Liferay DXP’s source code can sometimes be cryptic. With the ability to search
where these types of annotations reside in Liferay’s target platform, you can find how they could
be used in your own app.

For example, you may find some official documentation on using the @Reference annotation in
an OSGi module and implement it in your custom app. It could be useful to reference real world
examples in Liferay DXP’s apps to check how it was used elsewhere. You could search for this by
right-clicking the annotation in a class and selecting References → Workspace.

Figure 31.30: All matching annotations are displayed in the Search window.

The rendered Search window displays the other occurrences in the target platform where that
annotation was used.

Excellent! You now have the tools to search the configured target platform specified in your
LiferayWorkspace!

31.11 Debugging Liferay DXP Source in Liferay Dev Studio

You can use Liferay Dev Studio to debug Liferay DXP source code to help resolve errors. Debugging
Liferay DXP code follows most of the same techniques associated with debugging in Eclipse. If
you need some help with general debugging, you can visit Eclipse’s documentation. Here’s some
helpful Eclipse links to visit:

• Debugger
• Local Debugging
• Remote Debugging

There are a couple Liferay-specific configurations to know before debugging Liferay DXP code:

• Configure your target platform.
• Configure a Liferay server and start it in debug mode.

Let’s explore these Liferay-specific debugging configurations.

Configure Your Target Platform

To configure your target platform, you must be developing in a Liferay Workspace. Liferay
Workspace is able to provide debugging capabilities by targeting a specific Liferay DXP version,
which indexes the configured Liferay DXP source code. You must enable this functionality by
adding the following property to your workspace’s gradle.properties file:

310

http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fcdebugger.htm&cp=1_2_9
http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fclocdbug.htm&cp=1_2_11
http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fcremdbug.htm&cp=1_2_12

target.platform.index.sources=true

Note: Portal source indexing is disabled in Gradle workspace version 2.0.3+ (Target Platform
plugin version 2.0.0+).

Without specifying a target platform, Liferay DXP’s source code cannot be accessed by Dev
Studio. See the Managing the Target Platform in LiferayWorkspace tutorial for more information
on how this works.

Important: The target platform should match the Liferay server version you configure in the
next section.

Once the target platform is configured in your workspace, Eclipse has access to all of Liferay
DXP’s source code. Next, you’ll configure a Liferay server and learn how to start it in Debug mode.

Configure a Liferay Server and Start It in Debug Mode

Configuring your target platform gives Eclipse Liferay DXP’s source code to reference. Now you
must configure a Liferay server matching the target platform version so you can deploy the custom
code you wish to debug.

1. Set up your Liferay DXP server to run in Dev Studio. See the Installing a Server in Liferay Dev
Studio for more details.

2. Start the server in debug mode. To do this, click the debug button in the Servers pane of
Liferay Dev Studio.

Figure 31.31: The red box in this screenshot highlights the debug button. Click this button to start the server in debugmode.

Awesome! You’re now equipped to begin debugging in Liferay Dev Studio!

31.12 Using Gradle in Liferay Dev Studio

Gradle is a popular open source build automation system. You can take full advantage of Gradle in
Liferay Dev Studio by utilizing Buildship, which is a collection of Eclipse plugin-ins that provide
support for building software using Gradle with Liferay Dev Studio. Buildship is bundled with
Liferay Dev Studio versions 3.0 and higher.

The first thing you’ll learn about in this tutorial is creating Gradle projects in Dev Studio.

Creating and Importing Gradle Projects

You can create a Gradle project by using the Gradle Project wizard.

1. Navigate to File → New → Project… and select Gradle → Gradle Project. Finally, click Next → Next.

311

http://gradle.org/
https://projects.eclipse.org/releases/photon

Figure 31.32: Navigate to Help → Installation Details to view plugins included in Dev Studio.

2. Enter a valid project name. You can also specify your project location and working sets.

3. Optionally, you can navigate to the next page and specify your Gradle distribution and other
advanced options. Once you’re finished, select Finish.

Figure 31.33: You can specify your Gradle distribution and advanced options such as home directories, JVM options, and program arguments.

You can also import existing Gradle projects in Liferay Dev Studio.

1. Go to File → Import… → Gradle → Existing Gradle Project → Next → Next.

2. Click the Browse… button to choose a Gradle project.

3. Optionally, you can navigate to the next page and specify your Gradle distribution and other
advanced options. Once you’re finished, click Next again to review the import configuration.
Select Finish once you’ve confirmed your Gradle project import.

312

Figure 31.34: You can specify what Gradle project to import from the Import Gradle Project wizard.

Figure 31.35: You can preview your Gradle project’s import information.

313

Next you’ll learn about Gradle tasks and executions, and learn how to run and display them in
Liferay Dev Studio.

Gradle Tasks and Executions

Dev Studio provides two views to enhance your developing experience using Gradle: Gradle Tasks
and Gradle Executions. You can open these views by following the instructions below.

1. Go to Window → Show View → Other….

2. Navigate to the Gradle folder and open Gradle Tasks and Gradle Executions.

Gradle tasks and executions views open automatically once you create or import a Gradle
project.

The Gradle Tasks view lets you display the Gradle tasks available for you to use in your Gradle
project. Users can execute a task listed under the Gradle project by double-clicking it.

Figure 31.36: Navigate into your preferred Gradle project to view its available Gradle tasks.

Once you’ve executed a Gradle task, you can open the Gradle Executions view to inspect its
output.

Keep in mind that if you change the Gradle build scripts inside your Gradle projects (e.g.,
build.gradle or settings.gradle), you must refresh the project so Dev Studio can account for the
change and display it properly in your views. To refresh a Gradle project, right-click on the project
and select Gradle → Refresh Gradle Project.

If you prefer Eclipse refresh your Gradle projects automatically, navigate toWindow → Preferences
→ Gradle and enable the Automatic Project Synchronization checkbox. If you’d like to enable Gradle’s

314

Figure 31.37: The Gradle Executions view helps you visualize the Gradle build process.

Figure 31.38: Make sure to always refresh your Gradle project in Liferay Dev Studio after build script edits.

automatic synchronization for just one Gradle project, you can right-click a Gradle project and
select Properties → Gradle and enable auto sync that way.

Excellent! You’re now equipped with the knowledge to add, import, and build your Gradle
projects in Liferay Dev Studio!

31.13 Using Maven in Liferay Dev Studio

You can take full advantage of Maven in Liferay Dev Studio with its built-in Maven support. In this
tutorial, you’ll learn about the following topics:

• Installing Maven Plugins for Liferay Dev Studio
• Creating Maven Projects
• Importing Maven Projects
• Using the POM Graphic Editor

First you’ll install the necessary Maven plugins for Dev Studio.

Installing Maven Plugins for Liferay Dev Studio

In order to support Maven projects in Dev Studio properly, you first need amechanism to recognize
Maven projects as Dev Studio projects. Dev Studio projects are recognized in Eclipse as faceted

315

web projects that include the appropriate Liferay plugin facet. Therefore, all Dev Studio projects
are also Eclipse web projects (faceted projects with the web facet installed). For Dev Studio to
recognize the Maven project and for it to be able to leverage Java EE tooling features (e.g., the
Servers view) with the project, the project must be a flexible web project. Dev Studio relies on the
following Eclipse plugins to provide this capability:

• m2e (Maven integration for Eclipse)
• m2e-wtp (Maven integration forWTP)

All you have to do is install them so you can begin developing Maven projects for Liferay DXP.
When first installing Liferay Dev Studio, the installation startup screen lets you select whether

you’d like to install the Maven plugins automatically. Don’t worry if you missed this during setup.
You’ll learn how to install the required Maven plugins for Dev Studio manually below.

1. Navigate to Help → Install New Software. In the Work with field, insert the following value:

Liferay IDE repository - http://releases.liferay.com/tools/ide/latest/stable/

2. Check the Liferay IDE Maven Support option. This bundles all the required Maven plugins you
need to begin developing Maven projects for Liferay DXP.

Figure 31.39: You can install all the necessary Maven plugins for Dev Studio by installing the Liferay IDE Maven Support option.

If the Liferay IDE Maven Support option does not appear, then it’s already installed. To verify
that it’s installed, uncheck theHide items that are already installed checkbox and look for Liferay
IDE Maven Support in the list of installed plugins. Also, if you’d like to view everything that
is bundled with the Liferay IDE Maven Support option, uncheck the Group items by category
checkbox.

3. Click Next, review the install details, accept the term and license agreements, and select
Finish.

Awesome! Your Dev Studio is ready to develop Maven projects for Liferay DXP!
You’ll learn about creating Maven projects in Dev Studio next.

316

Creating Maven Projects

You can create a Maven project based on Liferay’s provided Maven archetypes.

1. Navigate to File → New → Liferay Module Project.

2. Give your project a name, select the Maven build type, and choose the project template
(archetype) to use.

Figure 31.40: The New Liferay Module Project wizard lets you generate a Maven project.

3. (Optional) ClickNext and name your component class name and package. You can also specify
your component class’s properties in the Properties menu.

4. Click Finish.

That’s it! You’ve created a Liferay module project using Maven!
If you created your Maven project outside of Dev Studio with another tool, you can still manage

that project in Dev Studio, but you must first import it. You’ll learn how to do this next.

Importing Maven Projects

To import a pre-existing Maven project into Dev Studio, follow the steps outlined below:

1. Navigate to File → Import → Maven → Existing Maven Projects and click Next.

2. Click Browse… and select the root folder for your Maven project. Once you’ve selected it, the
pom.xml for that project should be visible in the Projects menu.

3. Click Finish.

Now your Maven project is available from the Package Explorer. Next you’ll learn about Dev
Studio’s POM graphical editor.

317

Figure 31.41: Dev Studio offers the Maven folder in the Import wizard.

Figure 31.42: Use the Import Maven Projects wizard to import your pre-existing project.

318

Using the POM Graphic Editor

You’re provided a nifty POM graphic editor when opening your Maven project’s pom.xml in Dev
Studio. This gives you several different ways to leverage the power of Maven in your project:

• Overview: provides a graphical interface where you can add to and edit the pom.xml file.

• Dependencies: provides a graphical interface for adding and editing dependencies in your
project, as well as modifying the dependencyManagement section of the pom.xml file.

• Effective POM: provides a read-only version of your project POM merged with its parent
POM(s), settings.xml, and the settings in Eclipse for Maven.

• Dependency Hierarchy: provides a hierarchical view of project dependencies and an inter-
active listing of resolved dependencies.

• pom.xml: provides an editor for your POM’s source XML.

The figure below shows the pom.xml file editor and its modes.

Figure 31.43: Liferay Dev Studio provides five interactive modes to help you edit and organize your POM..

By taking advantage of these interactive modes, Dev Studio makes modifying and organizing
your POM and its dependencies a snap!

31.14 Enabling Code Assist Features in Your Project

Liferay Dev Studio’s integration of Tern provides many valuable front-end and back-end develop-
ment tools for code inference and completion. This tutorial covers how to enable Tern features for
your projects.

Before beginning this tutorial, make sure your Dev Studio instance has the necessary devel-
opment tooling and Tern integration installed. To do this, go to Help → About Eclipse → Installation
Details and search for Liferay IDE AlloyUI under Installed Software. If you have it installed, you can
continue to the Setting Up Tern Features section; if you do not, you’ll need to install it by following
the instructions below.

319

http://ternjs.net/

1. Navigate to Help → Install New Software….

2. Paste the following link into the Work with field:

http://releases.liferay.com/tools/ide/latest/stable/

3. Make sure the Liferay IDE AlloyUI option is checked and finish the installation process.

Figure 31.44: The Liferay IDE AlloyUI option is actually a sub-option listed within the Liferay IDE option.

Now that the necessary features are installed, follow the steps below to learn how to enable
Tern’s code assist features in your project.

Setting Up Tern Features

Tern features are enabled on a project-by-project basis. By default, Tern is already enabled for
LiferayWAR-style portlets generated using the Plugins SDK. For all other project types, (e.g., Liferay
module projects), you’ll need to follow the steps below:

1. Right-click on your project and select Configure → Convert to Tern Project.

Your project is now configured to use Tern. Now that you have your project configured, you
need to enable the modules you want to use for your project.

2. You’re presented a menu listing Tern plugins that are installed. For example, to use AlloyUI
features, you’ll need the AlloyUI, Browser, JSCS, Liferay, and YUI Library modules enabled.
The figure below shows the Tern Modules menu.

If you need to refer back to this list of installed Tern plugins, right-click your project and
select Properties. Then select Tern → Modules.

3. Check any additional modules you wish to use in your project and click OK.

Your project is now set up to use Dev Studio’s Tern features.

Related Topics

Using Front-End Code Assist Features in Dev Studio
Creating Modules with Liferay Dev Studio
Blade CLI

320

Figure 31.45: By selecting these Tern modules, you can use AlloyUI code assist features in your project.

31.15 Using Front-End Code Assist Features in Dev Studio

Liferay Dev Studio provides extended front-end development tools to assist in Liferay development.
You now have access to code inferencing and code completion features for AlloyUI, JavaScript, CSS,
and jQuery.

This tutorial covers how to use the code assist features in Dev Studio for

• AlloyUI
• JavaScript
• CSS
• jQuery

Each language is covered in its own section, so you can navigate to the language you’re most
interested in. There are many languages, including the four listed above, that Dev Studio provides

321

code assist for. This is provided by Dev Studio’s integration of Tern. To access these features, you
must be working in a file those languages are expected for (e.g., JavaScript, JSP, HTML, CSS, etc.).

You must have Tern features enabled in your project in order to use them. You should also have
the appropriate Tern modules enabled based on the language you’re writing in. For example, if
you’re writing in a jQuery file, you must apply the Tern jQuery module to use code assist for that
language. See the Enabling Code Assist Features in your Project tutorial to learn how to enable
Tern features for your projects.

You’ll begin testing the AlloyUI code assist features first.

AlloyUI Code Assist Features

There are several helpful code assist features that can improve your productivity when writing code
for AlloyUI. Before beginning, enable the Tern modules required to use AlloyUI features: AlloyUI,
Browser, JSCS, Liferay, and YUI Library. The example below shows how to access the AlloyUI code
assist features in the main.js of your project:

1. Open your project’s main.js file and type the following code:

AUI().

2. Press Ctrl+Space with your cursor to the right of AUI().. This brings up the code inference
for the AUI() global object. Notice the AlloyUI framework’s own API documentation is also
displayed. Press Enter to use code completion.

Figure 31.46: This figure demonstrates code inference in a JS file.

Note: Code assist not only works for methods of an object, but also works for AUI-specific Tern
completions for objects. For instance, you could type AU and press Ctrl+Space to see a list of objects
to choose from.

By default, code inference is triggered by a keystroke combination; however, you can enable
auto activation in Dev Studio’s Preferences menu. Follow the steps below to enable auto activation:

322

http://ternjs.net/

1. Navigate to Window → Preferences → JavaScript → Editor → Content Assist.

2. Check the Enable auto activation box and click Apply and Close.

The figure below shows how to enable auto activation:

Figure 31.47: The Enable auto activation checkbox is listed below the Auto-Activation heading.

323

Now, if you follow the previous example, code inference activates as soon as you press the
trigger key, which in this case is the . (period) key.

In addition to general code inference for AlloyUI, you have access to code templates. AUI
JavaScript templates are available in Eclipse’s JavaScript editor as well as in the HTML/JSP edi-
tor when working with <script> and <aui-script> tags. Follow the steps below to use AUI code
templates:

1. Type the following code in your main.js:

AUI

2. Press Ctrl+Space to bring up the code inference for AUI, and you’ll see a list of all the available
AlloyUI code templates, along with documentation.

Figure 31.48: Dev Studio gives you access to AUI code templates in the JS and JSP editors.

3. Select your template and hit Enter to paste its contents into your main.js.

Note: You can view all the AlloyUI code templates you have

installed by going to Dev Studio's Preferences menu and selecting *JavaScript*

→ *Editor* → *Templates*.

In addition to code inference in your JS files, you can also use code inference in your JSP/HTML
files using <aui:script> tags.

Open one of your project’s JSPs and add the AUI taglib directive if it’s not already in your JSP:

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

You can also add the import from the Snippets menu (Window → Show View → Snippets) under
Taglib imports → Liferay AUI Taglib Import v6.0.

1. Add an <aui:script> tag inside your JSP and configure it to look like the following code:

324

<aui:script>

aui

</aui:script>

2. Press Ctrl+Space with your cursor placed to the right of aui to bring up code inference.

There you go! Whether in a JavaScript file or inside a JSP, you now have access to code assist
features that improve your workflow.

Next, you’ll examine the JavaScript code assist features for Dev Studio.

JavaScript Code Assist Features

In addition to AlloyUI code assist features, you also have access to code inference and completion
using raw JavaScript. This code assist feature is available in your project because the Tern module
Liferay is enabled. This plugin provides code completions for the static JavaScript object APIs
available to portlets when running in Liferay Portal. To learn more about enabling Tern modules
in Eclipse, refer to the Enabling Code Assist Features in Your Project tutorial.

The example below shows how you can use code assist features to easily access functions in
your portlet project.

1. Open the main.js of your portlet and add the following function:

function say(text){

alert(text);

}

2. Add the following button to the view.jsp of your portlet:

<aui:button onClick=""/>

3. Place your cursor within the quotation marks of the onClick attribute and press Ctrl+Space.
The code inference dialog pops up with a list of possible JavaScript functions available for
you to use.

4. Type say and you’ll notice the list is narrowed down to your new say(text) function.

Figure 31.49: JavaScript code assist features give easy access to your functions.

325

5. Select the say(text) function, and you’ll notice that it’s accompanied by documentation that
provides the parameter for the function, as well as the file path where the function is located.

6. Press Enter to use code completion and add the function to your button.

As you can see, JavaScript development is a breeze using Dev Studio’s code assist features. Now
that you know how to use the AlloyUI and JavaScript code assist features, you can learn how to use
the CSS code assist features next.

CSS Code Assist Features

Dev Studio offers code inference and completion tools for CSS. In order to use these tools, you’ll
need to install an additional plugin.

Note: The plugin described below is planned to be bundled with Liferay Dev Studio in the near
future. Initial tests of the plugin revealed performance issues in some cases, which is why it is not
yet a part of Liferay Dev Studio. Problems were not consistent, so you may have no issues installing
the plugin, but we wanted to give full disclosure about it.

Follow the steps below to install the plugin in Dev Studio:

1. Go to Help → Install New Software….

2. Paste the following link into the Work with: input field:

http://oss.opensagres.fr/eclipse-wtp-webresources/1.1.0/

3. Click Add… and check the box next to WTP HTML - Web Resources.

4. Click Next and follow the installation instructions.

Now that your plugin is installed, you’ll need to enable the CSS features in your project. Right-
click your project and go to Properties → Web Resources → CSS. Check both boxes to enable CSS
features in your project.

You have successfully installed and enabled the new CSS features in your project!
Now that you have the CSS features enabled, you’ll find out how to use them next. Follow the

steps below to use the CSS code assist features to locate a CSS class. Note that the process below
can also be used to locate an ID.

1. Open your main.css file and add the following class to it:

.sample-class {

background-color:green;

}

2. Inside your view.jsp add an <aui:button/> tag and configure it to match the following code:

<aui:button name="test" value="test" cssClass=""/>

326

Figure 31.50: CSS code inference improves your workflow when developing in CSS.

3. Within the quotations of the cssClass attribute, press Ctrl+Space to bring up the code inference
for CSS. Begin typing sample-class to narrow down the classes to the one you’re looking for.

Notice, along with code inference, you can also view the styling you have for the class, as well
as the file in which it is located.

4. Press Enter to use code completion and add the CSS class to the JSP.

If you look at the code inference dialog for CSS classes, you’ll also notice that in addition to your
own CSS classes, you also have access to Bootstrap CSS classes found in Liferay Portal.

Note: You can go to the file that the class, ID, or function is located in by hovering over top of it
in your JSP and holding down the Ctrl (Windows) or command (Mac) key, and clicking the hyperlink
that appears.

Lastly, you’ll learn about the code assist features for jQuery.

jQuery Code Assist Features

You can also use code assist with jQuery. To do this, you must enable the jQuery Tern module.
Follow the instructions in the Enabling Code Assist Features in Your Project tutorial to learn how
to enable Tern modules in your project.

The jQuery Tern plugin gives type information for the jQuery framework. In the example below,
you’ll test the jQuery code assist feature.

1. Open your project’s jquery.js file.

2. In the file, type the following sample variable:

var form =

327

Figure 31.51: Using the jQuery code assist features gives you the convenience of showing you what’s available, and the documentation behind each option.

3. Press Ctrl+Space to bring up the code inference for the variable you’re declaring, and you’ll
see a list of everything that is available. Also notice jQuery documentation is available for
each method. Take a look at the figure below for an example of using code assit in jQuery.
Furthermore, for jQuery callback handlers, the type information for parameters is also made
available.

Excellent! You now know how to use Dev Studio’s front-end development code assist features
to improve your workflow.

Related Topics

Enabling Code Assist Features in your Project
LiferayWorkspace
From Liferay 6 to 7.0

328

Figure 31.52: jQuery code assist also displays type information for parameters.

329

CHAPTER 32

BLADE CLI

The Blade CLI tool is the easiest way for Liferay developers to create new Liferay modules. Blade
CLI lets you

• create projects (Gradle or Maven) that can be used with any IDE or development environment
• create/manage Liferay DXP instances
• deploy modules (Gradle or Maven)

The following sub-commands are callable in the Blade CLI environment:

• convert: Converts a Plugins SDK plugin project to a GradleWorkspace project.
• create: Creates a new Liferay module project from available templates.
• deploy: Builds and deploys bundles to the Liferay module framework.
• gw: Executes Gradle command using the GradleWrapper, if detected.
• help: Gives help on a specific command.
• init: Initializes a new LiferayWorkspace.
• install: Installs a bundle into Liferay’s module framework.
• open: Opens or imports a file or project in Liferay Dev Studio DXP.
• samples: Generates a sample project.
• server: Starts or stops server defined by your Liferay project.
• sh: Connects to Liferay DXP, executes succeeding Gogo command, and returns output.
• update: Updates Blade CLI to latest version.
• upgradeProps: Analyzes your old portal-ext.properties and your newly installed 7.x server to
show you properties moved to OSGi configuration files or removed from the product.

• version: Displays version information about Blade CLI.

For additional information on these sub-commands, run the sub-command with the --help flag
(e.g., blade samples --help).

In this set of tutorials, you’ll learn how to use these commands to create and test Liferay DXP
instances and modules.

32.1 Installing Blade CLI

331

https://github.com/liferay/liferay-blade-cli/

You can install Blade CLI using the Liferay Project SDK installer. This installs JPM and Blade CLI
into your user home folder and optionally initializes a LiferayWorkspace folder.

Note: In the past, if you’ve installed Blade CLI globally (e.g., using sudo), you should not run the
installer to update your Blade CLI version. Since the installer only installs Blade CLI to your user
home folder, your previous global installation would always override the installer’s installation.
Therefore, always follow the Updating Blade CLI tutorial to update your Blade CLI instance.

If you need to configure proxy settings for Blade CLI, follow the Installing Blade CLI with Proxy
Requirements

Follow the steps below to download and install Blade CLI:

1. Download the latest Liferay Project SDK installer that correspondswith your operating system
(e.g., Windows, MacOS, or Linux). The Project SDK installer is listed under Liferay IDE, so the
folder versions are based on IDE releases. You can select an installer that does not include
Dev Studio DXP, if you don’t intend to use it. The Project SDK installer is available for versions
3.2.0+. Do not select the large green download button; this downloads Liferay Portal instead.

2. Run the installer. Click Next to step through the installer’s introduction.

3. If you’d like to initialize a LiferayWorkspace, you can set the directory where it should go.

Figure 32.1: Determine where your Liferay Workspace should reside, if you want one.

Select the Don’t initialize Liferay Workspace directory option if you only want to install Blade
CLI. Then click Next.

332

https://sourceforge.net/projects/lportal/files/Liferay%20IDE/

4. If you decided to initialize a Liferay Workspace folder in the previous step, you’ll have an
additional option to select the Liferay product type you’ll use with your workspace. Choose
the product type and click Next.

Figure 32.2: Select the product version you’ll use with your Liferay Workspace.

5. Click Next to begin installing Blade CLI/LiferayWorkspace on your computer.

That’s it! Blade CLI is installed on yourmachine! If you specified a location to initialize a Liferay
Workspace folder, that is also available.

Note: The Liferay Project SDK installer attempts to add JPM to your path. ForWindows, it uses
theWindows registry. For Mac/Linux, it updates .bashrc or .zshrc.

At a minimum, Mac/Linux users must open a new shell after the installer finishes for the new
features to be available. If, however, you’re using a different shell (i.e., Korn, csh, etc.) or you’ve
customized your CLI via .profile or some other configuration file, you must add JPM to your path
manually.

Blade CLI offers many templates to help build 7.0 applications. It also offers various ways to
deploy those apps and interact with your Liferay server. Be sure to explore more Blade CLI tutorials
to learn how.

Installer Issues onmacOS/Linux

If you’re using macOS or Linux, you could experience an issue where the blade command is not
available via command line. This is caused by the installer being unable to add JPM’s bin folder to
your user path. JPM is a Java package manager used in Blade CLI.

333

To add the required bin folder, execute the appropriate command based on your operating
system.

macOS:

echo 'export PATH="$PATH:$HOME/Library/PackageManager/bin"' >> ~/.bash_profile

Linux:

echo 'export PATH="$PATH:$HOME/jpm/bin"' >> ~/.bash_profile

Once you restart the command line, the blade command should be available.

32.2 Installing Blade CLI with Proxy Requirements

If you have proxy server requirements and want to use Blade CLI, you must configure your http(s)
proxy for it using JPM. Before beginning, make sure you’ve installed JPM and Blade CLI using the
Liferay Project SDK installer. Read the Installing Blade CLI tutorial for more details.

Once Blade CLI and JPM are installed, execute the following command to configure your proxy
requirements for Blade CLI:

jpm command --jvmargs "-Dhttp(s).proxyHost=[your proxy host] -Dhttp(s).proxyPort=[your proxy port]" jpm

Excellent! You’ve configured Blade CLI with your proxy settings using JPM.

32.3 Creating a Liferay Workspace with Blade CLI

In this tutorial, you’ll learn how to generate a LiferayWorkspace using Blade CLI. The Blade CLI
tool you installed in the Installing Blade CLI section provides many different commands to help
build and customize Liferay projects. The first thing you should do before building and customizing
projects is create a LiferayWorkspace. You can use Blade CLI to generate a Gradle or Maven based
workspace. For more information on managing a Liferay Workspace built with Maven, see the
MavenWorkspace tutorial.

Your workspace is the home for all your custom Liferay projects. Navigate to the folder where
you want your workspace and run the following command to build a Gradle based workspace:

blade init -v 7.1 [WORKSPACE_NAME]

To create a Maven based workspace, run this instead:

blade init -v 7.1 -b maven [WORKSPACE_NAME]

Note: The version you set when first initializing your workspace is stored in the workspace’s
.blade.properties file with the liferay.version.default property. This version is applied when
creating projects based on the corresponding project template versions.

If you wish to develop projects for a different Liferay DXP version, you can pass a different
version in the Blade init command. For example,

blade init -v 7.0 [WORKSPACE_NAME]

334

Initializing a workspace requires no downloading or access to the internet.
If you have a Plugins SDK and are looking to migrate to Liferay Workspace using Blade CLI,

navigate to your Plugins SDK root folder and run the following command:

blade init -u

This command builds a workspace and automatically adds and configures your current Plu-
gins SDK environment for use inside the workspace. See the Configuring a Plugins SDK in Your
Workspace section for more details on the init -u command. See the Using a Plugins SDK From
YourWorkspace section formore information on how to use a Plugins SDK fromwithin aworkspace.

Once your workspace is generated, look at its folder structure. Several folders and build/prop-
erties files were autogenerated:

• configs

• gradle

• modules

• themes

• .blade.properties

• build.gradle

• gradle-local.properties

• gradle.properties

• gradlew

• gradlew.bat

• platform.bndrun

• settings.gradle

The build/properties files included in your workspace’s root directory sets your workspace’s
Gradle properties and facilitates the build processes of your modules. You can learn more about
these generated files/folders in the Configuring a LiferayWorkspace tutorial. You’ll learn about
how to use these folders and properties files throughout the next few tutorials.

Next you’ll learn about generating and using a Liferay DXP instance fromwithin yourworkspace.

Running a Liferay Instance from Your Workspace

As discussed in the Configuring a LiferayWorkspace tutorial, LiferayWorkspaces can generate
and hold a Liferay Server. This lets you build/test your plugins against a running Liferay instance.
Once you’ve properly generated and installed a Liferay server in your workspace, you can begin
using it with Blade CLI. To start your Liferay instance, run

blade server start

This command starts your Liferay server in a separate window. You also have the option to run
your server in debug mode (-d).

Awesome! You have a built-in Liferay server in your workspace and can start the server using
Blade CLI.

335

32.4 Creating Projects with Blade CLI

When you use Blade CLI to create a project, your project’s folder structure, build script (e.g.,
build.gradle), Java classes, and other resources (such as JSPs) are created based on the chosen
template. In this tutorial, you’ll learn how to use Blade CLI to create modules based on pre-existing
templates and samples.

Using Blade CLI gives you the flexibility to choose how you want to create your application. You
can do so in your own standalone environment, or within a LiferayWorkspace. You can also create
a project using either the Gradle or Maven build tool. Creating Liferay modules in a workspace
using Blade CLI is very similar to creating them in a standalone environment.

When creating projects in a workspace, you should navigate to the appropriate folder corre-
sponding to that type of project (e.g., the /modules folder for amodule project). You can also provide
further directory nesting into that folder, if preferred. For example, the Gradle workspace, by
default, sets the directory where your modules should be stored by setting the following property
in the workspace’s gradle.properties file:

liferay.workspace.modules.dir=modules

Change this property if you’d like to store your modules in a different directory.

Note: Your projects should define a repositorywhere external dependencies can be downloaded.
Unlike Maven, Gradle does not define any repositories by default. For convenience, Gradle projects
created with Blade CLI define Liferay’s public Nexus repository as its default repository. This is
defined, however, in different files depending on where the project was created.

If you used Blade CLI to create a Gradle project outside of a workspace, your repository is
defined in the module’s build.gradle file. Likewise, if you created your module inside a workspace,
your repository is defined in the settings.gradle file located in the workspace’s ROOT folder. This
ensures that all modules residing in the workspace share the same repository URL.

First, you’ll learn how to create a module using a template.

Project Templates

To create a newLiferay project, you can run the Blade create command, which offersmany available
templates. There are, however, many other options you can specify to help mold your project
just the way you want it. To learn how to use the Blade create command and the many options it
provides, enter blade help create into a terminal. A list of the create options are listed below:

--base: The base directory. The default base directory is the current directory.
-b, --build <String>: The build type of the project. Available options are gradle (default) and

maven.
-c, --classname <String>: If a class is generated in the project, provide the name of the class to

be generated. If not provided, the class name defaults to the project name.
-C, --contributor-type <String>: Identifies your module as a theme contributor. This is also

used to add the Liferay-Theme-Contributor-Type and Web-ContextPath bundle headers to the BND file.
-d, --dir <File>: The directory to create the new project. -h, --host-bundle-bsn <String>: If

creating a new JSP hook fragment, provide the name of the host bundle symbolic name. This is
required when using the fragment project template.

336

-H, --host-bundle-version <String>: If a new JSP hook fragment needs to be created, provide
the name of the host bundle version. This is required when using the fragment project template.

-v, --liferay-version: The version to target when creating a project. The default is 7.2.
-l, --list-templates: Prints a list of available project templates.
-p, --package-name <String>: The package name to use when creating the project.
-s, --service <String>: If a new Declarative Services (DS) component needs to be created,

provide the name of the service to be implemented. Note that in this context, the term service refers
to an OSGi service, not to a Liferay API.

-t, --template <String>: The project template to use when creating the project. Run blade

create -l for a listing of available Blade CLI templates. --trace: Prints exception stack traces when
they occur. This is false by default.

To create a module project, use the following syntax:

blade create [OPTIONS] <NAME>

For example, if you wanted to create an MVC portlet project with Gradle, you could execute the
following:

blade create -t mvc-portlet -p com.liferay.docs.guestbook -c GuestbookPortlet my-guestbook-project

This command creates an MVC portlet project based on the template mvc-portlet. It uses
the package name com.liferay.docs.guestbook and creates the portlet class GuestbookPortlet. The
project name is my-guestbook-project. Since the directorywas not specified, it is created in the folder
you executed the command. When generating a project using Blade CLI, there is no downloading,
which means internet access is not required.

If you want to generate a project for a previous version (e.g., Liferay Portal 7.0), you can specify
this using the -v flag. For example, to create a project for Liferay Portal 7.0, you would include -v

7.0 in your create command sequence.
Blade CLI can also create the same project with Maven by specifying the -b maven parameter.

Using Blade CLI’s Maven option isn’t the only way to leverage Liferay’s Maven project templates;
you can also generate them using Maven archetypes. See Liferay’s Project Templates articles to see
how.

When using Blade CLI, you must manually edit your project’s component class. Blade CLI gives
you the ability to specify the class’s name, but all other contents of the class can only be edited
after the class is created. See the Creating Modules with Liferay @ide@ tutorial for further details
and important dependency information on component classes.

Now that you know the basics on creating Liferay projects using blade create, you can visit the
Project Templates reference section to view specific create templates and how they work.

Next, you’ll explore Liferay’s provided project samples and how to generate them using Blade
CLI.

Project Samples

Liferay providesmany sample projects that are useful for those interested in learning best practices
on structuring their projects to accomplish specific tasks. These samples can be found in the
liferay-blade-samples Github repository. You can also learn more about these samples by visiting
the Liferay Sample Projects article.

You can generate these samples using Blade CLI for convenience, instead of cloning the reposi-
tory and manually copy/pasting them to your environment. To do this, use the following syntax:

337

https://github.com/liferay/liferay-blade-samples

blade samples <NAME>

For example, if you wanted to generate the portlet-ds sample, you could execute

blade samples ds-portlet

Note: Interested in generating legacy versions of Blade samples? Pass in the -v param followed
by the Liferay DXP version to target. For example,

blade samples -v 7.0 ds-portlet

For a full listing of all the available Blade samples, run

blade samples

Awesome! Now you know the basics on creating Liferay projects with Blade CLI.

32.5 Deploying Projects with Blade CLI

Deploying projects to a Liferay server using Blade CLI is easy. To use the Blade deploy command,
you must first have built a project to deploy. See the Creating Projects with Blade CLI tutorials for
more information about creating Liferay projects. Once you’ve built a project, navigate to it with
your CLI and execute the following command to deploy it:

blade deploy

This can be used forWAR-style projects and modules (JARs). You can also deploy all projects in
a folder by running the deploy command from the parent folder (e.g., [WORKSPACE_ROOT]/modules).

If you’re using LiferayWorkspace, the deploy command deploys your project based on the build
tool’s deployment configuration. For example, leveraging Blade CLI in a default Gradle Liferay
Workspace uses the underlying Gradle deployment configuration. The build tool’s deployment
configuration is found by reading the LiferayHome folder set in yourworkspace’s gradle.properties
or pom.xml file. The deploy command works similarly if you’re working outside of workspace; the
Liferay Home folder, in contrast, is set by loading the Liferay extension object (Gradle) or the
effective POM (Maven) and searching for the Liferay Home property stored there. If it’s not stored,
Blade prompts you to set it so it’s available.

Note: If you prefer using pure Gradle or Maven to deploy your project, you can do this by
applying the appropriate plugin and configuring your Liferay Home property. Here’s how you can
do this for Gradle and Maven:

Gradle:
First ensure the Liferay Gradle plugin is applied in your build.gradle file:

apply plugin: "com.liferay.plugin"

Then extend the Liferay extension object to set your Liferay Home and deploy folder:

338

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/ds-portlet

liferay {

liferayHome = "../../../../liferay-ce-portal-7.1.1-ga2"

deployDir = file("${liferayHome}/deploy")

}

Maven:
Ensure the Bundle Support plugin is applied and configure Liferay Home in your pom.xml. See

the Deploying a Project Built with Maven to Liferay Portal for details.

If you prefer not to use your underlying build tool’s (Gradle or Maven) module deployment
configuration, and instead, you want to deploy straight to Liferay DXP’s OSGi container, run this
command instead:

blade deploy -l

Blade CLI also offers a way to watch a deployed project, which compiles and redeploys a project
when changes are detected. There are two ways to do this:

• blade watch

• blade deploy -w

The blade watch command is the fastest way to develop and test module changes, because the
watch command does not rebuild your project every time a change is detected. When running blade

watch, your project is not copied to Portal, but rather, is installed into the runtime as a reference.
This means that the Portal does not make a cached copy of the project. This allows the Portal to see
changes that are made to your project’s files immediately. When you cancel the watch task, your
module is uninstalled automatically.

The watch task does not work with JSF portlets or fragment projects.

Note: The blade watch command is available for LiferayWorkspace versions 1.10.9+ (i.e., the
com.liferay.gradle.plugins.workspace dependency). Maven projects cannot leverage the watch fea-
ture at this time.

The blade deploy -w command works similarly to blade watch, except it manually recompiles
and deploys your project every time a change is detected. This causes slower update times, but
does preserve your deployed project in Portal when it’s shut down.

Cool! You’ve successfully deployed your module project using Blade CLI.

32.6 Managing Your Liferay Server with Blade CLI

In this tutorial, you’ll learn how to manage a Liferay server using Blade CLI. For example, Blade
CLI lets you install, start, stop, inspect, and modify a Liferay server.

Make sure you’re in a Liferay Workspace and have a bundle installed and configured in the
workspace before testing the Blade CLI commands on your own. To learn more about installing
a Liferay server in a Liferay Workspace, see the Creating a Liferay Workspace with Liferay Dev
Studio DXP section. The following Blade CLI commands are covered in this sub-section:

• server

• sh

339

The first thing that comes to mind when interacting with a server is simply turning it on/off.
You can use the server sub-command to accomplish this. To turn on a Liferay server (Tomcat or
Wildfly/JBoss), you can run

blade server start

This starts the server in the background. You can tail the logs by adding the -t flag. If you prefer
starting the server in the foreground, run blade server run. Additionally, if you prefer starting the
server in debug mode, add the -d flag.

Debug mode can be customized by adding the -p tag to set the custom remote debugging port
(defaults are 8000 for Tomcat and 8787 forWildfly) and/or the boolean -s tag to set whether you want
to suspend the started server until the debugger is connected.

Once you’ve started your server, you can examine its OSGi container by using the sh command,
which provides access to your server using the Felix Gogo shell. For example, to check if you
successfully deployed your application from the previous section, you could run:

blade sh lb

Your output lists a long list of modules that are active/installed in your server’s OSGi container.

Figure 32.3: Blade CLI accesses the Gogo shell script to run the lb command.

You can run any Gogo command using blade sh. This command requires Developer Mode to be
enabled. Developer Mode is enabled in LiferayWorkspace by default. See the Using the Felix Gogo
Shell section for more information on this tool.

To turn off your server, run

blade server stop

Awesome! You learned how to conveniently interact with Liferay DXP using Blade CLI.

340

32.7 Updating Blade CLI

If your Blade CLI version is outdated, you can run the following command to automatically down-
load and install the latest version of Blade CLI:

blade update

Note: For Windows users on Blade CLI 3.3.0 and older, the blade update command does not
work becauseWindows cannot update a file that is currently in use. To bypass this issue, use JPM
to update your version of Blade CLI:

jpm install -f https://releases.liferay.com/tools/blade-cli/latest/blade.jar

The blade update command forWindows users on Blade CLI 3.4.1+ works as expected.

Blade CLI is updated frequently, so it’s recommended to update your Blade CLI environment
for new features. You can check the released versions of Blade CLI on Nexus by inspecting the
com.liferay.blade.cli. artifact. You can check your current installed version by running blade

version. When running blade version, you are notified if there’s a newer Blade CLI version available.

Note: If you run blade version after updating, but don’t see the expected version installed, you
may have two separate Blade CLI installations on your machine. This is typically caused if you
installed an earlier version of Blade CLI, and then used the Liferay Project SDK installer (at any
time prior) to update the older Blade CLI instance. This is not recommended. Doing this installs
Blade CLI in the global and user home folder of your machine. The latest Blade CLI update process
installs to your user home folder, so you must delete the legacy Blade files in your global folder, if
present. To do this, navigate to your GLOBAL_FOLDER/JPM4J folder and delete

• /bin/blade

• /commands/blade

The newest Blade CLI installation in your user home folder is now recognized and available.

Although Blade CLI is frequently released, if you want bleeding edge features not yet available,
you can install the latest snapshot version:

blade update -s

This pulls the latest snapshot version of Blade CLI and installs it to your local machine. Running
blade version after installing a snapshot displays output similar to this:

blade version 3.3.1.SNAPSHOT201811301746

Be careful; snapshot versions are unstable and should only be used for experimental purposes.
Awesome! You’ve successfully learned how to update Blade CLI.

341

https://repository-cdn.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/blade/com.liferay.blade.cli/

32.8 Converting Plugins SDK Projects with Blade CLI

Blade CLI can automatically migrate a Plugins SDK project to a Liferay Workspace. During the
process, the Ant-based Plugins SDK project is copied to the applicable workspace folder based
on its project type (e.g., wars) and is converted to a Gradle-based LiferayWorkspace project. This
drastically speeds up the migration process when upgrading to a LiferayWorkspace from a legacy
Plugins SDK.

Note: There is no Maven command for the migration process yet, so you must complete it
manually for Maven-based workspaces.

To copy your Plugins SDK project and convert it to Gradle, use the Blade convert command:

1. Navigate to the root folder of your workspace in a command line tool.

2. Execute the following command:

blade convert -s [PLUGINS_SDK_PATH] [PLUGINS_SDK_PROJECT_NAME]

You must provide the path of the Plugins SDK your project resides in and the project name
you want to convert. If you prefer converting all the Plugins SDK projects at once, replace the
project name variable with -a (i.e., specifying all plugins).

Note: If the `convert` task doesn't work as described above, you may

need to update your Blade CLI version. See the

[Updating Blade CLI](/docs/7-1/tutorials/-/knowledge_base/t/updating-blade-cli)

article for more information.

This Gradle conversion process also works for themes; they're converted to

automatically leverage NodeJS. If you're converting a Java-based theme, add

the `-t` option to your command too. This will incorporate the

[Theme Builder](/docs/reference/7-1/-/knowledge_base/r/theme-builder-gradle-plugin)

Gradle plugin for the theme instead. For more information on upgrading

6.2 themes, see the

[Upgrade a 6.2 Theme to 7.1](/docs/7-1/tutorials/-/knowledge_base/t/upgrading-6-2-themes-to-7-1)

article.

Note: When converting a Service Builder project, the convert task automatically extracts the
project’s service interfaces and implementations into OSGi modules (i.e., -impl and -api) and places
them in the workspace’s modules folder. Your portlet and controller logic remain aWAR and reside
in the wars folder.

Your project is successfully converted to a Gradle-based workspace project! Great job!

342

CHAPTER 33

LIFERAY WORKSPACE

A LiferayWorkspace is a generated environment that is built to hold andmanage your Liferay projects.
This workspace is intended to aid in the management of Liferay projects by providing various
Gradle build scripts and configured properties. This is the official way to create 7.0 modules using
Gradle. Do you prefer Maven over Gradle? See the MavenWorkspace tutorial to learn about using
LiferayWorkspace with Maven.

LiferayWorkspaces can be used in many different development environments, which makes
it flexible and applicable to many different developers. You can download the Liferay Project
SDK installer and run it to install Blade CLI (default CLI for workspace), initialize a new Liferay
Workspace, and download Dev Studio DXP.

You can also use it with other developer IDEs. For example, a LiferayWorkspace easily integrates
with Liferay Dev Studio DXP, providing a seamless development experience. To learn more about
Liferay Dev Studio DXP and using workspace with it, see the Creating a LiferayWorkspace with
Liferay Dev Studio DXP tutorial.

Your workspace also offers Gradle properties that you canmodify to help manage the generated
folders. There are also some folders that aren’t generated by default, but can be manually created
and set. This provides you the power to customize your workspace’s folder structure any way you’d
like. To learn more info on a workspace’s folder structure and how you can configure a workspace,
see the Configuring a LiferayWorkspace tutorial.

LiferayWorkspaces offer a full development lifecycle for your modules to make your Liferay
development easier than ever. The development lifecycle includes creating, building, deploy-
ing, testing, and releasing modules. To learn more about the development lifecycle of a Liferay
Workspace, see the Development Lifecycle for a LiferayWorkspace tutorial.

33.1 Installing Liferay Workspace

You can install LiferayWorkspace using the Liferay Project SDK installer. This installs JPM and
Blade CLI into your user home folder and optionally initializes a LiferayWorkspace folder. This is
the same installer used to install Blade CLI, which is covered in the Installing Blade CLI tutorial.

Follow the steps below to download and install LiferayWorkspace:

343

https://sourceforge.net/projects/lportal/files/Liferay%20Workspace
https://sourceforge.net/projects/lportal/files/Liferay%20Workspace

1. Download the latest Liferay Project SDK installer that correspondswith your operating system
(e.g., Windows, MacOS, or Linux). The Project SDK installer is listed under Liferay IDE, so the
folder versions are based on IDE releases. You can select an installer that does not include
Dev Studio DXP, if you don’t intend to use it. The Project SDK installer is available for versions
3.2.0+. Do not select the large green download button; this downloads Liferay Portal instead.

2. Run the installer. Click Next to step through the installer’s introduction.

3. Set the directory where your LiferayWorkspace should be initialized.

Figure 33.1: Determine where your Liferay Workspace should reside.

Then click Next.

4. Choose the Liferay product type you intend to use with the workspace. Then click Next.

Note: You'll be prompted for your liferay.com username and password

before downloading the Liferay DXP bundle. Your credentials are not saved

locally; they're saved as a token in the `~/.liferay` folder. The token is

used by your workspace if you ever decide to redownload a DXP bundle.

Furthermore, the bundle that is downloaded in your workspace is also copied

to your `~/.liferay/bundles` folder, so if you decide to initialize another

Liferay DXP instance of the same version, the bundle is not re-downloaded. See

the

[Adding a Liferay Bundle to a Workspace](/docs/7-1/tutorials/-/knowledge_base/t/configuring-a-liferay-workspace#adding-a-

liferay-bundle-to-a-workspace)

for more information on this topic.

344

https://sourceforge.net/projects/lportal/files/Liferay%20IDE/

Figure 33.2: Select the product version you’ll use with your Liferay Workspace.

5. Click Next to begin installing LiferayWorkspace on your machine.

That’s it! LiferayWorkspace is now installed on your machine!

33.2 Configuring a Liferay Workspace

A LiferayWorkspace offers a development environment that can be configured to fit your develop-
ment needs. You’ll learn about the files/folders a workspace provides by default, and then you’ll
dive into configuring your workspace.

The top-level files/folder of a Liferay (Gradle)Workspace are outlined below:

• bundles (generated): the default folder for Liferay DXP bundles.
• configs: holds the configuration files for different environments. These files serve as your
global configuration files for all Liferay DXP servers and projects residing in your workspace.
To learn more about using the configs folder, see the Testing Modules section.

• ext (generated): holds the Ext OSGi modules and Ext plugins.
• gradle: holds the GradleWrapper used by your workspace.
• modules: holds your custommodules. This can also hold frontend portlets created with the
Liferay JS Toolkit

• plugins-sdk (generated): holds plugins to migrate from previous releases. These project types
should eventually be migrated to the wars folder, if possible. This is targeted for Liferay DXP
7.0 to provide a way to migrate from the Plugins SDK to LiferayWorkspace. See the Using

345

a Plugins SDK from YourWorkspace section for more information. The Plugins SDK is no
longer available for 7.0.

• themes: holds Node.js-style themes that use the Liferay JS Theme Toolkit, which are built
using the Liferay Theme Generator.

• wars: holds traditionalWAR-style web application projects and theme projects (i.e., generated
by the theme project template).

• build.gradle: the common Gradle build file.
• gradle.properties: specifies the workspace’s project locations and Liferay DXP server config-
uration globally.

• gradle-local.properties: sets user-specific properties for your workspace. This lets multiple
users use a single workspace, letting them configure specific properties for the workspace on
their own machine.

• gradlew: executes the Gradle command wrapper.
• settings.gradle: applies plugins to the workspace and configures its dependencies.

If you’re using a Liferay MavenWorkspace instead, your folder hierarchy is the same, except
the Gradle build files are swapped out for a pom.xml file. See the MavenWorkspace tutorial for more
info on configuring that kind of workspace project.

The build/properties files included in your workspace’s root folder sets your workspace’s Gradle
properties and facilitates the build processes of your modules.

Before you begin using your workspace, you should set your workspace Gradle properties
in the gradle.properties file. There are many commented out properties in this file. These are
the default properties set in your workspace. If you’d like to change a variable, uncomment the
variable and set it to a custom value. For instance, if you want to store your modules in a folder
other than [ROOT]/modules, uncomment the liferay.workspace.modules.dir variable and set it to a
different value.

If you’d like to keep the global Gradle properties the same, but want to change them for yourself
only (perhaps for local testing), you can override the gradle.properties file with your own gradle-

local.properties file.
All properties in the gradle.properties file are documented within the file. To learn more about

how each property works and what’s available, visit your workspace’s generated gradle.properties

file. You can also visit the GradleWorkspace Properties section for a list of these properties.

Note: LiferayWorkspace provides many subprojects for you behind the scenes, which hides
some complexities of Gradle. You can learn more about this in the Building Modules section.

Now that you know about a workspace’s default folder structure and how to modify its Gradle
properties, you’ll learn how to add a Liferay bundle to your workspace.

Adding a Liferay Bundle to a Workspace

Liferay Workspaces can generate and hold a Liferay Server. This lets you build/test your
plugins against a running Liferay instance. Before generating a Liferay instance, open the
gradle.properties file located in your workspace’s root folder. There are several configurable
properties for your workspace’s Liferay instance. You can set the version of the Liferay bundle
you’d like to generate and install by setting the download URL for the liferay.workspace.bundle.url

property (e.g., https://releases-cdn.liferay.com/portal/7.1.0-ga1/liferay-ce-portal-tomcat-

346

7.1.0-ga1-20180703012531655.zip). You can also set the folder where your Liferay bundle is
generated with the liferay.workspace.home.dir property. It’s set to bundles by default.

You can download a Liferay DXP bundle for your workspace if you’re a DXP subscriber. Do
this by setting the liferay.workspace.bundle.url property to a ZIP hosted on api.liferay.com. For
example,

liferay.workspace.bundle.url=https://api.liferay.com/downloads/portal/7.1.10/liferay-dxp-

tomcat-7.1.10-ga1-20180703090613030.zip

It can be tricky to find the fully qualified ZIP name/number for the DXP bundle you want. You
cannot access Liferay’s API site directly to find it, so you must start to download DXP manually,
take note of the file name, and append it to https://api.liferay.com/downloads/portal/.

You must also set the liferay.workspace.bundle.token.download property to true to allow your
workspace to access Liferay’s API site.

Once you’ve finalized your Gradle properties, navigate to your workspace’s root folder and run

blade server init

This uses workspace’s pre-bundled Blade CLI tool to download the version of Liferay DXP you
specified in your Gradle properties and installs your Liferay instance in the bundles folder.

If you want to skip the downloading process, you can create the bundles folder manually in your
workspace’s ROOT folder and unzip your Liferay DXP bundle to that folder.

You can also produce a distributable Liferay bundle (Zip or Tar) from within a workspace. To
do this, navigate to your workspace’s root folder and run the following command:

./gradlew distBundle[Zip|Tar]

Your distribution file is available from the workspace’s /build folder.

Note: You can define different environments for your Liferay bundle for easy testing. You can
learn more about this in the Testing Modules section.

The LiferayWorkspace is a great development environment for Liferay module development;
however, what if you’d like to also stick with developingWAR-style applications? LiferayWorkspace
can handle that request too!

Gradle Workspace Properties

The following configurable properties are available in your workspace’s gradle.properties file:

• liferay.workspace.bundle.cache.dir: Set the directory where the downloaded bundle Zip files
are stored. The default value is the .liferay/bundles folder inside the user home directory.

• liferay.workspace.bundle.token.download: Set this to true if the liferay.workspace.bundle.url

property is set to a DXP bundle Zip. This property allows the token residing in the ~/.liferay

folder to be used to validate your user credentials when downloading the bundle. The default
value is false.

• liferay.workspace.bundle.token.email.address: Set the email address to use when download-
ing a DXP bundle. This is used to create the authentication token. The email address must
match the one registered for your DXP subscription. If you wish to create a new token without
providing your email address and password in this file, you can create a token manually
by navigating to your Liferay profile’s Account Setting page and generating a token in the
Authentication Tokens menu. Your token must reside in the ~/.liferay folder.

347

• liferay.workspace.bundle.token.force: Set this to true to override the existing token with a
newly generated token created by the createToken task. The default value is false.

• liferay.workspace.bundle.token.password: Set the password to use when downloading a DXP
bundle. This is used to create the authentication token. The password must match the one
registered for your DXP subscription. See the liferay.workspace.bundle.token.email.address

property for more details.
• liferay.workspace.bundle.token.password.file: Set the file to hold the Liferay bundle authen-
tication token password. The default file value is ~/.liferay/token.

• liferay.workspace.bundle.url: Set the URL pointing to the bundle Zip to download. If the URL
points to aDXPbundle (e.g., https://api.liferay.com/…), set the liferay.workspace.bundle.token.download
property to true. The default value is the URL for the latest version of Liferay Portal CE.

• liferay.workspace.default.repository.enabled: Set this to true to configure Liferay CDN as
the default repository in the root project. The default value is true.

• liferay.workspace.environment: Set the environment with the settings appropriate for cur-
rent development. The configs folder is used to hold different environments in the same
workspace. You can organize environment settings and generate an environment installation
with those settings. There are five environments: common, dev, local, prod, and uat. The default
value is local.

• liferay.workspace.home.dir: Set the folder that contains the Liferay bundle downloaded from
the liferay.workspace.bundle.url property. The default value is bundles.

• liferay.workspace.modules.default.repository.enabled: Set this to true to configure Liferay
CDN as the default repository for module/OSGi projects. The default value is true.

• liferay.workspace.ext.dir: Set the folder that contains all Ext OSGi modules and Ext plugins.
The default value is ext.

• liferay.workspace.modules.dir: Set the folder that contains all module/OSGi projects. The
default value is modules.

• liferay.workspace.modules.jsp.precompile.enabled: Set this to true to compile the JSP files in
OSGi modules and have them added to the distributable Zip/Tar. The default value is false.

• liferay.workspace.plugins.sdk.dir: Set the folder that contains the Plugins SDK environment.
The default value is plugins-sdk.

• liferay.workspace.target.platform.version: Set the Liferay Portal or DXP bundle version to
develop against. This property enables target platform features such as the OSGi resolve task
and specialized dependency management. Use 7.1.1 for the latest Liferay CE release and
7.1.10 for the latest DXP release.

• liferay.workspace.themes.dir: Set the folder that containsNode.js-style themeprojects, which
use the Liferay JS Theme Toolkit. The default value is themes.

• liferay.workspace.themes.java.build: Set this to true to build the theme projects using the
Liferay Portal Tools Theme Builder. The default value is false.

• liferay.workspace.wars.dir: Set the folder that contains classicWAR-style projects. The de-
fault value is wars.

That’s it! You now have the knowledge to fully leverage the power of LiferayWorkspace!

33.3 Setting Proxy Requirements for Liferay Workspace

If you’re working behind a corporate firewall that requires using a proxy server to access external
repositories, you need to add some extra configuration tomake LiferayWorkspaceworkwithin your

348

environment. You’ll learn how to set proxy requirements for both Gradle and Maven environments.

Using Gradle

1. Open your ~/.gradle/gradle.properties file. Create this file if it does not exist.

2. Add the following properties to the file:

systemProp.http.proxyHost=www.somehost.com

systemProp.http.proxyPort=1080

systemProp.https.proxyHost=www.somehost.com

systemProp.https.proxyPort=1080

Make sure to replace the proxy host and port values with your own.

3. If the proxy server requires authentication, also add the following properties:

systemProp.http.proxyUser=userId

systemProp.http.proxyPassword=yourPassword

systemProp.https.proxyUser=userId

systemProp.https.proxyPassword=yourPassword

Excellent! Your proxy settings are set in your LiferayWorkspace’s Gradle environment.

Using Maven

1. Open your ~/.m2/settings.xml file. Create this file if it does not exist.

2. Add the following XML snippet to the file:

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd">

<proxies>

<proxy>

<id>httpProxy</id>

<active>true</active>

<protocol>http</protocol>

<host>www.somehost.com</host>

<port>1080</port>

</proxy>

<proxy>

<id>httpsProxy</id>

<active>true</active>

<protocol>https</protocol>

<host>www.somehost.com</host>

<port>1080</port>

</proxy>

</proxies>

</settings>

Make sure to replace the proxy host and port values with your own.

3. If the proxy server requires authentication, also add the username and password proxy proper-
ties. For example, the HTTP proxy authentication configuration would look like this:

349

<proxy>

<id>httpProxy</id>

<active>true</active>

<protocol>http</protocol>

<host>www.somehost.com</host>

<port>1080</port>

<username>userID</username>

<password>somePassword</password>

</proxy>

Excellent! Your Maven proxy settings are now set.

33.4 Development Lifecycle for a Liferay Workspace

LiferayWorkspaces provide an environment that supports all phases of a Liferay module’s devel-
opment lifecycle:

• Creating projects
• Building projects
• Deploying projects
• Testing projects
• Releasing projects

In this tutorial, you’ll explore the development lifecycle phases LiferayWorkspace provides
for you. Then you’ll be directed to other tutorials that go into further detail for leveraging the
workspace’s particular lifecycle phase for a specific tool (e.g., Blade CLI or Liferay Dev Studio DXP).
Let’s get started!

Creating Projects

The first step of LiferayWorkspace’s development phase is the project creation process. Workspace
provides a slew of templates that you can use to create many different types of Liferay projects.
Workspace also provides development support for frontend portlets generated with the Liferay JS
Toolkit. They’re stored in the modules folder by default.

You canconfigurewhere yourworkspace createsmodules by editing the liferay.workspace.modules.dir
property in the workspace’s gradle.properties file. By default, modules are created in the
[ROOT]/modules folder.

You can also controlwhere themes are generated by specifying the liferay.workspace.themes.dir
property in the gradle.properties file. Themes are typicallymigrated to the themes folder after being
created using the Liferay Theme Generator.

Workspace also provides a way to createWAR projects, which are generated in the folder set
by the liferay.workspace.wars.dir property in the gradle.properties file. There are several project
templates that createWAR-style projects, which should be stored in the wars folder.

To learn more about creating projects in a workspace using Blade CLI or Liferay Dev Studio,
visit the Creating Projects with Blade CLI and Creating Modules with Liferay Dev Studio tutorials,
respectively.

350

Building Projects

LiferayWorkspace abstractsmany build requirements away so you can focus on developing projects
instead of worrying about how to build them. Liferay Workspace is built using Gradle, so your
projects leverage the Gradle build lifecycle.

Workspace includes a Gradle wrapper in its ROOT folder (e.g., gradlew), which you can leverage
to execute Gradle commands. This means that you can run familiar Gradle build commands
(e.g., build, clean, compile, etc.) from a LiferayWorkspace without having Gradle installed on your
machine.

Note: You can also use the workspace’s Gradle wrapper by executing blade gw followed by the
Gradle command. This is an easier way to run the workspace’s Gradle wrapper without specifying
its path. Since the workspace’s Gradle wrapper resides in its root folder, it can sometimes be a
hassle running it for a deeply nested module (e.g., ../../../../gradlew compileJava). Running the
Gradle wrapper from Blade CLI automatically detects the Gradle wrapper and can run it anywhere.

When using Liferay Workspace, the workspace plugin is automatically applied which adds
a multitude of subprojects for you, hiding some complexities of Gradle. For example, a typical
project’s settings.gradle file could contain many included subprojects like this:

...

include images:base:oracle-jdk:oracle-jdk-6

include images:base:oracle-jdk:oracle-jdk-7

include images:base:oracle-jdk:oracle-jdk-8

include images:base:liferay-portal:liferay-portal-ce-tomcat-7.1-ga1

include images:source-bundles:glassfish

include images:source-bundles:jboss-eap

include images:source-bundles:tomcat

include images:source-bundles:websphere

include images:source-bundles:wildfly

include compose:jboss-eap-mysql

include compose:tomcat-mariadb

include compose:tomcat-mysql

include compose:tomcat-mysql-elastic

include compose:tomcat-postgres

include file-server

...

You don’t have to worry about applying these subprojects because the workspace plugin does it
for you. Likewise, if a folder in the /themes folder includes a liferay-theme.json file, the gulp plugin
is applied to it; if a folder in the /modules folder includes a bnd.bnd file, the liferay-gradle plugin
is applied to it. See the Gradle reference article for a list of Liferay Gradle plugins automatically
provided for all Workspace apps. As you can see, LiferayWorkspace provides many plugins and
build configurations behind the scenes to make your development process convenient.

A good example of the Gradle build lifecycle abstraction is the project deployment process in a
workspace. You can build/deploy your modules from workspace without ever running a Gradle
command. You’ll learn how to do this next.

Deploying Projects

LiferayWorkspace provides easy-to-use deployment mechanisms that let you deploy your project
to a Liferay server without any custom configuration. To learn more about deploying projects from
a workspace using Blade CLI or Liferay Dev Studio DXP, visit the Deploying Projects with Blade CLI
and Deploying Modules with Liferay Dev Studio DXP tutorials, respectively.

351

Testing Projects

Liferay provides many configuration settings for 7.0. Configuring several different Liferay DXP
installations to simulate/test certain behaviors can become cumbersome and time consuming. With
LiferayWorkspace, you can easily organize environment settings and generate an environment
installation with those settings.

LiferayWorkspace provides the configs folder, which lets you configure different environments
in the same workspace. For example, you could configure separate Liferay DXP environment
settings for development, testing, and production in a single LiferayWorkspace. So how does it
work?

The configs folder offers five subfolders:

• common: holds a common configuration that you want applied to all environments.
• dev: holds the development configuration.
• local: holds the configuration intended for testing locally.
• prod: holds the configuration for a production site.
• uat: holds the configuration for a UAT site.

You’re not limited to just these environments. You can create any subfolder in the configs folder
(e.g., aws, docker, etc.) to simulate any environment. Each environment folder can supply its own
database, portal-ext.properties, Elasticsearch, etc. The files in each folder overlay your Liferay
DXP installation, which you generate from within workspace.

Figure 33.3: The configs/common and configs/[environment] overlay you Liferay DXP bundle when it’s generated.

When workspace generates a Liferay DXP bundle, these things happen:

1. Configuration files found in the configs/common folder are applied to the Liferay DXP bundle.

2. The configured workspace environment (dev, local, prod, uat, etc.) is applied on top of any
existing configurations from the common folder.

To generate a Liferay DXP bundle with a specific environment configuration to the workspace’s
/bundles folder, run

./gradlew initBundle -Pliferay.workspace.environment=[ENVIRONMENT]

352

To generate a distributable Liferay DXP installation to the workspace’s /build folder, run

./gradlew distBundle[Zip|Tar] -Pliferay.workspace.environment=[ENVIRONMENT]

The ENVIRONMENT variable should match the configuration folder (dev, local, prod, uat, etc.) you
intend to apply.

Note: You may prefer to set your workspace environment in the gradle.properties file instead
of passing it via Gradle command. If so, it’s recommended to set the workspace envrionment
variable inside the [USER_HOME]/.gradle/gradle.properties file.

liferay.workspace.environment=local

The variable is set to local by default.

To simulate using the configs folder, let’s explore a typical scenario. Suppose you want a local
Liferay DXP installation for testing and a UAT installation for simulating a production site. Assume
you want the following configuration for the two environments:

Local Environment

• Use MySQL database pointing to localhost
• Skip setup wizard

UAT Environment

• Use MySQL database pointing to a live server
• Skip setup wizard

To configure these two environments in your workspace, follow the steps below:

1. Open the configs/common folder and add the portal-setup-wizard.properties file with the
setup.wizard.enabled=false property.

2. Open the configs/local folder and configure the MySQL database settings for localhost in a
portal-ext.properties file.

3. Open the configs/uat folder and configure the MySQL database settings for the live server in
a portal-ext.properties file.

4. Now that your two environments are configured, generate one of them:

./gradlew distBundle[Zip|Tar] -Pliferay.workspace.environment=uat

You’ve successfully configured two environments and generated one of them.

Awesome! You can now test various Liferay DXP bundle environments using LiferayWorkspace.

353

Releasing Projects

LiferayWorkspace does not provide a built-in release mechanism, but there are easy ways to use
external release tools with workspace. The most popular choice is uploading your projects to a
Maven Nexus repository. You could also use other release tools like Artifactory.

Uploading projects to a remote repository is useful if you need to share them with other non-
workspace projects. Also, if you’re ready for your projects to be in the spotlight, uploading them to
a public remote repository gives other developers the chance to use them.

For more instructions on how to set up a Maven Nexus repository for your workspace’s projects,
see the Creating aMavenRepository andDeploying LiferayMavenArtifacts to a Repository tutorials.

33.5 Managing the Target Platform for Liferay Workspace

LiferayWorkspace helps you target a specific release of Liferay DXP, so dependencies get resolved
properly. This makes upgrades easy: specify your target platform, andWorkspace points to the
new version. All your dependencies are updated to the latest ones provided in the targeted release.

Note: There are times when configuring dependencies based on a version range is better than
tracking exact versions. See the Semantic Versioning tutorial for more details.

Liferay Dev Studio DXP 3.2+ helps you streamline targeting a specific version even more. Dev
Studio DXP can index the configured Liferay DXP source code to

• provide advanced Java search (Open Type and Reference Searching) (tutorial)
• debug Liferay DXP sources (tutorial)

To enable this functionality, set the following property in your workspace’s gradle.properties
file:

target.platform.index.sources=true

Note: Portal source indexing is disabled in Gradle workspace version 2.0.3+ (Target Platform
plugin version 2.0.0+).

These options in Dev Studio DXP are only available when developing in a LiferayWorkspace, or
if you have the Target Platform Gradle plugin applied to your multi-module Gradle project with
specific configurations. See the Targeting a Platform Outside ofWorkspace section for more info
on applying the Target Platform Gradle plugin.

Next, you’ll discover how all of this is possible.

Dependency Management with BOMs

You can target a version by importing a predefined bill of materials (BOM). This only requires that
you specify a property in your workspace’s gradle.properties file. You’ll see how to do this later.

Each Liferay DXP version has a predefined BOM that you can specify for your workspace to
reference. Each BOM defines the artifacts and their versions used in the specific release. BOMs
list all dependencies in a management fashion, so it doesn’t add dependencies to your project; it

354

https://www.jfrog.com/artifactory/

only provides your build tool (e.g., Gradle or Maven) the versions needed for the project’s defined
artifacts. This means you don’t need to specify your dependency versions; the BOM automatically
defines the appropriate artifact versions based on the BOM.

You can override a BOM’s defined artifact version by specifying a different version in your
project’s build.gradle. Artifact versions defined in your project’s build files override those specified
in the predefined BOM. Note that overriding the BOM can be dangerous; make sure the new version
is compatible in the targeted platform.

For more information on BOMs, see the Importing Dependencies section in Maven’s official
documentation.

Pretty cool, right? Next, you’ll step through an example configuration.

Setting the Target Platform

Setting the version to develop for takes two steps:

1. Open theworkspace’s gradle.propertiesfile and set the liferay.workspace.target.platform.version
property to the version you want to target. For example,

liferay.workspace.target.platform.version=7.1.1

If you’re using Liferay DXP, you can set the property like this:

liferay.workspace.target.platform.version=7.1.10

The versions following a GA1 release of DXP follow fix pack versions (e.g., 7.1.10.fp1,
7.1.10.fp2, etc.).

2. Once the target platform is configured, check to make sure no dependencies in your Gradle
build files specify a version. The versions are now imported from the configured target
platform’s BOM. For example, a simple MVC portlet’s build.gradlemay look something like
this:

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib"

compileOnly group: "javax.portlet", name: "portlet-api"

compileOnly group: "javax.servlet", name: "javax.servlet-api"

compileOnly group: "jstl", name: "jstl"

compileOnly group: "org.osgi", name: "osgi.cmpn"

}

Note: The liferay.workspace.target.platform.version property also sets the distro JAR, which
can be used to validate your projects during the build process. See the Validating Modules Against
the Target Platform tutorials for more info.

The target platform functionality is available in LiferayWorkspace version 1.9.0+. If you have
an older version, you must update it to leverage platform targeting. See the Updating Liferay
Workspace tutorial to do this.

You now know how to configure a target platform in workspace and how dependencies without
versions appear in your Gradle build files. You’re all set!

355

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism#Importing_Dependencies

Targeting a PlatformOutside of Workspace

If you prefer to not use LiferayWorkspace, but still want to target a platform, you must apply the
Target Platform Gradle plugin to the root build.gradle file of your custom multi-module Gradle
build.

To do this, your build.gradle file should look similar to this:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.target.platform", version: "1.1.6"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.target.platform"

dependencies {

targetPlatformBoms group: "com.liferay.portal", name: "release.portal.bom", version: "7.1.0"

targetPlatformBoms group: "com.liferay.portal", name: "release.portal.bom.compile.only", version: "7.1.0"

}

Liferay DXP users must replace the artifact names and versions:

• release.portal.bom → release.dxp.bom

• release.portal.bom.compile.only → release.dxp.bom.compile.only

• 7.1.0 → 7.1.10

This Gradle code

• applies Liferay’s Target Platform Gradle plugin
• configures the repository that provides the necessary artifacts for your project build
• sets the Target Platform plugin’s dependencies:

– com.liferay.ce.portal.bom: provides all the artifacts included in Liferay DXP.
– com.liferay.ce.portal.compile.only: provides artifacts that are not included in Liferay

DXP, but are necessary to reference during the build (e.g., org.osgi.core).

If you’re interested in advanced search and/or debugging Liferay DXP’s source using Liferay
Dev Studio DXP, you must also apply the following configuration:

targetPlatformIDE {

includeGroups "com.liferay", "com.liferay.portal"

}

This indexes the target platform’s source code and makes it available to Dev Studio DXP.
Now you can define your target platform!

356

33.6 Managing Themes in Liferay Workspace

Creating a Liferay DXP theme can be accomplished using two different tools:

• Liferay Theme Generator (Node.js-based themes that use the Liferay JS Theme Toolkit)
• Project template/archetype (Gradle/Maven-based)

LiferayWorkspace offers an environment where developers can use the Liferay Theme Genera-
tor to create themes and their work can be seamlessly integrated into their overall DevOps strategy.
You can leverage the Liferay Theme Generator to create Node.js-based themes inside workspace or
you can leverage it externally and copy themes intoWorkspace.

Workspace also offers a traditional Java-based theme approach (leveraging Gradle/Maven) for
those that can’t use the Liferay JS Theme Toolkit’s tools in their CI environment.

Below you’ll learn how to manage both Node.js-based themes and Gradle/Maven-based themes
inWorkspace.

Node.js Themes in Workspace

LiferayWorkspace reserves the themes folder only for themes that are created with the Themes
Generator. There are no Blade CLI-provided commands or Maven archetypes to generate a theme.
You must leverage the Liferay Theme Generator from within the themes folder to create them; you
can also copy a generated theme into the folder.

You’ll demo this theme management capability next. Be sure the Liferay Theme Generator’s
required tooling is installed.

1. Navigate to your workspace’s themes folder and run the following command:

yo liferay-theme

Follow the prompts to create your theme.

2. Navigate into your new theme and run ../gradlew build. LiferayWorkspace builds the front-
end theme using Gradle. Under the hood, Liferay’s Node Gradle Plugin is applied and used to
build your theme.

3. Workspace is smart enough to differentiate between theme types. For instance, you can’t copy
a theme built with the Theme Generator into the wars folder and expect it to build. You can
test if your project is recognized byWorkspace by running this command fromWorkspace’s
root folder:

../gradlew projects

Your CLI should display your new theme under the themes project.

Root project 'liferay-workspace'

+--- Project ':themes'

357

\--- Project ':themes:my-generated-theme'

If you moved a WAR-style theme (Gradle/Maven-based) into the `themes`

folder, it is not recognized by the Gradle `projects` command.

Note: Workspace identifies whether a theme was generated by the Theme

Generator by checking whether it has a `package.json` file. Any theme

without this file is not compatible in the `themes` folder.

Excellent! You learned how generated themes are recognized in workspace and where they
should reside. Next you’ll learn how workspace managesWAR-style themes.

Gradle/Maven Themes in Workspace

LiferayWorkspace provides the wars folder for anyWAR-style project. Themes created with Blade
CLI or Maven using the theme project template or archetype are automatically generated here when
creating the project withinWorkspace.

Themes built using Liferay’s theme project template are alwaysWARs and should always reside
inWorkspace’s wars folder. They should never be moved to the themes folder; that folder is reserved
for themes generated by the Theme Generator only.

To build an existingWAR-style theme inWorkspace, run the ../gradlew build command. Liferay
Workspace builds the theme using Gradle. Under the hood, Liferay’s Theme Builder Gradle Plugin
is applied and used to build your theme. It works similarly in a Maven workspace. See the Building
Themes in a Maven Project tutorial for more information.

Awesome! You know howWAR-style themes are built in workspace and where they should
reside.

358

CHAPTER 34

VALIDATING MODULES AGAINST THE TARGET
PLATFORM

Important: Validating modules with the resolve task is deprecated. It only functions as it’s
documented here in versions prior to LiferayWorkspace (Gradle only) version 2.0.3. It is being
redesigned for workspace versions 2.0.3+ and is still in development at this time.

After you write a module in LiferayWorkspace, you can validate it before deployment to make
sure of several things:

• Will my app deploy successfully?
• Will there be some sort of missing requirement?
• If there’s an issue, how do I diagnose it?

These are all common worries that can be frustrating.
Instead of deploying your app and checking for errors in the log, you can validate your app

before deployment. This is done by calling LiferayWorkspace’s resolve task, which validates your
modules against a targeted platform. Continue on to learn how this works.

34.1 Resolving Your Modules

Deploying your modules only to be met with console errors or mysterious problems can be frus-
trating. You can avoid this painful process by resolving your modules before deployment. This can
be done by calling the resolve Gradle task provided by LiferayWorkspace.

../gradlew resolve

This task gathers all the capabilities provided by

• the specified version of Liferay DXP (i.e., targeted platform)
• the current workspace’s modules

Some capabilities/information gathered by the resolve task that are validated include

359

• declared required capabilities
• module versions
• package imports/use constraints
• service references

It also computes a list of run requirements for your project. Then it compares the current
project’s requirements against the gathered capabilities. If your project requires something not
available in the gathered list of capabilities, the task fails.

The task can only validate OSGi modules. It does not work withWAR-style projects, themes, or
npm portlets.

Note: The resolve task can be executed from a specific project folder or from the workspace’s
root folder. Running the task from the root folder validates all the modules in your workspace.

The resolve task can automatically gather the available capabilities from your workspace, but
you must specify this for your targeted Liferay DXP version. To do this, open your workspace’s
gradle.properties file and set the liferay.workspace.target.platform.version property to the ver-
sion you want to target. For example,

liferay.workspace.target.platform.version=7.1.0

If you’re using Liferay DXP, you can set the property like this:

liferay.workspace.target.platform.version=7.1.10

The versions following aGA1 release of DXP followfix pack versions (e.g., 7.1.10.fp1, 7.1.10.fp2,
etc.).

Setting the target platform property provides a static distro JAR for the specified version of
Liferay DXP, which contains all the metadata (i.e., capabilities, packages, versions, etc.) running in
that version. The distro JAR is a complete snapshot of everything provided in the OSGi runtime;
this serves as the target platform’s list of capabilities that your modules are validated against.

You can now validate your module projects before deploying them! Sometimes, you must
modify the resolve task’s default behavior to successfully validate your app. See the Modifying the
Target Platform’s Capabilities tutorial for more information. For help resolving common output
errors printed by the resolve task, see the Resolving Common Output Errors Reported by the
resolve Task article.

34.2 Modifying the Target Platform's Capabilities

In a perfect world, everything the resolve task gathers and checks against would work during
your development process. Unfortunately, there are exceptions that may force you to modify the
default functionality of the resolve task. If you’re unfamiliar with workspace’s resolve task, see the
Resolving Your Modules tutorial for more information.

There are two scenarios you may run into during development that require a modification for
your project to pass the resolver check.

• You’re depending on a third party library that is not available in the targeted Liferay DXP
instance or the current workspace.

360

• You’re depending on a customized distribution of Liferay DXP.

You’ll explore these use cases next.

Depending on Third Party Libraries Not Included in Liferay DXP

The resolve task, by default, gathers all of Liferay DXP’s capabilities and the capabilities of your
workspace’s modules. What if, however, your module depends on a third party project that is
not included in either space (e.g., Google Guava)?. The resolve task fails by default if your project
depends on this project type. You probably plan to have this project deployed and available at
runtime, so it’s not a concern, but the resolver doesn’t know that; you must customize the resolver
to bypass this.

There are three ways you can do this:

• Embed the third party library in your module
• Add the third party library’s capabilities to the current static set of resolver capabilities
• Skip the resolving process for your module

For help resolving third party dependency errors, see the Resolving Third Party Library Package
Dependencies tutorial.

Embed the Third Party Library in Your Module

If you only have one module that depends on the third party project, you can bypass the resolver
failure by embedding the JAR in your module. This is not a best practice if more than one project
in the OSGi container depends on that module. See the Embedding Libraries in a Module section
for more details.

Add the Third Party Library's Capabilities to the Current Static Set of Resolver Capabilities

You can add your third party dependencies to the target platform’s default list of capabilities by
listing themasprovidedmodules. Do this by adding the followingGradle code into yourworkspace’s
root build.gradle file:

dependencies {

providedModules group: "GROUP_ID", name: "NAME", version: "VERSION"

}

For example, if you wanted to add Google Guava as a provided module, it would look like this:

dependencies {

providedModules group: "com.google.guava", name: "guava", version: "23.0"

}

This both provides the third party dependency to the resolver, and it downloads and includes it
in your Liferay DXP bundle’s osgi/modules folder when you initialize it (e.g., blade server init).

361

https://opensource.google.com/projects/guava
https://opensource.google.com/projects/guava

Skip the Resolving Process for Your Module

It may be easiest to skip validating a particular module during the resolve process. To do this, open
your workspace’s root build.gradle file and insert the following Gradle code at the bottom of the
file:

targetPlatform {

resolveOnlyIf { project ->

project.name != 'PROJECT_NAME'

}

}

Be sure to replace the PROJECT_NAME filler with your module’s name (e.g., test-api).
If you prefer to disable the Target Platform plugin altogether, you can add a slightly different

directive to your build.gradle file:

targetPlatform {

onlyIf { project ->

project.name != 'PROJECT_NAME'

}

}

This both skips the resolve task execution and disables BOM dependency management.
Now the resolve task skips your module project.

Depending on a Customized Distribution of Liferay DXP

There are times when manually specifying your project’s list of dependent JARs does not suffice.
If your app requires a customized Liferay DXP instance to run, you must regenerate the target
platform’s default list of capabilities with an updated list. Two examples of a customized Liferay
DXP instance are described below:

Example 1: Leveraging an External Feature
There are many external features/frameworks available that are not included in the download-

able bundle by default. After deploying a feature/framework, it’s available for your module projects
to leverage. When validating your app, however, the resolve task does not have access to external
capabilities not included by default. For example, Audience Targeting is an example of this type
of external framework. If you’re creating a Liferay Audience Targeting rule that depends on the
Audience Targeting framework, you can’t easily provide a slew of JARs for yourmodule. In this case,
you should install the platform your code depends on and regenerate an updated list of capabilities
that your Liferay DXP instance provides.

Example 2: Leveraging a Customized Core Feature
You can extend LiferayDXP’s core features to provide a customized experience for your intended

audience. Once deployed, you can assume these customizations are present and build other things
on top of them. The new capabilities resulting from your customizations are not available, however,
in the target platform’s default list of capabilities. Therefore, when your application relies on
non-default capabilities, it fails during the resolve task. To get around this, you must regenerate a
new list of capabilities that your customized Liferay DXP instance provides.

To regenerate the target platform’s capabilities (distro JAR) based on the current workspace’s
Liferay DXP instance, follow the steps below:

1. Start the Liferay DXP instance stored in your workspace. Make sure the platform you want to
depend on is installed.

362

2. Download the BND Remote Agent JAR file and copy it into the osgi/modules folder.

3. From the root folder of your workspace, run the following command:

bnd remote distro -o custom_distro.jar release.portal.distro 7.1.0

LiferayDXPusersmust replace the release.portal.distro artifact namewith release.dxp.distro

and use the 7.1.10 version syntax.
This connects to the newly deployed BND agent running in Liferay DXP and generates a
new distro JAR named custom_distro.jar. All other capabilities inherit their functionality
based on your Liferay DXP instance, so verify the workspace bundle is the version you plan
to release in production.

4. Navigate to your workspace’s root build.gradle file and add the following dependency:

dependencies {

targetPlatformDistro files('custom_distro.jar')

}

Now your workspace is pointing to a custom distro JAR file instead of the default one provided.
Run the resolve task to validate your modules against the new set of capabilities.

34.3 Including the Resolver in Your Gradle Build

By default, LiferayWorkspace provides the resolve task as an independent executable. It’s provided
by the Target Platform Gradle plugin and is not integrated in any other Gradle processes. This gives
you control over your Gradle build without imposing strategies you may not want included in your
default build process.

With that said, the resolve task can be useful to include in your build process if you want to
check for errors in your module projects before deployment. Instead of resolving your projects
separately from your standard build, you can build and resolve them all in one shot.

In LiferayWorkspace, the recommended path for doing this is adding it to the default check
Gradle task. The check task is provided by default in a workspace by the Java plugin. Adding the
resolve task to the check lifecycle task also promotes the resolve task to run for CI and other test
tools that typically run the check task for verification. Of course, Gradle’s build task also depends
on the check task, so you can run gradlew build and run the resolver too.

To call the resolve task during the check task automatically, open your workspace’s root
build.gradle file and add the following directive:

check.dependsOn resolve

You can also configure this for specific projects in a workspace if you don’t want all modules to
be included in the global check.

If the resolve task runs during every Gradle build, youmaywant to prevent the build from failing
if there are errors reported by the resolver. To do this, open your workspace’s root build.gradle file
and add the following code:

targetPlatform {

ignoreResolveFailures = true

}

363

https://search.maven.org/#search%7Cga%7C1%7Cbiz.aqute.remote.agent
https://docs.gradle.org/current/userguide/java_plugin.html#_lifecycle_tasks

This reports the failures without failing the build. Note, this can only be configured in the
workspace’s root build.gradle file.

Awesome! You can now run the resolve task in your current Gradle lifecycle.

34.4 Validating Modules Outside of Workspace

If you prefer to not use Liferay Workspace, but still want to validate modules against a target
platform, you must apply the Target Platform Gradle plugin to the root build.gradle file of your
multi-module Gradle build. Follow the Targeting a Platform Outside ofWorkspace section to do
this.

Once you have the Target Platform plugin and its BOM dependencies configured, you must
configure the targetPlatformDistro dependency. Open your project’s root build.gradle file and add
it to the list of dependencies. It should look like this:

dependencies {

targetPlatformBoms group: "com.liferay.portal", name: "release.portal.bom", version: "7.1.0"

targetPlatformBoms group: "com.liferay.portal", name: "release.portal.bom.compile.only", version: "7.1.0"

targetPlatformDistro group: "com.liferay.portal", name "release.portal.distro", version: "7.1.0"

}

Liferay DXP users must replace the artifact names and versions:

• release.portal.bom → release.dxp.bom

• release.portal.bom.compile.only → release.dxp.bom.compile.only

• release.portal.distro → release.dxp.distro

• 7.1.0 → 7.1.10

Now you can validate your modules against a target platform!

34.5 Leveraging Docker

Docker has become increasingly popular in today’s development lifecycle, by providing an auto-
mated way to package software and its dependencies into a standardized unit that can be shared
cross-platform. Read Docker’s extensive documentation to learn more.

Liferay provides Docker images for

• Liferay Portal
• Liferay DXP
• Liferay Commerce
• Liferay Portal Snapshots

You can pull Liferay’s Docker images from those resources and manage them yourself. Liferay
Workspace, however, provides an easy way to integrate Docker development into your existing
development workflow with preconfigured Gradle tasks.

Note: Leveraging Docker in LiferayWorkspace is only available for Gradle projects at this time.

In this tutorial, you’ll learn how to do the following tasks within a workspace:

364

https://docs.docker.com/
https://hub.docker.com/r/liferay/portal
https://hub.docker.com/r/liferay/dxp
https://hub.docker.com/r/liferay/commerce
https://hub.docker.com/r/liferay/portal-snapshot

• Creating a Docker container based on a provided Liferay DXP image
• Configuring the container
• Interacting with the container
• Building a custom Liferay DXP image

Creating a Liferay DXP Docker Container

1. Choose the Docker image you need. This is configured in your workspace’s gradle.properties
file by customizing this property:

liferay.workspace.docker.image.liferay

To find the possible property values you can set, see the official Liferay DXP Docker Hub’s
Tags section (e.g., Liferay Portal Docker Tags. For example, if you want to base your container
on the Liferay Portal 7.1 GA2 image, you would set this property:

liferay.workspace.docker.image.liferay=liferay/portal:7.1.1-ga2

2. Run the following command from your workspace’s root folder:

./gradlew createDockerContainer

This command creates a new container named [projectName]-liferayapp. A new build/docker

folder is generated in your workspace. This folder is mounted into the container’s file system. This
means files in workspace’s build/docker folder are also available in the container’s /etc/liferay

folder.
Anyprojects in yourworkspace are automatically compiled and copied to the build/docker/deploy

folder when the container is created; this means that when the container is started, all your
projects are deployed to the container. All configurations are also applied to the container. You’ll
learn more about configuring your container next.

Configuring the Container

Before starting your container, you may want to add additional portal configurations. This could
include things like

• Property overrides (e.g., portal-ext.properties)
• Marketplace app overrides
• App server configurations
• License files

You can do this by applying files (and their accompanying folder structures, if necessary) to
your workspace’s configs/docker folder. This folder is treated as your Liferay Home for Docker
development; you add additional files that overlay your workspace’s configs/common folder and your
Liferay DXP container’s default configuration.

For example, to enable the Gogo shell for your container, add a configs/docker/portal-

ext.properties file to your workspace with the following configuration:

module.framework.properties.osgi.console=0.0.0.0:11311

365

https://hub.docker.com/r/liferay/portal/tags

This lets you access your container using Gogo shell via telnet session.
Once the container is started, the configurations stored in configs/commmon and configs/docker

are transferred to the build/docker/files folder, which applies all configurations to the container’s
file system. For more information on workspace’s configs folder, see this section.

Note: You can call the deployDocker Gradle task from your workspace’s root folder to initiate the
Docker configuration transfer to the build/docker/files foldermanually. It’s executed automatically
when creating or starting the container.

Next, you’ll explore the commands for interacting with the container.

Interacting with the Container

startDockerContainer: starts the container.
logsDockerContainer: prints the portal runtime’s logs. You can exit log tracking mode while

maintaining a running container (e.g., [Ctrl|Command] + C).
dockerDeploy: deploys the project to the container’s deploy folder by copying the project

archive file to workspace’s build/docker/deploy folder. This command can also be executed from
workspace’s root folder to deploy all projects and copy all Docker configurations (i.e., from the
configs/common and configs/docker folders) to the container.

stopDockerContainer: stops the container.
removeDockerContainer: removes the container from Docker’s system.

Note: During your container’s startup, you may run into the following error:

/etc/liferay/entrypoint.sh: line 3: 11 Killed

${LIFERAY_HOME}/tomcat/bin/catalina.sh run

This usuallymeans youhavenot allocated enoughmemory to yourDocker engine to successfully
run your container. See Docker’s documentation to learn how to increase resources available to
Docker.

Next, you’ll learn how to build a custom image.

Building a Custom Liferay DXP Image

You can preserve your container’s configuration by building it as an image. To build your custom
Liferay DXP image, run

./gradlew buildDockerImage

A Dockerfile is generated for your container when building your image. To do this manually,
run

./gradlew createDockerfile

The Dockerfile is generated in your workspace’s build/docker folder. For more information on
how to configure the Dockerfile, see Docker’s Dockerfile reference documentation.

Your custom image is now available! Run docker image ls to verify its availability.
You can nowmanage Liferay’s Docker images in LiferayWorkspace!

366

https://docs.docker.com
https://docs.docker.com/engine/reference/builder/

34.6 Updating Liferay Workspace

LiferayWorkspace is continuously being updated with new features. If you created your workspace
a while ago, you may be missing out on some of the latest features that could improve your Liferay
development experience. Updating your LiferayWorkspace is easy; you’ll learn how to do it next.

1. Find the latest Liferay Workspace version. To do this, open the Liferay Gradle Plugins
Workspace Change Log and copy the version to which you want to upgrade. You can find the
updates and new features associated with each version by browsing the change log too.

2. Open your LiferayWorkspace’s settings.gradle file. This file resides in yourWorkspace’s root
folder.

3. In the dependencies block, you’ll find code similar to below:

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.workspace", version: "[WORKSPACE_VERSION]"

}

Update the com.liferay.gradle.plugins.workspacedependency’s version to the versionnumber
you copied from the change log in step 1.

4. Execute any Gradle command to initiate the update process for yourWorkspace (e.g., blade
gw tasks).

Note: The Gradle wrapper provided in a Gradle-based LiferayWorkspace must be updated if
you’re migrating from a workspace before version 1.10.14 to the latest available version. To update
your Gradle wrapper, run

./gradlew wrapper --gradle-version=4.10.2

Awesome! You learned where to check for LiferayWorkspace’s latest version, how to update
yourWorkspace to that version, and how to initiate the update process.

34.7 Updating Default Plugins Provided by Liferay Workspace

LiferayWorkspace comes with a slew of plugins like these:

• CSS Builder
• Javadoc Formatter
• Lang Builder
• Service Builder
• Source Formatter
• Theme Builder
• etc.

367

https://github.com/liferay/liferay-portal/blob/master/modules/sdk/gradle-plugins-workspace/CHANGELOG.markdown
https://github.com/liferay/liferay-portal/blob/master/modules/sdk/gradle-plugins-workspace/CHANGELOG.markdown
https://github.com/liferay/liferay-portal/tree/master/modules/util/css-builder
https://github.com/liferay/liferay-portal/tree/master/modules/util/javadoc-formatter
https://github.com/liferay/liferay-portal/tree/master/modules/util/lang-builder
https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-service-builder
https://github.com/liferay/liferay-portal/tree/master/modules/util/source-formatter
https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-theme-builder

Bundled plugins are updatedwith each release of workspace. Suppose you need a new feature in
the Source Formatter plugin, but the latest workspace version has not yet been updated to include
it. You can upgrade it yourself!

To upgrade one of workspace’s bundled plugins, follow these steps:

1. Find the bundle symbolic name (BSN) for the plugin you want to update. You can find
this value in the portal-tools.properties file. For example, the Source Formatter’s BSN is
com.liferay.source.formatter.

2. Open your workspace’s gradle.properties file and copy the plugin’s BSN followed by .version

and set the desired plugin version you want to use. For example,

com.liferay.source.formatter.version=1.0.654

If you’re most interested in the latest and greatest plugins, you can set the above property
to latest.release to always use the latest available version. This could, however, cause your
workspace to become unstable.

That’s it! You’re no longer tied to particular plugin versions provided by your workspace.

368

https://github.com/liferay/liferay-portal/tree/master/modules/util/source-formatter
https://github.com/liferay/liferay-portal/blob/master/modules/sdk/gradle-plugins/src/main/resources/com/liferay/gradle/plugins/dependencies/portal-tools.properties

CHAPTER 35

MAVEN

Maven is a viable option for managing Liferay projects if you don’t want to use Liferay’s default
Gradlemanagement system. Liferay provides severalMaven plugins to let you generate andmanage
your project. Liferay also provides Maven artifacts that are easy to obtain and are required for
Liferay Maven module development. In the Maven tutorials, you’ll learn how to

• Install Liferay Maven artifacts.
• Generate Liferay projects using Maven archetypes.
• Create a Module JAR using Maven.
• Deploy a project built with Maven to Liferay DXP.
• Create a remote repository for Maven projects.
• Deploy a Maven project to a remote repository.
• Use Service Builder in a Maven project.
• Compile Sass files in a Maven project.
• Build a Liferay theme in a Maven project.
• Leverage the MavenWorkspace.

Because Liferay DXP is tool agnostic, Maven is fully supported for Liferay DXP development.
Read on to learn more!

35.1 Installing Liferay Maven Artifacts

To create Liferay modules using Maven, you’ll need the archives required by Liferay (e.g., JAR and
WAR files). This isn’t a problem–Liferay provides them as Maven artifacts. You can retrieve them
from a remote repository.

There are two repositories that contain Liferay artifacts: Central Repository and Liferay Reposi-
tory. The Central Repository is the default repository used to download artifacts if you don’t have
a remote repository configured. The Central Repository usually offers the latest Liferay Maven
artifacts, but using the the Liferay Repository guarantees the latest artifacts released by Liferay.
Other than a slight delay between artifact releases between the two repositories, they’re identical.
You’ll learn how to reference both of them next.

369

https://maven.apache.org/

Using the Central Repository to install Liferay Maven artifacts only requires that you specify
your module’s dependencies in its pom.xml file. For example, the snippet below sets a dependency
on Liferay’s com.liferay.portal.kernel artifact:

<dependencies>

<dependency>

<groupId>com.liferay.portal</groupId>

<artifactId>com.liferay.portal.kernel</artifactId>

<version>2.61.2</version>

<scope>provided</scope>

</dependency>

...

</dependencies>

Whenpackaging yourmodule, the automaticMaven artifact installation process only downloads
the artifacts necessary for that module from the Central Repository.

You can view the published Liferay Maven artifacts on the Central Repository by searching for
liferay maven in the repo’s Search bar. For convenience, you can reference the available artifacts at
http://search.maven.org/#search|ga|1|liferay maven. Use the Latest Version column as a guide to
see what’s available for the intended version of Liferay DXP for which you’re developing.

If you’d like to access Liferay’s latest Maven artifacts, you can configure Maven to use Liferay’s
Nexus repository instead by inserting the following snippet in your project’s parent pom.xml:

<repositories>

<repository>

<id>liferay-public-releases</id>

<name>Liferay Public Releases</name>

<url>https://repository.liferay.com/nexus/content/repositories/liferay-public-releases</url>

</repository>

</repositories>

<pluginRepositories>

<pluginRepository>

<id>liferay-public-releases</id>

<url>https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/</url>

</pluginRepository>

</pluginRepositories>

The above configuration retrieves artifacts from Liferay’s release repository.

Note: Liferay also provides a snapshot repository that you can access by modifying the <id>,
<name>, and <url> tags to point to that repo. This repository should only be used in special cases.
You’ll also need to enable accessing the snapshot artifacts:

<snapshots>

<enabled>true</enabled>

</snapshots>

When the Liferay repository is configured in your settings.xml file, archetypes are generated
based on that repository’s contents. See the Generating New Projects Using Archetypes tutorial for
details on using Maven archetypes for Liferay development.

If you’ve configured the Liferay Nexus repository to access Liferay Maven artifacts and you’ve
already been syncing from the Central Repository, you may need to clear out parts of your local
repository to force Maven to re-download the newer artifacts. Also, do not leave the Liferay
repository configured when publishing artifacts to Maven Central. You must comment out the
Liferay Repository credentials when publishing your artifacts.

370

http://search.maven.org/#search%7Cga%7C1%7Cliferay%20maven
https://repository.liferay.com
https://repository.liferay.com
https://repository.liferay.com/nexus/content/repositories/liferay-public-snapshots/

The Liferay Maven repository offers a good alternative for those who want the most up-to-date
Maven artifacts produced by Liferay.

Congratulations! You’ve downloaded the Liferay artifacts and installed them to your chosen
repository.

35.2 Generating New Projects Using Archetypes

Creating Maven projects from scratch can be a lot of work. What dependencies does my Liferay
portlet project need? What does a Liferay Maven Service Builder project look like? How do I create
a Liferay Maven-based context contributor? These questions can be answered with three words:
Liferay Maven Archetypes.

Liferay provides a slew of Maven archetypes to easily create Liferay projects. In this tutorial,
you’ll learn how to use Liferay’s Maven archetypes to generate a project.

At the time of this writing, Liferay provides approximately 60 Maven archetypes for you to
use; expect this number to continue growing! These archetypes are generated from the Central
Repository, unless you’ve configured for them to be generated from another remote repository
(e.g., Liferay Repository. You can view the Liferay-provided Maven archetypes by running the
following command:

mvn archetype:generate -Dfilter=liferay

The generated archetypes are not all intended for the latest Liferay DXP release. Some are
intended for earlier versions of Liferay Portal (e.g., 7.0, 6.2). For example, archetypes with the
com.liferay.maven.archetypes prefix are legacy archetypes targeted for Liferay Portal 6.2. Those
prefixedwith com.liferay.project.templates.[TYPE]or com.liferay.faces.archetype:[TYPE] are com-
patible with 7.0.

Here’s a brief list of some popular Maven archetypes provided by Liferay:

• Activator
• Fragment
• MVC Portlet
• npm Angular Portlet
• npm React Portlet
• Panel App
• Portlet Provider
• Service Builder
• Soy Portlet
• Theme
• and many more…

For documentation on the archetypes (project templates) compatible with 7.0, see the Project
Templates reference section. VisitMaven’s Archetype Generation documentation for further details
on how to modify the Maven archetype generation process.

Note: If you’re creating a JSF portlet using Liferay Faces, you can find example archetype
declarations for JSF component suites at http://www.liferayfaces.org.

Here’s an example that creates a Liferay MVC portlet using its Liferay Maven archetype.

371

https://repository.liferay.com
http://maven.apache.org/archetype/maven-archetype-plugin/generate-mojo.html
http://www.liferayfaces.org/

1. On the command line, navigate to where you want your Maven project. Run the Maven
archetype generation command filtered for Liferay archetypes only:

mvn archetype:generate -Dfilter=liferay

2. Select the com.liferay.project.templates.mvc.portlet archetype by choosing its correspond-
ing number (e.g., 11).

In most cases, you should choose the latest archetype version. The archetype versions
provided are compatible with all 7.x versions of Liferay DXP.

3. Depending on theMaven archetype you selected, you’re given a set of archetype options to fill
out for your Maven project. For the MVC portlet archetype, you could use these properties:

• groupId: com.liferay
• artifactId: com.liferay.project.templates.mvc.portlet
• version: 1.0.6
• package: com.liferay.docs
• className: SampleMVC

Once you’ve filled out the required property values, you’re given a summary of the properties
configuration you defined. Enter Y to confirm your project’s configuration.

Your Maven project is generated and available from the folder you ran the archetype generation
command from. If you have an existing parent pom.xml file in that folder, your module project is
automatically accounted for there:

<modules>

...

<module>com.liferay.project.templates.mvc.portlet</module>

</modules>

The Liferay Maven archetypes generate deployable Liferay projects, but they’re bare bones and
likely require further customizations.

If you want to generate a quick foundation for a Liferay project built with Maven, using Liferay
Maven archetypes is your best option.

35.3 Creating a Module JAR Using Maven

If you have an existing Liferay module built with Maven that you created from scratch, or you’re
upgrading your Maven project from a previous version of Liferay DXP, your project probably can’t
generate an executable OSGi JAR. Don’t fret! You can do this by making a fewminor configurations
in your module’s POMs.

Note: If you used Liferay’s Maven archetypes to generate your module project, the project
already has the Maven plugins required to generate an OSGi JAR.

Continue on to see how this is done.

372

1. In your project’s pom.xml file, add the BNDMaven Plugin declaration:

<plugin>

<groupId>biz.aQute.bnd</groupId>

<artifactId>bnd-maven-plugin</artifactId>

<version>3.3.0</version>

<executions>

<execution>

<goals>

<goal>bnd-process</goal>

</goals>

</execution>

</executions>

<dependencies>

<dependency>

<groupId>biz.aQute.bnd</groupId>

<artifactId>biz.aQute.bndlib</artifactId>

<version>3.2.0</version>

</dependency>

<dependency>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.ant.bnd</artifactId>

<version>2.0.41</version>

</dependency>

</dependencies>

</plugin>

The BNDMaven plugin prepares all your Maven module’s resources (e.g., MANIFEST.MF) and
inserts them into the generated [Maven Project]/target/classes folder. This plugin prepares
your module to be packaged as an OSGi JAR deployable to Liferay DXP.

Note: Although WABs can be generated using the `bnd-maven-plugin`, this

is not supported by Liferay. WABs should be created as a standard WAR

project and deployed to the

[Liferay WAB Generator](/docs/7-1/tutorials/-/knowledge_base/t/using-the-wab-generator),

which generates a WAB for you.

2. In your project’s pom.xml file, add the Maven JAR Plugin declaration:

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-jar-plugin</artifactId>

<version>2.6</version>

<configuration>

<archive>

<manifestFile>${project.build.outputDirectory}/META-INF/MANIFEST.MF</manifestFile>

</archive>

</configuration>

</plugin>

</plugins>

</build>

The Maven JAR plugin builds your Maven project as a JAR file, including the resources
generated by the BNDMaven plugin. The above configuration also sets the default project
MANIFEST.MF file path for your project, which is essential when packaging your module using

373

http://njbartlett.name/2015/03/27/announcing-bnd-maven-plugin.html
http://maven.apache.org/plugins/maven-jar-plugin/

the BNDMaven plugin. By default, the Maven JAR Plugin ignores the target/classes/META-

INF/MANIFEST.MF generated by the BND Maven plugin, so you must explicitly set it as the
manifest file so it’s included properly in the generated JAR file.

3. Make sure you’ve added a bnd.bnd file to your Liferay Maven project, residing in the same
folder as your project’s pom.xml file.

4. Build your Maven OSGi JAR by running

mvn package

Your Maven JAR is generated in your project’s /target folder. You can deploy it manually into
Liferay DXP’s /deploy folder, or you can configure your project to deploy automatically to
Liferay DXP by following the Deploying a Project Built with Maven to Liferay DXP tutorial.

Fantastic! You’ve configured your Liferay Maven project to package itself into a deployable
OSGi module.

35.4 Deploying a Project Built with Maven to Liferay DXP

There are two ways to deploy a Maven-built Liferay project:

1. Copy your generated Maven JAR/WAR to your Liferay DXP instance’s /deploy folder.
2. Configure your Maven project to deploy to the Liferay DXP instance automatically by running

a Maven command via the command line.

Althoughmanually copying your JAR/WAR for deployment is a viable option, this is an inefficient
way to deploy your projects. With a small configuration in your Maven POMs, you can deploy a
project to Liferay DXP with one command execution.

Note: In previous versions of Liferay Portal, you were able to execute the liferay:deploy com-
mand to deploy your configured Maven project to a Liferay server. This is no longer possible since
the liferay-maven-plugin is not applied to Maven projects built from Liferay archetypes.

If you’re deploying a module JAR, a prerequisite for this tutorial is to have your project con-
figured to generate an OSGi module JAR; if you haven’t done this, visit the Creating a Module JAR
Using Maven tutorial for more information.

1. Add the following plugin configuration to your Liferay Maven project’s parent pom.xml file.

<build>

<plugins>

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.bundle.support</artifactId>

<version>3.2.1</version>

<executions>

<execution>

<id>deploy</id>

<goals>

<goal>deploy</goal>

374

http://bnd.bndtools.org/

</goals>

<phase>pre-integration-test</phase>

</execution>

</executions>

</plugin>

</plugins>

</build>

This POM configuration applies Liferay’s Bundle Support plugin by defining its groupId,
artifactId, and version. You can learn more about this plugin in the Maven Workspace
tutorial. The logic also defines the executions tag, which configures the Bundle Support
plugin to run during the pre-integration-test phase of your Maven project’s build lifecycle.
The deploy goal is defined for that lifecycle phase.

2. By default, the Bundle Support plugin deploys to the Liferay installation in the bundles folder,
located in your plugin’s parent folder. If you do not have your project set up this way, you
must define your Liferay home folder in your POM. You can do this by adding the following
logic within the plugin tags, but outside of the execution tags:

<configuration>

<liferayHome>LIFERAY_HOME_PATH</liferayHome>

</configuration>

An example configuration would look like this:

<configuration>

<liferayHome>C:/liferay/liferay-ce-portal-7.1-ga1</liferayHome>

</configuration>

Note: Maven applications built for previous Liferay Portal versions

required the `<liferay.maven.plugin.version>` tag to do various tasks (e.g.,

deploying to a Liferay server). This tag is not needed since the old

`liferay-maven-plugin` is no longer used.

3. Run this command to deploy your project:

mvn verify

That’s it! Your Liferay Maven project is built and deployed automatically to your Liferay DXP
instance.

375

https://maven.apache.org/guides/mini/guide-configuring-plugins.html#Using_the_executions_Tag
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#A_Build_Phase_is_Made_Up_of_Plugin_Goals

35.5 Creating a Maven Repository

You’ll frequently want to share Liferay artifacts and modules with teammates or manage your
repositories using a GUI. You can do this using Sonatype Nexus. It’s a Maven repository manage-
ment server that facilitates creating and managing release servers, snapshot servers, and proxy
servers. There are several other Maven repository management servers you can use (for example,
Artifactory), but this tutorial focuses on Nexus.

To create a Maven repository using Nexus, download Nexus and follow the instructions on
Nexus’ Installation page to install and start it.

To create your own repository using Nexus, follow these steps:

1. Open your web browser; navigate to your Nexus repository server (e.g., http://localhost:
8081/nexus) and log in. The default user name is admin with password admin123.

2. Click on Repositories and navigate to Add… → Hosted Repository.

Figure 35.1: Adding a repository to hold your Liferay artifacts is easy with Nexus.

To learn more about each type of Nexus repository, read Sonatype’s Managing Repositories
guide.

3. Enter repository properties appropriate for the type of artifacts it will hold. If you’re installing
release version artifacts into the repository, specify Release as the repository policy. Below
are example repository property values:

• Repository ID: liferay-releases

376

http://www.sonatype.org/nexus/
https://www.jfrog.com/artifactory/
https://help.sonatype.com/display/NXRM2/Download
https://help.sonatype.com/display/NXRM2/Installing+and+Running
http://localhost:8081/nexus
http://localhost:8081/nexus
http://books.sonatype.com/nexus-book/reference/confignx-sect-manage-repo.html

• Repository Name: Liferay Release Repository
• Provider: Maven2
• Repository Policy: Release

4. Click Save.

You just created a Liferay Maven repository accessible from your Nexus repository server!
Congratulations!

It’s also useful to create a Maven repository to hold snapshots of each Liferay project you
create. Creating a snapshot repository is almost identical to creating a release repository. The only
difference is that you specify Snapshot as its repository policy. For example, examine an example
snapshot repository’s property values:

• Repository ID: liferay-snapshots
• Repository Name: Liferay Snapshot Repository
• Provider: Maven2
• Repository Policy: Snapshot

Voila! You’ve created a repository for your Liferay releases (i.e., liferay-releases) and Liferay
snapshots (i.e., liferay-snapshots). To learn how to deploy your Liferay Maven artifacts to a Nexus
repository, see the Deploying Liferay Maven Artifacts to a Repository tutorial.

Next, you’ll configure your new repository servers in your Maven settings to install artifacts to
them.

Configuring Local Maven Settings

Before using your repository servers, you must specify them in your Maven environment settings.
Your repository settings let Maven find the repository and retrieve and install artifacts. You can
configure your local Maven settings in the [USER_HOME]/.m2/settings.xml file.

You only need to configure a repository server if you’re sharing artifacts (e.g., Liferay artifacts
and/or your modules) with others. If you’re automatically installing Liferay artifacts from the
Central/Liferay Repository and aren’t interested in sharing artifacts, you don’t need a repository
server specified in your Maven settings. You can find out more about installing artifacts from the
Central Repository or Liferay’s own Nexus repository in the Installing Liferay Maven Artifacts
tutorial.

To configure your Maven environment to access your liferay-releases and liferay-snapshots

repository servers, do the following:

1. Navigate to your [USER_HOME]/.m2/settings.xml file. Create it if it doesn’t yet exist.

2. Provide settings for your repository servers. Here are contents from a settings.xml file that
has liferay-releases and liferay-snapshots repository servers configured:

<?xml version="1.0"?>

<settings>

<servers>

<server>

<id>liferay-releases</id>

<username>admin</username>

<password>admin123</password>

</server>

377

<server>

<id>liferay-snapshots</id>

<username>admin</username>

<password>admin123</password>

</server>

</servers>

</settings>

The user name admin and password admin123 are the credentials of the default Nexus admin-
istrator account. If you changed these credentials for your Nexus server, make sure to update
settings.xml with these changes.

Now that your repositories are configured, they’re ready to receive all the LiferayMaven artifacts
you’ll download and the Liferay module artifacts you’ll create!

35.6 Deploying Liferay Maven Artifacts to a Repository

Deploying artifacts to a remote repository is important if you intend to share your Maven projects
with others. First, you must have a remote repository that can hold deployed Maven artifacts. If
you do not currently have a remote repository, see the Creating a Maven Repository tutorial to
learn how you can set up a Nexus repository. Also make sure your [USER_HOME]/.m2/settings.xml
file specifies your remote repository’s ID, user name, and password.

To deploy to a remote repository, your Liferay project should be packaged using Maven. Maven
provides a packaging command that creates an artifact (JAR) that can be easily deployed to your
remote repository. You’ll learn how to do this with a Liferay portlet module.

Once you’ve created a deployable artifact, you’ll configure your module project to communicate
with your remote repository and use Maven’s deploy command to send it on its way. Once your
module project resides on the remote repository, other developers can configure your remote
repository in their projects and set dependencies in their project POMs to reference it.

To follow this tutorial, you’ll need a Liferay module built with Maven. For demonstration
purposes, this tutorial uses the portlet.ds samplemodule project. To follow along with thismodule,
download the portlet.ds Zip.

1. Create a folder anywhere on your machine to serve as the parent folder for your Liferay
modules. Unzip the portlet.dsmodule project into that folder.

2. Create a pom.xml file inside this folder. Copy the following logic into the parent POM:

<?xml version="1.0" encoding="UTF-8"?>

<project

xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"

>

<modelVersion>4.0.0</modelVersion>

<groupId>liferay.sample</groupId>

<artifactId>liferay.sample.maven</artifactId>

<version>1.0.0</version>

<name>Liferay Maven Module Projects</name>

<packaging>pom</packaging>

<distributionManagement>

<repository>

<id>liferay-releases</id>

378

https://portal.liferay.dev/documents/113763090/114000186/portlet.ds.zip

<url>http://localhost:8081/nexus/content/repositories/liferay-releases</url>

</repository>

</distributionManagement>

<modules>

<module>portlet.ds</module>

</modules>

</project>

The tags <modelVersion> through <packaging> are POM tags that are used frequently in parent
POMs. Visit Maven’s POM Reference documentation for more information.
The <distributionManagement> tag specifies the deployment repository for all module
projects residing in the parent folder. You should include the repository’s ID and URL.
The above distributionManagement declaration is configured for the Liferay Nexus reposi-
tory created in the Creating a Maven Repository tutorial. That tutorial also created the
[USER_HOME]/.m2/settings.xml, which specified the remote repository’s ID, user name, and
password. Both the parent POM and settings.xml file’s repository declarations are required
to deploy your modules to that remote repository.
Finally, you must list the modules residing in the parent folder that you want deployed using
the <modules> tag. The portlet.dsmodule is specified within that tag.

3. Open the portlet.ds module’s pom.xml file. If you did not download the portlet.ds module
project Zip, you can reference its POM below.

<project

xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"

>

<modelVersion>4.0.0</modelVersion>

<artifactId>portlet.ds</artifactId>

<version>1.0.0</version>

<packaging>jar</packaging>

<parent>

<groupId>liferay.sample</groupId>

<artifactId>liferay.sample.maven</artifactId>

<version>1.0.0</version>

<relativePath>../pom.xml</relativePath>

</parent>

<dependencies>

<dependency>

<groupId>javax.portlet</groupId>

<artifactId>portlet-api</artifactId>

<version>2.0</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.osgi</groupId>

<artifactId>org.osgi.service.component.annotations</artifactId>

<version>1.3.0</version>

<scope>provided</scope>

</dependency>

</dependencies>

</project>

The portlet.dsmodule’s POM specifies its own attributes first, followed by the parent POM’s
attributes. Declaring the <parent> tag like above links the portlet.ds module to its parent

379

https://maven.apache.org/pom.html

POM, which is necessary to deploy to the remote repository. Then themodule’s dependencies
are listed. These dependencies are downloaded from the Central Repository and installed to
your local .m2 repository when you package the portlet.dsmodule.

4. Now that you’ve configured your parent POM and module POM, package your Maven project.
Navigate to yourmodule project (e.g., project.ds) using the command line and run theMaven
package command:

mvn package

This downloads and installs all your module’s dependencies and packages the project into a
JAR file. Navigate to your module project’s generated build folder (e.g., /target). You’ll notice
there is a newly generated JAR file. This is the artifact you’ll deploy to your Nexus repository.

5. Run Maven’s deploy command to deploy your module project’s artifact to your configured
remote repository.

mvn deploy

Your console shows output from the artifact being deployed into your repository server.

To verify that your artifact is deployed, navigate to the Repositories page of your Nexus server
and select your repository. A window appears below showing the Liferay artifact now deployed to
your repository.

Figure 35.2: Your repository server now provides access to your Liferay Maven artifacts.

Awesome! You can now share your Liferay module projects with anyone by deploying them as
artifacts to your remote repository!

380

35.7 Using Service Builder in a Maven Project

Liferay’s Service Builder is a model-driven service generation tool that is frequently used by many
Liferay module projects. If you have a Liferay Maven project, you may be wondering if Service
Builder works with your Maven projects; the answer is a resounding yes!

The easiest way to add Service Builder to your Maven project is to create a new Maven project
using Liferay’s provided Service Builder archetype. You can learn how to generate a Service Builder
Maven project by visiting the Service Builder Template article. In some cases, you should not use
this template due to a number of reasons:

• You’re updating a legacy Maven project to follow OSGi modular architecture.
• You have a pre-existing modular Maven project and don’t want to start over.

If you have questions about upgrading your legacy Service Builder project, see the From Liferay
6 to 7 tutorial section.

Time to get started!

1. Apply the Service Builder plugin in your Maven project’s pom.xml file:

<build>

<plugins>

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.service.builder</artifactId>

<version>1.0.182</version>

<configuration>

<apiDirName>../basic-api/src/main/java</apiDirName>

<autoImportDefaultReferences>true</autoImportDefaultReferences>

<autoNamespaceTables>true</autoNamespaceTables>

<buildNumberIncrement>true</buildNumberIncrement>

<hbmFileName>src/main/resources/META-INF/module-hbm.xml</hbmFileName>

<implDirName>src/main/java</implDirName>

<inputFileName>service.xml</inputFileName>

<modelHintsFileName>src/main/resources/META-INF/portlet-model-hints.xml</modelHintsFileName>

<mergeModelHintsConfigs>src/main/resources/META-INF/portlet-model-hints.xml</mergeModelHintsConfigs>

<osgiModule>true</osgiModule>

<propsUtil>com.liferay.blade.samples.servicebuilder.service.util.PropsUtil</propsUtil>

<resourcesDirName>src/main/resources</resourcesDirName>

<springFileName>src/main/resources/META-INF/spring/module-spring.xml</springFileName>

<springNamespaces>beans,osgi</springNamespaces>

<sqlDirName>src/main/resources/META-INF/sql</sqlDirName>

<sqlFileName>tables.sql</sqlFileName>

<testDirName>src/main/test</testDirName>

</configuration>

</plugin>

</plugins>

</build>

Service Builder is applied by specifying its groupId, artifactId, and version. The configuration
tag used above is an example of what a Service Builder project’s configuration could look like.
All the configuration attributes above should be modified to fit your project.
The above code configures Service Builder for a sample basic-servicemodule. When running
Service Builder with this configuration, the project’s API classes are generated in the basic-

api module’s src/main/java folder. You can also specify your hibernate module mappings,
implementation directory name, model hints file, Spring configurations, SQL configurations,

381

etc. You can reference all the configurable Service Builder properties in the Service Builder
Plugin reference article. Also, visit theDefining anObject-RelationalMapwith Service Builder
tutorial for more information on defining a service.xml file to configure Service Builder.

2. Apply theWSDD Builder plugin declaration directly after the Service Builder plugin declara-
tion:

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.wsdd.builder</artifactId>

<version>1.0.3</version>

<configuration>

<inputFileName>service.xml</inputFileName>

<outputDirName>src/main/java</outputDirName>

<serverConfigFileName>src/main/resources/server-config.wsdd</serverConfigFileName>

</configuration>

</plugin>

The WSDD Builder is necessary to generate your project’s remote services. Visit the Cre-
ating Remote Services tutorial for more information onWSDD (Web Service Deployment
Descriptor). Similar to the Service Builder configuration, the service.xml file is set to define
your project’s remote services. Also, the outputDirName defines where the *_deploy.wsdd and
*_undeploy.wsdd files are generated. Make sure to define your server-config.wsdd file, as well.

Terrific! You’ve successfully configured your Maven project to use Service Builder by applying
the com.liferay.portal.tools.service.builder and com.liferay.portal.tools.wsdd.builder plugins
in your project’s POM. To run Service Builder, see the Running Service Builder and Understanding
the Generated Code tutorial for instructions.

35.8 Compiling Sass Files in a Maven Project

If your LiferayMaven project uses Sass files to style its UI, youmust configure the project to convert
its Sass files into CSS files so they are recognizable for Maven’s build lifecycle. It would be a real
pain to convert your Sass files into CSS files manually before building your Maven project!

Liferay provides the com.liferay.css.builder plugin. The CSS Builder converts Sass files into
CSS files so the Maven build can parse your style sheets.

Here’s how to apply Liferay’s CSS builder to your Maven project.

1. Open your project’s pom.xml file and apply Liferay’s CSS Builder:

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.css.builder</artifactId>

<version>2.1.0</version>

<executions>

<execution>

<id>default-build</id>

<phase>compile</phase>

<goals>

<goal>build</goal>

</goals>

</execution>

</executions>

<configuration>

382

http://axis.apache.org/axis/java/reference.html#Global_Axis_Configuration

<docrootDirName>${com.liferay.portal.tools.theme.builder.outputDir}</docrootDirName>

<outputDirName>/</outputDirName>

<portalCommonPath>target/deps/com.liferay.frontend.css.common.jar</portalCommonPath>

</configuration>

</plugin>

The above configuration applies the CSS Builder by specifying its groupId, artifactId, and
version. It then defines the CSS Builder’s execution and configuration.

• The executions tag configures the CSS Builder to run during the compile phase of your
Maven project’s build lifecycle. The build goal is defined for that lifecycle phase.

• The configuration tag defines two important properties:

– docrootDirName: The base resources folder containing the Sass files to compile.
– outputDirName: The name of the sub-directories where the SCSS files are compiled

to.
– portalCommonPath: The file path for the Liferay Frontend Common CSS JAR file.

2. If you’re using Bourbon in your Sass files, you’ll need to add an additional plugin dependency
to your project’s POM. If you’re not using Bourbon, skip this step. Add the following plugin
dependency:

<plugin>

<artifactId>maven-dependency-plugin</artifactId>

<executions>

<execution>

<phase>generate-sources</phase>

<goals>

<goal>copy</goal>

</goals>

<configuration>

<artifactItems>

<artifactItem>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.css.common</artifactId>

<version>2.0.4</version>

</artifactItem>

</artifactItems>

<outputDirectory>${project.build.directory}/deps</outputDirectory>

<stripVersion>true</stripVersion>

</configuration>

</execution>

</executions>

</plugin>

Themaven-dependency-plugin copies the com.liferay.frontend.css.common dependency from
Maven Central to your project’s build folder so the CSS Builder can leverage it.

3. Use this command to compile your Maven project’s Sass files:

mvn compile

Note: Liferay’s CSSBuilder is supported forOracle’s JDKanduses a native compiler for increased
speed. If you’re using an IBM JDK, you may experience issues when building your Sass files (e.g.,

383

https://maven.apache.org/guides/mini/guide-configuring-plugins.html#Using_the_executions_Tag
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#A_Build_Phase_is_Made_Up_of_Plugin_Goals
https://maven.apache.org/pom.html#Plugins
https://mvnrepository.com/artifact/com.liferay/com.liferay.frontend.css.common
http://bourbon.io/
http://maven.apache.org/plugins/maven-dependency-plugin/

when building a theme). It’s recommended to switch to using the Oracle JDK, but if you prefer
using the IBM JDK, you must use the fallback Ruby compiler. To do this, add the following tag to
your CSS Builder configuration in your POM:

<sassCompilerClassName>ruby</sasscompilerClassName>

Be aware that the Ruby-based compiler doesn’t perform as well as the native compiler, so expect
longer compile times.

Awesome! You can now compile Sass files in your Liferay Maven project.

35.9 Building Themes in a Maven Project

Liferay’s Theme Builder is a tool used to build Liferay DXP theme files in your project. You can
incorporate the Theme Builder into your Maven project to generateWAR-style themes deployable
to Liferay DXP. To learn more about theming in Liferay DXP, see the Themes and Layout Templates
tutorial section.

The easiest way to create a Liferay theme with Maven is to create a newMaven project using
Liferay’s provided Theme archetype. You can learn how to generate a Maven Theme project by
visiting the Generating New Projects Using Archetypes tutorial. In some cases, however, this may
not be convenient. For instance, if you have a legacy theme project and don’t want to start over,
generating a new project is not ideal.

For cases like this, you should manually configure your Maven project to build a theme. You’ll
learn how to do this next.

1. Configure Liferay’s Theme Builder plugin in your project’s pom.xml file:

<build>

<plugins>

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.theme.builder</artifactId>

<version>1.1.4</version>

<executions>

<execution>

<phase>generate-resources</phase>

<goals>

<goal>build</goal>

</goals>

<configuration>

<diffsDir>${maven.war.src}</diffsDir>

<name>${project.artifactId}</name>

<outputDir>${project.build.directory}/${project.build.finalName}</outputDir>

<parentDir>${project.build.directory}/deps/com.liferay.frontend.theme.styled.jar</parentDir>

<parentName>_styled</parentName>

<templateExtension>ftl</templateExtension>

<unstyledDir>${project.build.directory}/deps/com.liferay.frontend.theme.unstyled.jar</unstyledDir>

</configuration>

</execution>

</executions>

</plugin>

</plugins>

</build>

The above configuration applies the Theme Builder by specifying its groupId, artifactId, and
version. It then defines the Theme Builder’s execution and configuration.

384

• The executions tag configures the Theme Builder to run during the generate-resources

phase of your Maven project’s build lifecycle. The build goal is defined for that lifecycle
phase.

• The configuration defines tag several important properties:

– diffsDir: The folder holding the files to copy over the parent theme.
– name: The new theme’s name.
– outputDir: The folder to build the theme.
– parentDir: The parent theme’s folder.
– parentName: The parent theme’s name.
– templateExtension: The extension of the template files (e.g., ftl or vm).
– unstyledDir: The unstyled theme’s folder.

2. Apply the CSS Builder plugin, which is required to use the Theme Builder:

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.css.builder</artifactId>

<version>2.1.0</version>

<executions>

<execution>

<id>default-build</id>

<phase>compile</phase>

<goals>

<goal>build</goal>

</goals>

</execution>

</executions>

<configuration>

<docrootDirName>target/${project.build.finalName}</docrootDirName>

<outputDirName>/</outputDirName>

<portalCommonPath>target/deps/com.liferay.frontend.css.common.jar</portalCommonPath>

</configuration>

</plugin>

You can learn more about the CSS Builder’s Maven configuration by visiting the Compiling
Sass Files in a Maven Project tutorial.

3. You can configure your project to exclude Sass files from being packaged in your theme. This
is optional, but is a nice convenience to keep any unnecessary source code out of yourWAR.
Since the Theme Builder creates aWAR-style theme, you should apply the maven-war-plugin
so it instructs theWAR file packaging process to exclude Sass files:

<plugin>

<artifactId>maven-war-plugin</artifactId>

<version>3.0.0</version>

<configuration>

<packagingExcludes>**/*.scss</packagingExcludes>

</configuration>

</plugin>

4. Insert the <packaging> tag in your project’s POM so your project is correctly packaged as aWAR
file. This tag can be placed with your project’s groupId, artifactId, and version specifications
like this:

385

https://maven.apache.org/guides/mini/guide-configuring-plugins.html#Using_the_executions_Tag
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#A_Build_Phase_is_Made_Up_of_Plugin_Goals
https://maven.apache.org/pom.html#Plugins
https://maven.apache.org/plugins/maven-war-plugin/

<groupId>com.liferay</groupId>

<artifactId>com.liferay.project.templates.theme</artifactId>

<version>1.0.0</version>

<packaging>war</packaging>

5. Building themes requires certain dependencies. You can configure these dependenices in
your project’s pom.xml as directories or JAR files. If you choose to use JARs, you must apply
the maven-dependency-plugin and have it copy JAR dependencies into your project from
Maven Central:

<plugin>

<artifactId>maven-dependency-plugin</artifactId>

<executions>

<execution>

<phase>generate-sources</phase>

<goals>

<goal>copy</goal>

</goals>

<configuration>

<artifactItems>

<artifactItem>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.css.common</artifactId>

<version>${com.liferay.frontend.css.common.version}</version>

</artifactItem>

<artifactItem>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.theme.styled</artifactId>

<version>${com.liferay.frontend.theme.styled.version}</version>

</artifactItem>

<artifactItem>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.theme.unstyled</artifactId>

<version>${com.liferay.frontend.theme.unstyled.version}</version>

</artifactItem>

</artifactItems>

<outputDirectory>${project.build.directory}/deps</outputDirectory>

<stripVersion>true</stripVersion>

</configuration>

</execution>

</executions>

</plugin>

This configuration copies the com.liferay.frontend.css.common, com.liferay.frontend.theme.styled,
and com.liferay.frontend.theme.unstyled dependencies into your Maven project. Notice that
you’ve set the stripVersion tag to true and you’re setting the artifact versions within each
artifactItem tag. You’ll set these versions and a few other properties for your Maven project
next.

6. Configure the properties for your project in its pom.xml file:

<properties>

<com.liferay.css.builder.version>2.0.1</com.liferay.css.builder.version>

<com.liferay.frontend.css.common.version>2.0.4</com.liferay.frontend.css.common.version>

<com.liferay.frontend.theme.styled.version>2.0.28</com.liferay.frontend.theme.styled.version>

<com.liferay.frontend.theme.unstyled.version>2.2.5</com.liferay.frontend.theme.unstyled.version>

<com.liferay.portal.tools.theme.builder.version>1.1.4</com.liferay.portal.tools.theme.builder.version>

</properties>

The properties above set the versions for the CSS and Theme Builder plugins and their
dependencies.

386

http://maven.apache.org/plugins/maven-dependency-plugin/

You’ve successfully configured yourMaven project to build a Liferay theme! For info on running
the Theme Builder in your Maven project, see the Theme Builder tutorial.

35.10 MavenWorkspace

A Liferay MavenWorkspace is a generated environment that is built to hold and manage Liferay
projects built with Maven. This workspace aids in Liferay project management by applying various
Maven plugins and configured properties. The Liferay MavenWorkspace offers a full development
lifecycle for your Maven projects to make developing them for Liferay DXP easier than ever. In this
tutorial, you’ll learn how to leverage the development lifecycle of a Liferay MavenWorkspace.

First, you’ll learn how to install a MavenWorkspace.

Installation

The MavenWorkspace is installed by generating the workspace project from either an archetype or
via Blade CLI. You can generate a workspace via archetype by executing the following command:

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.workspace \

-DgroupId=[GROUP_ID] \

-DartifactId=[WORKSPACE_NAME] \

-Dversion=[VERSION]

If you have Blade CLI installed, and want to use that instead of generating an archetype, you
can run the following command:

blade init -b maven [WORKSPACE_NAME]

AMavenWorkspace is generated in the current folder. No other tools or CLIs are required for
MavenWorkspace.

Anatomy

The default MavenWorkspace contains the following folders/files:

• [MAVEN_WORKSPACE]

– configs

* common

* dev

* local

* prod

* uat

– modules

* pom.xml

– themes

387

* pom.xml

– wars

* pom.xml

– pom.xml

For more information on the configs folder, see the Testing Modules section. The modules,
themes, and wars folders hold projects of that type. The parent pom.xml configures your workspace
as a Maven project and applies the Bundle Support plugin, which is required for your Maven
Workspace to handle 7.0 projects. You can also configure workspace properties in your POM, which
you’ll learn about later.

Next, you’ll learn how to initialize and package Liferay DXP bundles using workspace.

Adding a Liferay Bundle to a MavenWorkspace

Liferay MavenWorkspaces can generate and hold a Liferay Server. This lets you build/test your
plugins against a running Liferay instance. Before generating a Liferay instance, open the pom.xml

file located in your workspace’s root folder and set the version of the Liferay bundle to generate and
install by setting the download URL for the liferay.workspace.bundle.url property. For example,

<properties>

<liferay.workspace.bundle.url>

https://releases-cdn.liferay.com/portal/7.1.0-ga1/liferay-ce-portal-tomcat-7.1.0-ga1-20180703012531655.zip

</liferay.workspace.bundle.url>

...

</properties>

You can also set location of your Liferay bundle with the liferay.workspace.home.dir property.
It’s set to bundles by default.

Important: Make sure the com.liferay.portal.tools.bundle.support plugin in your POM is
configured to use version 3.2.0+. The liferay.workspace.bundle.url property does not work for
workspaces using an older version of the Bundle Support plugin. See the Updating a Maven
Workspace section for instructions on how to update the plugin.

Once you’ve finalized your workspace properties, navigate to your workspace’s root folder and
run

blade server init

This uses workspace’s pre-bundled Blade CLI tool to download the version of Liferay DXP you
specified in your POM file and installs your Liferay DXP instance in the bundles folder. If you prefer
to not use Blade CLI or do not have it installed, the pure Maven equivalent for this command is mvn
bundle-support:init.

If you want to skip the downloading process, you can create the bundles folder manually in your
workspace’s ROOT folder and extract your Liferay Portal bundle to that folder.

You can also produce a distributable Liferay DXP bundle (Zip) from within a workspace. To do
this, navigate to your workspace’s root folder and run the following command:

mvn bundle-support:dist

Your distribution file is available from the workspace’s /target folder.

388

Configuring MavenWorkspace Properties

There are some configurable workspace properties you can set in the root pom.xml file:

• liferay.workspace.bundle.url: the URL used to download the Liferay DXP bundle. For more
information, see Adding a Liferay Bundle to a MavenWorkspace.

• liferay.workspace.environment: the name of a configs subfolder holding the Liferay DXP
server configuration to use. See Testing Modules for more information.

Properties can be set by adding tags with the property name. See the property configurations
below for an example on how these can be set in your POM:

<properties>

<liferay.workspace.bundle.url>https://releases-cdn.liferay.com/portal/7.1.0-ga1/liferay-ce-portal-tomcat-7.1.0-ga1-

20180703012531655.zip</liferay.workspace.bundle.url>

<liferay.workspace.environment>local</liferay.workspace.environment>

</properties>

Next, you’ll learn how to add and deploy modules/projects in your MavenWorkspace.

Module Management

Maven Workspace makes managing your Maven project easier than ever. To create a project,
navigate to the appropriate workspace folder for that type of project (e.g., modules, wars, etc.). Then
generate the project archetype. You can view a full listing of the available archetypes in the Project
Templates reference section. Once the project is generated, it can leverage all ofMavenWorkspace’s
functionality.

Maven Workspace also lets you deploy your projects to Liferay DXP using Maven. See the
Deploying a Project Built with Maven to Liferay DXP tutorial for more information.

Want to leverage MavenWorkspace’s testing infrastructure so you can simulate your Maven
projects in a specific environment? See the Testing Modules section for more information.

Once you have your Maven projects solidified and ready for the limelight, it’d be great to release
your projects to the public. MavenWorkspace doesn’t provide this functionality, but there are easy
ways to use external release tools with workspace. See the Releasing Modules section for more
information.

Next, you’ll learn how to update a MavenWorkspace.

Updating a MavenWorkspace

Liferay Workspace is updated periodically with new features, so you’ll want to update your
workspace instance accordingly. To update your MavenWorkspace, you must update the Bundle
Support plugin configured in your workspace’s root pom.xml file:

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.bundle.support</artifactId>

<version>3.2.5</version>

...

</plugin>

Update the version to the latest available release. You can reference the available releases for
the Bundle Support plugin here.

389

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.tools.bundle.support/

CHAPTER 36

INTELLIJ IDEA

The Liferay IntelliJ plugin provides support for Liferay DXP development in IntelliJ IDEA. Liferay’s
IntelliJ plugin provides the following built-in features:

• Creating a LiferayWorkspace (Gradle and Maven based)
• Creating Liferay projects (Gradle and Maven based)
• Liferay DXP Tomcat server support for project deployment and debugging
• Support for adding line markers for each entity in the service editor
• Syntax checking, highlighting, and code completion (e.g., Bnd and XML files)

In these tutorials, you’ll learn how to install the Liferay IntelliJ plugin and leverage its features
to improve Liferay development with IntelliJ IDEA.

36.1 Installing the Liferay IntelliJ Plugin

There are two ways to install the IntelliJ plugin for IDEA:

• via IntelliJ Marketplace
• via Zip file

Follow the steps pertaining to your preferred installation process.

Installing Via IntelliJ Marketplace

1. In IntelliJ, navigate to File → Settings → Plugins.

2. In the Marketplace tab, search for Liferay in the provided search bar.

3. Click Install next to the Liferay IntelliJ Plugin.

4. After the plugin has downloaded, select Restart IDE.

Once IntelliJ restarts, the Liferay IntelliJ plugin is installed and ready for use.

391

https://plugins.jetbrains.com/plugin/10739-liferay-intellij-plugin
https://www.jetbrains.com/idea/

Figure 36.1: IntelliJ Marketplace offers a streamlined way to install plugins.

Installing Via Zip File

1. Navigate to the JetBrains’ Liferay IntelliJ plugin page and download it to your local machine.

2. In IntelliJ, navigate to File → Settings → Plugins.

3. Click the gear icon from the top menu and select Install Plugin from Disk….

4. Navigate to the Installed tab in the top menu and select Restart IDE.

Once IntelliJ restarts, the Liferay IntelliJ plugin is installed and ready for use.
Great job! You’re now ready to develop for Liferay DXP in IntelliJ!

36.2 Creating a Liferay Workspace with IntelliJ IDEA

In this tutorial, you’ll learn how to generate a LiferayWorkspace using IntelliJ IDEA, which runs
on Blade CLI behind the scenes. IntelliJ gives you a graphical interface instead of the command
prompt, which can streamline your workflow. You’ll also learn how to import an existing Liferay
Workspace into IntelliJ. To learn more about LiferayWorkspaces, visit its dedicated tutorial section.

Creating a Liferay Workspace

Follow the steps below to create a LiferayWorkspace:

1. Open the New Project wizard by selecting File → New → Project. If you’re starting IntelliJ for
the first time, you can do this by selecting Create New Project in the opening window.

392

https://plugins.jetbrains.com/plugin/10739-liferay-intellij-plugin

2. Select Liferay from the left menu.

3. Choose the build type for your workspace (i.e., Gradle or Maven). Then click Next.

Figure 36.2: Choose Liferay Gradle Workspace or Liferay Maven Workspace, depending on the build you prefer.

4. Specify your workspace’s name, location, intended Liferay DXP version, target platform, and
SDK (i.e., Java JDK). Then click Finish.

5. A window opens for additional build configurations for the build type you selected (i.e.,
Gradle or Maven). Verify the settings and click OK.

Awesome! You’ve successfully created a LiferayWorkspace in IntelliJ IDEA!

Importing a Liferay Workspace

To import an existing workspace into IntelliJ, follow the steps below:

1. Select File → New → Project from Existing Sources….

2. Select the workspace you want to import. Then click OK.

393

Figure 36.3: Specify your workspace’s configurations.

Figure 36.4: Specify your workspace’s configurations.

394

3. Click the Import project from external model radio button and select the build tool your
workspace uses (e.g., Gradle or Maven).

4. Configure the project import (if necessary) and then click Finish. See the Import a Project
section of IntelliJ’s official documentation for more information.

5. Step through the remaining import prompts and then open your imported workspace as you
desire (i.e., in the current window or a new window).

Excellent! Your existing LiferayWorkspace is now imported in IntelliJ IDEA!

36.3 Creating Projects with IntelliJ IDEA

IntelliJ IDEA provides a New LiferayModules wizard to create a variety of different module projects.
You can also use the same wizard to create theme projects, WAR-style projects, and more. Before
beginning, ensure you’ve created/imported a Liferay Workspace in your IntelliJ environment.
Follow the steps below to create a Liferay DXP module:

1. Navigate to File → New → Liferay Module.

Figure 36.5: Selecting Liferay Module opens the New Liferay Modules wizard.

2. Select the project you want to create. Although the wizard characterizes itself for modules,
there are many available projects that are not OSGi-based modules (e.g., theme, war-mvc-
portlet, etc.). See the Project Templates reference section for more information on the
available templates.

3. Configure your project’s SDK (i.e., JDK), package name, class name, and service name, if
necessary. Then click Next.

4. Give your project a name. Then click Finish.

Awesome! Your project is available under its project type folder in your workspace.

395

https://www.jetbrains.com/help/idea/creating-and-managing-projects.html#importing-project

Figure 36.6: Choose the project template to create your module.

36.4 Installing a Server in IntelliJ IDEA

Installing a Liferay server in IntelliJ is easy. In just a few steps, you’ll have your server up and
running.

Note: Tomcat andWildfly are the only supported Liferay app server bundles available to install
in IntelliJ.

Follow these steps to install your server:

1. Right-click your Liferay workspace and select Liferay → InitBundle.

This downloads the Liferay DXP bundle specified in your workspace’s gradle.properties file.
You can change the default bundle by updating the liferay.workspace.bundle.url property.
For example, this is required to update the default bundle version and/or type (e.g., Wildfly).
The downloaded bundle is stored in the workspace’s bundles folder.

2. Navigate to the top right Configurations dropdownmenu and select Edit Configurations. From
here, you can configure your server’s run and debug configurations.

Figure 36.7: You have several options to choose from the server dropdownmenu.

3. Click the Add New Configuration button () and select Liferay Server.

4. Give your server a better name andmodify any other configurations, if necessary. Then select
OK .

396

Figure 36.8: Set your Liferay server’s configurations in the Run/Debug Configurations menu.

Your server is now available in IntelliJ! Make sure to select it in the Configurations dropdown
before executing the configuration buttons (below).

For reference, here’s how the IntelliJ configuration buttonsworkwith your LiferayDXP instance:

• Start (): Starts the server.
• Stop (): Stops the server.
• Debug (): Starts the server in debug mode. For more information on debugging in IntelliJ,
see the IntelliJ Debugging article.

Now you’re ready to use your server in IntelliJ!

36.5 Deploying Projects with IntelliJ IDEA

Once you’ve created a project and installed your Liferay server in IntelliJ, you’ll want to deploy
your project. Follow the steps below to do this:

397

https://www.jetbrains.com/help/idea/debugging-code.html

1. Right-click your project from within the LiferayWorkspace folder structure and select Liferay
→ Deploy.
This automatically loads a build progress window viewable at the bottom of your IntelliJ
instance.

Figure 36.9: Verify that your project build successfully.

2. Verify that your project builds successfully from the build progress window. Then navigate
back to your server’s window and confirm it starts in your configured Liferay DXP instance.
You should receive a message like this:

INFO [fileinstall-C:/liferay-workspace/bundles/osgi/modules][BundleStartStopLogger:35] STARTED com.liferay.docs_1.0.0 [652]

The watch Blade CLI task deploys your project. This watches your local project and propagates
saved changes to the deployed project. With this, project updates are viewable almost instanta-
neously from your Liferay server. For more info on the watch task, see the Deploying Projects with
Blade CLI article.

That’s it! You’ve successfully deployed your project to Liferay DXP!

398

CHAPTER 37

LIFERAY SAMPLE PROJECTS

Liferay provides working examples of sample projects that target different integration points in
Liferay DXP. These working examples can be copy/pasted into your own independent project so
you can take advantage of various Liferay extension points. Each sample is a standalone project
and includes its own build files. Liferay’s sample projects can be found in the liferay-blade-samples
repository on GitHub. You can find documentation for Liferay’s sample projects in the Sample
Projects reference section.

If you’d like to browse the repository locally or copy sample projects into your own project, fork
and clone the liferay-blade-samples repository.

You can also use Blade CLI to create samples by running this command:

blade samples [SAMPLE_NAME]

For example, the following command generates the ds-portlet sample:

blade samples ds-portlet

At first glance, you’ll notice that the repository is broken up into three primary folders:

• gradle

• liferay-workspace

• maven

The provided sample projects are organized by their development toolchains to cater to a variety
of developers. Each folder offers the same set of sample Liferay projects. Their only difference is
that the build files are specific to their toolchain. For example, the gradle folder contains projects
using standard OSS Gradle plugins that can be added to any Gradle composite build. The same
concept also applies to the liferay-workspace and maven projects.

The gradle folder also uses the Liferay Gradle plugin (e.g., com.liferay.plugin) which encom-
passes additional functionality for various types of Liferay projects. The Liferay Gradle plugin is
recommended for Gradle users developing for Liferay DXP.

Some samples also come configured with logging to help you fully understand what the sample
is accomplishing behind the scenes. For example, OSGi module logging is implemented for several
samples (e.g., action-command-portlet, document-action, service-builder/jdbc, etc.), which lets

399

https://github.com/liferay/liferay-blade-samples
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/cloning-a-repository/
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/ds-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/action-command-portlet

OSGi modules supply their own logging configuration defaults without external configuration. See
the Adjusting Module Logging tutorial for more information.

For a list of sample template projects available, visit the Liferay extension points sub-section in
the Liferay Blade Samples repository. This list is not comprehensive. A subset of missing extension
point samples can be found in the Liferay extension points without template projects sub-section.
Visit the repo’s Contribution Guidelines section for details on contributing to this repository.

37.1 Liferay Upgrade Planner

The Liferay Upgrade Planner provides an automated way to adapt your installation’s data and
legacy plugins to your desired Liferay DXP upgrade version. We recommend leveraging this tool
for any of the following upgrades:

• Liferay Portal 6.2 → Liferay DXP 7.0, 7.1, or 7.2
• Liferay DXP 7.0 → Liferay DXP 7.1 or 7.2
• Liferay DXP 7.1 → Liferay DXP 7.2

The Upgrade Planner is provided in Liferay Dev Studio (versions 3.6+). Here’s what the Upgrade
Planner does:

• Updates your development environment.
• Identifies code affected by the API changes.
• Describes each API change related to the code.
• Suggests how to adapt the code.
• Provides options, in some cases, to adapt code automatically.
• Transfers database and server data to your new environment.

Even if you prefer tools other than Dev Studio (which is based on Eclipse), you should upgrade
your data and legacy plugins using the Upgrade Planner first–you can use your favorite tools
afterward.

To start the Upgrade Planner in Dev Studio, do this:

1. Navigate to Project → New Liferay Upgrade Plan….

2. In the New Liferay Upgrade Plan wizard, assign your plan a name and choose an upgrade
plan outline. The data and code upgrade processes are separate, so you must step through
each process independently.

3. Choose your current Liferay version and the new version you’re upgrading to.

4. If you chose to complete a code upgrade, you must also select the folder where your legacy
plugins reside (e.g., Plugins SDK for Liferay 6.2 projects).

5. Click Finish.

Switch to the new Liferay Upgrade Planner perspective (prompted automatically). You’re now
offered several windows in the UI:

• Project Explorer: displays your legacy plugin environment and new development environment.
It also displays your upgrade problems that are detected during the Fix Upgrade Problems step.

400

https://github.com/liferay/liferay-blade-samples#liferay-extension-points-and-template-projects
https://github.com/liferay/liferay-blade-samples#liferay-extension-points-without-template-projects
https://github.com/liferay/liferay-blade-samples#contribution-guidelines

Figure 37.1: Configure your upgrade plan before beginning the upgrade process.

• Liferay Upgrade Plan: outlines the upgrade plan’s steps and step summaries.
• Liferay Upgrade Plan Info: shows official documentation that describes the upgrade step.

To progress through your upgrade plan, click the steps outlined in the Liferay Upgrade Plan
window. Each step can have several options:

• Click to preview: previews what an automated step will perform.
• Click to perform: executes an automated process provided with the step. This is only offered
for steps where the Upgrade Planner can assist.

• Click when complete: marks the step as complete. This is only offered when the Upgrade
Planner cannot provide automated assistance and, instead, only offers documentation to
assist in completing the step manually.

• Restart: marks a completed step as unfinished. The step is performed again if automation is
involved.

• Skip: skips the step and jumps to the next step in the outline.

Great! You now have a good understanding of the Liferay Upgrade Planner’s UI and how to get
started.

Note: The Upgrade Planner upgrades data and code to Liferay DXP versions that include 7.0
and the latest DXP version. It links to the latest Liferay DXP upgrade documentation. 7.0 upgrade
documentation is available here:

• Data Upgrade
• Code Upgrade

401

Figure 37.2: You can preview the Upgrade Planner’s automated updates before you perform them.

37.2 Using the Upgrade Planner with Proxy Requirements

If you have proxy server requirements and want to configure your http(s) proxy
to work with the Liferay Upgrade Planner, follow the instructions below.

1. In Dev Studio’s DeveloperStudio.ini/eclipse.ini file, add the following parameters:

-Djdk.http.auth.proxying.disabledSchemes=

-Djdk.http.auth.tunneling.disabledSchemes=

2. Launch Dev Studio.

3. Go to Window → Preferences → General → Network Connections.

4. Set the Active Provider drop-down selector to Manual.

5. Under Proxy entries, configure both proxy HTTP and HTTPS by clicking the field and selecting
the Edit button.

6. For each schema (HTTP and HTTPS), enter your proxy server’s host, port, and authentication
settings (if necessary). Do not leave whitespace at the end of your proxy host or port settings.

7. Once you’ve configured your proxy entry, click Apply and Close.

Awesome! You’ve successfully configured the Upgrade Planner’s proxy settings!

402

Figure 37.3: You can configure your proxy settings in Dev Studio’s Network Connections menu.

403

CHAPTER 38

PORTLETS

Web apps in Liferay DXP are called portlets. Like many web apps, portlets process requests and
generate responses. In the response, the portlet returns content (e.g., HTML, XHTML) for display in
browsers. One key difference between portlets and other web apps is that portlets run in a portion
of the web page. When you’re writing a portlet application, you only need to worry about that
application: the rest of the page–the navigation, the top banner, and any other global components
of the interface–is handled by other components. Another difference is that portlets run only
in a portal server. Portlets can therefore use the portal’s existing support for user management,
authentication, permissions, page management, and more. This frees you to focus on developing
the portlet’s core functionality. In many ways, writing your application as a portlet is easier than
writing a standalone application.

Portlets can be placed on pages by users (if they have permission) or portal administrators,
who can place several different portlets on a single page. For example, a page in a community
site could have a calendar portlet for community events, an announcements portlet for important
announcements, and a bookmarks portlet for links of interest to the community. And because the
portal controls page layout, you can reposition and resize one or more portlets on a page without
altering any portlet code. Doing all this in other types of web apps would require manual re-coding.
Alternatively, a single portlet can take up an entire page if it’s the only app you need on that page.
For example, a message boards or wiki portlet is best suited on its own page. In short, portlets
alleviate many of the traditional pain points associated with developing web apps.

What’s more, portals and portlets are standards-based. In 2003, Java Portlet Specification 1.0
(JSR-168) first defined portal and portlet behavior. In 2008, Java Portlet Specification 2.0 (JSR-286)
refined and built on JSR-168, while maintaining backwards compatibility, to define features like
inter-portlet communication (IPC) and more. The recently released Java Portlet Specification 3.0
(JSR-362) continues portal and portlet evolution. Liferay leads in this space by having a member in
the Expert Group.

So what do these specifications define? The links above show the complete definition; here
we’ll briefly summarize how portlets differ from other types of servlet-based web apps.

Portlets handle requests in multiple phases. This makes portlets much more flexible than
servlets. Each portlet phase executes different operations:

• Render: Generates the portlet’s contents based on the portlet’s current state. When this
phase runs on one portlet, it also runs on all other portlets on the page. The Render phase

405

https://jcp.org/en/jsr/detail?id=168
https://jcp.org/en/jsr/detail?id=286
https://jcp.org/en/jsr/detail?id=362

Figure 38.1: You can place multiple portlets on a single page.

runs when any portlets on the page complete the Action or Event phases.
• Action: In response to a user action, the Action phase performs some operations that change
the portlet’s state. The Action phase can also trigger events that are processed by the Event
phase. Following the Action phase and optional Event phase, the Render phase then regener-
ates the portlet’s contents.

• Event: Processes events triggered in the Action phase. Events are used for inter-process
communication (IPC). Once the portlet processes all events, the portal calls the Render phase
on all portlets on the page.

• Resource-serving: Serves a resource independent from the rest of the lifecycle. This lets a
portlet serve dynamic content without running the Render phase on all portlets on a page.
The Resource-serving phase handles AJAX requests.

Compared to servlets, portlets also have some other key differences. Since portlets only render
a portion of a page, tags like <html>, <head>, and <body> aren’t allowed. And because you don’t know
the portlet’s page ahead of time, you can’t create portlet URLs directly. Instead, the portlet API

406

gives you methods to create portlet URLs programmatically. Also, because portlets don’t have
direct access to the javax.servlet.ServletRequest, they can’t read query parameters directly from
a URL. Portlets instead access a javax.portlet.PortletRequest object. The portlet specification
only provides a mechanism for a portlet to read its own URL parameters or those declared as
public render parameters. Liferay DXP does, however, provide utility methods that can access the
ServletRequest and query parameters. Portlets also have a portlet filter available for each phase
in the portlet lifecycle. Portlet filters are similar to servlet filters in that they allow request and
response modification on the fly.

Portlets also differ from servlets by having distinctmodes andwindow states. Modes distinguish
the portlet’s current function:

• Viewmode: The portlet’s standard mode. Use this mode to access the portlet’s main func-
tionality.

• Edit mode: The portlet’s configuration mode. Use this mode to configure a custom view or
behavior. For example, the Edit mode of a weather portlet could let you choose a location to
retrieve weather data from.

• Helpmode: Amode that displays the portlet’s help information.

Most modern applications use View Mode only.
Portlet window states control the amount of space a portlet takes up on a page. Window states

mimic window behavior in a traditional desktop environment:

• Normal: The portlet can be on a page that contains other portlets. This is the default window
state.

• Maximized: The portlet takes up an entire page.
• Minimized: Only the portlet’s title bar shows.

When you develop portlets, you can leverage all the features defined by the portlet specification.
Depending on how you develop and package your portlet, however, it may not be able to run on
other portal containers. You may now be saying, “Hold on a minute! I thought Liferay DXP was
standards-compliant? What gives?” Liferay DXP is standards-compliant, but it contains some
sweeteners in the form of APIs designed to make developers’ lives easier. For example, Liferay
DXP contains an MVC framework that makes it simpler to implement MVC in your portlet. This
framework, however, is only available in Liferay DXP.Without modification, a portlet that uses this
framework won’t run if deployed to a non-Liferay portal container. Note, though, that we don’t
force you to use our MVC framework or any of its other unique APIs. For example, you can develop
your portlet with strictly standards-compliant frameworks and APIs, package it in aWAR file, and
then deploy it on any standards-compliant portal container.

Liferay DXP also contains an OSGi runtime. This means that you don’t have to develop and
deploy your portlet as a traditionalWARfile; you can do so asOSGimodules instead. We recommend
the latter, so you can take advantage of the modularity features inherent in OSGi. For a detailed
description of these features, see the tutorial OSGi andModularity. Note, however, that portlets you
develop as OSGi modules won’t run on other portlet containers that lack an OSGi runtime. Even so,
the advantages of modularity are so great that we still recommend you develop your portlets as
OSGi modules.

So what’s the benefit to adopting Liferay’s frameworks and APIs? There are several:

• They follow Liferay’s design patterns. The better you understand them, the better you
understand Liferay DXP.

407

• They are the result of nearly 15 years of portlet development.
• They provide many conveniences that make development easier and faster.
• They make your applications fit more naturally with the rest of the system.
• If necessary, they’re easy to migrate from, because they’re built on top of the standards.

With that said, you can use a variety of technologies to develop portlets. This section shows you
how to develop portlets using the following frameworks and techniques:

• Liferay’s MVCPortlet
• Liferay Soy Portlet
• Spring MVC
• Making URLs Friendlier
• Automatic Single Page Applications
• Applying Clay Styles to Your App
• Creating Layouts Inside Portlets
• Using JavaScript Inside Portlets

38.1 Related Topics

Configuring Dependencies
Importing Packages
Exporting Packages

408

CHAPTER 39

LIFERAY MVC PORTLET

Web applications often follow the Model View Controller (MVC) pattern. But Liferay has developed
a groundbreaking new pattern called the Modal Veal Contractor (MVC) pattern. Okay, that’s not
true: the framework is actually another implementation of Model View Controller. If you’re an
experienced developer, this is not the first time you’ve heard about Model View Controller. In
this article you must stay focused, because there are several attempts to show you why Liferay’s
implementation of Model View Controller is different, when instead you’re hearing about another
MVC framework. With that in mind, let’s get back to the Medial Vein Constriction pattern we were
discussing.

If there are so many implementations of MVC frameworks in Java, why did Liferay create yet
another one? Stay with us and you’ll see that Liferay MVC provides these benefits:

• It’s lightweight, as opposed to many other Java MVC frameworks.
• There are no special configuration files that need to be kept in sync with your code.
• It’s a simple extension of GenericPortlet.
• You avoid writing a bunch of boilerplate code, since Liferay’s MVC framework simply looks
for some pre-defined parameters when the init()method is called.

• The controller can be broken down into MVC command classes, each of which handles the
controller code for a particular portlet phase (render, action, and resource serving phases).

• Liferay’s portlets use it. That means there are plenty of robust implementations to reference
when you need to design or troubleshoot your Liferay applications.

The Liferay MVC portlet framework is light, it hides part of the complexity of portlets, and it
makes the most common operations easier. The default MVCPortlet project uses separate JSPs for
each portlet mode: For example, edit.jsp is for edit mode and help.jsp is for help mode.

Before diving in to the Liferay MVC swimming pool with all the other cool kids (applications),
here’s an overview of the Liferay MVC Portlet:

• MVC layers and modularity
• Liferay MVC command classes
• Liferay MVC portlet component
• Simple MVC portlets

Review how each layer of the Moody Vase Conscription pattern helps you separate the concerns
of your application.

409

39.1 MVC Layers and Modularity

In MVC, there are three layers, and you can probably guess what they are.
Model: The model layer holds the application data and logic for manipulating it.
View: The view layer contains logic for displaying data.
Controller: The middle man in the MVC pattern, the Controller contains logic for passing the

data back and forth between the view and the model layers.
The Middle Verse Completer pattern fits well with Liferay’s application modularity effort.
Liferay’s applications are divided into multiple discrete modules. With Service Builder, the

model layer is generated into a service and an apimodule. That accounts for the model in the MVC
pattern. For the web, the view and the controller share a module, the webmodule.

Generating the skeleton for a multi-module Service Builder-driven MVC application using
Liferay Blade CLI saves you lots of time and gets you started on themore important (and interesting,
if we’re being honest) development work.

39.2 Liferay MVC Command Classes

In a larger application, your -Portlet class can becomemonstrous and unwieldy if it holds all of the
controller logic. Liferay provides MVC command classes to break up your controller functionality.

• MVCActionCommand: Use -ActionCommand classes to hold each of your portlet actions, which are
invoked by action URLs.

• MVCRenderCommand: Use -RenderCommand classes to hold a rendermethod that dispatches to the
appropriate JSP, by responding to render URLs.

• MVCResourceCommand: Use -ResourceCommand classes to serve resources based on resource URLs.

There must be some confusing configuration files to keep everything wired together and
working properly, right? Wrong: it’s all easily managed in the OSGi component in the -Portlet

class.

39.3 Liferay MVC Portlet Component

Whether or not you plan to split up the controller into MVC command classes, you use a portlet
component class with a certain set of properties. Here’s a simple portlet component as an example:

@Component(

immediate = true,

property = {

"com.liferay.portlet.css-class-wrapper=portlet-hello-world",

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.icon=/icons/hello_world.png",

"com.liferay.portlet.preferences-owned-by-group=true",

"com.liferay.portlet.private-request-attributes=false",

"com.liferay.portlet.private-session-attributes=false",

"com.liferay.portlet.remoteable=true",

"com.liferay.portlet.render-weight=50",

"com.liferay.portlet.use-default-template=true",

"javax.portlet.display-name=Hello World",

"javax.portlet.expiration-cache=0",

410

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCActionCommand.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderCommand.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCResourceCommand.html

"javax.portlet.init-param.always-display-default-configuration-icons=true",

"javax.portlet.name=" + HelloWorldPortletKeys.HELLO_WORLD,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=guest,power-user,user",

"javax.portlet.supports.mime-type=text/html"

},

service = Portlet.class

)

public class HelloWorldPortlet extends MVCPortlet {

}

When using MVC commands, the javax.portlet.name property is important. This property is
one of two that must be included in each MVC command component; it links a particular portlet
URL/command combination to the correct portlet.

Important: Make your portlet name unique, considering how Liferay DXP uses the name to
create the portlet’s ID.

There can be some confusion over exactly what kind of Portlet.class implementation
you’re publishing with this component. Liferay’s service registry expects this to be the
javax.portlet.Portlet interface. Import that, andnot, for example, com.liferay.portal.kernel.model.Portlet.

Note: The DTD liferay-portlet-app_7_1_0.dtd defines all the Liferay-specific attributes you can
specify as properties in your portlet components.

Consider the <css-class-wrapper> element from the above link as an example. To specify that
property in your component, use this syntax in your property list:

"com.liferay.portlet.css-class-wrapper=portlet-hello-world",

The properties namespaced with javax.portlet.... are elements of the portlet.xml descriptor.

39.4 A Simpler MVC Portlet

With all this focus onMVC commands, don’t be concerned that you’ll be forced into amore complex
pattern than you need, especially if you’re developing only a small MVC application. Not so; just
put all your logic into the -Portlet class if you don’t want to split up your MVC commands.

In simpler applications, if you don’t have an MVC command to rely on, your portlet render
URLs specify JSP paths in mvcPath parameters.

<portlet:renderURL var="addEntryURL">

<portlet:param name="mvcPath" value="/entry/edit_entry.jsp" />

<portlet:param name="redirect" value="<%= redirect %>" />

</portlet:renderURL>

As you’ve seen, Liferay’s Medical Vortex Concentrator (MVC) portlet framework gives you a
well-structured controller layer that takes very little time to implement. With all your free time,
you could

• Learn a new language
• Take pottery classes
• Lift weights

411

https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-portlet-app_7_1_0.dtd.html
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd

• Work on your application’s business logic

It’s entirely up to you. To get into the details of creating an MVC Portlet application, follow the
Creating an MVC Portlet tutorial.

412

CHAPTER 40

CREATING AN MVC PORTLET

MVC Portlet applications are web modules containing at least one portlet class that’s registered in
Liferay’s runtime environment as a component. Web modules describe themselves using standard
OSGi metadata and can use any build environment.

Here are the general steps for implementing a Liferay MVC Portlet component module:

1. Configuring aWeb module

2. Specifying OSGi metadata

3. Creating a portlet Component

Start by creating a web module for your portlet.

40.1 Step 1: Configuring aWebModule

The folder structure for a web module generally follows this pattern:

• docs.liferaymvc.web/

– src/main/java/

* com/liferay/docs/liferaymvc/web/portlet/LiferayMVCPortlet.java

– src/main/resources/

* content/

· Language.properties

* META/-INF/resources/

· init.jsp
· view.jsp

413

– build.gradle
– bnd.bnd

The MVC portlet template, available for both Maven and Gradle in Liferay Dev Studio DXP and
Blade CLI, makes creating suchWeb modules a snap. Of course you’re not tied to using Gradle or
bnd to build your project. However, you must build your module as a JAR and define your module
with proper OSGi headers.

40.2 Step 2: Specifying OSGi Metadata

OSGimetadata describes yourmodule to theOSGi runtime environment. At aminimum, you should
specify the bundle symbolic name and the bundle version. We recommend a human-readable
bundle name.

Bundle-Name: Example Liferay MVC Web

Bundle-SymbolicName: com.liferay.docs.liferaymvc.web

Bundle-Version: 1.0.0

If you don’t specify a Bundle-SymbolicName, one is generated from the project’s folder path, which
is suitable for many cases. Liferay’s convention is to specify the root package name as your bundle
symbolic name.

40.3 Step 3: Creating a Portlet Component

The OSGi Declarative Services component model makes it easy to publish service implementations
to the OSGi runtime. For example, publishing your portlet class as a javax.portlet.Portlet requires
an @Component annotation like this one:

@Component(

immediate = true,

service = Portlet.class

)

public class LiferayMVCPortlet extends MVCPortlet {

}

The immediate = true attribute tells the runtime to publish the portlet as soon as its depen-
dencies resolve. The attribute service = Portlet.class specifies that the portlet provides the
javax.portlet.Portlet service.

Since Liferay’s MVCPortlet class is itself an extension of javax.portlet.Portlet, you’ve provided
the right implementation. That’s good in itself, but the Component must be configured:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.display-name=Liferay MVC Portlet",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.name=MyMVCPortlet",

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

414

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html

service = Portlet.class

)

public class LiferayMVCPortlet extends MVCPortlet {

}

Liferay’s MVC portlet template includes these component properties in the portlet class it
generates.

Some of the properties might look familiar to you if you’ve developed Liferay MVC portlets for
Liferay Portal 6.2. That’s because they’re the same as the XML attributes you used to specify in
liferay-portlet.xml, liferay-display.xml, and portlet.xml. The mapping of portlet descriptors to
OSGi properties can you help find OSGi properties for descriptors you already know.

To keep compatibility with the JSR-168 and JSR-286 portlet specs, these DTDs define the Liferay-
specific portlet attributes:

• liferay-portlet-app_7_1_0.dtd.
• liferay-display_7_1_0.dtd

For example, consider the <instanceable> element from liferay-portlet-app_7_1_0.dtd. To spec-
ify that property in your Component, use this syntax in your @Component property list:

"com.liferay.portlet.instanceable=true",

The properties namespaced with javax.portlet.... are elements of the portlet.xml descriptor.
Also note that you can use the com.liferay.portlet.display-category property to create nested

categories. Use // to separate the category root and all categories and sub-categories that comprise
your portlet’s category path. Here’s an example:

com.liferay.portlet.display-category=root//category.category1//category.category2

You now know how to extend Liferay’s MVCPortlet and register it as a Component in the OSGi
runtime. It’s time to write your controller code.

40.4 Writing Controller Code

In MVC, your controller receives requests from the front-end, and it pulls data from the back-end.
It’s a traffic director: it provides data to the right front-end view for display to the user, and it takes
data the user entered in the front-end and passes it to the right back-end service. For this reason,
the controller must process requests from the front-end, and it must determine the right front-end
view to pass data back to the user.

If you have a small application that’s not heavy on controller logic (maybe just a couple of action
methods), you can put all your controller code in the -Portlet class. If you have more complex
needs (lots of actions, complex render logic to implement, or maybe even some resource serving
code), consider breaking the controller intoMVC Render Command classes, MVC Action Command
classes, and MVC Resource Command classes. This tutorial demonstrates implementing controller
logic for small applications.

In this tutorial you’ll learn to implement a Liferay MVC portlet with all the controller code in
the -Portlet class. It involves these things:

• Action methods

415

https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-portlet-app_7_1_0.dtd.html
https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-display_7_1_0.dtd.html
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd

• Render logic
• Setting and retrieving request parameters and attributes

Start with creating action methods.

Action Methods

If you have a small application, you can implement all your controller logic in the portlet class
you created in the last step. It can act as your controller by itself. Use action methods to process
requests. Here’s a sample action method:

public void addGuestbook(ActionRequest request, ActionResponse response)

throws PortalException, SystemException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

String name = ParamUtil.getString(request, "name");

try {

_guestbookService.addGuestbook(serviceContext.getUserId(),

name, serviceContext);

SessionMessages.add(request, "guestbookAdded");

} catch (Exception e) {

SessionErrors.add(request, e.getClass().getName());

response.setRenderParameter("mvcPath",

"/html/guestbook/edit_guestbook.jsp");

}

}

This action has one job: call a service to add a Guestbook. If this call succeeds, the message
"guestbookAdded" is associated with the request and added to the SessionMessages object. If an
exception is thrown, it’s caught, and the class name is associated with the request and added to
the SessionErrors object and the response is set to render edit_guestbook.jsp. Setting the mvcPath

render parameter is a Liferay MVCPortlet framework convention that denotes the next view to
render to the user.

While action methods respond to user actions, render logic determines the view to display to
the user. Render logic is next.

Render Logic

Here’s how MVC Portlet determines which view to render. Note the init-param properties you set
in your component:

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

The template-path property tells the MVC framework where your JSP files live. In the above
example, / means that the JSP files are in your project’s root resources folder. That’s why it’s
important to follow Liferay’s standard folder structure. The view-template property directs the
default rendering to view.jsp.

Here’s the path of a hypothetical Web module’s resource folder:

416

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/SessionMessages.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/SessionErrors.html

docs.liferaymvc.web/src/main/resources/META-INF/resources

Based on that resource folder, the view.jsp file is found at

docs.liferaymvc.web/src/main/resources/META-INF/resources/view.jsp

and that’s the default view of the application. When the portlet’s initmethod (e.g., your portlet’s
override of MVCPortlet.init()) is called, the initialization parameters you specify are read and used
to direct rendering to the default JSP. Throughout the controller, you can render different views
(JSP files) by setting the render parameter mvcPath like this:

actionResponse.setRenderParameter("mvcPath", "/error.jsp");

It’s possible to avoid render logic by using initialization parameters and render parameters,
but most of the time you’ll override the portlet’s rendermethod. Here’s an example:

@Override

public void render(RenderRequest renderRequest,

RenderResponse renderResponse) throws PortletException, IOException {

try {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), renderRequest);

long groupId = serviceContext.getScopeGroupId();

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

List<Guestbook> guestbooks = _guestbookService

.getGuestbooks(groupId);

if (guestbooks.size() == 0) {

Guestbook guestbook = _guestbookService.addGuestbook(

serviceContext.getUserId(), "Main", serviceContext);

guestbookId = guestbook.getGuestbookId();

}

if (!(guestbookId > 0)) {

guestbookId = guestbooks.get(0).getGuestbookId();

}

renderRequest.setAttribute("guestbookId", guestbookId);

} catch (Exception e) {

throw new PortletException(e);

}

super.render(renderRequest, renderResponse);

}

This render logic provides the view layer with data to display to the user. The rendermethod
above sets the render request attribute guestbookId with the ID of a guestbook to display. If guest-
books exist, it chooses the first. Otherwise, it creates a guestbook and sets it to display. Lastly
the method passes the render request and render response objects to the base class via its render
method.

417

Note: Are you wondering how to call Service Builder services in 7.0? Invoking Services from
Service Builder Code can help. In short, obtain a reference to the service by annotating one of your
fields of that service type with the @Reference Declarative Services annotation.

@Reference

private GuestbookService _guestbookService;

Once done, you can call the service’s methods.

_guestbookService.addGuestbook(serviceContext.getUserId(), "Main",

serviceContext);

Before venturing into the view layer, the next section demonstrates ways to pass information
between the controller and view layers.

Setting and Retrieving Request and Response Parameters and Attributes

You can use a handy utility class called ParamUtil to retrieve parameters from an ActionRequest or a
RenderRequest.

For example, a JSP could pass a parameter named guestbookId in an action URL.

<portlet:actionURL name="doSomething" var="doSomethingURL">

<portlet:param name="guestbookId"

value="<%= String.valueOf(entry.getGuestbookId()) %>" />

</portlet:actionURL>

The <portlet:actionURL> tag’s name attribute maps the action URL to a controller action method
named doSomething. Triggering an action URL invokes the corresponding method in the controller.

The controller’s doSomethingmethod referenced in this example can then get the guestbookId

parameter value from the ActionRequest.

long guestbookId = ParamUtil.getLong(actionRequest, "guestbookId");

To pass information back to the view layer, the controller code can set render parameters on
response objects.

actionResponse.setRenderParameter("mvcPath", "/error.jsp");

The code above sets a parameter called mvcPath to JSP path /error.jsp. This causes the con-
troller’s render method to redirect the user to the JSP /error.jsp.

Your controller class can also set attributes into response objects using the setAttributemethod.

renderRequest.setAttribute("guestbookId", guestbookId);

JSPs can use Java code in scriptlets to interact with the request object.

<%

long guestbookId = Long.valueOf((Long) renderRequest

.getAttribute("guestbookId"));

%>

Passing information back and forth from your view and controller is important, but there’s
more to the view layer than that. The view layer is up next.

418

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html

40.5 Configuring the View Layer

This section briefly covers how to get your view layer working, from organizing your imports in
one JSP file, to creating URLs that direct processing to methods in your portlet class.

Note: As you create JSPs, you can apply Clay styles to your app to match Liferay’s apps.

Liferay’s best practice puts all Java imports, tag library declarations, and variable initializations
into a JSP called init.jsp. If you use Blade CLI or Liferay Dev Studio DXP to create a module
based on the mvc-portlet project template, these taglib declarations and initializations are added
automatically to your init.jsp:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://liferay.com/tld/portlet" prefix="liferay-portlet" %>

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme" %>

<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>

<liferay-theme:defineObjects />

<portlet:defineObjects />

Make sure to include the init.jsp in your other JSPs:

<%@include file="/html/init.jsp"%>

JSPs can use action URLs to invoke controller methods. To create a link to another page, use
a render URL with the mvcPath parameter. The <portlet:renderURL> tag constructs the URL and
assigns it to a variable.

<portlet:renderURL var="searchURL">

<portlet:param name="mvcPath" value="/admin/view.jsp" />

</portlet:renderURL>

The render URL is assigned to the searchURL variable specified by the var attribute. The
<portlet:param> tag above assigns JSP path /admin/view.jsp to the render parameter mvcPath. The
controller’s rendermethod gets the JSP path from the mvcPath parameter to render the following
JSP:

docs.liferaymvc.web/src/main/resources/META-INF/resources/admin/view.jsp

To invoke the render URL, assign its variable (the one set to the var attribute of the
<portlet:renderURL>) to an action for a UI component, such as a button or navigation bar item.

Action methods are different because they invoke an action (i.e., code), rather than just linking
to another page. In your JSP, use a <portlet:actionURL> tag to create an action URL and then assign
that URL as an action for a UI component. Here’s an action URL that calls a controller method
named doSomething.

<portlet:actionURL name="doSomething" var="doSomethingURL">

<portlet:param name="redirect" value="<%= redirect %>" />

</portlet:actionURL>

419

https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/portlet/renderURL.html
https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/portlet/param.html
https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/portlet/actionURL.html

The portlet parameter named redirect is assigned to a JSP path for the portlet to redirect to
after invoking the portlet action. This action URL is assigned to a variable named doSomethingURL.
As with a render URL, you can assign an action URL to a UI component action by the action URL’s
variable (the one set to var).

These simple examples demonstrate how theLiferayMVC framework facilitates communication
between a smaller application’s view layer and controller.

40.6 Beyond the Basics for Portlets

The tutorial you’ve just completed should get you up and running with a Liferay MVCWeb module,
but there’s more to know about creating an app in Liferay. To support more actions, complex
render logic, and or serving resources, continue reading the MVC command tutorials that follow.

Regardless of your application’s size or complexity, there are more conveniences and features
to leverage in your portlets. Here are a few useful jumping off points:

• Making URLs Friendlier
• Applying Clay Styles to your App
• Localizing your Application
• Liferay’sWorkflow Framework
• Model Listeners
• Application Security
• Asset Framework
• Service Builder

Enjoy creating your own portlets!

40.7 MVC Action Command

Liferay’s MVC framework lets you split your portlet’s action methods into separate classes. This
can be very helpful in portlets that have many actions. Each action URL in your portlet’s JSPs then
calls the appropriate action class when necessary.

First, configure your view layer and use the <portlet:actionURL> tag to create the action URL
in your JSP. For example, the Blogs app’s edit_entry.jsp file defines the following action URL for
editing blog entries:

<portlet:actionURL name="/blogs/edit_entry" var="editEntryURL" />

The name attribute declares a variable to hold the portlet action URL object. Assign that
variable to a UI component, such as a button or icon. When the user triggers the UI compo-
nent, the *MVCActionCommand class that matches the action URL processes the action request and
response. Create an action class by implementing the MVCActionCommand interface, or extend-
ing the BaseMVCActionCommand class. The latter may save you time, since it already implements
MVCActionCommand.

Naming your *MVCActionCommand class after the action it performs is a good convention. For exam-
ple, if your action class edits some kind of entry, you could name its class EditEntryMVCActionCommand.
If your application has several MVC command classes, naming them this way helps differentiate
them.

420

https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/portlet/actionURL.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/blogs/blogs-web/src/main/resources/META-INF/resources/blogs/edit_entry.jsp
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCActionCommand.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/BaseMVCActionCommand.html

Your *MVCActionCommand classmust also have an @Component annotation like the following example.
Set the property javax.portlet.name to your portlet’s internal ID. Set the property mvc.command.name

to the value of the name property in your JSP’s matching actionURL. To register the component in the
OSGi container as an MVCActionCommand service, set the service property to MVCActionCommand.class:

@Component(

immediate = true,

property = {

"javax.portlet.name=your_portlet_name_YourPortlet",

"mvc.command.name=/your/jsp/action/url"

},

service = MVCActionCommand.class

)

public class YourMVCActionCommand extends BaseMVCActionCommand {

// implement your action

}

The Blogs app’s EditEntryMVCActionCommand class is a real world example of a *MVCActionCommand

class:

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS,

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN,

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_AGGREGATOR,

"mvc.command.name=/blogs/edit_entry"

},

service = MVCActionCommand.class

)

public class EditEntryMVCActionCommand extends BaseMVCActionCommand {

@Override

protected void doProcessAction(

ActionRequest actionRequest, ActionResponse actionResponse)

throws Exception {

String cmd = ParamUtil.getString(actionRequest, Constants.CMD);

try {

BlogsEntry entry = null;

UploadException uploadException =

(UploadException)actionRequest.getAttribute(

WebKeys.UPLOAD_EXCEPTION);

if (uploadException != null) {

Throwable cause = uploadException.getCause();

if (uploadException.isExceededFileSizeLimit()) {

throw new FileSizeException(cause);

}

if (uploadException.isExceededLiferayFileItemSizeLimit()) {

throw new LiferayFileItemException(cause);

}

if (uploadException.isExceededUploadRequestSizeLimit()) {

throw new UploadRequestSizeException(cause);

}

throw new PortalException(cause);

}

else if (cmd.equals(Constants.ADD) ||

421

cmd.equals(Constants.UPDATE)) {

Callable<BlogsEntry> updateEntryCallable =

new UpdateEntryCallable(actionRequest);

entry = TransactionInvokerUtil.invoke(

_transactionConfig, updateEntryCallable);

}

else if (cmd.equals(Constants.DELETE)) {

deleteEntries(actionRequest, false);

}

else if (cmd.equals(Constants.MOVE_TO_TRASH)) {

deleteEntries(actionRequest, true);

}

else if (cmd.equals(Constants.RESTORE)) {

restoreTrashEntries(actionRequest);

}

else if (cmd.equals(Constants.SUBSCRIBE)) {

subscribe(actionRequest);

}

else if (cmd.equals(Constants.UNSUBSCRIBE)) {

unsubscribe(actionRequest);

}

... do more action processing

}

... handle exceptions

}

}

The @Component’s multiple javax.portlet.name property values make this *MVCActionCommand

class available to those portlets as a Service Component. The mvc.command.name property setting
/blogs/edit_entry matches the actionURL’s name attribute shown earlier, and the service property
set to MVCActionCommand.classmakes the class an MVCActionCommand Service Component.

The EditEntryMVCActionCommand class extends BaseMVCActionCommand and overrides the
doProcessAction method. Similarly, *MVCActionCommand classes that implement MVCActionCommand
directly must implement the processAction method. Both methods process resource requests
and responses via their javax.portlet.ActionRequest and javax.portlet.ActionResponse parameters,
respectively.

EditEntryMVCActionCommand’s doProcessAction method gets the value of a command parameter
named by constant Constants.CMD from the ActionRequest.
String cmd = ParamUtil.getString(actionRequest, Constants.CMD);

Then the doProcessActionmethod checks whether an entry-related upload occurred or handles
any exceptions the upload throws. Based on the command (stored in cmd) accessed from the action
request, one of the following actions is performed:

• add or update an entry
• delete an entry
• move an entry to the Recycle Bin
• restore an entry from the Recycle Bin
• subscribe a user to a blog
• unsubscribe a user from a blog

EditEntryMVCActionCommand’s doProcessActionmethod continues with somemore processing and
prepares to redirect the portlet to an appropriate view. This shows you can do as much as you need
for processing your portlet’s actions.

422

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/Constants.html

Note: LiferayBlade Sample action-command-portletdemonstrates implementing MVCActionCommand
directly.

Now you can create your own action URLs and *MVCActionCommand classes in your applications
that use Liferay’s MVC framework. Your *MVCActionCommands can do whatever you need them to do.

Related Topics

Creating an MVC Portlet
MVC Render Command
MVC Resource Command
MVC Command Overrides

40.8 MVC Render Command

If you’re here, that means you know that MVCRenderCommands are used to respond to portlet render
URLs, and you want to know how to create and use MVC render commands. If you just want to
learn about Liferay’s MVC Portlet framework in general, that information is in a separate article.

First, configure your view layer and use the <portlet:renderURL> to create the render URL
in your JSP. For example, the following render URL invokes an MVC render command named
/hello/edit_entry. This might direct the user to a page with a form for editing.

<portlet:renderURL var="editEntryURL">

<portlet:param name="mvcRenderCommandName" value="/hello/edit_entry" />

<portlet:param name="entryId" value="<%= String.valueOf(entry.getEntryId()) %>" />

</portlet:renderURL>

The <portlet:param> named mvcRenderCommandName declares the render URL. The <portlet:param>

named entryId declares a variable to hold the portlet render URL object. Assign that variable to
a UI component such, as a button or menu item. When the user triggers the UI component, the
*MVCRenderCommand class that matches the render URL processes the render request and response.

What is it you want to do when a particular portlet render URL is invoked? By implementing
the MVCRenderCommand interface and overriding its rendermethod, you can perform your own logic
to render JSPs. Some *MVCRenderCommands, such as the one below, always render the same JSP.

public class BlogsViewMVCRenderCommand implements MVCRenderCommand {

@Override

public String render(

RenderRequest renderRequest, RenderResponse renderResponse) {

return "/blogs/view.jsp";

}

}

Other *MVCRenderCommands render JSPs based on conditions:

@Override

public String render(

RenderRequest renderRequest, RenderResponse renderResponse)

throws PortletException {

423

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/action-command-portlet
https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/portlet/renderURL.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderCommand.html

try {

ActionUtil.getEntry(renderRequest);

}

catch (Exception e) {

if (e instanceof NoSuchEntryException ||

e instanceof PrincipalException) {

SessionErrors.add(renderRequest, e.getClass());

return "/hello/error.jsp";

}

else {

throw new PortletException(e);

}

}

return "/hello/edit_entry.jsp";

}

In the method above, if no exceptions are thrown on invoking ActionUtil.getEntry, the method
renders /hello/edit_entry.jsp. If a NoSuchEntryException is thrown, it renders /hello/error.jsp. If
any other exception is thrown, the method re-throws it as a PortletException.

To respond to a particular render URL, your MVCRenderCommand must be an OSGi Declarative
Services Component (e.g., annotated with @Component) that specifies these properties:

• javax.portlet.name

• mvc.command.name

Here’s an example of these two properties:

"javax.portlet.name=" + HelloWorldPortletKeys.HELLO_WORLD,

"mvc.command.name=/hello/edit_entry"

The portlet name, in this case, is defined by the constant HelloWorldPortletKeys.HELLO_WORLD.
The mvc.command.name is set to /hello/edit_entry, which seems to indicate theMVC render command
is related to editing entries–just a hunch.

The Component must also publish to the OSGi runtime as a MVCRenderCommand.class service.
Here’s a basic Component that specifies the example properties and publishes itself as an
MVCRenderCommand.class service:

@Component(

immediate = true,

property = {

"javax.portlet.name=" + HelloWorldPortletKeys.HELLO_WORLD,

"mvc.command.name=/hello/edit_entry"

},

service = MVCRenderCommand.class

)

public class EditEntryMVCRenderCommand implements MVCRenderCommand {

...

}

The mvc.command.name value /hello/edit_entry matches the value of portlet:renderURL’s
mvcRenderCommand parameter shown earlier. That render URL invokes this *MVCRenderCommand

class. In fact, any render URL of JSPs in this portlet (HelloWorldPortletKeys.HELLO_WORLD) whose
mvcRenderCommand is /hello/edit_entry invokes this *MVCRenderCommand.

To make an MVCRenderCommand respond to multiple portlets, add them to your @Component as
javax.portlet.name properties assigned to the portlet names. Likewise, to make it respond to

424

multiple render URLs, add them as mvc.command.name properties. If you’re really feeling wild, you
can specify multiple portlets and multiple command URLs in the same command component, like
this:

@Component(

immediate = true,

property = {

"javax.portlet.name=" + HelloWorldPortletKeys.HELLO_MY_WORLD,

"javax.portlet.name=" + HelloWorldPortletKeys.HELLO_WORLD,

"mvc.command.name=/hello/edit_super_entry",

"mvc.command.name=/hello/edit_entry"

},

service = MVCRenderCommand.class

)

As you can see, MVC render commands are easy to implement and can respond to multiple
command names for multiple portlets.

Related Topics

Creating an MVC Portlet
MVC Resource Command
MVC Action Command
MVC Command Overrides

40.9 MVC Resource Command

When using Liferay’sMVC framework, you can create resource URLs in your JSPs to retrieve images,
XML, or any other kind of resource from a Liferay instance. The resource URL then invokes the
corresponding MVC resource command class (*MVCResourceCommand) that processes the resource
request and response.

First, configure your view layer and use the <portlet:resourceURL> tag to create the re-
source URL in a JSP. For example, the Login Portlet’s /login-web/src/main/resources/META-

INF/resources/navigation/create_account.jsp file defines the following resource URL for retrieving
a CAPTCHA image during account creation:

<portlet:resourceURL id="/login/captcha" var="captchaURL" />

The id attribute declares the resource URL. The var attribute declares a variable to hold the
portlet resource URL object. Assign that variable to a UI component, such as a button or icon.
When the user triggers the UI component, the *MVCResourceCommand class that matches the resource
URL processes the resource request and response. You can create this class by implementing the
MVCResourceCommand interface or extending the BaseMVCResourceCommand class. The latter may save
you time, since it already implements MVCResourceCommand.

Also, it’s a good idea to name your *MVCResourceCommand class after the resource it handles and
suffix it with MVCResourceCommand. For example, the resource command classmatching the preceding
CAPTCHA resource URL in the Login Portlet is CaptchaMVCResourceCommand. In an application with
several MVC command classes, this helps differentiate them.

Your *MVCResourceCommand class must also have an @Component annotation like the following
example. Set the property javax.portlet.name to your portlet’s internal ID, and the property
mvc.command.name to the value of the id property in your JSP’s matching resourceURL. To register the

425

https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/portlet/resourceURL.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCResourceCommand.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/BaseMVCResourceCommand.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/login/login-web/src/main/java/com/liferay/login/web/internal/portlet/action/CaptchaMVCResourceCommand.java

component in the OSGi container as using the MVCResourceCommand class, you must set the service

property to MVCResourceCommand.class:

@Component(

immediate = true,

property = {

"javax.portlet.name=your_portlet_name_YourPortlet",

"mvc.command.name=/your/jsp/resource/url"

},

service = MVCResourceCommand.class

)

public class YourMVCResourceCommand implements MVCResourceCommand {

// your resource handling code

}

As a real-world example, consider the Login Portlet’s CaptchaMVCResourceCommand class (find this
class in theLiferay source code at modules/apps/login/login-web/src/main/java/com/liferay/login/web/internal/portlet/action/CaptchaMVCResourceCommand.java):

@Component(

property = {

"javax.portlet.name=" + LoginPortletKeys.FAST_LOGIN,

"javax.portlet.name=" + LoginPortletKeys.LOGIN,

"mvc.command.name=/login/captcha"

},

service = MVCResourceCommand.class

)

public class CaptchaMVCResourceCommand implements MVCResourceCommand {

@Override

public boolean serveResource(

ResourceRequest resourceRequest, ResourceResponse resourceResponse) {

try {

CaptchaUtil.serveImage(resourceRequest, resourceResponse);

return false;

}

catch (Exception e) {

_log.error(e, e);

return true;

}

}

private static final Log _log = LogFactoryUtil.getLog(

CaptchaMVCResourceCommand.class);

}

In the @Component annotation, note that javax.portlet.name has two different settings. This lets
multiple portlets use the same component. In this example, the portlet IDs are defined as constants
in the LoginPortletKeys class. Also note that the mvc.command.name property setting /login/captcha

matches the resourceURL’s id setting shown earlier in this tutorial, and that the service property is
set to MVCResourceCommand.class.

The CaptchaMVCResourceCommand class implements the MVCResourceCommand interface with only a
single method: serveResource. This method processes the resource request and response via the
javax.portlet.ResourceRequest and javax.portlet.ResourceResponse parameters, respectively. Note
that the try block uses the helper class CaptchaUtil to serve the CAPTCHA image. Though you don’t
have to create such a helper class, doing so often simplifies your code.

Great! Now you know how to use MVCResourceCommand to process resources in your Liferay MVC
portlets.

426

https://docs.liferay.com/dxp/apps/foundation/7.0.8/javadocs/com/liferay/login/web/constants/LoginPortletKeys.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/captcha/CaptchaUtil.html

Related Topics

Creating an MVC Portlet
MVC Render Command
MVC Action Command
MVC Command Overrides
OSGi Basics for Liferay Development

427

CHAPTER 41

LIFERAY SOY PORTLET

A Soy portlet is an extension of Liferay’s MVC portlet framework. This gives you access to all
the MVC Portlet functionality you are familiar with, plus the added bonus of using Soy templates
for writing your front-end. Soy templates use an easy templating language that also lets you use
MetalJS components. With all these benefits and more, Soy portlets can be a good front-end tool to
have in your utility belt.

You can learn about Liferay MVC portlets in the Creating an MVC Portlet tutorial.
This section covers how to implement a Soy portlet.

41.1 Creating a Soy Portlet

To create a Soy portlet, you’ll need these key components:

• A module that publishes a portlet component with the necessary properties
• Controller code to handle the request and response
• Soy templates to implement your view layer

Configuring the WebModule

First, familiarize yourself with a Soy portlet’s anatomy. You may recognize it, since a Soy portlet
extends an MVC portlet:

• my-soy-portlet

– bnd.bnd

– build.gradle

– package.json

– src/main/

* java/path/to/portlet/

· MySoyPortletRegister.java

· action/

429

· *MVCRenderCommand.java

* resources/META-INF/resources/

· content/

· Language.properties

· View.es.js (MetalJS component)
· View.soy (Soy template)

Now that you know the basic structure of a Soy portlet module, you can configure it. You can
use the soy portlet Blade template to build your initial project if you wish. Otherwise, you can
follow the instructions in this section to manually configure the module.

Specifying OSGi Metadata

Add the OSGi metadata to your module’s bnd.bnd file. A sample BND configuration is shown below:
Bundle-Name: Liferay Hello SoyWeb Bundle-SymbolicName: com.liferay.hello.soy.web Bundle-

Version: 2.0.7 Provide-Capability:
soy;
type=“hello-soy”;
version:Version=“1.0.10” Require-Capability:
soy;
filter:=“(type=metal)” Web-ContextPath: /hello-soy-web

The Provide-Capability header specifies that this bundle provides the soy capability, so the
template engine can track the bundle. The Require-Capability header specifies that the bundle
requires modules that provide the capability soy with a type of metal to work. The Web-ContextPath

header specifies the relative path of the application so you can reference resources.

Specifying JavaScript Dependencies

Specify the JavaScript module dependencies in your package.json. At a minimum, you should
have the following dependencies and configuration parameters. Always use the latest component
versions (the versions shown below may not be the latest).

{

"dependencies": {

"metal-component": "^2.16.8",

"metal-soy": "^2.16.8"

},

"scripts": {

"build": "liferay-npm-scripts build",

"checkFormat": "liferay-npm-scripts check",

"format": "liferay-npm-scripts fix"

},

"name": "my-portlet-name",

"version": "1.0.0"

}

This provides everything you need to create a Metal component based on Soy. Note that the
version in your package.json should match the Bundle-Version in your bnd.bnd file.

Next you can specify your module’s build dependencies.

430

Specifying Build Dependencies

Add the dependencies shown below to your build.gradle file:

dependencies {

compileOnly group: "com.liferay", name: "com.liferay.portal.portlet.bridge.soy.api", version: "1.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.java", version: "3.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "3.0.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

Note: These are current at the time of this writing, but may change. Please check the Nexus
Repository for the proper versions for your Liferay DXP instance.

Now that your module build is configured, you can learn how to create the Soy portlet compo-
nent.

Creating a Soy Portlet Register Component

Create a Soy Portlet component that extends the SoyPortletRegister class. This
requires an implementation of the javax.portlet.Portlet service to run. Declare this using an
@Component annotation in the portlet class:

@Component(

immediate = true,

service = SoyPortletRegister.class

)

public class MySoyPortletRegister extends SoyPortletRegister {

}

Liferay DXP’s SoyPortletRegister class is imported in the SoyPortlet class which extends
MVCPortlet class, which is an extension itself of javax.portlet.Portlet, so you’ve provided the right
implementation.

The component requires some properties as well. A sample configuration is shown below:

@Component(

immediate = true,

property = {

"com.liferay.portlet.add-default-resource=true",

"com.liferay.portlet.application-type=full-page-application",

"com.liferay.portlet.application-type=widget",

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.layout-cacheable=true",

"com.liferay.portlet.preferences-owned-by-group=true",

"com.liferay.portlet.private-request-attributes=false",

"com.liferay.portlet.private-session-attributes=false",

"com.liferay.portlet.render-weight=50",

"com.liferay.portlet.scopeable=true",

"com.liferay.portlet.single-page-application=false",

"com.liferay.portlet.use-default-template=true",

"javax.portlet.display-name=Hello Soy Portlet",

"javax.portlet.expiration-cache=0",

"javax.portlet.init-param.copy-request-parameters=true",

"javax.portlet.init-param.template-path=/META-INF/resources/",

"javax.portlet.init-param.view-template=View",

"javax.portlet.name=hello_soy_portlet",

431

https://repository.liferay.com
https://repository.liferay.com
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/portal-portlet-bridge/portal-portlet-bridge-soy-api/src/main/java/com/liferay/portal/portlet/bridge/soy/SoyPortletRegister.java
https://github.com/liferay/com-liferay-portal-portlet-bridge/blob/7.1.x/portal-portlet-bridge-soy/src/main/java/com/liferay/portal/portlet/bridge/soy/SoyPortlet.java
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=guest,power-user,user",

"javax.portlet.supports.mime-type=text/html"

},

service = SoyPortletRegister.class

)

Some of these propertiesmay seem familiar to you, as they are the same ones used to develop an
MVC portlet. You can find a full list of the available Liferay-specific portlet component properties
in the liferay-portlet-app_7_1_0.dtd.

The javax.portlet... properties are elements of the portlet.xml descriptor
Liferay’s DTD files can be found here
Now that you’ve set your Soy portlet component’s foundation, you can write the controller code.

Writing Controller Code

Soy portlets extend MVC portlets, so they use the same Model-View-Controller framework to
operate. Your controller receives requests from the front-end and data from the back-end. It’s
responsible for sending that data to the right front-end view so it can be displayed to the user, and
it’s responsible for taking data the user entered in the front-end and passing it to the right back-end
service. For this reason, it needs a way to process requests from the front-end and respond to them
appropriately, and it needs a way to determine the appropriate front-end view to pass data back to
the user.

Render Logic

The render logic is where all the magic happens. After all, what’s the use of a portlet if you can’t
see it? Note the init-param properties you set in your Component class:

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=View",

This directs the default rendering to View (View.soy). The template-path property specifies the
location of your Soy templates. The / above means that the Soy files are located in the project’s
root resources folder. That’s why it’s important to follow the standard folder structure, outlined
above. Here’s the path of a hypothetical web module’s resource folder:

docs.liferaysoy.web/src/main/resources/META-INF/resources

In this case, the View.soy file is found at:

docs.liferaysoy.web/src/main/resources/META-INF/resources/View.soy

That’s the default view of the application. When the initmethod is called, the initialization
parameters you specify are read and used to direct rendering to the default template. Throughout
this framework, you can render a different view (Soy template) by setting the mvcRenderCommandName

parameter of the javax.portlet.PortletURL to the Soy template that youwant to render. The example
below uses a portlet URL called navigationURL to render the view View:

navigationURL.setParameter("mvcRenderCommandName", "View");

432

https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-portlet-app_7_1_0.dtd.html
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
https://docs.liferay.com/dxp/portal/7.1-latest/definitions/

Each view, excluding the default template view, must have an implementation of the
MVCRenderCommand class. The *MVCRenderCommand implementation must declare itself as a component
with the MVCRenderCommand service, and it must specify the portlet’s name and MVC command name
using the javax.portlet.name and mvc.command.name properties respectively. Below is an example
MVCRenderCommand implementation for a Navigation Soy template:

@Component(

immediate = true,

property = {

"javax.portlet.name=hello_soy_portlet",

"mvc.command.name=Navigation"

},

service = MVCRenderCommand.class

)

public class HelloSoyNavigationExampleMVCRenderCommand

implements MVCRenderCommand {

@Override

public String render(

RenderRequest renderRequest, RenderResponse renderResponse) {

Template template = (Template)renderRequest.getAttribute(

WebKeys.TEMPLATE);

PortletURL navigationURL = renderResponse.createRenderURL();

navigationURL.setParameter("mvcRenderCommandName", "View");

template.put("navigationURL", navigationURL.toString());

return "Navigation";

}

}

The render logic provides the view layer with information to display the data properly to the
user. Below is an explanation of the example above:

• The MVC command name is Navigation (the Soy template with namespace Navigation). This
means that this logic is for the Navigation view.

• A PortletURL (navigationURL) is defined and its mvcRenderCommandName is set to View(the Soy tem-
plate with namespace View).

• The navigationURL is converted to a String and passed as the variable navigationURL to the
Navigation Soy template with the template.put()method.

Note that Soy portlet parameters are scoped to the portlet class they’re written in. For instance,
you can have a navigationURL parameter in two different classes, each with a different value. Below
is an example HelloSoyViewMVCRenderCommand class that also defines a navigationURL parameter:

public class HelloSoyViewMVCRenderCommand implements MVCRenderCommand {

@Override

public String render(

RenderRequest renderRequest, RenderResponse renderResponse) {

Template template = (Template)renderRequest.getAttribute(

WebKeys.TEMPLATE);

ThemeDisplay themeDisplay = (ThemeDisplay)renderRequest.getAttribute(

WebKeys.THEME_DISPLAY);

433

template.put("layouts", themeDisplay.getLayouts());

PortletURL navigationURL = renderResponse.createRenderURL();

navigationURL.setParameter("mvcRenderCommandName", "Navigation");

template.put("navigationURL", navigationURL.toString());

template.put("releaseInfo", ReleaseInfo.getReleaseInfo());

return "View";

}

}

Below is an explanation of the example above:

• The navigationURL points to the Navigation Soy template this time.
• The navigationURL and releaseInfo parameters are passed to the View Soy template.
• Since this logic should be executed before the default rendermethod, the method concludes
by calling super.render.

Now that you understand the render logic, you can learn how the view layer works.

Configuring the View Layer

Your portlet also requires a view layer, and for that you’ll use Soy templates, which is the whole
point of developing a Soy portlet, isn’t it? This section briefly covers how to get your view layer
working, from including other Soy templates, to creating a MetalJS component for rendering your
views.

Soy templates are defined in a file with the extension .soy. The filename is arbitrary. The Soy
template’s name is specified at the top of the template using the namespace declaration. For example,
the declaration below is for a View template:

{namespace View}

It can be accessed in another Soy template by calling the rendermethod on the namespace as
shown below. The data='all' attribute specifies that the template should include all its parameters
as well:

{call View.render data="all"}{/call}

Note: Template namespaces must be unique.

Below is an example View Soy template that includes Header and Footer Soy templates:

{namespace View}

/**

* Prints the portlet main view.

⁎/

{template .render}

<div id="{$id}">

{call Header.render data="all"}{/call}

434

<p>{msg desc=""}here-is-a-message{/msg}</p>

{call Footer.render data="all"}{/call}

</div>

{/template}

Each view has a corresponding *es.js file (usually with the same name) that imports the Soy
templates the view requires and registers the view as aMetalJS component. This file is also used for
any additional JavaScript logic your view may have. For example, here is a View.es.js component
for a View.soy template:

import Component from 'metal-component/src/Component';

import Footer from './Footer.es';

import Header from './Header.es';

import Soy from 'metal-soy/src/Soy';

import templates from './View.soy';

/**

* View Component

⁎/

class View extends Component {}

// Register component

Soy.register(View, templates);

export default View;

Now that you understand how to configure a Soy template view, you can learn how to use portlet
parameters in your Soy templates next.

Using Portlet Template Parameters in the Soy Template

As mentioned above, the template.put()method exposes portlet parameters to the Soy templates.
Once a parameter is exposed, you can access it in the Soy template by defining it at the top with
the @param name declaration. For instance, the hello-soy-web portlet’s View Soy template defines the
navigationURL parameter with the code below:

@param navigationURL

It is then used to navigate between portlet views:

{msg desc=""}

click-here-to-navigate-to-another-view

{/msg}

Some Java theme object variables are available as well. For example, to access the ThemeDisplay

object in a Soy template, use the following syntax:

{$themeDisplay}

You can also access the Locale object by using {$locale}. Here is the full View.soy template for
the com.liferay.hello.soy.web portlet, which demonstrates the features covered in this section:

{namespace View}

/**

* Prints the Hello Soy portlet main view.

*

* @param id

435

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/theme/ThemeDisplay.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/theme/ThemeDisplay.html

* @param layouts

* @param navigationURL

⁎/

{template .render}

<div id="{$id}">

{call Header.render data="all"}{/call}

<p>

{msg desc=""}here-you-will-find-how-easy-it-is-to-do-things-like{/msg}

</p>

<h3>{msg desc=""}listing-pages{/msg}</h3>

<div class="list-group">

<div class="list-group-heading">{msg desc=""}navigate-to{/msg}</div>

{foreach $layout in $layouts}

{$layout.nameCurrentValue}

{/foreach}

</div>

<h3>{msg desc=""}navigating-between-views{/msg}</h3>

{msg desc=""}click-here-to-navigate-to-another-view{/msg}

{call Footer.render data="all"}{/call}

</div>

{/template}

Now you know how to create a Soy Portlet!

Related Topics

Liferay MVC Portlet

436

CHAPTER 42

THE STATE OBJECT

MetalJS’s component class, which your view component extends, extends MetalJS’s state class. The
state class provides a STATE object that contains state properties and watches these properties
for changes. Any template parameters defined in your portlet classes are added automatically as
properties to the portlet’s STATE object. The component class provides additional rendering logic,
such as automatically re-rendering the component when the state class detects a change in a state
property. This means that you can change a state property on the client side and automatically see
that change reflected in the component’s UI!

This section of tutorials covers how to configure and use your Soy portlet’s STATE object.

42.1 Understanding The State Object's Architecture

An example STATE object configuration appears below:

View.STATE {

myStateProperty: {

setter: 'setterFunction',

validator: val => val === expected value,

value: default value,

valueFn: val => default value,

writeOnce: true

}

}

State properties have these configuration options:
setter: Normalizes the state key’s value. The setter function receives the new value that was set

and returns the value that should be stored.
validator: Validates the state key’s value. When it returns false, the new value is ignored.
value: The state key’s default value. Alternatively, you can set the default value with the valueFn

property. Setting this to an object causes all class instances to use the same reference to the object.
To have each instance use a different reference for objects, use the valueFn option instead. Note
that the portlet template parameter’s value (if applicable) has priority over this value.

valueFn: A function that returns the state key’s default value. Alternatively, you can set the
default valuewith the value property. Note that the portlet template parameter’s value (if applicable)
has priority over this value.

437

writeOnce: Whether the state key is read-only, meaning the initial value is the final value.
Now you know the STATE object’s architecture and how to configure it!

Related Topics

Configuring Portlet Template Parameter State Properties
Configuring Soy Portlet Template Parameters on the Client Side

42.2 Configuring Portlet Template Parameter State Properties

Portlet template parameters are added automatically as state properties to the view component’s
STATE object. Therefore, you can provide additional configuration options for them in the STATE

object. The example below sets the default value for the portlet template parameter color in its
*MVCRenderCommand class:

Template template = (Template)renderRequest.getAttribute(

WebKeys.TEMPLATE);

String color = "red";

template.put("color", color);

The configuration above has the implicit state property configuration shown below in the view’s
component file (View.es.js for example):

View.STATE {

color: {

value: 'red'

}

}

You can provide additional settings by configuring the state Property in the View component.
The example below defines a setter function that transforms the color’s string to upper case before
adding it to the STATE object:

function setColor(color) {

return color.toUpperCase();

}

View.STATE = {

color: {

setter: 'setColor'

}

}

Now you know how to configure portlet template parameter state properties!

Related Topics

Understanding the State Object’s Architecture
Configuring Soy Portlet Template Parameters on the Client Side

438

42.3 Configuring Soy Portlet Template Parameters on the Client Side

Portlet template parameters are set in the Soy Portlet’s server-side code. MetalJS’s state class
provides a STATE object that exposes these parameters as properties so you can access them on
the client side. This tutorial covers how to configure your view component’s STATE object and its
properties on the client side so you can update the UI.

This tutorial references the example below.

An Example Header State Portlet

This tutorial references the example portlet covered in this section. It includes one view with a
header that reads Hello Soy by default.

Figure 42.1: The example Soy portlet has a configurable header.

The text in the header following Hello is provided by the header state property defined in its
*mvcRenderCommand class:

*MVCRenderCommand class:

@Component(

immediate = true,

property = {

"javax.portlet.name=MyStateSoyPortlet", "mvc.command.name=View",

"mvc.command.name=/"

},

service = MVCRenderCommand.class

)

public class MyStateSoyPortletViewMVCRenderCommand

implements MVCRenderCommand {

@Override

public String render(

RenderRequest renderRequest, RenderResponse renderResponse) {

Template template = (Template)renderRequest.getAttribute(

WebKeys.TEMPLATE);

String header = "Soy";

template.put("header", header);

return "View";

}

439

}

View.soy:

{namespace View}

/**

* Prints the portlet main view.

*

* @param id: string

* @param header: string

⁎/

{template .render}

<div id="{$id}">

<h1>Hello {$header}</h1>

<p>You can update the header with the portlet's header State properties.</p>

</div>

{/template}

Configuring the State properties

Soy Portlets are registered automatically using the Liferay.component API, so you can use this API to
retrieve your portlet and update its state properties. You can test this in your browser’s developer
console.

Follow these steps:

1. Open the console in your web browser.

2. Retrieve your portlet’s component by passing the Soy portlet’s ID in the method
Liferay.component(). Here’s an example configuration:

Liferay.component('_MyStateSoyPortlet_');

This returns the Soy portlet’s component Object containing the state properties along with
properties inherited from the prototype. Alternatively, you can access the STATE object directly
by calling the getState()method:

Liferay.component("_MyStateSoyPortlet_").getState();

Note: The `Liferay.component()` method only returns the `STATE` object

information for components currently on the page. These are the state

properties defined for the current view.

3. Now that you retrieved your Soy portlet’s component, you can access its state properties the
same way you would access any object’s properties: the dot notation or the bracket notation.
The code below retrieves the example portlet’s header state property:

Liferay.component("_MyStateSoyPortlet_").header;

440

or

Liferay.component("_MyStateSoyPortlet_")["header"]

4. Update the state property’s value:

Liferay.component("portletID").stateProperty = "new value";

or

Liferay.component("portletID")["stateProperty"] = "new value";

or you can pass a configuration object with the setState()method:

Liferay.component("portletID").setState({stateProperty: new value});

For example, you can change the example portlet’s header to read Hello Hamburger instead,
if you don’t like soy:

Liferay.component('_MyStateSoyPortlet_').setState({header: 'Hamburger'});

Figure 42.2: You can change the example portlet’s header state property on the client side.

Now you know how to configure Soy portlet state properties on the client side!

Related Topics

Understanding the State Object’s Architecture
Configuring Portlet Template Parameter State Properties

441

CHAPTER 43

SPRING MVC

Liferay is an openplatform in an ecosystemof openplatforms. Just because Liferay has its ownMVC
framework doesn’t mean you have to use it. It is perfectly valid to bring the tools and experience
you have from other development projects over to Liferay. In fact, we expect you to. Liferay’s
development platform is standards-based, making it an ideal choice for applications of almost any
type.

If you’re already a wizard with Spring MVC, you can use it instead of Liferay’s MVCPortlet class
with no limitations whatsoever. Since Spring MVC replaces only your application’s web application
layer, you can still use Service Builder for your service layer.

So what does it take to implement a Spring MVC application in Liferay?

1. Develop as you normally do using Spring MVC.

2. Configure your application for Liferay.

3. Deploy it to Liferay.

Since you already have your app, you’ll start with configuration.

43.1 Configuring a Spring MVC Portlet

This isn’t a comprehensive guide to configuring a Spring MVC portlet. It covers the high points,
assuming you already have familiarity with Spring MVC. If you don’t, you should consider using
Liferay’s MVC framework.

What does a Liferay Spring MVC portlet look like? Almost identical to any other Spring MVC
portlet.

Portlet Configuration

In the portlet.xml file’s portlet-class element you must declare Spring’s DispatcherPortlet:

<portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class>

The Spring front controller needs to know where the application context file is, so specify it as
an initialization parameter in the portlet.xml (update the path as needed):

443

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html

<init-param>

<name>contextConfigLocation</name>

<value>/WEB-INF/spring/portlet-context.xml</value>

</init-param>

Provide an application context file (portlet-context.xml in the example above), specified as you
normally would for your Spring MVC portlet. Next configure your web application.

Web Application Configuration

If you’re letting Liferay generate theWAB for you (this is the recommended approach), the elements
are added automatically during auto-deployment.

If you’re configuring an OSGiWeb Application Bundle (WAB) yourself, the web.xml file in your
Spring MVC project must be fully ready for deployment. In addition to your Spring MVC configura-
tion, your web.xmlmust include these elements:

• listener for PluginContextListener

• servlet and servlet-mapping for PortletServlet

The elements look like this:

<listener>

<listener-class>com.liferay.portal.kernel.servlet.PluginContextListener</listener-class>

</listener>

<servlet>

<servlet-name>Portlet Servlet</servlet-name>

<servlet-class>com.liferay.portal.kernel.servlet.PortletServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Portlet Servlet</servlet-name>

<url-pattern>/portlet-servlet/*</url-pattern>

</servlet-mapping>

Your applicationmust be able to convert javax.portlet.PortletRequests to javax.servlet.ServletRequests
and back again. Add this to the web.xml:

<servlet>

<servlet-name>ViewRendererServlet</servlet-name>

<servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>ViewRendererServlet</servlet-name>

<url-pattern>/WEB-INF/servlet/view</url-pattern>

</servlet-mapping>

That’s all the configuration that’s necessary for web.xml. Now you’re ready to configure the
views.

Views

To configure the Spring view resolver, add a bean to your application context file (portlet-
context.xml in the previous example):

444

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/PluginContextListener.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/PortletServlet.html

<bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/views/" />

<property name="suffix" value=".jsp" />

</bean>

Now the front controller, org.springframework.web.portlet.DispatcherPortlet, can get a request
from the view layer, so now it’s time to configure controller classes to handle the requests.

Controllers

With Spring MVC, your controller is conveniently separated into classes that handle the portlet
modes (View, Edit, Help).

You’ll use Spring’s annotations to configure the controller and tell DispatcherPortlet which
mode the controller supports.

View Mode Controller

A simple controller class supporting View mode might look like this:

@Controller("myAppController")

@RequestMapping("VIEW")

public class MyAppController {

@RenderMapping

public String processRenderRequest(RenderRequest request,

RenderResponse response) {

return "defaultView";

}

}

The return defaultView statement should be understood in terms of the view resolver bean in
the application context file, which gives the String defaultView a prefix of WEB-INF/views/, and a
suffix of .jsp. That maps to the path WEB-INF/views/defaultView.jsp, where you would place your
default view for the application.

With Spring MVC, you can only support one portlet phase in each controller.

Edit Mode Controller

An edit mode controller might contain render methods and action methods.

@Controller("myAppEditController")

@RequestMapping("EDIT")

public class MyAppEditController {

@RenderMapping

public String processRenderRequest(RenderRequest request,

RenderResponse response) {

return "thisView";

}

@ActionMapping(params="action=doSomething")

public void doSomething(Actionrequest request, ActionResponse response){

// Do something here

}

}

445

Make sure to define any controller classes in your application context file by adding a bean

element for each one:

<bean class="com.liferay.docs.springmvc.portlet.MyAppController" />

<bean class="com.liferay.docs.springmvc.portlet.MyAppEditController" />

Develop your controllers and your views as you normally would in a Spring MVC portlet. You
must also provide some necessary descriptors for Liferay.

Liferay Descriptors

Liferay portlet plugins that are packaged asWAR files should include some Liferay specific descrip-
tors.

The descriptor liferay-display.xml controls the category in which your portlet appears in
Liferay DXP’s Add menu. Find the complete DTD here.

Here’s a simple example that specifies a new category for the application in Liferay’s menu for
adding applications:

<display>

<category name="New Category">

<portlet id="example-portlet" />

</category>

</display>

The descriptor liferay-portlet.xml specifies additional information about the portlet (like the
location of CSS and JavaScript files or the portlet’s icon. A complete list of the attributes you can
set can be found here

<liferay-portlet-app>

<portlet>

<portlet-name>example-portlet</portlet-name>

<instanceable>true</instanceable>

<render-weight>0</render-weight>

<ajaxable>true</ajaxable>

<header-portlet-css>/css/main.css</header-portlet-css>

<footer-portlet-javascript>/js/main.js</footer-portlet-javascript>

<footer-portlet-javascript>/js/jquery.foundation.orbit.js</footer-portlet-javascript>

</portlet>

<role-mapper>

<role-name>administrator</role-name>

<role-link>Administrator</role-link>

</role-mapper>

<role-mapper>

<role-name>guest</role-name>

<role-link>Guest</role-link>

</role-mapper>

<role-mapper>

<role-name>power-user</role-name>

<role-link>Power User</role-link>

</role-mapper>

<role-mapper>

<role-name>user</role-name>

<role-link>User</role-link>

</role-mapper>

</liferay-portlet-app>

Important: Make your portlet name unique, considering how Liferay DXP uses the name to
create the portlet’s ID.

446

https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-display_7_1_0.dtd.html
https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-portlet-app_7_1_0.dtd.html

You’ll also notice the role-mapper elements included above. They define the Liferay roles used
in the portlet.

The liferay-plugin-package.properties file describes the Liferay plugin, declares its resources,
and specifies its security related parameters. The DTD is here.

name=example-portlet

module-group-id=liferay

module-incremental-version=1

tags=

short-description=

change-log=

page-url=http://www.liferay.com

author=Liferay, Inc.

licenses=LGPL

version=1

In the liferay-plugin-package.properties file, you can also add OSGimetadata which the Liferay
WAB Generator adds to the MANIFEST.MF file when you deploy yourWAR file.

All of Liferay’s DTDs are here.

Calling Services from Spring MVC

To call OSGi-based Service Builder services from your Spring MVC portlet, you need a mechanism
that gives you access to the OSGi service registry.

Since you’re in the context of a Spring MVC portlet, you can’t look up a reference to the services
(including Service Builder services) published to the OSGi runtime using Declarative Services. You
have to use Service Trackers. There’s some boilerplate code involved, but the ability to look up
services in the OSGi runtime is worth it.

Next consider how to package and deploy your Spring MVC portlet.

43.2 Deploying a Spring MVC Portlet

Developers creating portlets for Liferay DXP can usually deploy their portlet as Java EE-styleWeb
Application ARchive (WAR) artifacts or as Java ARchive (JAR) OSGi bundle artifacts. Spring MVC
portlet developers don’t have that flexibility. SpringMVCportletsmust be packaged asWARartifacts
because the Spring MVC framework is designed for Java EE. Therefore, it expects aWAR layout and
requires Java EE resources such as the WEB-INF/web.xml descriptor.

Because Liferay supports the OSGiWAB (Web Application Bundler) standard for deployment,
you can deploy yourWAR and it runs as expected in the OSGi runtime. Here are the high points on
why that works in Liferay:

• The Liferay auto-deploy process runs, adding the PortletServlet and PlugincontextListener

configurations to the WEB-INF/web.xml file.

• The Liferay WAB Generator automatically creates an OSGi-ready META-INF/MANIFEST.MF file.
If you want to affect the content of the manifest file, you can place bnd directives and OSGi
headers directly into a WEB-INF/liferay-plugin-package.properties file for theWAB.

Import class packages your portlet’s descriptor files reference by adding the packages to an
Import-Package header in your liferay-plugin-package.properties file.

Here’s an example Import-Package header:

447

https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-plugin-package_7_1_0.dtd.html
https://docs.liferay.com/dxp/portal/7.1-latest/definitions/

Import-Package:\

org.springframework.beans.factory.xml,\

org.springframework.context.config,\

org.springframework.security.config,\

org.springframework.web.servlet.config

The auto-deploy process and Liferay’sWAB generator convert your project to a Liferay-ready
WAB. The WAB generator detects your class’s import statements and adds all external packages
to theWAB’s Import-Package header. The generator merges packages from your plugin’s liferay-
plugin-package.properties into the header also.

If you depend on a package from Java’s rt.jar other than a java.* package, override portal
property org.osgi.framework.bootdelegation and add it to the property’s list. Go here for details.

Note: SpringMVC portlets whose embedded JARs contain properties files (e.g., spring.handlers,
spring.schemas, spring.tooling) might be affected by issue LPS-75212. The last JAR that has proper-
ties files is the only JAR whose properties are added to the resultingWAB’s classpath. Properties in
other JARs aren’t added.

For example, suppose that a portlet has several JARs containing these properties files:

• WEB-INF/src/META-INF/spring.handlers

• WEB-INF/src/META-INF/spring.schemas

• WEB-INF/src/META-INF/spring.tooling

The properties from the last JAR processed are the only ones added to the classpath. The
properties files must be on the classpath in order for the module to use them.

To add all the properties files to the classpath, you can combine them into one of each type (e.g.,
one spring.handlers, one spring.schemas, and one spring.tooling) and add them to WEB-INF/src.

Here’s a shell script that combines these files:

cat /dev/null > docroot/WEB-INF/src/META-INF/spring.handlers

cat /dev/null > docroot/WEB-INF/src/META-INF/spring.schemas

cat /dev/null > docroot/WEB-INF/src/META-INF/spring.tooling

for jar in $(find docroot/WEB-INF/lib/ -name '*.jar'); do

for file in $(unzip -l $jar | grep -F META-INF/spring. | awk '

{ print $4 }

'); do

if ["META-INF/spring.tld" != "$file"]; then

unzip -p $jar $file >> docroot/WEB-INF/src/$file

echo >> docroot/WEB-INF/src/$file

fi

done

done

You can modify and use the shell script to add your JAR’s properties files to the classpath.

Note: If you want to use a Spring Framework version different from the version Liferay pro-
vides, you must name your Spring Framework JARs differently from the ones portal property
module.framework.web.generator.excluded.paths excludes. If you don’t rename your Spring Frame-
work JARs, theWAB generator assumes you’re using Liferay’s Spring Framework JARs and excludes
yours from the generatedWAB. Understanding Excluded JARs explains how to detect Liferay DXP’s
Spring Framework version.

448

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://issues.liferay.com/browse/LPS-75212
https://docs.liferay.com/ce/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://docs.liferay.com/ce/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework

Once you’ve packaged your Spring MVC portlet as a WAR, you can deploy it by copying it to
[LIFERAY_HOME]/deploy.

Congratulations on deploying your Spring MVC portlet!

449

CHAPTER 44

JSF PORTLETS WITH LIFERAY FACES

Do you want to develop MVC-based portlets using the Java EE standard? Do you want to use
a portlet development framework with a UI component model that makes it easy to develop
sophisticated, rich UIs? Or have you been writing web apps using JSF that you’d like to use in
Liferay DXP? If you answered yes to any of these questions, you’re in luck! Liferay Faces provides
all these capabilities and more.

Liferay Faces is an umbrella project that provides support for the JavaServer™ Faces (JSF)
standard in Liferay DXP. It encompasses the following projects:

• Liferay Faces Bridge lets you deploy JSF web apps as portlets without writing portlet-specific
Java code. It also contains innovative features that make it possible to leverage the power of
JSF 2.x inside a portlet application. Liferay Faces Bridge implements the JSR 329/378 Portlet
Bridge Standard.

• Liferay Faces Alloy lets you use AlloyUI components in a way that is consistent with JSF
development.

• Liferay Faces Portal lets you leverage Liferay-specific utilities and UI components in JSF
portlets.

For a comprehensive demo for the JSF component suite, visit the Liferay Faces Showcase.

451

http://www.liferayfaces.org

If you’re new to JSF, you may want to know its strengths, its weaknesses, and how it stacks up to
developing portlets with CSS/JavaScript.

Here are some good reasons to use JSF and Liferay Faces:

• JSF is the Java EE standard for developingweb applications that use theModel/View/Controller
(MVC) design pattern. As a standard, the specification is actively maintained by the Java
Community Process (JCP), and the Oracle reference implementation (Mojarra) has frequent
releases. Software Architects often choose standards like JSF because they are supported by
Java EE application server vendors and have a guaranteed service life according to Service
Level Agreements (SLAs).

• JSF was first introduced in 2003 and is a mature technology for developing web applications
that are (arguably) easy to maintain.

• JSF Portlet Bridges (like Liferay Faces Bridge) are also standardized by the JCP and make it
possible to deploy JSF web applications as portlets without writing portlet-specific Java code.

• Support for JSF (via Liferay Faces) is included with Liferay DXP support.
• JSF is a unique framework in that it provides a UI component model that makes it easy to
develop sophisticated, rich user interfaces.

• JSF has built-in Ajax functionality that provides automatic updates to the browser by replacing
elements in the DOM.

• JSF is designed with many extension points that make a variety of integrations possible.
• There are several JSF component suites available including Liferay Faces Alloy, Primefaces,
ICEfaces, and RichFaces. Each of these component suites fortify JSF with a variety of UI
components and complimentary technologies such as Ajax Push.

• JSF is a good choice for server-side developers that need to build web user interfaces. This
enables server-side developers to focus on their core competencies rather than being experts
in HTML/CSS/JavaScript.

• JSF provides the Facelets templating engine which makes it possible to create reusable UI
components that are encapsulated as markup.

• JSF provides good integration with HTML5 markup
• JSF provides the Faces Flows feature which makes it easy for developers to create wizard-like
applications that flow from view-to-view.

• JSF has good integration with dependency injection frameworks such as CDI and Spring that
make it easy for developers to create beans that are placed within a scope managed by a
container: @RequestScoped, @ViewScoped, @SessionScoped, @FlowScoped

• Since JSF is a stateful technology, the framework encapsulates the complexities of manag-
ing application state so the developer doesn’t have to write state management code. It is
also possible to use JSF in a stateless manner, but some of the features of application state
management become effectively disabled.

There are some reasons not to use JSF. For example, if you are a front-end developer whomakes
heavy use of HTML/CSS/JavaScript, you might find that JSF UI components render HTML in a
manner that gives you less control over the overall HTML document. Sticking with JavaScript
and leveraging AlloyUI or some other JavaScript framework may be better for you. Or, perhaps
standards aren’t a major consideration for you or you may simply prefer developing portlets using
your current framework.

Whether you develop your next portlet application with JSF and Liferay Faces or with
HTML/CSS/JavaScript is entirely up to you. But you probably want to learn more about Liferay
Faces and try it out for yourself.

452

44.1 Generating a JSF Project from the Command Line

You can generate a Liferay Faces application without having to create your own folder structure,
descriptor files, and such manually. If you really want to do that manually, you can examine the
structure of a JSF application and create one from scratch in the Creating a JSF Project Manually
tutorial.

!PVideo Thumbnail
Before generating your JSF application, you should first visit liferayfaces.org, a great reference

spot for JSF application development targeted for Liferay DXP. This site lets you choose the options
for your JSF application and generates a Maven archetype command you can execute to generate
an application with your chosen options. You can select the following archetype options:

• Liferay Portal Version
• JSF Version
• Component Suite

You can also choose a build framework (Gradle or Maven) and have a list of dependencies
generated for you and displayed on the page. The dependencies are provided to you on the site page
in a pom.xml or build.gradle file, depending on the build type you selected. This is useful because it
gives you an idea of what dependencies are required in your JSF application before generating it.

Note: Gradle developers can also use the archetype:generate command because it generates
both a build.gradle and a pom.xml file for you to use.

Figure 44.1: You can select the Liferay Portal version, JSF version, and component suite for your archetype generation command.

Next you’ll generate an example JSF application (e.g., Liferay Portal 7 + JSF 2.2 + JSF Standard)
via command line using liferayfaces.org.

1. Navigate to liferayfaces.org and select the following options:

• Liferay Portal: 7
• JSF: 2.2
• Component Suite: JSF Standard

453

https://portal.liferay.dev/documents/113763090/113919826/jsf-vid-thumbnail.png
http://liferayfaces.org/
http://liferayfaces.org/
http://liferayfaces.org/

2. Copy the archetype generation command and execute it. Make sure you’ve navigated to the
folder where you want to generate your project.

That’s it! Your JSF application is generated in the current folder!
You can also generate a Liferay JSF application using Maven’s interactive archetype UI. To do

this, execute mvn archetype:generate -Dfilter=liferay and select the JSF archetype you want to use.
Then you’ll step through each option and select the version, group ID, artifact ID, etc. To learn
more about this, see the Generating New Projects Using Archetypes tutorial.

Once you have your JSF application generated, you can import it into Liferay Dev Studio DXP
and develop it further. To deploy it to your Liferay DXP instance, drag and drop it onto the Liferay
DXP server.

You can build the project and deploy it to Liferay DXP from the command line too! If you’re
using Gradle, run the following command to build your JSF application:

../gradlew build

For Maven, execute the following command:

mvn package

Then copy the generatedWAR to Liferay DXP’s deploy folder:

[cp|copy] ./com.mycompany.my.jsf.portlet.war LIFERAY_HOME/deploy

Awesome! You’ve generated your JSF application and deployed it using the command line.
!VVideo Tutorial

44.2 Generating a JSF Project Using Dev Studio

You can generate a Liferay Faces application without having to create your own folder structure
and descriptor files manually using Liferay Dev Studio. If you’re interested in creating the structure
of a JSF application manually or if you want to examine a basic JSF application structure, visit the
Creating a JSF Project Manually tutorial.

In this tutorial, you’ll generate an example JSF project using Liferay Dev Studio. Open your Dev
Studio instance to get started.

1. Navigate to File → New → Project…. This opens a new project wizard.

2. Select the Liferay project and choose Liferay JSF Project from the listed subprojects. Then click
Next.

3. Assign your JSF project a name, build framework (Gradle or Maven), and Component Suite.
You have five component suites to choose from:

• ICEFaces
• JSF Standard
• Liferay Faces Alloy
• PrimeFaces
• RichFaces

454

https://portal.liferay.dev/documents/113763090/113919826/developing-a-new-jsf-portlet.mp4%7Chttps://portal.liferay.dev/documents/113763090/113919826/developing-a-new-jsf-portlet.mkv

Figure 44.2: Choose the Liferay JSF Project option to begin creating a JSF project in Dev Studio.

4. Click Finish to generate your Liferay JSF project.

You’ve generated a Liferay JSF project using Dev Studio! The project you generated contains a
simple portlet that you can customize.

Note: There is another option in Dev Studio’s File → New menu named Liferay JSF Portlet. This is
intended to add portlets to existing JSF projects. Currently, this is only configured to create Liferay
Portal 6.2 JSF portlets. Do not use this option if you’re developing for 7.0.

To deploy the new JSF project to your Liferay DXP instance, drag and drop it onto the Liferay
server.

Fantastic! You’re now able to quickly generate your Liferay JSF project using Liferay Dev Studio!

455

Figure 44.3: Choose your preferred options for your JSF project.

Figure 44.4: The generated JSF portlet project displays basic build information.

456

CHAPTER 45

CREATING A JSF PROJECT MANUALLY

Liferay DXP’s modular architecture lends itself well to modular applications created using a multi-
tude of different technologies. JSF applications are no different and can be developed to integrate
seamlessly into the Liferay platform.

In this section of tutorials, you’ll step through packaging and creating a JSF application that is
deployable as an OSGi module at runtime.

The steps you’ll take are outlined below:

• Construct theWAR-style folder structure.
• Specify the necessary dependencies in a build file of your choice.
• Create JSF portlet descriptors and Liferay descriptors.
• Add resource files in the two designated resources folders.
• Define the portlet’s behavior using a Java class.
• Design a view XHTML form to let the user interact with the portlet.

You can examine the example JSF application solution any time during this section by down-
loading its ZIP file.

Let’s get started!

45.1 Packaging a JSF Application

Developers creating portlets for 7.0 can package their portlets as Java EE styleWeb Application
ARchive (WAR) artifacts or as Java ARchive (JAR) OSGi bundle artifacts. JSF portlet developers,
however, must package their portlets asWAR artifacts because the JSF framework expects aWAR
layout and often requires the WEB-INF/faces-config.xml descriptor and other Java EE resources such
as the WEB-INF/web.xml descriptor.

Liferay provides a way for these WAR-styled portlets to be deployed and treated like OSGi
modules by Liferay’s OSGi runtime. The WAB Generator does this automatically by converting
your WAR artifact to a WAB at deployment time. You can learn more about WABs and the WAB
Generator in the Using theWAB Generator tutorial.

This is how a JSFWAR artifact is structured:

• jsf-portlet

457

https://portal.liferay.dev/documents/113763090/114000653/hello-user-jsf-portlet.zip

– src

* main

· java

· Java Classes

· resources

· Properties files

· webapp

· WEB-INF/

· classes/

· Class files and related properties

· lib/

· JAR dependencies

· resources/

· CSS, XHTML, PNG or other frontend files

· views/

· XHTML views

· faces-config.xml

· liferay-display.xml

· liferay-plugin-package.properties

· liferay-portlet.xml

· portlet.xml

· web.xml

Next, you’ll begin creating a simple JSF application that is deployable to Liferay DXP.

45.2 Defining a JSF Application's Structure and Dependencies

JSF portlets are supported on Liferay Portal by using Liferay Faces Bridge. Liferay Faces Bridge
makes developing JSF portlets as similar as possible to JSF web app development.

You’ll create a simple Hello User application that asks for the user’s name and then greets him
or her with the name. You’ll begin by creating the WAR-style folder structure, and then you’ll
configure dependencies like Liferay Faces Bridge.

1. Create aWAR-style folder structure for your module. Maven archetypes are available to help
you get started quickly. They set the default configuration for you and contain boilerplate
code so you can skip the file creation steps and get started right away. For your JSF application,
you’ll set up the folder structure manually. Follow the folder structure outline below:

458

https://web.liferay.com/web/neil.griffin/blog/-/blogs/new-maven-archetypes-for-jsf-portlets

- hello-user-jsf-portlet

- src

- main

- java

- resources

- webapp

- WEB-INF

- resources

- views

2. Make sure your module specifies the dependencies necessary for a Liferay JSF application.
For instance, you must always specify the Faces API, Faces Reference Implementation (Mo-
jarra), and Liferay Faces Bridge as dependencies in a Liferay-compatible JSF application.
Also, an important, but not required, dependency is the Log4j logging utility. This is highly
recommended for development purposes because it logs DEBUGmessages in the console.
You’ll configure the logging utility later.

For an example build file, the pom.xml file used for the Maven based Hello User JSF applica-
tion is below. All the dependencies described above are configured in the Hello User JSF
application’s pom.xml file.

<?xml version="1.0"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.hello.user.jsf.portlet</artifactId>

<packaging>war</packaging>

<name>hello-user-jsf-portlet</name>

<version>1.0-SNAPSHOT</version>

<properties>

<faces.api.version>2.2</faces.api.version>

<liferay.faces.bridge.ext.version>5.0.3</liferay.faces.bridge.ext.version>

<liferay.faces.bridge.version>4.1.2</liferay.faces.bridge.version>

<mojarra.version>2.2.18</mojarra.version>

</properties>

<build>

<plugins>

<plugin>

<artifactId>maven-compiler-plugin</artifactId>

<version>3.3</version>

<configuration>

<encoding>UTF-8</encoding>

<source>1.8</source>

<target>1.8</target>

</configuration>

</plugin>

<plugin>

<artifactId>maven-war-plugin</artifactId>

<version>2.3</version>

<configuration>

<filteringDeploymentDescriptors>true</filteringDeploymentDescriptors>

</configuration>

</plugin>

</plugins>

</build>

<dependencies>

<dependency>

<groupId>javax.faces</groupId>

<artifactId>javax.faces-api</artifactId>

<version>${faces.api.version}</version>

<scope>provided</scope>

459

</dependency>

<dependency>

<groupId>org.glassfish</groupId>

<artifactId>javax.faces</artifactId>

<version>${mojarra.version}</version>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>com.liferay.faces</groupId>

<artifactId>com.liferay.faces.bridge.ext</artifactId>

<version>${liferay.faces.bridge.ext.version}</version>

</dependency>

<dependency>

<groupId>com.liferay.faces</groupId>

<artifactId>com.liferay.faces.bridge.impl</artifactId>

<version>${liferay.faces.bridge.version}</version>

</dependency>

<dependency>

<groupId>log4j</groupId>

<artifactId>log4j</artifactId>

<version>1.2.14</version>

</dependency>

</dependencies>

</project>

There are also two plugins the Hello User JSF application defined in its pom.xml: maven-
compiler-plugin and maven-war-plugin. These two plugins are responsible for building and
compiling the JSF application using Maven.

There are several UI component suites that a JSF application can use, which include Liferay
FacesAlloy, PrimeFaces, ICEfaces, andRichFaces. Furthermore, you can take advantage ofLiferay
Faces Portal in order to use Liferay-specific utilities and UI components. These components
can be used by specifying them as dependencies in your build file, as well.

Now that your build file is configured, you must define the JSF-specific configurations for your
application. These fall into two convenient categories: general descriptors and Liferay descriptors.
You’ll start with creating the necessary general descriptors next.

45.3 Defining JSF Portlet Descriptors

Since JSF portlets must follow aWAR-style folder structure, they must also haveWAR-style portlet
descriptors.

1. Create a portlet.xml file in the webapp/WEB-INF folder. All portlet WARs require this file. In
this file, make sure to declare the following portlet class:

<portlet>

...

<portlet-class>javax.portlet.faces.GenericFacesPortlet</portlet-class>

...

</portlet>

The javax.portlet.faces.GenericFacesPortlet class handles invocations to your JSF portlet
and makes your portlet, since it relies on Liferay Faces Bridge, easy to develop by acting as a
turnkey implementation.

460

https://maven.apache.org/plugins/maven-compiler-plugin/
https://maven.apache.org/plugins/maven-compiler-plugin/
https://maven.apache.org/plugins/maven-war-plugin/
http://primefaces.org/
http://www.icesoft.org/java/projects/ICEfaces/overview.jsf
http://richfaces.jboss.org/

2. Define a default view file as an init-param in the portlet.xml. This ensures your portlet is
visible when deployed to Liferay DXP.

<init-param>

<name>javax.portlet.faces.defaultViewId.view</name>

<value>/WEB-INF/views/view.xhtml</value>

</init-param>

You’ll create this view later.

The portlet.xml file holds other important details too, like portlet info and security settings.
Look at the portlet.xml file for the example Hello User JSF application.

<?xml version="1.0"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-

app_2_0.xsd" version="2.0">

<portlet>

<portlet-name>hello-user-jsf-portlet</portlet-name>

<display-name>Hello User JSF Portlet</display-name>

<portlet-class>javax.portlet.faces.GenericFacesPortlet</portlet-class>

<init-param>

<name>javax.portlet.faces.defaultViewId.view</name>

<value>/WEB-INF/views/view.xhtml</value>

</init-param>

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

</supports>

<portlet-info>

<title>Hello User JSF Portlet</title>

<short-title>Hello User</short-title>

<keywords>com.liferay.hello.user.jsf.portlet</keywords>

</portlet-info>

<security-role-ref>

<role-name>administrator</role-name>

</security-role-ref>

<security-role-ref>

<role-name>guest</role-name>

</security-role-ref>

<security-role-ref>

<role-name>power-user</role-name>

</security-role-ref>

<security-role-ref>

<role-name>user</role-name>

</security-role-ref>

</portlet>

</portlet-app>

The above configuration sets your portlet’s various names, MIME type, expiration cache, and
security roles.

3. Create a web.xml file in your JSF application’s webapp/WEB-INF folder. The web.xml file serves as
a deployment descriptor that provides necessary configurations for your JSF portlet to deploy
and function in Liferay DXP. Copy the XML code below into your Hello User JSF application.

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" version="3.0">

461

<context-param>

<param-name>javax.faces.PROJECT_STAGE</param-name>

<param-value>${project.stage}</param-value>

</context-param>

<context-param>

<param-name>javax.faces.WEBAPP_RESOURCES_DIRECTORY</param-name>

<param-value>/WEB-INF/resources</param-value>

</context-param>

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<security-constraint>

<display-name>Prevent direct access to Facelet XHTML</display-name>

<web-resource-collection>

<web-resource-name>Facelet XHTML</web-resource-name>

<url-pattern>*.xhtml</url-pattern>

</web-resource-collection>

<auth-constraint/>

</security-constraint>

</web-app>

First, you set the javax.faces.PROJECT_STAGE parameter to the ${project.stage} variable, which
is defined in your build file (e.g., pom.xml) as Development. When set to Development, the JSF
implementation will perform the following steps at runtime:

1. Log more verbose messages.
2. Render tips and/or warnings in the view markup.
3. Cause the default ExceptionHandler to display a developer-friendly error page.

The javax.faces.WEBAPP_RESOURCES_DIRECTORY parameter sets the resources folder inside the
WEB-INF folder. This setting makes the resources in that folder (e.g., CSS, JavaScript, XHTML)
secure from non-JSF calls. You’ll create resources for your app later.

The Faces Servlet configuration is required to initialize JSF and should be defined in all JSF
portlets deployed to Liferay DXP.

Finally, a security restraint is set on Facelet XHTML, which prevents direct access to XHTML
files in your JSF application.

4. Create a faces-config.xml file in your JSF application’s webapp/WEB-INF folder. The faces-

config.xml descriptor is a JSF portlet’s application configuration file, which is used to register
and configure objects and navigation rules. The Hello User portlet’s faces-config.xml file has
the following contents:

<?xml version="1.0"?>

<faces-config version="2.2"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd"

>

<lifecycle>

<phase-listener>com.liferay.faces.util.lifecycle.DebugPhaseListener</phase-listener>

</lifecycle>

</faces-config>

462

Many auto-generated faces-config.xml files have the following configuration:

<lifecycle>

<phase-listener>com.liferay.faces.util.lifecycle.DebugPhaseListener</phase-listener>

</lifecycle>

This configures your JSF portlet to log the before/after phases of the JSF lifecycle to your
console in debug mode. Remove this declaration before deploying to production.

Great! You now have a good idea of how to specify and define general descriptor files for your
JSF portlet. JSF portlets also use Liferay descriptors, which you can learn more about in the Liferay
Descriptors sub-section.

Now that your portlet descriptors are defined, you’ll begin working on your JSF application’s
resources next.

45.4 Defining Resources for a JSF Application

If you look back at the Hello User portlet’s structure, you’ll notice two resources folders defined.
Why are there two of these folders for one portlet? These two folders have distinct differences in
how they’re used and what should be placed in them.

The resources folder in the application’s src/main folder is intended for resources that need to
be on the classpath. Files in this folder are usually properties files. For this portlet, you’ll create
two properties files to reside in this folder.

1. Create the i18n.properties file in the src/main/resources folder. Add the following property
to this file:

enter-your-name=Enter your name:

This is a language key your JSF portlet displays in its view XHTML. The messages in the
i18n.properties file can be accessed via the Expression Language using the implicit i18n
object provided by the Liferay Faces Util class. The i18n object can access messages both
from a resource bundle defined in the portlet’s portlet.xml file, and from Liferay DXP’s
Language.properties file.

2. Create the log4j.properties file in the src/main/resources folder. This file sets properties for
the Log4j logging utility defined in your JSF application (i.e., faces-config.xml). Insert the
properties below into your JSF application’s log4j.properties file.

log4j.rootLogger=INFO, CONSOLE

log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender

log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout

log4j.appender.CONSOLE.layout.ConversionPattern=%d{ABSOLUTE} %-5p [%c{1}:%L] %m%n

log4j.logger.com.liferay.faces.util.lifecycle.DebugPhaseListener=DEBUG

The second resources folder in your JSF application is located in the src/main/webapp/WEB-INF

folder. This folder holds CSS/JS/XHTML resources that shouldn’t be accessed directly by the browser.
For the Hello User JSF application, create a css folder with a main.css file inside. In the main.css

file, add the following style:

463

http://docs.oracle.com/javaee/6/tutorial/doc/bnahq.html

.com.liferay.hello.user.jsf.portlet {

font-weight: bold;

}

This file gives your JSF portlet a bold font.
Now that your resources are defined, you’ll begin developing the Hello User application’s

behavior and UI next.

45.5 Developing a JSF Application's Behavior and UI

Your current JSF application satisfies the requirements for portlet descriptors and WAR-style
structure, but it doesn’t do anything yet. You’ll learn how to develop a JSF application’s back-end
and give it a simple UI next.

The first thing to do is create a Java class for your module. Your JSF portlet’s behavior is defined
here. In the case of the Hello User portlet, you should provide Java methods that can get/set a name
and facilitate the submission process.

1. Create a unique package name in the module’s src/main/java folder and create a new public
Java class named ExampleBacking.java in that package. For example, the class’s folder struc-
ture could be src/main/java/com/liferay/example/ExampleBacking.java. Make sure the class is
annotated with @RequestScoped and @ManagedBean:

@RequestScoped

@ManagedBean

public class ExampleBacking {

Managed beans are Java beans that are managed by the JSF framework. Managed beans
annotated with @RequestScoped are usually responsible for handling actions and listeners. JSF
manages these beans by creating and removing the bean object from the server. Visit the
linked annotations above for more details.

2. Add the following methods and field to your ExampleBacking.java class:

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public void submit(ActionEvent actionEvent) {

FacesContextHelperUtil.addGlobalSuccessInfoMessage();

}

private String name;

You’ve provided a getter and setter method for the private name field. You’ve also provided
a submit(...) method, which is called when the Submit button is selected. A success info
message is displayed once the method is invoked.

You’ve defined your Hello User portlet’s Java behavior; now create its UI!

464

http://docs.oracle.com/javaee/7/api/javax/faces/bean/RequestScoped.html
http://docs.oracle.com/javaee/7/api/javax/faces/bean/ManagedBean.html

3. Create a view.xhtml file in the webapp/WEB-INF/views folder. Add the following logic to that file:

<?xml version="1.0"?>

<f:view

xmlns="http://www.w3.org/1999/xhtml"

xmlns:f="http://java.sun.com/jsf/core"

xmlns:h="http://java.sun.com/jsf/html"

>

<h:head>

<h:outputStylesheet library="css" name="main.css" />

</h:head>

<h:form>

<h:messages globalOnly="true" />

<h:outputLabel value="#{i18n['enter-your-name']}" />

<h:inputText value="#{exampleBacking.name}" />

<h:commandButton actionListener="#{exampleBacking.submit}" value="#{i18n['submit']}">

<f:ajax execute="@form" render="@form" />

</h:commandButton>

<h:outputText value="Hello #{exampleBacking.name}" />

</h:form>

</f:view>

The first thing to notice is the main.css file you created is specified here, which makes your
portlet’s heading typeface bold. Next, your form is defined within the <h:form> tags. The form
asks the user to enter his or her name, and then sets that value to the name field in your Java
class. The form uses the <h:commandButton> tag to execute the Submit button and render the
form after submission.

Notice the i18n object call for the enter-your-name and submit properties. The enter-your-name

property was set in the i18n.properties file you specified, but what about the submit property?
This was not defined in your portlet’s i18n.properties file, so how does your portlet know to
use the string Submit for your button? If you recall, the i18n object can also access messages
in Liferay DXP’s Language.properties file. This is where the submit language key comes from.

Finally, the <h:outputText> tag prints the submitted name on the page, prefixed with Hello.

Awesome! Your Hello User JSF application is complete! Deploy your WAR to Liferay DXP.
Remember, when yourWAR-style portlet is deployed, it’s converted to aWAB via theWABGenerator.
Visit the Using theWAB Generator tutorial for more information on this process and your portlet’s
resulting folder structure.

You can view the finished version of the Hello User JSF application by downloading its ZIP file.

45.6 Services in JSF

Creating services works the same in a JSF portlet as it would in any other standardWAR-style MVC
portlet; generate custom services as separate API and Impl JARs and deploy them as individual
modules to Liferay DXP. You can generate custom services for your JSF portlet using Service Builder.
To learn more about how Service Builder works in Liferay DXP, visit the Service Builder tutorials.

The JSFWAR can then rely on the API module as a provided dependency. The main benefit for
packaging your services this way is to allow multipleWARs to utilize the same custom service API
without packaging it inside everyWAR’s WEB-INF/lib folder. This practice also enforces a separation
of concerns, or modularity, between the UI layer and service layer of a system.

465

https://portal.liferay.dev/documents/113763090/114000653/hello-user-jsf-portlet.zip

Figure 45.1: After submitting the user’s name, it’s displayed with a greeting.

To call OSGi-based Service Builder services from your JSF portlet, you need a mechanism that
gives you access to the OSGi service registry, because you can’t look up services published to the
OSGi runtime using Declarative Services. Instead, you should open a ServiceTracker when you
want to call a service that’s in the OSGi service registry.

To implement a service tracker in your JSF portlet, you can add a type-safe wrapper class that
extends org.osgi.util.tracker.ServiceTracker. For example, this is done in a demo JSF portlet as
follows

public class UserLocalServiceTracker extends ServiceTracker<UserLocalService, UserLocalService> {

public UserLocalServiceTracker(BundleContext bundleContext) {

super(bundleContext, UserLocalService.class, null);

}

}

After extending the ServiceTracker, just call the constructor and the service tracker is ready to
use in your managed bean.

In a managed bean, whenever you need to call a service, open the service tracker. For example,
this is done in the same demo JSF portlet to open the service tracker, using the @PostContruct

annotation:

@PostConstruct

public void postConstruct() {

Bundle bundle = FrameworkUtil.getBundle(this.getClass());

BundleContext bundleContext = bundle.getBundleContext();

userLocalServiceTracker = new UserLocalServiceTracker(bundleContext);

userLocalServiceTracker.open();

}

Then the service can be called:

UserLocalService userLocalService = userLocalServiceTracker.getService();

...

userLocalService.updateUser(user);

When it’s time for the managed bean to go out of scope, you must close the service tracker
using the @PreDestroy annotation:

466

https://osgi.org/javadoc/r6/core/org/osgi/util/tracker/ServiceTracker.html
http://docs.oracle.com/javaee/7/api/javax/annotation/PostConstruct.html
http://docs.oracle.com/javaee/7/api/javax/annotation/PreDestroy.html

@PreDestroy

public void preDestroy() {

userLocalServiceTracker.close();

}

For more information on service trackers and how to use them inWAR-style portlets, see the
Service Trackers tutorial.

Related Topics

Fundamentals
Internationalization
Configurable Applications

45.7 Making URLs Friendlier

This is a story of two URLs who couldn’t be more different. One was full of himself and always
wanted to show everyone (users and SEO services alike) just how smart he was by openly displaying
all the parameters he carried. He was happiest when he could tell people he met were intimidated
and confused by him.

http://localhost:8080/group/guest/~/control_panel/manage?p_p_id=com_liferay_blogs_web_portlet_BlogsAdminPortlet&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_com_liferay_blogs_web_portlet_BlogsAdminPortlet_mvcRenderCommandName=%2Fblogs%2Fedit_entry&_com_liferay_blogs_web_portlet_BlogsAdminPortlet_redirect=http%3A%2F%2Flocalhost%3A8080%2Fgroup%2Fguest%2F~%2Fcontrol_panel%2Fmanage%3Fp_p_id%3Dcom_liferay_blogs_web_portlet_BlogsAdminPortlet%26p_p_lifecycle%3D0%26p_p_state%3Dmaximized%26p_p_mode%3Dview%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_mvcRenderCommandName%3D%252Fblogs%252Fview%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_orderBycol%3Dtitle%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_orderByType%3Dasc%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_entriesNavigation%3D%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_cur%3D1%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_delta%3D20&_com_liferay_blogs_web_portlet_BlogsAdminPortlet_entryId=30836

The other was just, well, friendly. She was less concerned about looking smart and more
concerned about those she interacted with, so she shared only the important things about her. She
didn’t need to look fancy and complicated. She aspired to be simple and kind to all the users and
SEO services she encountered.

http://localhost:8080/web/guest/home/-/blogs/lunar-scavenger-hunt

If you want your application to be friendly to your users and to SEO services, make your URLs
friendlier. It only takes a couple steps, after all.

Creating Friendly URL Routes

1. First create a routes.xml file in your application’s web module. Liferay’s pattern puts it in a
src/main/resources/META-INF/friendly-url-routes/ folder.

2. Add friendly URL routes, using as many <route> tags as you need friendly URLs, like this:

<?xml version="1.0"?>

<!DOCTYPE routes PUBLIC "-//Liferay//DTD Friendly URL Routes 7.1.0//EN" "http://www.liferay.com/dtd/liferay-friendly-url-

routes_7_1_0.dtd">

<routes>

<route>

<pattern></pattern>

<implicit-parameter name="mvcRenderCommandName">/blogs/view</implicit-parameter>

<implicit-parameter name="p_p_lifecycle">0</implicit-parameter>

<implicit-parameter name="p_p_state">normal</implicit-parameter>

</route>

<route>

<pattern>/maximized</pattern>

<implicit-parameter name="mvcRenderCommandName">/blogs/view</implicit-parameter>

467

<implicit-parameter name="p_p_lifecycle">0</implicit-parameter>

<implicit-parameter name="p_p_state">maximized</implicit-parameter>

</route>

<route>

<pattern>/{entryId:\d+}</pattern>

<implicit-parameter name="categoryId"></implicit-parameter>

<implicit-parameter name="mvcRenderCommandName">/blogs/view_entry</implicit-parameter>

<implicit-parameter name="p_p_lifecycle">0</implicit-parameter>

<implicit-parameter name="p_p_state">normal</implicit-parameter>

<implicit-parameter name="tag"></implicit-parameter>

</route>

...

</routes>

Use <pattern> tags to define placeholder values for the parameters that normally appear in the
generated URL. This is just a mask. The beastly URL still lurks beneath it.

The pattern value /{entryId:\d+}matches a / followed by an entryId variable that matches the
Java regular expression \d+—one or more numeric digits. For example, a URL /entryId, where the
entryId value is 123 results in a URL value /123, which matches the pattern.

Warning: Make sure your pattern values don’t end in a slash /. A trailing slash character
prevents the request from identifying the correct route.

Important: If your portlet is instanceable, youmust use a variant of the instanceId in the pattern
value. If the starting value is render-it, for example, use one of these patterns:

<pattern>/{userIdAndInstanceId}/render-it</pattern>

or

<pattern>/{instanceId}/render-it</pattern>

or

<pattern>/{p_p_id}/render-it</pattern>

Use <implicit-parameter> tags to define parameters that are always the same for the URL. For
example, for a render URL, you can be certain that the p_p_lifecycle parameter is always 0. You
don’t have to define these types of implicit parameters, but it’s a best practice because if you don’t,
they still appear in your URL.

The implicit parameters with the name mvcRenderCommandName are very important. If you’re
using an MVCPortletwith MVCRenderCommand classes, that parameter comes from the mvc.command.name

property in the @Component of your MVCRenderCommand implementation. This determines the page
that’s rendered (for example, view.jsp).

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS, "mvc.command.name=/",

"mvc.command.name=/blogs/view"

},

service = MVCRenderCommand.class

)

The DTD file completely defines the routes.xml file.

468

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-friendly-url-routes_7_1_0.dtd.html

Implementing a Friendly URL Mapper

Once you have your URLs mapped in a routes.xml file, you must provide an implementation of the
FriendlyURLMapper service. Create a component that specifies a FriendlyURLMapper service, with two
properties:

1. A com.liferay.portlet.friendly-url-routes property sets the path to your routes.xml file.

2. A javax.portlet.name property, which you probably have already, specifies your portlet’s
name.

@Component(

property = {

"com.liferay.portlet.friendly-url-routes=META-INF/friendly-url-routes/routes.xml",

"javax.portlet.name=" + BlogsPortletKeys.BLOGS

},

service = FriendlyURLMapper.class

)

After that, implement the FriendlyURLMapper service. For your convenience, the DefaultFriendlyURLMapper
class provides a default implementation. If you extend DefaultFriendlyURLMapper you must only
override one method, getMapping(). Return a String that defines the first part of your Friendly
URLs. It’s smart to name it after your application. Here’s what it looks like for Liferay’s Blogs
application:

public class BlogsFriendlyURLMapper extends DefaultFriendlyURLMapper {

@Override

public String getMapping() {

return _MAPPING;

}

private static final String _MAPPING = "blogs";

}

All friendly URLs in Blogs begin with the String set here (blogs).

Friendly URLs in Action

Let’s look at one of these Friendly URLs in action. Add a blog entry and then click on the entry’s
title. Look at the URL:

http://localhost:8080/web/guest/home/-/blogs/lunar-scavenger-hunt

As specified in the friendly URL mapper class, blogs is the first part of the friendly URL that
comes after the Liferay part of the URL. The next part is determined by a specific URL route in
routes.xml:

<route>

<pattern>/{urlTitle}</pattern>

<implicit-parameter name="categoryId"></implicit-parameter>

<implicit-parameter name="mvcRenderCommandName">/blogs/view_entry</implicit-parameter>

<implicit-parameter name="p_p_lifecycle">0</implicit-parameter>

<implicit-parameter name="p_p_state">normal</implicit-parameter>

<implicit-parameter name="tag"></implicit-parameter>

</route>

469

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/FriendlyURLMapper.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/DefaultFriendlyURLMapper.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/DefaultFriendlyURLMapper.html

The urlTitle is generated from the blog post’s title. Since it’s already a parameter in the URL
(see below), it’s available for use in the friendly URL.

<portlet:renderURL var="viewEntryURL">

<portlet:param name="mvcRenderCommandName" value="/blogs/view_entry" />

<portlet:param name="urlTitle" value="<%= entry.getUrlTitle() %>" />

</portlet:renderURL>

When the render URL is invoked, the String defined in the friendly URL mapper teams up with
the pattern tag in your friendly URL routes file, and you get a very friendly URL indeed, instead of
some nasty, conceited, unfriendly URL that’s despised by users and SEO services alike.

470

CHAPTER 46

USING JAVASCRIPT IN YOUR PORTLETS

Would you like to use the latest ECMAScript features in your JavaScript files and portlets? Do you
wish you could use npm and npm packages in your portlets?

In this section of tutorials you’ll learn how to prepare your JavaScript files to leverage these
features in your portlets.

46.1 Preparing Your JavaScript Files for ES2015+

To use the ES2015+ syntax in a JavaScript file, add the extension .es to its name. For example, you
rename file filename.js to filename.es.js. The extension indicates it uses ES2015+ syntax andmust
therefore be transpiled by Babel before deployment.

ES2015+ advanced features, such as generators, are available to you if you import the
polyfillBabel class from the polyfill-babelmodule:

import polyfillBabel from 'polyfill-babel'

The Babel Polyfill emulates a complete ES6 environment. Use it at your own discretion, as it
loads a large amount of code. You can inspect https://github.com/zloirock/core-js#core-js to see
what’s polyfilled.

Once you’ve completed writing your module, you can expose it by creating a package.json file
that specifies your bundle’s name and version. Make sure to create this in yourmodule’s root folder.
Below is an example package.json file for a js-loggermodule:

{

"name": "js-logger",

"version": "1.0.0"

}

The Module Config Generator creates the module based on this information. There you have it!
In just a few steps you can prepare your module to leverage the latest JavaScript standard features
and publish it.

Related Topics

Using ES2015+ Modules in Your Portlet

471

https://babeljs.io/
https://babeljs.io/docs/learn-es2015/#generators
http://babeljs.io/docs/usage/polyfill/
https://github.com/zloirock/core-js#core-js

46.2 Using ES2015 Modules in your Portlet

Once you’ve exposed your modules via your package.json file, you can use them in your portlets.
The aui:script tag’s require attribute makes it easy.

This tutorial covers how to access your exposed modules in your portlets. Follow the steps
below to use your exposed modules in your portlets.

1. Declare the aui taglib in your view JSP:

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

Note: if you created the portlet using Blade, the aui taglib is already provided for you in the
init.jsp.

2. Add an aui:script tag to the JSP and set the require attribute to the relative path for your
module.
The require attribute lets you include your exposed modules in your JSP. The AMD Loader
fetches the specifiedmodule and its dependencies. An example faux Console Logger Portlet’s
view.jsp shown below includes the module logger.es:

<aui:script require="js-logger/logger.es">

var Logger = jsLoggerLoggerEs.default;

var loggerOne = new Logger('*** -> ');

loggerOne.log('Hello');

var loggerDefault = new Logger();

loggerDefault.log('World');

</aui:script>

References to themodulewithin the script tag are named after the require value, in camel-case
and with all invalid characters removed. The logger.esmodule’s reference jsLoggerLoggerEs

is derived from the module’s relative path value js-logger/logger.es. The value is stripped of
its dash and slash characters and converted to camel case.

Thanks to the aui:script tag and its require attribute, using your modules in your portlet is a
piece of cake!

Related Topics

Customizing JSPs
Web Services

472

CHAPTER 47

USING NPM IN YOUR PORTLETS

npm is a powerful tool, and almost a necessity for Front-End development. You can use npm
as your JavaScript package manager tool—including npm and npm packages—while developing
portlets in your normal, everyday workflow.

Deployed portlets leverage Liferay AMD Loader to share JavaScript modules and take advantage
of semantic versioning when resolving modules among portlets on the same page. The liferay-
npm-bundler helps prepare your npmmodules for the Liferay AMD Loader.

This section of tutorials covers how to set up npm-based portlet projects.

47.1 Formatting Your npmModules for AMD

For Liferay DXP to recognize your npm modules, they must be formatted for the Liferay AMD
Loader. Luckily, the liferay-npm-bundler handles this for you, you just have to provide the proper
configuration and add it to your build script. This tutorial shows how to use the liferay-npm-bundler
to set up npm-based portlet projects.

Note: the example and steps covered in this tutorial use the oldmode of the liferay-npm-bundler
that includes additional build steps in the build script before the bundler runs. The newmode of
the bundler, like webpack, uses loaders and a set of rules. See Migrating Your Project to Use the
NewMode to learn how to migrate your project to use the new mode.

The example structure below is referenced throughout this tutorial. You can download it here
if you want to follow along:

• npm-angular5-portlet-say-hello/

– META-INF/

* resources/

· package.json

· name: npm-angular5-portlet-say-hello
· version: 1.0.0

473

https://github.com/izaera/liferay-npm-bundler-2-example

· main: js/angular.pre.loader.js
· scripts:
· build: tsc && liferay-npm-bundler

· tsconfig.json

· target: es5
· moduleResolution: node

· .npmbundlerrc

· exclude:
· *: true

· config:
· imports:
· npm-angular5-provider:
· @angular/animations: ^5.0.0
· @angular/cdk: ^5.0.0
· @angular/common: ^5.0.0
· @angular/compiler: ^5.0.0

· “ ” :
· npm-angular5-provider: ^1.0.0

· js/

· indigo-pink.css

· angular.pre.loader.ts // Bootstrap shims and providers
· import npm-angular5-provider;

• npm-angular5-provider

– package.json

* name: npm-angular5-provider

* version: 1.0.0

* main: bootstrap.js

* scripts:

· build: liferay-npm-bundler

* dependencies:

· @angular/animations: ^5.0.0
· @angular/cdk: ^5.0.0
· @angular/common: ^5.0.0
· @angular/compiler: ^5.0.0
· …

– src/main/resources/META-INF/resources/

* bootstrap.js // This file includes polyfills needed by Angular and must be loaded
before the app

474

· require(‘core-js/es6/reflect’);
· require(‘core-js/es7/reflect’);
· require(‘zone-js/dist/zone’);

Follow these steps to configure your project to use the liferay-npm-bundler:

1. Install NodeJS >= v6.11.0 if you don’t have it installed.

2. Navigate to your portlet’s project folder and initialize a package.json file if it’s not present yet.

If you don’t have a portlet already, create an empty MVC portlet project. For convenience,
you can use Blade CLI to create an empty portlet with the mvc portlet blade template.

If you don’t have a package.json file, you can run npm init -y to create an empty one based on
the project directory’s name.

3. Run the following command to install the liferay-npm-bundler:

npm install --save-dev liferay-npm-bundler

Note: Use npm from within your portlet project's root folder (where the

`package.json` file lives), as you normally do on a typical web project.

4. Add the liferay-npm-bundler to your package.json’s build script to pack the needed npm pack-
ages and transform them to AMD:

"scripts": {

"build": "[... &&] liferay-npm-bundler"

}

The [...&&] refers to any previous steps you need to perform (for example, transpiling your
sources with Babel, compiling SOY templates, transpiling Typescript, etc.). The example
includes the Typescript compiler (tsc) in its build script because Angular requires it for
transpiling code to ES5:

"build": "tsc && liferay-npm-bundler"

Note: You can use any languages you like as long as they can be

transpiled to ECMAscript 5 or higher. The only requirements are:

- That Babel can convert them to an AST to be able to process it

- That your browser can execute it.

- That modules are loaded using `require()` calls (this requirement can be

relaxed by using customized plugins, but is mandatory for the default

out-of-the-box configuration).

When you deploy your portlet using Gradle, the build script is called as

part of the process.

475

http://nodejs.org/dist/v6.11.0/

5. Configure your project for the bundler, using the .npmbundlerrc file (create this file in your
project’s root folder if it doesn’t exist). You can specify packages to exclude from the output
JAR, imports for shared dependencies, and more. See the Configuring liferay-npm-bundler
reference for more information on the available options.
The example excludes every dependency (using the wildcard (*) symbol) of the npm-angular5-

portlet-say-hello widget to prevent Angular from appearing in its JAR, making the build
process faster and optimizing deployment. Note that npm-angular5-provider is also imported
with no namespace ("") because one of its modules is going to be invoked to bootstrap
Angular shims: see the angular.pre.loader.ts file, where npm-angular5-provider is imported.
That import, in turn, loads npm-angular5-provider’s main file (bootstrap.js):

{

...

"exclude": {

"*": true

},

"config": {

"imports": {

"npm-angular5-provider": {

"@angular/animations": "^5.0.0",

"@angular/cdk": "^5.0.0",

"@angular/common": "^5.0.0",

"@angular/compiler": "^5.0.0",

...

},

"": {

"npm-angular5-provider": "^1.0.0"

}

}

}

}

6. Run npm install to install the required dependencies.

7. Run the build script to bundle your dependencies with the liferay-npm-bundler:

npm run-script build

The bundler copies the project and node_modules’ JS files to the output and wraps them inside a
Liferay.Loader.define() call so that the Liferay AMD Loader knows how to handle them. It also
namespaces the module names in require() calls and inside the Liferay.Loader.define() call with
the project’s name prefix (npm-angular5-provider$ in the example) to achieve dependency isolation.
the bundler injects the dependencies in the package.json pertaining to npm-angular5-provider to
make them available at runtime. The resulting build for the example widget is shown below:

• npm-angular5-portlet-say-hello/

– build/

* resources/main/META-INF/resources

· package.json

476

· dependencies:
· @npm-angular5-provider$angular/animations: ^5.0.0
· @npm-angular5-provider$angular/cdk: ^5.0.0
· @npm-angular5-provider$angular/common: ^5.0.0
· @npm-angular5-provider$angular/compiler: ^5.0.0

· js/

· angular.loader.js

· Liferay.Loader.define(“npm-angular5-portlet-say-hello@1.0.0/js/angular.loader”
· [‘module’, ‘exports’, ‘require’, ‘@npm-angular5-provider$angular/platform-
browser-dynamic’, …]

• npm-angular5-provider

– package.json

* name: npm-angular5-provider

* version: 1.0.0

* main: bootstrap.js

* dependencies:

· @npm-angular5-provider$angular/animations: ^5.0.0
· @npm-angular5-provider$angular/cdk: ^5.0.0
· @npm-angular5-provider$angular/common: ^5.0.0
· @npm-angular5-provider$angular/compiler: ^5.0.0
· …

– bootstrap.js

* Liferay.Loader.define(‘npm-angular5-provider@1.0.0/bootstrap’

* [‘module’, ‘exports’, ‘require’, ‘npm-angular5-provider𝑐𝑜𝑟𝑒−𝑗𝑠/𝑒𝑠6/𝑟𝑒𝑓𝑙𝑒𝑐𝑡′,′ 𝑛𝑝𝑚−
𝑎𝑛𝑔𝑢𝑙𝑎𝑟5−𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟core-js/es7/reflect’, ‘npm-angular5-provider$zone.js/dist/zone’]

– src/main/resources/META-INF/resources/

* bootstrap.js // This file includes polyfills needed by Angular and must be loaded
before the app

· require(‘core-js/es6/reflect’);
· require(‘core-js/es7/reflect’);
· require(‘zone-js/dist/zone’);

Note: By default, the AMD Loader times out in seven seconds. Since Liferay DXP Fix Pack 3
and Liferay Portal 7.1 CE GA 2, you can configure this value through System Settings. Open the
Control Panel and navigate to Configuration → System Settings → PLATFORM → Infrastructure, and
select JavaScript Loader. Set the Module Definition Timeout configuration to the time you want and
click Save.

Now you know how to use the liferay-npm-bundler to bundle your npm-based portlets for the
Liferay AMD Loader!

477

Related Topics

Preparing Your JavaScript Files for ES2015+

47.2 Migrating a liferay-npm-bundler Project from 1.x to 2.x

You should use the latest 2.x version of the liferay-npm-bundler. It offersmore stability and includes
more features out-of-the-box. If you already created a project using the 1.x version, don’t worry.
Follow these steps to migrate your project to 2.x:

1. Update the liferay-npm-bundler dependency in your package.json to version 2.x:

{

"devDependencies": {

...

"liferay-npm-bundler": "^2.0.0",

...

},

...

}

2. Remove all liferay-npm-bundler-preset-* dependencies from your package.json because
liferay-npm-bundler 2.x includes these by default.

3. Remove any bundler presets you configured in your .npmbundlerrc file. liferay-npm-bundler
2.x includes one smart preset that handles all frameworks automatically.

These are the standard requirements that all projects have in common. The remaining steps
depend on your project’s framework. Follow the instructions in the corresponding section to finish
migrating your project.

Migrating a Plain JavaScript, Billboard JS, JQuery, Metal JS, React, or Vue JS Project

After following the steps covered in the beginning, follow these remaining steps to migrate the
framework projects shown below to 2.x:

• plain JS project
• Billboard.js project
• JQuery project
• Metal.js project
• React project
• Vue.js project

While Babel is required to transpile your source files, you must remove any Babel preset used
for transformations from your project that bundler 1.x imposed. liferay-npm-bundler 2.x handles
these transformations by default:

1. Remove the liferay-project preset from your project’s .babelrc file. All that should remain is
the es2015 preset shown below:

478

{

"presets": ["es2015"]

}

If your project uses React, make sure the react preset remains as well:

{

"presets": ["es2015", "react"]

}

2. Remove the babel-preset-liferay-project dependency from your package.json.

If you’re migrating an Angular project, follow the steps in the next section.

Migrating an Angular Project

After following the steps covered in the beginning, follow these remaining steps to migrate your
Angular project to 2.x. While liferay-npm-bundler 1.x relied on Babel to perform some transfor-
mation steps, these transformations are now automatically applied in version 2.x. Therefore, you
should remove Babel from your project:

1. Open your tsconfig.json file and replace the "module": "amd" compiler option with the con-
figuration shown below to produce CommonJS modules:

{

"compilerOptions": {

...

"module": "commonjs",

...

}

}

2. Delete the .babelrc file to remove the Babel configuration.

3. Remove Babel from your package.json build process so it matches the configuration below:

{

"scripts": {

"build": "tsc && liferay-npm-bundler"

},

...

}

4. Remove the following Babel dependencies from your package.json devDependencies:

"babel-cli": "6.26.0",

"babel-preset-liferay-amd": "1.2.2"

Related Topics

Formatting Your npmModules for AMD
Using the NPMResolver API in Your Portlets
What Changed between liferay-npm-bundler 1.x and 2.x

479

47.3 Migrating Your Project to Use liferay-npm-bundler's NewMode

In the previous version of the liferay-npm-bundler, before the bundler ran, the build did some
preprocessing, then the bundler modified the output from the preprocessed files, as shown in the
example build script below:

{

"scripts":{

"build": "babel --source-maps -d build src && liferay-npm-bundler"

}

}

In the new mode, the liferay-npm-bundler is in charge of the whole process, like webpack, and
configured via a set of rules. The build script is condensed, as shown below:

{

"scripts":{

"build": "liferay-npm-bundler"

}

}

Follow these steps to migrate your project to use the new configuration mode:

1. Open the project’s package.json file and update the build script to only use the liferay-npm-
bundler:

{

"scripts":{

"build": "liferay-npm-bundler"

}

}

2. Define the rules for the bundler to use (e.g. running babel to transpile files) in the project’s
.npmbundlerrc file. The example configuration below defines rules for using the babel-loader

to transpile JavaScript files. See the Default Loaders reference for the full list of default
loaders. Follow the steps in Creating Custom Loaders for the Bundler to create a custom
loader. The liferay-npm-bundler processes the *.js files in /src/ with babel and writes the
results in the default /build/ folder:

{

"sources": ["src"],

"rules": [

{

"test": "\\.js$",

"exclude": "node_modules",

"use": [

{

"loader": "babel-loader",

"options": {

"presets": ["env"]

}

}

]

}

]

}

480

Note: The new mode of the liferay-npm-bundler acts very much

like webpack, but because webpack creates a single JS bundle file and

liferay-npm-bundler targets an AMD loader, they are not compatible.

Related Topics

• Default liferay-npm-bundler Loaders
• Understanding liferay-npm-bundler’s Loaders

47.4 Creating Custom Loaders for the liferay-npm-bundler

Since webpack creates JS bundles and the liferay-npm-bundler targets AMD loader, webpack’s
loaders aren’t compatible with the liferay-npm-bundler. So, if you want to use a loader that isn’t
available by default, you must create a custom loader.

A loader, in terms of the liferay-npm-bundler, is defined as an npm package that has a main
module which exports a default function with this signature:

function(context, options){

}

The arguments are defined as follows:

• context: an object that contains these fields

– content: A string with the contents of the processed file (the main input of the loader)
– filepath: the project-relative path to the file to process with the loader
– extraArtifacts: an object with project-relative paths as keys and strings as values of

properties which may be used to output extra files along with the one being processed
(for example, you can use it to generate source maps).

– log: a logger that writes execution information to the bundler’s report file (see the
PluginLogger class for information on its structure and API).

• options: an object taken from the options field of the loader’s configuration (See Understand-
ing liferay-npm-bundler’s loaders and rules for more information).

Note: the functionmay return nothing ormodified content. If something is returned, it is copied
on top of the context.content field ans used to feed the next loader or write the output file. This is
the equivalent to context.content = ‘something’. If your loader does not return a file, but instead it
only filters files to prevent them from being generated, you must explicitly set context.content =

'undefined'.

Follow these steps to write a new loader. These steps use the babel loader as an example:

1. If your loader requires configuration, like babel, you may define a rule configuration like the
one shown below so you can specify options for the loader:

481

https://github.com/liferay/liferay-js-toolkit/blob/master/packages/liferay-npm-build-tools-common/src/plugin-logger.js

{

"rules": [

{

"test": "\\.js$",

"exclude": "node_modules",

"use": [

{

"loader": "babel-loader",

"options": {

"presets": ["env", "react"]

}

}

]

}

]

}

2. Create an index.js file and write a function that takes the input content, passes it through
the loader, and writes the result and the source map file to the output folder. The loader
function below takes the passed content (JS files), run it through babel, and writes the result
and source map to the default /build/ output folder:

export default function(context, options) {

// Get input parameters

const { content, filePath, log, sourceMap } = context;

// Run babel on content

const result = babel.transform(content, options);

// Create an extra .map file with source map next to source .js file

context.extraArtifacts[`${filePath}.map`] = JSON.stringify(result.map);

// Tell the user what we have done

log.info("babel-loader", "Transpiled file");

// Return the modified content

return result.code;

}

3. Place the index.js file in an npm package and publish it.

4. Include the npm package you just created as a devDependency in the project’s package.json:

"devDependencies": {

"liferay-npm-bundler": "2.12.0",

"liferay-npm-build-support": "2.12.0",

"liferay-npm-bundler-loader-babel-loader": "2.12.0",

...

}

5. Configure the loader’s name in the rules section of the project’s .npmbundlerrc file:

{

"sources": ["src"],

...

"rules": [

{

"test": "\\.js$",

"exclude": "node_modules",

"use": [

{

482

"loader": "babel-loader",

"options": {

"presets": ["env", "react"]

}

}

]

}

],

...

}

Related Topics

• Default liferay-npm-bundler Loaders
• Understanding liferay-npm-bundler’s Loaders

483

CHAPTER 48

USING THE NPMRESOLVER API IN YOUR PORTLETS

If you’re developing an npm-based portlet, your OSGi bundle’s package.json is a treasure-trove of
information. It contains everything that’s stored in the npm registry about your bundle: default
entry point, dependencies, modules, package names, versions, and more. The NPMResolver APIs
expose this information so you can access it in your portlet. If it’s defined in the OSGi bundle’s
package.json, you can retrieve the information in your portlet with the NPMResolverAPI. For instance,
you can use this API to reference an npm package’s static resources (such as CSS files) and even to
make your code more maintainable.

To enable the NPMResolver in your portlet, use the @Reference annotation to inject the NPMResolver

OSGi component into your portlet’s Component class, as shown below:

import com.liferay.frontend.js.loader.modules.extender.npm.NPMResolver;

public class MyPortlet extends MVCPortlet {

@Reference

private NPMResolver `_npmResolver`;

}

Note: Because the NPMResolver reference is tied directly to the OSGi bundle’s package.json file,
it can only be used to retrieve npmmodule and package information from that file. You can’t use
the NPMResolver to retrieve npm package information for other OSGi bundles.

Now that the NPMResolver is added to your portlet, the tutorials in this section describe retrieving
your OSGi bundle’s npm package and module information.

48.1 Referencing an npmModule's Package to Improve Code Maintenance

Once you’ve exposed yourmodules, you can use them in your portlet via the aui:script tag’s require
attribute. By default, Liferay DXP automatically composes an npmmodule’s JavaScript variable
based on its name. For example, themodule my-package@1.0.0 translates to the variable myPackage100
for the <aui:script> tag’s require attribute. This means that each time a new version of the OSGi
bundle’s npm package is released, you must update your code’s variable to reflect the new version.

485

https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html

You can use the JSPackage interface to obtain the module’s package name and create an alias to
reference it, so the variable name always reflects the latest version number!

Follow these steps:

1. Retrieve a reference to the OSGi bundle’s npm package using the getJSPackage()method:

JSPackage jsPackage = _npmResolver.getJSPackage();

2. Grab the npm package’s resolved ID (the current package version, in the format <package
name>@<version>, defined in theOSGimodule’s package.json) using the getResolvedId()method
and alias it with the as myVariableNamepattern. The example below retrieves the npmmodule’s
resolved ID, sets it to the bootstrapRequire variable, and assigns the entire value to the attribute
bootstrapRequire. This ensures that the package version is always up to date:

renderRequest.setAttribute(

"bootstrapRequire",

jsPackage.getResolvedId() + " as bootstrapRequire");

3. Include the reference to the NPMResolver:

@Reference

private NPMResolver _npmResolver;

4. Resolve the JSPackage and NPMResolver imports:

import com.liferay.frontend.js.loader.modules.extender.npm.JSPackage;

import com.liferay.frontend.js.loader.modules.extender.npm.NPMResolver;

5. In the portlet’s JSP, retrieve the aliased attribute (bootstrapRequire in the example):

<%

String bootstrapRequire =

(String)renderRequest.getAttribute("bootstrapRequire");

%>

6. Finally, use the attribute as the <aui:script> require attribute’s value:

<aui:script require="<%= bootstrapRequire %>">

bootstrapRequire.default();

</aui:script>

Below is the full example *Portlet class:

public class MyPortlet extends MVCPortlet {

@Override

public void doView(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

JSPackage jsPackage = _npmResolver.getJSPackage();

renderRequest.setAttribute(

"bootstrapRequire",

486

https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/JSPackage.html
https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html#getJSPackage
https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/JSPackage.html#getResolvedId
https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html

jsPackage.getResolvedId() + " as bootstrapRequire");

super.doView(renderRequest, renderResponse);

}

@Reference

private NPMResolver _npmResolver;

}

And here is the corresponding example view.jsp:

<%

String bootstrapRequire =

(String)renderRequest.getAttribute("bootstrapRequire");

%>

<aui:script require="<%= bootstrapRequire %>">

bootstrapRequire.default();

</aui:script>

Now you know how to reference an npmmodule’s package!

Related Topics

Obtaining an OSGi bundle’s Dependency npm Package Descriptors
liferay-npm-bundler
How Liferay DXP Publishes npm Packages

48.2 Obtaining an OSGi bundle's Dependency npm Package Descriptors

While writing your npm portlet, you may need to reference a dependency package or its modules.
For instance, you can retrieve an npm dependency package module’s CSS file and use it in your
portlet. The NPMResolver OSGi component provides two methods for retrieving an OSGi bundle’s
dependency npm package descriptors: getDependencyJSPackage() to retrieve dependency npm pack-
ages and resolveModuleName() to retrieve dependency npmmodules. This tutorial references the
package.json below to help demonstrate these methods:

{

"dependencies": {

"react": "15.6.2",

"react-dom": "15.6.2"

},

.

.

.

}

To obtain an OSGi bundle’s npm dependency package, pass the package’s name in as the
getDependencyJSPackage()method’s argument. The example below resolves the react dependency
package:

String reactResolvedId = npmResolver.getDependencyJSPackage("react");

487

https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html
https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html#getDependencyJSPackage
https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html#resolveModuleName

reactResolvedId’s resulting value is react@15.6.2.
You can use the resolveModuleName()methodTo obtain amodule in an npmdependency package.

To do this, pass the module’s relative path in as the resolveModuleName()method’s argument. The
example below resolves a module named react-with-addons for the react dependency package:

String resolvedModule =

npmResolver.resolveModuleName("react/dist/react-with-addons");

The resolvedModule variable evaluates to react@15.6.2/dist/react-with-addons. You can also use
this to reference static resources inside npm packages (like CSS or image files), as shown in the
example below:

String cssPath = npmResolver.resolveModuleName(

"react/lib/css/main.css");

Now you know how to obtain an OSGi bundle’s dependency npm packages descriptors!

Related Topics

Referencing an npmModule’s Package
The Structure of OSGi Bundles Containing npm Packages
How Liferay DXP Publishes npm Packages

488

CHAPTER 49

APPLYING CLAY STYLES TO YOUR APP

It’s important to have a consistent user experience across your apps. Portal’s built-in apps achieve
this through Liferay’s Lexicon Experience Language and its web implementation, Clay.

Clay provides a consistent, user-friendly UI and is included in all themes that are based on the
_styled base theme, making all the components documented on the Clay site accessible.

This means you can use Clay markup and components in your apps. These tutorials explain
how to apply Clay’s design patterns to achieve the same look and feel as Portal’s built-in apps.

The tutorials in this section cover the following topics:

• Applying Clay to navigation
• Implementing the Management Toolbar

49.1 Applying Clay Patterns to Navigation

This tutorial covers how to leverage Clay patterns in your app’s navigation to make it more user-
friendly. Updating your app’s navigation bar to use Clay is easy, thanks to the <clay:navigation-bar

/> tag. Follow these steps to update your app:

1. Add the required imports to your app’s init.jsp:

// Import the clay tld file to be able to use the new tag

<%@ taglib uri="http://liferay.com/tld/clay" prefix="clay" %>

// Import the NavigationItem utility class to create the items model

<%@ page import="com.liferay.frontend.taglib.clay.servlet.taglib.util.JSPNavigationItemList" %>

2. Add the frontend-taglib-clay and frontend.taglib.soy module dependencies to your app’s
build.gradle file:

compileOnly group: "com.liferay", name: "com.liferay.frontend.taglib.soy",

version: "1.0.10"

compileOnly group: "com.liferay", name: "com.liferay.frontend.taglib.clay",

version: "1.0.0"

489

https://lexicondesign.io/
https://clayui.com/docs/getting-started/clay.html
https://clayui.com/docs/components/alerts.html

3. Inside your JSP view, add a java scriplet to retrieve the navigation variable and portlet URL.
An example configuration is shown below:

<%

final String navigation = ParamUtil.getString(request, "navigation",

"entries");

PortletURL portletURL = renderResponse.createRenderURL();

portletURL.setParameter("mvcRenderCommandName", "/blogs/view");

portletURL.setParameter("navigation", navigation);

%>

4. Add the <clay:navigation-bar /> tag to your app, and use the items attribute to specify the
navigation items. The navigation bar should be dark if your app is intended for Admin use.
To do this, set the inverted attribute to true. If your app is intended for an instance on a
live site, keep the navigation bar light by setting the inverted attribute to false. An example
configuration for an admin app is shown below:

<clay:navigation-bar

inverted="<%= true %>"

navigationItems="<%=

new JSPNavigationItemList(pageContext) {

{

add(

navigationItem -> {

navigationItem.setActive(navigation.equals("entries"));

navigationItem.setHref(renderResponse.createRenderURL());

navigationItem.setLabel(LanguageUtil.get(request, "entries"));

});

add(

navigationItem -> {

navigationItem.setActive(navigation.equals("images"));

navigationItem.setHref(renderResponse.createRenderURL(),

"navigation", "images");

navigationItem.setLabel(LanguageUtil.get(request, "images"));

});

}

}

%>"

/>

5. Add a conditional block to display the proper JSP for the selected navigation item. An example
configuration for the Blogs Admin portlet is shown below:

<c:choose>

<c:when test='<%= navigation.equals("entries") %>'>

<liferay-util:include page="/blogs_admin/view_entries.jsp"

servletContext="<%= application %>" />

</c:when>

<c:otherwise>

<liferay-util:include page="/blogs_admin/view_images.jsp"

servletContext="<%= application %>" />

</c:otherwise>

</c:choose>

Live site navigation bar:
Admin app navigation bar:
Sweet! Now you know how to style a navigation bar with Clay.

490

Figure 49.1: The navigation bar should be light for apps on the live site.

Figure 49.2: The navigation bar should be dark (inverted) in admin apps.

Related topics

Implementing the Management Toolbar

49.2 Configuring Your Application's Title and Back Link

For administration applications, the title should be moved to the inner views of the app and the
associated back link should be moved to the portlet titles. If you open the Blogs Admin application
in the Control Panel and add a new blog entry, you’ll see this behavior in action:

Figure 49.3: Adding a new blog entry displays the portlet title at the top, along with a back link.

The Blogs Admin application is used as an example throughout this article. Follow these steps
to configure your app’s title and back URL:

1. Use ParamUtil to retrieve the redirect for the URL:

String redirect = ParamUtil.getString(request, "redirect");

2. Display the back icon and set the back URL to the redirect:

portletDisplay.setShowBackIcon(true);

portletDisplay.setURLBack(redirect);

3. Finally, set the title using the renderResponse.setTitle()method. The example below provides
a title for two scenarios:

• If an existing blog entry is being updated, the blog’s title is displayed.
• Otherwise it defaults to New Blog Entry since a new blog entry is being created.

491

renderResponse.setTitle((entry != null) ? entry.getTitle() :

LanguageUtil.get(request, "new-blog-entry"));

%>

4. Update any back links in the view to use the redirect. The Blog Admin app’s edit_entry.jsp
form’s cancel button is shown below as an example:

<aui:button cssClass="btn-lg" href="<%= redirect %>" name="cancelButton"

type="cancel" />

Great! Now you know how to configure your app’s title and back URL.

Related Topics

• Applying Clay Patterns to Your Navigation Bar
• Setting Empty Results Messages

49.3 Setting Empty Results Messages

If you’ve toured the UI, you’ve probably noticedmessages or possibly even animations in the search
containers when no results are found.

Figure 49.4: This is a still frame from the Web Content portlet’s empty results animation.

492

You can configure your apps to use empty results messages and animations too, thanks to the
liferay-frontend:empty-results-message tag.

Follow these steps:

1. Add the liferay-frontend taglib declaration into your portlet’s init.jsp:

<%@ taglib uri="http://liferay.com/tld/frontend" prefix="liferay-frontend" %>

2. Add an empty-result-message tag to your portlet’s view:

<liferay-frontend:empty-result-message

/>

3. Configure the tag’s attributes to define your search container’s empty results message, with
or without an animation or image. The attributes are described in the table below:

Attribute | Description |

--- | --- |

`actionDropdownItems` | Specifies the action or actions to display for the empty results in either a dropdown menu, a link, or a button, depending on the number of available actions. |

`animationType` | The CSS class for the animation. Four values are available by default with these CSS classes: `EmptyResultMessageKeys.AnimationType.EMPTY` (`taglib-

empty-state`), `EmptyResultMessageKeys.AnimationType.SEARCH` (`taglib-search-state`), `EmptyResultMessageKeys.AnimationType.SUCCESS` (`taglib-

success-state`), and `EmptyResultMessageKeys.AnimationType.NONE`. You can also specify a custom CSS class if you prefer. |

`componentId` | Specifies the ID for the `actionDropdownItems` component (dropdown menu, link, or button)|

`description` | The descriptive text to display beneath the main message. |

`elementType` | The type of element to replace the `x` parameter in the main message's language key `no-x-yet`. |

An example configuration is shown below:

```html

<liferay-frontend:empty-result-message

actionDropdownItems="<%= FragmentPermission.contains(permissionChecker, scopeGroupId,

FragmentActionKeys.MANAGE_FRAGMENT_ENTRIES) ? fragmentDisplayContext.getActionDropdownItems() : null %>"

animationType="<%= EmptyResultMessageKeys.AnimationType.NONE %>"

componentId="actionsComponent"

description='<%= LanguageUtil.get(request, "collections-are-needed-to-create-fragments") %>'

elementType='<%= LanguageUtil.get(request, "collections") %>'

/>

```

Note: You can replace the available default animations with your own

by overriding the `taglib-empty-state`, `taglib-search-state`, and

`taglib-success-state` CSS classes provided by

[_empty_result_message.scss](https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-css/frontend-css-

web/src/main/resources/META-INF/resources/taglib/_empty_result_message.scss),

or by replacing the existing animations in the `@theme_image_path@/states/`

folder. Alternatively, you can also provide a new CSS class that defines

the animation and use it for the `animationType` attribute's value.

493

https://docs.liferay.com/dxp/apps/frontend-taglib/latest/taglibdocs/liferay-frontend/empty-result-message.html

Figure 49.5: Use the empty state animation to signify there are no entries to search.

Figure 49.6: Use the search state animation to signify no search results were found.

Figure 49.7: Use the success state animation to signify search results were found.

empty_state.gif:
search_state.gif:
success_state.gif:

Note: Empty results messages can also contain static images if you prefer. Just use a valid image
type instead. All animations must be of type GIF though.

Great! Now you know how to configure your app to display an empty results message.

Related Topics

• Using the Liferay Front-End Taglib
• Applying the Add Button Pattern

494

CHAPTER 50

IMPLEMENTING THE MANAGEMENT TOOLBAR

The Management Toolbar is a combination of search, filters, sorting options, and display options
that let you manage data. For admin apps, we recommend that you add a management toolbar to
manage your search container results. The Clay Management Toolbar tutorial covers how to use
the Clay taglibs to create the Management Toolbar. This section of tutorials covers how to create
the features below for the Management Toolbar:

• Implementing View Types
• Sorting and Filtering Items

50.1 Implementing the View Types

The Management Toolbar has three predefined view types for your app’s search container results.
Each style offers a slightly different look and feel. To provide these view types in your app, you
must make some updates to your search result columns. Start by defining the view types you want
to provide.

Defining the View Types

The Management Toolbar has three view types:

• Cards: displays search result columns on a horizontal or vertical card

• List: displays a detailed description along with summarized details for the search result
columns

• Table: the default view, which list the search result columns from left to right

Follow these steps to define the view types for your management toolbar:

1. Import the ViewTypeItemList utility class to create the action items model:

<%@ page import="com.liferay.frontend.taglib.clay.servlet.taglib.util.JSPViewTypeItemList" %>

495

2. Add the frontend.taglib.clay and frontend.taglib.soy module dependencies to your app’s
build.gradle file:

compileOnly group: "com.liferay", name: "com.liferay.frontend.taglib.soy",

version: "1.0.10"

compileOnly group: "com.liferay", name: "com.liferay.frontend.taglib.clay",

version: "1.0.0"

3. In your app’s main view, retrieve the displayStyle for reference. Each view type corresponds
to a display style. this is used to determine the proper content configuration to display for
the selected view type:

<%

String displayStyle = ParamUtil.getString(request, "displayStyle");

%>

4. Add the management toolbar to your app’s main view and configure the display buttons as
shown below. Note that while this example implements all three view types, only one view
type is required. The default or active view type is set by adding viewTypeItem.setActive(true)

to the view type:

<clay:management-toolbar

disabled=<%= assetTagsDisplayContext.isDisabledTagsManagementBar() %>

namespace="<%= renderResponse.getNamespace() %>"

searchContainerId="assetTags"

selectable="<%= true %>"

viewTypes="<%=

new JSPViewTypeItemList(pageContext, baseURL, selectedType) {

{

addCardViewTypeItem(

viewTypeItem -> {

viewTypeItem.setActive(true);

viewTypeItem.setLabel("Card");

});

addListViewTypeItem(

viewTypeItem -> {

viewTypeItem.setLabel("List");

});

addTableViewTypeItem(

viewTypeItem -> {

viewTypeItem.setLabel("Table");

});

}

}

%>"

/>

viewTypes: The available view types
portletURL: The current URL, with the view type parameter included.

5. Create a conditional block to check for the view types. If you only have one view type, you
can skip this step.

<c:choose>

<%-- view type configuration goes here --%>

</c:choose>

Now that the view types are defined, you can configure them.

496

Implementing the Card View

The card view displays the entry’s information in a vertical or horizontal card with an image, user
profile, or an icon representing the content’s type, along with details about the content, such as its
name, workflow status, and a condensed description.

See the Liferay Frontend Cards tutorial for examples and use cases of each card.

Figure 50.1: The Management Toolbar’s card view gives a quick summary of the content’s description and status.

Follow the steps below to create your card view:

1. Inside the <c:choose> conditional block, add a condition for the icon display style (Card view
type):

<c:when test='<%= Objects.equals(displayStyle, "icon") %>'>

<%-- card view type configuration goes here --%>

</c:when>

2. Add the proper java scriplet to make the card view responsive to different devices:
Use the pattern below for vertical cards:

<%

row.setCssClass("col-md-2 col-sm-4 col-xs-6");

%>

For horizontal cards use the following pattern:

<%

row.setCssClass("col-md-3 col-sm-4 col-xs-12");

%>

3. Add the search container column text containing your card. The card should include the
actions for the entry(if applicable), as well as an image, icon or user profile, and the entry’s
title. An example configuration is shown below:

<liferay-frontend:icon-vertical-card

actionJsp='<%= dlPortletInstanceSettingsHelper.isShowActions() ?

"/image_gallery_display/image_action.jsp" : StringPool.BLANK %>'

actionJspServletContext="<%= application %>"

cssClass="entry-display-style"

497

icon="documents-and-media"

resultRow="<%= row %>"

title="<%= dlPortletInstanceSettingsHelper.isShowActions() ?

fileEntry.getTitle() : StringPool.BLANK %>"

/>

Implementing the List View

The list view displays the entry’s complete description, along with a small icon for the content type,
and its name.

Figure 50.2: The Management Toolbar’s list view gives the content’s full description.

Inside the <c:choose> conditional block, add a condition for the descriptive display style (list
view type):

<c:when test='<%= Objects.equals(displayStyle, "descriptive") %>'>

<%-- list view type configuration goes here --%>

</c:when>

Your list view should have three columns with the content shown in the table below:
Column | Content Options | Example 1 | icon | <liferay-ui:search-container-column-icon/> |

image | <liferay-ui:search-container-column-image/> | user portrait | <liferay-ui:search-container-
column-text> <liferay-ui:user-portrait/></liferay-ui:search-container-column-text> 2 | description |
<liferay-ui:search-container-column-text colspan=“<%=2%>” > <h5><%= userGroup.getName()
%></h5> <h6 class=“text-default”> <%= userGroup.getDescription() %> </h6>
<h6 class=“text-default”> ” key=“x-users”/> </h6> 3 | actions | <liferay-
ui:search-container-column-jsp path=“/edit_team_assignments_user_groups_action.jsp”/>

Implementing the Table View

The table view list the search container columns from left to right.
Inside the <c:choose> conditional block, add a condition for the list display style (table view

type):

<c:when test='<%= Objects.equals(displayStyle, "list") %>'>

<%-- table view type configuration goes here --%>

</c:when>

498

Figure 50.3: The Management Toolbar’s table view list the content’s information in individual columns.

The columns should at least contain the information shown in the table below:
Column | Content Options | Example 1 | name | <liferay-ui:search-container-column-text css-

Class=“content-column name-column title-column” name=“name” truncate=“<%= true %>”
value=“<%= rule.getName(locale) %>” /> 2 | description | <liferay-ui:search-container-column-text
cssClass=“content-column description-column” name=“description” truncate=“<%= true %>”
value=“<%= rule.getDescription(locale) %>” /> 3 | create date | <liferay-ui:search-container-column-
date cssClass=“create-date-column text-column” name=“create-date” property=“createDate” /> 4 |
actions | <liferay-ui:search-container-column-jsp cssClass=“entry-action-column” path=“/rule_ac-
tions.jsp” />

Updating the Search Iterator

Once the view type’s display styles are defined, you must update the search iterator to show the
selected view type. If yourmanagement toolbar only has one view type, you can set the displayStyle
attribute to the style you defined, otherwise follow the pattern below:

<liferay-ui:search-iterator

displayStyle="<%= displayStyle %>"

markupView="lexicon"

searchContainer="<%= searchContainer %>"

/>

The displayStyle’s value is set to the current view type.

Related Topics

Configuring the Clay Management Toolbar Taglib
Filtering and Sorting Items with the Management Toolbar

50.2 Filtering and Sorting Itemswith the Management Toolbar

The Management Toolbar lets you filter and sort your search container results. While you can
configure the toolbar’s filters in the JSP, this can quickly crowd the JSP.We recommend instead

499

that you move this functionality to a separate java class, which we refer to as a Display Context
throughout this tutorial.

There are two main types of filters: navigation and order. Both of these are contained within
the same dropdown menu. Follow the steps below to create your filters.

1. Depending on your needs, there are two classes that you can extend for your management
toolbar Display Context. These base classes provide the required methods to create your
navigation and order filters:

• BaseManagementToolbarDisplayContext: for apps without a search container
• SearchContainerManagementToolbarDisplayContext: for apps with a search container (ex-
tends BaseManagementToolbarDisplayContext and provides additional logic for search con-
tainers)

An example configuration for each is shown below:

BaseManagementToolbarDisplayContext example:

public class MyManagementToolbarDisplayContext

extends BaseManagementToolbarDisplayContext {

public MyManagementToolbarDisplayContext(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse,

HttpServletRequest request) {

super(liferayPortletRequest, liferayPortletResponse, request);

}

...

}

SearchContainerManagementToolbarDisplayContext example:

public class MyManagementToolbarDisplayContext

extends SearchContainerManagementToolbarDisplayContext {

public MyManagementToolbarDisplayContext(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse,

HttpServletRequest request, SearchContainer searchContainer) {

super(

liferayPortletRequest, liferayPortletResponse, request,

searchContainer);

}

}

2. Override the getNavigationKeys()method to return the navigation filter dropdown item(s). If
your app doesn’t require any navigation filters, you can just provide the all filter to display
everything. An example configuration is shown below:

@Override

protected String[] getNavigationKeys() {

return new String[] {"all", "pending", "done"};

}

500

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-taglib/frontend-taglib-clay/src/main/java/com/liferay/frontend/taglib/clay/servlet/taglib/display/context/BaseManagementToolbarDisplayContext.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-taglib/frontend-taglib-clay/src/main/java/com/liferay/frontend/taglib/clay/servlet/taglib/display/context/SearchContainerManagementToolbarDisplayContext.java

3. override the getOrderByKeys()method to return the columns to order. An example configura-
tion is shown below:

@Override

protected String[] getOrderByKeys() {

return new String[] {"name", "items", "status"};

}

4. Open the JSP view that contains the Clay Management Toolbar and set its displayContext

attribute to the Display Context you created. An example configuration is shown below:

<clay:management-toolbar

displayContext="<%= myManagementToolbarDisplayContext %>"

/>

Now you know how to configure the Management Toolbar’s filters via a Display Context.

Related Topics

Configuring Filtering and Sorting Management Toolbar Attributes
Implementing the View Types

50.3 Applying the Add Button Pattern

Clay’s add button pattern is for actions that add entities (for example a new blog entry button). It
gives you a clean, minimal UI. You can use it in any of your app’s screens. Follow these steps to add
a plus button to your app:

1. Add the liferay-frontend taglib declaration to your portlet’s init.jsp:

<%@ taglib uri="http://liferay.com/tld/frontend" prefix="liferay-frontend" %>

2. Add an add-menu tag to your portlet’s view:

<liferay-frontend:add-menu>

</liferay-frontend:add-menu>

3. Nest a <liferay-frontend:add-menu-item> tag for everymenu item you have. Here’s an example
of the add button pattern with a single item:

<liferay-frontend:add-menu>

<liferay-frontend:add-menu-item

title='<%= LanguageUtil.get(request,"titleName") %>'

url="<%= nameURL.toString() %>"

/>

</liferay-frontend:add-menu>

If there’s only one item, the plus icon acts as a button that triggers the item. If there’s multiple
items, clicking the plus icon displays a menu containing them.

The com.liferay.mobile.device.rules.webmodule’s add menu is shown below:

501

https://docs.liferay.com/dxp/apps/frontend-taglib/latest/taglibdocs/liferay-frontend/add-menu.html
https://docs.liferay.com/dxp/apps/frontend-taglib/latest/taglibdocs/liferay-frontend/add-menu-item.html

Figure 50.4: The add button pattern consists of an add-menu tag and at least one add-menu-item tag.

<liferay-frontend:add-menu

inline="<%= true %>"

>

<liferay-frontend:add-menu-item

title='<%= LanguageUtil.get(resourceBundle, "add-device-family") %>'

url="<%= addRuleGroupURL %>"

/>

</liferay-frontend:add-menu>

There you have it! Now you know how to use the add button pattern.

Related Topics

• Setting Empty Results Messages
• Implementing the Management Toolbar

50.4 Configuring Your Admin App's Actions Menu

502

Rather then have a series of buttons or menus with actions in the different views of the app, you
can move all of these actions to the upper right menu of the administrative portlet, leaving the
primary action (often an “Add” operation) visible in the add menu. For example, the web content
application has the actions menu shown below:

Figure 50.5: The upper right ellipsis menu contains most of the actions for the app.

Follow these steps to configure the actions menu in your admin app:

1. Create a *ConfigurationIconComponent class for the action that extends the BasePortletConfigurationIcon
class and implements the PortletConfigurationIcon service:

@Component(

immediate = true,

service = PortletConfigurationIcon.class

)

public class MyConfigurationIcon extends BasePortletConfigurationIcon {

...

}

2. Override the getMessage()method to specify the action’s label:

@Override

public String getMessage(PortletRequest portletRequest) {

ThemeDisplay themeDisplay = (ThemeDisplay)portletRequest.getAttribute(

WebKeys.THEME_DISPLAY);

ResourceBundle resourceBundle = ResourceBundleUtil.getBundle(

themeDisplay.getLocale(), ExportAllConfigurationIcon.class);

return LanguageUtil.get(resourceBundle, "export-all-settings");

}

503

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/configuration/icon/BasePortletConfigurationIcon.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/configuration/icon/BasePortletConfigurationIcon.html

3. Override the get() method to specify whether the action is invoked with the GET or POST

method:

@Override

public String getMethod() {

return "GET";

}

4. Override the getURL() method to specify the URL (or onClick JavaScript method) to invoke
when the action is clicked:

@Override

public String getURL(

PortletRequest portletRequest, PortletResponse portletResponse) {

LiferayPortletURL liferayPortletURL =

(LiferayPortletURL)_portal.getControlPanelPortletURL(

portletRequest, ConfigurationAdminPortletKeys.SYSTEM_SETTINGS,

PortletRequest.RESOURCE_PHASE);

liferayPortletURL.setResourceID("export");

return liferayPortletURL.toString();

}

5. Override the getWeight()method to specify the order that the action should appear in the list:

@Override

public double getWeight() {

return 1;

}

6. Override the isShow()method to specify the context in which the action should be displayed:

@Override

public boolean isShow(PortletRequest portletRequest) {

return true;

}

7. Define the view where you want to display the configuration options. By default, if the
portlet uses mvcPath, the global actions (such as configuration, export/import, maximized,
etc.) are displayed for the JSP indicated in the initialization parameter of the portlet
javax.portlet.init-param.view-template=/view.jsp. The value indicates the JSP where the
global actions should be displayed. However, if the portlet uses MVC Command, the views
for the global actions must be indicated with the initialization parameter javax.portlet.init-
param.mvc-command-names-default-views=/wiki_admin/view and the value must contain the
mvcRenderCommandName where the global actions should be displayed.

8. If the portlet can be added to a page and you want to always include the configuration options,
add this initialization parameter to the portlet’s properties:

javax.portlet.init-param.always-display-default-configuration-icons=true

504

In this example, the action appears in the System Settings portlet. To make it appear in
a secondary screen, you can use the path property as shown below. The value of the path

property depends on the MVC framework used to develop the app. For the MVCPortlet
framework, provide the path (often a JSP) from the mvcPath parameter. For MVCPortlet with
MVC Commands, the path should contain the mvcRenderCommandName where the actions should
be displayed (such as /document_library/edit_folder for example):

@Component(

immediate = true,

property = {

"javax.portlet.name=" + ConfigurationAdminPortletKeys.SYSTEM_SETTINGS,

"path=/view_factory_instances"

},

service = PortletConfigurationIcon.class

)

public class ExportFactoryInstancesIcon extends BasePortletConfigurationIcon {

@Override

public String getMessage(PortletRequest portletRequest) {

ThemeDisplay themeDisplay = (ThemeDisplay)portletRequest.getAttribute(

WebKeys.THEME_DISPLAY);

ResourceBundle resourceBundle = ResourceBundleUtil.getBundle(

themeDisplay.getLocale(), ExportFactoryInstancesIcon.class);

return LanguageUtil.get(resourceBundle, "export-entries");

}

@Override

public String getMethod() {

return "GET";

}

@Override

public String getURL(

PortletRequest portletRequest, PortletResponse portletResponse) {

LiferayPortletURL liferayPortletURL =

(LiferayPortletURL)_portal.getControlPanelPortletURL(

portletRequest, ConfigurationAdminPortletKeys.SYSTEM_SETTINGS,

PortletRequest.RESOURCE_PHASE);

ConfigurationModel factoryConfigurationModel =

(ConfigurationModel)portletRequest.getAttribute(

ConfigurationAdminWebKeys.FACTORY_CONFIGURATION_MODEL);

liferayPortletURL.setParameter(

"factoryPid", factoryConfigurationModel.getFactoryPid());

liferayPortletURL.setResourceID("export");

return liferayPortletURL.toString();

}

@Override

public double getWeight() {

return 1;

}

@Override

public boolean isShow(PortletRequest portletRequest) {

ConfigurationModelIterator configurationModelIterator =

(ConfigurationModelIterator)portletRequest.getAttribute(

ConfigurationAdminWebKeys.CONFIGURATION_MODEL_ITERATOR);

505

if (configurationModelIterator.getTotal() > 0) {

return true;

}

return false;

}

@Reference

private Portal _portal;

}

This covers some of the available methods. See the Javadoc for a complete list of the available
methods.

Great! Now you know how to configure your admin app’s actions.

Related Topics

• Applying Clay Patterns to Your Navigation Bar
• Configuring Your Application’s Title and Back Link

50.5 Automatic Single Page Applications

A good user experience is the measure of a well-designed site. A user’s time is highly valuable.
The last thing you want is for someone to grow frustrated with your site because of constant page
reloads. A Single Page Application (SPA) avoids this issue. Single Page Applications drastically
cut down on load times by loading only a single HTML page that’s dynamically updated as the
user interacts and navigates through the site. This provides a more seamless app experience
by eliminating page reloads. SPA is enabled by default in your apps and sites and requires no
changes to your workflow or code!

This tutorial covers these key topics:

• The benefits of SPAs
• What is SennaJS?
• How to enable SPA in Liferay DXP
• How to configure SPA settings
• How to listen to SPA lifecycle events

The Benefits of SPAs

Let’s say you’re surfing the web and you find a really rad site that happens to be SPA enabled. All
right! Page load times are blazin’ fast. You’re deep into the site, scrolling along, when you find this
great post that just speaks to you. You copy the URL from the address bar and email it to all of your
friends with the subject: ‘Your LifeWill Change Forever.’ They must experience this awe-inspiring
work!

You get a response back almost immediately. “This is a rad site, but what post are you talking
about?” it reads.

“What!? Do my eyes deceive me?” you exclaim. You were in so much of a hurry to share this
life-changing content that you neglected to notice that the URL never updated when you clicked
the post. You click the back button, hoping to get back to the post, but it takes you to the site you

506

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/configuration/icon/BasePortletConfigurationIcon.html

were on before you ever visited this one. The page history didn’t update as you navigated through
the app; Only the main app URL was saved.

What a bummer! “Why? Why have you failed me, site?” you cry.
If only there was a way to have a Single Page Application, but also be able to link to the content

you want. Well, don’t despair my friend. You can have your cake and eat it too, thanks to SennaJS.

What is SennaJS?

SennaJS is LiferayDXP’s SPA engine. SennaJS handles the client-side data, andAJAX loads the page’s
content dynamically. While there are other JavaScript frameworks out there that may provide
some of the same features, Senna’s only focus is SPA, ensuring that your site provides the best user
experience possible.

SennaJS provides the following key enhancements to SPA:
SEO & Bookmarkability: Sharing or bookmarking a link displays the same content you are

viewing. Search engines are able to index this content.
Hybrid rendering: Ajax + server-side rendering lets you disable pushState at any time, allowing

progressive enhancement. You can use your preferredmethod to render the server side (e.g. HTML
fragments or template views).

State retention: Scrolling, reloading, or navigating through the history of the page takes you
back to where you were.

UI feedback: The UI indicates to the user when some content is requested.
Pending navigations: UI rendering is blocked until data is loaded, and the content is displayed

all at once.
Timeout detection: If the request takes too long to load or the user tries to navigate to a different

link while another request is pending, the request times out.
History navigation: The browser history is manipulated via the History API, so you can use the

back and forward history buttons to navigate through the history of the page.
Cacheable screens: Once a surface is loaded, the content is cached in memory and is retrieved

later without any additional request, speeding up your application.
Page resources management: Scripts and stylesheets are evaluated from dynamically loaded

resources. Additional content can be appended to the DOM using XMLHttpRequest. For security
reasons, some browsers won’t evaluate <script> tags from content fragments. Therefore, SennaJS
extracts scripts from the content and parses them to ensure that they meet the browser loading
requirements.

You can see examples and read more about SennaJS at its website.
Now that you have a better understanding of how SennaJS benefits SPA, you can learn how to

enable and configure options for SPA within Liferay DXP next.

Enabling SPA

Enabling SPA is easy. Since this module is included by default, you shouldn’t have to do anything.
If you’ve removed it, deploy com.liferay.frontend.js.spa.web-[version]module and enable it, and
you’re all set to use SPA.

SPA is enabled by default in your apps and sites, and requires no changes to your workflow
or existing code!

Next you can learn how to customize SPA settings to meet your own needs.

507

https://developer.mozilla.org/en-US/docs/Web/API/History
http://sennajs.com/

Customizing SPA Settings

Depending on what behaviors you need to customize, you can configure SPA options in one of two
places. SPA caching and SPA timeout settings are configured in System Settings. If you wish to
disable SPA for a certain link, page, or portlet in your site, you can do so within the corresponding
element itself. All SPA configuration options are covered here.

Configuring SPA System Settings

To configure system settings for SPA, follow these steps:

1. In the Control Panel, navigate to Configuration → System Settings.

2. Select Infrastructure under the PLATFORM heading.

3. Click Frontend SPA Infrastructure.

The following configuration options are available:
Cache Expiration Time: The time, in minutes, in which the SPA cache is cleared. A negative

value means the cache should be disabled.
Navigation Exception Selectors: Defines a CSS selector that SPA should ignore.
Request Timeout Time: The time, in milliseconds, in which a SPA request times out. A zero

value means the request should never timeout.
User Notification Timeout: The time, in milliseconds, in which a notification is shown to the

user stating that the request is taking longer than expected. A zero value means no notification
should be shown.

Now that you know how to configure system settings for SPA, you can learn how to disable SPA
for elements in your site next.

Disabling SPA

Certain elements of your page may require a regular navigation to work properly. For example,
you may have downloadable content that you want to share with the user. In these cases, SPA must
be disabled for those specific elements.

To disable SPA across an entire Liferay DXP instance, you can add the following line to your
portal-ext.properties:

javascript.single.page.application.enabled = false

If there is a portlet or element that you don’t want to be part of the SPA, you have some options:

• Blacklist the portlet to disable SPA for the entire portlet
• Use the data-senna-off annotation to disable SPA for a specific form or link

To blacklist a portlet from SPA, follow these steps:

1. Open your portlet class.

2. Set the com.liferay.portlet.single-page-application property to false:

com.liferay.portlet.single-page-application=false

508

If you prefer, you can set this property to false in your portlet.xml instead by adding the
following property to the <portlet> section:

<single-page-application>false</single-page-application>

3. Alternatively, you can override the isSinglePageApplicationmethod of the portlet to return
false.

To disable SPA for a form or link follow these steps:

1. Add the data-senna-off attribute to the element.

2. Set the value to true.

For example <a data-senna-off="true" href="/pages/page2.html">Page 2

That’s all you need to do to disable SPA in your app.
Now that you know how to disable SPA, you can learn how to specify how resources are loaded

during navigation.

Specifying How Resources Are Loaded During Navigation

By default, Liferay DXP unloads CSS resources from the <head> element on navigation. JavaScript
resources in the <head>, however, are not removed on navigation. This functionality can be cus-
tomized by setting the resource’s data-senna-track attribute. Follow these steps to customize your
resources:

1. Select the resource you want to modify the default behavior for.

2. Add the data-senna-track attribute to the resource.

3. Set the data-senna-track attribute to permanent to prevent a resource from unloading on navi-
gation.

Alternatively, set the data-senna-track attribute to temporary to unload the resource on naviga-
tion.

Note: the `data-senna-track` attribute can be added to resources loaded

outside of the `<head>` element as well to specify navigation behavior.

The example below ensures that the JS resource isn’t unloaded during navigation:

<script src="myscript.js" data-senna-track="permanent" />

Next you can learn about the available SPA lifecycle events next.

509

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/model/impl/PortletImpl.html#isSinglePageApplication--

Listening to SPA Lifecycle Events

During development, you may need to know when navigation has started or stopped in your SPA.
SennaJSmakes this easy by exposing lifecycle events that represent state changes in the application.
The following events are available:

beforeNavigate: Fires before navigation starts. This event passes a JSON object with the path
to the content you are navigating to and whether to update the history. Below is an example event
payload:

{ path: '/pages/page1.html', replaceHistory: false }

startNavigate: Fires when navigation begins. Below is an example event payload:

{ form: '<form name="form"></form>', path: '/pages/page1.html',

replaceHistory: false }

endNavigate: Fired after the content has been retrieved and inserted onto the page. This event
passes the following JSON object:

{ form: '<form name="form"></form>', path: '/pages/page1.html' }

These events can be leveraged easily by listening for them on the Liferay global object. For
example, the JavaScript below alerts the user to “Get ready to navigate to” the URL that has been
clicked, just before SPA navigation begins:

Liferay.on('beforeNavigate', function(event) {

alert("Get ready to navigate to " + event.path);

});

The alert takes advantage of the payload for the beforeNavigate event, retrieving the URL from
the path attribute of the JSON payload object.

Figure 50.6: You can leverage SPA lifecycle events in your apps.

Due to the nature of SPA navigation, global listeners that you create can become problematic
over time if not handled properly. You’ll learn how to handle these listeners next.

510

Detaching Global Listeners

SPA provides several improvements that highly benefit your site and users, but there is potentially
some additional maintenance as a consequence. In a traditional navigation scenario, every page
refresh resets everything, so you don’t have to worry about what’s left behind. In a SPA scenario,
however, global listeners such as Liferay.on, Liferay.after, or body delegates can become prob-
lematic. Every time you execute these global listeners, you add yet another listener to the globally
persisted Liferay object. The result is multiple invocations of those listeners. This can obviously
cause problems if not handled.

To prevent this, you need to listen to the navigation event in order to detach your listeners. For
example, you would use the following code to detach the event listeners of a global category event:

var onCategory = function(event) {...};

var clearPortletHandlers = function(event) {

if (event.portletId === '<%= portletDisplay.getRootPortletId() %>') {

Liferay.detach('onCategoryHandler', onCategory);

Liferay.detach('destroyPortlet', clearPortletHandlers);

}

};

Liferay.on('category', onCategory);

Liferay.on('destroyPortlet', clearPortletHandlers);

Now you know how to configure and use SPA in Liferay DXP!

Related Topics

Preparing your JavaScript Files for ES2015+
Using ES2015+ Modules in Your Portlet

50.6 Creating Layouts inside Custom Portlets

Layout templates specify how your portlets and content are organized on your site pages. What
if, instead, you want to organize your portlet’s content? <aui> tags let you create layouts using
Bootstrap within your portlets. This tutorial explains this process.

Follow these steps:

1. Open your portlet’s JSP and include the AUI taglib declaration if it’s not already included:

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

2. Wrap your portlet’s content in <aui:container> tags. If you wish to only have a portion of your
portlet’s content in a layout, wrap that portion with a <aui:container> tags.

3. In between the <aui:container>...</aui:container> tags, add a set of <aui:row> tags for each
row that you want in your portlet’s layout.

4. Add a set of <aui:col> tags for each column that you want in the row. Repeat this step for each
row in the layout.

A complete example is shown below:

511

<aui:container>

<aui:row>

<aui:col md="12">

<h1>My Custom Layout Portlet</h1>

</aui:col>

</aui:row>

<aui:row>

<aui:col md="4" sm="6">

<h2>Column One</h2>

<p>

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Integer eget pulvinar quam. Vivamus ornare leo libero, sed

mollis urna aliquam ac. Duis porta sapien non felis varius, in

iaculis orci fermentum. Etiam quis molestie elit, in tempor

risus. Morbi varius elementum lectus at feugiat. Quisque

dapibus orci ac dui eleifend, ut ullamcorper nulla sagittis.

Ut ac scelerisque sem.

</p>

</aui:col>

<aui:col md="8" sm="6">

<h2>Column Two</h2>

<p>

Aliquam hendrerit augue sed nisl ullamcorper pulvinar. Donec

tristique congue erat ac condimentum. Suspendisse vehicula

nunc vel velit imperdiet dapibus. In hac habitasse platea

dictumst. Morbi eleifend arcu sit amet magna faucibus, vitae

posuere erat finibus. Sed hendrerit convallis ipsum id luctus.

Aliquam aliquam consequat turpis eu vulputate. Nulla vitae

libero lorem. Proin nec lacus et nunc laoreet posuere.

Vestibulum euismod vestibulum faucibus. Vivamus dolor justo,

malesuada ac libero ac, feugiat varius leo. Integer viverra

nisi vel fringilla aliquam.

</p>

<p>

Suspendisse potenti. Mauris neque nisl, hendrerit a sem at,

rutrum dictum arcu. Ut aliquet tortor vel tortor interdum

dictum. Sed non sapien quam. Nunc aliquet in massa elementum

aliquam. Cras convallis tristique ante ut ultrices. Aenean

quis congue nulla. Integer in lacus lectus. Mauris maximus,

nibh sit amet pharetra laoreet, sem dolor eleifend metus, non

semper sem justo vel mauris. Praesent tristique quis risus

vulputate faucibus. Nullam feugiat diam vel elit pharetra, id

porta velit fringilla. Pellentesque metus justo, dictum et

dolor venenatis, pretium egestas massa. Donec risus nisi,

elementum in lectus id, imperdiet blandit mauris.

</p>

</aui:col>

</aui:row>

</aui:container>

The columns in the second row take advantage of Bootstrap’s grid classes to create responsive
layouts. On medium sized view ports, column-1 is 33.33% width and column-2 is 66.66% width, but
on small sized view ports both column-1 and column-2 are 50% width.

AUI Layout Tag Attributes

This section contains a list of the available attributes for each tag along with a brief description of
its purpose.

AUI Container

The <aui:container> tag creates a container <div> tag to wrap <aui:row> components and offer
additional styling.

512

Figure 50.7: Custom layouts in your portlets let you organize your portlet’s content with the user in mind.

Figure 50.8: You can take advantage of Bootstrap’s grid classes to create responsive layouts within your custom portlets.

513

It supports the following attributes:

Attribute Type Description

cssClass String A CSS class for styling the
component

dynamicAttributes Map<String, Object> Map of data- attributes for
your container

fluid boolean Whether to enable the
container to span the entire
width of the viewport. The
default value is true

id String An ID for the component
instance

AUI Row

The <aui:row> tag creates a row to hold <aui:col> components.
It supports the following attributes:

Attribute Type Description

cssClass String A CSS class for styling the component
id String An ID for the component instance

AUI Col

The <aui:col> tag creates a column to display content in an <aui:row> component.
It supports the following attributes:

Attribute Type Description

cssClass String A CSS class for styling the
component.

id String An ID for the component
instance.

lg String Comma separated string of
numbers 1-12 to be used for
Boostrap grid col-lg-

md String Comma separated string of
numbers 1-12 to be used for
Boostrap grid col-md-

514

Attribute Type Description

sm String Comma separated string of
numbers 1-12 to be used for
Boostrap grid col-sm-

xs String Comma separated string of
numbers 1-12 to be used for
Boostrap grid col-xs-

span int The width of the column in the
containing row as a fraction of
12. For example, a span of 4
would result in a column width
4/12 (or 1/3) of the total width
of the containing row.

width int The width of the column in the
containing row as a
percentage, overriding the
span attribute. The width is
then converted to a span
expressed as ((width/100) x 12),
rounded to the nearest whole
number. For example, a width
of 33 would be converted to
3.96, which would be rounded
up to a span value of 4.

Now you know how to create layouts inside your portlets!

Related Topics

Layout Templates with the Liferay Theme Generator

515

CHAPTER 51

CUSTOMIZING

Portlets are the main application platform, and themes let you style your sites. You can also modify
existing behavior, globally and in the installed applications, as well as specify your own look and
feel.

The Customizing tutorials below show you how to affect your site in the following ways:

• Add, modify, or remove content
• Modify behavior
• Perform actions that respond to events

517

CHAPTER 52

CUSTOMIZING JSPS

There are several different ways to customize JSPs in portlets and the core. Liferay DXP’s API
provides the safest ways to customize them. If you customize a JSP by other means, new versions
of the JSP can render your customization invalid and leave you with runtime errors. It’s highly
recommended to use one of the API-based ways.

52.1 Using Liferay's API to Override a JSP

Here are API-based approaches to overriding JSPs in Liferay DXP:

Approach Description Cons/Limitations

Dynamic includes Adds content at dynamic include
tags.

Limited to JSPs that have
dynamic-include tags (or tags
whose classes inherit from
IncludeTag). Only inserts content
in the JSPs at the dynamic
include tags.

Portlet filters Modifies portlet requests and/or
responses to simulate a JSP
customization.

Although this approach doesn’t
directly customize a JSP, it
achieves the effect of a JSP
customization.

52.2 Overriding a JSPWithout Using Liferay's API

It’s strongly recommended to customize JSPs using Liferay DXP’s API, as the previous section
describes. Since overriding a JSP using an OSGi fragment or a Custom JSP Bag is not based on
APIs there’s no way to guarantee that they’ll fail gracefully. Instead, if your customization is buggy
(because of your code or because of a change in Liferay), you are most likely to find out at runtime,
where functionality breaks and nasty log errors greet you. These approaches should only be used
as a last resort.

519

If you’re maintaining a JSP customization that uses one of these approaches, you should know
how they work. This section describes them and links to their tutorials.

Here are ways to customize JSPs without using Liferay DXP’s API:

Approach Description Cons/Limitations

OSGi fragment Completely overrides a module’s
JSP using an OSGi fragment

Changes to the original JSP or
module can cause runtime
errors.

Custom JSP bag Completely override a Liferay
DXP core JSP or one of its
corresponding -ext.jsp files.

For Liferay DXP core JSPs only.
Changes to the original JSP or
module can cause runtime
errors.

All the JSP customization approaches are available to you. It’s time to customize some JSPs!

52.3 Customizing JSPs with Dynamic Includes

The liferay-util:dynamic-include tag is placeholder into which you can inject content. Every JSP’s
dynamic include tag is an extension point for inserting content (e.g., JavaScript code, HTML, and
more). To do this, create a module that has content you want to insert, register that content with
the dynamic include tag, and deploy your module.

Note: If the JSP you want to customize has no liferay-util:dynamic-include tags (or tags whose
classes inherit from IncludeTag), you must use a different customization approach, such as portlet
filters.

Blogs entries contain a good example of how dynamic includes work. For reference, you can
download the example module.

1. Find the liferay-util:dynamic-include tag where you want to insert content and note the tag’s
key.

The Blogs app’s view_entry.jsp has a dynamic include tag at the top and another at the very
bottom.

<%@ include file="/blogs/init.jsp" %>

<liferay-util:dynamic-include key="com.liferay.blogs.web#/blogs/view_entry.jsp#pre" />

... JSP content is here

<liferay-util:dynamic-include key="com.liferay.blogs.web#/blogs/view_entry.jsp#post" />

Here are the Blogs view entry dynamic include keys:

• key="com.liferay.blogs.web#/blogs/view_entry.jsp#pre"

• key="com.liferay.blogs.web#/blogs/view_entry.jsp#post"

520

https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/liferay-util/dynamic-include.html
https://portal.liferay.dev/documents/113763090/114000186/example-dynamic-include-blogs-master.zip

2. Create a module (e.g., blade create my-dynamic-include). The module will hold your dynamic
include implementation.

3. Specify compile-only dependencies, like these Gradle dependencies, in your module build
file:

dependencies {

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "com.liferay", name: "com.liferay.petra.string", version: "1.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "org.osgi", name: "osgi.cmpn", version: "6.0.0"

}

4. Create an OSGi component class that implements the DynamicInclude interface.

Here’s an example dynamic include implementation for Blogs:

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.osgi.service.component.annotations.Component;

import com.liferay.portal.kernel.servlet.taglib.DynamicInclude;

@Component(

immediate = true,

service = DynamicInclude.class

)

public class BlogsDynamicInclude implements DynamicInclude {

@Override

public void include(

HttpServletRequest request, HttpServletResponse response,

String key)

throws IOException {

PrintWriter printWriter = response.getWriter();

printWriter.println(

"<h2>Added by Blogs Dynamic Include!</h2>
");

}

@Override

public void register(DynamicIncludeRegistry dynamicIncludeRegistry) {

dynamicIncludeRegistry.register(

"com.liferay.blogs.web#/blogs/view_entry.jsp#pre");

}

}

Giving the class an @Component annotation that has the service attribute service =

DynamicInclude.classmakes the class a DynamicInclude service component.

@Component(

immediate = true,

service = DynamicInclude.class

)

521

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/DynamicInclude.html

In the includemethod, add your content. The example includemethod writes a heading.

@Override

public void include(

HttpServletRequest request, HttpServletResponse response,

String key)

throws IOException {

PrintWriter printWriter = response.getWriter();

printWriter.println(

"<h2>Added by Blogs Dynamic Include!</h2>
");

}

In the registermethod, specify the dynamic include tag to use. The example register method
targets the dynamic include at the top of the Blogs view_entry.jsp.

@Override

public void register(DynamicIncludeRegistry dynamicIncludeRegistry) {

dynamicIncludeRegistry.register(

"com.liferay.blogs.web#/blogs/view_entry.jsp#pre");

}

Once you’ve deployed yourmodule, the JSP dynamically includes your content. Congratulations
on injecting dynamic content into a JSP!

52.4 JSP Overrides Using Portlet Filters

Portlet filters let you intercept portlet requests before they’re processed and portlet responses after
they’re processed but before they’re sent back to the client. You can operate on the request and / or
response to modify the JSP content. Unlike dynamic includes, portlet filters give you access to all
the content sent back to the client.

This demonstration uses a portlet filter to modify content in Liferay’s Blogs portlet. For refer-
ence, you can download the example module.

1. Create a newmodule and make sure it specifies these compile-only dependencies, shown
here in Gradle format:

dependencies {

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "org.osgi", name: "osgi.cmpn", version: "6.0.0"

}

2. Create an OSGi component class that implements the javax.portlet.filter.RenderFilter in-
terface.
Here’s an example portlet filter implementation for Blogs:

import java.io.IOException;

import javax.portlet.PortletException;

import javax.portlet.RenderRequest;

522

https://portal.liferay.dev/documents/113763090/114000186/example-portlet-filter-customize-jsp-master.zip

import javax.portlet.RenderResponse;

import javax.portlet.filter.FilterChain;

import javax.portlet.filter.FilterConfig;

import javax.portlet.filter.PortletFilter;

import javax.portlet.filter.RenderFilter;

import javax.portlet.filter.RenderResponseWrapper;

import org.osgi.service.component.annotations.Component;

import com.liferay.portal.kernel.util.PortletKeys;

@Component(

immediate = true,

property = {

"javax.portlet.name=" + PortletKeys.BLOGS

},

service = PortletFilter.class

)

public class BlogsRenderFilter implements RenderFilter {

@Override

public void init(FilterConfig config) throws PortletException {

}

@Override

public void destroy() {

}

@Override

public void doFilter(RenderRequest request, RenderResponse response, FilterChain chain)

throws IOException, PortletException {

RenderResponseWrapper renderResponseWrapper = new BufferedRenderResponseWrapper(response);

chain.doFilter(request, renderResponseWrapper);

String text = renderResponseWrapper.toString();

if (text != null) {

String interestingText = "<input class=\"field form-control\"";

int index = text.lastIndexOf(interestingText);

if (index >= 0) {

String newText1 = text.substring(0, index);

String newText2 = "\n<p>Added by Blogs Render Filter!</p>\n";

String newText3 = text.substring(index);

String newText = newText1 + newText2 + newText3;

response.getWriter().write(newText);

}

}

}

}

3. Make your class a PortletFilter service component by giving it the @Component annotation
that has the service attribute service = PortletFilter.class. Target the portlet whose
content you’re overriding by assigning it a javax.portlet.name property that’s the same as
your portlet’s key. Here’s the example @Component annotation:

@Component(

523

immediate = true,

property = {

"javax.portlet.name=" + PortletKeys.BLOGS

},

service = PortletFilter.class

)

4. Override the doFilterMethod to operate on the request or response to produce the content
you want. The example appends a paragraph stating Added by Blogs Render Filter! to
the portlet content:

@Override

public void doFilter(RenderRequest request, RenderResponse response, FilterChain chain)

throws IOException, PortletException {

RenderResponseWrapper renderResponseWrapper = new BufferedRenderResponseWrapper(response);

chain.doFilter(request, renderResponseWrapper);

String text = renderResponseWrapper.toString();

if (text != null) {

String interestingText = "<input class=\"field form-control\"";

int index = text.lastIndexOf(interestingText);

if (index >= 0) {

String newText1 = text.substring(0, index);

String newText2 = "\n<p>Added by Blogs Render Filter!</p>\n";

String newText3 = text.substring(index);

String newText = newText1 + newText2 + newText3;

response.getWriter().write(newText);

}

}

}

Theexampleuses a RenderResponseWrapper extension class called BufferedRenderResponseWrapper.
BufferedRenderResponseWrapper is a helper class whose toString method returns the current
response text and whose getWritermethod lets you write data to the response before it’s sent
back to the client.

import java.io.CharArrayWriter;

import java.io.IOException;

import java.io.OutputStream;

import java.io.PrintWriter;

import javax.portlet.RenderResponse;

import javax.portlet.filter.RenderResponseWrapper;

public class BufferedRenderResponseWrapper extends RenderResponseWrapper {

public BufferedRenderResponseWrapper(RenderResponse response) {

super(response);

charWriter = new CharArrayWriter();

}

public OutputStream getOutputStream() throws IOException {

if (getWriterCalled) {

throw new IllegalStateException("getWriter already called");

524

}

getOutputStreamCalled = true;

return super.getPortletOutputStream();

}

public PrintWriter getWriter() throws IOException {

if (writer != null) {

return writer;

}

if (getOutputStreamCalled) {

throw new IllegalStateException("getOutputStream already called");

}

getWriterCalled = true;

writer = new PrintWriter(charWriter);

return writer;

}

public String toString() {

String s = null;

if (writer != null) {

s = charWriter.toString();

}

return s;

}

protected CharArrayWriter charWriter;

protected PrintWriter writer;

protected boolean getOutputStreamCalled;

protected boolean getWriterCalled;

}

Once you’ve deployed your module, the portlet’s JSP shows your custom content.
Your portlet filter operates directly on portlet response content. Unlike dynamic includes,

portlet filters let you work with all of a JSP’s content.

52.5 JSP Overrides Using OSGi Fragments

You can completely override JSPs using OSGi fragments. This approach is powerful but can make
things unstable when the host module is upgraded:

1. By overriding an entire JSP, you might not account for new content or new widgets essential
to new host module versions.

2. Fragments are tied to a specific host module version. If the host module is upgraded, the
fragment detaches from it. In this scenario, the original JSPs are still available and themodule
is functional (but lacks your JSP enhancements).

3. Liferay cannot guarantee that JSPs overridden by fragments can be upgraded.

Using OSGi fragments to override JSPs is a bad practice, equivalent to using Ext plugins to
customize Liferay DXP. They should only be used as a last resort. Liferay’s API based approaches

525

to overriding JSPs (i.e., Dynamic Includes and Portlet Filters), on the other hand, provide more
stability as they customize specific parts of JSPs that are safe to override. Also, the API based
approaches don’t limit your override to a specific host module version. If you are maintaining
existing JSP overrides that use OSGi fragments, however, this tutorial explains how they work.

An OSGi fragment that overrides a JSP requires these two things:

• The host module’s symbolic name and version in the OSGi header Fragment-Host declaration.

• The original JSP with any modifications you need to make.

For more information about fragment modules, you can refer to section 3.14 of the OSGi
Alliance’s core specification document.

Declaring a Fragment Host

There are two players in this game: the fragment and the host. The fragment is a parasitic module
that attaches itself to a host. That sounds harsh, so let’s compare the fragment-host relationship to
the relationship between a pilot fish and a huge, scary shark. It’s symbiotic, really. Your fragment
module benefits by not doing much work (like the pilot fish who benefits from the shark’s hunting
prowess). In return, the host module gets whatever benefits you’ve conjured up in your fragment’s
JSPs (for the shark, it gets free dental cleanings!). To the OSGi runtime, your fragment is part of the
host module.

Your fragment must declare two things to the OSGi runtime regarding the host module:

1. The Bundle Symbolic Name of the host module. This is the module containing the original
JSP.

2. The exact version of the host module to which the fragment belongs.

Both are declared using the OSGi manifest header Fragment-Host.

Fragment-Host: com.liferay.login.web;bundle-version="[1.0.0,1.0.1)"

Supplying a specific host module version is important. If that version of the module isn’t
present, your fragment won’t attach itself to a host, and that’s a good thing. A new version of the
host module might have changed its JSPs, so if your now-incompatible version of the JSP is applied
to the host module, you’ll break the functionality of the host. It’s better to detach your fragment
and leave it lonely in the OSGi runtime than it is to break the functionality of an entire application.

Provide the Overridden JSP

There are two possible naming conventions for targeting the host original JSP: portal or original.
For example, if the original JSP is in the folder /META-INF/resources/login.jsp, then the fragment
bundle should contain a JSP with the same path, using the following pattern:

<liferay-util:include

page="/login.original.jsp" (or login.portal.jsp)

servletContext="<%= application %>"

/>

After that, make your modifications. Just make sure you mimic the host module’s folder
structure when overriding its JAR. If you’re overriding Liferay’s login application’s login.jsp for
example, you’d put your own login.jsp in

526

https://osgi.org/specification/osgi.core/7.0.0/framework.module.html
https://osgi.org/specification/osgi.core/7.0.0/framework.module.html

my-jsp-fragment/src/main/resources/META-INF/resources/login.jsp

If you must post-process the output, you can update the pattern to include Liferay DXP’s
buffering mechanism. Below is an example that overrides the original create_account.jsp:

<%@ include file="/init.jsp" %>

<liferay-util:buffer var="html">

<liferay-util:include page="/create_account.portal.jsp"

servletContext="<%= application %>"/>

</liferay-util:buffer>

<liferay-util:buffer var="openIdFieldHtml"><aui:input name="openId"

type="hidden" value="<%= ParamUtil.getString(request, "openId") %>" />

</liferay-util:buffer>

<liferay-util:buffer var="userNameFieldsHtml"><liferay-ui:user-name-fields />

</liferay-util:buffer>

<liferay-util:buffer var="errorMessageHtml">

<liferay-ui:error

exception="<%= com.liferay.portal.kernel.exception.NoSuchOrganizationException.class %>" message="no-such-registration-

code" />

</liferay-util:buffer>

<liferay-util:buffer var="registrationCodeFieldHtml">

<aui:input name="registrationCode" type="text" value="">

<aui:validator name="required" />

</aui:input>

</liferay-util:buffer>

<%

html = com.liferay.portal.kernel.util.StringUtil.replace(html,

openIdFieldHtml, openIdFieldHtml + errorMessageHtml);

html = com.liferay.portal.kernel.util.StringUtil.replace(html,

userNameFieldsHtml, userNameFieldsHtml + registrationCodeFieldHtml);

%>

<%=html %>

Note: An OSGi fragment can access all of the fragment host’s packages—it doesn’t need to
import them from another bundle. bnd adds external packages the fragment uses (even ones in
the fragment host) to the fragment’s Import-Package: [package],... OSGi manifest header. That’s
fine for packages exported to the OSGi runtime. The problem is, however, when bnd tries to import
a host’s internal package (a package the host doesn’t export). The OSGi runtime can’t activate the
fragment because the internal package remains an Unresolved requirement—a fragment shouldn’t
import a fragment host’s packages.

If your fragment uses an internal package from the fragment host, continue using it but explicitly
exclude the package from your bundle’s Import-Package OSGi manifest header. This Import-Package
header, for example, excludes packages that match com.liferay.portal.search.web.internal.*.

Import-Package: !com.liferay.portal.search.web.internal.*,*

Now you can easily modify the JSPs of any application in Liferay.

527

To see a sample JSP-modifying fragment in action, look at the Module JSP Override sample
project.

Related Topics

Upgrading App JSP Hooks

52.6 JSP Overrides Using Custom JSP Bag

Liferay’s API based approaches to overriding JSPs (i.e., Dynamic Includes and Portlet Filters) are
the best way to override JSPs in apps and in the core. You can also use Custom JSP Bags to override
core JSPs. But the approach is not as stable as the API based approaches. If your Custom JSP Bag’s
JSP is buggy (because of your code or because of a change in Liferay), you are most likely to find out
at runtime, where functionality breaks and nasty log errors greet you. Using Custom JSP Bags to
override JSPs is a bad practice, equivalent to using Ext plugins to customize Liferay DXP. If you’re
maintaining existing Custom JSP Bags, however, this tutorial explains how they work.

Important: Liferay cannot guarantee that JSPs overridden using Custom JSP Bag can be up-
graded.

A Custom JSP Bag module must satisfy these criteria:

528

• Provides and specifies a custom JSP for the JSP you’re extending.

• Includes a CustomJspBag implementation for serving the custom JSPs.

The module provides transportation for this code into Liferay’s OSGi runtime. After you create
your new module, continue with providing your custom JSP.

Providing a Custom JSP

Create your JSPs to override Liferay DXP core JSPs. If you’re using the Maven Standard Directory
Layout, place your JSPs under src/main/resources/META-INF/jsps. For example, if you’re overriding

portal-web/docroot/html/common/themes/bottom-ext.jsp

place your custom JSP at

[your module]/src/main/resources/META-INF/jsps/html/common/themes/bottom-ext.jsp

Note: If you place custom JSPs somewhere other than src/main/resources/META-INF/jsps in
your module, assign that location to a -includeresource: META-INF/jsps= directive in your module’s
bnd.bnd file. For example, if you place custom JSPs in a folder src/META-INF/custom_jsps in your
module, specify this in your bnd.bnd:

-includeresource: META-INF/jsps=src/META-INF/custom_jsps

Implement a Custom JSP Bag

Liferay DXP (specifically the CustomJspBagRegistryUtil class) loads JSPs from CustomJspBag services.
The following steps implement a custom JSP bag.

1. In your module, create a class that implements
CustomJspBag.

2. Register your class as an OSGi service by adding an @Component annotation to it, like this:

@Component(

immediate = true,

property = {

"context.id=BladeCustomJspBag",

"context.name=Test Custom JSP Bag",

"service.ranking:Integer=100"

}

)

• immediate = true: Makes the service available on module activation.
• context.id: Your custom JSP bag class name. Replace BladeCustomJspBag with your class
name.

• context.name: Amore human readable name for your service. Replace it with a name of
your own.

• service.ranking:Integer: A priority for your implementation. The container chooses
the implementation with the highest priority.

529

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/deploy/hot/CustomJspBag.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/deploy/hot/CustomJspBagRegistryUtil.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/deploy/hot/CustomJspBag.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/deploy/hot/CustomJspBag.html

3. Implement the getCustomJspDirmethod to return the folder path in your module’s JAR where
the JSPs reside (for example, META-INF/jsps).

@Override

public String getCustomJspDir() {

return "META-INF/jsps/";

}

4. Create an activatemethod and the following fields. The method adds the URL paths of all
your custom JSPs to a list when the module is activated.

@Activate

protected void activate(BundleContext bundleContext) {

_bundle = bundleContext.getBundle();

_customJsps = new ArrayList<>();

Enumeration<URL> entries = _bundle.findEntries(

getCustomJspDir(), "*.jsp", true);

while (entries.hasMoreElements()) {

URL url = entries.nextElement();

_customJsps.add(url.getPath());

}

}

private Bundle _bundle;

private List<String> _customJsps;

5. Implement the getCustomJspsmethod to return the list of this module’s custom JSP URL paths.

@Override

public List<String> getCustomJsps() {

return _customJsps;

}

6. Implement the getURLContainermethod to return anew com.liferay.portal.kernel.url.URLContainer.
Instantiate the URL container and override its getResources and getResource methods. The
getResourcesmethod looks up all the paths to resources in the container by a given path. It
returns a HashSet of Strings for the matching custom JSP paths. The getResource method
returns one specific resource by its name (the path included).

@Override

public URLContainer getURLContainer() {

return _urlContainer;

}

private final URLContainer _urlContainer = new URLContainer() {

@Override

public URL getResource(String name) {

return _bundle.getEntry(name);

}

@Override

public Set<String> getResources(String path) {

Set<String> paths = new HashSet<>();

for (String entry : _customJsps) {

530

if (entry.startsWith(path)) {

paths.add(entry);

}

}

return paths;

}

};

7. Implement the isCustomJspGlobalmethod to return true.

@Override

public boolean isCustomJspGlobal() {

return true;

}

Now your module provides custom JSPs and a custom JSP bag implementation. When you
deploy it, Liferay DXP uses its custom JSPs in place of the core JSPs they override.

Extend a JSP

If you want to add something to a core JSP, see if it has an empty -ext.jsp and override
that instead of the whole JSP. It keeps things simpler and more stable, since the full JSP
might change significantly, breaking your customization in the process. By overriding the
-ext.jsp, you’re only relying on the original JSP including the -ext.jsp. For an example, open
portal-web/docroot/html/common/themes/bottom.jsp, and scroll to the end. You’ll see this:

<liferay-util:include page="/html/common/themes/bottom-ext.jsp" />

If you must add something to bottom.jsp, override bottom-ext.jsp.
Since Liferay DXP 7.0, the content from the following JSP files formerly in html/common/themes

are inlined to improve performance.

• body_bottom-ext.jsp

• body_top-ext.jsp

• bottom-ext.jsp

• bottom-test.jsp

They’re no longer explicit files in the code base. But you can still create them in your module to
add functionality and content.

Remember, this type of customization is a last resort. Your override may break due to the
nature of this implementation, and core functionality in Liferay can go down with it. If the JSP
you want to override is in another module, refer to the section on Liferay API based approaches to
overriding JSPs.

Site Scoped JSP Customization

In Liferay Portal 6.2, you could use Application Adapters to scope your core JSP customizations to a
specific Site. Since the majority of JSPs were moved into modules for Liferay DXP 7.0, the use case
for this has shrunk considerably. If you must scope a core JSP customization to a Site, prepare an
application adapter as you would have for Liferay Portal 6.2, and deploy it to 7.0. It will still work.
However, note that this approach is deprecated in 7.0 and won’t be supported at all in Liferay 8.0.

531

Related Topics

Upgrading Core JSP Hooks

52.7 Overriding Inline Content Using JSPs

Some Liferay DXP core content, such as tag library tags, can only be overridden using JSPs ending
in .readme. The suffix .readme facilitates finding them. The code from these JSPs is now inlined
(brought into Liferay DXP Java source files) to improve performance. Liferay DXP ignores JSP files
with the .readme suffix. If you add code to a JSP .readme file and remove the .readme suffix, Liferay
DXP uses that JSP instead of the core inline content. This tutorial shows you how to make these
customizations.

Important: This type of customization is a last resort. Your override may break due to the
nature of this implementation, and core functionality can go downwith it. Liferay cannot guarantee
that content overridden using JSP .readme files can be upgraded.

Warning: Modifying a Liferay DXP tag library tag affects all uses of that tag in your Liferay DXP
installation.

Here’s how to override inline content using JSPs:

1. Create a Custom JSP Bag for deploying your JSP. Note the module folder you’re storing the
JSPs in: the default folder is [your module]/src/main/resources/META-INF/jsps/

Note: you can develop your JSP anywhere, but a Custom JSP Bag module

provides a straightforward way to build and deploy it.

2. Download the Liferay DXP source code or browse the source code on GitHub (Liferay Portal
CE).

3. Search the source code for a .jsp.readme file that overrides the tag you’re customizing.

Note: Files ending in `-ext.jsp.readme` let you prepend or

append new content to existing content. Examples include the

`bottom-test.jsp.readme`, `bottom-ext.jsp.readme`,

`body_top-ext.jsp.readme`, and `body_bottom-ext.jsp.readme` files in

the Liferay DXP application's `portal-web/docroot/html/common/themes` folder.

4. Copy the .jsp.readme file into your project and drop the .readme suffix. Use the same relative
file path Liferay DXP uses for the .jsp.readme file. For example, if the file in Liferay DXP is

532

https://github.com/liferay/liferay-portal/tree/7.1.x
https://github.com/liferay/liferay-portal/tree/7.1.x

portal-web/docroot/html/taglib/aui/fieldset/start.jsp.readme

use file path

[your module]/src/main/resources/META-INF/jsps/html/taglib/aui/fieldset/start.jsp

5. Familiarize yourself with the current UI content and logic, so you can override it appropriately.
Tag library tag content logic, for example, is in the respective *Tag.java file under util-

taglib/src/com/liferay/taglib/[tag library]/.

6. Develop your new logic, keeping in mind the current inline logic you’re replacing.

7. Deploy your JSP.

Liferay DXP uses your JSP in place of the current inline logic. If you want to walk through an
example override, continuewith this tutorial. Otherwise, congratulations on amodified .jsp.readme

file to override core inline content!

Example: Overriding the fieldset Taglib Tag

This example demonstrates changing the liferay:aui tag library’s fieldset tag. Browsing the
Liferay DXP web application or the source code at portal-web/docroot/html/taglib/aui/fieldset
reveals these files:

• start.jsp.readme

• end.jsp.readme

They can override the logic that creates the start and end of the fieldset tag. The
FieldsetTag.java class’s processStart and processEnd methods implement the current inline
content. Here’s the processStartmethod:

@Override

protected int processStartTag() throws Exception {

JspWriter jspWriter = pageContext.getOut();

jspWriter.write("<fieldset class=\"fieldset ");

jspWriter.write(GetterUtil.getString(getCssClass()));

jspWriter.write("\" ");

String id = getId();

if (id != null) {

jspWriter.write("id=\"");

jspWriter.write(id);

jspWriter.write("\" ");

}

jspWriter.write(

InlineUtil.buildDynamicAttributes(getDynamicAttributes()));

jspWriter.write(StringPool.GREATER_THAN);

String lable = getLabel();

if (lable != null) {

jspWriter.write(

"<legend class=\"fieldset-legend\">");

533

https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/util-taglib/src/com/liferay/taglib/aui/FieldsetTag.java#L86-L141

MessageTag messageTag = new MessageTag();

messageTag.setKey(lable);

messageTag.setLocalizeKey(getLocalizeLabel());

messageTag.doTag(pageContext);

String helpMessage = getHelpMessage();

if (helpMessage != null) {

IconHelpTag iconHelpTag = new IconHelpTag();

iconHelpTag.setMessage(helpMessage);

iconHelpTag.doTag(pageContext);

}

jspWriter.write("</legend>");

}

if (getColumn()) {

jspWriter.write("<div class=\"row\">");

}

else {

jspWriter.write("<div class=\"\">");

}

return EVAL_BODY_INCLUDE;

}

The code above does this:

1. Write <fieldset class=\"fieldsetstarting tag.

2. Write the CSS class name attribute.

3. If the tag has an ID, add the id as an attribute.

4. Write the tag’s dynamic attribute (map).

5. Close the starting fieldset tag.

6. Get the tag’s label attribute.

7. Write the starting legend element.

8. Use getLocalizeLabel() to add the localized label in the legend.

9. If there’s a help message (retrieved from getHelpMessage()), write it in an icon-help-tag.

10. Write the closing legend tag.

11. If there’s a column attribute, write <div class=\"row\">; else write <div class=\"\">.

Replicating the current logic in your custom JSPhelps you set up the tag properly for customizing.
The init.jsp for fieldset initializes all the variables required to create the starting tag. You can
use the variables in the start.jsp. The logic from FieldsetTag’s processStartmethod converted to
JSP code for start.jsp (renamed from start.jsp.readme) would look like this:

534

<%@ include file="/html/taglib/aui/fieldset/init.jsp" %>

<fieldset class="fieldset <%= cssClass %>" <%= Validator.isNotNull(id) ? "id=\"" + id + "\"" : StringPool.BLANK %> <%= InlineUtil.buildDynamicAttributes(dynamicAttributes) %>>

<c:if test="<%= Validator.isNotNull(label) %>">

<legend class="fieldset-legend">

<liferay-ui:message key="<%= label %>" localizeKey="<%= localizeLabel %>" />

<c:if test="<%= Validator.isNotNull(helpMessage) %>">

<liferay-ui:icon-help message="<%= helpMessage %>" />

</c:if>

</legend>

</c:if>

<div class="<%= column ? "row" : StringPool.BLANK %>">

Tip: A *Tag.java file’s history might reveal original JSP code that was inlined. For example, the
logic from fieldset tag’s start.jsp was inlined in this commit.

On deploying the start.jsp, the fieldset tags render the same as they did before. This is
expected because it uses the same logic as FieldsetTag’s processStartmethod.

Figure 52.1: Liferay DXP’s home page’s search and sign in components are in a fieldset.

The fieldset starting logic is ready for customization. To test that this works, you’ll print the
word test surrounded by asterisks before the end of the fieldset tag’s starting logic. Insert this line
before the start.jsp’s last div tag:

<c:out value="**********test**********"/>

Redeploy the JSP and refresh the page to see the text printed above the fieldset’s fields.

535

https://github.com/liferay/liferay-portal/blob/df22ba66eff49b76404cfda908d3cd024efbebd9/portal-web/docroot/html/taglib/aui/fieldset/start.jsp
https://github.com/liferay/liferay-portal/commit/7fba0775bcc1d1a0bc4d107cabfb41a90f15937c#diff-2ad802b4c0d8f7a2da45b895e89d6e46

Figure 52.2: Before the fieldset’s nested fields, it prints test surrounded by asterisks.

You know how to override specific Liferay DXP core inline content using Liferay’s .jsp.readme
files.

Related Topics

Customizing JSPs with Dynamic Includes
JSP Overrides Using Portlet Filters

536

CHAPTER 53

OVERRIDING LIFERAY SERVICES (SERVICE
WRAPPERS)

Why might you need to customize Liferay services? Perhaps you’ve added a new field to Liferay’s
User object and you want its value to be saved whenever the addUser or updateUser methods of
Liferay’s API are called. Or maybe you want to add some additional logging functionality to some
Liferay APIs or other services built using Service Builder. Whatever your case may be, Liferay’s
service wrappers provide easy-to-use extension points for customizing Liferay’s services.

To create amodule that overrides one of Liferay’s services, follow the ServiceWrapper Template
reference article to create a servicewrapper project type.

As an example, here’s the UserLocalServiceOverride class that’s generated in the ServiceWrapper
Template tutorial:

package com.liferay.docs.serviceoverride;

import com.liferay.portal.kernel.service.UserLocalServiceWrapper;

import com.liferay.portal.kernel.service.ServiceWrapper;

import org.osgi.service.component.annotations.Component;

@Component(

immediate = true,

property = {

},

service = ServiceWrapper.class

)

public class UserLocalServiceOverride extends UserLocalServiceWrapper {

public UserLocalServiceOverride() {

super(null);

}

}

Notice that you must specify the fully qualified class name of the service wrapper class that you
want to extend. The service argument was used in full in this import statement:

import com.liferay.portal.service.UserLocalServiceWrapper

This import statement, in turn, allowed the short form of the service wrapper class name to be
used in the class declaration of your component class:

537

public class UserLocalServiceOverride extends UserLocalServiceWrapper

The bottom line is that when using blade create to create a service wrapper project, you must
specify a fully qualified class name as the service argument. (This is also true when using blade

create to create a service project.) For information about creating service projects, please see the
Service Builder tutorial.

The generated UserLocalServiceOverride class does not actually customize any Liferay service.
Before you can test that your service wrapper module actually works, you need to override at least
one service method.

Open your UserLocalServiceOverride class and add the following methods:

@Override

public int authenticateByEmailAddress(long companyId, String emailAddress,

String password, Map<String, String[]> headerMap,

Map<String, String[]> parameterMap, Map<String, Object> resultsMap)

throws PortalException {

System.out.println(

"Authenticating user by email address " + emailAddress);

return super.authenticateByEmailAddress(companyId, emailAddress, password,

headerMap, parameterMap, resultsMap);

}

@Override

public User getUser(long userId) throws PortalException {

System.out.println("Getting user by id " + userId);

return super.getUser(userId);

}

Each of these methods overrides a Liferay service method. These implementations merely
execute a few print statements that before executing the original service implementations.

Lastly, you must add the following method to the bottom of your service wrapper so it can find
the appropriate service it’s overriding on deployment.

@Reference(unbind = "-")

private void serviceSetter(UserLocalService userLocalService) {

setWrappedService(userLocalService);

}

Build and deploy your module. Congratulations! You’ve created and deployed a Liferay service
wrapper!

53.1 Related Topics

Upgrading ServiceWrappers
Installing Blade CLI
Creating Projects with Blade CLI

538

CHAPTER 54

OVERRIDING OSGI SERVICES

Components register as services with the OSGi service registry. A service component’s availability,
ranking, and attributes determine whether components referring to the service type bind to that
particular service. Liferay DXP’s OSGI container is a dynamic environment in which services come
and go and can be overridden, which means that if there’s a service whose behavior you want to
change, you can override it. Here are the steps for overriding a service:

1. Get the service and service reference details

2. Create a custom service

3. Configure components to use your custom service

Note: The Service Builder services in portal-impl are Spring beans that Liferay makes available
as OSGi services.

Start with examining the service you want to override.

54.1 Examining an OSGi Service to Override

Creating and injecting a custom service in place of an existing service requires three things:

• Understanding the service interface
• The existing service
• The references to the service

Your custom service must implement the service interface, match references you want, and
might need to invoke the existing service.

Getting components to adopt your custom service immediately can require reconfiguring their
references to the service. Here you’ll flesh out service details to make these decisions.

539

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/

Gathering Information on a Service

1. Since component service references are extension points, start with following the tutorial
Finding Extension Points to determine the service you want to override and components that
use that service.

2. Once you know the service and components that use it, use Gogo Shell’s Service Component
Runtime (SCR) to inspect the components and get the service and reference details. The
Gogo Shell command scr:info [componentName] lists the component’s attributes and service
references.

Here’s an example scr:info command and results (abbreviated with ...) that describe compo-
nent override.my.service.reference.OverrideMyServiceReference (from samplemodule override-my-
service-reference) and its reference to a service of type override.my.service.reference.service.api.SomeService:

> scr:info override.my.service.reference.OverrideMyServiceReference

...

Component Description:

Name: override.my.service.reference.portlet.OverrideMyServiceReferencePortlet

...

Reference: _someService

Interface Name: override.my.service.reference.service.api.SomeService

Cardinality: 1..1

Policy: static

Policy option: reluctant

Reference Scope: bundle

...

Component Configuration:

ComponentId: 2399

State: active

SatisfiedReference: _someService

Target: null

Bound to: 6840

Properties:

component.id = 2400

component.name = override.my.service.reference.service.impl.SomeServiceImpl

objectClass = [override.my.service.reference.service.api.SomeService]

service.bundleid = 524

service.id = 6840

service.scope = bundle

...

The scr:info results, like the ones above, contain information relevant to injecting a custom
service. Here’s what you’ll do with the information:

1. Copy the service interface name

2. Copy the existing service name

3. Gather reference configuration details (if reconfiguration is necessary)

Start with the service interface.

Step 1: Copy the Service Interface Name

The reference’s Interface Name is the service interface’s fully qualified name.

540

https://portal.liferay.dev/documents/113763090/114000186/override-my-service-reference.zip
https://portal.liferay.dev/documents/113763090/114000186/override-my-service-reference.zip

...

Reference: _someService

Interface Name: override.my.service.reference.service.api.SomeService

...

Copy and save the interface name, because it’s the type your custom service must implement.

Javadocs for Liferay DXP service interfaces are at these locations:

• Liferay DXP core Javadocs
• Liferay DXP app Javadocs
• MVNRepository and Maven Central (for Liferay and non-Liferay artifact Javadocs).

Step 2: Copy the Existing Service Name

If you want to invoke the existing service along with your custom service, get the existing service
name.

The src:info result’s Component Configuration section lists the existing service’s
fully qualified name. For example, the OverrideMyServiceReferencePortlet component’s
references _someService is bound to a service component whose fully qualified name is
override.my.service.reference.service.impl.SomeServiceImpl.

Component Configuration:

...

SatisfiedReference: _someService

...

Bound to: 6840

Properties:

...

component.name = override.my.service.reference.service.impl.SomeServiceImpl

Copy the component.name so you can reference the service in your custom service.
Here’s an example of referencing the service above.

@Reference (

target = "(component.name=override.my.service.reference.service.impl.SomeServiceImpl)"

)

private SomeService _defaultService;

Step 3: Gather Reference Configuration Details (if reconfiguration is needed)

The service reference’s policy and policy option determine a component’s conditions for adopting
a particular service.

• If the reference’s policy option is greedy, it binds to the matching, highest ranking service
right away. The reference need not be reconfigured to adopt your service.

• If policy is static and its policy option is reluctant, however, the component requires one of
the following conditions to switch from using the existing service it’s referencing to using
the matching, highest ranking service (i.e., you’ll rank your custom service highest):

1. The component is reactivated

541

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/
https://docs.liferay.com/dxp/apps
https://mvnrepository.com/
https://search.maven.org/

2. The component’s existing referenced service is unavailable
3. The component’s reference is modified so that it does not match the existing service

but matches your service

Reconfiguring the reference can be the quickest way for the component to adopt a new service.
Gather these details:

• Component name: Find this at Component Description → Name. For example,

Component Description:

Name: override.my.service.reference.portlet.OverrideMyServiceReferencePortlet

...

• Reference name: The Reference value (e.g., Reference: _someService).

• Cardinality: Number of service instances the reference can bind to.

Note: Declarative Services makes all components configurable through OSGi Configuration
Admin. Each @Reference annotation in the source code has a name property, either explicitly set in
the annotation or implicitly derived from the name of the member on which the annotation is used.

• If no reference name property is used and the @Reference is on a field, then the reference
name is the field name. If @Reference is on a field called _someService, for example, then the
reference name is _someService.

• If the @Reference is on amethod, then heuristics derive the reference name. Method name suf-
fix is used and prefixes such as set, add, and put are ignored. If @Reference is on amethod called
setSearchEngine(SearchEngine se), for example, then the reference name is SearchEngine.

After creating your custom service (next), you’ll use the details you collected here to configure
the component to use your custom service.

Congratulations on getting the details required for overriding the OSGi service!

Related Topics

OSGi Services and Dependency Injection with Declarative Services
Finding Extension Points
Gogo Shell

54.2 Creating a CustomOSGi Service

It’s time to implement your OSGi service. Make sure to examine the service and service reference
details, if you haven’t done so already. Here you’ll create a custom service that implements the
service interface, declares it an OSGi service of that type, and makes it the best match for binding
with other components.

The example custom service CustomServiceImpl (from sample module overriding-service-

reference) implements service interface SomeService, declares itself an OSGi service of the
SomeService service type, and even delegates work to the existing service. Examine this example
code as you follow the steps for creating your custom service.

542

https://portal.liferay.dev/documents/113763090/114000186/overriding-service-reference.zip
https://portal.liferay.dev/documents/113763090/114000186/overriding-service-reference.zip

@Component(

property = {

"service.ranking:Integer=100"

},

service = SomeService.class

)

public class CustomServiceImpl implements SomeService {

@Override

public String doSomething() {

StringBuilder sb = new StringBuilder();

sb.append(this.getClass().getName());

sb.append(", which delegates to ");

sb.append(_defaultService.doSomething());

return sb.toString();

}

@Reference (

target = "(component.name=override.my.service.reference.service.impl.SomeServiceImpl)"

)

private SomeService _defaultService;

}

Here are the steps to create a custom OSGi service:

1. Create a module.

2. Create your custom service class so that it implements the service interface you want. In
the example above, CustomServiceImpl implements SomeService. Step 5 (later) demonstrates
implementing the interface methods.

3. Make your class a Declarative Services component that is the best match for references to the
service interface:

• Use an @Component annotation and service attribute to make your classes a Declarative
Services (DS) component. This declares your class to be an OSGi service that can be
made available in the OSGi service registry. The example class above is a DS service
component of service type SomeService.class.

• Use a service.ranking:Integer component property to rank your service higher than
existing services. The "service.ranking:Integer=100" property above sets the example’s
ranking to 100.

4. If you want to invoke the existing service implementation, declare a field that uses a Declara-
tive Services reference to the existing service. Use the component.name you copied when you
examined the service to target the existing service. The example above refers to an existing
service like this:

@Reference (

target = "(component.name=override.my.service.reference.service.impl.SomeServiceImpl)"

)

private SomeService _defaultService;

The field lets you invoke the existing service in your custom service.

543

5. Override the interface’s methods. Optionally, delegate work to the existing service imple-
mentation (see previous step).
The example custom service’s doSomething method delegates work to the original service
implementation.

6. Register your custom service with the OSGi runtime framework by deploying your module.

Components that reference the service type you implemented and whose reference policy
option is greedy bind to your custom service immediately. Components bound to an existing service
and whose reference policy option is reluctant can be dynamically reconfigured to use your service.
That’s demonstrated next.

Related Topics

OSGi Services and Dependency Injection with Declarative Services

54.3 Reconfiguring Components to Use Your OSGi Service

In many cases, assigning your custom service (service) a higher ranking convinces components
to unbind from their current service and bind to yours. In other cases, components keep using
their current service. Why is that? And how do you make components adopt your service? The
component’s service reference policy option is the key to determining the service.

Here are the policy options:
greedy: The component uses the matching, highest ranking service as soon as it’s available.
reluctant: The component uses thematching, highest ranking service available in the following

events:

• the component is (re)activated
• the component’s existing referenced service becomes unavailable
• the component’s reference is modified so that it no longermatches the existing bound service

In short, references with greedy policy options adopt your higher ranking service right away,
while ones with reluctant policy options require particular events. What’s great is that Liferay DXP’s
Configuration Admin lets you use configuration files (config files) or the API to swap in service
reference changes on the fly. Here you’ll use a config file to reconfigure a service reference to use
your custom service immediately.

This tutorial uses example modules override-my-service-reference and overriding-service-

reference to demonstrate reconfiguring a service reference, binding the component to a different
service. You can download the modules and build them using Gradle (bundled with each module)
or you can apply the tutorial steps to configure your own customization. Executing gradlew jar in
each example module root generates the module JAR to the build/libs folder.

• override-my-service-reference (download): Thismodule’s portlet component OverrideMyServiceReferencePortlet’s
field _someService references a service of type SomeService. The reference’s policy is static
and reluctant. By default, it binds to an implementation called SomeServiceImpl.

• overriding-service-reference (download): Provides a custom SomeService implementation
called CustomServiceImpl. Themodule’s configurationfile overrides OverrideMyServiceReferencePortlet’s
SomeService reference so that it binds to CustomServiceImpl.

544

https://portal.liferay.dev/documents/113763090/114000186/override-my-service-reference.zip
https://portal.liferay.dev/documents/113763090/114000186/overriding-service-reference.zip

You’re ready to reconfigure a component’s service reference to target your custom service.

Reconfiguring the Service Reference

Liferay DXP’s Configuration Admin lets you use configuration files to swap in service references
on the fly.

1. Create a system configuration file named after the referencing component. Follow the name
convention [component].config, replacing [component]with the component name. The configu-
rationfilename for the example component override.my.service.reference.portlet.OverrideMyServiceReferencePortlet
is:

override.my.service.reference.portlet.OverrideMyServiceReferencePortlet.config

2. In the configuration file, add a reference target entry that filters on your custom service.
Follow this format for the entry:

[reference].target=[filter]

Replace [reference] with the name of the reference you’re overriding. Replace [filter] with
service properties that filter on your custom service.

This example filters on the component.name service property:

_someService.target="(component.name\=overriding.service.reference.service.CustomServiceImpl)"

This example filters on the service.vendor service property:

_someService.target="(service.vendor\=Acme, Inc.)"

3. Optionally, you can add a cardinality.minimum entry to specify the number of services the
reference can use. Here’s the format:

[reference].cardinality.minimum=[int]

Here’s an example cardinality minimum:

_someService.cardinality.minimum=1

4. Deploy the configurationby copying the configurationfile into the folder [Liferay_Home]/osgi/configs.

Executing scr:info on your component shows that the custom service is now bound to the
reference.

For example, executing scr:info override.my.service.reference.portlet.OverrideMyServiceReferencePortlet

reports the following information:

545

...

Component Description:

Name: override.my.service.reference.portlet.OverrideMyServiceReferencePortlet

...

Reference: _someService

Interface Name: override.my.service.reference.service.api.SomeService

Cardinality: 1..1

Policy: static

Policy option: reluctant

Reference Scope: bundle

...

Component Configuration:

ComponentId: 2399

State: active

SatisfiedReference: _someService

Target: (component.name=overriding.service.reference.CustomServiceImpl)

Bound to: 6841

Properties:

_defaultService.target = (component.name=overriding.service.reference.service.CustomServiceImpl)

component.id = 2398

component.name = overriding.service.reference.service.CustomServiceImpl

objectClass = [override.my.service.reference.service.api.SomeService]

service.bundleid = 525

service.id = 6841

service.scope = bundle

Component Configuration Properties:

_someService.target = (component.name=overriding.service.reference.service.CustomServiceImpl)

...

The example component’s _someService reference targets the custom service component
overriding.service.reference.service.CustomServiceImpl. CustomServiceImpl references default
service SomeServiceImpl to delegate work to it.

Figure 54.1: Because the example component’s service reference is overridden by the configuration file deployment, the portlet indicates it’s calling the custom service.

Liferay DXP processed the configuration file and injected the service reference, which in turn
bound the custom service to the referencing component!

Related Topics

OSGi Services and Dependency Injection with Declarative Services
Finding Extension Points
Using Felix Gogo Shell

546

CHAPTER 55

OVERRIDING LANGUAGE KEYS

Core and portlet module Language*.properties files implement site internationalization. They’re
fully customizable, too. These tutorials demonstrate this in the following topics:

• Overriding Liferay’s Language Keys
• Overriding a Module’s Language Keys

55.1 Overriding Global Language Keys

Language files contain translations of your application’s user interface messages. But you can also
override the default language keys globally and in other applications (including your own). Here
are the steps for overriding language keys:

1. Determine the language keys to override
2. Override the keys in a new language properties file
3. Create a Resource Bundle service component

Note: Many applications that were once part of Liferay Portal 6.2 are nowmodularized. Their
language keys might have been moved out of Liferay’s language properties files and into one of the
application’s modules. The process for overriding a module’s language keys is different from the
process for overriding Liferay’s language keys.

Determine the language keys to override

So how do you find global language keys? They’re in the Language[xx_XX].properties files in the
source code or your bundle.

• From the source:

/portal-impl/src/content/Language[xx_XX].properties

547

• From a bundle:

portal-impl.jar

All language properties files contain properties you can override, like the language settings
properties:

##

Language settings

##

...

lang.user.name.field.names=prefix,first-name,middle-name,last-name,suffix

lang.user.name.prefix.values=Dr,Mr,Ms,Mrs

lang.user.name.required.field.names=last-name

lang.user.name.suffix.values=II,III,IV,Jr,Phd,Sr

...

There are also many simple keys you can override to update default messages and labels.

##

Category titles

##

category.admin=Admin

category.alfresco=Alfresco

category.christianity=Christianity

category.cms=Content Management

...

For example, Figure 1 shows a button that uses Liferay’s publish default language key.

`publish=Publish`

Figure 55.1: Messages displayed in Liferay’s user interface can be customized.

Next, you’ll learn how to override this key.

Override the keys in a new language properties file

Once you know the keys to override, create a language properties file for the locale you want (or
the default Language.properties file) in your module’s src/main/resources/content folder. In your
file, define the keys your way. For example, you could override the publish key.

publish=Publish Override

To enable your change, youmust create a resource bundle service component to reference your
language file.

548

Create a Resource Bundle service component

In yourmodule, create a class that extends java.util.ResourceBundle for the locale you’re overriding.
Here’s an example resource bundle class for the en_US locale:

@Component(

property = { "language.id=en_US" },

service = ResourceBundle.class

)

public class MyEnUsResourceBundle extends ResourceBundle {

@Override

protected Object handleGetObject(String key) {

return _resourceBundle.getObject(key);

}

@Override

public Enumeration<String> getKeys() {

return _resourceBundle.getKeys();

}

private final ResourceBundle _resourceBundle = ResourceBundle.getBundle(

"content.Language_en_US", UTF8Control.INSTANCE);

}

The class’s _resourceBundlefield is assigned a ResourceBundle. The call to ResourceBundle.getBundle
needs two parameters. The content.Language_en_US parameter is the language file’s qualified name
with respect to the module’s src/main/resources folder. The second parameter is a control that
sets the language syntax of the resource bundle. To use language syntax identical to Liferay’s
syntax, import Liferay’s com.liferay.portal.kernel.language.UTF8Control class and set the second
parameter to UTF8Control.INSTANCE.

The class’s @Component annotation declares it an OSGi ResourceBundle service component. It’s
language.id property designates it for the en_US locale.

@Component(

property = { "language.id=en_US" },

service = ResourceBundle.class

)

The class overrides these methods:

• handleGetObject: Looks up the key in the module’s resource bundle (which is based on the
module’s language properties file) and returns the key’s value as an Object.

• getKeys: Returns an Enumeration of the resource bundle’s keys.

Your resource bundle service component redirects the default language keys to your module’s
language key overrides.

Note: Global language key overrides for multiple locales require a separate module for each
locale. Each module’s ResourceBundle extension class (like the MyEnUsResourceBundle class above)
must specify its locale in the language.id component property definition and in the language file
qualified name parameter. For example, here is what they look like for the Spanish locale.

Component definition:

549

@Component(

property = { "language.id=es_ES" },

service = ResourceBundle.class

)

Resource bundle assignment:

private final ResourceBundle _resourceBundle = ResourceBundle.getBundle(

"content.Language_es_ES", UTF8Control.INSTANCE);

Important: If your module uses language keys from another module and overrides any of
that other module’s keys, make sure to use OSGi headers to specify the capabilities your module
requires and provides. This lets you prioritize resource bundles from the modules.

To see your Liferay language key overrides in action, deploy your module and visit the portlets
and pages that use the keys.

Figure 55.2: This button uses the overridden publish key.

That’s all there is to overriding Liferay’s language keys.

Related Topics

Resource Bundle Override Sample Project
Upgrading Core Language Key Hooks
Internationalization

55.2 Overriding a Module's Language Keys

What do you do if the language keys you want to modify are in one of Liferay’s applications or
another module whose source code you don’t control? Since module language keys are in the
respectivemodule, the process for overriding amodule’s language keys is different from the process
of overriding Liferay’s language keys.

Here is the process:

1. Find the module and its metadata and language keys
2. Write your custom language key values
3. Prioritize your module’s resource bundle

Find themodule and its metadata and language keys

In Gogo shell, list the bundles and grep for keyword(s) that match the portlet’s display name.
Language keys are in the portlet’s web module (bundle). When you find the bundle, note its ID
number.

To find the Blogs portlet, for example, your Gogo commands and output might look like this:

550

g! lb | grep Blogs

152|Active | 1|Liferay Blogs Service (1.0.2)

184|Active | 1|Liferay Blogs Editor Config (2.0.1)

202|Active | 1|Liferay Blogs Layout Prototype (2.0.2)

288|Active | 1|Liferay Blogs Recent Bloggers Web (1.0.2)

297|Active | 1|Liferay Blogs Item Selector Web (1.0.2)

374|Active | 1|Liferay Blogs Item Selector API (2.0.1)

448|Active | 1|Liferay Blogs API (3.0.1)

465|Active | 1|Liferay Blogs Web (1.0.6)

true

List the bundle’s headers by passing its ID to the headers command.
g! headers 465

Liferay Blogs Web (465)

Manifest-Version = 1.0

Bnd-LastModified = 1459866186018

Bundle-ManifestVersion = 2

Bundle-Name = Liferay Blogs Web

Bundle-SymbolicName = com.liferay.blogs.web

Bundle-Version: 1.0.6

...

Web-ContextPath = /blogs-web

g!

Note the Bundle-SymbolicName, Bundle-Version, and Web-ContextPath. The Web-ContextPath value,
following the /, is the servlet context name.

Important: Record the servlet context name, bundle symbolic name and version, as you’ll use
them to create the resource bundle loader later in the process.

For example, here are those values for Liferay BlogsWeb module:

• Bundle symbolic name: com.liferay.blogs.web
• Bundle version: 1.0.6
• Servlet context name: blogs-web

Next find the module’s JAR file so you can examine its language keys. Liferay follows this
module JAR file naming convention:
[bundle symbolic name]-[version].jar

For example, the BlogsWeb version 1.0.6 module is in com.liferay.blogs.web-1.0.6.jar.
Here’s where to find the module JAR:

• Liferay’s Nexus repository
• [Liferay Home]/osgi/modules

• Embedded in anapplication’s or application suite’s LPKGfile in [Liferay Home]/osgi/marketplace.

The language property files are in the module’s src/main/resources/content folder. Identify the
language keys you want to override in the Language[_xx].properties files.

Checkpoint: Make sure you have the required information for overriding themodule’s language
keys:

• Language keys
• Bundle symbolic name
• Servlet context name

Next you’ll write new values for the language keys.

551

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/

Write custom language key values

Create a new module to hold a resource bundle loader and your custom language keys.
In your module’s src/main/resources/content folder, create language properties files for each

locale whose keys you want to override. In each language properties file, specify your language key
overrides.

Next you’ll prioritize your module’s language keys as a resource bundle for the target module.

Prioritize Your Module's Resource Bundle

Now that your language keys are in place, use OSGi manifest headers to specify the language keys
are for the target module. To compliment the target module’s resource bundle, you’ll aggregate
your resource bundle with the target module’s resource bundle. You’ll list your module first
to prioritize its resource bundle over the target module resource bundle. Here’s an example
of module com.liferay.docs.l10n.myapp.lang prioritizing its resource bundle over target module
com.liferay.blogs.web’s resource bundle:

Provide-Capability:\

liferay.resource.bundle;resource.bundle.base.name="content.Language",\

liferay.resource.bundle;resource.bundle.aggregate:String="(bundle.symbolic.name=com.liferay.docs.l10n.myapp.lang),(bundle.symbolic.name=com.liferay.blogs.web)";bundle.symbolic.name=com.liferay.blogs.web;resource.bundle.base.name="content.Language";service.ranking:Long="2";\

servlet.context.name=blogs-web

The example Provide-Capability header has two parts:

1. liferay.resource.bundle;resource.bundle.base.name="content.Language" declares that the
module provides a resource bundle with the base name content.language.

2. The liferay.resource.bundle;resource.bundle.aggregate:String=... directive specifies the list
of bundles with resource bundles to aggregate, the target bundle, the target bundle’s resource
bundle name, and this service’s ranking:

• "(bundle.symbolic.name=com.liferay.docs.l10n.myapp.lang),(bundle.symbolic.name=com.liferay.blogs.web)":
The service aggregates resourcebundles frombundles com.liferay.docs.l10n.myapp.lang
and com.liferay.blogs.web. Aggregate as many bundles as desired. Listed bundles are
prioritized in descending order.

• bundle.symbolic.name=com.liferay.blogs.web;resource.bundle.base.name="content.Language":
Override the com.liferay.blogs.web bundle’s resource bundle named content.Language.

• service.ranking:Long="2": The resource bundle’s service ranking is 2. The OSGi frame-
work applies this service if it outranks all other resource bundle services that target
com.liferay.blogs.web’s content.Language resource bundle.

• servlet.context.name=blogs-web: The target resource bundle is in servlet context blogs-
web.

Deploy your module to see the language keys you’ve overridden.

Tip: If your override isn’t showing, use Gogo Shell to check for competing resource bundle
services. It may be that another service outranks yours. To check for competing resource bundle
services whose aggregates include com.liferay.blogs.web’s resource bundle, for example, execute
this Gogo Shell command:

services "(bundle.symbolic.name=com.liferay.login.web)"

552

Search the results for resource bundle aggregate services whose ranking is higher.

Now you can modify the language keys of modules in Liferay’s OSGi runtime. Remember,
language keys you want to override might actually be in Liferay’s core. You can override Liferay’s
language keys too.

Related Topics

Resource Bundle Override Sample Project
Upgrading Core Language Key Hooks
Internationalization

553

CHAPTER 56

OVERRIDING MVC COMMANDS

MVC Commands are used to break up the controller layer of Liferay MVC applications into smaller,
more digestible code chunks.

Sometimes you’ll want to override an MVC command, whether it’s in a Liferay application or
another Liferay MVC application whose source code you don’t own. Since MVC commands are
components registered in the OSGi runtime, you can simply publish your own customization of
the component, give it a higher service ranking, and deploy it.

All existing components that reference the original MVC command service component (using
a greedy reference policy) switch to reference your new one. Any existing reluctant references to
the original command must be configured to reference the new one. Once they’re configured with
the new service component, their JSP’s command URLs invoke the new customMVC command.

Here are the customization options available for each Liferay MVC Command type:

• MVCActionCommand: Add logic
• MVCRenderCommand:

– Add logic
– Redirect to a different JSP

• MVCResourceCommand: Add logic

These tutorials demonstrate each MVC command customization option. Since the steps for
adding logic are generally the same across MVC command types, start with adding logic.

56.1 Adding Logic to MVC Commands

You can completely override MVC commands, or any OSGi service for that matter, but adding
logic to the commands is the better option. Discarding necessary logic is bad. Conversely any
logic you copy from the original might not work in new versions of the portlet. Adding custom
logic while continuing to invoke the original logic decouples the custom class from the original
implementation. Keeping the new logic separate form the original logic keeps the code clean,
maintainable, and easy to understand.

Here are the steps for adding logic to MVC commands.

555

1. Implement the interface
2. Publish as a component
3. Refer to the original implementation
4. Add the logic, and call the original

Step 1: Implement the interface

Implement the respective MVC Command interface either directly or by extending an existing base
class that implements it. Extending a base class for the interface relieves you from implementing
logic that should typically be a part of most command implementations. For example, to add logic
to the Blogs portlet’s EditEntryMVCActionCommand, you would extend base class BaseMVCActionCommand.

public class CustomBlogsMVCActionCommand extends BaseMVCActionCommand

Check the MVC command interfaces for existing base classes:

• MVCActionCommand

• MVCRenderCommand

• MVCResourceCommand

Next make your class a service component.

Step 2: Publish as a component

The Declarative Services @Component annotation facilitates customizing MVC commands. All the
customization options require publishing your MVC command class as a component. For example,
this @Component annotation declares an MVCActionCommand service.

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN,

"mvc.command.name=/blogs/edit_entry",

"service.ranking:Integer=100"

},

service = MVCActionCommand.class

)

public class CustomBlogsMVCActionCommand extends BaseMVCActionCommand {

...

}

It publishes CustomBlogsMVCActionCommand as a service component for the MVCActionCommand class.
Upon resolving, it’s activated immediately because immediate = true. The component is invoked
in the Blogs Admin portlet by the command URL /blogs/edit_entry. Its service ranking of 100
prioritizes it ahead of the original service component, whose ranking is 0.

Here’s what you need to specify in an @Component annotation for your customMVC command:

• javax.portlet.name: for each portlet you want the customization to affect. JSPs in these
portlets can invoke the MVC command via applicable command URL tags. You can specify
the same portlets as the original MVC command or a subset of those portlets.

• mvc.command.name: this property declares the command URL that maps to this customMVC
command component.

556

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCActionCommand.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderCommand.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCResourceCommand.html

• service.ranking:Integer: set this property to a higher integer than the original service im-
plementation’s ranking. The ranking tells the OSGi runtime which service to use, in cases
where multiple components register the same service, with the same properties. The higher
the integer you specify here, the more weight your component carries. Liferay’s service
implementations typically have a 0 ranking.

• service: this attribute specifies the service (interface) to override .

• immediate: set this attribute to true to activate your component immediately upon resolution.

You can refer back to this list as you add @Component annotations to your customMVC commands.
Next reference the original implementation.

Step 3: Refer to the original implementation

Use a field annotated with @Reference to fetch a reference to the original MVC command component.
If there are no additional customizations on the original component, this reference will be for
the original MVC command type. For example, this field references the original MVC command
component EditEntryMVCActionCommand.

@Reference(

target = "(component.name=com.liferay.blogs.web.internal.portlet.action.EditEntryMVCActionCommand)")

protected MVCActionCommand mvcActionCommand;

Here’s how to add the reference:

1. Declare the field as the MVC command interface type that it is. For example, the
mvcActionCommand field is type MVCActionCommand.

2. Add the @Reference annotation.

3. In the annotation, define a target attribute that filters on a component.name equal to the default
service implementation class’s fully qualified name.

When your custom component resolves, the OSGi runtime assigns the targeted service to your
field. It’s time to add your custom logic.

Step 4: Add the logic

Adding the logic involves overriding the primary method of the base class you’re extending or the
interface you’re implementing. In your method override, add your new logic AND then invoke
the original implementation. For example, the following method overrides BaseMVCActionCommand’s
method doProcessAction.

@Override

protected void doProcessAction(

ActionRequest actionRequest, ActionResponse actionResponse)

throws Exception {

// Add custom logic here

...

// Call the original service implementation

mvcActionCommand.processAction(actionRequest, actionResponse);

}

557

The method above defines custom logic and then invokes the original service it referenced in
the previous step.

If you use this approach, your extension will continue to work with new versions of the original
portlet, because no coupling exists between the original portlet logic and your customization. The
command implementation class can change. Make sure to keep your reference updated to the
name of the current implementation class.

Congratulations on adding logic to your existing MVC command.

56.2 Overriding MVCRenderCommands

You can override MVCRenderCommand for any portlet that uses Liferay’s MVC framework and publishes
an MVCRenderCommand component.

For example, Liferay’s Blogs application has a class called EditEntryMVCRenderCommand, with this
component:

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS,

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN,

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_AGGREGATOR,

"mvc.command.name=/blogs/edit_entry"

},

service = MVCRenderCommand.class

)

This MVC render command can be invoked from any of the portlets specified by the
javax.portlet.name parameter, by calling a render URL that names the MVC command.

<portlet:renderURL var="addEntryURL">

<portlet:param name="mvcRenderCommandName" value="/blogs/edit_entry" />

<portlet:param name="redirect" value="<%= viewEntriesURL %>" />

</portlet:renderURL>

What if you want to override the command, but not for all of the portlets listed in the original
component? In your override component, just list the javax.portlet.name of the portlets where
you want the override to take effect. For example, if you want to override the /blogs/edit_entry

MVC render command just for the Blogs Admin portlet (the Blogs Application accessed in the site
administration section of Liferay), your component could look like this:

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN,

"mvc.command.name=/blogs/edit_entry",

"service.ranking:Integer=100"

},

service = MVCRenderCommand.class

)

Note the last property listed, service.ranking. It’s used to tell the OSGi runtime which service
to use, in cases where there are multiple components registering the same service, with the same
properties. The higher the integer you specify here, the more weight your component carries. In
this case, the override component is used instead of the original one, since the default value for
this property is 0.

558

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderCommand.html

After that, it’s up to you to do whatever you’d like. MVC render commands can be customized
for these purposes:

• Adding Logic to an Existing MVC Render Command
• Redirecting to a new JSP

Start by exploring how to add logic to an existing MVC render command.

Adding Logic to an Existing MVC Render Command

You can add logic to an MVC render command following the general steps for MVC commands.
Specifically forMVC render commands, youmust directly implement the MVCRenderCommand interface
and override its rendermethod.

For example, this custom MVC render command has a placeholder (i.e., at comment //Do
something here) for adding logic to the rendermethod.:

public CustomEditEntryRenderCommand implements MVCRenderCommand {

@Override

public String render(RenderRequest renderRequest,

RenderResponse renderResponse)

throws PortletException {

//Do something here

return mvcRenderCommand.render(renderRequest, renderResponse);

}

@Reference(target =

"(component.name=com.liferay.blogs.web.internal.portlet.action.EditEntryMVCRenderCommand)")

protected MVCRenderCommand mvcRenderCommand;

}

The example references an EditEntryMVCRenderCommand implementation of MVCRenderCommand. In
the render method, you’d replace the placeholder with new logic and then invoke the original
implementation’s logic by calling its rendermethod.

Sometimes, you might need to redirect the request to an entirely new JSP. You can do that from
a customMVC render command module too.

Redirecting to a New JSP

MVCRenderCommand’s rendermethod returns a JSP path as a String. By default, the JSP must live in the
original module, so you cannot simply specify a path to a custom JSP in your override module. To
redirect it to a JSP in your new module, you must make the method skip dispatching to the original
JSP altogether, by using the constant MVCRenderConstants.MVC_PATH_VALUE_SKIP_DISPATCH class. Then
you need to initiate your own dispatching process, directing the request to your JSP path. Here’s
how that might look in practice:

public class CustomEditEntryMVCRenderCommand implements MVCRenderCommand {

@Override

public String render(

RenderRequest renderRequest, RenderResponse renderResponse) throws

PortletException {

System.out.println("Rendering custom_edit_entry.jsp");

RequestDispatcher requestDispatcher =

559

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderCommand.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderConstants.html

servletContext.getRequestDispatcher("/custom_edit_entry.jsp");

try {

HttpServletRequest httpServletRequest =

PortalUtil.getHttpServletRequest(renderRequest);

HttpServletResponse httpServletResponse =

PortalUtil.getHttpServletResponse(renderResponse);

requestDispatcher.include

(httpServletRequest, httpServletResponse);

} catch (Exception e) {

throw new PortletException

("Unable to include custom_edit_entry.jsp", e);

}

return MVCRenderConstants.MVC_PATH_VALUE_SKIP_DISPATCH;

}

@Reference(target = "(osgi.web.symbolicname=com.custom.code.web)")

protected ServletContext servletContext;

}

The servlet context provides access to the request dispatcher. A servlet context is automatically
created for portlets. It can be created for other modules by including the following line in your
bnd.bnd file:

Web-ContextPath: /custom-code-web

Follow these steps to fetch the portlet’s servlet context in your customMVC render command:

1. Add a ServletContext field.

protected ServletContext servletContext;

2. Add the @Reference annotation to the field and set the annotation to filter on the portlet’s
module. By convention, Liferay puts portlets in modules whose symbolic names end in
.web. For example, this servlet context reference filters on a module whose symbolic name is
com.custom.code.web.

@Reference(target = "(osgi.web.symbolicname=com.custom.code.web)")

protected ServletContext servletContext;

Implement your rendermethod this way:

1. Get a request dispatcher to your module’s custom JSP.

RequestDispatcher requestDispatcher =

servletContext.getRequestDispatcher("/custom_edit_entry.jsp");

2. Include the HTTP servlet request and response in the request dispatcher.

try {

HttpServletRequest httpServletRequest =

PortalUtil.getHttpServletRequest(renderRequest);

HttpServletResponse httpServletResponse =

PortalUtil.getHttpServletResponse(renderResponse);

560

requestDispatcher.include

(httpServletRequest, httpServletResponse);

} catch (Exception e) {

throw new PortletException

("Unable to include custom_edit_entry.jsp", e);

}

3. Return the request dispatcher via the constant MVC_PATH_VALUE_SKIP_DISPATCH.

return MVCRenderConstants.MVC_PATH_VALUE_SKIP_DISPATCH;

After deploying your module, the portlets targeted by your custom MVCRenderCommand component
render your new JSP.

Related Topics

MVC Render Command
Adding Logic to MVC Commands
Converting StrutsActionWrappers to MVCCommands

56.3 Overriding MVCActionCommands

In case you want add to a Liferay MVC action command, you can. The OSGi framework lets you
override MVC action commands if you follow the instructions for adding logic to MVC commands.
It involves registering your customMVC action command as an OSGi component with the same
properties as the original, but with a higher service ranking.

CustomMVC action commands typically extend the BaseMVCActionCommand class, and override
its doProcessAction method, which returns void. Add your logic to the original behavior of the
action method by getting a reference to the original service, and calling it after your own logic.
For example, this MVCActionCommand override checks whether the delete action is invoked on a blog
entry, and prints a message to the log, before continuing with the original processing:

@Component(

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN,

"mvc.command.name=/blogs/edit_entry",

"service.ranking:Integer=100"

},

service = MVCActionCommand.class

)

public class CustomBlogsMVCActionCommand extends BaseMVCActionCommand {

@Override

protected void doProcessAction

(ActionRequest actionRequest, ActionResponse actionResponse)

throws Exception {

String cmd = ParamUtil.getString(actionRequest, Constants.CMD);

if (cmd.equals(Constants.DELETE)) {

System.out.println("Deleting a Blog Entry");

}

mvcActionCommand.processAction(actionRequest, actionResponse);

}

561

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/BaseMVCActionCommand.html

@Reference(

target = "(component.name=com.liferay.blogs.web.internal.portlet.action.EditEntryMVCActionCommand)")

protected MVCActionCommand mvcActionCommand;

}

Adding MVC action command logic before existing logic is straightforward and maintains loose
coupling between new and old code.

Related Topics

MVC Action Command
Adding Logic to MVC Commands
Overriding MVCRenderCommands
Converting StrutsActionWrappers to MVCCommands

56.4 Overriding MVCResourceCommands

If you need to add functionality to a Liferay MVC resource command, you can. The Liferay MVC
command framework supports customizing MVC resource commands. It follows the process for
adding logic to MVC commands and it is similar to the ones described for MVCRenderCommand and
MVCActionCommand. There’s a couple things to keep in mind:

• The service to specify in your component is MVCResourceCommand.class

• As with overriding MVCRenderCommand, there’s no base implementation class to extend. Imple-
ment the MVCResourceCommand interface yourself.

• Keep your code decoupled from the original code by adding your logic to the original
MVCResourceCommand’s logic by getting a reference to the original and returning a call to its
serveResourcemethod:

return mvcResourceCommand.serveResource(resourceRequest, resourceResponse);

The following example overrides thebehavior of com.liferay.login.web.portlet.action.CaptchaMVCResourceCommand,
from the Liferay’s Login portlet’s login-webmodule. It simply prints a line in the console and then
executes the original logic: returning the Captcha image for the account creation screen.

@Component(

property = {

"javax.portlet.name=" + LoginPortletKeys.LOGIN,

"mvc.command.name=/login/captcha"

},

service = MVCResourceCommand.class

)

public class CustomCaptchaMVCResourceCommand implements MVCResourceCommand {

@Override

public boolean serveResource

(ResourceRequest resourceRequest, ResourceResponse resourceResponse) {

System.out.println("Serving login captcha image");

return mvcResourceCommand.serveResource(resourceRequest, resourceResponse);

562

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCResourceCommand.html

}

@Reference(target =

"(component.name=com.liferay.login.web.internal.portlet.action.CaptchaMVCResourceCommand)")

protected MVCResourceCommand mvcResourceCommand;

}

And that, as they say, is that. Even if you don’t own the source code of an application, you can
override its MVC commands just by knowing the component class name.

Related Topics

MVC Resource Command
Adding Logic to MVC Commands
Overriding MVCRenderCommands

56.5 Overriding Liferay DXP's Default YUI and AUI Modules

Liferay DXP contains several default YUI/AUI modules. You may need to override functionality
provided by these module’s scripts. To do this, you must create a custom AUI module containing
three things:

• A copy of the original module’s JavaScript file containing your modifications
• A config.js file that specifies the modified JavaScript file’s path and the module it overrides
• A bnd.bnd file that tells the OSGi container to override the original

Follow these steps:

1. Create an OSGi module to override the original one. For example, you can create a module
named session-js-override-web to override Liferay DXP’s session.js file.

2. Create a src/main/resources/META-INF/resources/js folder in your module, copy the original
JavaScript file into it, and rename it. For example, create a copy of the session.jsmodule and
rename it session-override.js.

3. Apply your modifications and save the file.

4. Next, write your module’s configuration file (config.js) to apply your override. Add the
config.js file to the module’s src/main/resources/META-INF/resources/js folder. The example
config.js file below specifies the condition that the YUI/AUI Loader should load the cus-
tom AUI module (liferay-session-override) instead (indicated with the when property) of the
triggermodule (liferay-session). You can follow this same pattern to create your module’s
config.js file:

;(function() {

var base = MODULE_PATH + '/js/';

AUI().applyConfig(

{

groups: {

mymodulesoverride: { //mymodulesoverride

base: base,

563

combine: Liferay.AUI.getCombine(),

filter: Liferay.AUI.getFilterConfig(),

modules: {

'liferay-session-override': { //my-module-override

path: 'session-override.js', //my-module.js

condition: {

name: 'liferay-session-override', //my-module-override

trigger: 'liferay-session', //original module

when: 'instead'

}

}

},

root: base

}

}

}

);

})();

5. Finally, you must configure your bnd.bnd file. For the system to apply the changes, you must
specify the config.js’s location with the Liferay-JS-Config BND header. The liferay-session-

overridemodule from the previous example has the configuration below in its bnd.bnd file:

Bundle-Name: session-js-override

Bundle-SymbolicName: session.js.override.web

Bundle-Version: 1.0.0

Liferay-JS-Config:/META-INF/resources/js/config.js

Web-ContextPath: /liferay-session-override-web

Now you know how to override Liferay DXP’s default YUI/AUI modules!

Related Topics

Customizing JSPs

56.6 Overriding lpkg files

Applications are delivered through Liferay Marketplace as lpkg files. This is a simple compressed
file format that contains .jar files for deploying to Liferay DXP. If youwant to examine an application
fromMarketplace, all you have to do is unzip its .lpkg file to reveal its .jar files.

After examining an application, you may want to customize one of its .jars. Make your cus-
tomization in a copy of the .jar, but don’t deploy it the way you’d normally deploy an application.
By overriding the .lpkg file, you can update application modules without modifying the original
.lpgk file. Here are the steps:

1. Shut down Liferay DXP.

2. Create a folder called override in the [Liferay Home]/osgi/marketplace folder](/docs/7-
0/deploy/-/knowledge_base/d/installing-product#liferay-home).

3. Name your updated .jar the same as the .jar in the original .lpkg, minus the version informa-
tion. For example, if you’re overriding the com.liferay.amazon.rankings.web-1.0.5.jar from
the Liferay CE Amazon Rankings.lpkg, you’dnameyour .jar com.liferay.amazon.rankings.web.jar.

564

4. Copy this .jar into the override folder you created in step one.

This works for applications from Marketplace, but there’s also the static .lpkg that contains
core Liferay technology and third-party utilities (such as the servlet API, Apache utilities, etc.). To
customize or patch any of these .jar files, follow this process:

1. Make your customization and package it in a .jar file.

2. Name your .jar the same as the original .jar, minus the version information. For example, a
customized com.liferay.portal.profile-1.0.4.jar should be com.liferay.portal.profile.jar.

3. Copy the .jar into the [Liferay Home]/osgi/static folder.

Now start Liferay DXP. Note that any time you add and remove .jars this way, Liferay DXP must
be shut down and then restarted for the changes to take effect.

If you must roll back your customizations, delete the overriding .jar files: Liferay DXP uses the
original .jar on its next startup.

56.7 Creating Model Listeners

Model Listeners implement the ModelListener interface. They are used to listen for persistence
events on models and do something in response (either before or after the event).

Model listeners are designed to perform lightweight actions in response to a create, remove, or
update attempt on an entity’s database table or a mapping table (for example, users_roles). Here
are some supported use cases:

• Audit Listener: In a separate database, record information about updates to an entity’s
database table.

• Cache Clearing Listener: Clear caches that you’ve added to improve the performance of
custom code.

• Validation Listener: Perform additional validation on a model’s attribute values before they
are persisted to the database.

• Entity Update Listener: Do some additional processing when an entity table is updated. For
example, notify users when changes are made to their account.

There are also use cases that are not recommended, since they’re likely to break unpredictably
and give you headaches:

• Setting amodel’s attributes in an onBeforeUpdate call. If some other database table has already
been updated with the values before your model listener is invoked, your database gets out of
sync. To change how an entity’s attributes are set, consider using a service wrapper instead.

• Wrapping a model. Model listeners are not called when fetching records from the database.
• Creating worker threads to do parallel processing and querying data you updated via your
listener. Model listeners are called before the database transaction is complete (even the
onAfter... methods), so the queries could be executed before the database transaction
completes.

565

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/ModelListener.html

If there is no existing listener on the model, your model listener is the only one that runs.
However, there can be multiple listeners on a single model, and the order in which the listeners
run cannot be controlled.

You can create a model listener in a module by doing two simple things:

• Implement ModelListener
• Register the service in Liferay’s OSGi runtime

Creating a Model Listener Class

Create a -ModelListener class that extends the BaseModelListener class.

package ...;

import ...;

public class CustomEntityListener extends BaseModelListener<CustomEntity> {

// Override one or more methods from the ModelListener interface.

}

In the body of the class, override any methods from the ModelListener interface. The available
methods are listed and described at the end of this article.

In your model listener class, the parameterized type (for example, CustomEntity in the snippet
above) tells the listener’s ServiceTrackerCustomizerwhichmodel class to register the listener against.

Register the Model Listener Service

Register the service with Liferay’s OSGi runtime for immediate activation. If using Declarative
Services, set service= ModelListener.class and immediate=true in the Component.

@Component(

immediate = true,

service = ModelListener.class

)

That’s all there is to preparing a model listener. Now learn what model events you can respond
to.

Listening For Persistence Events

The ModelListener interface provides lots of opportunity to listen for model events:

• onAfterAddAssociation: If there’s an association between two models (if they have a mapping
table), use this method to do something after an association record is added.

• onAfterCreate: Use this method to do something after the persistence layer’s createmethod
is called.

• onAfterRemove: Use this method to do something after the persistence layer’s removemethod
is called.

• onAfterRemoveAssociation: If there’s an association between two models (if they have a map-
ping table), do something after an association record is removed.

• onAfterUpdate: Use this method to do something after the persistence layer’s updatemethod
is called.

566

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/BaseModelListener.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/ModelListener.html

• onBeforeAddAssociation: If there’s an association between twomodels (if they have a mapping
table), do something before an addition to the mapping table.

• onBeforeCreate: Use thismethod to do something before the persistence layer’s createmethod
is called.

• onBeforeRemove: Use thismethod to do something before the persistence layer’s removemethod
is called.

• onBeforeRemoveAssociation: If there’s an association between two models (if they have a map-
ping table), do something before a removal from the mapping table.

• onBeforeUpdate: Use thismethod to do something before the persistence layer’s updatemethod
is called.

Look inLiferay sourcefile portal-kernel/src/com/liferay/portal/kernel/service/persistence/impl/BasePersistenceImpl.java,
particularly the remove and updatemethods, and you’ll see howmodel listeners are accounted for
before (for the onBefore... case) and after (for the onAfter... case) the model persistence event.

Now that you know how to createmodel listeners, keep inmind that they’re useful as standalone
projects or inside of your application. If your application needs to do something (like add a custom
entity) every time a User is added in Liferay, you can include the model listener inside your
application.

Related Topics

Upgrading Model Listener Hooks
Service Builder
Service Builder Persistence

567

CHAPTER 57

DYNAMIC INCLUDES

Dynamic includes expose extension points in JSPs for injecting additional HTML, adding resources,
modifying editors, and more. Several dynamic includes are available. Once you know the dynamic
include’s key, you can use it to create a module to inject your content.

This section of tutorials lists the available dynamic include keys, along with a description of
their use cases and a code example.

The following extension points are covered in this section of tutorials:

Extension Point Purpose

bottom Load additional HTML or scripts in the bottom of the
theme’s body

top_head Load additional links in the theme’s head
top_js Load additional JS files in the theme’s head

WYSIWYG Add resources to the editor, listen to events, update the
configuration, etc.

57.1 WYSIWYG Editor Dynamic Includes

All WYSIWYG editors share the same dynamic include extension points for these things:

• Adding resources, plugins, etc. to the editor:
com.liferay.frontend.editor.editorType.web#editorName#additionalResources

• Accessing the editor instance to listen to events, configure it, etc:
com.liferay.frontend.editor.editorType.web#editorName#onEditorCreate

The table below shows the editorType, variable, and editorNames for each editor:

editorType variable editorName

alloyeditor alloyEditor alloyeditor

569

editorType variable editorName

alloyeditor_bbcode
alloyeditor_creole

ckeditor ckEditor ckeditor
ckeditor_bbcode
ckeditor_creole

tinymce tinyMCEEditor tinymce
tinymce_simple

The example below alerts the user when he/she pastes content into the CKEditor.
*DynamicInclude Java Class:

@Component(immediate = true, service = DynamicInclude.class)

public class CKEditorOnEditorCreateDynamicInclude implements DynamicInclude {

@Override

public void include(

HttpServletRequest request, HttpServletResponse response,

String key)

throws IOException {

Bundle bundle = _bundleContext.getBundle();

URL entryURL = bundle.getEntry(

"/META-INF/resources/ckeditor/extension/ckeditor_alert.js");

StreamUtil.transfer(

entryURL.openStream(), response.getOutputStream(), false);

}

@Override

public void register(

DynamicInclude.DynamicIncludeRegistry dynamicIncludeRegistry) {

dynamicIncludeRegistry.register(

"com.liferay.frontend.editor.ckeditor.web#ckeditor#onEditorCreate");

}

@Activate

protected void activate(BundleContext bundleContext) {

_bundleContext = bundleContext;

}

private BundleContext _bundleContext;

}

Example JavaScript:

// ckEditor variable is already available in the execution context

ckEditor.on(

'paste',

function(event) {

event.stop();

alert('Please, do not paste code here!');

}

);

Now you know how to use theWYSIWYG editor dynamic includes.

570

Related Topics

Adding New Behavior to an Editor
Bottom JSP Dynamic Includes
Top Head JSP Dynamic Includes
Top JS Dynamic Include

57.2 Top Head JSP Dynamic Includes

The top_head.jsp dynamic includes load additional links in the theme’s head. It uses the following
keys:

Load additional links in the theme’s head before the existing ones:

/html/common/themes/top_head.jsp#pre

Alternatively, you can load additional links in the theme’s head, after the existing ones:

/html/common/themes/top_head.jsp#post

The example below injects a link into the top of the top_head.jsp:

@Component(immediate = true, service = DynamicInclude.class)

public class CssTopHeadDynamicInclude extends BaseDynamicInclude {

@Override

public void include(

HttpServletRequest request, HttpServletResponse response,

String key)

throws IOException {

PrintWriter printWriter = response.getWriter();

String content =

"<link href=\"http://localhost:8080/o/my-custom-dynamic-include/css/mentions.css\"

rel=\"stylesheet\"

type = \"text/css\" />";

printWriter.println(content);

}

@Override

public void register(DynamicIncludeRegistry dynamicIncludeRegistry) {

dynamicIncludeRegistry.register("/html/common/themes/top_head.jsp#pre");

}

}

Note that the link’s href attribute’s value /o/my-custom-dynamic-include/ is provided by the OSGi
module’s Web-ContextPath (/my-custom-dynamic-include in the example).

Now you know how to use the top_head.jsp dynamic includes.

Related Topics

Bottom JSP Dynamic Includes
Top JS Dynamic Include
WYSIWYG Editor Dynamic Includes

571

Figure 57.1: The top_head pre key loads additional CSS and HTML resources in the head of the theme.

57.3 Top JS Dynamic Include

The top_js.jspf dynamic include adds additional JavaScript files to the theme’s head. For example,
you can use this extension point to include a JS library that you need present in the theme’s head:

/html/common/themes/top_js.jspf#resources

The example below injects a JavaScript file into the top of the top_js.jspf:
*DynamicInclude Java Class:

@Component(immediate = true, service = DynamicInclude.class)

public class JSTopHeadDynamicInclude extends BaseDynamicInclude {

@Override

public void include(

HttpServletRequest request, HttpServletResponse response,

String key)

throws IOException {

PrintWriter printWriter = response.getWriter();

String content = "<script charset=\"utf-8\" src=\"/o/my-custom-dynamic-include/my_example_javascript.js\" async />";

printWriter.println(content);

}

@Override

public void register(

DynamicInclude.DynamicIncludeRegistry dynamicIncludeRegistry) {

dynamicIncludeRegistry.register(

"/html/common/themes/top_js.jspf#resources"

);

}

}

Note that the JavaScript src attribute’s value /o/my-custom-dynamic-include/... is provided by
the OSGi module’s Web-ContextPath (/my-custom-dynamic-include in the example).

Now you know how to use the top_js.jspf dynamic include.

Related Topics

Bottom JSP Dynamic Includes
Top Head JSP Dynamic Includes
WYSIWYG Editor Dynamic Includes

572

Figure 57.2: The Top JS dynamic include lets you load additional scripts in the theme’s head.

57.4 Bottom JSP Dynamic Includes

The bottom.jsp dynamic includes load additional HTML or scripts in the bottom of the theme’s
body. The following keys are available:

Load additional HTML or scripts in the bottom of the theme’s body, before the existing ones:

/html/common/themes/bottom.jsp#pre

Alternatively, load HTML or scripts in the bottom of the theme’s body, after the existing ones:

/html/common/themes/bottom.jsp#post

The example below includes an additional script for the Simulation panel in the bottom of the
theme’s body, after the existing ones.

SimulationDeviceDynamicInclude Java class:

@Component(immediate = true, service = DynamicInclude.class)

public class SimulationDeviceDynamicInclude extends BaseDynamicInclude {

@Override

public void include(

HttpServletRequest request, HttpServletResponse response,

String key)

throws IOException {

PrintWriter printWriter = response.getWriter();

printWriter.print(_TMPL_CONTENT);

}

@Override

public void register(DynamicIncludeRegistry dynamicIncludeRegistry) {

dynamicIncludeRegistry.register("/html/common/themes/bottom.jsp#post");

}

private static final String _TMPL_CONTENT = StringUtil.read(

SimulationDeviceDynamicInclude.class,

"/META-INF/resources/simulation_device_dynamic_include.tmpl");

}

simulation_device_dynamic_include.tmpl:

573

<script type="text/javascript">

// <![CDATA[

AUI().use(

'aui-base',

function(A) {

var frameElement = window.frameElement;

if (frameElement && frameElement.getAttribute('id') === 'simulationDeviceIframe') {

A.getBody().addClass('lfr-has-simulation-panel');

}

}

);

//]]>

</script>

When the Simulation panel is open, the script adds the lfr-has-simulation-panel class to the
theme’s body.

Figure 57.3: You can use the bottom JSP dynamic include to inject scripts.

Now you know how to use the bottom.jsp dynamic includes.

Related Topics

Top Head JSP Dynamic Includes
Top JS Dynamic Include
WYSIWYG Editor Dynamic Includes

574

CHAPTER 58

SERVICE BUILDER

An application without reliable business logic or persistence isn’t much of an application at all. Un-
fortunately, writing your own persistence code often takes a great deal of time. Fortunately, Liferay
provides the Liferay Service Builder to generate it for you. You might now be thinking, “What?! I
hate code generators!” Not to fear; you can still write your own persistence code if you wish. And
if you choose to use Service Builder, you can edit and customize the code it generates. Regardless
of how you produce your persistence code, you can then use Service Builder to implement your
app’s business logic.

These tutorials shows you how to use Service Builder to generate your persistence framework
and implement your business logic. They also demonstrate using Spring in your app.

58.1 What is Service Builder?

Liferay Service Builder is a model-driven code generation tool that lets you define custom object
models called entities. Service Builder generates a service layer through object-relational mapping
(ORM) technology that provides a clean separation between your object model and code for the
underlying database. This frees you to add the necessary business logic for your application.
Service Builder takes an XML file as input and generates the necessary model, persistence, and
service layers for your application. These layers provide a clean separation of concerns. Service
Builder generates most of the common code needed to implement create, read, update, delete, and
find operations on the database, allowing you to focus on the higher level aspects of service design.
This tutorial explains some of the main benefits of using Service Builder:

• Integration with Liferay DXP
• Automatically generated model, persistence, and service layers
• Automatically generated local and remote services
• Automatically generated Hibernate and Spring configurations
• Support for generating finder methods for entities and finder methods that account for
permissions

• Built-in entity caching support
• Support for custom SQL queries and dynamic queries
• Saved development time

575

Liferay DXP uses Service Builder to generate all of its internal database persistence code. In
fact, the services, both local and remote, are generated by Service Builder. Additionally, the service
modules are generated by Service Builder. These things demonstrate Service Builder to be a robust
and reliable tool. It is easy to use and can save lots of development time. Although the number of
files Service Builder generates can seem intimidating at first, you only need to work with a few
files to customize to your applications and add business logic.

Note: You don’t have to use Service Builder to develop applications on Liferay DXP. It’s entirely
possible to develop them by writing custom code for database persistence using your persistence
framework of choice. If you so choose, you can work directly with JPA or Hibernate.

One of the main ways Service Builder saves development time is by completely eliminating the
need to write and maintain database access code. To generate a basic service layer, you only need
to create a service.xml file and run Service Builder. This generates a new service .jar file for your
project. The generated service .jar file includes a model layer, a persistence layer, a service layer,
and related infrastructure. These distinct layers represent a healthy separation of concerns. The
model layer is responsible for defining objects to represent your project’s entities, the persistence
layer is responsible for saving entities to and retrieving entities from the database, and the service
layer is responsible for exposing CRUD and related methods for your entities as an API. The code
Service Builder generates is database-agnostic, as is Liferay DXP itself.

Each entity Service Builder generates contains a model implementation class. Each entity
also contains a local service implementation class, a remote service implementation class, or
both, depending on how you configure Service Builder in your service.xml file. Customizations
and business logic can be implemented in these three classes; in fact, these are the only classes
generated by Service Builder that are intended to be customized. Ensuring that all customizations
take place in only a few classes makes Service Builder projects easy to maintain. The local service
implementation class is responsible for calling the persistence layer to retrieve and store data
entities. Local services contain the business logic and access the persistence layer. They can be
invoked by client code running in the same Java Virtual Machine. Remote services usually have
additional code for permission checking and are meant to be accessible from anywhere over the
Internet or your local network. Service Builder automatically generates code thatmakes the remote
services accessible. The remote services Service Builder generates include SOAP utilities and can
be accessed via SOAP or JSON.

Another way Service Builder saves development time is by providing Spring and Hibernate
configurations for your project. Service Builder uses Spring dependency injection to make ser-
vice implementation classes available at runtime and uses Spring AOP for database transaction
management. Service Builder also uses the Hibernate persistence framework for object-relational
mapping. As a convenience to you, Service Builder hides the complexities of using these technolo-
gies. You can take advantage of Dependency Injection (DI), Aspect Oriented Programming (AOP),
and Object-Relational Mapping (ORM) in your projects without having to manually set up a Spring
or Hibernate environment or make any configurations.

Another benefit of using Service Builder is that it generates finder methods. Finder methods
retrieve entity objects from the database based on specified parameters. You just need to specify the
kinds of finder methods to be generated in the service.xml configuration file and Service Builder
does the rest. The generated finder methods let you, for example, retrieve a list of all entities
associated with a certain site or a list of all entities associated with a certain site and a certain
user. Service Builder not only supports generating these kinds of simple finder methods but also
finder methods that take Liferay’s permissions into account. For example, if you are using Liferay’s

576

https://github.com/liferay/liferay-portal/tree/7.0.x/modules

permissions system to protect access to your entities, Service Builder can generate a different kind
of finder method that only returns entities that the logged-in user has permission to view.

Service Builder also provides built-in caching support. Liferay caches objects at three levels:
entity, finder, and Hibernate. By default, Liferay uses Ehcache as an underlying cache provider
for each of these cache levels. However, this is configurable via portal properties. All you have to
do to enable entity and finder caching for an entity in your project is to set the cache-enabled=true

attribute of your entity’s <entity> element in your service.xml configuration file. Please refer to
the Liferay Clustering documentation for more details about Liferay caching.

Service Builder is a flexible tool. It automates many of the common tasks associated with
creating database persistence code but it doesn’t prevent you from creating custom SQL queries or
custom finder methods. Service Builder lets you define custom SQL queries in an XML file and
implement custom finder methods to run the queries. This is useful, for example, for retrieving
specific pieces of information from multiple tables via an SQL join. Service Builder also sup-
ports retrieving database information via dynamic query. Liferay’s dynamic query API leverages
Hibernate’s criteria API.

Note: Liferay includes a Service Builder library and build tool-specific plugins such as the
Gradle Service Builder plugin, which includes Liferay’s Service Builder library as a dependency.
Service Builder supports Liferay 7’s modular application development style of keeping API and
implementation code in separate modules. The Service Builder sample apps demonstrate this.

In summary, we encourage you to use Service Builder for application development because
it’s a proven solution used throughout Liferay DXP and Liferay DXP applications. It generates
distinct model, persistence, and service layers, local and remote services, Spring and Hibernate
configurations, and related infrastructure without requiring any manual intervention. It also lets
you generate basic SQL queries and finder methods and methods that filter results, taking Liferay
permissions into account. Service Builder also supports entity and query caching. Each of these
features saves lots of development time, both initial development time and time that would have
to be spent maintaining, extending, or customizing a project. Finally, Service Builder is not a
restrictive tool: it lets you add custom SQL queries and findermethods and it also supports dynamic
query.

577

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.tools.service.builder/

CHAPTER 59

SERVICE BUILDER PERSISTENCE

Liferay’s Service Builder can generate your project’s persistence layer by automating the creation
of interfaces and classes. Your application’s persistence layer persists data represented by your
configured entities to a database. In fact, your local service implementation classes are responsible
for calling the persistence layer to retrieve and store your application’s data. So instead of taking
the time-consuming route of writing your own persistence layer, you can use Service Builder to
quickly define your entities and generate the layer instantaneously.

Here’s what these tutorials cover:

• Defining an object-relational map and generating your persistence layer from that map
• Running Service Builder
• Understanding and using local and remote services Service Builder generates
• Using the ServiceContext class
• Customizing model entities with Model Hints
• SQL queries
• Using Hibernate’s criteria API
• Configuring service.properties

• Connecting Service Builder to external data sources

Start with defining an object-relational map.

579

CHAPTER 60

DEFINING AN OBJECT-RELATIONAL MAP WITH
SERVICE BUILDER

In this tutorial, you’ll learn how to define an object relational map so your application can persist
data. As an example, you’ll examine the existing Liferay Bookmarks application that uses Service
Builder.

The Bookmarks application bookmarks assets in Liferay. The application defines two entities,
or model types, to represent an organization’s bookmarks and their folders. These entities are
called bookmark entries and bookmark folders. Since a bookmark must have a folder (even if it’s a
root folder), the entry entity references a folder entity as one of its attributes.

The Bookmarks application’s source code resides in the bookmarks-api, bookmarks-service, and
bookmarks-web modules. Notice the BookmarksAdminPortlet.java and BookmarksPortlet.java files in
the com.liferay.bookmarks.web.portlet package in the bookmarks-webmodule. These portlet classes
extend Liferay’s MVCPortlet class. They act as the controllers in the MVC pattern. These classes
contain the business logic that invokes the Service Builder generated bookmarks services that
you’ll learn how to create in this section. The application’s view layer is implemented in the JSPs in
the bookmarks-web/src/main/resources/META-INF/resources folder.

This tutorial assumes your application has these types of modules :

• *-api: Service interfaces
• *-service: Service implementations
• *-web: Portlet and controller

The parent folder of thesemodules is the application folder. The Service Builder project template
is available for creating the *-api and *-servicemodules. Client UI project templates such as the
MVCPortlet template are available for creating the *-web module. You can create projects from
both templates using either Dev Studio DXP or Blade.

The first step in using Service Builder is to define your model classes and their attributes in
a service.xml file. This file typically resides in the *-service module’s root folder, although you
can configure your build tool to recognize it in other folders. Service Builder terminology calls
model classes entities. For example, the Bookmarks application has two entities: BookmarksEntry
and BookmarksFolder. The requirements for each are defined in the bookmarks-service module’s
service.xml listed in the <column /> elements.

581

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/bookmarks/bookmarks-service/service.xml

Once Service Builder reads the service.xml file, you can define your entities. Liferay Dev Studio
DXP makes it easy to define entities in your application’s service.xml file. Follow these steps:

1. Create the service.xml file.

2. Define global information for the service.

3. Define service entities.

4. Define the columns (attributes) for each service entity.

5. Define relationships between entities.

6. Define a default order for the entity instances to be retrieved from the database.

7. Define finder methods that retrieve objects from the database based on specified parameters.

Each step is explained in detail. Start with creating a service.xml file.

60.1 Creating the service.xml File

To define a service for your portlet project, you must create a service.xml file. The DTD (Document
Type Declaration) file liferay-service-builder_7_1_0.dtd specifies the format and requirements
of the XML to use. You can create your service.xml file manually, or you can use Liferay Dev
Studio DXP. build the service.xml file piece-by-piece, taking the guesswork out of creating XML
that adheres to the DTD.

If you created your project from the Blade or Dev Studio DXP template, you have a service.xml

file in your *-servicemodule’s root folder with an entity element named Foo. Remove the entire
<entity name="Foo" ...> ... </entity> element: it’s just an example. It has no practical use for
you.

If you don’t already have a service.xml file, create one in your *-servicemodule’s root folder
and open the file. Liferay Dev Studio DXP provides a Diagrammode and a Source mode to give you
different perspectives of the service information in your service.xml file.

• Diagrammode facilitates creating and visualizing relationships between service entities.
• Source mode brings up the service.xml file’s raw XML content in the editor.

You can switch between these modes.
Next, you’ll specify your service’s global information.

60.2 Defining Global Service Information

A service’s global information applies to all its entities, so it’s a good place to start. In Liferay Dev
Studio DXP, select the Service Builder node in the upper left corner of the Overview mode of your
service.xml file. The main section of the view now shows the Service Builder form in which to
enter your service’s global information. The fields include the service’s

• Package path

582

https://docs.liferay.com/ce/portal/7.1-latest/definitions/liferay-service-builder_7_1_0.dtd.html

• Namespace options
• Multiversion concurrency control
• Author

Figure 60.1: This is the Service Builder form from the Bookmarks application’s service.xml.

Package Path

The package path specifies the package in which the service and persistence classes are generated.
The package path for Bookmarks ensures that the *-apimodule’s service classes are generated in
the com.liferay.bookmarks package. The persistence classes are generated in a package of the same
name in the *-servicemodule. For example, examine the Bookmarks application’s bookmarks-api
and bookmarks-service modules to see how these are automatically generated for you. A later
tutorial describes the package content.

Namespace Options

Service Builder uses the service namespace in naming the database tables it generates for the
service. For example, Bookmarks could serve as the namespace for a Bookmarks application service.

<namespace>Bookmarks</namespace>

Service Builder uses the namespace in the following SQL scripts it generates in your
src/main/resources/sql folder:

583

https://github.com/liferay/liferay-portal/tree/master/modules/apps/bookmarks/bookmarks-api
https://github.com/liferay/liferay-portal/tree/master/modules/apps/bookmarks/bookmarks-service

• indexes.sql

• sequences.sql

• tables.sql

Note: The generated SQL script folder location is configurable. For example, if you’re using
Gradle, you can define the sqlDir setting in the project’s Gradle build.gradle file or Maven pom.xml

file, the same way the databaseNameMaxLength setting is applied in the examples below.

Service Builder uses the SQL scripts to create database tables for all the entities the service.xml

defines. The database table names have the namespace prepended when they are created. Since
the example namespace value is Bookmarks, the database table names created for the entities start
with Bookmarks_ as their prefix. Each Service Builder project’s namespace must be unique. Separate
plugins should use separate namespaces and should not use a namespace already used by Liferay
entities (such as Users or Groups). Check the table names in Liferay’s database to see the namespaces
already in use.

Warning: Use caution when assigning namespace values. Some databases have strong restric-
tions on database table and column name lengths. The Service Builder Gradle and Maven plugin
parameter databaseNameMaxLength sets the maximum length you can use for your table and column
names. Here are paraphrased examples of setting databaseNameMaxLength in build files:

Gradle build.gradle

buildService {

...

databaseNameMaxLength = 64

...

}

Maven pom.xml

<configuration>

...

<databaseNameMaxLength>64</databaseNameMaxLength>

...

</configuration>

Multiversion concurrency control (MVCC)

The service-builder element’s mvcc-enabled attribute is falseby default. Setting mvcc-enabled="true"
(hint: edit service.xml in Source view) enables multiversion concurrency control (MVCC) for all of
the service’s entities. In systems, concurrent updates are common. Without MVCC people may
read or overwrite data from an invalid state unknowingly. With MVCC, each modification is made
upon a given base version number. When Hibernate receives the update, it generates an update

SQL statement that uses a where clause to make sure the current data version is the version you
expect.

If the current data version

• matches the expected version, your data operation is based on up-to-date data and is ac-
cepted.

• doesn’t match the expected version, the data you’re operating on is outdated. Liferay DXP
rejects your data operation and throws an exception, which you can catch to help the user
handle the exception (e.g., suggest retrying the operation).

584

https://en.wikipedia.org/wiki/Multiversion_concurrency_control

Important: Enable MVCC for all your services by setting mvcc-enabled="true" in your <service-
builder/> element. When invoking service entity updates (e.g., fooService.update(object)), make
sure to do so in transactions. Propagate rejected transactions to the UI for the user to handle.

Author

As the last piece of global information, enter your name as the service’s author in your service.xml
file. Service Builder adds @author annotations with the specified name to all the Java classes and
interfaces it generates. Save your service.xml file. Next, you’ll add entities for your services.

60.3 Defining Service Entities

Entities are the heart and soul of a service. They represent the map between the model objects in
Java and your database fields and tables. Service Builder maps the entities you define automatically,
giving you a facility for taking Java objects and persisting them. For the Bookmarks application, two
entities are created according to its service.xml –one for bookmark entries and one for bookmark
folders.

Here’s a summary of the BookmarksEntry entity information:

• Name: BookmarksEntry
• Local service: yes
• Remote service: yes

And here’s what is used for the BookmarksFolder entity:

• Name: BookmarksFolder
• Local service: yes
• Remote service: yes

Here are steps to create entities using Liferay Dev Studio DXP:

1. In the outline on the left side of the service.xml editor in Overview mode, select the Entities
node under the Service Builder node. In the main part of the view, notice that the Entities
table is empty.

2. Create an entity by clicking on the Add Entity icon () to the right of the table.

3. Name your entity and mark whether to generate local and remote services for it.

Add as many entities as you need.
The entity’s database table name includes the entity name prefixed with the namespace. The

Bookmarks example creates one database table named Bookmarks_BookmarksEntry and another
named Bookmarks_BookmarksFolder.

Setting Local Service (the local-service attribute) to true instructs Service Builder to generate
local interfaces for the entity’s services. Local services are set to false by default. Local services
can only be invoked from the Liferay server on which they’re deployed.

Setting Remote Service (the remote-service attribute) to true instructs Service Builder to generate
remote interfaces for the service. Local services are set to true by default. You can build a fully-
functional application without generating remote services. In that case, you could set your entity

585

https://github.com/liferay/liferay-portal/blob/master/modules/apps/bookmarks/bookmarks-service/service.xml

Figure 60.2: Adding service entities in your service.xml file is easy with Liferay Dev Studio DXP’s Overviewmode.

local services to true and remote services to false. If, however, you want to enable remote access
to your application’s services, set both local service and remote service to true.

Tip: Suppose you have an existing Data Access Object (DAO) service for an entity built using
some other framework such as JPA. You can set local service to false and remote service to true

so that the methods of your remote -Impl class can call the methods of your existing DAO. This
enables your entity to integrate with Liferay’s permission-checking system and provides access to
the web service APIs generated by Service Builder. This is a very handy, quite powerful, and often
used feature of Liferay.

Now that you’ve seen how to create your application’s entities, you’ll learn how to describe their
attributes using entity columns.

60.4 Defining the Columns (Attributes) for Each Service Entity

An entity’s columns represent its attributes. These attributes map table fields to Java object fields.
To add attributes for your entity, drill down to its columns in the Overview mode outline of the
service.xml file. From the outline, expand the Entities node and expand an entity node. Then select
the Columns node. Liferay Dev Studio DXP displays a table of the entity’s columns.

Service Builder creates a database field for each column you add to the service.xml file. Itmaps a
database field type appropriate to the Java type specified for each column, and it does this across all
the databases Liferay supports. Once Service Builder runs, it generates a Hibernate configuration
that handles the object-relational mapping. Service Builder automatically generates getter/setter
methods in the model class for these attributes. The column’s Name specifies the name used in the
getters and setters that are created for the entity’s Java field. The column’s Type indicates the Java

586

Figure 60.3: Liferay Dev Studio DXP facilitates defining table columns for entities.

type of this field for the entity. If a column’s Primary (i.e., primary key) attribute value is set to true,
then the column becomes part of the primary key for the entity. An entity’s primary key uniquely
identifies the entity. If only one column has Primary set to true, then that column represents the
entire primary key for the entity. This is the case in the Bookmarks application. However, it’s
possible to use multiple columns as the primary key for an entity. In this case, the combination of
columns makes up a compound primary key for the entity.

Note: The Implementing an Add Method article demonstrates how to generate unique primary
keys for entity instances.

Create Entity Columns

Similar to the way you used the form table for adding entities, add attribute columns for each of
your entities.

1. Create each attribute by clicking on the Add icon ().

2. Fill in the attribute’s name

3. Select the attribute’s type. While your cursor is in a column’s Type field, an option icon
appears. Click this icon to select the appropriate type for the column.

4. Specify whether the attribute is a primary key for the entity.

587

Note: On deploying a *servicemodule, Service Builder automatically generates indexes for all
entity primary keys.

Create a column for each attribute of your entity or entities.

Support Multi-tenancy

In addition to columns for your entity’s primary key and attributes, add portal instance ID and site
ID columns. They let your portlet support Liferay’s multi-tenancy features, so that each portal
instance and each site in a portal instance can have independent sets of portlet data. To hold the
site’s ID, add a column called groupId of type long. To hold the portal instance’s ID, add a column
called companyId of type long. To add these columns to your entities, follow the table below.

Portal and site scope columns

Name Type Primary

companyId long no
groupId long no

Track Ownership

To track each entity instance’s owner, add a column called userId of type long.
User column

Name Type Primary

userId long no

Audit Entities

Lastly, you can add columns to help audit your entities. For example, you could create a column
named createDate of type Date to note an entity instance’s creation date. And add a column named
modifiedDate of type Date to track the last time an entity instance was modified.

Audit columns

Name Type Primary

userId long no
createDate Date no
modifiedDate Date no

Great! Your entities have columns that not only represent their attributes, but also support
multi-tenancy and entity auditing. Next, you’ll learn how to specify the relationship service entities.

60.5 Defining Relationships Between Service Entities

Referencing one type of entity in the context of another entity is a common requirement. This is
also known as relating entities. Liferay’s Bookmarks application defines a relationship between an
entry and its folder.

588

As mentioned earlier, each bookmark must have a folder. Therefore, each BookmarksEntry entity
must relate to a BookmarksFolder entity. Liferay @ide@’s Diagrammode for service.xml facilitates
relating entities.

1. Select Diagrammode for the service.xml file.

2. Select the Relationship option under Connections in the palette on the right side of the view.
This relationship tool helps you draw relationships between entities in the diagram.

3. Click your first entity and move your cursor over to the entity you’d like to relate it with.
Liferay Dev Studio DXP draws a dashed line from your selected entity to the cursor.

4. Click the second entity to complete drawing the relationship. Liferay Dev Studio DXP turns
the dashed line into a solid line, with an arrow pointing to the second entity.

5. Save the service.xml file.

Congratulations! You’ve related two entities. Their relationship shows in Diagrammode and
looks similar to the relationship in the figure below.

Figure 60.4: Relating entities is a snap in Liferay Dev Studio DXP’s Diagrammode for service.xml.

Switch to Source mode in the editor for your service.xml file and note that Liferay Dev Studio
DXP created a column element in the first selected entity to hold the ID of the corresponding
entity instance reference. For example, the BookmarksEntry entity uses this column to relate to a
BookmarksFolder entity :

<column name="folderId" type="long" />

Now that your entity columns are in place and entity relationships are established, you can
specify the default order in which the entity instances are retrieved from the database.

589

60.6 Defining Ordering of Service Entity Instances

Often, you want to retrieve multiple instances of a given entity and list them in a particular order.
The service.xml file lets you specify the default order of your entities.

Suppose you want to return BookmarksEntry entities alphabetically by name. It’s easy to specify
these default orderings using Liferay Dev Studio DXP.

1. Switch back to Overview mode in the service.xml file editor.

2. Select the Order node under the entity node in the outline on the left side of the view. The
IDE displays a form for ordering the chosen entity.

3. Check the Specify ordering checkbox to show the form for specifying the ordering.

4. Create an order column by clicking the Add icon () to the right of the table.

5. Enter the column name (e.g., name, date, etc.) to use in ordering the entity.

6. Click the Browse icon () to the right of the By field and choose the asc or desc option. This
orders the entity in ascending or descending order.

Now that you know how to order your service entities, the last thing to do is to define the finder
methods for retrieving entity instances from the database.

60.7 Defining Service Entity Finder Methods

Finder methods retrieve entity objects from the database based on specified parameters. You’ll
probably want to create at least one finder method for each entity you create in your services.
Service Builder generates several methods based on each finder you create for an entity. It creates
methods to fetch, find, remove, and count entity instances based on the finder’s parameters.

For many applications, it’s important to be able to find its entities per site. You can specify these
finders using Liferay Dev Studio DXP’s Overview mode for the service.xml file.

Create Finders

Here are the steps for creating a finder node:

1. Select the Finders node under the entity node in the Outline on the left side of the screen. The
IDE displays an empty Finders table in the main part of the view.

2. Create a new finder by clicking the Add icon () to the right of the table.

3. Specify your finder’s name and return type. Use the Java camel-case naming conventionwhen
naming finders since the finder’s name is used to name the methods that Service Builder
creates.

The IDE creates a new finder sub-node under the Finders node in the outline. Next, you’ll learn
how to specify the finder column for this node.

590

Create Finder Columns

Under the new finder node, Dev Studio DXP created a Finder Columns node. Here are the steps for
creating finder columns:

1. Select the Finder Columns node to specify the columns for your finder’s parameters.

2. Create a new finder column by clicking the Add icon and specifying the column’s name. Keep
in mind that you can specify multiple finder parameters (columns).

3. Save your service.xml file.

Important: DO NOT create finders that use entity primary key as parameters. They’re unneces-
sary as Service Builder automatically generates findByPrimaryKey and fetchByPrimaryKeymethods
for all entity primary keys. On deploying a *servicemodule, Service Builder creates indexes for all
entity primary key columns and finder columns. Adding finders that use entity primary keys results
in attempts to create multiple indexes for the same columns—Oracle DB, for example, reports these
attempts as errors.

Figure 60.5: Creating Finder entities is easy with Liferay Dev Studio DXP.

If you’re creating site-scoped entities (entities whose data should be unique to each site), follow
the steps described above to create finders by groupId for retrieving your entities.

Service Builder generates finder-related methods (e.g., fetchByGroupId, findByGroupId,
removeByGroupId, countByGroupId) for the your entities in the *Persistence and *PersistenceImpl

classes. The first of these classes is the interface; the second is its implementation. For example, Lif-
eray’s Bookmarks application generates its entity finder methods in the -Persistence classes found
in the /bookmarks-api/src/main/java/com/liferay/bookmarks/service/persistence folder and the -

PersistenceImpl classes in the /bookmarks-service/src/main/java/com/liferay/bookmarks/service/persistence/impl
folder.

Now you know to configure Service Builder to create finder methods for your entity. Terrific!

591

Now that you’ve specified the service for your project, you’re ready to build the service by
running Service Builder. It’s time to run Service Builder and examine the code it generates.

60.8 Running Service Builder

This tutorial demonstrates how to run Service Builder. If want to use Service Builder in your
application but haven’t yet created a service.xml file that defines an object-relational map for you
application, make sure to do so before proceeding with this tutorial.

There are two ways to build services from a service.xml file:

• Liferay Dev Studio
• Command line

Liferay Dev Studio DXP is demonstrated first.

Using Liferay Dev Studio

From the Package Explorer, right-click on your servicemodule and then select Liferay → build-service.

Figure 60.6: Liferay Dev Studio DXP facilitates building Service Builder services via the build-service option in the service module’s Liferay submenu.

Service Builder generates plenty of files. You can run Service Builder from the command line
too.

592

Using the Command Line

Open a command line and navigate to your application folder (the folder that contains your *-api
and *-servicemodules).

To build your services using Gradle, enter the following command:

blade gw buildService

or

gradlew buildService

Blade’s gw command works in any project that has a Gradle Wrapper available to it–projects
generated using Liferay project templates have a GradleWrapper.

Note: Liferay Workspace’s Gradle Wrapper script is in the workspace root folder. If your
application project folder is located at [workspace]/modules/[application], for example, the Gradle
Wrapper is available at ../../gradlew.

If you’re using Maven, build the services by running the following command:

mvn service-builder:build

Important: The mvn service-builder:build command only works if you’re using the
com.liferay.portal.tools.service.builder plugin version 1.0.145+. Maven projects using an earlier
version of the Service Builder plugin should update their POM accordingly. More information is
available on using Maven to run Service Builder.

On successfully building the services, ServiceBuilder prints themessage BUILD SUCCESSFUL.Many
generated files appear in your project. They represent a model layer, service layer, and persistence
layer for your entities. Don’t worry about the number of generated files–they’re explained in the
next tutorial. Its time to review the code Service Builder generates for your entities.

60.9 Understanding the Code Generated by Service Builder

Service Builder generates code to support your entities. The files listed under Local Service and Re-
mote Service below are only generated for an entity that has both local-service and remote-service

attributes set to true. Service Builder generates services for these entities in your application’s
*-api and *-servicemodules in the packages you specified in service.xml. For example, here are
the package paths for Liferay’s Bookmarks application:

• /bookmarks-api/src/main/java/com/liferay/bookmarks

• /bookmarks-service/src/main/java/com/liferay/bookmarks

The bookmarks-apimodule’s interfaces define the Bookmarks application API. The *-apimodule
interfaces define the application’s persistence layer, service layer, and model layer. Whenever you
compile and deploy the *-apimodule, all its classes and interfaces are packaged in a .jar file called
PROJECT_NAME-api.jar in the module’s build/libs folder. Deploying this JAR to Liferay defines the
API as OSGi services.

593

The bookmarks-servicemodule classes implement the bookmarks-apimodule interfaces. The *-

servicemodule provides the OSGi service implementations to deploy to Liferay’s OSGi framework.
Next, examine the classes and interfaces generated for the entities you specified. Similar classes

are generated for each entity, depending on how each entity is specified in the service.xml. Here
are the three types of customizable classes:

• *LocalServiceImpl

• *ServiceImpl

• *Impl

The * represents the entity name in the classes listed above.
Here are the persistence, service, and model classes:

• Persistence

– [ENTITY_NAME]Persistence: Persistence interface that defines CRUD methods for the
entity such as create, remove, countAll, find, findAll, etc.

– [ENTITY_NAME]PersistenceImpl: Persistence implementation class that implements
[ENTITY_NAME]Persistence.

– [ENTITY_NAME]Util: Persistence utility class that wraps [ENTITY_NAME]PersistenceImpl and
provides direct access to the database for CRUD operations. This utility should only
be used by the service layer; in your portlet classes, use the [ENTITY_NAME] class by
referencing it with the @Reference annotation.

Figure 60.7: Service Builder generates these persistence classes and interfaces for an example entity called Event. You shouldn’t (and you won’t need to) customize any of
these classes or interfaces.

• Local Service (generated for an entity only if the entity’s local-service attribute is set to true

in service.xml)

– [ENTITY_NAME]LocalService: Local service interface.

594

– [ENTITY_NAME]LocalServiceImpl (LOCAL SERVICE IMPLEMENTATION): Local service
implementation. This is the only class in the local service that you should modify
manually. You can add custom business logic here. For any methods added here,
Service Builder adds correspondingmethods to the [ENTITY_NAME]LocalService interface
the next time you run it.

– [ENTITY_NAME]LocalServiceBaseImpl: Local service base implementation. This is an ab-
stract class. Service Builder injects a number of instances of various service and persis-
tence classes into this class. @abstract

– [ENTITY_NAME]LocalServiceUtil: Local serviceutility classwhichwraps [ENTITY_NAME]LocalServiceImpl.
This class is generated for backwards compatibility purposes only. Use the *LocalService
class by referencing it with the @Reference annotation.

– [ENTITY_NAME]LocalServiceWrapper: Local service wrapper which implements
[ENTITY_NAME]LocalService. This class is designed to be extended and it lets you
customize the entity’s local services.

Figure 60.8: Service Builder generates these service classes and interfaces. Only the [ENTITY_NAME]LocalServiceImpl (e.g., EventLocalServiceImpl for the Event entity)
allows custommethods to be added to the service layer.

• Remote Service (generated for an entity only if an entity’s remote-service attribute is not set
to false in service.xml)

– [ENTITY_NAME]Service: Remote service interface.

595

– [ENTITY_NAME]ServiceImpl (REMOTE SERVICE IMPLEMENTATION): Remote service im-
plementation. This is the only class in the remote service that you should modify
manually. Here, you can write code that adds additional security checks and invokes the
local services. For any custommethods added here, Service Builder adds corresponding
methods to the [ENTITY_NAME]Service interface the next time you run it.

– [ENTITY_NAME]ServiceBaseImpl: Remote service base implementation. This is an abstract
class. @abstract

– [ENTITY_NAME]ServiceUtil: Remote serviceutility classwhichwraps [ENTITY_NAME]ServiceImpl.
This class is generated for backwards compatibility purposes only. Use the *Service

class by referencing it with the @Reference annotation.
– [ENTITY_NAME]ServiceWrapper: Remote servicewrapperwhich implements [ENTITY_NAME]Service.
This class is designed to be extended and it lets you customize the entity’s remote
services.

– [ENTITY_NAME]ServiceSoap: SOAP utility which the remote [ENTITY_NAME]ServiceUtil re-
mote service utility can access.

– [ENTITY_NAME]Soap: SOAPmodel, similar to [ENTITY_NAME]ModelImpl. [ENTITY_NAME]Soap is
serializable; it does not implement [ENTITY_NAME].

• Model

– [ENTITY_NAME]Model: Base model interface. This interface and its [ENTITY_NAME]ModelImpl
implementation serve only as a container for the default property accessors Service
Builder generates. Any helper methods and all application logic should be added to
[ENTITY_NAME]Impl.

– [ENTITY_NAME]ModelImpl: Base model implementation.
– [ENTITY_NAME]: [ENTITY_NAME]model interface which extends [ENTITY_NAME]Model.
– [ENTITY_NAME]Impl: (MODEL IMPLEMENTATION) Model implementation. You can use
this class to add helper methods and application logic to your model. If you don’t
add any helper methods or application logic, only the auto-generated field getters and
setters are available. Whenever you add custommethods to this class, Service Builder
adds corresponding methods to the [ENTITY_NAME] interface the next time you run it.

– [ENTITY_NAME]Wrapper: Wrapper, wraps [ENTITY_NAME]. This class is designed to be ex-
tended and it lets you customize the entity.

Note: *Util classes are generated for backwards compatibility purposes only. Your module
applications should avoid calling the util classes. Use the non-util classes instead–you can reference
them using the @Reference annotation.

Each file that Service Builder generates is assembled from an associated FreeMarker tem-
plate. The FreeMarker templates are in the com.liferay.portal.tools.service.builder module’s
/com/liferay/portal/tools/service/builder/dependencies/ folder. For example, Service Builder uses
the service_impl.ftl template to generate the *ServiceImpl.java classes.

You can modify any *Impl class Service Builder generates. The most common are
*LocalServiceImpl, *ServiceImpl and *Impl. If you manually modify the other classes, Ser-
vice Builder overwrites the changes the next time you run it. Whenever you add methods to,
remove methods from, or change a method signature of a *LocalServiceImpl class, *ServiceImpl

596

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.tools.service.builder/

Figure 60.9: Service Builder generates these model classes and interfaces. Only [ENTITY_NAME]Impl (e.g., EventImpl for the Event entity) allows custommethods to be
added to the service layer.

597

class, or *Impl class, you should run Service Builder again to regenerate the affected interfaces and
the service JAR.

Congratulations! You’ve generated your application’s initial model, persistence, and service
layers and you understand the generated code.

Related Topics
What is Service Builder
Running Service Builder
Understanding Service Context
Creating Local Services

60.10 Iterative Development

As you develop an application, you might need to add fields to your database. This is a normal
process of iterative development: you get an idea for a new feature, or it’s suggested to you, and
that feature requires additional data in the database. New fields added to service.xml are not
automatically added to the database. To add the fields, you must do one of two things:

1. Write an upgrade process to modify the tables and preserve the data, or

2. Run the cleanServiceBuilder Gradle task (also supported on Maven and Ant), which drops
your tables so they get re-created the next time your app is deployed. The Maven DB Support
Plugin reference article explains how to run this command from a Maven project.

Use the first option if you have a released application and you must preserve user data. Use the
second option if you’re adding new columns during development.

Related Topics

Upgrade Processes
Gradle DB Support Plugin
Maven DB Support Plugin

60.11 Understanding ServiceContext

The ServiceContext class holds contextual information for a service. It aggregates information nec-
essary for features used throughout Liferay’s portlets, such as permissions, tagging, categorization,
and more. This tutorial covers the following ServiceContext class topics:

• Service Context Fields
• Creating and Populating a Service Context in Java
• Creating and Populating a Service Context in JavaScript
• Accessing Service Context Data

The ServiceContext fields are first.

598

Service Context Fields

The ServiceContext class has many fields. The ServiceContext class Javadoc describes them.
Here’s a categorical listing of some commonly used Service Context fields:

• Actions:

– _command

– _workflowAction

• Attributes:

– _attributes

– _expandoBridgeAttributes

• Classification:

– _assetCategoryIds

– _assetTagNames

• Exception

– _failOnPortalException

• IDs and Scope:

– _companyId

– _portletPreferencesIds

– _plid

– _scopeGroupId

– _userId

– _uuid

• Language:

– _languageId

• Miscellaneous:

– _headers

– _signedIn

• Permissions:

– _addGroupPermissions

– _addGuestPermissions

– _deriveDefaultPermissions

– _modelPermissions

• Request

599

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/service/ServiceContext.html

– _request

• Resources:

– _assetEntryVisible

– _assetLinkEntryIds

– _assetPriority

– _createDate

– _formDate

– _indexingEnabled

– _modifiedDate

– _timeZone

• URLs, paths and addresses:

– _currentURL

– _layoutFullURL

– _layoutURL

– _pathMain

– _pathFriendlyURLPrivateGroup

– _pathFriendlyURLPrivateUser

– _pathFriendlyURLPublic

– _portalURL

– _remoteAddr

– _remoteHost

– _userDisplayURL

Are you wondering how the ServiceContext fields get populated? Good! You’ll learn about that
next.

Creating and Populating a Service Context

Although all the ServiceContext class fields are optional, services that store data with scope must
at least specify the scope group ID. Here’s an example of creating a ServiceContext instance and
passing it as a parameter to a Liferay service API:
ServiceContext serviceContext = new ServiceContext();

serviceContext.setScopeGroupId(myGroupId);

...

_blogsEntryService.addEntry(..., serviceContext);

If you invoke the service from a servlet, a Struts action, or any other front-end class with ac-
cess to the PortletRequest, use one of the ServiceContextFactory.getInstance(...) methods. These
methods create a ServiceContext object from the request and automatically populate its fields with
all the values specified in the request. The above example looks different if you invoke the service
from a servlet:
ServiceContext serviceContext =

ServiceContextFactory.getInstance(BlogsEntry.class.getName(), portletRequest);

...

_blogsEntryService.addEntry(..., serviceContext);

600

You can see an example of populating a ServiceContext with information from a request object
in the code of the ServiceContextFactory.getInstance(...) methods. The methods demonstrate
how to set parameters like scope group ID, company ID, language ID, and more. They also demon-
strate how to access and populate more complex context parameters like tags, categories, asset
links, headers, and the attributes parameter. By calling ServiceContextFactory.getInstance(String

className, PortletRequest portletRequest), you can assure that your Expando bridge attributes are
set on the ServiceContext. Expandos are the back-end implementation of custom fields for entities
in Liferay.

Creating and Populating a Service Context in JavaScript

Liferay’s API can be invoked in languages other than Java. Some methods require or allow a
ServiceContext parameter. If you’re invoking such a method via Liferay’s JSON web services, you
might want to create and populate a ServiceContext object in JavaScript. Creating a ServiceContext

object in JavaScript is no different from creating any other object in JavaScript.
Before examining a JSON web service invocation that uses a ServiceContext object, it helps to

see a simple JSON web service example in JavaScript:

Liferay.Service(

'/user/get-user-by-email-address`,

{

companyId: Liferay.ThemeDisplay.getCompanyId(),

emailAddress: 'test@example.com`

},

function(obj) {

console.log(obj);

}

);

If you run this code, the test@example.com user (JSON object) is logged to the JavaScript console.
The Liferay.Service(...) function takes three arguments:

1. A string representing the service being invoked

2. A parameters object

3. A callback function

The callback function takes the result of the service invocation as an argument.
The Liferay JSON web services page (its URL is localhost:8080/api/jsonws if you’re running

Liferay locally on port 8080) generates example code for invokingweb services. To see the generated
code for a particular service, click on the name of the service, enter the required parameters, and
click Invoke. The JSON result of your service invocation appears. There are multiple ways to invoke
Liferay’s JSON web services: click on JavaScript Example to see how to invoke the web service via
JavaScript, click on curl Example to see how to invoke the web service via curl, or click on URL
example to see how to invoke the web service via a URL.

To learn more about Liferay’s JSON web services, see the JSONWeb Services tutorial.
Next, you’ll learn how to access information from a ServiceContext object.

601

localhost:8080/api/jsonws

Figure 60.10: When you invoke a service from Liferay’s JSON web services page, you can view the result of your service invocation as well as example code for invoking
the service via JavaScript, curl, or URL.

602

Accessing Service Context Data

In this section, you’ll find code snippets from BlogsEntryLocalServiceImpl.addEntry(...,

ServiceContext). This code demonstrates how to access information from a ServiceContext and
provides an example of how the context information can be used.

As mentioned above, services for entities with scope must get a scope group ID from the
ServiceContext object. This is true for the Blogs entry service because the scope group ID provides
the scope of the Blogs entry (the entity being persisted). For the Blogs entry, the scope group ID is
used in the following way:

• It’s used as the groupId for the BlogsEntry entity.
• It’s used to generate a unique URL for the blog entry.
• It’s used to set the scope for comments on the blog entry.

Here are the corresponding code snippets:

long groupId = serviceContext.getScopeGroupId();

...

entry.setGroupId(groupId);

...

entry.setUrlTitle(getUniqueUrlTitle(entryId, groupId, title));

...

// Message boards

if (PropsValues.BLOGS_ENTRY_COMMENTS_ENABLED) {

mbMessageLocalService.addDiscussionMessage(

userId, entry.getUserName(), groupId,

BlogsEntry.class.getName(), entryId,

WorkflowConstants.ACTION_PUBLISH);

}

Can ServiceContext be used to access the UUID of the blog entry? Absolutely! Can you use
ServiceContext to set the time the blog entry was added? You sure can. See here:

entry.setUuid(serviceContext.getUuid());

...

entry.setCreateDate(serviceContext.getCreateDate(now));

Can ServiceContext be used in setting permissions on resources? You bet! When adding a blog
entry, you can add new permissions or apply existing permissions for the entry, like this:

// Resources

if (serviceContext.isAddGroupPermissions() ||

serviceContext.isAddGuestPermissions()) {

addEntryResources(

entry, serviceContext.isAddGroupPermissions(),

serviceContext.isAddGuestPermissions());

}

else {

addEntryResources(

entry, serviceContext.getGroupPermissions(),

serviceContext.getGuestPermissions());

}

603

ServiceContext helps apply categories, tag names, and the link entry IDs to asset entries too.
Asset links are the back-end term for related assets in Liferay.

// Asset

updateAsset(

userId, entry, serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(),

serviceContext.getAssetLinkEntryIds());

Does ServiceContext also play a role in starting a workflow instance for the blogs entry? Must
you ask?

// Workflow

if ((trackbacks != null) && (trackbacks.length > 0)) {

serviceContext.setAttribute("trackbacks", trackbacks);

}

else {

serviceContext.setAttribute("trackbacks", null);

}

_workflowHandlerRegistry.startWorkflowInstance(

user.getCompanyId(), groupId, userId, BlogsEntry.class.getName(),

entry.getEntryId(), entry, serviceContext);

The snippet above also demonstrates the trackbacks attribute, a standard attribute for the blogs
entry service. There may be cases where you need to pass in custom attributes to your blogs entry
service. Use Expando attributes to carry custom attributes along in your ServiceContext. Expando
attributes are set on the added blogs entry like this:

entry.setExpandoBridgeAttributes(serviceContext);

You can see that the ServiceContext can be used to transfer lots of useful information for your
services. Understanding how ServiceContext is used in Liferay helps you determine when and how
to use ServiceContext in your own Liferay application development.

Related Topics

Creating Local Services
Invoking Local Services

60.12 Customizing Model Entities With Model Hints

Once you’ve used Service Builder to define model entities, you may want to further refine how
users enter that data. For example, model hints can define a calendar field where only future dates
should be selectable. Model hints provide a single place to specify entity data restrictions and other
formatting.

Youdefinemodel hints in afile called portlet-model-hints.xml. If your project has anAPImodule
and a service module like the Service Builder project template, portlet-model-hints.xml goes in
the service module’s src/main/resources/META-INF folder. For example, in Liferay’s Bookmarks
application, the portlet-model-hints.xml file is in the bookmarks-service/src/main/resources/META-

INF/ folder.
Model hints define two things:

604

1. How entities are presented to users

2. The size of database columns

As Liferay renders your form fields, it customizes the form’s input fields based your configura-
tion.

Note: Service Builder generates a number of XML configuration files in your service module’s
src/main/resources/META-INF folder. Service Builder uses most of these files to manage Spring and
Hibernate configurations. Don’t modify the Spring or Hibernate configuration files; changes to
them are overwritten when Service Builder runs. You can, however, safely edit the portlet-model-

hints.xml file.

As an example, consider the Bookmarks app service module’s model hints file:

<?xml version="1.0"?>

<model-hints>

<model name="com.liferay.bookmarks.model.BookmarksEntry">

<field name="uuid" type="String" />

<field name="entryId" type="long" />

<field name="groupId" type="long" />

<field name="companyId" type="long" />

<field name="userId" type="long" />

<field name="userName" type="String" />

<field name="createDate" type="Date" />

<field name="modifiedDate" type="Date" />

<field name="folderId" type="long" />

<field name="treePath" type="String">

<hint name="max-length">4000</hint>

</field>

<field name="name" type="String">

<hint name="max-length">255</hint>

</field>

<field name="url" type="String">

<hint-collection name="URL" />

<validator name="required" />

<validator name="url" />

</field>

<field name="description" type="String">

<hint-collection name="TEXTAREA" />

</field>

<field name="visits" type="int" />

<field name="priority" type="int">

<hint name="display-width">20</hint>

</field>

<field name="lastPublishDate" type="Date" />

<field name="status" type="int" />

<field name="statusByUserId" type="long" />

<field name="statusByUserName" type="String" />

<field name="statusDate" type="Date" />

</model>

<model name="com.liferay.bookmarks.model.BookmarksFolder">

...

</model>

</model-hints>

The root-level element is model-hints. Model entities are represented by model sub-elements
of the model-hints element. Each model element must have a name attribute specifying the fully-
qualified class name. Models have field elements representing their entity’s columns. Lastly, field
elements must have a name and a type. Each field element’s name and type maps to the name

605

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.bookmarks.service/

and type specified for the entity’s column in the service module’s service.xml file. Service Builder
generates all these elements for you, based on the service.xml.

To add hints to a field, add a hint child element. For example, you can add a display-width hint

to specify the pixel width to use in displaying the field. The default pixel width is 350. To show a
String field with 50 pixels, you could nest a hint element named display-width and give it a value of
50.

To see the effect of a hint on a field, run Service Builder again and redeploy your module. Note
that changing display-width doesn’t limit the number of characters a user can enter into the name

field; it only controls the field’s width in the AlloyUI input form.
To configure the maximum size of a model field’s database column (i.e., the maximum number

of characters that can be saved for the field), use the max-length hint. The default max-length value
is 75 characters. If you want the name field to persist up to 100 characters, add a max-length hint to
that field:

<field name="name" type="String">

<hint name="display-width">50</hint>

<hint name="max-length">100</hint>

</field>

Remember to run Service Builder and redeploy your project after updating the portlet-model-

hints.xml file.

Model Hint Types

So far, you’ve seen a few different hints. The following table describes the portlet model hints
available for use.

Model Hint Values and Descriptions

Name | Value Type | Description | Default |

auto-escape | boolean | sets whether text values should be escaped via HtmlUtil.escape | true |
autoSize | boolean | displays the field in a for scrollable text area | false | day-nullable | boolean
| allows the day to be null in a date field | false | default-value | String | sets the default value of
the form field rendered using the aui taglib | (empty String) | display-height | integer | sets the
display height of the form field rendered using the aui taglib | 15 | display-width | integer | sets the
display width of the form field rendered using the aui taglib | 350 | editor | boolean | sets whether
to provide an editor for the input | false | max-length | integer | sets the maximum column size for
SQL file generation | 75 | month-nullable | boolean | allows the month to be null in a date field |
false | secret | boolean | sets whether to hide the characters input by the user | false | show-time |
boolean | sets whether to show the time along with the date | true | upper-case | boolean | converts
all characters to upper case | false | year-nullable | boolean | allows a date field’s year to be null
| false | year-range-delta | integer | specifies the number of years to display from today’s date in
a date field rendered with the aui taglib | 5 | year-range-future | boolean | sets whether to include
future dates | true | year-range-past | boolean | sets whether to include past dates | true |

Note: The aui taglib is fully supported and not related to AlloyUI (the JavaScript library) that’s
deprecated.

606

Note: You can use a mix of Clay and aui tags in a form. Model hints, however, affect aui tags
only.

Note that Liferay has its own model hints file–portal-model-hints.xml. It’s in portal-impl.jar’s
META-INF folder. This file contains many hint examples, so you can reference it when creating
portlet-model-hints.xml files.

Default Hints

You can use the default-hints element to define a list of hints to apply to every field of a model.
For example, adding the following element inside a model element applies a display-width of 300
pixels to each field:

<default-hints>

<hint name="display-width">300</hint>

</default-hints>

Hint Collections

You can define hint-collection elements inside the model-hints root-level element to define a list of
hints to apply together. A hint collection must have a name. For example, Liferay’s portal-model-
hints.xml defines the following hint collections:

<hint-collection name="CLOB">

<hint name="max-length">2000000</hint>

</hint-collection>

<hint-collection name="EDITOR">

<hint name="editor">true</hint>

<hint name="max-length">2000000</hint>

</hint-collection>

<hint-collection name="EMAIL-ADDRESS">

<hint name="max-length">254</hint>

</hint-collection>

<hint-collection name="HOSTNAME">

<hint name="max-length">200</hint>

</hint-collection>

<hint-collection name="SEARCHABLE-DATE">

<hint name="month-nullable">true</hint>

<hint name="day-nullable">true</hint>

<hint name="year-nullable">true</hint>

<hint name="show-time">false</hint>

</hint-collection>

<hint-collection name="TEXTAREA">

<hint name="display-height">105</hint>

<hint name="display-width">500</hint>

<hint name="max-length">4000</hint>

</hint-collection>

<hint-collection name="URL">

<hint name="max-length">4000</hint>

</hint-collection>

You can apply a hint collection to a model field by referencing the hint collection’s name. For
example, if you define a SEARCHABLE-DATE collection like the one above in your model-hints element,
you can apply it to your model’s date field by using a hint-collection element that references the
collection by its name:

<field name="date" type="Date">

<hint-collection name="SEARCHABLE-DATE" />

</field>

607

Suppose you want to use a couple of model hints in your project. Start by providing users with
an editor for filling in their comment fields. To apply the same hint to multiple entities, define it as
a hint collection. Then reference the hint collection in each entity.

To define a hint collection, add a hint-collection element inside the model-hints root element
in your portlet-model-hints.xml file. For example:

<hint-collection name="COMMENT-TEXTAREA">

<hint name="display-height">105</hint>

<hint name="display-width">500</hint>

<hint name="max-length">4000</hint>

</hint-collection>

To reference a hint collection for a specific field, add the hint-collection element inside the
field’s field element:

<field name="comment" type="String">

<hint-collection name="COMMENT-TEXTAREA" />

</field>

After defining hint collections and adding hint collection references, rebuild your services using
Service Builder, redeploy your project, and check that the hints defined in your hint collection have
taken effect.

Nice work! You’ve learned the art of persuasion through Liferay’s model hints. Now you can
not only influence how your model’s input fields are displayed, but you can also can set its database
table column sizes. You can organize hints, insert individual hints directly into your fields, apply a
set of default hints to all of a model’s fields, or define collections of hints to apply at either of those
scopes. You’ve picked up the “hints” on how Liferay model hints specify how to display app data!

60.13 Configuring service.properties

This tutorial explains how to use and edit the service.properties file. It also tells you about the
properties and how to set them to fit your needs.

ServiceBuilder generates a service.propertiesfile in your *-servicemodule’s src/main/resources
folder. Liferay DXP uses this file’s properties to alter your service’s database schema. You should
not modify this file directly, but rather make any necessary property overrides in a service-

ext.properties file in that same folder.
Here are some of the properties the service.properties file includes:

• build.namespace: This is the namespace you defined in your service.xml. Liferay distinguishes
different modules from each other using their namespaces.

• build.number: Liferay distinguishes your module’s different Service Builder builds. Each time
you deploy a distinct Service Builder build to Liferay, Liferay increments this number.

• build.date: This is the time of your module’s latest Service Builder build.
• include-and-override: The default value of this property defines service-ext.properties as an
override file for service.properties.

Note: In Liferay Portal 6.x Service Builder portlets, the build.auto.upgrade property in
service.properties applies Liferay Service schema changes upon rebuilding services and
redeploying the portlets. As of 7.0, this property is deprecated.

608

TheBuildAutoUpgrade feature is nowdifferent and is set in a global property schema.module.build.auto.upgrade
in the file [Liferay_Home]/portal-developer.properties. To learn more, see the tutorial Upgrading
Data Schemas in Development.

Awesome! You now have all the tools necessary to set up your own service-ext.properties file.

Related Topics

What is Service Builder?
Creating Local Services

60.14 Connecting Service Builder to External Databases

Sometimes you want to use a database other than Liferay DXP’s. To do this, its data source must
be defined in portal-ext.properties or configured as a JNDI data source on the app server. This
tutorial shows how to connect Service Builder to a data source. Here’s how:

1. Specify the database and data source in your service.xml.

2. Create the Database Manually

3. Define the Data Source

4. Create a Spring bean that points to the data source.

5. Set your entity’s data source to the liferayDataSource alias.

6. Run Service Builder.

Note: All entities defined in a Service Builder module’s service.xml file are bound to the same
data source. Binding different entities to different data sources requires defining the entities in
separate Service Builder modules and configuring each of the modules to use a different data
source.

Step 1: Specify Your Database and a Data Source Name in Your service.xml

In your service.xml file, specify the same arbitrary data source name for all of the entities, a unique
table name for each entity, and a database column name for each column. Here’s an example:

<?xml version="1.0"?>

<!DOCTYPE service-builder PUBLIC "-//Liferay//DTD Service Builder 7.1.0//EN"

"http://www.liferay.com/dtd/liferay-service-builder_7_1_0.dtd">

<service-builder package-path="com.liferay.example" >

<namespace>TestDB</namespace>

<entity local-service="true" name="Foo" table="testdata" data-source="extDataSource"

remote-service="false" uuid="false">

<column name="id" db-name="id" primary="true" type="long" />

<column name="foo" db-name="foo" type="String" />

<column name="bar" db-name="bar" type="long" />

</entity>

</service-builder>

609

Note the example’s <entity> tag attributes:
data-source: The liferayDataSource alias ext-spring.xml specifies.
table: Your entity’s database table.
Also note that your entity’s <column>s must have a db-name attribute set to the column name.

Step 2: Create the Database Manually

Create the database per the database specification in your service.xml.
Next, use portal properties to set your data source.

Step 3: Specify the Data Source

If the application server defines the data source using JNDI, skip this step. Otherwise, specify
the data source in a portal-ext.properties file. Distinguish it from Liferay’s default data source by
giving it a prefix other than jdbc.default.. This example uses prefix jdbc.ext.:

jdbc.ext.driverClassName=org.mariadb.jdbc.Driver

jdbc.ext.password=userpassword

jdbc.ext.url=jdbc:mariadb://localhost/external?useUnicode=true&characterEncoding=UTF-8&useFastDateParsing=false

jdbc.ext.username=yourusername

Step 4: Create a Spring Bean that Points to the Data Source

To do this, create a parent context extension (e.g.,ext-spring.xml) in your Service Builder module’s
src/main/resources/META-INF/spring/parent folder or in your traditional portlet’s WEB-INF/src/META-
INF/parent folder. Create this folder if it doesn’t exist already.

Note: Since Liferay DXP 7.1 Fix Pack 3 (included in Service Pack 1) and Liferay Portal 7.1 CE
GA2, the Spring extender uses two application contexts for Service Builder *-servicemodules. This
lets Liferay DXP register extender services earlier and separately from the Service Builder services
and allows disabling features in the parent application context that may no longer be needed in
the future. For details, see LPS-85683.

If you’re using a prior version of Liferay DXP 7.1, put your parent context extension (e.g.,ext-
spring.xml) in your Service Builder module’s src/main/resources/META-INF/spring folder or in your
traditional portlet’s WEB-INF/src/META-INF folder.

Define the following elements:

1. A data source factory Spring bean for the data source. It’s different based on the type.

• JNDI: Specify an arbitrary property prefix and prepend the prefix to a JNDI name
property key. Here’s an example:

<bean class="com.liferay.portal.dao.jdbc.spring.DataSourceFactoryBean"

id="liferayDataSourceFactory">

<property name="propertyPrefix" value="custom." />

<property name="properties">

<props>

<prop key="custom.jndi.name">jdbc/externalDataSource</prop>

</props>

</property>

</bean>

610

https://issues.liferay.com/browse/LPS-85683

• Portal Properties: Specify a property prefix that matches the prefix (e.g., jdbc.ext.)
you used in portal-ext.properties.

<bean class="com.liferay.portal.dao.jdbc.spring.DataSourceFactoryBean"

id="liferayDataSourceFactory">

<property name="propertyPrefix" value="jdbc.ext." />

</bean>

2. A Liferay data source bean that refers to the data source factory Spring bean.

3. An alias for the Liferay data source bean.

Here’s an example ext-spring.xml that points to a JNDI data source:
<?xml version="1.0"?>

<beans default-destroy-method="destroy" default-init-method="afterPropertiesSet"

xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-

3.0.xsd">

<!-- To define an external data source, the liferayDataSource Spring bean

must be overridden. Other default Spring beans like liferaySessionFactory

and liferayTransactionManager may optionally be overridden.

liferayDataSourceFactory refers to the data source configured on the

application server. -->

<bean class="com.liferay.portal.dao.jdbc.spring.DataSourceFactoryBean"

id="liferayDataSourceFactory">

<property name="propertyPrefix" value="custom." />

<property name="properties">

<props>

<prop key="custom.jndi.name">jdbc/externalDataSource</prop>

</props>

</property>

</bean>

<!-- The data source bean refers to the factory to access the data source.

-->

<bean

class="org.springframework.jdbc.datasource.LazyConnectionDataSourceProxy"

id="liferayDataSource">

<property name="targetDataSource" ref="liferayDataSourceFactory" />

</bean>

<!-- In service.xml, we associated our entity with the extDataSource. To

associate the extDataSource with our overridden liferayDataSource, we define

this alias. -->

<alias alias="extDataSource" name="liferayDataSource" />

</beans>

The liferayDataSourceFactory above refers to a JNDI data source named jdbc/externalDataSource.
If the data source is in a portal-ext.properties file, the bean requires only a propertyPrefix property
that matches the data source property prefix.

The data source bean liferayDataSource is overridden with one that refers to the
liferayDataSourceFactory bean. The override affects this bundle (module or Web Applica-
tion Bundle) only.

The alias extDataSource refers to the liferayDataSource data source bean.

Note: To use an external data source in multiple Service Builder bundles, you must override
the liferayDataSource bean in each bundle.

611

Step 5: Set Your Entity's Data Source to the liferayDataSource Alias

In your service.xml file, set your entity’s data source to the liferayDataSource alias you specified in
your ext-spring.xml file. Here’s an example:

<?xml version="1.0"?>

<!DOCTYPE service-builder PUBLIC "-//Liferay//DTD Service Builder 7.1.0//EN"

"http://www.liferay.com/dtd/liferay-service-builder_7_1_0.dtd">

<service-builder package-path="com.liferay.example" >

<namespace>TestDB</namespace>

<entity local-service="true" name="Foo" table="testdata" data-source="extDataSource"

remote-service="false" uuid="false">

<column name="id" db-name="id" primary="true" type="long" />

<column name="foo" db-name="foo" type="String" />

<column name="bar" db-name="bar" type="long" />

</entity>

</service-builder>

Note the example’s <entity> tag attributes:
data-source: The liferayDataSource alias ext-spring.xml specifies.
table: Your entity’s database table.
Also note that your entity’s <column>s must have a db-name attribute set to the column name.

Step 6: Run Service Builder

Run Service Builder. Now your Service Builder services use the data source. You can use the
services in your business logic as you always have regardless of the underlying data source.

Congratulations! You’ve connected Service Builder to your external data source.

Related Topics

Connecting to JNDI Data Sources
Service Builder
Running Service Builder and Understanding the Generated Code
Business Logic with Service Builder

60.15 Custom SQL

Service Builder creates findermethods that retrieve entities by their attributes: their column values.
When you add a column as a parameter for the finder in your service.xml file and run Service
Builder, it generates the finder method in your persistence layer and adds methods to your service
layer that invoke the finder. If your queries are simple enough, consider using Dynamic Query to
access Liferay’s database. If you want to do something more complicated like JOINs, you can write
your own custom SQL queries. You’ll learn how in this tutorial.

Say you have a Guestbook application with two tables, one for guestbooks and one for guestbook
entries. The entry entity’s foreign key to its guestbook is the guestbook’s ID. That is, the entry entity
table, GB_Entry, tracks an entry’s guestbook by its long integer ID in the table’s guestbookId column.
If you want to find a guestbook entry based on its name, message, and guestbook name, you must
access the name of the entry’s guestbook. Of course, with SQL you can join the entry and guestbook
tables to include the guestbook name. Service Builder lets you do this by specifying the SQL as
Liferay custom SQL and invoking it in your service via a custom finder method.

612

Liferay custom SQL is a Service Builder-supported method for performing custom, complex
queries against the database by invoking custom SQL from a finder method in your persistence
layer. Service Builder helps you generate the interfaces to your finder method. It’s easy to do by
following these steps:

1. Specify your custom SQL.

2. Implement your finder method.

3. Access your finder method from your service.

Next, using the Guestbook application as an example, you’ll learn how to accomplish these
steps.

Step 1: Specify Your Custom SQL

After you’ve tested your SQL, youmust specify it in a particular file for Liferay to access it. CustomSQL
class (from module com.liferay.portal.dao.orm.custom.sql.api) retrieves SQL from a file called
default.xml in your service module’s src/main/resources/META-INF/custom-sql/ folder. You must
create the custom-sql folder and create the default.xml file in that custom-sql folder. The default.xml
file must adhere to the following format:

<custom-sql>

<sql id="[fully-qualified class name + method]">

SQL query wrapped in <![CDATA[...]]>

No terminating semi-colon

</sql>

</custom-sql>

Create a custom-sql element for every SQL query you want in your application, and give each
query a unique ID. The recommended convention to use for the ID value is the fully-qualified class
name of the finder followed by a dot (.) character and the name of the finder method. More detail
on the finder class and finder methods is provided in Step 2.

For example, in the Guestbook application, you could use the following ID value to specify a
query:

com.liferay.docs.guestbook.service.persistence.\

EntryFinder.findByEntryNameEntryMessageGuestbookName

Custom SQLmust be wrapped in character data (CDATA) for the sql element. Importantly, do not
terminate the SQL with a semi-colon. Following these rules, the default.xml file of the Guestbook
application specifies an SQL query that joins the GB_Entry and GB_Guestbook tables:

<?xml version="1.0" encoding="UTF-8"?>

<custom-sql>

<sql id="com.liferay.docs.guestbook.service.persistence.EntryFinder.findByEntryNameEntryMessageGuestbookName">

<![CDATA[

SELECT GB_Entry.*

FROM GB_Entry

INNER JOIN

GB_Guestbook ON GB_Entry.guestbookId = GB_Guestbook.guestbookId

WHERE

(GB_Entry.name LIKE ?) AND

(GB_Entry.message LIKE ?) AND

(GB_Guestbook.name LIKE ?)

]]>

</sql>

</custom-sql>

613

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.dao.orm.custom.sql.api/

Now that you’ve specified some custom SQL, the next step is to implement a finder method
to invoke it. The method name for the finder should match the ID you just specified for the sql

element.

Step 2: Implement Your Finder Method

Next, implement the finder method in your persistence layer to invoke your custom SQL query.
Service Builder generates the interface for the finder in your API module but you must create the
implementation.

The first step is to create a *FinderImpl class in the service persistence package. For the Guest-
book application, you could create a EntryFinderImpl class in the com.liferay.docs.guestbook.service.persistence.impl
package. Your class should extend BasePersistenceImpl<Entry>.

Run Service Builder to generate the *Finder interface based on the *FinderImpl class. Modify
your *FinderImpl class to have it implement the *Finder interface you just generated:

public class EntryFinderImpl extends BasePersistenceImpl<Event>

implements EntryFinder {

}

Now you can create a finder method in your EntryFinderImpl class. Add your finder method and
static field to the *FinderImpl class. For example, here’s how you could write the EntryFinderImpl

class:

public List<Entry> findByEntryNameEntryMessageGuestbookName(

String entryName, String entryMessage, String guestbookName,

int begin, int end) {

Session session = null;

try {

session = openSession();

String sql = _customSQL.get(

getClass(),

FIND_BY_ENTRYNAME_ENTRYMESSAGE_GUESTBOOKNAME);

SQLQuery q = session.createSQLQuery(sql);

q.setCacheable(false);

q.addEntity("GB_Entry", EntryImpl.class);

QueryPos qPos = QueryPos.getInstance(q);

qPos.add(entryName);

qPos.add(entryMessage);

qPos.add(guestbookName);

return (List<Entry>) QueryUtil.list(q, getDialect(), begin, end);

}

catch (Exception e) {

try {

throw new SystemException(e);

}

catch (SystemException se) {

se.printStackTrace();

}

}

finally {

closeSession(session);

}

return null;

}

614

public static final String FIND_BY_ENTRYNAME_ENTRYMESSAGE_GUESTBOOKNAME =

EntryFinder.class.getName() +

".findByEntryNameEntryMessageGuestbookName";

@ServiceReference(type=CustomSQL.class)

private CustomSQL _customSQL;

The customfindermethodopens anewHibernate session andusesLiferay’s CustomSQL.get(Class<?>
clazz, String id) method to get the custom SQL to use for the database query. The
FIND_BY_ENTRYNAME_ENTRYMESSAGE_GUESTBOOKNAME static field contains the custom SQL query’s
ID. The FIND_BY_EVENTNAME_EVENTDESCRIPTON_LOCATIONNAME string is based on the fully-qualified
class name of the *Finder interface (EventFinder) and the name of the finder method
(findByEntryNameEntryMessageGuestbookName).

Awesome! Your custom SQL is in place and your finder method is implemented. Next, you’ll
call the finder method from your service.

Step 3: Access Your Finder Method from Your Service

So far, you’ve created a *FinderImpl class, generated the *Finder interface, and created a custom
finder method that gets your custom SQL. Your last step is to add a service method that calls your
finder.

When you ran Service Builder after defining your custom finder method, the *Finder interface
was generated (e.g., GuestbookFinder). Your portlet class, however, should not call the *Finder

interface: only a local or remote service implementation (i.e., *LocalServiceImpl or *ServiceImpl)
in your service module should invoke the *Finder class. This encourages a proper separation of
concerns: the portlet classes in your application’s web module invoke the business logic of the
services published from your application’s service module. The services, in turn, access the data
model using the persistence layer’s finder classes.

Note: Liferay Portal 6.2 made finder methods accessible via static *FinderUtil utility classes.
Finder methods are now injected into your app’s local services, removing the need to call finder
utilities.

So you’ll add a method in the *LocalServiceImpl class that invokes the finder method implemen-
tation via the *Finder class. Then you’ll rebuild your application’s service layer so that the portlet
classes and JSPs in your web module can access the services.

For example, for the Guestbook application, you’d add the following method to the
EntryLocalServiceImpl class:

public List<Entry> findByEntryNameGuestbookName(String entryName,

String guestbookName) throws SystemException {

return entryFinder.findByEntryNameGuestbookName(String entryName,

String guestbookName);

}

After you’ve added your findBy-method to your *LocalServiceImpl class, run Service Builder to
generate the interface and make the finder method available in the EntryLocalService class.

Now you can indirectly call the finder method from your portlet class or a JSP in your
web module. For example, to call the finder method in the Guestbook application, just call
entryLocalService.findByEntryNameEntryMessageGuestbookName(...)!

Congratulations on developing a custom SQL query and custom finder for your application!

615

Related Topics

Customizing Liferay Services
Service BuilderWeb Services

616

CHAPTER 61

DYNAMIC QUERY

Though you can use custom SQL queries with Service Builder to retrieve data from the database,
sometimes it’s more convenient to build queries dynamically at runtime. You can do this with
Liferay’s Dynamic Query API, which wraps Hibernate’s Criteria API. The Dynamic Query API lets
you build queries without writing any SQL. It helps you think in terms of objects and member
variables instead of tables and columns. Complex queries can be significantly easier to understand
andmaintain than the equivalent custom SQL (or HQL) queries. While you technically don’t need to
know SQL to construct Dynamic Queries, you still must take care to construct efficient queries. For
information onHibernate’s Criteria API, please see Hibernate’smanual. This tutorial demonstrates
creating custom finders for Liferay applications using Service Builder and Dynamic Query API.

To use Liferay’s Dynamic Query API, you need to create a finder implementation for yourmodel
entity. You can define model entities in service.xml and run Service Builder to generate model,
persistence, and service layers for your application. This tutorial assumes that you’re creating a
Liferay application consisting of a service module, an API module, and a web module. Once you’ve
used Service Builder to generate model, persistence, and service layers for your application, follow
these steps to call custom finders using the Dynamic Query API:

1. Define a custom finder method.

2. Implement your finder using the Dynamic Query API.

3. Add a method to your *LocalServiceImpl class that invokes your finder method.

Once you’ve taken these steps, you can access your custom finder as a service method. Note:
You can createmultiple or overloaded findBy* findermethods in your *FinderImpl class. Next, you’ll
examine these steps in more detail.

61.1 Defining a Custom Finder Method

Dynamic queries belong in finder methods. You implement them and then make them available
through an interface. This tutorial demonstrates defining the finder method in an implementation
class, generating its interface and tying the implementation to the interface.

617

http://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/chapters/query/criteria/Criteria.html

An example of this is a Guestbook applicationwith two entities: guestbook and entry. Each entry
belongs to a guestbook so the entry entity has a guestbookIdfield as a foreign key. If you need a finder
to search for guestbook entries by entry name and guestbook name, you’d add a finder method to
GuestbookFinderImpl and name it findByEntryNameGuestbookName. The full method signature would
be findByEntryNameGuestbookName(String entryName, String guestbookName). The steps are below.

1. Create a [Entity]FinderImpl class in the [package path].service.persistence.impl pack-
age of your service module’s src/main/java folder. Recall that you specify the [package path]

in your service.xml file. Here’s an example:

<service-builder package-path="com.liferay.docs.guestbook">

...

</service-builder>

2. Define a findBy* finder method in the class you created. Make sure to add any required
arguments to your finder method signature.

3. RunServiceBuilder to generate the appropriate interface in the [package path].service.persistence

package in the service folder of your API and service modules.
For example, after adding findByEntryNameGuestbookName(String entryName, String

guestbookName) to GuestbookFinderImpl and running Service Builder, the interface
com.liferay.docs.guestbook.service.persistence.GuestbookFinder is generated.

4. Make the finder class a component (annotated with @Component) that implements the finder
interface. For example, the class declaration should look like this:

@Component(service = GuestbookFinder.class)

public class GuestbookFinderImpl extends BasePersistenceImpl<Guestbook> implements GuestbookFinder

Your next step is to implement the query in your finder method using the Dynamic Query API.

61.2 Implementing a Custom Finder Method Using Dynamic Query

Once you’ve defined your custom finder method, you can use the Dynamic Query API to implement
your query in it. Here’s what you must do in your finder method:

1. Open a Hibernate Session

2. Create a dynamic query using these Hibernate features:

• Restrictions: Similar to where clauses of an SQL query, restrictions limit results based on
criteria.

• Projections: Modify the kind of results the query returns.
• Orders: Organize results.

3. Execute the Dynamic Query and return the results

Before implementing a dynamic query in your own finder method, it can be helpful to examine
an example. The following example method uses multiple dynamic queries and all the Hibernate
features. Instructions for implementing your own finder method follow the example.

618

https://docs.osgi.org/javadoc/osgi.cmpn/7.0.0/org/osgi/service/component/annotations/Component.html

Example Finder Method: findByGuestbookNameEntryName

This finder method for the Guestbook application retrieves a list of Guestbook entries that have a
specific name and that also belong to a Guestbook of a specific name:

public List<Entry> findByEntryNameGuestbookName(String entryName, String guestbookName) {

Session session = null;

try {

session = openSession();

ClassLoader classLoader = getClass().getClassLoader();

DynamicQuery guestbookQuery = DynamicQueryFactoryUtil.forClass(Guestbook.class, classLoader)

.add(RestrictionsFactoryUtil.eq("name", guestbookName))

.setProjection(ProjectionFactoryUtil.property("guestbookId"));

Order order = OrderFactoryUtil.desc("modifiedDate");

DynamicQuery entryQuery = DynamicQueryFactoryUtil.forClass(Entry.class, classLoader))

.add(RestrictionsFactoryUtil.eq("name", entryName))

.add(PropertyFactoryUtil.forName("guestbookId").in(guestbookQuery))

.addOrder(order);

List<Entry> entries = _entryLocalService.dynamicQuery(entryQuery);

return entries;

}

catch (Exception e) {

try {

throw new SystemException(e);

}

catch (SystemException se) {

se.printStackTrace();

}

}

finally {

closeSession(session);

}

}

The method first opens a Hibernate session. While the session is open in the try block, it
creates and executes a dynamic query, which returns results (a list of guestbook Entry objects) if all
goes well.

The finder method has two distinct dynamic queries.

1. The first query retrieves a list of guestbook IDs corresponding to guestbook names that match
the guestbookName parameter of the finder method.

2. The second query retrieves a list of guestbook entries with entry names that match the
entryName parameter and have guestbookId foreign keys belonging to the list returned by the
first query.

Here’s the first query:

DynamicQuery guestbookQuery = DynamicQueryFactoryUtil.forClass(Guestbook.class, classLoader))

.add(RestrictionsFactoryUtil.eq("name", guestbookName))

.setProjection(ProjectionFactoryUtil.property("guestbookId"));

By default, DynamicQueryFactoryUtil.forClass(Guestbook.class, classLoader)) returns a query
that retrieves a list of all guestbook entities. Adding the .add(RestrictionsFactoryUtil.eq("name",

619

guestbookName)) restriction limits the results to only those guestbooks whose guestbook names
match the guestbookNameparameter. The .setProjection(ProjectionFactoryUtil.property("guestbookId"))
projection changes the result set from a list of guestbook entries to a list of guestbook IDs. This is
useful since guestbook IDs are much less expensive to retrieve than full guestbook entities, and the
entry query only needs the guestbook IDs.

Next appears an order:

Order order = OrderFactoryUtil.desc("modifiedDate");

This arranges the results list in descending order of the query entity’s modifiedDate attribute.
Thus the most recently modified entities (guestbook entries, in our example) appear first and the
least recently modified entities appear last.

Here’s the second query:

DynamicQuery entryQuery = DynamicQueryFactoryUtil.forClass(Entry.class, classLoader))

.add(RestrictionsFactoryUtil.eq("name", entryName))

.add(PropertyFactoryUtil.forName("guestbookId").in(guestbookQuery))

.addOrder(order);

By default, DynamicQueryFactoryUtil.forClass(Entry.class, classLoader)) returns a list of all
guestbook entry entities. The .add(RestrictionsFactoryUtil.eq("name", entryName)) restriction lim-
its the results to only those guestbook entries whose namesmatch the findermethod’s entryName pa-
rameter. PropertyFactoryUtil is a Liferay utility class whose method forName(String propertyName)

returns the specified property. This property can be passed to another Liferay dynamic query. This
is exactly what happens in the following line of our example:

.add(PropertyFactoryUtil.forName("guestbookId").in(guestbookQuery))

Here, the code makes sure that the guestbook IDs (foreign keys) of the entry entities in the
entityQuery belong to the list of guestbook IDs returned by the guestbookQuery. Declaring that an
entity property in one query must belong to the result list of another query is a way to use the
dynamic query API to create complex queries, similar to SQL joins.

Lastly, the order definedearlier is applied to the entries returnedby the findByEntryNameGuestbookName
finder method:

.addOrder(order);

This orders the list of guestbook entities by the modifiedDate attribute, frommost recent to least
recent.

Lastly, the dynamic query is invoked on the EntryLocalService instance. It returns a list of Entry
objects which are then returned by the finder method.

List<Entry> entries = _entryLocalService.dynamicQuery(entryQuery);

return entries;

It’s time to implement your finder method to use Dynamic Query. Start with opening and
managing a Hibernate session.

620

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/PropertyFactoryUtil.html

Using a Hibernate Session

Your first step in implementing your custom finder method in your *FinderImpl class is to open
a new Hibernate session. Since your *FinderImpl class extends BasePersistenceImpl<Entity>, and
BasePersistenceImpl<Entity> contains a session factory object and an openSessionmethod, you can
simply invoke the openSessionmethod of your *FinderImpl’s parent class to open a new Hibernate
session. The structure of your finder method should look like this:

public List<Entity> findBy-(...) {

Session session = null;

try {

session = openSession();

/*

create a dynamic

query to retrieve and return the desired list of entity

objects

⁎/

}

catch (Exception e) {

// Exception handling

}

finally {

closeSession(session);

}

return null;

/*

Return null only if there was an error returning the

desired list of entity objects in the try block

⁎/

}

Next, in the try block, create your dynamic query objects.

Creating Dynamic Queries

In Liferay, you don’t create criteria objects directly from the Hibernate session. Instead, you create
dynamic query objects using Liferay’s DynamicQueryFactoryUtil service. Thus, instead of

Criteria entryCriteria = session.createCriteria(Entry.class);

you use

DynamicQuery entryQuery = DynamicQueryFactoryUtil.forClass(Entry.class, classLoader));

In your finder method, initialize your dynamic query for your entity class.
Most features of Hibernate’s Criteria API, including restrictions, projections, and orders, can be

used on Liferay dynamic query objects. Each criteria can be applied to your query. The restriction
criteria type is described first.

Restriction Criteria

Restrictions in Hibernate’s Criteria API roughly correspond to the where clause of an SQL query:
they offer a variety of ways to limit the results returned by the query. You can use restrictions, for
example, to cause a query to return only results where a certain field has a particular value, or a
value in a certain range, or a non-null value, etc.

621

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/service/persistence/impl/BasePersistenceImpl.html#openSession--
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/DynamicQueryFactoryUtil.html

When you need to add restrictions to a dynamic query, don’t call Hibernate’s Restrictions class
directly. Instead, use the RestrictionsFactoryUtil service. RestrictionsFactoryUtil has the same
methods that you’re used to from Hibernate’s Restrictions class: in, between, like, eq, ne, gt, ge, lt,
le, etc.

Thus, instead of using the following call to specify that a guestbook must have a certain name,

entryCriteria.add(Restrictions.eq("name", guestbookName));

you use

entryQuery.add(RestrictionsFactoryUtil.eq("name", guestbookName));

The restriction above limits the results to guestbook entries whose name attribute matches the
value of the variable guestbookName. Add the restrictions you need to get the results you want.

Projections are the next criteria type. They let you transform the query results to return the
field type you desire.

Projection Criteria

Projections in Hibernate’s Criteria API let you modify the kind of results returned by a query. For
example, if you don’t want your query to return a list of entity objects (the default), you can set a
projection on a query to return only a list of the values of a certain entity field, or fields. You can
also use projections on a query to return the maximum or minimum value of an entity field, or
the sum of all the values of a field, or the average, etc. For more information on restrictions and
projections, please refer to Hibernate’s documentation.

Similarly, to set projections, create properties via Liferay’s PropertyFactoryUtil service instead
of through Hibernate’s Property class. Thus, instead of

entryCriteria.setProjection(Property.forName("guestbookId"));

you use

entryQuery.setProjection(PropertyFactoryUtil.forName("guestbookId"));

The projection above specifies the guestbookId entity field to changes the result set to a list of
those field values. If you want to return a specific field type from your entities, add a projection for
it.

The last criteria type lets you organize results your way.

Order Criteria

Orders in Hibernate’s Criteria API let you control the order of the elements in the list a query
returns. You can choose the property or properties to which an order applies as well as whether
they’re in ascending or descending order.

This code creates an order by the entity’s modifiedDate attribute:

Order order = OrderFactoryUtil.desc("modifiedDate");

622

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/RestrictionsFactoryUtil.html
http://docs.jboss.org/hibernate/orm/3.6/reference/en-US/html/querycriteria.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/PropertyFactoryUtil.html

When you apply this order, the results are arranged in descending order of the query entity’s
modifiedDate attribute. Thus themost recentlymodified entities (guestbook entries, in our example)
appear first and the least recently modified entities appear last.

Like Hibernate criteria, Liferay’s dynamic queries are chain-able: you can add criteria to, set
projections on, and add orders to Liferay’s dynamic query objects just by appending the appropriate
method calls to the query object. For example, the following snippet demonstrates chaining a
restriction criterion and a projection to a dynamic query object declaration:

DynamicQuery guestbookQuery = DynamicQueryFactoryUtil.forClass(Guestbook.class)

.add(RestrictionsFactoryUtil.eq("name", guestbookName))

.setProjection(ProjectionFactoryUtil.property("guestbookId"));

It’s time to execute your dynamic query.

Executing the Dynamic Query

In the previous tutorial, you ran Service Builder after defining your custom finder. Service Builder
generated a dynamicQuery(DynamicQuery dynamicQuery)method in your *LocalServiceBaseImpl class.
Using a *LocalService instance, invoke dynamicQuerymethod, passing it your dynamic query. Here’s
an example dynamic query execution.

List<Entity> entities = _someLocalService.dynamicQuery(entityQuery);

return entities;

The dynamic query execution returns a list of entities and the finder method returns that list.

Note: Service Builder not only generates a public List dynamicQuery(DynamicQuery

dynamicQuery)method in *LocalServiceBaseImplbut it also generates public List dynamicQuery(DynamicQuery

dynamicQuery, int start, int end) and public List dynamicQuery(DynamicQuery dynamicQuery, int

start, int end, OrderByComparator orderByComparator) methods. You can go back to defining
custom finder methods and either modify your finder method or create overloaded versions of
it to take advantage of these extra methods and their parameters. The int start and int end

parameters are useful when paginating a result list. start is the lower bound of the range of
model entity instances and end is the upper bound. The OrderByComparator orderByComparator is the
comparator by which to order the results.

To use the overloaded dynamicQuerymethods of your *LocalServiceBaseImpl class in the (option-
ally overloaded) custom finders of your *FinderImpl class, just choose the appropriate methods for
running the dynamic queries: dynamicQuery(entryQuery), or dynamicQuery(entryQuery, start, end)

or dynamicQuery(entryQuery, start, end, orderByComparator).
Great! You’ve now created a finder method using Liferay’s Dynamic Query API. Your last step is

to add a service method that calls your finder.

61.3 Accessing Your Custom Finder Method from the Service Layer

So far, you’ve created a *FinderImpl class, defined a findBy* finder method in that class, and imple-
mented the finder method using Dynamic Query. Now how do you call your finder method from
the service layer?

623

When you ran Service Builder, the *Finder interface was generated (e.g., GuestbookFinder).
For proper separation of concerns, only a local or remote service implementation (i.e.,
*LocalServiceImpl or *ServiceImpl) in your service module should invoke the *Finder class. The
portlet classes in your application’s web module invoke the business logic of the services published
from your application’s service module. The services, in turn, access the data model using the
persistence layer’s finder classes.

Note: In previous versions of Liferay Portal, your findermethodswere accessible via *FinderUtil
utility classes. Finder methods are now injected into your app’s local services, removing the need
to call finder utilities.

You’ll add a method in the *LocalServiceImpl class that invokes the finder method implementa-
tion via the *Finder class. Then you’ll rebuild your application’s service layer so that the portlet
classes and JSPs in your web module can access the services.

For example, for the Guestbook application, you’d add the following method to the
EntryLocalServiceImpl class:

public List<Entry> findByEntryNameGuestbookName(String entryName,

String guestbookName) throws SystemException {

return entryFinder.findByEntryNameGuestbookName(String entryName,

String guestbookName);

}

After you’ve added your findBy*method to your *LocalServiceImpl class, run Service Builder to
generate the interface and make the finder method available in the EntryLocalService class.

Now you can indirectly call the finder method from your portlet class or from a JSP by calling
_entryLocalService.findByEntryNameGuestbookName(...)!

Congratulations on following the three step process of developing a dynamic query in a custom
finder and exposing it as a service for your portlet!

Related Topics

Service BuilderWeb Services
Creating Local Service
Invoking Local Services

61.4 Actionable Dynamic Queries

Suppose you have over a million users, and you want to perform some kind of mass update to some
of them. One approach might be to use a dynamic query to retrieve the list of users in question.
Once loaded intomemory, you could loop through the list and update each user. However, with over
a million users, the memory cost of such an operation would be too great. In general, retrieving
large numbers of Service Builder entities using dynamic queries requires too much memory and
time.

Liferay actionable dynamic queries solve this problem. Actionable dynamic queries use a
pagination strategy to load only small numbers of entities into memory at a time and perform
processing (i.e., perform an action) on each entity. So instead of trying to use a dynamic query to
load a million users into memory and then perform some processing on each of them, a much

624

better strategy is to use an actionable dynamic query. This way, you can still process your million
users, but only small numbers are loaded into memory at a time.

Here’s how to use actionable dynamic query:

1. Get an ActionableDynamicQuery fromyour *LocalServiceby invoking its getActionableDynamicQuery
method.

2. Addquery criteria and constraints, using thequery’s setAddCriteriaMethod and setAddOrderCriteriaMethod

methods.

3. Set an action to perform on the matching entities, using setPerformActionMethod.

4. Execute the action on each matching entity, by invoking the query’s performActionsmethod.

Thismethod froma sample portlet creates an actionable dynamic query, adds a query restriction
and an action, and executes the query:

protected void massUpdate() {

ActionableDynamicQuery adq = _barLocalService.getActionableDynamicQuery();

adq.setAddCriteriaMethod(new ActionableDynamicQuery.AddCriteriaMethod() {

@Override

public void addCriteria(DynamicQuery dynamicQuery) {

dynamicQuery.add(RestrictionsFactoryUtil.lt("field3", 100));

}

});

adq.setPerformActionMethod(new ActionableDynamicQuery.PerformActionMethod<Bar>() {

@Override

public void performAction(Bar bar) {

int field3 = bar.getField3();

field3++;

bar.setField3(field3);

_barLocalService.updateBar(bar);

}

});

try {

adq.performActions();

}

catch (Exception e) {

e.printStackTrace();

}

}

The example method demonstrates executing an actionable dynamic query on Bar entities that
match certain criteria.

1. Retrieve an ActionableDynamicQuery from local service BarLocalService.

ActionableDynamicQuery adq = _barLocalService.getActionableDynamicQuery();

625

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/ActionableDynamicQuery.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/ActionableDynamicQuery.html

Note: Service Builder generates method `getActionableDynamicQuery()` in

each entity's `*LocalService` interface and implements it in each entity's

`*BaseLocalServiceImpl` class.

@Transactional(propagation = Propagation.SUPPORTS, readOnly = true)

public ActionableDynamicQuery getActionableDynamicQuery();

2. Set query criteria to match field3 values less than 100.

adq.setAddCriteriaMethod(new ActionableDynamicQuery.AddCriteriaMethod() {

@Override

public void addCriteria(DynamicQuery dynamicQuery) {

dynamicQuery.add(RestrictionsFactoryUtil.lt("field3", 100));

}

});

3. Set an action to perform. The action increments the matching entity’s field3 value.

adq.setPerformActionMethod(new ActionableDynamicQuery.PerformActionMethod<Bar>() {

@Override

public void performAction(Bar bar) {

int field3 = bar.getField3();

field3++;

bar.setField3(field3);

_barLocalService.updateBar(bar);

}

});

4. Execute the action on each matching entity.

try {

adq.performActions();

}

catch (Exception e) {

e.printStackTrace();

}

Actionable dynamic queries let you act on large numbers of entities in smaller groups. It’s an
efficient and high performing way to update entities.

Related Topics

Service BuilderWeb Services
Creating Local Service
Invoking Local Services

626

CHAPTER 62

BUSINESS LOGIC WITH SERVICE BUILDER

Once you’ve defined your application’s entities and run Service Builder to generate your service
and persistence layers, you can begin adding business logic. Each entity generated by Service
Builder contains a model implementation, local service implementation, and optionally a remote
service implementation class. Your application’s business logic can be implemented in these
classes. The generated service layer contains default methods for CRUD operations, but often times
it’s necessary to implement additional methods. Once you’ve added your business logic, running
Service Builder again regenerates your application’s interfaces and makes your new logic available
for invocation.

In this section of tutorials, you’ll learn about creating and invoking your application’s local
services, finding and invoking Liferay’s services, and customizing Liferay services.

627

CHAPTER 63

CREATING LOCAL SERVICES

The heart of your service is its *LocalServiceImpl class. This class is your entity’s local service
extension point. Local services are invoked from your application or by other applications running
on the same instance as your application.

These tutorials walk you through creating local services:

1. Deciding to Create Local and Remote Services.

2. Implementing the addMethod.

3. Implementing the update and deleteMethods.

4. Implementing Finder and Counter Methods

5. Implementing Other Business Logic

6. Integrating with Liferay’s Services.

Start with deciding the service types you need.

63.1 Deciding to Create Local and Remote Services

Defining your object model involves choosing whether to generate local and or remote service
interfaces. Local services can only be invoked from the Liferay server on which they’re deployed.
Remote services are accessible to clients outside of the Liferay server. Before implementing local
or remote services, consider the best practices described here:

1. If you plan to have remote services, enable local services too.

2. Implement your business logic in *LocalServiceImpl.

3. Create corresponding remote services methods in your *ServiceImpl.

4. Use the remote service methods to call the local service, wrapping the calls in permission
checks.

629

5. In your application, call only the remote services. This ensures that your service methods
are secured and that you don’t have to duplicate permissions code.

If you are turning on local or remote services in your service.xml file just now, make sure to
run Service Builder again to generate the service interfaces.

63.2 Implementing an AddMethod

Your *LocalServiceImpl operates on the entities your service.xml defines. The first method to
implement, therefore, is one that creates entities. Liferay’s convention is to implement this in an
add*method, where the part after add is the entity name (or a shortened version of it). Here are the
steps for implementing an add*method:

1. Declare an add*method with parameters for creating the entity.

2. Validate the parameters.

3. Generate a primary key.

4. Create an entity instance.

5. Populate the entity attributes.

6. Persist the entity.

7. Return the entity instance.

This tutorial refers to theBookmarks application’s addEntrymethod from BookmarksEntryLocalServiceImpl

as an example. To keep things simple, we have excluded the code that integrates with Liferay
services, such as assets, social bookmarks, and more.

Here’s the Bookmarks application’s addEntrymethod:

public BookmarksEntry addEntry(

long userId, long groupId, long folderId, String name, String url,

String description, ServiceContext serviceContext)

throws PortalException {

// Entry

User user = userLocalService.getUser(userId);

if (Validator.isNull(name)) {

name = url;

}

validate(url);

long entryId = counterLocalService.increment();

BookmarksEntry entry = bookmarksEntryPersistence.create(entryId);

entry.setUuid(serviceContext.getUuid());

entry.setGroupId(groupId);

entry.setCompanyId(user.getCompanyId());

entry.setUserId(user.getUserId());

entry.setUserName(user.getFullName());

entry.setFolderId(folderId);

630

https://github.com/liferay/liferay-portal/blob/master/modules/apps/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java

entry.setTreePath(entry.buildTreePath());

entry.setName(name);

entry.setUrl(url);

entry.setDescription(description);

// More assignments ...

bookmarksEntryPersistence.update(entry);

// Integrate with more Liferay services here ...

return entry;

}

This method uses the parameters to create BookmarksEntry. It validates the parameters, creates
an entry with a generated entry ID (primary key), populates the entry, persists the entry, and
returns it. You can refer to this method as you create your own add*method.

Step 1: Declare an addmethodwith parameters for creating the entity

Create a public method for adding (creating) your application’s entity. Make it a public method that
returns the entity it creates.

public [ENTITY] add[ENTITY](...) {

}

For example, here’s the addEntrymethod signature:

public BookmarksEntry addEntry(

long userId, long groupId, long folderId, String name, String url,

String description, ServiceContext serviceContext)

throws PortalException {

...

}

This method specifies all the parameters needed to create and populate a BookmarksEntry. It
throws a PortalException in case the parameters are invalid or a processing exception occurs (more
on this in a later step).

Your add method must specify parameters that satisfy the entity’s attributes specified in your
service.xml file. Make sure to account for primary keys of other related entities. For example, the
addEntrymethod above includes a parameter long folderId to associate the new BookmarksEntry to
a BookmarksFolder.

Step 2: Validate the parameters

Validate the parameters as needed. You might need to make sure a parameter is not empty or
null, or that a parameter value is within a valid range. Throw a PortalException or an extension of
PortalException for any invalid parameters.

For example, the addEntrymethod invokes the following validatemethod to check if the URL
parameter is null.

protected void validate(String url) throws PortalException {

if (!Validator.isUrl(url)) {

throw new EntryURLException();

}

}

Next, generate a primary key for the entity instance you’re creating.

631

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/exception/PortalException.html

Step 3: Generate a primary key

Every entity instance needs a unique primary key. Liferay’s CounterLocalService generates
them per entity. Every *BaseLocalServiceImpl has a counterLocalService field that references a
CounterLocalService object for the entity. Invoke the counter service’s incrementmethod to generate
a primary key for your entity instance.

long id = counterLocalService.increment();

Now you have a unique ID for your entity instance.

Step 4: Create an entity instance

The *Peristence instance associated with your entity has a create(long id)method that constructs
an entity instance with the given ID. Every *BaseLocalServiceImpl has a *Persistence field that
references a *Persistence object for the entity. For example, BookmarksEntryLocalServiceImpl can
access BookmarksEntryLocalServiceBaseImpl’s field bookmarksEntryPersistence, which is a reference
to a BookmarksEntryPersistence instance.

@BeanReference(type = BookmarksEntryPersistence.class)

protected BookmarksEntryPersistence bookmarksEntryPersistence;

BookmarksEntryLocalServiceImpl’s addEntrymethod creates a BookmarksEntry instance using this
call:

BookmarksEntry entry = bookmarksEntryPersistence.create(entryId);

To create an instance of your entity, invoke the createmethod on the *Persistence field associ-
ated with the entity, making sure to pass in the entity primary key you generated in the previous
step.

[ENTITY_NAME] entity = [ENTITY_NAME]Persistence.create(id);

It’s time to populate the new entity instance.

Step 5: Populate the entity attributes

Use the add* method parameter values and the entity’s setter methods to populate your entity’s
attributes. For example, here are the BookmarksEntry attribute assignments:

entry.setUuid(serviceContext.getUuid());

entry.setGroupId(groupId);

entry.setCompanyId(user.getCompanyId());

entry.setUserId(user.getUserId());

entry.setUserName(user.getFullName());

entry.setFolderId(folderId);

entry.setTreePath(entry.buildTreePath());

entry.setName(name);

entry.setUrl(url);

entry.setDescription(description);

Note that the ServiceContext is commonly used to carry an entity’s UUID and the User is associ-
ated to a company.

632

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/counter/kernel/service/CounterLocalService.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java
https://github.com/liferay/liferay-portal/blob/master/modules/apps/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/base/BookmarksEntryLocalServiceBaseImpl.java

Step 6: Persist the entity

It’s time to store the entity. Invoke the *Persistence field’s update method, passing in the entity
object. For example, here’s how the new BookmarksEntry is persisted:

bookmarksEntryPersistence.update(entry);

Your entity is persisted for the application.

Step 7: Return the entity

Finally, return the entity you just created so the caller can use it.
Run Service Builder to propagate your new service method to the *LocalService interface.
You’ve implemented your local service’s add*method to create and persist your application’s

entities.

63.3 Implementing update and delete Methods

After you’ve implementing an add*method for creating service entities, you’ll want to create update*
and delete* methods for updating and deleting them. They’re easy to implement. The main
difference between them and the add*method is they must know which entity they’re updating or
deleting.

Implementing an updatemethod

An update*method for a local service resembles an add*method most because it has parameters
for setting entity attribute values. Create an update*method this way:

1. Declare an update*method with parameters for updating the entity.

2. Validate the parameters.

3. Retrieve the entity instance, if necessary.

4. Update the entity attributes.

5. Persist the updated entity.

6. Run Service Builder.

The following code snippets from BookmarksEntryLocalServiceImpl’s updateEntry method are
helpful to examine.

public BookmarksEntry updateEntry(

long userId, long entryId, long groupId, long folderId, String name,

String url, String description, ServiceContext serviceContext)

throws PortalException {

// Entry

BookmarksEntry entry = bookmarksEntryPersistence.findByPrimaryKey(

entryId);

if (Validator.isNull(name)) {

633

https://github.com/liferay/liferay-portal/blob/master/modules/apps/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java

name = url;

}

validate(url);

entry.setFolderId(folderId);

entry.setTreePath(entry.buildTreePath());

entry.setName(name);

entry.setUrl(url);

entry.setDescription(description);

//...

bookmarksEntryPersistence.update(entry);

// Integrate with more Liferay services here ...

return entry;

}

This method has all the makings of a good update*method:

• parameter for looking up the entity instance
• parameters for updating the entity attributes
• parameter validation
• entity attribute updates
• entity persistence
• returns the entity instance

Refer to the example method above as you follow the steps to create your own update*method.

Step 1: Declare an update method with parameters for updating the entity

Create a public method for updating your application’s entity.
public [ENTITY] update[ENTITY](...)

throws PortalException {

}

Replace [ENTITY] with your entity’s name or nickname. Create a parameter list that satisfies
the entity attributes you’re updating. Include an entity instance parameter or an ID parameter for
fetching the entity instance.

For example, the BookmarksEntryLocalServiceImpl’s updateEntrymethod signature has an ID pa-
rameter (entryId) for fetching the BookmarksEntry entity instance. Also it has parameters folderId,
name, url, and description for updating the BookmarksEntry’s respective attributes.
public BookmarksEntry updateEntry(

long userId, long entryId, long groupId, long folderId, String name,

String url, String description, ServiceContext serviceContext)

throws PortalException {...}

Note, user ID, group ID, and service context parameters are useful for integrating with Liferay’s
services. More on that later.

Step 2: Validate the parameters

Similar to validating the add*method parameters, validate your update* parameters. Your add* and
update* methods might be able to use the same validation code. Throw a PortalException or an
extension of PortalException for any invalid parameters.

634

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/exception/PortalException.html

Step 3: Retrieve the entity instance

If you’re passing in an entity instance, you can update it directly. Otherwise, pass in the entity
ID (the primary key). The *Persistence class Service Builder injects into *BaseLocalServiceImpl

classes has a findByPrimaryKey(long) method that retrieves instances by ID. For example, the
BookmarksEntryLocalServiceImpl retrieves the BookmarksEntry that matches the primary key entryId.

BookmarksEntry entry = bookmarksEntryPersistence.findByPrimaryKey(

entryId);

Invoke the findByPrimaryKey(long id) method of your *Persistence class to retrieve the entity
instance that matches your primary key parameter.

[ENTITY] entity = [ENTITY]Persistence.findByPrimaryKey(id);

It’s time to update the entity attributes.

Step 4: Update the entity attributes

Invoke the entity’s setter methods to replace its attribute values.

Step 5: Persist and return the updated entity instance

Persist the updated entity to the database and return the instance to the caller.

[ENTITY]Persistence.update(entity);

...

return entity;

Step 6: Run Service Builder

Finally, run Service Builder to propagate your new service method to the *LocalService interface.
You’ve created a service method to update your entity. If you thought that was easy, implement-

ing a delete*method is even easier.

Implementing a deletemethod

The removemethod of an entity’s *Persistence class deletes an entity instance from the database.
Use it in your local service’s delete*method. Here’s what a delete*method looks like:

public [ENTITY] delete[ENTITY](ENTITY entity) throws PortalException

{

[ENTITY]Persistence.remove(entity);

// Clean up related to additional Liferay services goes here ...

return entity;

}

Make sure to replace [ENTITY] with your entity’s name or nickname.
For example, here’s paraphrased code from BookmarksEntryLocalServiceImpl’s deleteEntry

method:

635

https://github.com/liferay/liferay-portal/blob/master/modules/apps/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java
https://github.com/liferay/liferay-portal/blob/master/modules/apps/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java

public BookmarksEntry deleteEntry(BookmarksEntry entry)

throws PortalException {

bookmarksEntryPersistence.remove(entry);

// Clean up related to additional Liferay services goes here ...

return entry;

}

After implementing your delete*method, run Service Builder to propagate your new service
method to the *LocalService interface.

Related Topics

Implementing an add method
Implementing getter and counter methods
Integrating with Liferay services

63.4 Implementing Methods to Get and Count Entities

Service Builder generates findBy*methods and countBy*methods in your *Persistence classes based
on your service.xml file’s finders. You can leverage finder methods in your local services to get and
count entities.

• Getters: get*methods return entity instances matching criteria.
• Counters: get*Countmethods return the number of instances matching criteria

Start with getting entities that match criteria.

Getter Methods

The findByPrimaryKeymethods and findBy*methods search for and return entity instances based
on criteria. Your local service implementation must only wrap calls to the finder methods that get
what you want.

Here’s how to create a method that gets an entity based on an ID (primary key):

1. Create a method using this format:

public [ENTITY] get[ENTITY_NAME](long id) {

return [ENTITY]Persistence.findByPrimaryKey(id);

}

2. Replace [ENTITY] and [ENTITY_NAME] with the respective entity type and entity name (or nick-
name).

3. Run Service Builder to propagate the method to your local service interface.

Here’s how to get entities based on criteria:

1. Identify the criteria for finding the entity instance(s).

636

2. If there is no finder element for the criteria, create one for it and run Service Builder.

3. Determine the *Persistence class findBy*method you want to call. Depending on your finder
element columns, Service Builder might overload the method to include these parameters:

• int start and int end parameters for specifying a range of entities.
• com.liferay.portal.kernel.util.OrderByComparator orderByComparator parameter for ar-
ranging the matching entities.

4. Specify your get*method signature, making sure to account for the *Persistence class findBy*
method parameters you must satisfy. Use this method format:

public List<[ENTITY]> get[DESCRIBE_THE_ENTITIES](...) {

}

Replace [ENTITY] with the entity type. Replace [DESCRIBE_THE_ENTITIES] with a descriptive
name for the entities you’re getting.

5. Call the *Persistence class findBy*method and return the list of matching entities.

6. Run Service Builder.

For example, method getGroupEntries from BookmarksEntryLocalServiceImpl returns a range of
BookmarksEntrys associated with a Group primary key:

public List<BookmarksEntry> getGroupEntries(

long groupId, int start, int end) {

return bookmarksEntryPersistence.findByG_S(

groupId, WorkflowConstants.STATUS_APPROVED, start, end,

new EntryModifiedDateComparator());

}

Of the BookmarksEntrys associated with workflows, this method only matches approved ones
(WorkflowConstants.STATUS_APPROVED). It uses a new EntryModifiedDateComparator to order the match-
ing BookmarksEntrys by modification date.

Now you know how to leverage finder methods to get entities. Methods that count entities are
next.

Counter Methods

Counting entities is just as easy as getting them. Your *Persistence class countBy*methods do all
the work. Service Builder generates countBy*methods based on each finder and its columns.

1. Identify the criteria for entity instances you’re counting and determine the *Persistence class
countBy*method that satisfies the criteria.

2. Create a get*Countmethod signature following this format:

public int get[DESCRIBE_THE_ENTITIES]Count(...) {

}

637

https://github.com/liferay/liferay-portal/blob/7.1.0-a1/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java

Replace [DESCRIBE_THE_ENTITIES] with a descriptive name for the entities you’re counting.

3. Call the *Persistence class’ countBymethod and return the value. For example, the method
getEntriesCount from BookmarksEntryLocalServiceImpl returns the number of BookmarksEntrys
that have a workflow status of status and that are associated with a group (matching groupId)
and a folder (matching folderId).

public int getEntriesCount(long groupId, long folderId, int status) {

return bookmarksEntryPersistence.countByG_F_S(

groupId, folderId, status);

}

Now your local service can get entities matching your criteria and return quick entity counts.

Related Topics

Creating Local Services
Implementing an add method
Defining Service Entity Finder Methods
Understanding the Code Generated by Service Builder

63.5 Implementing Any Other Business Logic

This section’s earlier local service tutorials focus on CRUDmethods: methods that create (add),
read (get), update, and delete entities. But you might also need methods that provide business
logic.

For example, Liferay Bookmarks application users open bookmarks (navigate to a URLs) by
clicking on them. BookmarksEntryLocalServiceImpl’s openEntrymethod supports this functionality:

public BookmarksEntry openEntry(long userId, BookmarksEntry entry) {

entry.setVisits(entry.getVisits() + 1);

bookmarksEntryPersistence.update(entry);

assetEntryLocalService.incrementViewCounter(

userId, BookmarksEntry.class.getName(), entry.getEntryId(), 1);

return entry;

}

The openEntry method tracks and persists the number of visits to the BookmarksEntry’s URL,
increments the number of views for the BookmarksEntry as an asset, and returns the BookmarksEntry.
This method implements required business logic that compliments the CRUDmethods.

Convenience methods might also be appropriate for your app. They’re easier to use because they
typically have these characteristics:

• Shorter parameter list
• Intuitive name

Short parameter lists are easier to satisfy, and methods that have intuitive names are easier to
find in Javadoc.

638

https://github.com/liferay/liferay-portal/blob/7.1.0-a1/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java
https://github.com/liferay/liferay-portal/blob/7.1.0-a1/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java

For example, the Bookmarks application lets usersmove bookmarks to different folders. Moving
a bookmark can be done using the service’s updateEntry(...) method, but its long parameter list
is overkill since all the operation requires is the bookmarks entry and the folder where it’s going.
Compare the following update*method call to a convenience method call.

Update method:

bookmarksEntryLocalService.updateEntry(userId, entryId, groupId, folderId, name, url, description, serviceContext);

Conveniencemethod:

bookmarksEntryLocalService.moveEntry(entryId, folderId);

Convenience methods are typically straightforward to write. Here’s the moveEntrymethod:

public BookmarksEntry moveEntry(long entryId, long parentFolderId)

throws PortalException {

BookmarksEntry entry = getBookmarksEntry(entryId);

entry.setFolderId(parentFolderId);

entry.setTreePath(entry.buildTreePath());

bookmarksEntryPersistence.update(entry);

return entry;

}

The moveEntrymethod retrieves the BookmarksEntry entity by its ID, assigns it a new parent folder,
updates its tree path, persists all the entity’s changes, and returns the entity. Convenience methods
like this one facilitate updating a subset of the entity’s attributes.

After implementing your custom business methods, run Service Builder to propagate them to
the interface.

In your local services, you can implement business logic methods that suit your application.
Related Topics
Creating Local Services
Invoking Local Services
Invoking Services from Service Builder Code

63.6 Integrating with Liferay's Frameworks

New car buyers expect certain features to be standard: power windows, cruise control, floor mats
(at least the cheap ones), and so on. Similarly, users expect applications to have certain features
and expect those features to behave consistently across applications.

For example, a user might expect the app’s content can be shared socially on Twitter and
Facebook. The user might expect a way to tag and rate the app content, and a way to comment
on it. You must meet, and even exceed, these expectations. Liferay’s frameworks implement
these features users know and love. Integrating with the frameworks is straightforward and the
frameworks provide intuitive, consistent user experiences.

Here are some of Liferay’s most popular frameworks:

• Permissions: Defines resource for entities and actions for performing on the resources.

639

https://github.com/liferay/liferay-portal/blob/7.1.0-a1/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java

• Configurable Applications: Makes applications configurable from within the Control Panel.

• Workflow: Equips entities for reviewing in workflows before publishing.

• Item Selector: Provides a consistent developer experience for browsing and selecting entities.

• Asset Framework: Makes entities more descriptive enabling users to tag, categorize, rate,
prioritize, and comment on them. It enables users to relate entities to each other as assets
and it allows the entities to be published in the Asset Publisher.

– Tags and Categories: Enables users to tag entities and categorize the tagged entities.
– Priority: Users can ascribe numerical priorities to entities.
– Related Assets: Users can associate one entity with another as an asset.
– Asset Renderer: Enables displaying entities in the Asset Publisher.
– Comments: Lets users comment on entities.
– Ratings: Enables rating systems, such as five stars or thumbs up/down, on entities.
– Flags: Users can flag entity content as inappropriate.
– Social Bookmarks: Users can share entity content on Twitter, Facebook, and more. (Tu-

torials are coming soon.)

• Export/Import: Lets users export entity data to and import entity data from files (.lpkg files).
Exported data can be imported to another portal instance or saved for later use.

• Staging: Lets users change entities behind the scenes without affecting the live site.

• Search: Enables entities to be found and shown in Liferay DXP search results. (Tutorials are
coming soon.)

• Recycle Bin: Entities can be moved from the application and put them into the Recycle Bin.
Entities can be restored from the Recycle Bin or deleted permanently (manually or per a
schedule). (Tutorials are coming soon.)

Liferay’s frameworks are richwith features users expect in applications. Click on the framework
tutorial links to start leveraging the frameworks. Next are tutorials on invoking local services.

Related Topics:

Internationalization
JavaScript Module Loaders
Front-End Taglibs
Data Upgrades

63.7 Invoking Local Services

Once you deploy your services module, those services are available in the container. Service
Builder generates local and remote service classes as OSGi Declarative Services (DS) components.
These components are accessible to other DS components, so you can invoke them from other
components, such as your web application. Here’s how:

640

https://issues.liferay.com/browse/LRDOCS-4531
https://issues.liferay.com/browse/LRDOCS-4531
https://issues.liferay.com/browse/LRDOCS-4372
https://issues.liferay.com/browse/LRDOCS-4505

1. Add a reference to the local service component.

2. Call the component’s methods.

There’s a Blade sample called Basic Service Builder. Its basic-webmodule has a Portlet service
component that demonstrates referencing a local service component. This module also has JSPs
that invoke the component’s methods. Your first step is to add a reference to the local service
component object.

Step 1: Reference the Local Service Component

Your application’s Service Builder-generated local services are DS components that you can in-
ject into your application’s other DS components (classes annotated with @Component) using the
@Reference annotation. The basic-webmodule’s JSPPortlet class is a Portlet service component that
references the FooLocalService local service as a DS component.

@Reference

private volatile FooLocalService _fooLocalService;

The OSGi service registry wires the service implementation object to your class that references
it. The JSPPortlet sample class declares the _fooLocalService field to be volatile, but making a field
volatile is completely optional.

Note: Service Builder generates *LocalServiceImpl, *ServiceImpl, *PersistenceImpl, and
[ENTITY_NAME]Impl classes for your entities as Service Builder Spring Beans—not OSGi Declarative
Services. Service Builder Spring Beans must use means other than the @Reference annotation to
reference Liferay services and OSGi services.

Important: You should never invoke *LocalServiceImpl objects directly. You should only invoke
them indirectly through their *LocalService service interface. The OSGi service registry wires the
service implementation object to your class.

You can make a service object available to JSPs by associating it with a RenderRequest attribute.
For example, the JSPPortlet’s rendermethod associates the FooLocalService object with an attribute
called fooLocalService.

@Override

public void render(RenderRequest request, RenderResponse response)

throws IOException, PortletException {

//set service bean

request.setAttribute("fooLocalService", getFooLocalService());

super.render(request, response);

}

public FooLocalService getFooLocalService() {

return _fooLocalService;

}

If your JSP declares the <portlet:defineObjects /> tag, it can retrieve the service object from
the RenderRequest attribute. For example, the JSPPortlet’s init.jsp file retrieves the FooLocalService

object from the "fooLocalService" attribute.

641

...

<%@

page import="com.liferay.blade.samples.servicebuilder.service.FooLocalService" %>

...

<liferay-theme:defineObjects />

<portlet:defineObjects />

<%

...

//get service bean

FooLocalService fooLocalService = (FooLocalService)request.getAttribute("fooLocalService");

%>

All JSPs that include the above init.jsp can use the fooLocalService variable to invoke the local
service component’s methods.

Step 2: Call the Component's Methods

Now that you have the service component object, you can invoke its methods as you would any
Java object’s methods.

The basic-web sample module’s view.jsp and edit_foo.jsp files include the init.jsp shown in
the previous section. Therefore, they can access the fooLocalService variable which references
the service component object. The view.jsp file uses the component’s getFoosCount method and
getFoosmethod in a Liferay Search Container that lists Foo instances.

<liferay-ui:search-container

total="<%= fooLocalService.getFoosCount() %>"

>

<liferay-ui:search-container-results

results="<%= fooLocalService.getFoos(searchContainer.getStart(), searchContainer.getEnd()) %>"

/>

...

</liferay-ui:search-container>

The edit_foo.jsp file calls getFoo(long id) to retrieve a Foo entity based on the entity instance’s
ID.

long fooId = ParamUtil.getLong(request, "fooId");

Foo foo = null;

if (fooId > 0) {

foo = fooLocalService.getFoo(fooId);

}

Important: When invoking service entity updates (e.g., fooService.update(object)) for services
that have MVCC enabled, make sure to do so in transactions. Propagate rejected transactions to
the UI for the user to handle. For details, see Multiversion concurrency control (MVCC).

Using the @Reference annotation, you can inject your application’s OSGi DS components (such as
a portlet DS component) with instances of your application’s Service Builder-generated local service
components. Also you can provide your JSPs access to the component instances via RenderRequest

attributes.

642

Related Topics

Creating Local Services
Creating Remote Services
Invoking Remote Services
Service Security Layers
Invoking Services from Service Builder Code
OSGi Services and Dependency Injection with Declarative Services

63.8 Invoking Services from Service Builder Code

All the services created within a Service Builder application are wired using an internal Spring
Application Context. This uses AOP proxies to adapt the services for transactions, indexing, and
security. In a module’s module-spring.xml Spring Application Context file, Service Builder defines
each entity’s *LocalServiceImpl, *ServiceImpl, and *PersistenceImpl classes as Spring Beans. For
example, Service Builder defines Spring Beans for the Foo entity in the Liferay Blade Service Builder
basic-service sample module’s src/main/resources/META-INF/spring/module-spring.xml file:

<?xml version="1.0"?>

<beans

default-destroy-method="destroy"

default-init-method="afterPropertiesSet"

xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-

beans.xsd"

>

<bean class="com.liferay.blade.samples.servicebuilder.service.impl.FooLocalServiceImpl" id="com.liferay.blade.samples.servicebuilder.service.FooLocalService" />

<bean class="com.liferay.blade.samples.servicebuilder.service.impl.FooServiceImpl" id="com.liferay.blade.samples.servicebuilder.service.FooService" />

<bean class="com.liferay.blade.samples.servicebuilder.service.persistence.impl.FooPersistenceImpl" id="com.liferay.blade.samples.servicebuilder.service.persistence.FooPersistence" parent="basePersistence" />

</beans>

Here’s a summary of the beans the example context defines:

Interface ID Implementation Class

com.liferay.blade.samples.servicebuilder.service.FooLocalServicecom.liferay.blade.samples.servicebuilder.service.impl.FooLocalServiceImpl

com.liferay.blade.samples.servicebuilder.service.FooServicecom.liferay.blade.samples.servicebuilder.service.impl.FooServiceImpl

com.liferay.blade.samples.servicebuilder.service.persistence.FooPersistencecom.liferay.blade.samples.servicebuilder.service.persistence.impl.FooPersistenceImpl

Since these classes are Spring Beans and NOT OSGi Declarative Services components, they use
annotations other than the @Reference Declarative Services annotation to inject Spring Beans and
OSGi services. Here are the recommended Liferay annotations a Service Builder Spring Bean can
use.

• Use @BeanReference to reference a Spring Bean that is in the Application Context.
• Use @ServiceReference to reference an OSGi service.

Important: When invoking service entity updates (e.g., fooService.update(object)) for services
that have MVCC enabled, make sure to do so in transactions. Propagate rejected transactions to
the UI for the user to handle. For details, see Multiversion concurrency control (MVCC).

643

The @BeanReference annotation is explained first.

Referencing a Spring Bean that is in the Application Context

A Service Builder Spring Bean class, such as a *LocalServiceImpl class, should use Liferay’s
@BeanReference annotation to access other Spring Beans the module’s Spring Application Context
defines.

For example, if your service module’s service.xml file defines local services for entities named
Foo and Bar, Service Builder generates a module-spring.xml file that defines local service Spring
Beans for both entities. To inject the BarLocalService Spring Bean into the FooLocalServiceImpl

class, for example, the FooLocalServiceImpl class would declare a BarLocalService field and apply
an @BeanReference annotation to it.

@BeanReference

private BarLocalService _barLocalService;

The @BeanReference lets Liferay’s AOP treat the bean reference for use in transactions, search
indexing, or security, if needed. The referencing class can invoke the Spring Bean class’s methods.

Besides the services Service Buildermakes available for your application, Service Builder Spring
Bean classes can also access any service published in the OSGi Registry. This means the following
services are available:

• Beans defined in Liferay’s core
• Beans created in other module app contexts
• Services declared using OSGi Declarative Services
• Services registered using the OSGi low level API

These are all OSGi services. The next section demonstrates a Service Builder Spring Bean
referencing OSGi services.

Referencing OSGi Services

In many cases, your Service Builder code (Spring Beans) must use external services. Liferay’s
@ServiceReference annotation lets Liferay Spring Beans reference OSGi services.

Suppose you’re building an application with a simple entity your service module defines in
its service.xml file. The application must send an SMS every time a new entity is created, and the
SMSService is provided by a module installed in the system.

Your *LocalServiceImpl (Spring Bean) could use an @ServiceReference annotation to reference
the external service.

@ServiceReference

private SMSService _smsService;

This annotation retrieves a reference to the OSGi service and provides some nice benefits. None
of the Spring context is created until the SMSService service is available. Likewise, if the SMSService

suddenly disappears, the whole Spring Application Context is destroyed. This makes Liferay Spring
apps much more robust and versatile.

Fortunately, Service Builder generates this kind of code for every entity your service.xml file
references. For example, the Liferay Blade Service Builder sample project basic-servicemodule’s
service.xml file defines a Foo entity that references an AssetEntry entity:

644

<reference entity="AssetEntry" package-path="com.liferay.portlet.asset" />

Service Builder generated the FooLocalServiceBaseImpl class (the base class is part of the
FooLocalServiceImpl class’s hierarchy), which references the AssetEntry entity’s local service
AssetEntryLocalService using a field annotated with @ServiceReference:

@ServiceReference(type = com.liferay.asset.kernel.service.AssetEntryLocalService.class)

protected com.liferay.asset.kernel.service.AssetEntryLocalService assetEntryLocalService;

Great! You now know how to add a reference to any OSGi service to a Service Builder Spring
Bean. You also know how to add a reference to any other Spring Bean in the Application Context of
your Service Builder Spring Bean.

Related Topics

Invoking Local Services
Invoking Remote Services
JSONWeb Services Invoker
Service Trackers

645

CHAPTER 64

APPLICATION SECURITY

Liferay’s development framework provides an application security platform that’s got years of
experience behind it. You don’t need to roll your own security for your applications. Instead, you
can specify security for your applications using Liferay’s framework.

Beyond security for applications, there are many ways to extend the default security model by
customizing the authentication process. This group of tutorials teaches you about them:

• Resources, Roles, and Permissions
• Custom SSO Providers
• Authentication Pipelines
• Service Access Policies
• Authentication Verifiers

64.1 Defining Application Permissions

When you’re writing an application, there are almost always parts of the application or its data that
should be protected by permissions. Some users should access all the functions or data, but most
users shouldn’t.

On many platforms, developers have to create the security model themselves. On Liferay DXP,
an application security model has been provided for you; you only need to make use of it.

Fortunately, no matter what your application does, access to it and to its content can be con-
trolled with permissions. Read on to learn about Liferay’s permissions system and how add
permissions to your application.

The permissions system has three parts: Resources, Actions, and Permissions.
Action: An operation that can be performed by a user. For example, users can perform these

actions on the Bookmarks application: ADD_TO_PAGE, CONFIGURATION, and VIEW. Users can perform
these actions on Bookmarks entry entities: ADD_ENTRY, DELETE, PERMISSIONS, UPDATE, and VIEW.

Resource: A generic representation of any application or entity on which an action can be
performed. Resources are used for permission checking. For example, resources could include
the RSS application with instance ID hF5f, a globally scopedWiki page, a Bookmarks entry of the
site X, and a Message Boards post with the ID 5052.

647

Permission: A flag that determines whether an action can be performed on a resource.
In the database, resources and actions are saved in pairs. Each entry in the ResourceAction

table contains both the name of a portlet or entity and the name of an action. For ex-
ample, the VIEW action with respect to viewing the Bookmarks application is associated with
the com_liferay_bookmarks_web_portlet_BookmarksPortlet portlet ID. The VIEW actions with re-
spect to viewing a Bookmarks Folder or viewing a Bookmarks entry are associated with the
com.liferay.bookmarks.model.BookmarksFolder and com.liferay.bookmarks.model.BookmarksEntry

entities, respectively.
To do permissions, therefore, you defineUsers (Roles) who have Permission to performActions on

Resources. User definition is done by administrators once your application is deployed; developers
define resources, actions, and default permissions.

You can implement permissions in your applications in four steps that spell the acronym DRAC:

1. Define all resources and their permissions.

2. Register all defined resources in the permissions system.

3. Associate the necessary permissions with resources.

4. Check permission before returning resources.

The next four tutorials show these steps in detail.

64.2 Defining Resources and Permissions

Your first step in implementing permissions is to define the resources and the permissions that
protect them. There are two different kinds of resources: portlet resources and model resources.

Portlet resources represent portlets. The names of portlet resources are the portlet IDs from
the portlets’ @Component properties or if you’re using aWAR file, portlet.xml files. Model resources
refer to model objects, usually persisted as entities to a database. The names of model resources
are their fully qualified class names. In the XML displayed below, permission implementations are
first defined for the portlet resource and then for the model resources.

Model resources represent models, such as blog entries. Resources are named using the fully
qualified class names of the entities they represent.

Note: For each resource, there are four scopes to which the permissions can be applied: com-
pany, group, group-template, or individual. Because these are called portlet resources here and in
the code, this can be confusing. The other scopes are mostly used internally for various Liferay
constructs (such as Sites or Categories).

You define resources and their permissions using an XML file. By convention, this file is called
default.xml and exists in a module’s src/main/resources/resource-actions folder.

Because of the two different types of resources, you’ll have two of these files: one in your
portlet module to define the portlet resources and one in your service module to define the model
resources.

648

Defining Portlet Resource Permissions

Define the portlet resources first; here’s an example using Liferay’s Blogs application.

1. Start with the DTD declaration:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action Mapping 7.1.0//EN" "http://www.liferay.com/dtd/liferay-

resource-action-mapping_7_0_0.dtd">

2. The root tag contains all the resources to be declared:

<resource-action-mapping>

</resource-action-mapping>

3. Inside these tags, define your resources. The Blogs application defines two portlet resources:

<portlet-resource>

<portlet-name>com_liferay_blogs_web_portlet_BlogsAdminPortlet</portlet-name>

<permissions>

<supports>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

</guest-unsupported>

</permissions>

</portlet-resource>

<portlet-resource>

<portlet-name>com_liferay_blogs_web_portlet_BlogsPortlet</portlet-name>

<permissions>

<supports>

<action-key>ADD_PORTLET_DISPLAY_TEMPLATE</action-key>

<action-key>ADD_TO_PAGE</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ADD_PORTLET_DISPLAY_TEMPLATE</action-key>

<action-key>CONFIGURATION</action-key>

</guest-unsupported>

</permissions>

</portlet-resource>

649

The Blogs application comprises two portlets: the Blogs portlet itself and the Blogs Admin
portlet that appears in the Site menu for administrators. Define your portlets by their names, and
then list the permissions for the portlet. The Blogs portlet, for example, supports four permissions:
ADD_PORTLET_DISPLAY_TEMPLATE, ADD_TO_PAGE, CONFIGURATION, and VIEW. The Blogs
Admin portlet has an additional permission: ACCESS_IN_CONTROL_PANEL, which defines who
can see the entry in the Site menu.

Once you’ve definedpermissions at theportlet level, you can set default permissions for different
types of users. The DTD allows for site member and guest defaults. Since guests are users that
aren’t logged in, there’s also a guest-unsupported tag for defining permissions guests can never have
(in other words, the user must be logged in and identifiable).

That’s all there is to it! Your next task is to define permissions for your model resources.

Defining Model Resource Permissions

Defining permissions for models is a similar process. Create a default.xml file in your service
module’s src/main/resources/resource-actions folder. In this file, youmust define top-level function
permissions and individual entity permissions using the same <model-resource> tag.

This can be confusing, so some explanation is in order. Model permissions for what Liferay
calls the root model are defined separately from permissions on stored entities, which Liferay calls
the model. This makes sense when you think about the functions users can perform:

• Creating something new
• Editing something that exists

Creating something new (like adding a new Blog entry) is different from accessing something
that exists. A Blog owner should be able to create or edit a Blog entry, but a User or guest should
have read permission for existing entries and no permission to create them.

Permission to create something new that doesn’t yet exist is a root model permission, whether
that functionality is exposed in a portlet or not. Permission on an existing resource is a model
permission.

Now you’re ready to define both your root model and model permissions.

1. First, create the skeleton for your file:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action Mapping 7.1.0//EN" "http://www.liferay.com/dtd/liferay-

resource-action-mapping_7_0_0.dtd">

<resource-action-mapping>

</resource-action-mapping>

2. Inside the <resource-action-mapping> tags, use a <model-resource> tag to define permissions
for the root model:

<model-resource>

<model-name>com.liferay.blogs</model-name>

<portlet-ref>

<portlet-name>com_liferay_blogs_web_portlet_BlogsAdminPortlet</portlet-name>

<portlet-name>com_liferay_blogs_web_portlet_BlogsPortlet</portlet-name>

</portlet-ref>

<root>true</root>

<weight>1</weight>

650

<permissions>

<supports>

<action-key>ADD_ENTRY</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

</supports>

<site-member-defaults>

<action-key>SUBSCRIBE</action-key>

</site-member-defaults>

<guest-defaults />

<guest-unsupported>

<action-key>ADD_ENTRY</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

</guest-unsupported>

</permissions>

</model-resource>

Themodel name (com.liferay.blogs) is just a packagename. The <root>true</root> tag defines
this as a root model. The <portlet-ref> element is the name of the portlet that uses themodel.
The <weight> tag defines the order of these permissions in the GUI. The permissions defined
are ADD_ENTRY (add a Blog entry), PERMISSIONS (set permissions on Blog entries), and
SUBSCRIBE (receive notifications when Blog entries are created). These are all root model
permissions, because no primary key in the database can be assigned to any of these functions.
The default permissions (for both model and portlet resources) are added when the portlet
defined by the <portlet-ref> tag initializes.

3. Finally, define your model permissions:

<model-resource>

<model-name>com.liferay.blogs.model.BlogsEntry</model-name>

<portlet-ref>

<portlet-name>com_liferay_blogs_web_portlet_BlogsAdminPortlet</portlet-name>

<portlet-name>com_liferay_blogs_web_portlet_BlogsPortlet</portlet-name>

</portlet-ref>

<weight>2</weight>

<permissions>

<supports>

<action-key>ADD_DISCUSSION</action-key>

<action-key>DELETE</action-key>

<action-key>DELETE_DISCUSSION</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>UPDATE_DISCUSSION</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>ADD_DISCUSSION</action-key>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>ADD_DISCUSSION</action-key>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>DELETE</action-key>

<action-key>DELETE_DISCUSSION</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>UPDATE_DISCUSSION</action-key>

</guest-unsupported>

</permissions>

</model-resource>

651

Note the lack of a <root> tag, the fully qualified class name for themodel, and the permissions
that operate on an entity with a primary key.

Enabling Your Permissions Configuration

Your last step is to enable your permission definitions. Each module that contains a default.xml

permissions definition file must also have a portlet.properties file with a property that defines
where to find the permissions definition file. For your service and your web modules, create a
portlet.properties file in src/main/resources and make sure it has this property:

resource.actions.configs=resource-actions/default.xml

Once you’ve defined portlet permissions, root model permissions, and model permissions,
you’ve completed step 1 (theD in DRAC). Congratulations! You’re now ready to register the resources
you’ve now defined in the permissions system.

64.3 Registering Permissions

Defining permissions was your first step; now you’re ready to register the permissions you’ve
defined. You must register your entities both in the database and in the permissions service
running in the OSGi container.

Registering Permissions Resources in the Database

All this takes is a call to Liferay’s resource service in your service layer. If you’re using Service
Builder, this is very easy to do.

1. Open your -LocalServiceImpl class.

2. In your method that adds an entity, add a call to add a resource with the entity. For example,
Liferay’s Blogs application adds resources this way:

resourceLocalService.addResources(

entry.getCompanyId(), entry.getGroupId(), entry.getUserId(),

BlogsEntry.class.getName(), entry.getEntryId(), false,

addGroupPermissions, addGuestPermissions);

This method requires passing in the company ID, the group ID, the user ID, the entity’s class
name, the entity’s primary key, and some boolean settings. In order, these settings define

• Whether the permission is a portlet resource
• Whether the default group permissions defined in default.xml should be added
• Whether the default guest permissions defined in default.xml should be added

Note that the resource local service is injected automatically into your Service Builder-generated
service.

If you’re not using Service Builder, but you are using OSGi modules for your application, you
should be able to inject the resource service with an @Reference annotation. If you’re building a

652

WAR-style plugin, you need a service tracker to gain access to the service. Note that your model
classes must also implement Liferay’s ClassedModel interface.

Similarly, when you delete an entity, you should also delete its associated resource. Here’s how
the Blogs application does it in its deleteEntry()method:

resourceLocalService.deleteResource(

entry.getCompanyId(), BlogsEntry.class.getName(),

ResourceConstants.SCOPE_INDIVIDUAL, entry.getEntryId());

Aswith adding resources, themethod needs to know the entity’s company ID, class, and primary
key. Most of the time, its scope is an individual entity of your own choosing. Other scopes available
as constants are for company, group, or group template (site template). These are used internally
for those objects, so you’d only use them if you were customizing functionality for creating and
deleting them.

Now you’re ready to register your entities with the permissions service.

Registering Entities to the Permissions Service

Thepermissions service that’s runningmust knowabout your entities andhow to checkpermissions
for them. This requires creating a permissions registrar class.

1. In your service bundle, create apackage that by convention ends in internal.security.permission.resource.
For example, theBlogs application’s package is named com.liferay.blogs.internal.security.permission.resource.

2. Create a class in this package called [Entity Name]ModelResourcePermissionRegistrar. For
example, the Blogs application’s class is named BlogsEntryModelResourcePermissionRegistrar.

3. This class is a component class that requires overriding the activatemethod to register the
permissions logic you want for your entities. For example, this is how the Blogs application
registers its permissions:

@Component(immediate = true)

public class BlogsEntryModelResourcePermissionRegistrar {

@Activate

public void activate(BundleContext bundleContext) {

Dictionary<String, Object> properties = new HashMapDictionary<>();

properties.put("model.class.name", BlogsEntry.class.getName());

_serviceRegistration = bundleContext.registerService(

ModelResourcePermission.class,

ModelResourcePermissionFactory.create(

BlogsEntry.class, BlogsEntry::getEntryId,

_blogsEntryLocalService::getEntry, _portletResourcePermission,

(modelResourcePermission, consumer) -> {

consumer.accept(

new StagedModelPermissionLogic<>(

_stagingPermission, BlogsPortletKeys.BLOGS,

BlogsEntry::getEntryId));

consumer.accept(

new WorkflowedModelPermissionLogic<>(

_workflowPermission, modelResourcePermission,

BlogsEntry::getEntryId));

}),

properties);

}

653

@Deactivate

public void deactivate() {

_serviceRegistration.unregister();

}

@Reference

private BlogsEntryLocalService _blogsEntryLocalService;

@Reference(target = "(resource.name=" + BlogsConstants.RESOURCE_NAME + ")")

private PortletResourcePermission _portletResourcePermission;

private ServiceRegistration<ModelResourcePermission> _serviceRegistration;

@Reference

private StagingPermission _stagingPermission;

@Reference

private WorkflowPermission _workflowPermission;

}

We call these types of classes Registrars because the classes’ job is to configure, register and
unregister the ModelResourcePermission.

1. The model.class.name is set in the properties so that other modules’ service trackers can find
this model resource permission by its type when it’s needed. Liferay has several service
trackers checking for model resource permissions. The service.ranking property can also be
set to a value greater than zero to override other module’s model resource permissions.

2. This registrar uses two portal-kernel permission logic classes for Staging and Workflow.
Custom logic classes can be reused or composed inline since ModelResourcePermissionLogic

is a @FunctionalInterface. Permission logic classes are executed in order of when they are
accepted in the Consumer.

3. ModelResourcePermissionLogic classes return true when users have permission for the action,
false when they are denied permission for the action, and null when wanting to delegate
responsibility to the next permission logic. If all permission logics return null then the
PermissionChecker.hasPermissionmethod is called to determine if the action is allowed for the
user.

This class uses an @Referencewith the target filter to inject the appropriate PortletResourcePermission.
BlogsConstants.RESOURCE_NAME evaluates to com.liferay.blogs, which is defined in the default.xml

you created earlier. If you were to reference this ModelResourcePermission, you’d use a target filter
matching the model.class.name property set in the activatemethod.

Note that you specify your entity’s class, primary key, and the entity itself for the factory so it
can create permission objects specific to your entity.

Great! You’ve now completed step 2 in DRAC by registering your permissions. Now you’re ready
to provide users the interface to associate permissions with resources.

64.4 Associating Permissions with Resources

Now that you’ve defined and registered permissions, you must expose the permissions interface so
users can set permissions.

654

To allow permissions to be configured for model resources, you must add the permissions
interface to the UI. Add these two Liferay UI tags to your JSP:

1. <liferay-security:permissionsURL>: Returns a URL to the permission settings configuration
page.

2. <liferay-ui:icon>: Shows an icon to the user. These are defined in the theme and one of
them (see below) is used for permissions.

The Blogs application uses these tags like this:

<liferay-security:permissionsURL

modelResource="<%= BlogsEntry.class.getName() %>"

modelResourceDescription="<%= BlogsEntryUtil.getDisplayTitle(resourceBundle, entry) %>"

resourceGroupId="<%= String.valueOf(entry.getGroupId()) %>"

resourcePrimKey="<%= String.valueOf(entry.getEntryId()) %>"

var="permissionsEntryURL"

windowState="<%= LiferayWindowState.POP_UP.toString() %>"

/>

<liferay-ui:icon

label="<%= true %>"

message="permissions"

method="get"

url="<%= permissionsEntryURL %>"

useDialog="<%= true %>"

/>

For the <liferay-security:permissionsURL /> tag, specify these attributes:
modelResource: The fully qualified class name of the entity class. This class name gets translated

into a more readable name as specified in Language.properties.
Language.properties: The entity class in the example above is the Blogs entry class for which

the fully qualified class name is com.liferay.blogs.model.BlogsEntry.
modelResourceDescription: You can enter anything that best describes this model instance. In

the example above, the Blog title is used for the model resource description.
resourcePrimKey: Your entity’s primary key.
var: The name of the variable to which the resulting URL string is assigned. The variable is

then passed to the <liferay-ui:icon> tag so the permission icon has the proper URL link.
There’s an optional attribute called redirect that’s available if you want to override the default

behavior of the upper right arrow link. That’s it; now your users can configure the permission
settings for model resources!

You’ve completed step 3 in DRAC. Your next step is to check for permissions in the appropriate
areas of your application.

64.5 Checking Permissions

Now that you’ve defined your permissions, registered resources in the database and with the
OSGi container, and enabled users to associate permissions with resources, you’re ready to add
permission checks in the appropriate places in your application. This takes three steps:

1. Add permission checks to your service calls.

2. Create permission helper classes in your web module.

655

3. Add permission checks to your web application.

These things are covered next.

Add Permission Checks to Your Service Calls

A best practice is to create methods in your -ServiceImpl classes that call the same methods in your
-LocalServiceImpl classes, but wrap those calls in permission checks. If you expose your services
as web services, then any client calling those services must have permission to call the service.
In this way, you separate your business logic (contained in the -LocalServiceImpl class) from your
permissions logic (contained in the -ServiceImpl class).

1. Open your entity’s -ServiceImpl class.

2. Use the ModelResourcePermissionFactory and the PortletResourcePermissionFactory to refer-
ence permission checkers that can check permissions as you’ve defined them in default.xml.
Here’s how the Blogs portlet does this:

private static volatile ModelResourcePermission<BlogsEntry>

_blogsEntryFolderModelResourcePermission =

ModelResourcePermissionFactory.getInstance(

BlogsEntryServiceImpl.class,

"_blogsEntryFolderModelResourcePermission", BlogsEntry.class);

private static volatile PortletResourcePermission

_portletResourcePermission =

PortletResourcePermissionFactory.getInstance(

BlogsEntryServiceImpl.class, "_portletResourcePermission",

BlogsConstants.RESOURCE_NAME);

You declare the class, the variable, and for the portlet resource, the resource name from
default.xml. In the Blogs application, BlogsConstants.RESOURCE_NAME is a String with the value
com.liferay.blogs.
You must use ModelResourcePermissionFactory.getInstance() in the service because Ser-
vice Builder is wired with Spring, so @Reference can’t be used. Make sure to use
the correct service class and the name of the field that’s being set (in this case
"_blogsEntryFolderModelResourcePermission"), because it’s set with reflection when the
service is registered. If you get the field wrong, it’ll be set wrong. The field must be static

and volatile, and should never be used outside of -ServiceImpl classes.

3. Check permissions in the appropriate places. For example, adding a blog entry requires the
ADD_ENTRY permission, so the Blogs application does this:

@Override

public BlogsEntry addEntry(

String title, String subtitle, String description, String content,

int displayDateMonth, int displayDateDay, int displayDateYear,

int displayDateHour, int displayDateMinute, boolean allowPingbacks,

boolean allowTrackbacks, String[] trackbacks,

String coverImageCaption, ImageSelector coverImageImageSelector,

ImageSelector smallImageImageSelector,

ServiceContext serviceContext)

throws PortalException {

_portletResourcePermission.check(

getPermissionChecker(), serviceContext.getScopeGroupId(),

656

ActionKeys.ADD_ENTRY);

return blogsEntryLocalService.addEntry(

getUserId(), title, subtitle, description, content,

displayDateMonth, displayDateDay, displayDateYear, displayDateHour,

displayDateMinute, allowPingbacks, allowTrackbacks, trackbacks,

coverImageCaption, coverImageImageSelector, smallImageImageSelector,

serviceContext);

}

The check throws an exception if it fails, preventing the local service call that adds the entry.
A convention Liferay uses is to place the action keys from default.xml as constants in an
ActionKeys class. If ActionKeys doesn’t have an action key appropriate for your application,
extend Liferay’s class and add your own keys.

Add permission checks where necessary to protect your application’s functions at the service
level. Next, you’ll learn how to create permission helper classes for your web module.

Create Permission Helper Classes in Your WebModule

A helper class can make it easier to check permissions in your portlet application. You can create
helper classes for both portlet permissions and model permissions. Here’s how to create a portlet
permission helper:

1. Create a package with the suffix web.internal.security.permission.resource. For example, the
Blogs applicationhas thepackage com.liferay.blogs.web.internal.security.permission.resource.

2. Create a component class with at least one static method for checking permissions. For
example, here’s the BlogsPermission class:

@Component(immediate = true)

public class BlogsPermission {

public static boolean contains(

PermissionChecker permissionChecker, long groupId, String actionId) {

return _portletResourcePermission.contains(

permissionChecker, groupId, actionId);

}

@Reference(

target = "(resource.name=" + BlogsConstants.RESOURCE_NAME + ")",

unbind = "-"

)

protected void setPortletResourcePermission(

PortletResourcePermission portletResourcePermission) {

_portletResourcePermission = portletResourcePermission;

}

private static PortletResourcePermission _portletResourcePermission;

}

Note the @Reference annotation that tells the OSGi container to supply an object via the
permission registrar you created previously. The _portletResourcePermission field is static,
while the setter method is an instance method: this is how Liferay avoids having service
references in JSPs.

657

The procedure for creating a model permission helper is similar:

1. In the same package, create a component class with at least one static method for checking
permissions. For example, here’s the BlogsEntryPermission class:

@Component(immediate = true)

public class BlogsEntryPermission {

public static boolean contains(

PermissionChecker permissionChecker, BlogsEntry entry,

String actionId)

throws PortalException {

return _blogsEntryFolderModelResourcePermission.contains(

permissionChecker, entry, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, long entryId, String actionId)

throws PortalException {

return _blogsEntryFolderModelResourcePermission.contains(

permissionChecker, entryId, actionId);

}

@Reference(

target = "(model.class.name=com.liferay.blogs.model.BlogsEntry)",

unbind = "-"

)

protected void setEntryModelPermission(

ModelResourcePermission<BlogsEntry> modelResourcePermission) {

_blogsEntryFolderModelResourcePermission = modelResourcePermission;

}

private static ModelResourcePermission<BlogsEntry>

_blogsEntryFolderModelResourcePermission;

}

As you can see, this class is almost the same as the portlet permission class. The real difference
is in the @Reference annotation that specifies the fully qualified class name of themodel, rather
than the resource name from default.xml.

2. Save both files.

Now you’re ready to use these helper classes to check permissions in your web module.

Add Permission Checks to Your Web Application

You can use the permission helper classes to check for permissions before displaying UI elements.
If the element never appears, a user can’t access it (though you should also protect your services as
described above). Here’s how to do that:

1. When you have a function you want to protect, wrap it in an if statement that uses the
permission helper class. For example, the Blogs application has many functions protected by
permissions, including ADD_ENTRY and SUBSCRIBE. Clearly, only blog owners should be able to
add blog entries. The button for this, therefore, should only appear if a user has permission
to add entries:

658

<c:if test="<%= BlogsPermission.contains(permissionChecker, scopeGroupId, ActionKeys.ADD_ENTRY) %>">

<div class="button-holder">

<portlet:renderURL var="editEntryURL" windowState="<%= WindowState.MAXIMIZED.toString() %>">

<portlet:param name="mvcRenderCommandName" value="/blogs/edit_entry" />

<portlet:param name="redirect" value="<%= currentURL %>" />

</portlet:renderURL>

<aui:button href="<%= editEntryURL %>" icon="icon-plus" value="add-blog-entry" />

</div>

</c:if>

2. Do this for any function. For example, the Permissions function you added in step 3 should
definitely be protected by permissions:

<c:if test="<%= BlogsEntryPermission.contains(permissionChecker, entry, ActionKeys.PERMISSIONS) %>">

<liferay-security:permissionsURL

modelResource="<%= BlogsEntry.class.getName() %>"

modelResourceDescription="<%= BlogsEntryUtil.getDisplayTitle(resourceBundle, entry) %>"

resourceGroupId="<%= String.valueOf(entry.getGroupId()) %>"

resourcePrimKey="<%= String.valueOf(entry.getEntryId()) %>"

var="permissionsEntryURL"

windowState="<%= LiferayWindowState.POP_UP.toString() %>"

/>

<liferay-ui:icon

label="<%= true %>"

message="permissions"

method="get"

url="<%= permissionsEntryURL %>"

useDialog="<%= true %>"

/>

</c:if>

This prevents anyone without the permission to set permissions from seeing the permissions
button. Say that three times fast!

That’s all there is to it! You’ve now learned all the steps in DRAC:

1. Define permissions

2. Register permissions

3. Associate permissions with resources

4. Check permissions

Follow these steps, and your applications can take advantage of Liferay’s integrated and well-
tested permissions system.

64.6 Using JSR Roles in a Portlet

Roles in Liferay DXP are the primary means for granting or restricting access to content. If you’ve
decided not to use Liferay’s permissions system, you can use the basic system offered by the JSR
168, 286, and 362 specifications that map Roles in a portlet to Roles provided by the portal.

659

JSR Portlet Security

The portlet specification defines a means to specify Roles used by portlets in their docroot/WEB-
INF/portlet.xml descriptors. The Role names themselves, however, are not standardized. When
these portlets run in Liferay DXP, the Role names defined in the portlet must be mapped to Roles
that exist in the Portal.

For example, consider a Guestbook project that contains two portlets: The Guestbook portlet
and the Guestbook Admin portlet. The WAR version of the Guestbook project’s portlet.xml file
references the administrator, guest, power-user, and user Roles:

<?xml version="1.0"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-

app_2_0.xsd" version="2.0">

<portlet>

<portlet-name>guestbook</portlet-name>

<display-name>Guestbook</display-name>

<portlet-class>

com.liferay.docs.guestbook.portlet.GuestbookPortlet

</portlet-class>

<init-param>

<name>view-template</name>

<value>/html/guestbook/view.jsp</value>

</init-param>

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>view</portlet-mode>

</supports>

<portlet-info>

<title>Guestbook</title>

<short-title>Guestbook</short-title>

<keywords></keywords>

</portlet-info>

<security-role-ref>

<role-name>administrator</role-name>

</security-role-ref>

<security-role-ref>

<role-name>guest</role-name>

</security-role-ref>

<security-role-ref>

<role-name>power-user</role-name>

</security-role-ref>

<security-role-ref>

<role-name>user</role-name>

</security-role-ref>

</portlet>

<portlet>

<portlet-name>guestbook-admin</portlet-name>

<display-name>Guestbook Admin</display-name>

<portlet-class>

com.liferay.docs.guestbook.portlet.GuestbookAdminPortlet

</portlet-class>

<init-param>

<name>view-template</name>

<value>/html/guestbookadmin/view.jsp</value>

</init-param>

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>view</portlet-mode>

</supports>

<portlet-info>

<title>Guestbook Admin</title>

660

<short-title>Guestbook Admin</short-title>

<keywords></keywords>

</portlet-info>

<security-role-ref>

<role-name>administrator</role-name>

</security-role-ref>

<security-role-ref>

<role-name>guest</role-name>

</security-role-ref>

<security-role-ref>

<role-name>power-user</role-name>

</security-role-ref>

<security-role-ref>

<role-name>user</role-name>

</security-role-ref>

</portlet>

An OSGi-based guestbook-webmodule project defines Roles without an XML file, in the portlet
class’s @Component annotation:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.name=" + GuestbookPortletKeys.Guestbook,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

If you are using an OSGi-based MVC Portlet, you must use Liferay’s permissions system, as the
only way to map JSR-362 Roles to Liferay Roles is to place them in the LiferayWAR file’s portlet.xml.

Your portlet.xml Roles must be mapped to specific Roles that have been created. These map-
pings allow Liferay DXP to resolve conflicts between Roles with the same name that are from
different portlets (e.g. portlets from different developers).

Note: Each Role named in a portlet’s <security-role-ref> element is given permission to add
the portlet to a page.

Mapping Portlet Roles to Portal Roles

To map the Roles to Liferay DXP, you must use the docroot/WEB-INF/liferay-portlet.xml Liferay-
specific configuration file. For an example, see the mapping defined in the Guestbook project’s
liferay-portlet.xml file.

<role-mapper>

<role-name>administrator</role-name>

<role-link>Administrator</role-link>

</role-mapper>

<role-mapper>

<role-name>guest</role-name>

<role-link>Guest</role-link>

</role-mapper>

<role-mapper>

<role-name>power-user</role-name>

661

<role-link>Power User</role-link>

</role-mapper>

<role-mapper>

<role-name>user</role-name>

<role-link>User</role-link>

</role-mapper>

If a portlet definition references the Role power-user, that portlet is mapped to the Liferay Role
called Power User that’s already in Liferay’s database.

As stated above, there is no standardization with portal Role names. If you deploy a portlet
with Role names different from the above default Liferay names, you must add the names to the
system.roles property in your portal-ext.properties file:

system.roles=my-role,your-role,our-role

This prevents Roles from being created accidentally.
Once Roles aremapped to the portal, you can usemethods as defined in the portlet specification:

• getRemoteUser()

• isUserInRole()

• getUserPrincipal()

For example, you can use the following code to check if the current User has the power-user

Role:

if (renderRequest.isUserInRole("power-user")) {

// ...

}

By default, Liferay doesn’t use the isUserInRole()method in any built-in portlets. Liferay uses
its own permission system directly to achieve more fine-grained security. If you don’t intend on
deploying your portlets to other portal servers, we recommend using Liferay’s permission system,
because it offers a much more robust way of tailoring your application’s permissions.

Related Topics

Liferay Permissions
Asset Framework
Portlets
Understanding ServiceContext

662

CHAPTER 65

AUTHENTICATION PIPELINES

The authentication process is a pipeline through which users can be validated by one or several
systems. As a developer, you can authenticate users to anything you wish, rather than be limited
by what Liferay DXP supports out of the box.

Here’s how authentication works under most circumstances:

1. Users provide their credentials to the Login Portlet to begin an authenticated session in a
browser.

2. Alternatively, credentials are provided to Liferay DXP’s API endpoints, where they are sent in
an HTTP BASIC Auth header.

3. Alternatively, credentials can be provided by another system. These aremanaged by AutoLogin
components.

4. Credentials are checked by default against the database, but they can be delegated to other
systems instead of or in addition to it. This is called an Authentication Pipeline. You can add
Authenticators to the pipeline to support any system.

5. You can also customize the Login Portlet to support whatever user interface any of these
systems need. This gives you full flexibility over the entire authentication process.

This structure lets you support an authentication mechanism and/or accept credentials from a
system that Liferay DXP doesn’t yet support. If you don’t like the user interface for signing in, you
can replace it with your own.

These tutorials guide you through these customizations. You’ll discover three kinds of cus-
tomizations:

• Auto Login: the easiest of the three, this lets you authenticate to Liferay DXP using credentials
provided in the HTTP header from another system.

• Authentication Pipelines: if you need to check credentials against other systems instead of
or in addition to Liferay DXP’s database, you can create a pipeline.

• Custom Login Portlet: if you want to change the user’s sign-in experience completely, you
can implement your own Login portlet.

Read on to discover how to customize your users’ sign-in experience.

663

65.1 Auto Login

While Liferay DXP supports a wide variety of authentication mechanisms, you may use a home-
grown system or some other product to authenticate users. To do so, you can write an Auto Login
component to support your authentication system.

Auto Login components can check if the request contains something (a cookie, an attribute)
that can be associated with a user in any way. If the component can make that association, it can
authenticate that user.

Creating an Auto Login Component

Create aDeclarative Services component. The component should implement the com.liferay.portal.kernel.security.auto.login.AutoLogin
interface. Here’s an example template:

import com.liferay.portal.kernel.security.auto.login.AutoLogin;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.osgi.service.component.annotations.Component;

@Component(immediate = true)

public class MyAutoLogin implements Autologin {

public String[] handleException(

HttpServletRequest request, HttpServletResponse response,

Exception e)

throws AutoLoginException {

/* This method is no longer used in the interface and can be

left empty ⁎/

}

public String[] login(

HttpServletRequest request, HttpServletResponse response)

throws AutoLoginException {

/* Your Code Goes Here ⁎/

}

}

As you can see, you have access to the HttpServletRequest and the HttpServletResponse objects.
If your sign-on solution places anything here that identifies a user such as a cookie, an attribute, or
a parameter, you can retrieve it and take whatever action you need to retrieve the user information
and authenticate that user.

For example, say that there’s a request attribute that contains the encrypted value of a user key.
This can only be there if the user has authenticated with a third party system that knew the value
of the user key, encrypted it, and added it as a request attribute. You could write code that reads
the value, decrypts it using the same pre-shared key, and uses the value to look up and authenticate
the user.

The loginmethod is where this all happens. This method must return a String array with three
items in this order:

• The user ID

664

• The user password
• Abooleanflag that’s true if thepassword is encrypted and false if it’s not (Boolean.TRUE.toString()
or Boolean.FALSE.toString()).

Sending redirects is an optional AutoLogin feature. Since AutoLogins are part of the servlet filter
chain, you have two options. Both are implemented by setting attributes in the request. Here are
the attributes:

• AutoLogin.AUTO_LOGIN_REDIRECT: This key causes AutoLoginFilter to stop the filter chain’s exe-
cution and redirect immediately to the location specified in the attribute’s value.

• AutoLogin.AUTO_LOGIN_REDIRECT_AND_CONTINUE: This key causes AutoLoginFilter to set the redi-
rect and continue executing the remaining filters in the chain.

Auto Login components are useful ways of providing an authentication mechanism to a system
that Liferay DXP doesn’t yet support. You can write them fairly quickly to provide the integration
you need.

Related Topics

Password-Based Authentication Pipelines
Writing a Custom Login Portlet

65.2 Password-Based Authentication Pipelines

By default, once a user submits credentials, those credentials are checked against Liferay DXP’s
database, though you can also delegate authentication to an LDAP server. To use some other system
in your environment instead of or in addition to checking credentials against the database, you can
write an Authenticator and insert it as a step in the authentication pipeline.

Because the Authenticator is checked by the Login Portlet, you can’t use this approach if the
user must be redirected to the external system or needs a token to authenticate. In those cases,
you should use an Auto Login or an Auth Verifier.

Authenticators let you do these things:

• Log into Liferay DXP with a user name and password maintained in an external system
• Make secondary user authentication checks
• Perform additional processing when user authentication fails

Read on to learn how to create an Authenticator.

Anatomy of an Authenticator

Authenticators are implemented for various steps in the authentication pipeline. Here are the
steps:

1. auth.pipeline.pre: Comes before default authentication to the database. In this step, you can
skip credential validation against the database. Implemented by Authenticator.

2. Default (optional) authentication to the database.

665

3. auth.pipeline.post: Further (secondary, tertiary) authentication checks. Implemented by
Authenticator.

4. auth.failure: Perform additional processing after authentication fails. Implemented by
AuthFailure.

To create an Authenticator, create amodule and add a component that implements the interface:

@Component(

immediate = true, property = {"key=auth.pipeline.post"},

service = Authenticator.class

)

public class MyCustomAuth implements Authenticator {

public int authenticateByEmailAddress(

long companyId, String emailAddress, String password,

Map<String, String[]> headerMap, Map<String, String[]> parameterMap)

throws AuthException {

return Authenticator.SUCCESS;

}

public int authenticateByScreenName(

long companyId, String screenName, String password,

Map<String, String[]> headerMap, Map<String, String[]> parameterMap)

throws AuthException {

return Authenticator.SUCCESS;

}

public int authenticateByUserId(

long companyId, long userId, String password,

Map<String, String[]> headerMap, Map<String, String[]> parameterMap)

throws AuthException {

return Authenticator.SUCCESS;

}

}

This example has been stripped down so you can see its structure. First, note the @Component

annotation’s contents:

• immediate = true: sets the component to start immediately
• key=auth.pipeline.post: sets the Authenticator to run in the auth.pipeline.post phase. To run
the auth.pipeline.pre phase, substitute auth.pipeline.pre.

• service = Authenticator.class: implements the Authenticator service. All Authenticators
must do this.

The threemethods below the annotation run based on how you’ve configured authentication: by
email address (the default), by screenname, or by user ID. All themethods throwan AuthException in
case the Authenticator can’t perform its task: if the system it’s authenticating against is unavailable
or if some dependency can’t be found. Themethods in this barebones example return success in all
cases. If you deploy its module, it has no effect. Naturally, you’ll want to provide more functionality.
Next is an example that shows you how to do that.

666

Creating an Authenticator

This example is an Authenticator that only allows users whose email addresses end with @exam-
ple.com or @example.com. You can implement this using one module that does everything. If you
think other modules might use the functionality that validates the email addresses, you should
create two modules: one to implement the Authenticator and one to validate email addresses. This
example shows the two module approach.

To create an Authenticator, create a module for your implementation. The most appropriate
Blade template for this is the service template. Once you have the module, creating the Activator is
straightforward:

1. Add the @Component annotation to bind your Activator to the appropriate authentication
pipeline phase.

2. Implement the Authenticator interface and provide the functionality you need.

3. Deploy your module. If you’re using Blade CLI, do this via blade deploy.

For this example, you’ll do this twice: once for the email address validator module and once for
the Authenticator itself. The Authenticator project contains the interface for the validator, and the
validator project contains the implementation. Here’s what the Authenticatormodule structure
looks like:

Figure 65.1: The Authenticator module contains the validator’s interface and the authenticator.

667

Since the Authenticator is the most relevant, examine it first:

package com.liferay.docs.emailaddressauthenticator;

import java.util.Map;

import com.liferay.docs.emailaddressauthenticator.validator.EmailAddressValidator;

import com.liferay.portal.kernel.log.Log;

import com.liferay.portal.kernel.log.LogFactoryUtil;

import com.liferay.portal.kernel.security.auth.AuthException;

import com.liferay.portal.kernel.security.auth.Authenticator;

import com.liferay.portal.kernel.service.UserLocalService;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import org.osgi.service.component.annotations.ReferenceCardinality;

import org.osgi.service.component.annotations.ReferencePolicy;

@Component(

immediate = true,

property = {"key=auth.pipeline.post"},

service = Authenticator.class

)

public class EmailAddressAuthenticator implements Authenticator {

@Override

public int authenticateByEmailAddress(long companyId, String emailAddress,

String password, Map<String, String[]> headerMap,

Map<String, String[]> parameterMap) throws AuthException {

return validateDomain(emailAddress);

}

@Override

public int authenticateByScreenName(long companyId, String screenName,

String password, Map<String, String[]> headerMap,

Map<String, String[]> parameterMap) throws AuthException {

String emailAddress =

_userLocalService.fetchUserByScreenName(companyId, screenName).getEmailAddress();

return validateDomain(emailAddress);

}

@Override

public int authenticateByUserId(long companyId, long userId,

String password, Map<String, String[]> headerMap,

Map<String, String[]> parameterMap) throws AuthException {

String emailAddress =

_userLocalService.fetchUserById(userId).getEmailAddress();

return validateDomain(emailAddress);

}

private int validateDomain(String emailAddress) throws AuthException {

if (_emailValidator == null) {

String msg = "Email address validator is unavailable, cannot authenticate user";

_log.error(msg);

throw new AuthException(msg);

}

if (_emailValidator.isValidEmailAddress(emailAddress)) {

return Authenticator.SUCCESS;

}

668

return Authenticator.FAILURE;

}

@Reference

private volatile UserLocalService _userLocalService;

@Reference(

policy = ReferencePolicy.DYNAMIC,

cardinality = ReferenceCardinality.OPTIONAL

)

private volatile EmailAddressValidator _emailValidator;

private static final Log _log = LogFactoryUtil.getLog(EmailAddressAuthenticator.class);

}

This time, rather than stubs, the three authentication methods contain functionality. The
authenticateByEmailAddressmethod directly checks the email address provided by the Login Portlet.
The other two methods, authenticateByScreenName and authenticateByUserId call UserLocalService
to look up the user’s email address before checking it. The OSGi container injects this service
because of the @Reference annotation. Note that the validator is also injected in this same manner,
though it’s configured not to fail if the implementation can’t be found. This allows this module
to start regardless of its dependency on the validator implementation. In this case, this is safe
because the error is handled by throwing an AuthException and logging the error.

Why would you want to do it this way? To err gracefully. Because this is an auth.pipeline.post

Authenticator, you presumably have other Authenticators checking credentials before this one.
If this one isn’t working, you want to inform administrators with an error message rather than
catastrophically failing and preventing users from logging in.

The only other Java code in this module is the Interface for the validator:

package com.liferay.docs.emailaddressauthenticator.validator;

import aQute.bnd.annotation.ProviderType;

@ProviderType

public interface EmailAddressValidator {

public boolean isValidEmailAddress(String emailAddress);

}

This defines a single method for checking the email address.
Next, you’ll address the validator module.
This module contains only one class. It implements the Validator interface:

package com.liferay.docs.emailaddressvalidator.impl;

import java.util.Arrays;

import java.util.HashSet;

import java.util.Set;

import org.osgi.service.component.annotations.Component;

import com.liferay.docs.emailaddressauthenticator.validator.EmailAddressValidator;

@Component(

immediate = true,

property = {

},

service = EmailAddressValidator.class

)

public class EmailAddressValidatorImpl implements EmailAddressValidator {

@Override

669

Figure 65.2: The validator project implements the Validator Interface and depends on the authenticator module.

public boolean isValidEmailAddress(String emailAddress) {

if (_validEmailDomains.contains(

emailAddress.substring(emailAddress.indexOf('@')))) {

return true;

}

return false;

}

private Set<String> _validEmailDomains =

new HashSet<String>(Arrays.asList(new String[] {"@example.com", "@example2.com"}));

}

This code checks tomake sure that the email address is from the@example.com or@example.com
domains. The only other interesting part of this module is the Gradle build script, because it
defines a compile-only dependency between the two projects. This is divided into two files: a
settings.gradle and a build.gradle.

The settings.gradle file defines the location of the project (the Authenticator) the validator
depends on:

include ':emailAddressAuthenticator'

project(':emailAddressAuthenticator').projectDir = new File(settingsDir, '../com.liferay.docs.emailAddressAuthenticator')

670

Since this project contains the interface, it must be on the classpath at compile time, which is
when build.gradle is running:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins", version: "3.0.23"

}

repositories {

mavenLocal()

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.plugin"

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "org.osgi", name: "org.osgi.compendium", version: "5.0.0"

compileOnly project(":emailAddressAuthenticator")

}

repositories {

mavenLocal()

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Note the line in the dependencies section that refers to the Authenticator project defined in
settings.gradle.

When these projects are deployed, the Authenticator you defined runs, enforcing logins for the
two domains specified in the validator.

If you want to examine these projects further, you can download them in this ZIP file.

Related Topics

Auto Login
Writing a Custom Login Portlet

65.3 Writing a Custom Login Portlet

If you need to customize your users’ authentication experience completely, you can write your own
Login Portlet. The mechanics of this on the macro level are no different from writing any other
portlet, so if you need to familiarize yourself with that, please see the portlets section of tutorials.

This tutorial shows only the relevant parts of a Liferay MVC Portlet that authenticates the user.
You’ll learn how to call the authentication pipeline and then redirect the user to a location of your
choice.

671

https://portal.liferay.dev/documents/113763090/114000186/auth-pipelines-authenticator.zip

Authenticating to Liferay DXP

You can use the example project in this ZIP file as a starting point for your own.

Note: When using the example project, set the session timeout portal property like this:

session.timeout.auto.extend.offset=45

This is needed because the default (as of LPS-68543) setting is 0, causing the browser to execute
an extend_session call. This may force users attempting to log in to make the attempt twice.

It has only one view, which is used for logging in or showing the user who is already logged in:

<%@ include file="/init.jsp" %>

<p>

<liferay-ui:message key="myloginportlet_MyLogin.caption"/>

</p>

<c:choose>

<c:when test="<%= themeDisplay.isSignedIn() %>">

<%

String signedInAs = HtmlUtil.escape(user.getFullName());

if (themeDisplay.isShowMyAccountIcon() && (themeDisplay.getURLMyAccount() != null)) {

String myAccountURL = String.valueOf(themeDisplay.getURLMyAccount());

signedInAs = "" + signedInAs + "";

}

%>

<liferay-ui:message arguments="<%= signedInAs %>" key="you-are-signed-in-as-x" translateArguments="<%= false %>" />

</c:when>

<c:otherwise>

<%

String redirect = ParamUtil.getString(request, "redirect");

%>

<portlet:actionURL name="/login/login" var="loginURL">

<portlet:param name="mvcRenderCommandName" value="/login/login" />

</portlet:actionURL>

<aui:form action="<%= loginURL %>" autocomplete='on' cssClass="sign-in-form" method="post" name="loginForm">

<aui:input name="saveLastPath" type="hidden" value="<%= false %>" />

<aui:input name="redirect" type="hidden" value="<%= redirect %>" />

<aui:input autoFocus="true" cssClass="clearable" label="email-address" name="login" showRequiredLabel="<%= false %>" type="text" value="">

<aui:validator name="required" />

</aui:input>

<aui:input name="password" showRequiredLabel="<%= false %>" type="password">

<aui:validator name="required" />

</aui:input>

<aui:button-row>

<aui:button cssClass="btn-lg" type="submit" value="sign-in" />

</aui:button-row>

</aui:form>

</c:otherwise>

</c:choose>

672

https://portal.liferay.dev/documents/113763090/114000186/MyCustomLoginPortlet.zip
https://issues.liferay.com/browse/LPS-68543

Note that in the form, authentication by email address (the default setting) is hard-coded, as
this is an example project. The current page is sent as a hidden field on the form so the portlet can
redirect the user to it, but you can of course set this to any value you want.

The portlet handles all processing of this form using a single Action Command (imports left
out for brevity):

@Component(

property = {

"javax.portlet.name=MyLoginPortlet",

"mvc.command.name=/login/login"

},

service = MVCActionCommand.class

)

public class MyLoginMVCActionCommand extends BaseMVCActionCommand {

@Override

protected void doProcessAction(ActionRequest actionRequest,

ActionResponse actionResponse) throws Exception {

ThemeDisplay themeDisplay = (ThemeDisplay)actionRequest.getAttribute(

WebKeys.THEME_DISPLAY);

HttpServletRequest request = PortalUtil.getOriginalServletRequest(

PortalUtil.getHttpServletRequest(actionRequest));

HttpServletResponse response = PortalUtil.getHttpServletResponse(

actionResponse);

String login = ParamUtil.getString(actionRequest, "login");

String password = actionRequest.getParameter("password");

boolean rememberMe = ParamUtil.getBoolean(actionRequest, "rememberMe");

String authType = CompanyConstants.AUTH_TYPE_EA;

AuthenticatedSessionManagerUtil.login(

request, response, login, password, rememberMe, authType);

actionResponse.sendRedirect(themeDisplay.getPathMain());

}

}

The only tricky/unusual code here is the need to grab the HttpServletRequest and the
HttpServletResponse. This is necessary to call Liferay DXP’s API for authentication. At the end of
the Action Command, the portlet sends a redirect that sends the user to the same page. You can of
course make this any page you want.

Implementing your own login portlet gives you complete control over the authentication
process.

Related Topics

Password-Based Authentication Pipelines
Auto Login

65.4 Service Access Policies

Service access policies provide web service security beyond user authentication to remote services.
Together with permissions, service access policies limit remote service access by remote client

673

applications. This forms an additional security layer that protects user data from unauthorized
access and modification.

To connect to a web service, remote clients must authenticate with credentials in that instance.
This grants the remote client the permissions assigned to those credentials in the Liferay DXP
installation. Service access policies further limit the remote client’s access to the services specified
in the policy. Without such policies, authenticated remote clients are treated like users: they can
call any remote API and read or modify data on behalf of the authenticated user. Since remote
clients are often intended for a specific use case, granting them access to everything the user has
permissions for poses a security risk.

For example, consider amobile app (client) that displays a user’s appointments from the Liferay
Calendar app. This client app doesn’t need access to the API that updates the user profile, even
though the user has such permissions on the server. The client app doesn’t even need access to
the Calendar API methods that create, update, and delete appointments. It only needs access to
the remote service methods for finding and retrieving appointments. A service access policy on
the server can restrict the client’s access to only these service methods. Since the client doesn’t
perform other operations, having access to them is a security risk if the mobile device is lost or
stolen or the client app is compromised by an attacker.

How Service Access Policies Work

A remote client’s request to a web service contains the user’s credentials or an authorization token.
An authentication module recognizes the client based on the credentials/token and grants the
appropriate service access policy to the request. The service access policy authorization layer then
processes all granted policies and lets the request access the remote service(s) permitted by the
policy.

Service Access policies are created in the Control Panel by administrators. If you want to start
creating policies yourself, see this article on service access policies that documents creating them
in the UI.

There may be cases, however, when your server-side Liferay app must use the service access
policies API:

• It uses custom remote API authentication (tokens) and require certain services to be available
for clients using the tokens.

• It requires its services be made available to guest users, with no authentication necessary.

• It contains a remote service authorization layer that needs to drive access to remote services
based on granted privileges.

API Overview

Liferay provides an Interface and a ThreadLocal if you don’t want to roll your own policies. If you
want to get low level, an API is provided that Liferay itself has used to implement Liferay Sync.

1. The Interface and ThreadLocal are available in thepackage com.liferay.portal.kernel.security.service.access.policy.
This package provides classes for basic access to policies. For example, you can use the
singleton ServiceAccessPolicyManagerUtil to obtain Service Access Policies configured in the
system. You can also use the ServiceAccessPolicyThreadLocal class to set and obtain Service
Access Policies granted to the current request thread.

674

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/security/service/access/policy/package-summary.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/security/service/access/policy/ServiceAccessPolicyManagerUtil.html
https://docs.liferay.com/portal/7.0/javadocs/portal-kernel/com/liferay/portal/kernel/security/service/access/policy/ServiceAccessPolicyThreadLocal.html

Figure 65.3: The authorization module maps the credentials or token to the proper Service Access Policy.

675

At this level, you can get a list of the configured policies to let your app/client choose a policy
for accessing services. Also, apps like OAuth can offer a list of available policies during the
authorization step in the OAuth workflow and allow the user to choose the policy to assign
to the remote application. You can also grant a policy to a current request thread. When a
remote client accesses an API, something must tell the Liferay instance which policies are
assigned to this call. This something is in most cases an AuthVerifier implementation. For
example, in the case of the OAuth app, an AuthVerifier implementation assigns the policy
chosen by the user in the authorization step.

2. The API ships with the product as OSGi modules:

• com.liferay.portal.security.service.access.policy.api.jar

• com.liferay.portal.security.service.access.policy.service.jar

• com.liferay.portal.security.service.access.policy.web.jar

These OSGi modules are active by default, and you can use them to manage Service Access
Policies programmatically. You can find their source code here in GitHub. Each module
publishes a list of packages and services that can be consumed by other OSGi modules.

You can use both tools to develop a token verification module (a module that implements
custom security token verification for use in authorizing remote clients) for your app to use. For
example, this modulemay contain a JSONWebToken implementation for Liferay DXP’s remote API.
A custom token verification module must use the Service Access Policies API during the remote
API/web service call to grant the associated policy during the request. The module

• canuse com.liferay.portal.security.service.access.policy.api.jar and com.liferay.portal.security.service.access.policy.service.jar

to create policies programmatically.

• should use the method ServiceAccessPolicyThreadLocal.addActiveServiceAccessPolicyName()

to grant the associated policy during a web service request.

• can use ServiceAccessPolicyManagerUtil to display list of supported policies when authorizing
the remote application, to associate the token with an existing policy.

Service Access Policy Example

Liferay Sync’s sync-securitymodule is a service access policymodule. It uses com.liferay.portal.security.service.access.policy.service
to create the SYNC_DEFAULT and SYNC_TOKEN policies programmatically. For service calls to Sync’s re-
moteAPI, thesepolicies grant access to Sync’s com.liferay.sync.service.SyncDLObjectService#getSyncContext
and com.liferay.sync.service.*, respectively. Here’s the code in the sync-security module that
defines and creates these policies:

@Component(immediate = true)

public class SyncSAPEntryActivator {

// Define the policies

public static final Object[][] SAP_ENTRY_OBJECT_ARRAYS = new Object[][] {

{

"SYNC_DEFAULT",

"com.liferay.sync.service.SyncDLObjectService#getSyncContext", true

},

{"SYNC_TOKEN", "com.liferay.sync.service.*", false}

676

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/security/auth/verifier/AuthVerifier.html
https://github.com/liferay/liferay-portal/tree/master/modules/apps/portal-security
https://www.liferay.com/supporting-products/liferay-sync

};

...

// Create the policies

protected void addSAPEntry(long companyId) throws PortalException {

for (Object[] sapEntryObjectArray : SAP_ENTRY_OBJECT_ARRAYS) {

String name = String.valueOf(sapEntryObjectArray[0]);

String allowedServiceSignatures = String.valueOf(

sapEntryObjectArray[1]);

boolean defaultSAPEntry = GetterUtil.getBoolean(

sapEntryObjectArray[2]);

SAPEntry sapEntry = _sapEntryLocalService.fetchSAPEntry(

companyId, name);

if (sapEntry != null) {

continue;

}

Map<Locale, String> map = new HashMap<>();

map.put(LocaleUtil.getDefault(), name);

_sapEntryLocalService.addSAPEntry(

_userLocalService.getDefaultUserId(companyId),

allowedServiceSignatures, defaultSAPEntry, true, name, map,

new ServiceContext());

}

}

...

}

This class creates the policies when the module starts. Note that this module is included and
enabled by default. You can access these and other policies in Control Panel → Configuration → Service
Access Policy.

The sync-securitymodule must then grant the appropriate policy when needed. Since every
authenticated call to Liferay Sync’s remote API requires access to com.liferay.sync.service.*, the
module must grant the SYNC_TOKEN policy to such calls. The module does this with the method
ServiceAccessPolicyThreadLocal.addActiveServiceAccessPolicyName, as shown in this code snippet:

if ((permissionChecker != null) && permissionChecker.isSignedIn()) {

ServiceAccessPolicyThreadLocal.addActiveServiceAccessPolicyName(

String.valueOf(

SyncSAPEntryActivator.SAP_ENTRY_OBJECT_ARRAYS[1][0]));

}

Now every authenticated call to Sync’s remote API, regardless of authentication method, has
access to com.liferay.sync.service.*. To see the full code example, click here.

Nice! Now you know how to integrate your apps with the Service Access Policies.

677

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/sync/sync-security/src/main/java/com/liferay/sync/security/servlet/filter/SyncAuthFilter.java

CHAPTER 66

WEB SERVICES

It’s important for apps on different machines to communicate. To enable this, an app can expose
APIs so remote components (other apps or devices) can access the app’s features. For example,
one service could have a client app presenting information to users, a server app processing data
in B2B setting, and an IoT device requesting data to do its work. Exposing web APIs lets external
applications or devices communicate with yours.

Because Liferay DXP contains so many apps and features, it’s prudent for Liferay to let de-
velopers access those apps and features from external apps and devices by exposing their APIs.
Additionally, Liferay’s development platformmakes it easy to extend them and create new ones.

There are two different approaches for clients to connect to Liferay DXP’s web APIs:
Headless REST APIs: You can consume RESTful web services independent of Liferay DXP’s

front end (hence headless). These APIs conform to the OpenAPI specification. This is the modern,
preferred way to work with web services in Liferay DXP.

PlainWeb/REST Services: This is the old way to build and consumeweb services in Liferay DXP,
but is still supported. For example, you can use JAX-RS, JAX-WS, or Service Builder to implement
plain REST or SOAP web services.

The tutorials that follow show you how to consume and create web services in Liferay DXP,
beginning with headless REST APIs.

66.1 Headless REST APIs

Liferay DXP’s headless REST APIs follow the OpenAPI specification and let your apps consume
RESTful web services. What’s more, you can consume these APIs without being tied to Liferay
DXP’s UI (hence the term headless). This gives you a great deal of freedom when designing and
developing your apps.

The articles in this section show you how to navigate and consume Liferay DXP’s headless REST
APIs. But first, you’ll learn the design approach for these APIs.

API Vocabulary

When defining an API, the developer must decide how to expose the representation of its resources.
This determines its ease of use and how it can evolve. Traditionally, there are two approaches:

679

https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/

Contract Last: The code is written first and features are exposed as web or REST services. This
approach is typically easier for developers, as they must only implement and expose the business
logic. Service Builder is an example of this.

Contract First: The structure for client-server messages is written before the code that imple-
ments the services. Such messages are defined independent of the code. This avoids tight coupling
and is less likely to break clients as APIs evolve.

Liferay DXP’s headless web APIs use a mixture of both approaches. An OpenAPI profile uses
a contract first approach by defining the paths and schemas before writing any code. It then
generates an API automatically based on that profile, using the contract-last characteristic of code
generation (like Service Builder). This allows fast development for developers.

This mixed approach delivers the best of both worlds, allowing a step of conscious API design
and then simplifying the developer experience by exposing only the business logic to implement.

When writing the OpenAPI profile, the main focus should be on defining how client-server
messages represent the APIs’ resources. In other words, the APIs’ schemas are defined first and
the attributes, resources, and operations are named to clearly define what they represent and how
they should be used.

66.2 Get Started: Discover the API

To begin consuming web services, youmust first know where they are (e.g., a service catalog), what
operations you can invoke, and how to invoke them. Because Liferay DXP’s headless REST APIs
leverage OpenAPI (originally known as Swagger), you don’t need a service catalog. You only need
to know the OpenAPI profile from which to discover the rest of the API.

LiferayDXP’s headlessAPIs are available in SwaggerHubat https://app.swaggerhub.com/organizations/liferayinc.
Each API has its own URL in SwaggerHub. For example, you can access the delivery API definition
at https://app.swaggerhub.com/apis/liferayinc/headless-delivery/v1.0.

Each OpenAPI profile is also deployed dynamically in your portal instance under this schema:

http://[host]:[port]/o/[insert-headless-api]/[version]/openapi.yaml

For example, if you’re running Liferay DXP locally on port 8080, the home URL for discovering
the headless delivery API is:

http://localhost:8080/o/headless-delivery/v1.0/openapi.yaml

You must be logged in to access this URL, or use basic authentication and a browser or other
tool like Postman, Advanced REST Client, or even the curl command in your system console.

For simplicity, the examples in this documentation use the curl command and send requests to
a Liferay DXP instance running locally on port 8080.

Run this curl command to access the home URL:

curl http://localhost:8080/o/headless-delivery/v1.0/openapi.yaml -u test@example.com:test

You should get a response like this:

openapi: 3.0.1

info:

title: Headless Delivery

version: v1.0

paths:

680

https://en.wikipedia.org/wiki/OpenAPI_Specification
https://app.swaggerhub.com/organizations/liferayinc
https://app.swaggerhub.com/apis/liferayinc/headless-delivery/v1.0
https://www.getpostman.com
https://install.advancedrestclient.com/install

/v1.0/blog-posting-images/{blogPostingImageId}:

get:

tags:

- BlogPostingImage

operationId: getBlogPostingImage

parameters:

- name: blogPostingImageId

in: path

required: true

schema:

type: integer

format: int64

responses:

default:

description: default response

content:

application/json:

schema:

$ref: '#/components/schemas/BlogPostingImage'

(...)

This response follows the OpenAPI version 3.0 syntax to specify the endpoints (URLs) of the
API and schemas returned. You can also open the OpenAPI profile in an OpenAPI editor like the
Swagger Editor. You can use this editor to inspect the documentation and parameters and make
requests to the API.

There are also many other tools that support OpenAPI, such as client generators, validators,
parsers, and more. See OpenAPI.Tools for a comprehensive list. Leveraging OpenAPI provides
standards support, extensive documentation, and industry-wide conventions.

Related Topics

Get Started: Invoke a Service

66.3 Get Started: Invoke a Service

Once you know which API you want to call via the OpenAPI profile, you can send a request to that
resource’s URL. For example, suppose you want to retrieve all the blog entries from a Site. If you
consult the OpenAPI profile for Liferay DXP’s delivery API, you can find this endpoint:

"/sites/{siteId}/blog-postings":

get:

operationId: getSiteBlogPostingsPage

parameters:

- in: path

name: siteId

required: true

schema:

format: int64

type: integer

- in: query

name: filter

schema:

type: string

- in: query

name: page

schema:

type: integer

- in: query

name: pageSize

681

https://editor.swagger.io
https://openapi.tools/
https://swagger.io/docs/

schema:

type: integer

- in: query

name: search

schema:

type: string

- in: query

name: sort

schema:

type: string

responses:

200:

content:

application/json:

schema:

items:

$ref: "#/components/schemas/BlogPosting"

type: array

description: ""

tags: ["BlogPosting"]

The only required parameter is siteId, the ID of the blog postings’ Site. Internally, the siteId is
a groupId that you can retrieve from the database, a URL, or Liferay DXP’s UI via the Site Admin-
istration menu. The following GET request gets the site’s blog postings by providing the site ID
(20124) in the URL:

curl "http://localhost:8080/o/headless-delivery/v1.0/sites/20124/blog-postings/" -u 'test@example.com:test'

If you send such a request to a site that contains some blog entries, the response should look
like this:

{

"items": [

{

"alternativeHeadline": "The power of OpenAPI & Liferay",

"articleBody": "<p>We are happy to announce...</p>",

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T07:04:47Z",

"dateModified": "2019-04-22T07:04:51Z",

"datePublished": "2019-04-22T07:02:00Z",

"encodingFormat": "text/html",

"friendlyUrlPath": "new-headless-apis",

"headline": "New Headless APIs",

"id": 59301,

"numberOfComments": 0,

"siteId": 20124

}

],

"lastPage": 1,

"page": 1,

"pageSize": 20,

"totalCount": 1

}

This response is a JSON object with information about the collection of blogs. The response’s
attributes contain information about the resource (blogs, in this case). Also note that the results

682

are paginated. The *page* attributes refer to pages of results. Here’s a description of some common
attributes:

id: Each item has an ID. You can use the ID to retrieve more information about that item. For
example, there are two id attributes in the above response: one for the blog posting (59301) and
one for the blog post’s creator (20130).

lastPage: The page number of the final page of results. The above response only contains a
single page, so its last page is 1.

page: The page number of the current page. The page in the above response is 1.
pageSize: The possible number of this resource’s items to be included in a single page. In the

above response this is 20.
totalCount: The total number of this resource’s existing items (independent of pagination). The

above response lists the total number of blog postings (1) in a Site.
To get information on a specific blog posting, send a GET request to the blogPostingId resource’s

URL with the blog posting’s ID (/blog-postings/{blogPostingId}). For example, the URL for such
a request to the blog posting in the above response is /blog-postings/59301. Here’s an example
response:

{

"alternativeHeadline": "The power of OpenAPI & Liferay",

"articleBody": "<p>We are happy to announce...</p>",

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T07:04:47Z",

"dateModified": "2019-04-22T07:04:51Z",

"datePublished": "2019-04-22T07:02:00Z",

"encodingFormat": "text/html",

"friendlyUrlPath": "new-headless-apis",

"headline": "New Headless APIs",

"id": 59301,

"numberOfComments": 0,

"siteId": 20124

}

Although this response is JSON, the API’s consumer can select other formats to use (like XML).
For more information, see API Formats and Content Negotiation.

Related Topics

Get Started: Discover the API
API Formats and Content Negotiation

66.4 Making Authenticated Requests

To make an authenticated request, you must authenticate as a specific user.
There are two authentication mechanisms available when invoking web APIs:
Basic Authentication: Sends the user credentials as an encoded user name and password pair.

This is the simplest authentication protocol (available since HTTP/1.0).

683

OAuth 2.0: In 7.0, you can use OAuth 2.0 for authentication. See the OAuth 2.0 documentation
for more information.

First, you’ll learn how send requests with basic authentication.

Basic Authentication

Basic authentication requires that you send an HTTP Authorization header containing the encoded
user name and password. You must first get that encoded value. To do so, you can use openssl

or a Base64 encoder. Either way, you must encode the user:password string. Here’s an example of
the openssl command for encoding the user:password string for a user test@example.com with the
password Liferay:

openssl base64 <<< test@example.com:Liferay

This returns the encoded value:

dGVzdEBleGFtcGxlLmNvbTpMaWZlcmF5Cg==

If you don’t have openssl installed, try the base64 command:

base64 <<< test@example.com:Liferay

Warning: Encoding a string as shown here does not encrypt the resulting string. Such an
encoded string can easily be decoded by executing base64 <<< the-encoded-string, which returns
the original string.

Anyone listening to your request could therefore decode the Authorization header and reveal
your user name and password. To prevent this, ensure that all communication is made through
HTTPS, which encrypts the entire message (including headers).

Use the encoded value for the HTTP Authorization header when sending the request:

curl -H "Authorization: Basic dGVzdEBleGFtcGxlLmNvbTpMaWZlcmF5Cg==" http://localhost:8080/o/headless-delivery/v1.0/sites/{siteId}/blog-

postings/

The response contains data instead of the 403 error that an unauthenticated request receives.
For more information on the response’s structure, see Working with Collections of Data.

{

"items": [

{

"alternativeHeadline": "The power of OpenAPI & Liferay",

"articleBody": "<p>We are happy to announce...</p>",

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T07:04:47Z",

"dateModified": "2019-04-22T07:04:51Z",

"datePublished": "2019-04-22T07:02:00Z",

"encodingFormat": "text/html",

"friendlyUrlPath": "new-headless-apis",

"headline": "New Headless APIs",

"id": 59301,

684

"numberOfComments": 0,

"siteId": 20124

},

{

"alternativeHeadline": "How to work with OAuth",

"articleBody": "<p>To configure OAuth...</p>",

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T09:35:09Z",

"dateModified": "2019-04-22T09:35:09Z",

"datePublished": "2019-04-22T09:34:00Z",

"encodingFormat": "text/html",

"friendlyUrlPath": "authenticated-requests",

"headline": "Authenticated requests",

"id": 59309,

"numberOfComments": 0,

"siteId": 20124

}

],

"lastPage": 1,

"page": 1,

"pageSize": 20,

"totalCount": 2

}

OAuth 2.0 Authentication

7.0 supports authorization via OAuth 2.0, which is a token-based authentication mechanism. For
more details, see Liferay DXP’s OAuth 2.0 documentation. The following sections show you how to
use OAuth 2.0 to authenticate web API requests.

Obtaining the OAuth 2.0 Token

Before using OAuth 2.0 to invoke a web API, you must register your application (your web API’s
consumer) as an authorized OAuth client. To do this, follow the instructions in the Creating an
Application section of the OAuth 2.0 documentation. When creating the application, fill in the form
as follows:

Application Name: Your application’s name.
Client Profile: Headless Server.
Allowed Authorization Types: Check Client Credentials.
After clicking Save to finish creating the application, write down the Client ID and Client Secret

values that appear at the top of the form.
Next, you must get an OAuth 2.0 access token. To do this, see the tutorial Authorizing Account

Access with OAuth 2.

Invoking the Service with an OAuth 2.0 Token

Once you have a valid OAuth 2.0 token, include it in the request’s Authorization header, specifying
that the authentication type is a bearer token. For example:

curl -H "Authorization: Bearer d5571ff781dc555415c478872f0755c773fa159" http://localhost:8080/o/headless-delivery/v1.0/sites/{siteId}/blog-

postings/

685

https://tools.ietf.org/html/rfc6750

The response contains the resources that the authenticated user has permission to access, just
like the response from Basic authentication.

Making Unauthenticated Requests

Unauthenticated requests are disabled by default in Liferay DXP’s headless REST APIs. You can,
however, enable themmanually by following these steps:

1. Create the configfile com.liferay.headless.delivery.internal.jaxrs.application.HeadlessDeliveryApplication-
default.config and add this code to it:

oauth2.scopechecker.type="none"

auth.verifier.auth.verifier.BasicAuthHeaderAuthVerifier.urls.includes="*"

auth.verifier.auth.verifier.OAuth2RestAuthVerifier.urls.includes="*"

auth.verifier.guest.allowed="true"

Note that the last property (`auth.verifier.guest.allowed`) lets guests

access public content via the APIs. To turn this off, set the property to

`false`.

2. Deploy the config file to [Liferay Home]/osgi/configs. Note that Liferay Home is typically the
application server’s parent folder.

3. Test the APIs by making a request to an OpenAPI profile URL:

curl "http://localhost:8080/o/headless-delivery/v1.0/openapi.yaml"

You should get the OpenAPI profile for the API you sent the request to.

Related Topics

Get Started: Invoke a Service
Working with Collections of Data

66.5 Working with Collections of Data

Collection resources are common in Liferay DXP web APIs. If you followed along with the previ-
ous examples that sent requests to the portal’s blog-postings resource URL, you’ve already seen
collections in action: the BlogPosting resource is a collection.

Here, you’ll learn more detailed information about working with collection resources. But first
you should learn about how collections are returned in pages.

Pagination

A small collection can be transmitted in a single response without difficulty. Transmitting a large
collection all at once, however, can consume too much bandwidth, time, and memory. It can also
overwhelm the user with too much data. It’s therefore best to get and display the elements of a
large collection in discrete chunks, or pages.

Liferay DXP’s headless REST APIs return paginated collections by default. The following
attributes in the responses also contain the information needed to navigate between those pages:

totalCount: The total number of this resource’s items.

686

pageSize: The number of this resource’s items to be included in this response.
page: The current page’s number.
lastPage: The last page’s number.
items: The collection elements present in this page. Each element also contains the data of the

object it represents, so there’s no need for additional requests for individual elements.
id: Each item’s identifier. You can use this, if necessary, to get more information on a specific

item.
For examples of working with collection pages, see Pagination.

66.6 Getting Collections

Requests for collection resources are the same as those for non-collection resources. For example,
an authenticated request to the UserAccount endpoint returns a collection containing the portal’s
users. When sending this request, use the credentials of an administrative user who has permission
to view other portal users:

curl "http://localhost:8080/o/headless-admin-user/v1.0/user-accounts" -u 'test@example.com:test'

The response (below) has two main parts:

• The list of collection elements, inside the items attribute. This example contains data on two
users: an administrator (Test), and a user named Javier Gamarra.

• A set of metadata about the collection. This is the rest of the data in the response. This lets
clients know how to use the collection.

This response is in JSON, which is the default response format for web APIs in Liferay DXP. For
information on specifying other response formats, see API Formats and Content Negotiation.

{

"items": [

{

"alternateName": "test",

"birthDate": "1970-01-01T00:00:00Z",

"contactInformation": {},

"dashboardURL": "/user/test",

"dateCreated": "2019-04-17T20:37:19Z",

"dateModified": "2019-04-22T09:56:35Z",

"emailAddress": "test@example.com",

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test",

...

},

{

"alternateName": "nhpatt",

"birthDate": "1970-01-01T00:00:00Z",

"contactInformation": {},

"dateCreated": "2019-04-22T10:38:36Z",

"dateModified": "2019-04-22T10:38:37Z",

"emailAddress": "nhpatt@gmail.com",

"familyName": "Gamarra",

"givenName": "Javier",

"id": 59347,

687

"name": "Javier Gamarra",

...

}

],

"lastPage": 1,

"page": 1,

"pageSize": 20,

"totalCount": 2

}

Related Topics

Pagination
Making Authenticated Requests
API Formats and Content Negotiation

66.7 Pagination

Collection resources are returned in pages of information. Working with Collections of Data
explains this in more detail. Here, you’ll learn how to work with collection pages.

For example, suppose that there are 123 users your portal and you want to get information on
them. To do this, send an authenticated request to the UserAccount URL:

curl "http://localhost:8080/o/headless-admin-user/v1.0/user-accounts" -u 'test@example.com:test'

The response contains the first 30 users and IDs for navigating the rest of the collection. Note
that most of the contents of the items attribute, which contains the users, are omitted here so you
can focus on the metadata for navigating the collection:

{

"items": [

{

"id": 20130,

...

},

{

"id": 59347,

...

}

],

"lastPage": 5,

"page": 1,

"pageSize": 30,

"totalCount": 123

}

The attributes page and pageSize allow client applications to navigate through the results. For
example, such a client could send a request for a specific page. This example gets the second page
(?page=2) of documents that exist on the site with the ID 20124:

curl "http://localhost:8080/o/headless-delivery/v1.0/sites/20124/documents?page=2" -u 'test@example.com:test'

Similarly, you can customize the number of elements per page via the optional parameter
pageSize (e.g., ?pageSize=20).

688

Related Topics

Working with Collections of Data
Making Authenticated Requests

66.8 Navigating from a Collection to its Elements

When you get a collection, you can use the response to get an element of that collection. Follow
these steps to do so:

1. Get a collection. This example gets a list of users by sending an authenticated request to the
user-accounts collection:

curl "http://localhost:8080/o/headless-admin-user/v1.0/user-accounts" -u 'test@example.com:test'

Recall from Getting Collections that the response’s items attribute contains the collection
elements. In this case, the collection contains two users: Test Test and Javier Gamarra:
json { "totalItems": 2, "numberOfItems": 2, "view": { { "items":

[{ "alternateName": "test", "birthDate": "1970-

01-01T00:00:00Z", "contactInformation": {}, "dashboardURL":

"/user/test", "dateCreated": "2019-04-17T20:37:19Z", "dateModified":

"2019-04-22T09:56:35Z", "emailAddress": "test@example.com", "familyName":

"Test", "givenName": "Test", "id": 20130, "name":

"Test Test", "profileURL": "/web/test", "roleBriefs": [

{ "id": 20108, "name": "Administrator" },

{ "id": 20111, "name": "Power User" },

{ "id": 20112, "name": "User" }

], "siteBriefs": [{ "id": 20128,

"name": "Global" }, { "id": 20124,

"name": "Guest" }] }, { "alternateName":

"nhpatt", "birthDate": "1970-01-01T00:00:00Z", "contactInformation":

{}, "dateCreated": "2019-04-22T10:38:36Z", "dateModified":

"2019-04-22T10:38:37Z", "emailAddress": "nhpatt@gmail.com", "familyName":

"Gamarra", "givenName": "Javier", "id": 59347, "name":

"Javier Gamarra", "roleBriefs": [{ "id":

20112, "name": "User" }], "siteBriefs":

[{ "id": 20128, "name": "Global"

}, { "id": 20124, "name": "Guest"

}] }], "lastPage": 1, "page":

1, "pageSize": 20, "totalCount": 2 } }

2. In the response, locate the ID of the element you want and look in the OpenAPI profile for
the appropriate GET item endpoint. For example, the user-accounts GET item endpoint is
/user-accounts/{userAccountId}.

3. Send a GET request to that endpoint. For example, this request gets information for the user
with the ID 59347 (Javier Gamarra):

curl "http://localhost:8080/o/headless-admin-user/v1.0/user-accounts/59347" -u 'test@example.com:test'

689

Related Topics

Getting Collections
Pagination
Making Authenticated Requests

66.9 API Formats and Content Negotiation

The responses in the preceding examples use a standard JSON format, which is the default response
format for Liferay DXP’s headless REST APIs. You can also use other formats like XML. Formats
typically differ in the resource metadata’s structure or semantics. There’s no best format; use the
one that best fits your use case.

You use content negotiation to specify different formats for use. Content negotiation is how the
client and server establish the format they use to exchange messages. The client tells the server its
preferred format via the HTTP headers Accept and Content-Type. Each format has a string identifier
(its MIME type) that you can use in the HTTP headers to specify the format. The following table
lists the MIME type for each supported format.

API Format MIME Type

application/json application/json
application/xml application/xml

When you send a request without specifying the API format, the server responds with the
default JSON. For example, here’s such a request for a list of folders from the Site with the ID 20124:

curl "http://localhost:8080/o/headless-delivery/v1.0/sites/20124/document-folders" -u 'test@example.com:test'

{

"items": [

{

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T10:21:20Z",

"dateModified": "2019-04-22T10:21:20Z",

"id": 59319,

"name": "REST APIs Documentation",

"numberOfDocumentFolders": 0,

"numberOfDocuments": 0,

"siteId": 20124

}

],

"lastPage": 1,

"page": 1,

"pageSize": 20,

"totalCount": 1

}

690

https://www.iana.org/assignments/media-types/application/json
https://www.iana.org/assignments/media-types/application/xml

If you request the headers, the Content-Type response attribute lists the content type’s format
(JSON, in this case):

curl "http://localhost:8080/o/headless-delivery/v1.0/sites/20124/document-folders" -u 'test@example.com:test' --head

HTTP/1.1 200

X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1

Set-Cookie: JSESSIONID=9F61AEB8721DD9149BD577ECBC31AE3F; Path=/; HttpOnly

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Cache-Control: private, no-cache, no-store, must-revalidate

Pragma: no-cache

Set-Cookie: COOKIE_SUPPORT=true; Max-Age=31536000; Expires=Tue, 21-Apr-2020 10:23:57 GMT; Path=/; HttpOnly

Set-Cookie: GUEST_LANGUAGE_ID=en_US; Max-Age=31536000; Expires=Tue, 21-Apr-2020 10:23:57 GMT; Path=/; HttpOnly

Date: Mon, 22 Apr 2019 10:23:57 GMT

Content-Type: application/json

Transfer-Encoding: chunked

To get the response in XML instead, specify application/xml in the request’s Accept header. Note
that the XML response includes the same information as JSON, but is structured differently:

curl "http://localhost:8080/o/headless-delivery/v1.0/documents/59203" -H 'Accept: application/xml' -u 'test@example.com:test'

<Page>

<items>

<items>

<creator>

<familyName>Test</familyName>

<givenName>Test</givenName>

<id>20130</id>

<name>Test Test</name>

<profileURL>/web/test</profileURL>

</creator>

<dateCreated>2019-04-22T10:21:20Z</dateCreated>

<dateModified>2019-04-22T10:21:20Z</dateModified>

<id>59319</id>

<name>REST APIs Documentation</name>

<numberOfDocumentFolders>0</numberOfDocumentFolders>

<numberOfDocuments>0</numberOfDocuments>

<siteId>20124</siteId>

</items>

</items>

<lastPage>1</lastPage>

<page>1</page>

<pageSize>20</pageSize>

<totalCount>1</totalCount>

</Page>

Requesting the headers, you can see that the response is in XML (application/xml):

curl "http://localhost:8080/o/headless-delivery/v1.0/documents/59203" -H 'Accept: application/xml' -u 'test@example.com:test' --

head

HTTP/1.1 200

X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1

Expires: Thu, 01 Jan 1970 00:00:00 GMT

Cache-Control: private, no-cache, no-store, must-revalidate

Pragma: no-cache

Date: Mon, 22 Apr 2019 10:26:21 GMT

Content-Type: application/xml

Transfer-Encoding: chunked

691

Language Negotiation

The same mechanism used for requesting another response format (content negotiation) is used
for requesting content in another language.

APIs that are available in different languages return the options in a block called
availableLanguages. For example, this block in the following response lists U.S. English
(en-US) and Spain/Castilian Spanish (es-ES):

{

"availableLanguages": [

"en-US",

"es-ES"

],

"contentFields": [

{

"dataType": "html",

"name": "content",

"repeatable": false,

"value": {

"data": "<p>The main reason is because Headless APIs have been designed with real use cases in mind...</p>"

}

}

],

"contentStructureId": 36801,

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T10:29:40Z",

"dateModified": "2019-04-22T10:30:31Z",

"datePublished": "2019-04-22T10:28:00Z",

"friendlyUrlPath": "why-headless-apis-are-better-than-json-ws-services-",

"id": 59325,

"key": "59323",

"numberOfComments": 0,

"renderedContents": [

{

"renderedContentURL": "http://localhost:8080/o/headless-delivery/v1.0/structured-contents/59325/rendered-content/36804",

"templateName": "Basic Web Content"

}

],

"siteId": 20124,

"title": "Why Headless APIs are better than JSON-WS services?",

"uuid": "e1c4c152-e47c-313f-2d16-2ee4eba5cd26"

}

To request the content in another language, specify your desired locale in the request’s Accept-
Language header:

curl "http://localhost:8080/o/headless-delivery/v1.0/structured-contents/59325" -H 'Accept-Language: es-ES' -u 'test@example.com:test'

{

"availableLanguages": [

"en-US",

"es-ES"

],

"contentFields": [

{

"dataType": "html",

"name": "content",

"repeatable": false,

692

"value": {

"data": "<p>La principal razón es porque las APIs Headless se han diseñado pensando en casos de uso reales...</p>"

}

}

],

"contentStructureId": 36801,

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T10:29:40Z",

"dateModified": "2019-04-22T10:30:31Z",

"datePublished": "2019-04-22T10:28:00Z",

"friendlyUrlPath": "%C2%BFpor-qu%C3%A9-las-apis-headless-son-mejores-que-json-ws-",

"id": 59325,

"key": "59323",

"numberOfComments": 0,

"renderedContents": [

{

"renderedContentURL": "http://localhost:8080/o/headless-delivery/v1.0/structured-contents/59325/rendered-content/36804",

"templateName": "Contenido web básico"

}

],

"siteId": 20124,

"title": "¿Por qué las APIs Headless son mejores que JSON-WS?",

"uuid": "e1c4c152-e47c-313f-2d16-2ee4eba5cd26"

}

Creating Content with Different Languages

By default, when sending a POST/PUT request, the Accept-Language header is used as the content’s
language. However, there is one exception. Some entities require the first POST to be in the Site’s
default language. In such cases, a POST request for a different language results in an error.

After creating a new resource, PUT requests in a different language add that translation. PATCH
requests return an error (you are expected to update, not create, in a PATCH request).

Related Topics

Get Started: Discover the API
Get Started: Invoke a Service

66.10 OpenAPI Profiles

All the APIs exposed by Liferay DXP are available under the liferayinc SwaggerHub organization.
Liferay DXP’s headless APIs are categorized in two different use cases:

• Delivering content (delivery APIs)
• Managing and administering content (admin APIs)

The available APIs demonstrate this categorization.

693

https://app.swaggerhub.com/organizations/liferayinc

Headless Delivery

The following table lists the APIs that Headless Delivery contains. Note that the second column
shows which internal model in Liferay DXP that the API maps to.

API Internal Model

BlogPosting BlogsEntry

BlogPostingImage DLFileEntry (associated with a BlogsEntry)
Comment DiscussionComment

ContentDocument DLFileEntry (associated with a JournalArticle)
ContentSet AssetListEntry

ContentStructure DDMStructure

Document DLFileEntry

DocumentFolder Folder

KnowledgeBaseArticle KBArticle

KnowledgeBaseAttachment FileEntry (associated with a KBArticle)
KnowledgeBaseFolder KBFolder

MessageBoardAttachment FileEntry (associated with a MBMessage)
MessageBoardMessage MBMessage

MessageBoardSection MBCategory

MessageBoardThread MBThread

Rating RatingsEntry

StructuredContent JournalArticle

StructuredContentFolder JournalFolder

Headless Administration

There are several headless admin APIs, each containing its own set of APIs. The following tables
list these, as well as any internal models in Liferay DXP that each API maps to.

Headless Admin User contains the following APIs for retrieving and managing information
about users and organizations.

API Internal Model

EmailAddress N/A
Organization N/A
Phone N/A
PostalAddress Address

Role N/A
Segment SegmentEntry

SegmentUser N/A
SiteBrief N/A
UserAccount User

WebUrl WebSite

694

https://app.swaggerhub.com/apis/liferayinc/headless-delivery/v1.0
https://app.swaggerhub.com/apis/liferayinc/headless-admin-user/1.0

Headless Admin Taxonomy contains the following APIs for managing asset categories, asset
vocabularies, and asset tags.

API Internal Model

Keyword AssetTag

TaxonomyCategory AssetCategory

TaxonomyVocabulary AssetVocabulary

Headless AdminWorkflow contains APIs for transitioning workflows.

Related Topics

API Formats and Content Negotiation

66.11 Filter, Sort, and Search

You can use Liferay DXP’s headless REST APIs to search for content you’re interested in. You can
also sort and filter content. Here, you’ll learn how.

Filter

It’s often useful to filter large collections for the exact data that you need. Not all collections,
however, allow filtering. The ones that support it contain the optional parameter filter in their
OpenAPI profile. To filter a collection based on the value of one or more fields, use the filter

parameter following a subset of the oData standard.
Filtering mainly applies to fields indexed as keywords in Liferay DXP’s search. To find content

by terms contained in fields indexed as text, you should instead use search.

Comparison Operators

Operator | Description | Example | eq | Equal | addressLocality eq 'Redmond' | | Equal null |
addressLocality eq null | ne | Not equal | addressLocality ne 'London' | | Not null | addressLocality
ne null | gt | Greater than | price gt 20 | ge | Greater than or equal | price ge 10 | lt | Less than |
dateCreated lt 2018-02-13T12:33:12Z | le | Less than or equal | dateCreated le 2012-05-29T09:13:28Z

| startsWith | Starts with | addressLocality startsWith 'Lond' |

Logical Operators

Operator Description Example

and Logical and price le 200 and price gt 3.5

695

https://app.swaggerhub.com/apis/liferayinc/headless-admin-taxonomy/1.0
https://app.swaggerhub.com/apis/liferayinc/headless-admin-workflow/1.0

Operator Description Example

or Logical or price le 3.5 or price gt 200

not Logical not not (price le 3.5)

Note that the not operator needs a space character after it.

Grouping Operators

Operator | Description | Example | () | Precedence grouping | (price eq 5) or (addressLocality

eq 'London') |

String Functions

Function Description Example

contains Contains contains(title,'edmon')

Lambda Operators

Lambda operators evaluate a boolean expression on a collection. They must be prepended with a
navigation path that identifies a collection.

Lambda Operator Description Example

any Any keywords/any(k:contains(k,'substring1'))

The any operator applies a boolean expression to each collection element and evaluates to true

if the expression is true for any element.

Escaping in Queries

You can escape a single quote in a value by adding another single quote. For example, to filter for a
blog posting whose headline is New Headless APIs, append this filter string to the request URL:

?filter=headline eq 'New Headless APIs'

Here’s an example of the full request:

curl "http://localhost:8080/o/headless-delivery/v1.0/sites/20124/blog-postings/?filter=headline%20eq%20%27New%20Headless%20APIs%27" -

u 'test@example.com:test'

696

{

"items": [

{

"alternativeHeadline": "The power of OpenAPI & Liferay",

"articleBody": "<p>We are happy to announce...</p>",

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T07:04:47Z",

"dateModified": "2019-04-22T07:04:51Z",

"datePublished": "2019-04-22T07:02:00Z",

"encodingFormat": "text/html",

"friendlyUrlPath": "new-headless-apis",

"headline": "New Headless APIs",

"id": 59301,

"numberOfComments": 0,

"siteId": 20124

}

],

"lastPage": 1,

"page": 1,

"pageSize": 20,

"totalCount": 1

}

Filtering in Structured Content Fields (ContentField)

To filter for a ContentField value (dynamic values created by the end user), you must use the end-
points that are scoped to an individual ContentStructure. To do so, find the ID of the ContentStructure
and use it in place of {contentStructureId} in this URL:

"/content-structures/{contentStructureId}/structured-contents"

Search

It’s often useful to search large collections with keywords. Use search when you want results from
any field, rather than specific ones. To performa search, use the optional parameter search followed
by the search terms. For example, this request searches for all the BlogEntryfields containingOAuth:

curl "http://localhost:8080/o/headless-delivery/v1.0/sites/20124/blog-postings/?search=OAuth" -u 'test@example.com:test'

{

"items": [

{

"alternativeHeadline": "How to work with OAuth",

"articleBody": "<p>To configure OAuth...</p>",

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T09:35:09Z",

"dateModified": "2019-04-22T09:35:09Z",

"datePublished": "2019-04-22T09:34:00Z",

"encodingFormat": "text/html",

"friendlyUrlPath": "authenticated-requests",

"headline": "Authenticated requests",

697

"id": 59309,

"numberOfComments": 0,

"siteId": 20124

}

],

"lastPage": 1,

"page": 1,

"pageSize": 20,

"totalCount": 1

}

Sorting

Sorting collection results is another common task. Note, however, that not all collections allow
sorting. The ones that support it contain the optional parameter {lb}?sort{rb} in their OpenAPI
profile.

To get sorted collection results, append ?sort=<param-name> to the request URL. For example,
appending ?sort=title to the request URL sorts the results by title.

The default sort order is ascending (0-1, A-Z). To perform a descending sort, append :desc to
the parameter name. For example, to perform a descending sort by title, append ?sort=title:desc

to the request URL.
To sort by more than one parameter, separate the parameter names by commas and put

them in order of priority. For example, to sort first by title and then by creation date, append
?sort=title,dateCreated to the request URL.

To specify a descending sort for only one parameter, you must explicitly specify ascending sort
order (:asc) for the other parameters. For example:

?sort=headline:desc,dateCreated:asc

Flatten

Some collections (as defined in their OpenAPI profile) allow the query parameter flatten, which
returns all resources and disregards folders or other hierarchical classifications. This parameter’s
default value is false, so a document query to the root folder returns only the documents in that
folder. With flatten set to true, the samequery also returns documents in any subfolders, regardless
of how deeply those folders are nested. In other words, setting flatten set to true and querying for
documents in a Site’s root folder returns all the documents in the Site.

Related Topics

Making Authenticated Requests
API Formats and Content Negotiation
Working with Collections of Data

66.12 Restrict Properties

Retrieving large entities or collections increases the response’s size and uses more bandwidth.
You can alleviate this by telling the server via the request which fields it should include in the
response. This is known as sparse fieldsets. To make a request with sparse fieldsets, include the
fields parameter in the URL with the name of each field’s attribute.

698

For example, this request doesn’t use sparse fieldsets and therefore returns all the fields of a
blog posting:

curl "http://localhost:8080/o/headless-delivery/v1.0/blog-postings/59301" -u 'test@example.com:test'

{

"alternativeHeadline": "The power of OpenAPI & Liferay",

"articleBody": "<p>We are happy to announce...</p>",

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T07:04:47Z",

"dateModified": "2019-04-22T07:04:51Z",

"datePublished": "2019-04-22T07:02:00Z",

"encodingFormat": "text/html",

"friendlyUrlPath": "new-headless-apis",

"headline": "New Headless APIs",

"id": 59301,

"numberOfComments": 0,

"siteId": 20124

}

To get only the headline, creation date, and creator, append the fields parameter to the URL
with the fields headline, dateCreated, and creator:

curl "http://localhost:8080/o/headless-delivery/v1.0/blog-postings/59301?fields=headline,dateCreated,creator" -u 'test@example.com:test'

{

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20130,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-22T07:04:47Z",

"headline": "New Headless APIs"

}

In the response, the creator attribute is a nested JSON object. To return only the creator’s name,
specify that nested field via dot notation (creator.name):

curl "http://localhost:8080/o/headless-delivery/v1.0/blog-postings/59301?fields=headline,dateCreated,creator.name" -u 'test@example.com:test'

{

"creator": {

"name": "Test Test"

},

"dateCreated": "2019-04-22T07:04:47Z",

"headline": "New Headless APIs"

}

The fields parameter also works with collection resources to return the specified attributes for
every collection item. For example, this request gets the headlines for all the blog postings in the
Site with the ID 20124:

curl "http://localhost:8080/o/headless-delivery/v1.0/sites/20124/blog-postings/?fields=headline" -u 'test@example.com:test'

699

{

"items": [

{

"headline": "New Headless APIs"

},

{

"headline": "Authenticated requests"

}

],

"lastPage": 1,

"page": 1,

"pageSize": 20,

"totalCount": 2

}

Related Topics

Making Authenticated Requests
API Formats and Content Negotiation
Working with Collections of Data

66.13 Multipart Requests

Several operations accept a binary file via a multipart request. For example, the definition for
posting a file to a DocumentFolder specifies a multipart request:

post:

operationId: postDocumentFolderDocument

parameters:

- in: path

name: documentFolderId

required: true

schema:

format: int64

type: integer

requestBody:

content:

multipart/form-data:

schema:

properties:

document:

$ref: "#/components/schemas/Document"

file:

format: binary

type: string

type: object

responses:

200:

content:

application/json:

schema:

$ref: "#/components/schemas/Document"

application/xml:

schema:

$ref: "#/components/schemas/Document"

description: ""

tags: ["Document"]

This operation returns a Document (in JSON or XML). To create this Document, you must supply
the operation’s multipart request with 2 components:

700

• A binary file (bytes) via the file property
• A JSON string with the binary file’s metadata, via the document property

To send this request, the Content-Typemust be multipart/form-data, and you must also specify a
boundary name (the boundary name can be arbitrary).

Here’s an example request (without the file’s bytes) that creates a document in the folder with
the ID 38549:

curl -X "POST" "http://localhost:8080/o/headless-delivery/v1.0/document-folders/38549/documents" \

-H 'Accept: application/json' \

-H 'Content-Type: multipart/form-data; boundary=PART' \

-u 'test@example.com:test' \

-F "file=" \

-F "document={\"title\": \"podcast\"}"

And here’s the response:

{

"contentUrl": "/documents/20123/38549/podcast.mp3/e978e316-620c-df9f-e0bd-7cc0447cca49?version=1.0&t=1556100111417",

"creator": {

"familyName": "Test",

"givenName": "Test",

"id": 20129,

"name": "Test Test",

"profileURL": "/web/test"

},

"dateCreated": "2019-04-24T10:01:51Z",

"dateModified": "2019-04-24T10:01:51Z",

"documentFolderId": 38549,

"encodingFormat": "audio/mpeg",

"fileExtension": "mp3",

"id": 38553,

"numberOfComments": 0,

"sizeInBytes": 28482097,

"title": "podcast"

}

Related Topics

Making Authenticated Requests
API Formats and Content Negotiation
Working with Collections of Data

701

CHAPTER 67

SERVICE BUILDER WEB SERVICES

Service Builder can generate local and remote services for your Liferay apps. The section of
tutorials on Service Builder gives a general introduction to Service Builder, as well as instructions
on generating your app’s local services. But Service Builder can also generate remote web services
automatically. Here, you’ll learn how to both generate and invoke remote JSON and SOAP web
services. Because Liferay’s web services are created this way, knowing how to invoke these services
opens many development possibilities. This section includes the following tutorials:

• Creating Remote Services: Use Service Builder to generate your app’s JSON and SOAP web
services.

• Invoking Remote Services: Learn the basics of invoking JSON and SOAP web services in
Liferay.

• Service Security Layers: Learn how Liferay secures web services, and how to invoke them
with proper authentication.

• Registering JSONWeb Services: Learn some of the details behind how Service Builder gener-
ates JSON web services, and how you can tailor this process to your needs.

• Invoking JSONWeb Services: Learn how to invoke Liferay’s JSON web services API via URL.
This includes information on passing URL parameters, troubleshooting, and more.

• JSONWeb Services Invoker: Learn how to use Liferay’s JSONWeb Services Invoker to optimize
your JSON web service calls.

• Configuring JSONWeb Services: Learn which properties you can use to control how JSON
web services behave in your Liferay instance.

• SOAPWeb Services: Learn how SOAP web services work in Liferay.

67.1 Creating Remote Services

Many default Liferay DXP services are published as JSON and SOAP web services. If you run the
portal locally on port 8080, visit this URL to browse the default JSON web services:

703

http://localhost:8080/api/jsonws/

Visit this URL to browse the default SOAP web services:

http://localhost:8080/api/axis

These web services APIs can be accessed by many different kinds of clients, including non-
portlet and even non-Java clients. You can use Service Builder to generate similar remote services
for your projects’ entities. When you run Service Builder with the remote-service attribute set to
true for an entity, all the classes, interfaces, and files required to support both SOAP and JSON web
services are generated for that entity. Service Builder generates methods that call existing services,
but it’s up to you to implement the methods that are exposed remotely. In this tutorial, you’ll learn
how to generate remote services for your application. When you’re done, your application’s remote
service methods can be called remotely via JSON and SOAP web services.

Using Service Builder to Generate Remote Services

Remember that you should implement your application’s local servicemethods in *LocalServiceImpl.
You should implement your application’s remote service methods in *ServiceImpl.

Best Practice: If your application needs both local and remote services, determine the service
methods that your application needs forworkingwith your entitymodel. Add these servicemethods
to *LocalServiceImpl. Then create corresponding remote services methods in *ServiceImpl. Add
permission checks to the remote service methods andmake the remote service methods invoke the
local service methods. The remote service methods can have the same names as the local service
methods they call. Within your application, only call the remote services. This ensures that your
service methods are secured and that you don’t have to duplicate permissions code.

For example, consider Web Content articles. Web Content articles are represented by the
JournalArticle entity. This entity is declared in the journal-servicemodule’s service.xml file with
the remote-service attribute set to true. Service Builder therefore generates the remote service
class JournalArticleServiceImpl to hold the remote service method implementations. If you were
developing this app from scratch, this class would initially be empty; you must use it to implement
the entity’s remote service methods. Also, note that the remote service method implementations in
JournalArticleServiceImpl follow the best practice of checking permissions and calling the corre-
sponding local service method. For example, each addArticlemethod in JournalArticleServiceImpl

checks permissions and then calls the local service’s matching addArticlemethod:

@Override

public JournalArticle addArticle(...)

throws PortalException {

ModelResourcePermissionHelper.check(

_journalFolderModelResourcePermission, getPermissionChecker(),

groupId, folderId, ActionKeys.ADD_ARTICLE);

return journalArticleLocalService.addArticle(...);

}

Note the use of ModelResourcePermissionHelper.check(...). This handy helper class was intro-
duced in Liferay 7.1. For model resource permission checks, you can use this helper class in-
stead of using a custom permissions helper class. Also note that the local service is called via

704

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/journal/journal-service/service.xml
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/journal/journal-service/src/main/java/com/liferay/journal/service/impl/JournalArticleServiceImpl.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/journal/journal-service/src/main/java/com/liferay/journal/service/impl/JournalArticleServiceImpl.java

the journalArticleLocalService field. This is a Spring bean of type JournalArticleLocalServiceImpl

that’s injected into JournalArticleServiceImpl by Service Builder. Your Service Builder-generated
classes do the same thing.

After you’ve finished adding remote service methods to your *ServiceImpl class, save it and run
Service Builder again. After running Service Builder, deploy your project and check the JSON web
services URL http://localhost:8080/api/jsonws/ to make sure that your remote services appear
when you select your application’s context path.

Nice work! You’ve successfully used Service Builder to generate your app’s remote services.
To make these services available via SOAP, however, you must build and deploy your app’s Web
Service Deployment Descriptor (WSDD). The next section shows you how to do this. If you don’t
need to generate SOAP web services, you can move on to the tutorial Invoking Remote Services.

Generating Your App's WSDD

Liferay DXP uses Apache Axis to make SOAP web services available. Since Axis requires aWSDD to
make an app’s remote services available via SOAP, you must build and deploy aWSDD for your app.
To create yourWSDD, you must install Liferay’s WSDD Builder Gradle plugin in your app’s project.
How you do this, however, depends on what kind of project you have. For multi-module projects
like a Service Builder project in a LiferayWorkspace, you’ll install the plugin via the workspace’s
settings.gradle file. This applies theWSDD Builder plugin to every module in the workspace that
uses Service Builder (typically the *-api and *-servicemodules). If you have a standalone *-service

module that uses Service Builder, however, you’ll install theWSDD Builder plugin in the module’s
build.gradle file.

The next section shows you how to install theWSDD builder in a multi-module project. If you
have a standalone module project, skip ahead to the section Installing the WSDD Builder Plugin in a
Standalone Module Project.

Installing the WSDD Builder Plugin in a Multi-module Project

To install theWSDD Builder plugin in a multi-module project like a Service Builder project in a
LiferayWorkspace, modify the workspace’s settings.gradle file:

1. Add the ServiceBuilderPlugin and WSDDBuilderPlugin imports to the top of the file:

import com.liferay.gradle.plugins.service.builder.ServiceBuilderPlugin

import com.liferay.gradle.plugins.wsdd.builder.WSDDBuilderPlugin

2. In the repositories block, add the Liferay CDN repository via Maven:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

This repository hosts theWSDD Builder library, its transitive dependencies, and other Liferay
libraries. Note that if you created your Service Builder project with the service-builder

template in Blade CLI or Liferay Dev Studio DXP, your settings.gradle file should already
contain this.

3. Add this code to the end of the file:

705

http://localhost:8080/api/jsonws/

gradle.beforeProject {

project ->

project.plugins.withType(ServiceBuilderPlugin) {

project.apply plugin: WSDDBuilderPlugin

}

}

This is the code that applies theWSDDBuilder plugin in everymodule in theLiferayWorkspace
that uses Service Builder. Your settings.gradle file should now look like this:

import com.liferay.gradle.plugins.service.builder.ServiceBuilderPlugin

import com.liferay.gradle.plugins.wsdd.builder.WSDDBuilderPlugin

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.workspace", version: "1.2.0"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.workspace"

gradle.beforeProject {

project ->

project.plugins.withType(ServiceBuilderPlugin) {

project.apply plugin: WSDDBuilderPlugin

}

}

4. Refresh the LiferayWorkspace’s Gradle project. Close and restart Liferay Dev Studio DXP if
you’re using it.

Now that you’ve installed theWSDD Builder plugin, you’re ready to build and deploy theWSDD.
For instructions on this, proceed to the section Building and Deploying the WSDD.

Installing the WSDD Builder Plugin in a Standalone Module Project

To install the WSDD Builder plugin in a standalone *-service module that uses Service Builder,
modify the module’s build.gradle file:

1. Add the plugin as a dependency in your buildscript.

2. Add the Liferay CDN repository via Maven.

3. Apply the plugin to your project.

For example, the following part of an example build.gradlefile in a standalone *-servicemodule
includes theWSDD Builder plugin and applies it to the project:

706

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.wsdd.builder", version: "1.0.9"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.wsdd.builder"

Now you’re ready to build and deploy theWSDD. The next section shows you how to do this.

Building and Deploying the WSDD

To build theWSDD, you must run the buildWSDD Gradle task in your *-servicemodule. Exactly how
you do this depends on your development tools:

• LiferayDevStudioDXP: From the LiferayWorkspace perspective’sGradle Tasks pane (typically
on the right), open your *-servicemodule’s build folder and double-click buildWSDD.

• CommandLine: Navigate to your *-servicemodule and run ../../../gradlew buildWSDD. Note
that the exact location of the Gradle wrapper (gradlew) may vary. For Liferay Workspace
projects, it’s typically in the root workspace folder.

So what should you do if buildWSDD fails? A common cause of buildWSDD failures is not satisfying
the dependencies needed by theWSDD Builder for your *-servicemodule. Note that these depen-
dencies vary depending on your project’s code—there’s no standard set. That said, the following
dependencies are often required for portlet development:
compileOnly group: "javax.portlet", name: "portlet-api", version: "3.0.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "com.liferay", name: "com.liferay.registry.api", version: "2.0.0"

Click here for more information on finding and configuring dependencies for your apps.
In your *-service project’s build/libs folder, the buildWSDD task generated a *-service-wsdd-

[version].jar file that contains your WSDD. Deploy this JAR to your Liferay DXP instance. Your
SOAP web services are then available at a URL that uses the following pattern:
yourportaladdress/o/your.apps.service.module.context/api/axis

For example, if an app called Foo consists of the modules foo-api, foo-service, and foo-web,
then the app’s service module context is foo-service. If this app is deployed to a local Liferay DXP
instance running at http://localhost:8080, you could access its SOAP services at:
http://localhost:8080/o/foo-service/api/axis

If you don’t know an app’s *-servicemodule context, you can find it by searching for the app
in the App Manager where the app is running. For example, the following screenshot shows the
Foo app’s modules in the App Manager. The name of the *-servicemodule in the App Manager,
foo-service, is also its context. Also note that the app’sWSDDmodule is grayed out and listed as
Resolved instead of Active. This is normal. WSDD modules are OSGi fragments, which can’t be
activated. They still work as intended, though.

Next, you’ll learn how to build theWSDDmodule for built-in apps that don’t include aWSDD by
default. If you don’t need to do this, you can move on to the tutorial Invoking Remote Services.

707

Building the WSDD for Built-in Apps

Liferay DXP doesn’t provideWSDDmodules for built-in apps that exist outside of the portal context.
This means that by default you can’t access SOAP web services for apps like Wiki or Blogs. To
make SOAP web services available for such an app, you must build and deploy itsWSDD from the
liferay-portal GitHub repository. The apps are in the liferay-portal/modules/apps folder. Note
that to buildWSDDs for these apps, you must first download the liferay-portal source code to your
machine. You’ll run theWSDD build from your local liferay-portal copy.

When you build an app’sWSDD,make sure to use gradlew in liferay-portal instead of the gradle

on your machine. After building, you can find theWSDD JAR in the tools/sdk/dist folder of your
local liferay-portal copy. Otherwise, building an app’s WSDD is the same as in the preceding
section.

For example, to build the WSDD for the Bookmarks app, first navigate to the liferay-

portal/modules/apps/bookmarks/bookmarks-service folder in your terminal. Then run the following
command:

../../../../../gradlew buildWSDD

Next, deploy the liferay-portal/tools/sdk/dist/com.liferay.bookmarks.service-wsdd-

[version].jar. If your instance is running locally on localhost:8080, you should then be
able to view the Bookmarks app’s SOAP services at http://localhost:8080/o/com.liferay.bookmarks
.service/api/axis.

Fantastic! Once you’ve created remote web services, you’ll want to know how to invoke them.
To learn how, see the tutorial Invoking Remote Services.

Related Topics

Invoking Remote Services
Invoking JSONWeb Services
JSONWeb Services Invoker
What is Service Builder?

67.2 Invoking Remote Services

You can invoke the remote services of any installed Liferay application the same way you invoke
your local services. Doing so could be described as “invoking remote services locally.” One reason
to invoke a remote service instead of the corresponding local service is to take advantage of the
remote service’s permission checks. Consider the following common scenario:

• Both a local service implementation and a remote service implementation have been created
for a particular service.

• The remote service performs a permission check and then invokes the corresponding local
service.

In the above scenario, it’s a best practice to invoke the remote service instead of the local service.
Doing so ensures that you don’t need to duplicate permission checking code. This is the practice
followed by the services in Liferay’s Web Content app. Notice that the addArticlemethods invoke
journalArticleLocalService.addArticle after a permission check.

708

https://github.com/liferay/liferay-portal
http://localhost:8080/o/com.liferay.bookmarks.service/api/axis
http://localhost:8080/o/com.liferay.bookmarks.service/api/axis
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/journal/journal-service/src/main/java/com/liferay/journal/service/impl/JournalArticleServiceImpl.java

Of course, the main reason for creating remote services is to invoke them remotely. Service
Builder can expose your project’s remote web services both via a JSON API and via SOAP. By default,
running Service Builder with remote-service set to true for your entities generates a JSON web
services API for your project. You can access your project’s JSON-based RESTful services through a
convenient web interface.

Invoking Liferay Services Remotely

Many default Liferay services are available as web services. Liferay exposes its web services via
SOAP and JSON web services. If you’re running Liferay locally on port 8080, visit the following URL
to browse Liferay’s default SOAP web services:

http://localhost:8080/api/axis

To browse Liferay’s default JSON web services, visit this URL:

http://localhost:8080/api/jsonws/

By default, the context path is set to / which means that core Liferay services are listed. By
default, the http://localhost:8080/api/jsonws/ page shows the JSONweb services in the portal context.
You can select a different context in the Context Name selector menu. For example, selecting
journal in Context Name shows you the JSON web services in Liferay’sWeb Content app (this app’s
entities all begin with Journal*). You can also access a context’s JSON web services via a direct
URL. For example, the URL for the Web Content app’s JSON web services is http://localhost:
8080/api/jsonws?contextName=journal.

Important: To invoke Liferay services remotely, your Liferay instance must be configured to
allow remote web service access. Please see the Understanding Liferay’s Service Security Model
tutorial for details.

Each entity’s available service methods appear in the left column of the JSON web services page.
To view details about a service method, click it. The full package path to the service’s *Impl class
appears along with the method’s parameters, return type, and possible exceptions. You can also
invoke the service from this page. For example, in the portal context click the AnnouncementsEntry

entity’s get-entrymethod. This brings up that service method’s details page, where you can also
invoke the service.

The only parameter required to invoke the get-entrymethod is an entryId. To invoke this web
service, you could enter an announcement entry’s ID in the entryId field and then click Invoke.
Liferay returns feedback from each invocation that indicates, for example, whether the service
invocation succeeded or failed. Invoking remote services in this manner is a great way to test your
app’s remote services.

Service Builder can also make your project’s web services available via SOAP using Apache Axis.
After you’ve built your *-service project’sWSDD (web service deployment descriptor) and deployed
your project’s modules, its services are available on your Liferay server. You can use your browser
to view the SOAP services of Liferay and Liferay apps as described in the tutorial Creating Remote
Services.

When viewing your SOAP services in a browser, Liferay lists the services available for all your
entities and provides links to theirWSDL documents. For example, clicking on theWSDL link for
the User service takes you to the following URL:

709

http://localhost:8080/api/jsonws?contextName=journal
http://localhost:8080/api/jsonws?contextName=journal

Figure 67.1: The JSONweb services page for an entity’s remote service method also lets you invoke that service.

710

http://localhost:8080/api/axis/Portal_UserService?wsdl

This WSDL document lists the entity’s SOAP web services. Once the web service’s WSDL is
available, any SOAP web service client can access it. To see examples of SOAP web service client
implementations, see the tutorial SOAPWeb Services.

Liferay web services are designed to be invoked by client applications. Liferay’s web services
APIs can be accessed by many different kinds of clients, including non-portlet and even non-Java
clients. For information on how to develop client applications that can access Liferay’s JSON web
services, please see the Invoking JSONWeb Services tutorial. For information on how to develop
client applications that access Liferay’s SOAP web services, please see the SOAP Web Services
tutorial. To learn how to create remote web services for your own application, please refer to the
Creating Remote Services tutorial.

For more information on Liferay services, see the Liferay Portal CE Javadocs at [https://docs.lif-
eray.com/dxp/portal/7.0-latest/javadocs/](### Related Topics

Invoking JSONWeb Services
JSONWeb Services Invoker
SOAPWeb Services
Creating Remote Services

67.3 Service Security Layers

Liferay’s remote services are secured by default, because they only allow local connections. En-
abling remote access requires peeling away several layers of security, first by IP address, then by
user authentication and verification. Users invoking web services must have the proper permis-
sions (as defined by Liferay’s permissions system) for the remote service invocation to complete
successfully. This tutorial explains these processes.

The first layer of security is called invoker IP filtering. Imagine that you have have a batch job
that runs on another machine in your network. This job polls a shared folder on your network and
uses Liferay’s web services to upload documents to your Liferay Site’s Documents and Media app on
a regular basis. To get your batch job through the IP filter, you must grant web service access to the
machine where the batch job runs. For example, if your batch job uses Liferay’s SOAP web services
to upload the documents, you must add the IP address of the machine where the batch job runs to
the axis.servlet.hosts.allowed property. A typical entry might look like this:

axis.servlet.hosts.allowed=192.168.100.100, 127.0.0.1, [SERVER_IP]

If the IP address of the machine where the batch job runs is listed as an authorized host for the
service, themachine can connect to Liferay’s web services, pass in the appropriate user credentials,
and upload the documents.

Note: The portal-ext.properties file resides on the Liferay server and is controlled by its ad-
ministrator. Administrators can configure security settings for the Axis Servlet, the Liferay Tunnel
Servlet, the Spring Remoting Servlet, the JSON Servlet, the JSON Web Service Servlet, and the
WebDAV Servlet. The portal.properties file describes these properties.

Next, if you invoke the remote service via web services, a two step process of authentication and
authentication verification takes place. Each call to a Liferay web service must be accompanied

711

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html

by a user authentication token: p_auth. It’s up to the web service caller to produce the token (e.g.,
through Liferay’s utilities or through some third-party software). Liferay verifies that there is
a Liferay user matching the token. If the credentials are invalid, the web service invocation is
aborted. Otherwise, processing enters Liferay’s user permission layer.

The user permission layer is the last security layer triggered for remote services. It’s used for
every object, regardless of whether a local or remote service is involved. The user ID associated
with a web service invocation must have permission to operate on the objects it’s trying to access.
A remote exception is thrown if the user ID doesn’t have permission. An instance administrator
can grant users access to these resources.

For example, suppose you created a Documents and Media Library folder called Documents in a
Site, created a Role called Document Uploaders, and granted this Role the rights to add documents
to your new folder. If your batch job accesses Liferay’s web services to upload documents into the
folder, you must call the web service using a user ID with this Role (or using the user ID of a user
with individual rights to add documents to this folder, such as an instance administrator). If you
don’t, Liferay denies you access to the web service.

When invoking remote services from a non-browser client, you can specify the user credentials
using HTTP basic authentication. For security reasons, you must be logged in and supply a valid
p_auth authentication token to invoke a web service via a browser. Since you should never pass
credentials over the network unencrypted, use HTTPS whenever accessing Liferay services. Most
HTTP clients (like cURL) let you specify the basic authentication credentials in the URL: this is
very handy for testing.

Important: To invoke a Liferay web service via your browser, you must be logged in to Liferay.
Youmust also supply an authentication token (the p_auth parameter). If you navigate to your Liferay
instance’s JSON web services API page (localhost:8080/api/jsonws, by default) and click on a
remote service method, you’ll see the p_auth token for your browser session. This token is supplied
automatically when you invoke a Liferay web service via the JSON web services API page or via
JavaScript using Liferay.Service(...).

Use the following syntax to call the Axis web service using credentials.

http://" + emailAddressOrScreenNameOrUserIdAsString + ":" + password + "@[server.com]:\

[port]/api/axis/" + serviceName

The emailAddressOrScreenNameOrUserIdAsString should be the user’s email address, screen name,
or user ID. The Liferay instance’s authentication type setting determines which one to use. Au-
thentication by email address is the default. A user can find his or her user ID by logging in as the
user and accessing My Account → Account Settings from the User Menu. On this interface, the user
ID appears below the user’s profile picture and above the birthday field.

Suppose that you’ve defined authentication by user ID, and that there’s a user with an ID of 2
and a password of test. You can access Liferay’s remote Organization service with the following
URL:

http://2:test@localhost:8080/api/axis/Portal_OrganizationService

Note that if an email address appears in the URL path, it must be URL-encoded
(e.g. test@example.com becomes test%40liferay.com).

Suppose that you’ve now defined authentication by email address. To call the same web service
for the same user, change the URL to this:

712

http://curl.haxx.se/
localhost:8080/api/jsonws

http://test%40liferay.com:test@localhost:8080/api/axis/Portal_OrganizationService

As mentioned, the authentication type you’ve defined dictates the authentication type you’ll
use to access your web service. The authentication type can be set to email address, screen name,
or user ID.

You can set the authentication type via the Control Panel or via the portal-ext.properties file.
To set the authentication type via the Control Panel, navigate to Control Panel → Configuration →
Instance Settings, and select the General tab under Authentication. Choose your authentication type
in the How do users authenticate? menu. To set the authentication type via properties file, add the
following lines to your Liferay instance’s portal-ext.properties file and uncomment the line for
the appropriate authentication type:

#company.security.auth.type=emailAddress

#company.security.auth.type=screenName

#company.security.auth.type=userId

You should also review your password policies, since they’re enforced on your administrative
user. If a password policy requires them to change their passwords on a periodic basis, the password
for an administrative user accessing web services in a batch job expires too.

To prevent a password from expiring, add a new password policy that doesn’t enforce password
expiration, and then add your administrative user to the policy. Then your batch job can run as
many times as you need it to, without the password expiring.

To summarize, accessing Liferay remotely requires you to pass the following layers of security
checks:

• IP permission layer: The IP address must be pre-configured in the server’s portal properties.
• Authentication/verification layer (web services only): Liferay verifies that the caller’s authoriza-
tion token can be associated with an instance user.

• User permission layer: The user needs permission to access the related resources.

If you want to develop client applications that can invoke Liferay’s web services, make sure that
your Liferay instance’s web service security settings have been configured to allow access.

Related Topics
Configuring JSONWeb Services
Invoking Remote Services
Invoking JSONWeb Services
JSONWeb Services Invoker
SOAPWeb Services

67.4 Registering JSONWeb Services

Liferay’s developers use a tool called Service Builder to build services. When you build services with
Service Builder, all remote-enabled services (i.e., service.xml entities with the property remote-

service="true") are exposed as JSONweb services. When each *Service.java interface is created for
a remote-enabled service, the @JSONWebService annotation is added to that interface at the class level.
All the public methods of that interface become registered and available as JSON web services.

Liferay scans all OSGi bundles registeredwith the @Component annotation or in a *BundleActivator
class for remote services. Each class that uses the @JSONWebService annotation is examined and its
methods become exposed via the JSON web services API.

713

Note: Liferay’s developers use Service Builder to expose their services via JSON automatically. If
you haven’t used Service Builder before, please see the Service Builder tutorials.

Next, you’ll see how to register your application’s remote services as JSON web services. Keep
in mind that Liferay uses this same mechanism. This is why Liferay’s remote services are exposed
as JSON web services out-of-the-box.

Registering an App's JSONWeb Services

For example, say your app named SupraSurf has some services youwant exposed as remote services.
After enabling the remote-service attribute on its SurfBoard entity, you rebuild the services. Service
Builder regenerates the SurfBoardService interface, adding the @JSONWebService annotation to it.
This annotation tells Liferay that the interface’s public methods are to be exposed as JSON web
services, making them a part of the app’s JSON API. Start your Liferay instance, and then deploy
your app to Liferay.

To get some feedback from your Liferay instance on registering your application’s services,
configure the instance to log the application’s informational messages (i.e., its INFO ... messages).
See the tutorials on Liferay’s logging system for details.

To test Liferay’s JSON web service registration process, add a simple method to your app’s
services. Edit your *ServiceImpl class and add this method:

public String helloWorld(String worldName) {

return "Hello world: " + worldName;

}

Rebuild the services and re-deploy your app’s modules. You can now invoke this servicemethod
via JSON. For instructions on doing this, see the JSON invocation tutorials listed here.

This samemechanism registers Liferay’s own services. They’re enabled by default, so you don’t
have to configure them.

Next, you’ll learn how to form a mapped URL for the remote service so you can predictably
access it.

Mapping and Naming Conventions

You can form the mapped URL of an exposed service by following the naming convention below:

http://[server]:[port]/api/jsonws/[context-path].[service-class-name]/[service-method-name]

Look at the last three bracketed items more closely:

• context-name is the app’s context name (e.g., suprasurf). Its value is specified via the
json.web.service.context.path property in the @OSGiBeanProperties annotation. For example,
for Liferay web content articles, Liferay’s JournalArticleService class includes this annotation
(among others):

@OSGiBeanProperties(property = {

"json.web.service.context.name=journal", "json.web.service.context.path=JournalArticle"}, service = JournalArticleService.class)

• service-class-name is generated from the service’s class name in lower case, minus its
Service or ServiceImpl suffix. For example, specify surfboard as the app-context-name for the
SurfBoardService class.

714

• service-method-name is generated from the service’s method name by converting its camel
case to lower case and using dashes (-) to separate words.

The following example demonstrates these naming conventions bymapping a service method’s
URL using the naming conventions both on a custom service and on a Liferay service.

For the custom service method, the URL looks like

http://localhost:8080/api/jsonws/suprasurf.surfboard/hello-world

Note the context name part of the URL. For Liferay, it’s similar. Here’s a Liferay service method:

@JSONWebService

public interface UserService {

public com.liferay.portal.model.User getUserById(long userId) {...}

Here’s that Liferay service method’s URL:

http://localhost:8080/api/jsonws/user/get-user-by-id

Each service method is bound to one HTTP method type. Any method with a name starting
with get, is, or has is a read-only method and is mapped as a GET HTTP method by default. All
other methods are mapped as POST HTTP methods.

In the list of JSON web services at http://localhost:8080/api/jsonws, when you select a method,
the part of its HTTP method URL that follows http://[server]:[port]/api/jsonws appears at the top
of the screen.

Conveniently, remote service requests can use authentication credentials associated with the
user’s current session.

Next, you’ll learn how to prevent a method from being exposed as a service.

Ignoring a Method

To keep a method from being exposed as a service, annotate the method with the following option:

@JSONWebService(mode = JSONWebServiceMode.IGNORE)

Methods with this annotation don’t become part of the JSONWeb Service API. Next, you’ll learn
how to define custom HTTP method and URL names.

HTTPMethod and URL Names

At the method level, you can define custom HTTP method names and URL names. Just use an
annotation like this one:

@JSONWebService(value = "add-board-wow", method = "PUT")

public boolean addBoard(

In this example, the application’s service method addBoard is mapped to URLmethod name add-

board-wow. Its complete URL is now http://localhost:8080/api/jsonws/suprasurf.surfboard/add-

board-wow and can be accessed using the HTTP PUTmethod.
If the URLmethod name in a JSON web service annotation starts with a slash character (/), only

the method name is used to form the service URL; the class name is ignored:

@JSONWebService("/add-something-very-specific")

public boolean addBoard(

715

http://localhost:8080/api/jsonws

Similarly, you can change the class name part of the URL by setting the value in a class-level
annotation:

@JSONWebService("sbs")

public class SurfBoardServiceImpl extends SurfBoardServiceBaseImpl {

This maps all the service’s methods to a URL class name sbs instead of the default class name
surfboard.

Next, you’ll learn a different approach to exposing your methods via manual registration.

Manual Registration Mode

Up to now, it’s assumed that you want to expose most of your service methods, while hiding some
specific methods (the blacklist approach). Sometimes, however, you want the opposite: to explicitly
specify only the methods you want to expose (thewhitelist approach). This is possible by specifying
a class-level annotation with manual mode. Then it’s up to you to annotate only those methods you
want to expose:

@JSONWebService(mode = JSONWebServiceMode.MANUAL)

public class SurfBoardServiceImpl extends SurfBoardServiceBaseImpl{

...

@JSONWebService

public boolean addBoard(

Now only the addBoardmethod and any other method annotated with @JSONWebService are part
of the JSONWeb Service API; all other methods are excluded from the API.

Related Topics

Invoking JSONWeb Services
JSONWeb Services Invoker

67.5 Invoking JSONWeb Services

If you know the URL and are connected to the Internet, you can invoke Liferay’s JSON web service
API in any language you want or directly with the URL or cURL. Additionally, Liferay provides a
handy JSON web services page that allows you to browse and invoke service methods.

If you’re running Liferay locally on port 8080, you can find the JSON web services page at
http://localhost:8080/api/jsonws. You can use this page to generate example code for invoking
web services. When you invoke a service on this page as described in the tutorial Invoking Remote
Services, the JSON result of your service invocation appears. Click on the JavaScript Example, curl
Example, or URL Example tabs to see different ways of invoking the web service.

This tutorial explains techniques for working with JSONweb services and includes details about
invoking them via URL.

There are multiple ways to invoke a JSON web service since there are different ways to supply
parameters. In this tutorial, you’ll learn how to include parameters in web service invocations.
First, you must understand how your invocation is matched to a method, especially in the case of
overloaded service methods.

The general rule is that you provide the service method’s name and all the service method’s
parameters—even if you only provide null values. It’s important to provide all parameters, but it

716

http://curl.haxx.se/
http://localhost:8080/api/jsonws

Figure 67.2: When you invoke a service from Liferay’s JSON web services page, you can view the result of your service invocation as well as example code for invoking the
service via JavaScript, curl, or URL.

717

doesn’t matter how you do it (e.g., as part of the URL line, as request parameters, etc.). The order
of the parameters doesn’t matter either.

Note: An authentication related token (p_auth) must accompany each Liferay web service
invocation. For details, see the Service Security Layers tutorial. Also, see the note in the following
section to learn how to find the p_auth token value that corresponds to your Liferay session.

Exceptions abound in life, and there’s an exception to the rule that all parameters are required.
When using numeric hints to match methods, not all of the parameters are required. You’ll learn
to use hints next.

Using Hints When Invoking a Service via URL

Numeric hints specify howmany method arguments a service has. Syntactically, you can add hints
as numbers separated by a dot in the method name. Here’s an example:

/foo/get-bar.2/param1/123/-param2

Here, the .2 is a numeric hint specifying that only service methods with two arguments are
matched; others are ignored for matching.

There’s an important distinction to make between matching with hints and matching without
hints. When a hint is specified, you don’t have to specify all of the parameters. Any missing
arguments are treated as null. The previous example may be called like this:

/foo/get-bar.2/param1/123

In this example, param2 is automatically set to null.
Here’s a real Liferay example:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/add-folder.4/parent-folder-id/0/name/News?p_auth=[value]

In this example, the hint number is 4 because there are four parameters: parentFolderId, name,
description, and p_auth. Since the description parameter is omitted, its value is assumed to be
null. If you try to invoke this web service with another hint number such as 3 or 5, you’ll get an
exception since there is no bookmarks/add-folder method that takes that number of parameters.
The authentication parameter p_auth is associated with your Liferay session. See below for more
information.

Important: When invoking a Liferay web service by entering a URL into your browser, youmust
be logged into Liferay with an account that has permission to invoke the web service. You must
also supply an authentication token as a URL parameter. This authentication token is associated
with your browser session and is called p_auth. Using this authentication token helps prevent CSRF
attacks.

Here are two easy ways to find the p_auth token:

1. Go to Liferay’s JSON web services page and click on any service method. The value of the
p_auth token appears under the Execute heading.

2. If you’re working from a JavaScript context and have access to the Liferay object, invoking
Liferay.authToken provides the value of the p_auth parameter.

718

For example, if your p_auth parameter’s value is n35K1pb2, you could invoke the preceding URL
examples like this:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/add-folder.4/parent-folder-id/0/name/News?p_auth=n35K1pb2

For simplicity, the remainder of this tutorial omits the p_auth parameter from the example
URLs for invoking web services. Remember that you must include it if you want to invoke services
from your browser!

Next, you’ll learn how to pass parameters as part of the URL path.

Passing Parameters as Part of a URL Path

Specify parameters in name-value pairs after the service URL. Parameter names must be formed
frommethod argumentnamesby converting them fromcamel case to all lower case, dash-separated
names. For example, this returns all top-level bookmark folders from the specified site:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/get-folders/group-id/20181/parent-folder-id/0

You can pass parameters in any order; you need not follow the order of the arguments in the
method signatures.

When a method name is overloaded, the best match is used. The method that contains the least
number of undefined arguments is chosen and invoked for you.

You can also pass parameters in a URL query. The next section shows you how to do this.

Passing Parameters as a URL Query

To pass in parameters as request parameters, specify them as-is (camel case) and set them equal to
their argument value. For example:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/add-folder?parentFolderId=0&name=News&description=news

As with passing parameters as part of a URL path, the parameter order is not important and
the best match rule applies for overloaded methods.

Now you know a few different ways to pass parameters. You can also pass URL parameters in a
mixed way. For example, some can be part of the URL path while others can be specified as request
parameters.

Parameter values are sent as strings using the HTTP protocol. Before a matching Java service
method is invoked, each parameter value is converted from a String to its target Java type. Liferay
uses a third party open source library to convert each object to its appropriate common type.
Although it’s possible to add or change the conversion for certain types, this tutorial only covers
the standard conversion process.

Conversion for common types (e.g., long, String, boolean) happens directly. Dates can be given
in milliseconds. Locales can be passed as locale names (e.g. en and en_US). To pass in an array
of numbers, send a string of comma-separated numbers (e.g. the string 4,8,15,16,23,42 can be
converted to long[] type). You get the picture!

In addition to the common types, arguments can be of type List or Map. To pass a List argument,
send a JSON array. To pass a Map argument, send a JSON object. These types of conversions are
performed in two steps:

719

• Step 1–JSON deserialization: JSON arrays are converted into List<String>, and JSON objects
are converted to Map<String, String>. For security reasons, it’s forbidden to instantiate any
type within JSON deserialization.

• Step 2–Generification: Each String element of the List and Map is converted to its target type (the
argument’s generic Java type specified in the method signature). This step is only executed if
the Java argument type uses generics.

For example, consider the conversion of a String array [en,fr] as JSON web service parameters
for a List<Locale> Java method argument type:

• Step 1–JSON deserialization: The JSON array is deserialized to a List<String> containing Strings
en and fr.

• Step 2–Generification: Each String is converted to the Locale (the generic type), resulting in
the List<Locale> Java argument type.

Next, you’ll learn how to specify an argument as null.

Sending Null Values

To pass a null value for an argument, prefix the parameter name with a dash. Here’s an example:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/add-folder/parent-folder-id/0/name/News/-description

Here’s the equivalent example using URL query parameters instead of URL path parameters:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/add-folder?parentFolderId=0&name=News&-description

The description parameter is interpreted as null. Note that this parameter doesn’t have to be
last in the URL.

Null parameters don’t have specified values. When a null parameter is passed as a request
parameter, its value is ignored and null is used instead:

<input type="hidden" name="-description" value=""/>

When using JSON-RPC (see the JSON-RPC section below), you can send null values explicitly,
even without a prefix. Here’s an example:

"description":null

Next, you’ll learn about encoding parameters.

Encoding Parameters

There’s a difference between URL encoding and query (i.e., request parameters) encoding. The
difference lies in how the space character is encoded. When the space character is part of the URL
path, it’s encoded as %20; when it’s part of the query it’s encoded as a plus sign (+).

All these encoding rules apply to ASCII and international (non-ASCII) characters. Since Liferay
works in UTF-8 mode, parameter values must be encoded as UTF-8 values. Liferay doesn’t decode
request URLs and request parameter values to UTF-8 itself; it relies on the web server. When
accessing services through JSON-RPC, encoding parameters to UTF-8 isn’t enough—you need to
send the encoding type in a Content-Type header (e.g. Content-Type : "text/plain; charset=utf-8").

720

For example, suppose you want to pass the value “Супер” (“Super” in Cyrillic) to a JSON
web service method. This name must first be converted to UTF-8 (resulting in an array of 10
bytes) and then encoded for URLs or request parameters. The resulting value is the string
%D0%A1%D1%83%D0%BF%D0%B5%D1%80 that can be passed to your service method. When received, this
value is first translated to an array of 10 bytes (URL decoded), and then converted to a UTF-8 string
of the 5 original characters.

Next, you’ll learn how to send files as arguments.

Sending Files as Arguments

Files can be uploaded using multi-part forms and requests. Here’s an example:

<form

action="http://localhost:8080/api/jsonws/dlapp/add-file-entry"

method="POST"

enctype="multipart/form-data">

<input type="hidden" name="repositoryId" value="10172"/>

<input type="hidden" name="folderId" value="0"/>

<input type="hidden" name="title" value="test.jpg"/>

<input type="hidden" name="description" value="File upload example"/>

<input type="hidden" name="changeLog" value="v1"/>

<input type="file" name="file"/>

<input type="submit" value="addFileEntry(file)"/>

</form>

This is a common upload form that invokes the DLAppService class’s addFileEntrymethod.
Now you’ll learn how to invoke JSON web services using JSON-RPC.

JSON-RPC

You can invoke JSON Web Service using JSON-RPC. Most of the JSON-RPC 2.0 specification is
supported in Liferay JSON web services. One important limitation is that parameters must be
passed in as named parameters. Positional parameters aren’t supported, as there are too many
overloaded methods for convenient use of positional parameters.

Here’s an example of invoking a JSON web service using JSON-RPC:

POST http://localhost:8080/api/jsonws/dlapp

{

"method":"get-folders",

"params":{"repositoryId":10172, "parentFolderId":0},

"id":123,

"jsonrpc":"2.0"

}

Next, you’ll learn about parameters that are made available to secure JSON web services by
default.

Default Parameters

When accessing secure JSON web services (i.e., services for which the user must be authenticated),
some parameters are made available to the web services by default. All of Liferay’s web services
are secured by default. Unless you want to change the available parameters’ values to something
other than their defaults, you don’t have to specify them explicitly.

Here are the available default parameters:

• userId: The primary key of the authenticated user

721

http://json-rpc.org

• user: The full user object
• companyId: The primary key of the user’s company
• serviceContext: The empty service context object

Next, you’ll learn about object parameters.

Object Parameters

Most services accept simple parameters like numbers and strings. However, sometimes you might
need to provide an object (a non-simple type) as a service parameter.

To create an instance of an object parameter, prefix the parameter with a plus sign, + and don’t
assign it any other parameter value. This is similar to specifying a null parameter by prefixing the
parameter with a dash symbol, -.

Here’s an example:

/jsonws/foo/get-bar/zap-id/10172/start/0/end/1/+foo

To create an instance of an object parameter as a request parameter, make sure you encode the
+ symbol:

/jsonws/foo/get-bar?zapId=10172&start=0&end=1&%2Bfoo

Here’s an alternative syntax:

<input type="hidden" name="+foo" value=""/>

If a parameter is an abstract class or an interface, it can’t be instantiated as such. Instead,
a concrete implementation class must be specified to create the argument value. You can do
this by specifying the + prefix before the parameter name, followed by specifying the concrete
implementation class. Here’s an example:

/jsonws/foo/get-bar/zap-id/10172/start/0/end/1/+foo:com.liferay.impl.FooBean

Here’s another way of doing it:

<input type="hidden" name="+foo:com.liferay.impl.FooBean" value=""/>

The examples above specify that a com.liferay.impl.FooBean object, presumed to implement
the class of the parameter named foo, is created.

You can also set a concrete implementation as a value. Here’s an example:

<input type="hidden" name="+foo" value="com.liferay.impl.FooBean"/>

In JSON-RPC, here’s what it looks like:

"+foo" : "com.liferay.impl.FooBean"

All the preceding examples specify a concrete implementation for the foo service method
parameter.

Once you pass in an object parameter, you might want to populate the object. Find out how
next.

722

Inner Parameters

When you pass in an object parameter, you’ll often need to populate its inner parameters (i.e., fields).
Consider a default parameter serviceContext of type ServiceContext. To make an appropriate call to
JSONWS, youmight need to set the serviceContextparameter’s addGroupPermissions and scopeGroupId

fields.
You canpass inner parameters by using dot notation to specify them. Append the nameof the pa-

rameter with a dot (i.e., a period, .), followed by the inner parameter’s name. For the ServiceContext
inner parameters mentioned previously, you’ll specify serviceContext.addGroupPermissions and
serviceContext.scopeGroupId. These are recognized as inner parameters and their values are in-
jected into existing parameters before the API service method is executed.

Inner parameters aren’t counted as regular parameters for matching methods and are ignored
during matching.

You can extend the JSON-RPC object parameter example above by populating its inner parame-
ters:

"+foo" : "com.liferay.impl.FooBean",

"foo.field1" : "test",

"foo.field2" : "true",

"foo.field3" : 123

Here’s the same with JavaScript (assuming we have a remote service under the foo context
which accepts one argument with type com.liferay.impl.FooBean and it has the specified fields):

Liferay.Service(

'/foo/update-foo',

{

"+foo": "com.liferay.impl.FooBean",

"foo.field1" : "test",

"foo.field2" : "true",

"foo.field3": 123

},

function(obj) {

console.log(obj);

}

);

Tip: Use inner parameters with object parameters to set inner contents of created object
parameter instances!

Next, you’ll examine returned values when a JSON web service is invoked.

Returned Values

No matter how a JSON web service is invoked, it returns a JSON string that represents the service
method result. Returned objects are loosely serialized to a JSON string and returned to the caller.

Here’s an example. To make it easy, you’ll use the test form provided with the JSON web service
in our browser.

1. Sign in to a local Liferay instance as an administrator and then point your browser to the
JSON web service method that adds a BookmarksFolder:

http://localhost:8080/api/jsonws?contextName=bookmarks&signature=%2Fbookmarks.bookmarksfolder%2Fadd-folder-4-parentFolderId-

name-description-serviceContext

723

Alternatively, navigate to it by starting at http://localhost:8080/api/jsonws and then scrolling
down to the section for BookmarksFolder. Then click add-folder.

2. In the parentFolderId field, enter 0. Top-level bookmarks folders have a parentFolderId value
of 0. Set the name to an arbitrary value likeNews. Set the description to something like Created
via JSON WS.

3. Click Invoke and you’ll get a result like this:

{

"companyId": "20202",

"createDate": 1459969296960,

"description": "Created via JSON WS",

"folderId": "31001",

"groupId": "20233",

"lastPublishDate": null,

"modifiedDate": 1459969297005,

"name": "News",

"parentFolderId": "0",

"resourceBlockId": "1",

"status": 0,

"statusByUserId": "0",

"statusByUserName": "",

"statusDate": null,

"treePath": "/31001/",

"userId": "20250",

"userName": "Joe Bloggs",

"uuid": "0682170c-f9d7-f295-aa67-26ceea37a6e5"

}

The returned String represents the BookmarksFolder object you just created, serialized into a
JSON string. To find out more about JSON strings, go to json.org. Also, note that Liferay pro-
vides a JSONFactory service that allows developers to create JSON objects and arrays, serialize and
deserialize JSON strings, and perform other JSON-related operations.

Common JSONWeb Service Errors

While working with JSON web services, you may encounter errors. Some common errors are listed
here:

• Authenticated access required
If you see this error, it means you don’t have permission to invoke the remote service. Double-
check that you’re signed in as a user with the appropriate permissions. If necessary, sign in
as an administrator to invoke the remote service.

• Missing value for parameter
If you see this error, you didn’t pass a parameter value with the parameter name in your URL
path. The parameter value must follow the parameter name. This is wrong:

/api/jsonws/user/get-user-by-id/userId

The path above specifies a parameter named userId, but doesn’t specify the parameter’s value.
You can resolve this error by providing the parameter value after the parameter name:

/api/jsonws/user/get-user-by-id/userId/173

724

http://www.json.org/
https://github.com/liferay/liferay-portal/blob/7.1.x/portal-kernel/src/com/liferay/portal/kernel/json/JSONFactory.java

• No JSON web service action associated
This error means that no service method could be matched with the provided data (method
name and argument names). This can be due to various reasons. For example, arguments
may be misspelled, the method name may be formatted incorrectly, and so on. Since JSON
web services reflect the underlying Java API, any changes there are automatically propagated
to the JSON web services. For example, if a new argument is added to a method or an existing
argument is removed from a method, the parameter data must match the new method
signature.

• Unmatched argument type
This error appears when you try to instantiate a method argument using an incompatible
argument type.

Related Topics

JSONWeb Services Invoker
Service Security Layers
Invoking Remote Services

67.6 JSONWeb Services Invoker

With JSON web services, you send a request to a service method with parameters, and you receive
the result as a JSON object. As straightforward as this seems, it can be improved. In this tutorial,
you’ll learn how.

Say you’re working with two related objects: a User and its corresponding Contact. Normally you
first call the user service to get the user object, and then you use that object’s contact ID to call the
contact service. This sends two HTTP requests to get two separate JSON objects. There’s no contact
information in the user object (i.e. no user.contact). This approach is suboptimal with respect to
performance (sending two HTTP calls) and usability (manually managing the relationship between
two objects). It’d be nicer if you had a tool to address these inefficiencies. Fortunately, the JSON
Web Service Invoker does just that!

Liferay’s JSONWeb Service Invoker helps optimize your JSONWeb Services use.

Simple Invoker Calls

The Invoker is accessible from the following fixed address:

http://[address]:[port]/api/jsonws/invoke

It only accepts a cmd request parameter—this is the Invoker’s command. If the command request
parameter is missing, the request body is used as the command. So you can specify the command
by using the request parameter cmd or the request body.

The Invoker command is a plain JSONmap that describes how JSONweb services are called and
how the results are managed. Here’s an example of how to call a simple service using the Invoker:

{

"/user/get-user-by-id": {

"userId": 123,

"param1": null

725

}

}

The service call is defined as a JSONmap. The key specifies the service URL (i.e. the service
method to be invoked) and the key’s value specifies a map of service parameter names (i.e. userId
and param1) and their values. In the example above, the retrieved user is returned as a JSON object.
Since the command is a JSON string, null values can be specified by explicitly using the null keyword
or by placing a dash before the parameter name and leaving the value empty (e.g. "-param1": '').

The example Invoker calls functions exactly the same way as the following standard JSONWeb
Service call:

/user/get-user-by-id?userId=123&-param1

If you’re running Liferay locally on port 8080, here’s how you invoke a JSON web service:

1. Collect your credentials. Here’s an example:

• Email: test@example.com
• User ID: 20127
• Authorization Token: htXjvt5d

2. Invoke the service:

http://localhost:8080/api/jsonws/invoke?cmd={%22/user/get-user-by-id%22:{%22userId%22:20172}}&p_auth=htXjvt5d

This URL uses the following JSON map. Note that it’s supplied in the URL by using the cmd URL
parameter:

{

"/user/get-user-by-id": {

"userId": 20172

}

}

In the URL, the double quotes are URL-encoded. To find your user ID, check the User Menu
underMy Account → Account Settings. To find your p_auth authentication token, navigate to Liferay’s
JSON web services API page and click on any method in the list. The value of your p_auth token
appears under the Execute heading along with any other parameters of the selected API method.

Use JSON syntax to supply values for objects and arrays as parameters. To supply a value for an
object, use curly brackets: { and }. To supply a value for an array, use square brackets: [and].

If you want to pass an array as a parameter using the same credential token as above, here’s an
example how, using two vocabularies with vocabulary IDs of 20783 and 20784:

http://localhost:8080/api/jsonws/invoke?cmd={%22/assetvocabulary/get-vocabularies%22:{%22vocabularyIds%22:[20783,20784]}}&p_auth=htXjvt5d

This URL uses the following JSONmap:

{

"/assetvocabulary/get-vocabularies": {

"vocabularyIds": [20783,20784]

}

}

726

http://localhost:8080/api/jsonws
http://localhost:8080/api/jsonws

As before, the double quotes in the URL are URL-encoded. Also, the vocabularyIds parameter is
an array, so its value is supplied as a JSON array.

Finally, here’s one more Liferay JSON web service invoker example that demonstrates how to
pass an object containing an array as a parameter:

http://localhost:8080/api/jsonws/invoke?cmd={%22/user/add-user%22:{%22companyId%22:20127,%22autoPassword%22:false,%22password1%22:%22test%22,%22password2%22:%22test%22,%22autoScreenName%22:false,%22screenName%22:%22joe.bloggs%22,%22emailAddress%22:%22joe.bloggs@example.com%22,%22facebookId%22:0,%22openId%22:%22%22,%22locale%22:%22en_US%22,%22firstName%22:%22Joe%22,%22middleName%22:%22T%22,%22lastName%22:%22Bloggs%22,%22prefixId%22:0,%22suffixId%22:0,%22male%22:true,%22birthdayMonth%22:1,%22birthdayDay%22:1,%22birthdayYear%22:1970,%22jobTitle%22:%22Tester%22,%22groupIds%22:null,%22organizationIds%22:null,%22roleIds%22:null,%22userGroupIds%22:null,%22sendEmail%22:false,%22serviceContext%22:{%22assetTagNames%22:[%22test%22]}}}&p_auth=htXjvt5d

This URL uses the following JSONmap:

{

"/user/add-user": {

"companyId": 20127,

"autoPassword": false,

"password1": "test",

"password2": "test",

"autoScreenName": false,

"screenName": "joe.bloggs",

"emailAddress": "joe.bloggs@example.com",

"facebookId": 0,

"openId": "",

"locale": "en_US",

"firstName": "Joe",

"middleName": "T",

"lastName": "Bloggs",

"prefixId": 0,

"suffixId": 0,

"male": true,

"birthdayMonth": 1,

"birthdayDay": 1,

"birthdayYear": 1970,

"jobTitle": "Tester",

"groupIds": null,

"organizationIds": null,

"roleIds": null,

"userGroupIds": null,

"sendEmail": false,

"serviceContext": {"assetTagNames":["test"]}

}

}

The serviceContext is the object containing an array in this example. It contains the array
assetTagNames.

Of course, the JSONWeb Service Invoker handles calls to plugin methods as well:

{

"/suprasurf/hello-world": {

"worldName": "Mavericks"

}

}

The code above calls the (fictitious) SupraSurf application’s remote service.
You can use variables to reference objects returned from service calls. Variable names must

start with a dollar sign, $. In the previous example, the service call returned a user object you can
assign to a variable:

{

"$user = /user/get-user-by-id": {

"userId": 123,

}

}

727

The $user variable holds the returned user object. You can reference the user’s contact ID using
the syntax $user.contactId.

Next, see how you can use nested service calls to join information from two related objects.

Nesting Service Calls

With nested service calls, you can bind information from related objects together in a JSON object.
You can call other services within the sameHTTP request and nest returned objects in a convenient
way. Here’s a nested service call in action:

{

"$user = /user/get-user-by-id": {

"userId": 123,

"$contact = /contact/get-contact-by-id": {

"@contactId": "$user.contactId"

}

}

}

This command defines two service calls: the contact object returned from the second service
call is nested in (i.e. injected into) the user object, as a property named contact. Now you can bind
the user and his or her contact information together!

Now you’ll see what the Invoker does in the background when using a single HTTP request to
make the preceding nested service call:

• First, the Invoker calls the Java service mapped to /user/get-user-by-id, passing in a value
for the userId parameter.

• Next, the resulting user object is assigned to the variable $user.
• The nested service calls are invoked.
• The Invoker calls the Java service mapped to /contact/get-contact-by-id by using the
contactId parameter, with the $user.contactId value from the object $user.

• The resulting contact object is assigned to the variable $contact.
• Lastly, the Invoker injects the contact object referenced by $contact into the user object’s
property named contact.

Note: You must flag parameters that take values from existing variables. To flag a parameter,
insert the @ prefix before the parameter name.

Next, you’ll learn about filtering object properties so that only the properties you need are
returned when you invoke a service.

Filtering Results

Many of Liferay’s model objects are rich with properties. If you only need a handful of an object’s
properties for your business logic, making a web service invocation that returns all of an object’s
properties is a waste of network bandwidth. With the JSONWeb Service Invoker, you can define a
whitelist of properties: only the specific properties you request in the object are returned from
your web service call. Here’s how you whitelist the properties you need:

728

{

"$user[firstName,emailAddress] = /user/get-user-by-id": {

"userId": 123,

"$contact = /contact/get-contact-by-id": {

"@contactId": "$user.contactId"

}

}

}

In this example, the returned user object has only the firstName and emailAddress properties (it
still has the contact property, too). To specify whitelist properties, place the properties in square
brackets (e.g., [whiteList]) immediately following the name of your variable.

Next, you’ll learn about making calls in batch.

Making Batch Calls

When nesting service calls, you invokemultiple services with a single HTTP request. This is helpful
for gathering related information from the service call results, but it you can also use a single
request to invoke multiple unrelated service calls by batching service calls together to improve
performance. Do this by passing in a JSON array of commands:

[

{/* first command ⁎/},

{/* second command ⁎/}

]

The result is a JSON array populated with results from each command. The commands are
collectively invoked in a single HTTP request, one after another.

Great! Now you know how to use Liferay’s JSONWeb Service Invoker to simplify your JSON
calls to Liferay.

Related Topics

Invoking Remote Services
Invoking JSONWeb Services

67.7 Configuring JSONWeb Services

JSON web services are enabled in Liferay by default. If you must disable them, specify this portal
property setting in a portal-ext.properties file:

json.web.service.enabled=false

This tutorial presents other properties that you can use to fine-tune exactly how JSON web
services work in your Liferay instance. You can find these, and other properties, in the portal prop-
erties reference documentation. As with the preceding property, you should set portal properties
in a portal-ext.properties file.

First, you’ll learn about setting whether JSON web services are discoverable via the API page.

729

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html

Discoverability

Bydefault, JSONweb services are discoverable via theAPIpage at http://[address]:[port]/api/jsonws.
To disable this, set the following property:

jsonws.web.service.api.discoverable=false

Next, you’ll learn how to disable HTTP methods.

Disabling HTTPMethods

When strict HTTP method mode is enabled, you can filter web service access based on HTTP
methods used by the services. For example, set your Liferay instance’s JSON web services to work
in read-only mode by disabling HTTP methods other than GET:

jsonws.web.service.invalid.http.methods=DELETE,POST,PUT

With this setting, all requests that use DELETE, POST, or PUTHTTP methods are ignored.
Next, you’ll learn how to restrict public access to exposed JSON APIs.

Strict HTTPMethods

All JSON web services are mapped to either GET or POSTHTTP methods. If a service method name
starts with get, is or has, the service is assumed to be read-only and is bound to the GETmethod.
Otherwise, it’s bound to POST.

By default, Liferay doesn’t check HTTPmethods when invoking a service call; it works in non-
strict http method mode, where services may be invoked using any HTTP method. If you need the
strict mode, you can set it as follows:

jsonws.web.service.strict.http.method=true

When using strict mode, youmust use the correct HTTPmethods to call servicemethods. When
strict HTTP mode is enabled, you still might need to disable HTTP methods. You’ll learn how next.

Controlling Public Access

Each service method knows whether a given user has permission to invoke the chosen action.
If you’re concerned about security, you can restrict access to exposed JSON APIs by explicitly
permitting or restricting certain JSON web service paths.

The property jsonws.web.service.paths.includes denotes patterns for JSON web service action
paths that are allowed. Set a blank pattern to allow any service action path.

The property jsonws.web.service.paths.excludes denotes patterns for JSON web service action
paths that aren’t allowedeven if theymatchoneof thepatterns set in jsonws.web.service.paths.includes.

Note that theseproperties supportwildcards. For example, if you set jsonws.web.service.paths.includes=get*,has*,is*,
Liferay makes all read-only JSON methods publicly accessible. All other JSON methods are
disabled. To disable access to all exposed methods, you can leave the right side of the = symbol
empty. To enable access to all exposed methods, specify *. Remember that if a path matches
both the jsonws.web.service.paths.includes and jsonws.web.service.paths.excludes properties, the
jsonws.web.service.paths.excludes property takes precedence.

730

Related Topics

Registering JSONWeb Services
Creating Remote Services
Invoking Remote Services

67.8 SOAPWeb Services

You can access Liferay’s web services via Simple Object Access Protocol (SOAP) over HTTP. The
packaging protocol is SOAP, and the transport protocol is HTTP.

Note: An authentication token must accompany each Liferay web service invocation. For
details, see the tutorial on Service Security Layers.

As an example, consider some example SOAP web service clients for Liferay’s Company, User,
and UserGroup services that perform these tasks:

1. List each user group the user with the screenname test belongs to.

2. Add a new user group named MyGroup.

3. Add your Liferay instance’s administrative user to the new user group. For demonstration
purposes, you’ll use an administrative user whose email address is test@example.com.

You’ll use these SOAP related classes:

import com.liferay.portal.kernel.model.CompanySoap;

import com.liferay.portal.kernel.model.CompanySoap;

import com.liferay.portal.kernel.model.UserGroupSoap;

import com.liferay.portal.kernel.model.UserGroupSoap;

import com.liferay.portal.service.http.CompanyServiceSoap;

import com.liferay.portal.service.http.CompanyServiceSoapServiceLocator;

import com.liferay.portal.service.http.UserGroupServiceSoap;

import com.liferay.portal.service.http.UserGroupServiceSoapServiceLocator;

import com.liferay.portal.service.http.UserServiceSoap;

import com.liferay.portal.service.http.UserServiceSoapServiceLocator;

Can you see the naming convention for SOAP related classes? These classes have either -

ServiceSoapServiceLocator, -ServiceSoap, or -Soap as suffixes. The -ServiceSoapServiceLocator class
finds the -ServiceSoap class via the service’s URL you provide. The -ServiceSoap class is the interface
to the services specified in theWeb Services Definition Language (WSDL) file for each service. The
-Soap classes are the serializable implementations of the models.

So how do you determine the URLs for these services? This is a most excellent question! You
can see a list of the services deployed on your Liferay instance by opening your browser to the
following URL:

http://[host]:[port]/api/axis

Note that this URL only lists services in the portal context. To learn how to find services in other
contexts in your Liferay instance, see the SOAP sections in the tutorial Creating Remote Services.

Regardless of the context you’re viewing SOAP services in, each web service is listed with its
name, operations, and a link to itsWSDL file. For example, here’s the list of secure web services
listed for UserGroup:

731

• Portal_UserGroupService (wsdl)

– addGroupUserGroups

– addTeamUserGroups

– addUserGroup

– deleteUserGroup

– fetchUserGroup

– getUserGroup

– getUserGroups

– getUserUserGroups

– unsetGroupUserGroups

– unsetTeamUserGroups

– updateUserGroup

Note that some of these methods are overloaded.
Liferay uses Service Builder to automatically generate JSON and SOAP web service interfaces.

If you haven’t used Service Builder before, see this introductory tutorial.
The WSDL file is written in XML and provides a model for describing and locating the web

service. Here’s aWSDL excerpt of the addUserGroup operation of UserGroup:

<wsdl:operation name="addUserGroup" parameterOrder="name description">

<wsdl:input message="intf:addUserGroupRequest" name="addUserGroupRequest"/>

<wsdl:output message="intf:addUserGroupResponse" name="addUserGroupResponse"/>

</wsdl:operation>

To use the service, you pass in theWSDL URL along with your login credentials to the SOAP
service locator for your service. The next section shows you an example of this.

SOAP Java Client

Now you’ll learn how to invoke Liferay’s SOAP web services. As an example, you’ll do this by setting
up a Java web services client in Eclipse. You can use Eclipse’sWeb Service Client wizard to either
create a new web service client project or add a client to an existing project. You must add a new
web service client to your project for each service that you want to consume in your client code.
For this example, you’ll build a web service client to invoke Liferay’s Company, User, and UserGroup

services.
To create a new web service client project in Eclipse, click File → New → Other…, then expand

the Web Services category. Select Web Service Client.
For each client you create, you’re prompted to enter the service definition (WSDL) for the

desired service. Since your example web service client needs Liferay’s Company, User, and UserGroup

services, enter the followingWSDLs:

http://localhost:8080/api/axis/Portal_CompanyService?wsdl

http://localhost:8080/api/axis/Portal_UserService?wsdl

http://localhost:8080/api/axis/Portal_UserGroupService?wsdl

When you specify aWSDL, Eclipse automatically adds the auxiliary files and libraries required
to consume that web service. After you’ve created your web service client project using one of the
aboveWSDLs, you need to create additional clients in the project using the remainingWSDLs. To

732

Figure 67.3: Service Definition

create an additional client in an existing project, right-click on the project and select New → Other
→ Web Service Client. Click Next, enter theWSDL, and complete the wizard.

The following code locates and invokes operations to create a newuser groupnamed MyUserGroup

and add a user with the screen name test to it. Create a LiferaySoapClient.java file in your web
service client project and add this code to it. If you create this class in a package other than the
one that’s specified in this code, replace the package with your package. To run the client from
Eclipse, make sure that your Liferay server is running, right-click the LiferaySoapClient.java class,
and select Run as Java application. Check your console to check that your service calls succeeded.

package com.liferay.test;

import java.net.URL;

import com.liferay.portal.kernel.model.CompanySoap;

import com.liferay.portal.kernel.model.UserGroupSoap;

import com.liferay.portal.service.http.CompanyServiceSoap;

import com.liferay.portal.service.http.CompanyServiceSoapServiceLocator;

import com.liferay.portal.service.http.UserGroupServiceSoap;

import com.liferay.portal.service.http.UserGroupServiceSoapServiceLocator;

import com.liferay.portal.service.http.UserServiceSoap;

import com.liferay.portal.service.http.UserServiceSoapServiceLocator;

public class LiferaySoapClient {

public static void main(String[] args) {

733

try {

String remoteUser = "test";

String password = "test";

String virtualHost = "localhost";

String groupName = "MyUserGroup";

String serviceCompanyName = "Portal_CompanyService";

String serviceUserName = "Portal_UserService";

String serviceUserGroupName = "Portal_UserGroupService";

long userId = 0;

// Locate the Company

CompanyServiceSoapServiceLocator locatorCompany =

new CompanyServiceSoapServiceLocator();

CompanyServiceSoap soapCompany =

locatorCompany.getPortal_CompanyService(

_getURL(remoteUser, password, serviceCompanyName,

true));

CompanySoap companySoap =

soapCompany.getCompanyByVirtualHost(virtualHost);

// Locate the User service

UserServiceSoapServiceLocator locatorUser =

new UserServiceSoapServiceLocator();

UserServiceSoap userSoap = locatorUser.getPortal_UserService(

_getURL(remoteUser, password, serviceUserName, true));

// Get the ID of the remote user

userId = userSoap.getUserIdByScreenName(

companySoap.getCompanyId(), remoteUser);

System.out.println("userId for user named " + remoteUser +

" is " + userId);

// Locate the UserGroup service

UserGroupServiceSoapServiceLocator locator =

new UserGroupServiceSoapServiceLocator();

UserGroupServiceSoap usergroupsoap =

locator.getPortal_UserGroupService(

_getURL(remoteUser, password, serviceUserGroupName,

true));

// Get the user's user groups

UserGroupSoap[] usergroups = usergroupsoap.getUserUserGroups(

userId);

System.out.println("User groups for userId " + userId + " ...");

for (int i = 0; i < usergroups.length; i++) {

System.out.println("\t" + usergroups[i].getName());

}

// Adds the user group if it does not already exist

String groupDesc = "My new user group";

UserGroupSoap newUserGroup = null;

boolean userGroupAlreadyExists = false;

try {

newUserGroup = usergroupsoap.getUserGroup(groupName);

if (newUserGroup != null) {

System.out.println("User with userId " + userId +

" is already a member of UserGroup " +

newUserGroup.getName());

userGroupAlreadyExists = true;

}

} catch (Exception e) {

734

// Print cause, but continue

System.out.println(e.getLocalizedMessage());

}

if (!userGroupAlreadyExists) {

newUserGroup = usergroupsoap.addUserGroup(

groupName, groupDesc);

System.out.println("Added user group named " + groupName);

long users[] = {userId};

userSoap.addUserGroupUsers(newUserGroup.getUserGroupId(),

users);

}

// Get the user's user groups

usergroups = usergroupsoap.getUserUserGroups(userId);

System.out.println("User groups for userId " + userId + " ...");

for (int i = 0; i < usergroups.length; i++) {

System.out.println("\t" + usergroups[i].getName());

}

}

catch (Exception e) {

e.getLocalizedMessage();

}

}

private static URL _getURL(String remoteUser, String password,

String serviceName, boolean authenticate)

throws Exception {

// Unauthenticated url

String url = "http://localhost:8080/api/axis/" + serviceName;

// Authenticated url

if (authenticate) {

url = "http://" + remoteUser + ":" + password

+ "@localhost:8080/api/axis/"

+ serviceName;

}

return new URL(url);

}

}

Running this client should produce output like this:

userId for user named test is 10196

User groups for user 10196 ...

java.rmi.RemoteException: No UserGroup exists with the key {companyId=10154,

name=MyUserGroup}

Added user group named

Added user to user group named MyUserGroup

User groups for user 10196 ...

MyUserGroup

The output tells you the user had no groups, but was added to the user group MyUserGroup.
You might be thinking, “But an error was thrown! Something is wrong!” Yes, an error is thrown

(java.rmi.RemoteException:), but you can sit here as cool as an ice cream sandwich all the same.
The exception is thrown because the UserGroup check is invoked before the UserGroup is created.
Because the very next line of the output says Added user group named..., you’re okay. The SOAP
web service invocations worked!

Here are a few things to note about this example:

735

• Authentication is done using HTTP Basic Authentication, which isn’t appropriate for a pro-
duction environment since the password is unencrypted. It’s simply used for convenience
in this example. In production, you should use SSL. Refer to Liferay’s portal.properties file
and look up the company.security.auth.requires.https and web.server.protocol properties for
more information.

• The screen name and password are passed in the URL as credentials.
• The name of the service (e.g. Portal_UserGroupService) is specified at the end of the URL.
Remember that the service name can be found in the web service listing.

The operations getCompanyByVirtualHost(), getUserIdByScreenName(), getUserUserGroups(),
addUserGroup() and addUserGroupUsers() are specified for the -ServiceSOAP classes CompanyServiceSoap,
UserServiceSoap and UserGroupServiceSoap in the WSDL files. Information on parameter types,
parameter order, request type, response type, and return type are conveniently specified in the
WSDL for each Liferay web service. It’s all there for you!

Next, you’ll learn how to implement a web service client in PHP.

SOAP PHP Client

You can write your client in any language that supports web services invocation. The following
example code invokes the same operations as before, but uses PHP and a PHP SOAP client instead
of Java:

<?php

$userGroupName = "MyUserGroup2";

$userName = "test";

$clientOptions = array('login' => $userName, 'password' => 'test');

// Add user group

$userGroupClient = new

SoapClient(

"http://localhost:8080/api/axis/Portal_UserGroupService?wsdl",

$clientOptions);

$userGroup = $userGroupClient->addUserGroup($userGroupName,

"This user group was created by the PHP client! ");

print ("User group ID is $userGroup->userGroupId ");

// Add user to user group

$companyClient = new SoapClient(

"http://localhost:8080/api/axis/Portal_CompanyService?wsdl",

$clientOptions);

$company = $companyClient->getCompanyByVirtualHost("localhost");

$userClient = new SoapClient(

"http://localhost:8080/api/axis/Portal_UserService?wsdl",

$clientOptions);

$userId = $userClient->getUserIdByScreenName($company->companyId,

$userName);

print ("User ID for $userName is $userId ");

$users = array($userId);

$userClient->addUserGroupUsers($userGroup->userGroupId, $users);

// Print the user groups to which the user belongs

$userGroups = $userGroupClient->getUserUserGroups($userId);

print ("User groups for user $userId ... ");

foreach($userGroups as $ug)

print ("$ug->name, $ug->userGroupId ")

?>

Remember, you can implement a web service client in any language that supports SOAP web
services.

736

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html

Related Topics

Service Security Layers
Creating Remote Services
Invoking Remote Services
What is Service Builder?

737

CHAPTER 68

JAX-RS AND JAX-WS

You can deploy JAX-RS and JAX-WS web services and consume themmuch as you would outside
of Liferay DXP. There are, however, a few things you should know, particularly with regard to
deploying them into Liferay DXP’s OSGi container. The tutorials in this section discuss these things
and show you how to use JAX-RS and JAX-WS in Liferay DXP.

68.1 JAX-RS

JAX-RS web services work in Liferay modules the same way they work outside of Liferay. The only
difference is that you must register the class in the OSGi framework. Liferay’s development tools
make this easy by providing a template.

In Liferay Developer Studio, create a new module using the rest template:

1. Click File → New → Liferay Module Project.

2. Give the project a name and select the rest template.

3. Select Next and enter a class name and a package name for your service.

4. Click Finish.

Alternatively, use Blade CLI to create the project.

Note: The initial release of 7.0’s development tools created a project with an invalid config-
uration. If your class contains an @ApplicationPath annotation, you must update the following
files:

Your Java Class:

1. Add the following import:

import org.osgi.service.jaxrs.whiteboard.JaxrsWhiteboardConstants;

2. Remove the @ApplicationPath annotation.

739

3. Modify the @Component annotation so it looks like this:

@Component(

property = {

JaxrsWhiteboardConstants.JAX_RS_APPLICATION_BASE + "=/greetings",

JaxrsWhiteboardConstants.JAX_RS_NAME + "=Greetings.Rest"

},

service = Application.class)

build.gradle:
Add the following dependency:

compileOnly group: "org.osgi", name: "org.osgi.service.jaxrs", version: "1.0.0"

Files to delete:
Delete everything under src/main/resources/configuration.

The class that’s generated contains a working JAX-RS web service. You can deploy it and use it
immediately.

While it’s beyond the scope of this article to cover JAX-RSWhiteboard in its entirety, essentially
it’s JAX-RS unchanged except for configuration properties in the @Component annotation. These
properties declare two things:

1. The endpoint for the service

2. The service name as it appears in the OAuth 2.0 configuration

The generated class contains this configuration:

@Component(

property = {

JaxrsWhiteboardConstants.JAX_RS_APPLICATION_BASE + "=/greetings",

JaxrsWhiteboardConstants.JAX_RS_NAME + "=Greetings.Rest"

},

service = Application.class)

This configuration registers the service at this endpoint:

https://[server-name]:[port]/o/greetings

If you’re testing this locally on Tomcat, the URL is

https://localhost:8080/o/greetings

As you might guess, you don’t have access to the service by just calling the URL above. You
must authenticate first, which you’ll learn how to do next.

740

https://blog.osgi.org/2018/03/osgi-r7-highlights-jax-rs-whiteboard.html

Using OAuth 2.0 to Invoke a JAX-RSWeb Service

Your JAX-RS web service requires authorization by default. To enable this, you must create an
OAuth 2.0 application to provide a way to grant access to your service:

1. Go to the Control Panel → Configuration → OAuth2 Administration and click the button to
add an application.

2. Give your application a descriptive name.

3. Choose the Client Profile appropriate for this service. These are templates that auto-select
the appropriate authorization types or “flows” from the OAuth 2 standard. For this example
choose the Headless Server profile, which auto-selects the Client Credentials authorization type.

4. Click Save.

The form now reappears with two additional generated fields: Client ID and Client Secret. You’ll
use these to authenticate to your web service.

To make your service accessible,

1. Click the Scopes tab.

2. You’ll see an entry for your deployed Greetings.Rest service. Expand it by clicking the arrow.

3. Check the box labeled read data on your behalf.

4. Click Save.

Figure 68.1: Enable the scope to grant access to the service.

For simplicity, the examples below use Curl to authenticate. You need the two pieces of infor-
mation generated for your application: the Client ID and the Client Secret. For example, say those
fields contain these values:

Client ID: id-12e14a84-e558-35a7-cf9a-c64aafc7f
Client Secret: secret-93f14320-dc39-d67f-9dec-97717b814f
First, you must request an OAuth token. If you’re testing locally, you’d make a request like this:

curl http://localhost:8080/o/oauth2/token -d 'grant_type=client_credentials&client_id=id-12e14a84-e558-35a7-cf9a-c64aafc7f&client_secret=secret-

93f14320-dc39-d67f-9dec-97717b814f'

The response is JSON:

741

https://curl.haxx.se

{"access_token":"a7f12bef7f2e578cf64bce4085db8f17b6a3c2963f865a65b374e89784bbca5","token_type":"Bearer","expires_in":600,"scope":"GET POST PUT"}

It contains a token, generated for this client. It expires in 600 seconds, and it grants GET, POST,
and PUT for this web service.

When you want to call the service, you must supply the token in the HTTP header, like this:

curl --header "Authorization: Bearer a7f12bef7f2e578cf64bce4085db8f17b6a3c2963f865a65b374e89784bbca5" http://localhost:8080/o/greetings/morning

With authorization, your web service can be called and responds to the request:

Good morning!

Of course, this is only one of the authorization flows for OAuth 2.0. If you’re creating a web-
based client whose back-end is a JAX-RS web service hosted on Liferay DXP, you’d want one of the
other flows. See the OAuth 2.0 documentation for further information. Additionally, OAuth 2.0
assumes the use of HTTPS for its security: the above URLs are only for local testing purposes. You
certainly would not want to pass OAuth tokens between clients and servers in the clear. Make sure
that in production your server uses HTTPS.

Great! Now you know how to create, deploy, and invoke JAX-RS web services on Liferay DXP’s
platform!

Related Topics

Service BuilderWeb Services

68.2 JAX-WS

Liferay supports JAX-WS via the Apache CXF implementation. Apps can publish JAX-WS web
services to the CXF endpoints defined in your Liferay instance. CXF endpoints are effectively
context paths the JAX-WS web services are deployed to and accessible from. To publish any kind of
JAX-WS web service, one or more CXF endpoints must be defined. To access JAX-WS web services,
an extender must also be configured in your Liferay instance. Extenders specify where the services
are deployed and whether they are augmented with handlers, providers, and so on.

SOAP Extenders: Required to publish JAX-WS web services. Each SOAP extender can deploy
the services to one or more CXF endpoints and can use a set of JAX-WS handlers to augment the
services.

SOAP extenders are subsystems that track the services the app developer registers in OSGi
(those matching the provided OSGi filters), and deploy them under the specified CXF endpoints.
For example, if you create the CXF endpoint /soap, you could later create a SOAP extender for /soap
that publishes SOAP services. Of course, this is only a rough example: you can fine tune things to
your liking.

CXF endpoints and extenders can be created programmatically or with Liferay’s Control Panel.
This tutorial shows you how to do both, and then shows you how to publish JAX-WS web services.
The following topics are covered:

• Configuring Endpoints and Extenders with the Control Panel

• Configuring Endpoints and Extenders Programmatically

• Publishing JAX-WSWeb Services

742

https://en.wikipedia.org/wiki/Java_API_for_XML_Web_Services
http://cxf.apache.org/
https://jax-ws.java.net/articles/handlers_introduction.html
https://osgi.org/javadoc/r6/core/org/osgi/framework/Filter.html

Configuring Endpoints and Extenders with the Control Panel

Liferay’s Control Panel lets administrators configure endpoints and extenders for JAX-WS web
services. Note that you must be an administrator in your Liferay instance to access the settings
here. First, you’ll learn how to create CXF endpoints.

To configure a CXF endpoint with the Control Panel, first go to Control Panel → Configuration →
System Settings → Web API. Then select CXF Endpoints from the list. If there are any existing CXF
endpoints, they’re shown here. To add a new one, click the Add button. The form that appears lets
you configure a new CXF endpoint by filling out these fields:

Context Path: The path the JAX-WS web services are deployed to on the Liferay server. For
example, if you define the context path /web-services, any services deployed there are available at
http://your-server:your-port/o/web-services.

AuthVerifier properties: Any properties defined here are passed as-is to the AuthVerifier filter.
See the AuthVerifier documentation for more details.

Required Extensions: CXF normally loads its default extension classes, but in some cases you
can override them to replace the default behavior. In most cases, you can leave this field blank:
overriding extensions isn’t common. By specifying custom extensions here via OSGi filters, Liferay
waits until those extensions are registered in the OSGi framework before creating the CXF servlet
and passing the extensions to the servlet.

For an app to deploy JAX-WS web services, you must configure a SOAP extender. To configure a
SOAP extender with the Control Panel, first go to Control Panel → Configuration → System Settings →
Web API. Then select SOAP Extenders from the list. If there are any existing SOAP extenders, they’re
shown here. To add a new one, click on the Add button. The form that appears lets you configure a
new SOAP extender by filling out these fields:

Context paths: Specify at least one CXF endpoint here. This is where the services affected by
this extender are deployed. In the preceding CXF endpoint example, this would be /web-services.
Note that you can specify more than one CXF endpoint here.

jax.ws.handler.filters: Here you can specify a set of OSGi filters that select certain services
registered in the OSGi framework. The selected services should implement JAX-WS handlers and
augment the JAX-WS services specified in the jax.ws.service.filters property. These JAX-WS handlers
apply to each service selected in this extender.

jax.ws.service.filters: Here you can specify a set of OSGi filters that select the services registered
in the OSGi framework that are deployed to the CXF endpoints. These OSGi services must be proper
JAX-WS services.

soap.descriptor.builder: Leave this option empty to use JAX-WS annotations to describe the
SOAP service. Touse a differentway to describe the SOAP service, you canprovide anOSGifilter here
that selects an implementation of com.liferay.portal.remote.soap.extender.SoapDescriptorBuilder.

Next, you’ll learn how to create endpoints and extenders programmatically.

Configuring Endpoints and Extenders Programmatically

To configure endpoints or extenders programmatically, you must use Liferay’s configurator exten-
der. The configurator extender provides a way for OSGi modules to deploy default configuration
values. Modules that use the configurator extender must provide a ConfigurationPath header that
points to the configuration files’ location inside the module. For example, the following configura-
tion sets the ConfigurationPath to src/main/resources/configuration:

Bundle-Name: Liferay Export Import Service JAX-WS

Bundle-SymbolicName: com.liferay.exportimport.service.jaxws

743

https://osgi.org/javadoc/r6/core/org/osgi/framework/Filter.html
https://osgi.org/javadoc/r6/core/org/osgi/framework/Filter.html
https://docs.oracle.com/javaee/7/tutorial/jaxws001.htm
https://docs.oracle.com/javaee/7/tutorial/jaxws001.htm

Figure 68.2: Fill out this form to create a CXF endpoint.

Bundle-Version: 1.0.0

Liferay-Configuration-Path: /configuration

Include-Resource: configuration=src/main/resources/configuration

Liferay-Releng-Module-Group-Description:

Liferay-Releng-Module-Group-Title: Data Management

Note that Liferay-specific Bnd instructions are prefixed with Liferay to avoid conflicts.
There are two different configuration types in OSGi’s ConfigurationAdmin: single, and factory.

Factory configurations can have several configuration instances per factory name. Liferay DXP uses
factory configurations. You must provide a factory configuration’s default values in a *.properties

file. In this properties file, use a suffix on the end of the PID (persistent identifier) and then provide
your settings. For example, the following code uses the -staging suffix on the PID and creates a
CXF endpoint at the context path /staging-ws:

com.liferay.portal.remote.cxf.common.configuration.CXFEndpointPublisherConfiguration-staging.properties:

contextPath=/staging-ws

744

https://osgi.org/javadoc/r4v42/org/osgi/service/cm/ConfigurationAdmin.html

Figure 68.3: Fill out this form to create a SOAP extender.

745

As another example, the following code uses the suffix -stagingjaxws on the PID and creates a
SOAP extender at the context path /staging-ws. This code also includes settings for the configuration
fields jaxWsHandlerFilterStrings and jaxWsServiceFilterStrings:

com.liferay.portal.remote.soap.extender.configuration.SoapExtenderConfiguration-stagingjaxws.properties:

contextPaths=/staging-ws

jaxWsHandlerFilterStrings=(staging.jax.ws.handler=true)

jaxWsServiceFilterStrings=(staging.jax.ws.service=true)

You must then use these configuration fields in the configuration class. For example,
the SoapExtenderConfiguration interface below contains the configuration fields contextPaths,
jaxWsHandlerFilterStrings, and jaxWsServiceFilterStrings:

@ExtendedObjectClassDefinition(

category = "foundation", factoryInstanceLabelAttribute = "contextPaths"

)

@Meta.OCD(

factory = true,

id = "com.liferay.portal.remote.soap.extender.configuration.SoapExtenderConfiguration",

localization = "content/Language", name = "soap.extender.configuration.name"

)

public interface SoapExtenderConfiguration {

@Meta.AD(required = false)

public String[] contextPaths();

@Meta.AD(name = "jax.ws.handler.filters", required = false)

public String[] jaxWsHandlerFilterStrings();

@Meta.AD(name = "jax.ws.service.filters", required = false)

public String[] jaxWsServiceFilterStrings();

@Meta.AD(name = "soap.descriptor.builder", required = false)

public String soapDescriptorBuilderFilter();

}

Next, you’ll learn how to publish JAX-WS web services.

Publishing JAX-WSWeb Services

To publish JAX-WS web services via SOAP in a module, annotate the class and its methods with
standard JAX-WS annotations, and then register it as a service in the OSGi framework. For example,
the following class uses the @WebService annotation for the class and @WebMethod annotations for its
methods. You must also set the jaxws property to true in the OSGi @Component annotation:

import javax.jws.WebMethod;

import javax.jws.WebService;

import org.osgi.service.component.annotations.Component;

@Component(

immediate = true, property = "jaxws=true", service = Calculator.class

)

@WebService

public class Calculator {

@WebMethod

public int divide(int a, int b) {

return a / b;

}

746

@WebMethod

public int multiply(int a, int b) {

return a * b;

}

@WebMethod

public int subtract(int a, int b) {

return a - b;

}

@WebMethod

public int sum(int a, int b) {

return a + b;

}

}

You should alsomake sure that you include org.osgi.core and org.osgi.service.component.annotations

as dependencies to your project.

747

CHAPTER 69

SEARCH

Liferay stores its information in a database, so why not search the database directly? Why add the
complexity of a search engine? First, because database table merges are expensive! Documents in
a search index often contain searchable fields frommultiple tables in the database. Traversing the
date in this way takes too long.

In addition to the performance problem, search engines provide access to additional features,
like relevance and scoring. By contrast, databases do not support features like fuzzy searching or
relevancy. Moreover, search engines can apply algorithms such as “More LikeThis” to return similar
content. Search engines also support geolocation, faceting of search results, and multi-lingual
searching.

This section contains information on extending Liferay’s search functionality, enabling your
custom entities to be indexed and searched in Liferay DXP, and configuring the developer-friendly
embedded Elasticsearch server to suit your needs. First, some basic search concepts.

69.1 Basic Search Concepts

Indexing: During indexing, a document is sent to the search engine. This document contains a
collection of fields of various types (string, etc.). The search engine processes each field within
the document. For each field, the search engine determines whether it needs to simply store the
field or if it needs to undertake special analysis (index time analysis). Index time analysis can be
configured for each field (see Mapping Definitions).

For fields requiring analysis, the search engine first tokenizes the value to obtain individual
words or tokens. Following tokenization, the search engine passes each token through a series of
analyzers. Analyzers perform different functions. Some remove common words or stop words
(e.g., “the”, “and”, “or”) while others perform operations like lowercasing all characters.

Searching: Searching involves sending a search query and obtaining results (a.k.a. hits) from
the search engine. The search query may be comprised of both queries and filters (more on this
later). Each query or filter specifies a field to search within and the value to match against. Upon
receiving the search query, the search engine iterates through each field within the nested queries
and filters. During this process, the engine may perform special analysis prior to executing the
query (search time analysis). Search time analysis can be configured for each field (see Mapping
Definitions).

749

69.2 Mapping Definitions

Search engines are semi-intelligent, automatically deciphering how to process documents passed
to them. However, there are instances where it’s desirable to configure explicitly how to process a
field.

Mappings control how a search engine processes a given field. For instance, if a field name
ends in “es_ES”, we want to process the field values as Spanish, removing any common Spanish
words like “si”.

In Elasticsearch and Solr, the two supported search engines for Liferay Portal, mappings are
defined in liferay-type-mappings.json and schema.xml, respectively.

The Elasticsearch mapping JSON file can be seen in the Liferay DXP source code, in the portal-

search-elasticsearch6module:

portal-search-elasticsearch6-impl/src/main/resources/META-INF/mappings/liferay-type-mappings.json

The Solr schema.xml can be seen in the portal-search-solr7module’s source code:

portal-search-solr7-impl/src/main/resources/META-INF/resources/schema.xml

Access the Solr 7 module’s source code from the liferay-portal repository here
These are default mapping files that are shipped with the product. You can further customize

these mappings to fit your needs. For example, you might want to use a special analyzer for a
custom inventory number field.

69.3 Liferay Search Infrastructure

Search engines already provide native APIs. Why does Liferay provide search infrastructure to
wrap the search engine? Liferay’s search infrastructure does several things:

1. Index documents with the fields Liferay needs (entryClassName, entryClassPK, assetTagNames,
assetCategories, companyId, groupId, staging status, etc.).

2. Apply the right filters to search queries (e.g., for scoping results).

3. Apply permission checking on the results.

4. Summarizing returned results.

That’s just a taste of Liferay’s Search Infrastructure. Continue reading to learn more.

69.4 Elasticsearch Logging

When you first start Liferay DXP, an embedded Elasticsearch server starts so that search works out
of the box. The embedded search engine is not suitable for production, but is useful for testing
and development.

In Fix Pack 3 and CE GA2, the Liferay log was slimmed down by removing INFO level Elastic-
search logs for the embedded Elasticsearch. WARN and ERROR logs are still displayed. If you miss

750

https://www.liferay.com/downloads-community
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/portal-search-solr7/portal-search-solr7-impl/src/main/resources/META-INF/resources/schema.xml

hearing from Elasticsearch during startup, you can enable the INFO log level for the embedded
Elasticsearch server.

Note: These instructions show you how to adjust the embedded Elasticsearch server’s logs.
Logging for Liferay DXP’s search functionality is configurable via the Log Levels screen at Control
Panel → Configuration → Server Administration → Log Levels tool. Narrow down the list to include
only the search classes and packages by searching for com.liferay.portal.search.

To adjust logging for a remote Elasticsearch server, see Elastic’s documentation.

Here’s an example log message that is displayed by default:
2018-09-13 16:49:24.442 WARN [Elasticsearch initialization thread][EmbeddedElasticsearchConnection:315]

Manage the log levels for the EmbeddedElasticsearchConnection in Server Administration.
Here’s an example Elasticsearch log message that isn’t displayed by default:

[2018-09-05T17:25:30,107][WARN][o.e.d.i.m.MapperService] [unmapped_type:string] should be replaced with [unmapped_type:keyword]

To adjust logging for the o.e.d.i.m.MapperService and other Elasticsearch classes,

1. Create a config folder in Liferay Home/data/elasticsearch6/.

2. Create a log4j2.properties file in the new folder.

3. To enable INFO level logging, populate the log4j2.properties file with these contents:

appender.console.layout.pattern=[%d{ISO8601}][%-5p][%-25c{1.}] %marker%m%n

appender.console.layout.type=PatternLayout

appender.console.name=console

appender.console.type=Console

logger.action.level=info

logger.action.name=org.elasticsearch.action

rootLogger.appenderRef.console.ref=console

rootLogger.level=info

status=error

Read the Elasticsearch logging documentation for more information.

4. Restart the Liferay DXP server or just the embedded Elasticsearch.

5. To restart just the embedded Elasticsearch server, create a file called

com.liferay.portal.bundle.blacklist.internal.BundleBlacklistConfiguration.config

in Liferay Home/osgi/configs directory and populate it with

blacklistBundleSymbolicNames="com.liferay.portal.search.elasticsearch6.impl"

6. Save the .config file and the bundle is stopped. Once you see the [STOPPED]message in the
logs, restart the bundle by commenting the line out and re-saving the file:

#blacklistBundleSymbolicNames="com.liferay.portal.search.elasticsearch6.impl"

Once this is accomplished, the embedded Elasticsearch server displays Elasticsearch logs at
the INFO level and above.

Two common Elasticsearch logs can be configured further: the Slow Log and the JVM’s Garbage
Collection log.

751

https://www.elastic.co/guide/en/elasticsearch/reference/6.1/logging.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.x/logging.html

Configuring Slow Log

Read about Elasticsearch’s Slow Log here.
Configure the Slow Log for the embedded Elasticsearch server in the Elasticsearch 6 entry in

System Settings. Add these settings to the Additional Index Configurations property:

index.indexing.slowlog.threshold.index.debug: 2s

index.indexing.slowlog.threshold.index.info: 5s

index.indexing.slowlog.threshold.index.trace: 500ms

index.indexing.slowlog.threshold.index.warn: 10s

index.search.slowlog.threshold.fetch.debug: 500ms

index.search.slowlog.threshold.fetch.info: 800ms

index.search.slowlog.threshold.fetch.trace: 200ms

index.search.slowlog.threshold.fetch.warn: 1s

index.search.slowlog.threshold.query.debug: 2s

index.search.slowlog.threshold.query.info: 5s

index.search.slowlog.threshold.query.trace: 500ms

index.search.slowlog.threshold.query.warn: 10s

These are example values. Adjust as needed.

Configuring JVM Garbage Collection Logging

As with the Slow Log configuration, Elasticsearch’s JVM Garbage Collection logging is adjustable in
the Elasticsearch 6 entry in System Settings. Add these settings to the Additional Configurations
property:

monitor.jvm.gc.enabled: true

monitor.jvm.gc.overhead.debug: 40

monitor.jvm.gc.overhead.info: 70

monitor.jvm.gc.overhead.warn: 90

These are example values. Adjust as needed.

69.5 Indexing Framework

Unless you’re searching for model entities using database queries (not recommended in most
cases), each asset in Liferay DXP must be indexed in the search engine. The indexing code is
specific to each asset, as the asset’s developers know what fields to index and what filters to apply
to the search query.

In past versions of Liferay DXP, when your asset required indexing, you would implement a
new Indexer by extending com.liferay.portal.kernel.search.BaseIndexer<T>. 7.0 introduces a new
pattern that relies on composition instead of inheritance. If you want to use the old approach, feel
free to extend BaseIndexer. It’s still supported.

Search and Indexing Overview

Liferay’s original Search API was built around the Lucene search and indexing library. To this
day, familiarity with Lucene will jump-start your understanding of Liferay’s Search API. However,
starting with the 7.0 version of Liferay DXP, the Search API is being reworked, so that the parts
closely tied to Lucene are becoming more generic. Elasticsearch support was added (in addition
to Solr), and most of the newer searching and indexing APIs aim to leverage/map Elasticsearch

752

https://www.elastic.co/guide/en/elasticsearch/reference/6.1/index-modules-slowlog.html
https://stackoverflow.com/questions/2399544/difference-between-inheritance-and-composition

APIs. This means that in many cases (for example the Query types) there is a one-to-one mapping
between the Liferay and Elasticsearch APIs.

In addition to the Elasticsearch centered APIs, Liferay’s Search Infrastructure includes addi-
tional APIs serving these purposes:

• Indexed documents include the fields needed by Liferay DXP (e.g., entryClassName,
entryClassPK, assetTagNames, assetCategories, companyId, groupId, staging status).

• It ensures the scope of returned search results is appropriate by applying the right filters to
search requests.

• It provides permission checking and hit summaries to display in the search portlet.

To understand how search and indexing codemakes your custommodels seamlessly searchable,
you must know how to influence each portion of the search and indexing cycle.

Indexing

Model entities store data fields in the database. For example, Guestbooks store a name field. During
the cycle’s Indexing step, you prepare the model entity to be searchable by defining the model’s
fields that are sent to the search engine, later used during a search.

To control howmodel entity fields are indexed in search engine documents,
ModelDocumentContributor classes specify which database fields are indexed in themodel entity’s

search engine document. This class’s contribute method is called each time the add and update

methods in the entity’s service layer are called.
ModelIndexerWriterContributor classes configure the re-indexing and batch re-indexing behavior

for the model entity. This class’s method is called when a re-index is triggered from the Search
administrative application found in Control Panel → Configuration → Search, or when a CRUD
operation is made on the entity, if the modelIndexedmethod is implemented in your contributor.

DocumentContributor classes (without any indexer.class.name component property or type pa-
rameter) contribute certain fields to every index document, regardless of what base entity is
being indexed. For example, the GroupedModelDocumentContributor contributes the GROUP_ID and
SCOPE_GROUP_ID fields for all documents with a backing entity that’s also a GroupedModel.

Searching

Searches start with a user entering keywords into a search bar. The entered keywords are processed
by the back-end search infrastructure, transformed into a query the search engine can understand,
and used to match against each search document’s fields.

To control the waymodel entity documents are searched,
KeywordQueryContributor classes contribute clauses to the ongoing search query. This is called

at search time and ensures that all the fields you indexed are also the ones searched. For example,
if you index fields with the Site locale appended to them (title_en_us, for example), you want
the search query to include the same locale when the document is searched. If the search query
contains another locale (like title_es_ES) or searches the plain field (title), inaccurate results are
returned.

To contribute query clauses to every search, regardless of what base entity is being searched,
implement a KeywordQueryContributor class registered without an indexer.class.name component
property. For example, see AlwaysPresentFieldsKeywordQueryContributor.

753

https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/portal-search/portal-search-spi/src/main/java/com/liferay/portal/search/spi/model/index/contributor/ModelDocumentContributor.java
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/portal-search/portal-search-spi/src/main/java/com/liferay/portal/search/spi/model/index/contributor/ModelIndexerWriterContributor.java
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/portal-search/portal-search/src/main/java/com/liferay/portal/search/internal/contributor/document/GroupedModelDocumentContributor.java
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/portal-search/portal-search-spi/src/main/java/com/liferay/portal/search/spi/model/query/contributor/KeywordQueryContributor.java
https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/portal-search/portal-search/src/main/java/com/liferay/portal/search/internal/contributor/query/AlwaysPresentFieldsKeywordQueryContributor.java

ModelPreFilterContributors control how search results are filtered before they’re returned from
the search engine. For example, adding the workflow status to the query ensures that an entity in
the trash isn’t returned in the search results.

To contribute Filter clauses to every search, regardless of what base entity is being searched,
implement a QueryPreFilterContributor. QueryPreFilterContributor is constructed only once under
the root filter during a search. For example, see AssetCategoryTitlesKeywordQueryContributor.

What’s the difference between QueryPreFilterContributor and ModelPreFilterContributor?
QueryPreFilterContributor is constructed only once under the root filter during a search, while
ModelPreFilterContributor is constructed once per model entity, and added under each specific
entity’s subfilter.

Returning Results

When a model entity’s indexed search document is obtained during a search request, it’s converted
into a summary of the model entity.

To control the result summaries for model entity documents,
ModelSummaryContributor classes get the Summary object created for each search document, so you

can manipulate it by adding specific fields or setting the length of the displayed content.
ModelVisibilityContributor classes control the visibility of model entities that can be attached

to other asset types (for example, File Entries can be attached toWiki Pages), in the search context.
One important step must occur to make sure the above classes are discovered by the search

framework.

Search Service Registration

To register model entities with Liferay’s search framework,
SearchRegistrars use the search framework’s registry to define certain things about your model

entity’s ModelSearchDefinition: which fields are used by default to retrieve documents from the
search engine, and which optional search services are registered for your entity. Registration
occurs as soon as the Component is activated (during portal startup or deployment of the bundle).

Mapping the Composite Search and Indexing Framework to Indexer/BaseIndexer Code

If you’re used to the old way of indexing custom entities (extending BaseIndexer, the abstract
implementation of Indexer), the table below provides a quick overview about how the methods of
the Indexer interface were decomposed into several new classes and methods.

Indexer/BaseIndexer method Composite Indexer Equivalent Example

Class Constructor SearchRegistrar GuestbookSearchRegistrar

setDefaultSelectedFieldNames SearchRegistrar.activate GuestbookSearchRegistrar

setDefaultSelectedLocalizedFieldNamesSearchRegistrar.activate GuestbookSearchRegistrar

setPermissionAware ModelResourcePermissionRegistrar GuestbookModelResourcePermissionRegistrar

setFilterSearch ModelResourcePermissionRegistrar GuestbookModelResourcePermissionRegistrar

getDocument/doGetDocument ModelDocumentContributor GuestbookModelDocumentContributor

reindex/doReindex ModelIndexerWriterContributor GuestbookModelIndexerWriterContributor

addRelatedEntryFields RelatedEntryIndexer DLFileEntryRelatedEntryIndexer

postProcessContextBooleanFilter/PostProcessContextQueryModelPreFilterContributor DLFileEntryModelPreFilterContributor

postProcessSearchQuery KeywordQueryContributor GuestbookKeywordQueryContributor

754

https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/portal-search/portal-search-spi/src/main/java/com/liferay/portal/search/spi/model/query/contributor/ModelPreFilterContributor.java
https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/portal-search/portal-search/src/main/java/com/liferay/portal/search/internal/contributor/query/AssetCategoryTitlesKeywordQueryContributor.java
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/portal-search/portal-search-spi/src/main/java/com/liferay/portal/search/spi/model/result/contributor/ModelSummaryContributor.java
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/portal-search/portal-search-spi/src/main/java/com/liferay/portal/search/spi/model/result/contributor/ModelVisibilityContributor.java
https://github.com/liferay/liferay-portal/tree/7.1.1-ga2/modules/apps/portal-search/portal-search-spi/src/main/java/com/liferay/portal/search/spi/model/registrar
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/portal-search/portal-search-spi/src/main/java/com/liferay/portal/search/spi/model/registrar/ModelSearchDefinition.java
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/document-library/document-library-service/src/main/java/com/liferay/document/library/internal/search/DLFileEntryRelatedEntryIndexer.java
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/document-library/document-library-service/src/main/java/com/liferay/document/library/internal/search/DLFileEntryModelPreFilterContributor.java

Indexer/BaseIndexer method Composite Indexer Equivalent Example

getFullQuery SearchContextContributor DLFileEntryModelSearchContextContributor

isVisible/isVisibleRelatedEntry ModelVisibilityContributor DLFileEntryModelVisibilityContributor

getSummary/createSummary/doGetSummary ModelSummaryContributor GuestbookModelSummaryContributor

Indexer.search/searchCount No change Guestbook
view_search.jsp

Indexer.delete/doDelete No change MBMessageLocalServiceImpl.deleteDiscussionMessages

In addition, you can index ExpandoBridge attributes. This was previously accomplished
in BaseIndexer’s getBaseModelDocument. Now you implement an ExpandoBridgeRetriever. See
DLFileEntryExpandoBridgeRetriever for an example implementation.

Permissions Aware Searching and Indexing

In previous versions of Liferay DXP, search was only permissions aware (indexed with the entity’s
permissions and searched with those permissions intact) if the application developer specified this
line in the Indexer class’s constructor:

setPermissionAware(true);

Now, search is permissions aware by default if the new permissions approach, as described in
these tutorials, is implemented for an application.

Annotating Service Methods to Trigger Indexing

Having entities translated into database entities and search engine documents means that there’s
a possibility for a state mismatch between the database and search engine. For example, when
a Blogs entry is added, updated or removed from the database, corresponding changes must be
made in the search engine. To do this, interventionmust bemade into the service layer. For Service
Builder entities, this occurs in the LocalServiceImpl classes. There’s an annotation that simplifies
this: @Indexable. It takes a type property that can have two values: REINDEX or DELETE. Commonly, a
deleteEntitymethod in the service layer is annotated like this:

@Indexable(type = IndexableType.DELETE)

@Override

@SystemEvent(type = SystemEventConstants.TYPE_DELETE)

public BlogsEntry deleteEntry(BlogsEntry entry) throws PortalException {

...

}

The @Indexable annotation is executed by Liferay’s Spring infrastructure, so if you have amethod
with that annotation, you must call it using a service instance variable with the spring wrapped
logic. The reference is available by default in Service Builder generated *LocalServiceImpl classes
because of this declaration in the parent *LocalServiceBaseImpl:

@BeanReference(type = BlogsEntryLocalService.class)

protected BlogsEntryLocalService blogsEntryLocalService;

This means that in the *LocalServiceImpl, you must not call

this.deleteEntry(...)

755

https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/document-library/document-library-service/src/main/java/com/liferay/document/library/internal/search/DLFileEntryModelSearchContextContributor.java
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/document-library/document-library-service/src/main/java/com/liferay/document/library/internal/search/DLFileEntryModelVisibilityContributor.java
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/message-boards/message-boards-service/src/main/java/com/liferay/message/boards/service/impl/MBMessageLocalServiceImpl.java#L687
https://github.com/liferay/liferay-portal/blob/7.1.1-ga2/modules/apps/document-library/document-library-service/src/main/java/com/liferay/document/library/internal/search/DLFileEntryExpandoBridgeRetriever.java

The annotation won’t be executed and you’ll be left with a state mismatch between the search
engine document and the database column. Instead follow the pattern in Liferay DXP’s code, using
the service instance variable to call service methods:

blogsEntryLocalService.deleteEntry(entry);

For step-by-step instructions on indexing model entities, visit the Search and Indexing section
of the Developing aWeb Application tutorials.

756

CHAPTER 70

ASSET FRAMEWORK

The asset framework powers the core Liferay features so you can add them to your application.
For example, if you build an event management application that displays a list of upcoming events,
you can use the asset framework to let users add tags, categories, or comments to make entries
more self-descriptive.

As background, the term asset refers to any type of content in the portal. This could be text, a
file, a URL, an image, documents, blog entries, bookmarks, wiki pages, or anything you create in
your applications.

The asset framework tutorials assume that you’ve used Liferay’s Service Builder to generate
your persistence layer, that you’ve implemented permissions on the entities that you’re persisting,
and that you’ve enabled them for search and indexing. You can learn more about Liferay’s Service
Builder and how to use it in the Service Builder tutorial section.

The tutorials that follow in this section explore how to leverage the asset framework’s various
features. Here are some features that you’ll give your users as you implement them in your app:

• Extensively render your assets.
• Associate tags to custom content types. Users can create and assign new tags or use existing
tags.

• Associate categories to custom content types.
• Manage tags from the Control Panel. Administrators can even merge tags.
• Manage categories from the Control Panel. This includes the ability to create category
hierarchies.

• Relate assets to one another.

Before diving head first into the tutorials, you must implement a way to let the framework
know whenever any of your custom content entries is added, updated, or deleted. The next tutorial
covers that. From that point onward, each tutorial shows you how to leverage a particular asset
framework feature in your UI. It’s time to start your asset framework training!

70.1 Related Topics

What is Service Builder

757

Service Builder Persistence
Configurable Applications

70.2 Adding, Updating, and Deleting Assets

To use Liferay’s asset framework with an entity, you must inform the asset framework about each
entity instance you create, modify, and delete. In this sense, it’s similar to informing Liferay’s
permissions framework about a new resource. All you have to do is invoke a method of the asset
framework that associates an AssetEntry with the entity so Liferay can keep track of the entity as
an asset. When it’s time to update the entity, you update the asset at the same time.

To leverage assets, you must also implement indexers for your portlet’s entities. Liferay’s asset
framework uses indexers to manage assets.

This tutorial shows you how to enable assets for your custom entities and implement indexes
for them. It’s time to get started!

Preparing Your Project for the Asset Framework

In your project’s service.xml file, add an asset entry entity reference for your custom entity. Add
the following reference tag before your custom entity’s closing </entity> tag.

<reference package-path="com.liferay.portlet.asset" entity="AssetEntry" />

Then run Service Builder.
Now you’re ready to implement adding and updating assets!

Adding and Updating Assets

Your -LocalServiceImpl Java class inherits from its parent base class an AssetEntryLocalService

instance; it’s assigned to the variable assetEntryLocalService. To add your custom entity as a Liferay
asset, you must invoke the assetEntryLocalService’s updateEntrymethod.

Here’s what the updateEntrymethod’s signature looks like:

AssetEntry updateEntry(

long userId, long groupId, Date createDate, Date modifiedDate,

String className, long classPK, String classUuid, long classTypeId,

long[] categoryIds, String[] tagNames, boolean listable,

boolean visible, Date startDate, Date endDate, Date publishDate,

Date expirationDate, String mimeType, String title,

String description, String summary, String url, String layoutUuid,

int height, int width, Double priority)

throws PortalException

Here are descriptions of each of the updateEntrymethod’s parameters:

• userId: identifies the user updating the content.
• groupId: identifies the scope of the created content. If your content doesn’t support scopes
(extremely rare), pass 0 as the value.

• createDate: the date the entity was created.
• modifiedDate: the date of this change to the entity.
• className: identifies the entity’s class. The recommended convention is to use the name
of the Java class that represents your content type. For example, you can pass in the value
returned from [YourClassName].class.getName().

758

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portlet/asset/service/impl/AssetEntryLocalServiceImpl.html#updateEntry-long-long-java.util.Date-java.util.Date-java.lang.String-long-java.lang.String-long-long:A-java.lang.String:A-boolean-boolean-java.util.Date-java.util.Date-java.util.Date-java.util.Date-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.lang.String-int-int-java.lang.Double-

• classPK: identifies the specific entity instance, distinguishing it from other instances of the
same type. It’s usually the primary key of the table where the entity is stored.

• classUuid: serves as a secondary identifier that’s guaranteed to be universally unique. It
correlates entity instances across scopes. It’s especially useful if your content is exported
and imported across separate portals.

• classTypeId: identifies the particular variation of this class, if it has any variations. Otherwise,
use 0.

• categoryIds: represent the categories selected for the entity. The asset framework stores
them for you.

• tagNames: represent the tags selected for the entity. The asset framework stores them for you.
• listable: specifies whether the entity can be shown in dynamic lists of content (such as asset
publisher configured dynamically).

• visible: specifies whether the entity is approved.
• startDate: the entity’s publish date. You can use it to specify when an Asset Publisher should
show the entity’s content.

• endDate: the date the entity is taken down. You can use it to specify when an Asset Publisher
should stop showing the entity’s content.

• publishDate: the date the entity will start to be shown.
• expirationDate: the date the entity will no longer be shown.
• mimetype: theMulti-Purpose InternetMail Extensions type, suchasContentTypes.TEXT_HTML,
used for the content.

• title: the entity’s name.
• description: a String-based textual description of the entity.
• summary: a shortened or truncated sample of the entity’s content.
• url: a URL to optionally associate with the entity.
• layoutUuid: the universally unique ID of the layout of the entry’s default display page.
• height: this can be set to 0.
• width: this can be set to 0.
• priority: specifies how the entity is ranked among peer entity instances. Low numbers take
priority over higher numbers.

The following code from Liferay’sWiki application’s WikiPageLocalServiceImpl Java class demon-
strates invoking the updateEntrymethodon thewiki page entity called WikiPage. In your add-method,
you could invoke updateEntry after adding your entity’s resources. Likewise, in your update-method,
you could invoke updateEntry after calling the super.update-method. The code below is called in
the WikiPageLocalServiceImpl class’s updateStatus(...) method.

AssetEntry assetEntry = assetEntryLocalService.updateEntry(

userId, page.getGroupId(), page.getCreateDate(),

page.getModifiedDate(), WikiPage.class.getName(),

page.getResourcePrimKey(), page.getUuid(), 0,

assetCategoryIds, assetTagNames, true, true, null, null,

page.getCreateDate(), null, ContentTypes.TEXT_HTML,

page.getTitle(), null, null, null, null, 0, 0, null);

Indexer<WikiPage> indexer = IndexerRegistryUtil.nullSafeGetIndexer(

WikiPage.class);

indexer.reindex(page);

Immediately after invoking the updateEntrymethod, you must update the respective asset and
index the entity instance. The above code calls the indexer to index (or re-index, if updating) the

759

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ContentTypes.html#TEXT_HTML
https://github.com/liferay/liferay-portal/blob/master/modules/apps/wiki/wiki-service/src/main/java/com/liferay/wiki/service/impl/WikiPageLocalServiceImpl.java

entity. That’s all there is to it.

Tip: The current user’s ID and the scope group ID are commonly made available in service
context parameters. If the service context you use contains them, then you can access them in
calls like these:

long userId = serviceContext.getUserId(); long groupId = serviceContext.getScopeGroupId();

Next, you’ll learn what’s needed to delete an entity that’s associated with an asset.

Deleting Assets

When deleting your entities, you should delete the associated assets and indexes at the same time.
This cleans up stored asset and index information, which keeps the Asset Publisher from showing
information for the entities you’ve deleted.

In your -LocalServiceImpl Java class, open your delete-method. After the code that deletes the
entity’s resource, delete the entity instance’s asset entry and index.

Here’s some code which deletes an asset entry and an index associated with a portlet’s entity.

assetEntryLocalService.deleteEntry(

ENTITY.class.getName(), assetEntry.getEntityId());

Indexer<ENTITY> indexer = IndexerRegistryUtil.nullSafeGetIndexer(ENTITY.class);

indexer.delete(assetEntry);

In your -LocalServiceImpl class, you can write similar code. Replace the ENTITY class name
and variable with your entity’s name.

Important: For Liferay’s Asset Publisher application to show your entity, the entity must have
an Asset Renderer.

Note also that an Asset Renderer is how you show a user the components of your entity in the As-
set Publisher. On deploying your portlet with asset, indexer, and asset rendering implementations
in place, an Asset Publisher can show your custom entities!

Great! Now you know how to add, update, and delete assets in your apps!

Related Topics

Relating Assets
What is Service Builder?

70.3 Implementing Asset Categorization and Tagging

In this tutorial, you’ll enable tags and categories entities in the UI through a set of JSP tags. Before
beginning, your entities should be asset-enabled and you should have asset renderers enabled for
them.

Now it’s time to get started!

760

Figure 70.1: It can be useful to show custom entities, like this wiki page entity, in a JSP or in an Asset Publisher.

Figure 70.2: Adding category and tag input options lets authors aggregate and label custom entities.

761

Adding Tags and Categories

You can use the following tags in the JSPs you provide for adding/editing custom entities. Here’s
what the tags look like in the edit_entry.jsp for the Blogs portlet:

<liferay-ui:asset-categories-error />

<liferay-ui:asset-tags-error />

...

<aui:fieldset-group markupView="lexicon">

...

<aui:fieldset collapsed="<%= true %>" collapsible="<%= true %>" label="categorization">

<liferay-asset:asset-categories-selector name="categories" type="assetCategories" />

<liferay-asset:asset-tags-selector name="tags" type="assetTags" />

</aui:fieldset>

...

</aui:fieldset-group>

The liferay-asset:asset-categories-selector and liferay-asset:asset-tags-selector tags gen-
erate form controls that let users browse/select categories for the entity, browse/select tags, and/or
create new tags to associate with the entity.

The liferay-ui:asset-categories-error and liferay-ui:asset-tags-error tags show messages
for errors occurring during the asset category or tag input process. The aui:fieldset tag uses a
container that lets users hide or show the category and tag input options.

For styling purposes, the aui:fieldset-group tag is given the lexiconmarkup view.

Displaying Tags and Categories

Tags and categories should be displayed with the content of the asset. Here’s how to display the
tags and categories:

<p><liferay-ui:message key="categories" />:</p>

<div class="entry-categories">

<liferay-ui:asset-categories-summary

className="<%= BlogsEntry.class.getName() %>"

classPK="<%= entry.getEntryId() %>"

portletURL="<%= renderResponse.createRenderURL() %>"

/>

</div>

...

<div class="entry-tags">

<p><liferay-ui:message key="tags" />:</p>

<liferay-ui:asset-tags-summary

className="<%= BlogsEntry.class.getName() %>"

classPK="<%= entry.getEntryId() %>"

portletURL="<%= renderResponse.createRenderURL() %>"

/>

</div>

The portletURL parameter is used for both tags and categories. Each tag that uses this parameter
becomes a link containing the portletURL and tag or categoryId parameter value. To implement
this, you must implement the look-up functionality in your portlet code. Do this by reading the
values of those two parameters and using AssetEntryService to query the database for entries based
on the specified tag or category.

762

https://github.com/liferay/liferay-portal/blob/master/modules/apps/blogs/blogs-web/src/main/resources/META-INF/resources/blogs/edit_entry.jsp

Deploy your changes and add/edit a customentity in yourUI.Your form shows the categorization
and tag input options in a panel that the user can hide/show.

Great! Now you know how to make category and tag input options available to your app’s
content authors.

Related Topics

Relating Assets
Adding, Updating, and Deleting Assets
What is Service Builder?

70.4 Relating Assets

Relating assets connects individual pieces of content across your site or portal. This helps users
discover related content, particularly when there’s an abundance of other available content. For
example, assets related to a web content article appear alongside that entry in the Asset Publisher
application.

Figure 70.3: You and your users can find it helpful to relate assets to entities, such as this blogs entry.

Now you’ll learn how to provide a way for authors to relate content. This tutorial assumes that
you’ve Adding, Updating, and Deleting Assets your application. If you’ve already done this, go
ahead and begin relating your assets!

Relating Assets in the Service Layer

First, you must make some modifications to your portlet’s service layer. You must implement
persisting your entity’s asset relationships.

1. In your portlet’s service.xml, put the following line of code below any findermethod elements
and then run Service Builder:

<reference package-path="com.liferay.portlet.asset" entity="AssetLink" />

763

2. Modify the add-, delete-, and update-methods in your -LocalServiceImpl to persist the asset
relationships. You’ll use your -LocalServiceImpl’s assetLinkLocalService instance variable to
execute persistence actions.

For example, consider theWiki application. When you update wiki assets and statuses, both
methods utilize the updateLinks via your instance variable assetLinkLocalService. Here’s the
updateLinks invocation in theWiki application’s WikiPageLocalServiceImpl.updateStatus(...)
method:

assetLinkLocalService.updateLinks(

userId, assetEntry.getEntryId(), assetLinkEntryIds,

AssetLinkConstants.TYPE_RELATED);

To call the updateLinksmethod, you must pass in the current user’s ID, the asset entry’s ID,
the asset link entries’ IDs, and the link type. Invoke this method after creating the asset entry.
If you assign to an AssetEntry variable (e.g., one called assetEntry) the value returned from
invoking assetEntryLocalService.updateEntry, you can get the asset entry’s ID for updating
its asset links. Lastly, in order to specify the link type parameter, make sure to import
com.liferay.portlet.asset.model.AssetLinkConstants.

3. In your -LocalServiceImpl class’ delete- method, you must delete the asset’s relationships
before deleting the asset. For example, you could delete your existing asset link relationships
by using the following code:

AssetEntry assetEntry = assetEntryLocalService.fetchEntry(

ENTITY.class.getName(), ENTITYId);

assetLinkLocalService.deleteLinks(assetEntry.getEntryId());

Make sure to replace the ENTITY place holders for your custom -deletemethod.
Super! Now your portlet’s service layer can handle related assets. Even so, there’s still nothing

in your portlet’s UI that lets your users relate assets. You’ll take care of that in the next step.

Relating Assets in the UI

The UI for linking assets should be in the JSP where users create and edit your entity. This way
only content creators can relate other assets to the entity. Related assets are implemented in the
JSP by using the Liferay UI tag liferay-ui:input-asset-links inside a collapsible panel. This code
is placed inside the aui:fieldset tags of the JSP.

1. Add the liferay-ui:input-asset-links tag to your form. Here’s how it’s added in the Blogs
application:

<aui:fieldset collapsed="<%= true %>" collapsible="<%= true %>" label="related-assets">

<liferay-ui:input-asset-links

className="<%= BlogsEntry.class.getName() %>"

classPK="<%= entryId %>"

/>

The following screenshot shows the Related Assets menu for an application. Note that it is
contained in a collapsible panel titled Related Assets.

764

Figure 70.4: Your portlet’s entity is now available in the Related Assets Selectmenu.

2. Unfortunately, the Related Assets menu shows your entity’s fully qualified class name. To
replace it with a simplified name for your entity, add a language key with the fully qual-
ified class name for the key and the name you want for the value. Put the language key
in file docroot/WEB-INF/src/content/Language.properties in your portlet. You can refer to the
Overriding Language Keys tutorial for more documentation on using language properties.

Upon redeploying your portlet, the value you assigned to the fully qualified class name in
your Language.properties file shows in the Related Assets menu.

Awesome! Now content creators and editors can relate the assets of your application. The next
thing you need to do is reveal any such related assets to the rest of your application’s users. After
all, you don’t want to give everyone edit access just so they can view related assets!

Showing Related Assets

You can show related assets in your application’s view of that entity or, if you’ve implemented asset
rendering for your custom entity, you can show related assets in the full content view of your entity
for users to view in an Asset Publisher portlet.

1. You must get the AssetEntry object associated with your entity:

<%

long insultId = ParamUtil.getLong(renderRequest, "insultId");

Insult ins = InsultLocalServiceUtil.getInsult(insultId);

AssetEntry assetEntry = AssetEntryLocalServiceUtil.getEntry(Insult.class.getName(), ins.getInsultId());

%>

2. Use the liferay-ui:asset-links tag to show the entity’s related assets. For this tag, you should
retrieve the entity’s class name and the variable holding your instance object, so you can
return its ID. The example code below uses the example entity class Insult and an instance
object variable called ins:

<liferay-ui:asset-links

assetEntryId="<%=(assetEntry != null) ? assetEntry.getEntryId() : 0%>"

className="<%=Insult.class.getName()%>"

classPK="<%=ins.getInsultId()%>" />

Great! Now you have the JSP that lets your users view related assets. Related assets, if you’ve
created any yet, should be visible near the bottom of the page.

Excellent! Now you know how to implement related assets in your apps.

765

Related Topics

Adding, Updating, and Deleting Assets
What is Service Builder?
Defining Content Relationships

70.5 Implementing Asset Priority

The Asset Publisher lets you order assets by priority. For this to work, however, users must be able
to set the asset’s priority when creating or editing the asset. For example, when creating or editing
web content, users can assign a priority in the Metadata section’s Priority field.

Figure 70.5: The Priority field lets users set an asset’s priority.

766

This field isn’t enabled when you create an asset. You must manually add support for it. Fortu-
nately, this is very straightforward. This tutorial shows you how. Onwards!

Add the Priority Field to Your JSP

In the JSP for adding and editing your asset, add the following input field that lets users set the
asset’s priority. This example also validates the input to make sure the value the user sets is a
number higher than zero:

<aui:input label="priority" name="assetPriority" type="text" value="<%= priority %>">

<aui:validator name="number" />

<aui:validator name="min">[0]</aui:validator>

</aui:input>

That’s it for the view layer! Now when users create or edit your asset, they can enter its priority.
Next, you’ll learn how to use that value in your service layer.

Using the Priority Value in Your Service Layer

To make the priority value functional, you must retrieve it from the view and add it to the
asset in your database. The priority value is automatically available in your service layer via
the ServiceContext variable serviceContext. Retrieve it with serviceContext.getAssetPriority(),
and then pass it as the last argument to the assetEntryLocalService.updateEntry call in your
-LocalServiceImpl. You can see an example of this in the BlogsEntryLocalServiceImpl class of Liferay
DXP’s Blogs app. The updateAsset method takes a priority argument, which it passes as the last
argument to its assetEntryLocalService.updateEntry call:

@Override

public void updateAsset(

long userId, BlogsEntry entry, long[] assetCategoryIds,

String[] assetTagNames, long[] assetLinkEntryIds, Double priority)

throws PortalException {

...

AssetEntry assetEntry = assetEntryLocalService.updateEntry(

userId, entry.getGroupId(), entry.getCreateDate(),

entry.getModifiedDate(), BlogsEntry.class.getName(),

entry.getEntryId(), entry.getUuid(), 0, assetCategoryIds,

assetTagNames, true, visible, null, null, null, null,

ContentTypes.TEXT_HTML, entry.getTitle(), entry.getDescription(),

summary, null, null, 0, 0, priority);

...

}

The BlogsEntryLocalServiceImpl class calls this updateAssetmethod when adding or updating a
blog entry. Note that serviceContext.getAssetPriority() retrieves the priority:

updateAsset(

userId, entry, serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(),

serviceContext.getAssetLinkEntryIds(),

serviceContext.getAssetPriority());

Sweet! Now you know how to enable priorities for your app’s assets.

767

https://github.com/liferay/liferay-portal/blob/master/modules/apps/blogs/blogs-service/src/main/java/com/liferay/blogs/service/impl/BlogsEntryLocalServiceImpl.java

Related Topics

Adding, Updating, and Deleting Assets
Implementing Asset Categorization and Tagging
Relating Assets
Rendering an Asset
Publishing Assets

768

CHAPTER 71

RENDERING AN ASSET

Before you create a way to render your asset, make sure it’s added to the asset framework by
following the [Adding, Updating, and Deleting Assets tutorial. Once you add your asset to the
framework, you can render the asset using the Asset Publisher application. The default render,
however, only displays the asset’s title and description text. Anything else requires additional
coding. For instance, you might want these additional things:

• An edit feature for modifying an asset.
• View an asset in its original context (e.g., a blog in the Blogs application; a post in theMessage
Boards application).

• Embed images, videos, and audio.
• Restrict access to users who do not have permissions to interact with the asset.
• Allow users to comment on the asset.

You can dictate your asset’s rendering capabilities by providing the Asset Renderer framework.
There are two things you must do to get your asset renderer functioning properly for your asset:

1. Create an asset renderer for your custom asset.

2. Create an asset renderer factory to create an instance of the asset renderer for each asset
entity.

You’ll learn how to create an asset renderer and an asset renderer factory by studying a Liferay
asset that already uses both by default: Blogs. The Blogs application offers many different ways to
access and render a blogs asset. You’ll learn how a blogs asset provides an edit feature, comment
section, original context viewing (i.e., viewing an asset from the Blogs application), workflow,
and more. You’ll also learn how it uses JSP templates to display various blog views. The Blogs
application is an extensive example of how an asset renderer can be customized to fit your needs.

If you want to create an asset andmake it do more than display its title and description, read on!

71.1 Prerequisites for Asset Enabling and Application

To asset-enable your application, you need two things:

769

Figure 71.1: The asset renderer factory creates an asset renderer for each asset instance.

1. The application must store asset data. Applications that store a data model meet this require-
ment.

2. The application must contain at least one non-instanceable portlet. Edit links for the asset
cannot be generated without a non-instanceable portlet.

Some applications may consist of only one non-instanceable portlet, while others may consist
of a both instanceable and non-instanceable portlets. If your application does not currently include
a non-instanceable portlet, adding a configuration interface through a panel app both enhances
the usability of the application, and meets the requirement for adding a non-instanceable portlet
to the application. See our tutorial on Adding Custom Panel Apps to learn how to add one.

Now you’re ready to create an Asset Renderer.

71.2 Creating an Asset Renderer

In this tutorial, you’ll learn how to create an Asset Renderer and associate your JSP templates with
it, along with configuring several other options.

To learn how an asset renderer is created, you’ll create the pre-existing BlogsEntryAssetRenderer

class, which configures the asset renderer framework for the Blogs application.

1. Create a new package in your existing project for your asset-related classes. For in-
stance, the BlogsEntryAssetRenderer class resides in the com.liferay.blogs.web module’s
com.liferay.blogs.web.asset package.

770

https://github.com/liferay/liferay-portal/blob/7.1.3-ga4/modules/apps/blogs/blogs-web/src/main/java/com/liferay/blogs/web/asset/BlogsEntryAssetRenderer.java

2. Create your -AssetEntry class for your application in the new -.asset package and have it im-
plement the AssetEntry interface. Consider the BlogsEntryAssetRenderer class as an example:

public class BlogsEntryAssetRenderer

extends BaseJSPAssetRenderer<BlogsEntry> implements TrashRenderer {

The BlogsEntryAssetRenderer class extends the BaseJSPAssetRenderer, which is an extension
class intended for those who plan on using JSP templates to generate their asset’s HTML.
The BaseJSPAssetRenderer class implements the AssetRenderer interface. You’ll notice the asset
renderer is also implementing the TrashRenderer interface. This is a common practice for
many applications, so they can use Liferay DXP’s Recycle Bin.

3. Define the asset renderer class’s constructor, which typically sets the asset object to use in
the asset renderer class.

public BlogsEntryAssetRenderer(

BlogsEntry entry, ResourceBundleLoader resourceBundleLoader) {

_entry = entry;

_resourceBundleLoader = resourceBundleLoader;

}

The BlogsEntryAssetRenderer also sets the resource bundle loader, which loads the language
keys for a module. You can learn more about the resource bundle loader in the Overriding
Language Keys tutorial.
Also, make sure to define the _entry and _resourceBundleLoader fields in the class:

private final BlogsEntry _entry;

private final ResourceBundleLoader _resourceBundleLoader;

4. Now that your class declaration and constructor are defined for the blogs asset renderer,
you must begin connecting your asset renderer to your asset. The following getter methods
accomplish this:

@Override

public BlogsEntry getAssetObject() {

return _entry;

}

@Override

public String getClassName() {

return BlogsEntry.class.getName();

}

@Override

public long getClassPK() {

return _entry.getEntryId();

}

@Override

public long getGroupId() {

return _entry.getGroupId();

}

@Override

public String getType() {

return BlogsEntryAssetRendererFactory.TYPE;

771

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/asset/kernel/model/AssetEntry.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/asset/kernel/model/BaseJSPAssetRenderer.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/trash/TrashRenderer.html

}

@Override

public String getUuid() {

return _entry.getUuid();

}

The getAssetObject()method sets the BlogsEntry that was set in the constructor as your asset
to track. Likewise, the getType()method references the blogs asset renderer factory for the
type of asset your asset renderer renders. Of course, the asset renderer type is blog, which
you’ll set in the factory later.

5. Your asset renderer must link to the portlet that owns the entity. In the case of a blogs asset,
its portlet ID should be linked to the Blogs application.

@Override

public String getPortletId() {

AssetRendererFactory<BlogsEntry> assetRendererFactory =

getAssetRendererFactory();

return assetRendererFactory.getPortletId();

}

The getPortletId() method instantiates an asset renderer factory for a BlogsEntry and re-
trieves the portlet ID for the portlet used to display blogs entries.

6. If you’re interested in enabling workflow for your asset, add the following method similar to
what was done for the Blogs application:

@Override

public int getStatus() {

return _entry.getStatus();

}

This method retrieves the workflow status for the asset.

7. Another popular feature many developers want for their asset is to comment on it. This is
enabled for the Blogs application with the following method:

@Override

public String getDiscussionPath() {

if (PropsValues.BLOGS_ENTRY_COMMENTS_ENABLED) {

return "edit_entry_discussion";

}

else {

return null;

}

}

A comments section is an available option if it returns a non-null value. For the comments

section to display for your asset, you must enable it in the Asset Publisher’s Options () →
Configuration → Setup → Display Settings section.

8. At a minimum, you should create a title and summary for your asset. Here’s how the
BlogsEntryAssetRenderer does it:

772

@Override

public String getSummary(

PortletRequest portletRequest, PortletResponse portletResponse) {

int abstractLength = AssetUtil.ASSET_ENTRY_ABSTRACT_LENGTH;

if (portletRequest != null) {

abstractLength = GetterUtil.getInteger(

portletRequest.getAttribute(

WebKeys.ASSET_ENTRY_ABSTRACT_LENGTH),

AssetUtil.ASSET_ENTRY_ABSTRACT_LENGTH);

}

String summary = _entry.getDescription();

if (Validator.isNull(summary)) {

summary = HtmlUtil.stripHtml(

StringUtil.shorten(_entry.getContent(), abstractLength));

}

return summary;

}

@Override

public String getTitle(Locale locale) {

ResourceBundle resourceBundle =

_resourceBundleLoader.loadResourceBundle(

LanguageUtil.getLanguageId(locale));

return BlogsEntryUtil.getDisplayTitle(resourceBundle, _entry);

}

These two methods return information about your asset, so the asset publisher can display it.
The title and summary can be anything.

The getSummary(...) method for Blogs returns the abstract description for a blog asset. If the
abstract description does not exist, the content of the blog is used as an abstract. You’ll learn
more about abstracts and other content specifications later.

The getTitle(...) method for Blogs uses the resource bundle loader you configured in the
constructor to load your module’s resource bundle and return the display title for your asset.

9. If you want to provide a unique URL for your asset, you can specify a URL title. A URL title is
the URL used to access your asset directly (e.g., localhost:8080/-/this-is-my-blog-asset). You
can do this by providing the following method:

@Override

public String getUrlTitle() {

return _entry.getUrlTitle();

}

10. Insert the isPrintable()method, which enables the Asset Publisher’s printing capability for
your asset.

@Override

public boolean isPrintable() {

return true;

}

773

Figure 71.2: Enable printing in the Asset Publisher to display the Print icon for your asset.

This displays a Print icon when your asset is displayed in the Asset Publisher. For the icon to
appear, you must enable it in the Asset Publisher’s Options → Configuration → Setup → Display
Settings section.

11. If your asset is protected by permissions, you can set permissions for the asset via the asset
renderer. See the logic below for an example used in the BlogsEntryAssetRenderer class:

@Override

public long getUserId() {

return _entry.getUserId();

}

@Override

public String getUserName() {

return _entry.getUserName();

}

public boolean hasDeletePermission(PermissionChecker permissionChecker) {

return BlogsEntryPermission.contains(

permissionChecker, _entry, ActionKeys.DELETE);

}

774

@Override

public boolean hasEditPermission(PermissionChecker permissionChecker) {

return BlogsEntryPermission.contains(

permissionChecker, _entry, ActionKeys.UPDATE);

}

@Override

public boolean hasViewPermission(PermissionChecker permissionChecker) {

return BlogsEntryPermission.contains(

permissionChecker, _entry, ActionKeys.VIEW);

}

Before you can check if a user has permission to view your asset, youmust use the getUserId()
and getUserName() to retrieve the entry’s user ID and username, respectively. Then there are
three boolean permission methods that check if the user can view, edit, or delete your blogs
entry. These permissions are for specific entity instances. Global permissions for blog entries
are implemented in the factory, which you’ll do later.

Awesome! You’ve learned how to set up the blogs asset renderer to

• connect to an asset
• connect to the asset’s portlet
• use workflowmanagement
• use a comments section
• retrieve the asset’s title and summary
• generate the asset’s unique URL
• display a print icon
• check permissions for the asset

Now you need to create the templates to render the HTML. The BlogsEntryAssetRenderer is
configured to use JSP templates to generate HTML for the Asset Publisher. You’ll learn more about
how to do this next.

71.3 Configuring JSP Templates for an Asset Renderer

An asset can be displayed in several different ways in the Asset Publisher. There are three templates
to implement provided by the AssetRenderer interface:

• abstract

• full_content

• preview

Besides these supported templates, you can also create JSPs for buttons you’d like to provide
for direct access and manipulation of the asset. For example,

• Edit
• View
• View in Context

775

The BlogsEntryAssetRenderer customizes the AssetRenderer’s provided JSP templates and adds a
few other features using JSPs. You’ll inspect how the blogs asset renderer is put together to satisfy
JSP template development requirements.

1. Add the getJspPath(...) method to your asset renderer. Thismethod should return the path to
your JSP,which is rendered inside theAsset Publisher. This is how the BlogsEntryAssetRenderer
uses this method:

@Override

public String getJspPath(HttpServletRequest request, String template) {

if (template.equals(TEMPLATE_ABSTRACT) ||

template.equals(TEMPLATE_FULL_CONTENT)) {

return "/blogs/asset/" + template + ".jsp";

}

else {

return null;

}

}

Blogs assets provide abstract.jsp and full_content.jsp templates. This means that a blogs
asset can render a blog’s abstract description or the blog’s full content in the Asset Publisher.
Those templates are located in the com.liferay.blogs.webmodule’s src/main/resources/META-
INF/resources/blogs/asset folder. You could create a similar folder for your JSP templates used
for this method. The other template provided by the AssetRenderer interface, preview.jsp, is
not customized by the blogs asset renderer, so its default template is implemented.
You must create a link to display the full content of the asset. You’ll do this later.

2. Now that you’ve added the path to your JSP, you must include that JSP. Since the
BlogsEntryAssetRenderer class extends the BaseJSPAssetRenderer, it already has an include(...)

method to render a specific JSP. You must override this method to set an attribute in the
request to use in the blog’s views:

@Override

public boolean include(

HttpServletRequest request, HttpServletResponse response,

String template)

throws Exception {

request.setAttribute(WebKeys.BLOGS_ENTRY, _entry);

return super.include(request, response, template);

}

The attribute includes the blogs entry object. Adding the blog object thisway is notmandatory;
you could obtain the blog entry directly from the view. Using the include(...) method,
however, follows the best practice for MVC portlets.

Terrific! You’ve learned how to apply JSPs supported by the Asset Publisher for your asset.
That’s not all you can do with JSP templates, however! The asset renderer framework provides
several other methods that let you render convenient buttons for your asset.

1. Blogs assets provide an Edit button that lets you edit the asset. Provide this by adding the
following method to the BlogsEntryAssetRenderer class:

776

Figure 71.3: The abstract and full content views are rendererd differently for blogs.

@Override

public PortletURL getURLEdit(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse)

throws Exception {

Group group = GroupLocalServiceUtil.fetchGroup(_entry.getGroupId());

PortletURL portletURL = PortalUtil.getControlPanelPortletURL(

liferayPortletRequest, group, BlogsPortletKeys.BLOGS, 0, 0,

PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/blogs/edit_entry");

portletURL.setParameter("entryId", String.valueOf(_entry.getEntryId()));

return portletURL;

}

The Asset Publisher loads the blogs asset using the Blogs application. Then the edit_entry.jsp
template generates the HTML for an editing UI. Once the necessary edits are made to the

777

asset, it can be saved from the Asset Publisher. Pretty cool, right?

2. You can specify how to view your asset by providing methods similar to the methods outlined
below in the BlogsEntryAssetRenderer class:

@Override

public String getURLView(

LiferayPortletResponse liferayPortletResponse,

WindowState windowState)

throws Exception {

AssetRendererFactory<BlogsEntry> assetRendererFactory =

getAssetRendererFactory();

PortletURL portletURL = assetRendererFactory.getURLView(

liferayPortletResponse, windowState);

portletURL.setParameter("mvcRenderCommandName", "/blogs/view_entry");

portletURL.setParameter("entryId", String.valueOf(_entry.getEntryId()));

portletURL.setWindowState(windowState);

return portletURL.toString();

}

@Override

public String getURLViewInContext(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse,

String noSuchEntryRedirect) {

return getURLViewInContext(

liferayPortletRequest, noSuchEntryRedirect, "/blogs/find_entry",

"entryId", _entry.getEntryId());

}

The getURLView(...) method generates a URL that displays the full content of the asset in the
Asset Publisher. This is assigned to the clickable asset name. The getURLViewInContext(...)

method provides a similar URL assigned to the asset name, but the URL redirects to the origi-
nal context of the asset (e.g., viewing a blogs asset in the Blogs application). Deciding which
view to render is configurable by navigating to the Asset Publisher’s Options → Configuration
→ Setup → Display Settings section and choosing between Show Full Content and View in Context
for the Asset Link Behavior drop-down menu.

The Blogs application provides abstract and full_content JSP templates that override the ones
provided by the AssetRenderer interface. The third template, preview, could also be customized.
You can view the default preview.jsp template rendered in the Add → Content menu.

You’ve learned all about implementing the AssetRenderer’s provided templates and customizing
them to fit your needs. Next, you’ll put your asset renderer into action by creating a factory.

71.4 Creating a Factory for the Asset Renderer

You’ve successfully created an asset renderer, but you must create a factory class to generate
asset renderers for each asset instance. For example, the blogs asset renderer factory instantiates
BlogsEntryAssetRenderer for each blogs asset displayed in an Asset Publisher.

You’ll continue the blogs asset renderer example by creating the blogs asset renderer factory.

778

Figure 71.4: The preview template displays a preview of the asset in the Content section of the Addmenu.

779

1. Create an -AssetRenderFactory class in the same folder as its asset renderer class. For
blogs, the BlogsEntryAssetRendererFactory class resides in the com.liferay.blogs.web

module’s com.liferay.blogs.web.asset package. The factory class should extend the
BaseAssetRendererFactory class and the asset type should be specified as its parameter. You
can see how this was done in the BlogsEntryAssetRendererFactory class below

public class BlogsEntryAssetRendererFactory

extends BaseAssetRendererFactory<BlogsEntry> {

2. Create an @Component annotation section above the class declaration. This annotation is
responsible for registering the factory instance for the asset.

@Component(

immediate = true,

property = {"javax.portlet.name=" + BlogsPortletKeys.BLOGS},

service = AssetRendererFactory.class

)

public class BlogsEntryAssetRendererFactory

extends BaseAssetRendererFactory<BlogsEntry> {

There are a few annotation elements you should set:

• The immediate element directs the factory to start in Liferay DXP when its module starts.
• The property element sets the portlet that is associated with the asset. The Blogs portlet
is specified, since this is the Blogs asset renderer factory.

• The service element should point to the AssetRendererFactory.class interface.

Note: In previous versions of Liferay DXP, you had to register the asset

renderer factory in a portlet's `liferay-portlet.xml` file. The registration

process is now completed automatically by OSGi using the `@Component`

annotation.

3. Create a constructor for the factory class that presets private attributes of the factory.

public BlogsEntryAssetRendererFactory() {

setClassName(BlogsEntry.class.getName());

setCategorizable(true);

setLinkable(true);

setPortletId(BlogsPortletKeys.BLOGS);

setSearchable(true);

setSelectable(true);

}

• linkable: other assets can select blogs assets as their related assets.
• categorizable: blogs can be used to delimit the scope of a vocabulary from the Categories
Administration.

• searchable: blogs can be found when searching for assets.
• selectable: blogs can be selected when choosing assets to display in the Asset Publisher.

Setting the class name and portlet ID links the asset renderer factory to the entity.

780

https://github.com/liferay/liferay-portal/blob/7.1.3-ga4/modules/apps/blogs/blogs-web/src/main/java/com/liferay/blogs/web/asset/BlogsEntryAssetRendererFactory.java

4. Create the asset renderer for your asset. This is done by calling its constructor.

@Override

public AssetRenderer<BlogsEntry> getAssetRenderer(long classPK, int type)

throws PortalException {

BlogsEntry entry = _blogsEntryLocalService.getEntry(classPK);

BlogsEntryAssetRenderer blogsEntryAssetRenderer =

new BlogsEntryAssetRenderer(entry, _resourceBundleLoader);

blogsEntryAssetRenderer.setAssetRendererType(type);

blogsEntryAssetRenderer.setServletContext(_servletContext);

return blogsEntryAssetRenderer;

}

For blogs, the asset is retrieved by calling the Blogs application’s local service. Then the asset
renderer is instantiated using the blogs asset and resource bundle loader. Next, the type and
servlet context is set for the asset renderer. Finally, the configured asset renderer is returned.
There are a few variables in the getAssetRenderer(...) method you must create. You’ll set
those variables and learn what they’re doing next.

a. Youmust get the entry by calling theBlogs application’s local service. You can instantiate
this service by creating a private field and setting it using a setter method:
@Reference(unbind = “-”) protected void setBlogsEntryLocalService(BlogsEntryLo-
calService blogsEntryLocalService) {

_blogsEntryLocalService = blogsEntryLocalService;

}
private BlogsEntryLocalService _blogsEntryLocalService;

The setter method is annotated with the @Reference tag. Visit the Invoking Local Services
tutorial for more information.

b. You must specify the resource bundle loader since it was specified in the
BlogsEntryAssetRenderer’s constructor:
@Reference(target = “(bundle.symbolic.name=com.liferay.blogs.web)”, unbind = “-”)
public void setResourceBundleLoader(ResourceBundleLoader resourceBundleLoader)
{

_resourceBundleLoader = resourceBundleLoader;

}
private ResourceBundleLoader _resourceBundleLoader;

Make sure the osgi.web.symbolicname in the target property of the @Reference annotation is
set to the same value as the Bundle-SymbolicName defined in the bnd.bnd file of the module the
factory resides in.

781

c. The asset renderer type integer is set for the asset renderer, but why an integer? Liferay
DXP needs to differentiate when it should display the latest approved version of the
asset, or the latest version, even if it’s unapproved (e.g., unapproved versions would
be displayed for reviewers of the asset in a workflow). For these situations, the asset
renderer factory should receive either

• 0 for the latest version of the asset
• 1 for the latest approved version of the asset

d. Since the Blogs application provides its own JSPs, it must pass a reference of the servlet
context to the asset renderer. This is always required when using custom JSPs in an
asset renderer:
@Reference(target = “(osgi.web.symbolicname=com.liferay.blogs.web)”, unbind = “-
”) public void setServletContext(ServletContext servletContext) { _servletContext =
servletContext; }
private ServletContext _servletContext;

5. Set the type of asset that the asset factory associates with and provide a getter method to
retrieve that type. Also, provide another getter to retrieve the blogs entry class name, which
is required:

public static final String TYPE = "blog";

@Override

public String getType() {

return TYPE;

}

@Override

public String getClassName() {

return BlogsEntry.class.getName();

}

6. Set the Lexicon icon for the asset:

@Override

public String getIconCssClass() {

return "blogs";

}

You can find a list of all available Lexicon icons at https://liferay.github.io/clay/content/icons
-lexicon/.

7. Add methods that generate URLs to add and view the asset.

@Override

public PortletURL getURLAdd(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse, long classTypeId) {

PortletURL portletURL = PortalUtil.getControlPanelPortletURL(

liferayPortletRequest, getGroup(liferayPortletRequest),

BlogsPortletKeys.BLOGS, 0, 0, PortletRequest.RENDER_PHASE);

782

https://liferay.github.io/clay/content/icons-lexicon/
https://liferay.github.io/clay/content/icons-lexicon/

portletURL.setParameter("mvcRenderCommandName", "/blogs/edit_entry");

return portletURL;

}

@Override

public PortletURL getURLView(

LiferayPortletResponse liferayPortletResponse,

WindowState windowState) {

LiferayPortletURL liferayPortletURL =

liferayPortletResponse.createLiferayPortletURL(

BlogsPortletKeys.BLOGS, PortletRequest.RENDER_PHASE);

try {

liferayPortletURL.setWindowState(windowState);

}

catch (WindowStateException wse) {

}

return liferayPortletURL;

}

If you’re paying close attention, you may have noticed the getURLView(...) method was
also implemented in the BlogsEntryAssetRenderer class. The asset renderer’s getURLView(...)
method creates a URL for the specific asset instance, whereas the factory uses the method
to create a generic URL that only points to the application managing the assets (e.g., Blogs
application).

8. Set the global permissions for all blogs assets:

@Override

public boolean hasAddPermission(

PermissionChecker permissionChecker, long groupId, long classTypeId)

throws Exception {

return BlogsPermission.contains(

permissionChecker, groupId, ActionKeys.ADD_ENTRY);

}

@Override

public boolean hasPermission(

PermissionChecker permissionChecker, long classPK, String actionId)

throws Exception {

return BlogsEntryPermission.contains(

permissionChecker, classPK, actionId);

}

Great! You’ve finished creating the Blogs application’s asset renderer factory! Now you have the
knowledge to implement an asset renderer and produce an asset renderer for each asset instance
using a factory!

783

CHAPTER 72

THEMES AND LAYOUT TEMPLATES

A Theme provides the overall look and feel for a site. Understanding the page layout is crucial to
targeting the correct markup for styling, organizing your content, and creating your site. Once you
understand how the page is organized, you can develop your theme.

If you want to design a website, you must have three key components: CSS, JavaScript, and
HTML. Liferay DXP provides CSS extensions and patterns out-of-the-box and supports SASS, as
well as multiple JavaScript frameworks. The HTML, however, is rendered via FreeMarker theme
templates.

Liferay DXP provides several default FreeMarker templates that each handle a key piece of
functionality for the page. To help make the development process easier, Liferay DXP also provides
several theme template utilities that you can use in your theme templates to include portlets, use
taglibs, access theme objects, and more.

There are several mechanisms for customizing and extending themes, from color schemes to
reusable pieces of code. Likewise, there are several mechanisms for customizing and extending
portlets.

In this section of tutorials, you’ll learn how to develop themes and layout templates, customize
portlets, and more.

785

https://freemarker.apache.org/

CHAPTER 73

THEMES

Themes let you customize the default look and feel of your site. Liferay DXP provides several
mechanisms for customizing, developing, and extending themes. See the Theme Components and
Workflow reference guide for a top-level overview of how themes work in Liferay DXP.

This section of tutorials shows how to create and develop themes for Liferay DXP.

787

CHAPTER 74

CREATING THEMES

The Liferay Theme Generator lets you create themes, themelets, layout templates and more. It
is just one of Liferay JS Theme Toolkit’s tools. There are a few dependencies required to run the
generator. If you have NodeJS installed, you’re already one step ahead.

Follow these steps to install the Liferay Theme Generator and generate a theme:

1. Install Node.js. We recommend installing v8.10.0, which is the version Liferay Portal 7.1
supports. Note that Node Package Manager (npm) is installed with this as well. You’ll use
npm to install the remaining dependencies and generator. Make sure to set up your npm
environment before moving to the next step. Failing to do this can lead to permissions issues
later on.

2. Use npm to install Yeoman and gulp:

npm install -g yo

Note: Gulp is included as a local dependency in generated themes, so you

are not required to install it. It can be accessed by running

`node_modules\.bin\gulp` followed by the Gulp task from a generated theme's

root folder.

3. Install the Liferay Theme Generator. A few versions of the Liferay Theme Generator are avail-
able. The version you must install depends on the version of Liferay DXP you’re developing
on. The required versions are listed in the table below:

Liferay Version | Liferay Theme Generator Version | Command |

--- | --- | --- |

6.2 | 7.x.x | `npm install -g generator-liferay-theme@^7.x.x` |

7.0 | 7.x.x or 8.x.x | Same as above or below |

7.1 | 8.x.x | `npm install -g generator-liferay-theme@^8.x.x` |

789

https://github.com/liferay/liferay-themes-sdk/tree/master/packages
http://nodejs.org/
https://nodejs.org/download/release/v8.10.0/
http://yeoman.io/
https://gulpjs.com/

If you're on Windows, follow the instructions in step 4 to install Sass,

otherwise you can skip to step 5.

4. The generator uses node-sass. If you are onWindows, you must also install node-gyp and
Python.

5. Run the generator and follow the prompts to create your theme:

yo liferay-theme

Figure 74.1: You can generate a theme by answering just a few configuration questions.

6. Navigate to your theme folder and run gulp deploy to deploy your new theme to the server.

Now you have a powerful theme development tool at your disposal. The sky is the limit!

790

https://github.com/nodejs/node-gyp#installation
https://github.com/nodejs/node-gyp#installation

Figure 74.2: The tools are in your hands to create any theme you can imagine.

791

CHAPTER 75

DEVELOPING THEMES

Theme projects created using the Liferay Theme Generator have access to several gulp tasks you
can execute to manage and develop your theme. This section of tutorials covers the available
actions that these tasks provide, as well as other information you may find useful while developing
your theme.

75.1 Using Developer Mode with Themes

Do youwant to develop themeswithout having to redeploy to see yourmodifications? UseDeveloper
Mode! In Developer Mode, all caches are removed, so any changes you make are visible right away.
Also, you don’t have to reboot the server as often in Developer Mode.

How does Developer Mode let you see your changes more quickly? By default, Liferay DXP
is optimized for performance. Developer mode optimizes your configuration for development
instead. Here is a list of Developer Mode’s key behavior changes and the Portal Property override
settings that trigger them (if applicable):

• CSS files are loaded individually rather than being combined and loaded as a single CSS file
(theme.css.fast.load=false).

• Layout template caching is disabled (layout.template.cache.enabled=false).
• The server does not launch a browser when starting (browser.launcher.url=).
• FreeMarker Templates for themes and web content are not cached, so changes are applied
immediately (via the system setting in your Liferay DXP instance).

• Minification of CSS and JavaScript resources is disabled (minifier.enabled=false).

Individual file loading of your styling and behaviors, combined with disabled caching for layout
and FreeMarker templates, lets you see your changes more quickly. These developer settings are
defined in the portal-developer.properties file. To use these settings, you can include them in
your portal-ext.properties file or copy them over to your portal-ext.properties file and override
specific properties as needed. These configurations are covered in this tutorial.

First, you can explore how it’s done in Dev Studio DXP.

793

https://www.npmjs.com/package/gulp
https://docs.liferay.com/portal/7.1-latest/propertiesdoc/portal.properties.html
https://github.com/liferay/liferay-portal/blob/7.1.x/portal-impl/src/portal-developer.properties

Setting Developer Mode for Your Server in Dev Studio

To enable Developer Mode for your server in Dev Studio DXP, follow these steps:

1. Double-click on your server in the Servers window and open the Liferay Launch section.

2. Select Custom Launch Settings and check the Use developer mode option.

3. Save the changes and start your server.

Figure 75.1: The Use developer mode option lets you enable Developer Mode for your server in Dev Studio DXP.

Warning: Only change the Server settings from the runtime environment’s Liferay Launch
section.

When starting your server for the first time, it creates a portal-ext.properties file in your
server’s directory. This properties file contains the property setting include-and-override=portal-

developer.properties, which enables Developer Mode. Most of the configuration is provided by the
portal-developer.properties file, but you still have to configure the FreeMarker template setting.
Follow the steps in the Configuring FreeMarker System Settings section to configure the FreeMarker
template cache.

If you’re not using Dev Studio DXP, manual configuration for Developer Mode is covered next.

794

Setting Developer Mode for Your Server Using portal-developer.properties

To set Developer Mode manually, you must point to portal-developer.properties as shown in the
last section. Add the portal-ext.properties file to the root folder of your app server’s bundle and
add the following line:

include-and-override=portal-developer.properties

DeveloperMode is enabled upon starting your app server. portal-developer.properties provides
themajority of the settings you’ll need for smoothdevelopment. Todisable the cache for FreeMarker
templates, you must update the System Setting covered in the next section.

Configuring FreeMarker System Settings

FreeMarker Templates for themes and web content are cached by default. Therefore, any changes
you make to your FreeMarker theme templates aren’t immediately displayed. You can change this
behavior through System Settings. Follow these steps:

1. Open the Control Panel and go to Configuration → System Settings.

2. Select Template Engines under the PLATFORM heading.

3. By default, the Resource modification check (the time in milliseconds that the template is
cached) is set to 60000. Set this value to 0 to disable caching.

Your FreeMarker templates are ready for development. Next you can learn how you can improve
JavaScript file loading for development.

JavaScript Fast Loading

By default, JavaScript fast loading is enabled in Developer Mode (javascript.fast.load=true).
This loads the packed version of files listed in the Portal Properties javascript.barebone.files

or javascript.everything.files. You can, however, disable JavaScript fast loading for easier
debugging for development. Just set javascript.fast.load to false in your portal.properties, or
you can disable fast loading by setting the URL parameter js_fast_load to 0.

Note: JavaScript fast loading is retrieved from one of three places: the request (de-
termined by the current URL: http://localhost:8080/web/guest/home?js_fast_load=1(on) or
...?js_fast_load=0(off)), the Session, or the Portal Property (javascript.fast.load=true). Prefer-
ence is given in the order of request, session, and then Portal Properties. This lets you change
js_fast_load’s value from the default in portal.properties without having to manually re-enter
js_fast_load into the URL upon every new page load.

Great! You’ve set up your server for Developer Mode. Now, when you modify your theme’s file
directly in your bundle, you can see your changes applied immediately on redeploying your theme!

Related Topics

Creating Layout Templates Manually
Creating Themes with Dev Studio DXP

795

https://docs.liferay.com/portal/7.1-latest/propertiesdoc/portal.properties.html#JavaScript

75.2 Building Your Theme's Files

The gulp build task generates the base theme files, compiles Sass into CSS, and zips all theme files
into aWAR file that you can deploy to your server.

Note: Gulp is included as a local dependency in generated themes, so you are not required to
install it. It can be accessed by running node_modules\.bin\gulp followed by the Gulp task from a
generated theme’s root folder.

Follow these steps to build your theme’s files:

1. Navigate to your theme’s root folder and run gulp build.

Figure 75.2: Run the gulp build task to build your theme’s files.

2. A new build folder is created with all your theme’s files. You can copy these files and folders
to your theme’s src folder to modify the theme.

3. Your theme’s files are zipped into a war file in a new dist folder. Deploy the war file to your
app server to make it available.

Related Topics

Automatically Deploying Theme Changes
Copying an Existing Theme’s Files
Deploying Themes

796

Figure 75.3: The build folder contains all your theme’s files.

Figure 75.4: The dist folder contains your theme’s WAR file.

797

75.3 Deploying Your Theme

To deploy your theme to your app server, run the gulp deploy task. The gulp deploy task builds
your theme’s files, and deploys the generatedWAR file to the app server you configured when you
created the theme.

Note: If you’re running the Felix Gogo shell, you can also deploy your theme using the gulp

deploy:gogo command.

Note: Gulp is included as a local dependency in generated themes, so you are not required to
install it. It can be accessed by running node_modules\.bin\gulp followed by the Gulp task from a
generated theme’s root folder.

Follow these steps to deploy your theme:

1. Navigate to your theme’s root folder and run gulp deploy.

Figure 75.5: Run the gulp deploy task to build your theme’s files and deploy it to your app server.

2. Your server’s log displays that the OSGi bundle is started.

3. You can apply your theme through the Navigation → Site Pages menu in the Control Menu.
Select the Configure option for your site pages, and click the Change Current Theme button to
apply your theme.

Related Topics

Automatically Deploying Theme Changes
Copying an Existing Theme’s Files
Creating Reusable Pieces of Code for Your Themes

798

Figure 75.6: Your server’s log notifies you when the theme’s bundle has started.

Figure 75.7: Run the gulp deploy task to build your theme’s files and deploy it to your app server.

799

75.4 Changing Your Base Theme

Once your theme is built, you can use the gulp extend task to change your theme’s base theme.

Note: Gulp is included as a local dependency in generated themes, so you are not required to
install it. It can be accessed by running node_modules\.bin\gulp followed by the Gulp task from a
generated theme’s root folder.

Follow these steps to change your base theme:

1. Navigate to your theme’s root folder and run gulp extend and choose option 1 to change the
base theme your theme extends.

Figure 75.8: Run the gulp extend task to change your base theme or install a themelet.

2. Choose which base theme you want to extend. By default, themes created with the Liferay
Theme Generator are based off of the styled theme. You can extend the styled or unstyled
base theme, a globally installed theme, a theme published on the npm registry, or you can
specify a package URL. Enter the number for the option you wish to select.

Note: You can retrieve the URL for a package by running

`npm show package-name dist.tarball`.

![You can extend the styled or unstyled base theme, a globally installed theme, or a theme published to the npm registry.](./images/theme-

dev-changing-base-themes-gulp-extend-base-theme-choice.png)

Note: The Classic theme is an implementation of an existing base theme

and is therefore not meant to be extended. Extending Liferay's Classic theme

is strongly discouraged.

3. Your theme’s package.json contains the updated base theme configuration :

800

https://github.com/liferay/generator-liferay-theme
https://github.com/liferay/generator-liferay-theme
https://www.npmjs.com/package/liferay-theme-styled

{

...

"liferayTheme": {

"baseTheme": "styled",

"screenshot": "",

"rubySass": false,

"templateLanguage": "ftl",

"version": "7.1"

},

...

}

When you build your theme’s files or deploy it, your themewill inherit the updated base theme’s
files.

Related Topics

Configuring Your Theme’s App Server
Deploying Themes
Listing Your Theme’s Extensions

75.5 Copying an Existing Theme's Files

If you want to jump start developing your theme, you can copy an existing theme’s files and build on
top of them. The gulp kickstart task automates this process for you. It copies another theme’s css,
images, js, and templates into the src directory of your own. While this is similar to extending your
theme with a base theme or a themelet, kickstarting from another theme is a one time inheritance,
whereas extending from another theme is a dynamic inheritance that applies your src files on top
of the base theme on every build.

Note: The gulp kickstart task copies an existing theme’s files into your own, which can poten-
tially overwrite files with the same name. Proceed with caution.

Note: Gulp is included as a local dependency in generated themes, so you are not required to
install it. It can be accessed by running node_modules\.bin\gulp followed by the Gulp task from a
generated theme’s root folder.

To kickstart your theme, follow these steps:

1. Navigate to your theme’s root folder and run gulp kickstart.

2. Select where the theme is located. You can copy files from globally installed themes or themes
published on the npm registry.

Note: To globally install a theme, run the `npm link` command from the

theme's root folder.

801

Figure 75.9: Run the gulp kickstart task to copy a theme’s files into your own theme.

![You can copy files from globally installed themes.](./images/theme-dev-kickstarting-themes-global-theme.png)

3. The theme’s files are copied into your own theme, jump starting development.

Figure 75.10: The kickstart tasks copies another theme’s files into your own, potentially overwriting files.

Related Topics

Building Your Theme’s files
Creating Reusable Pieces of Code for Your Themes
Deploying Themes

75.6 Configuring Your Theme's App Server

When your theme was first created with the Liferay Theme Generator, you had to specify the app
server’s location. This was done with the gulp init task. Your theme uses this information to
deploy to the proper server. If your app server or site changes during development, you can update
their configuration information by manually running the gulp init task.

Note: Gulp is included as a local dependency in generated themes, so you are not required to
install it. It can be accessed by running node_modules\.bin\gulp followed by the Gulp task from a
generated theme’s root folder.

802

Follow these steps:

1. Navigate to your theme’s root folder and run gulp init.

Figure 75.11: Run the gulp init task to update your app server configuration.

2. Enter the path to your app server and site.

Figure 75.12: You can also run the gulp init task to update your site’s URL.

3. Your theme’s liferay-theme.json file contains the updated server configuration information:

{

"LiferayTheme": {

"appServerPath": "C:\\Users\\liferay\\opt\\Liferay\\bundles\\7.1-master-bundle\\bundles\\tomcat-8.0.32",

"deployPath": "C:\\Users\\liferay\\opt\\Liferay\\bundles\\7.1-master-bundle\\bundles\\deploy",

"url": "http://localhost:8080",

"appServerPathPlugin": "C:\\Users\\liferay\\opt\\Liferay\\bundles\\7.1-master-bundle\\bundles\\tomcat-8.0.32\\webapps\\my-

liferay-theme",

"deployed": false,

"pluginName": "my-liferay-theme"

}

}

Related Topics

Automatically Deploying Theme Changes
Changing Your Base Theme
Listing Your Theme’s Extensions

75.7 Listing Your Theme's Extensions

Do you need to know what base theme/themelets your theme extends? There’s a gulp task for that.
While you can manually check your theme’s package.json for this information, the gulp status

task displays this information for you. Navigate to your theme’s root folder and run gulp status to
display your theme’s extensions.

803

Figure 75.13: Run the gulp status task to list your theme’s current extensions.

Note: Gulp is included as a local dependency in generated themes, so you are not required to
install it. It can be accessed by running node_modules\.bin\gulp followed by the Gulp task from a
generated theme’s root folder.

Related Topics

Changing Your Base Theme
Configuring Your Theme’s App Server
Creating Reusable Pieces of Code for Your Themes

75.8 Automatically Deploying Theme Changes

You may have noticed that you have to deploy your theme manually each time you make a change.
This can become tedious during the development process. The gulp watch task lets you preview
changes to your theme without requiring a full redeploy.

Note: Gulp is included as a local dependency in generated themes, so you are not required to
install it. It can be accessed by running node_modules\.bin\gulp followed by the Gulp task from a
generated theme’s root folder.

Follow these steps to preview changes to your theme automatically:

1. Enable Developer Mode in your server. Without this enabled, the gulp watch taskwill not
work.

2. Navigate to your theme’s root folder and run gulp watch. This sets up a proxy for your app
server (http://localhost:9080) and opens it in a new window in the browser. It also provides
an IP address for you to view your app server across all devices connected to the local network.
The browser is synced across all devices that use the given IP address.

Note: Live changes are only viewable on port `9080`

(`http://localhost:9080`). Live changes **are not viewable** on your app

server (e.g. `http://localhost:8080`).

804

![Run the `gulp watch` task to automatically deploy any changes to your theme.](./images/theme-dev-watching-themes-gulp-watch-

startup.png)

3. Make a change to your theme and save the file. The updated files are built, compiled, and
copied directly to port 9080. CSS changes are deployed live, so no page reload is needed. For
JS and template changes, youmust reload the browser to see the changes.

Figure 75.14: The watch task notifies you that the changes are deployed.

4. Once you’re happy with the previewed changes, deploy your theme to your app server to
apply the changes.

Related Topics

Configuring Your Theme’s App Server
Copying an Existing Theme’s Files
Deploying Themes

75.9 Creating Reusable Pieces of Code for Your Themes

Themelets are small, extendable, and reusable pieces of code. Whereas themes require multiple
components, a themelet only requires the files you wish to extend. This creates a more modular
approach to theme design that lends itself well to collaboration and reduces the need for duplicated
code in your theme.

Themelets let developers easily share code snippets across their themes with other developers.
A themelet can consist of CSS and JavaScript. Themelets do not support theme templates.

Themelets are very flexible, and therefore they have a number of possible uses. You canmake a
themelet to modify the appearance of the admin tools, or a themelet that uses a custom JavaScript
component for responsive embedded videos, and everything in between. For example, the Liferay
Product Menu Animation Themelet simply alters the animation for the Product Menu.

If there is something you have tomanually code for every theme you create, it’s a good candidate
for a themelet.

This tutorial demonstrates how to:

• Create a themelet to extend your theme

• Install a Themelet

805

https://www.npmjs.com/package/lfr-product-menu-animation-themelet
https://www.npmjs.com/package/lfr-product-menu-animation-themelet

Figure 75.15: Themelets can be used to modify one aspect of the UI, that you can then reuse in your other themes.

To create a themelet, you need a theme to extend and the Liferay Theme Generator and depen-
dencies installed, as explained in the Creating Themes tutorial.

Creating a Themelet

Follow these steps to create a themelet:

1. Open the Command Line and navigate to the folder you want to create your themelet in.

2. Run yo liferay-theme:themelet and follow the prompts to generate the themelet.

3. The generated themelet contains a package.json file with configuration information and a
src/css folder that contains a _custom.scss file. Just like a theme, add your CSS changes to the
src/css folder, and add your JavaScript changes to the src/js folder.

4. To use your themelet, you must install it globally first. This makes the themelet visible to the
generator. To install your themelet globally, navigate into its root folder and run npm link.
Note, youmay need to run the command using sudo npm link. This creates a globally-installed
symbolic link for the themelet in your npm packages folder. Now your themelet is available
to install in your themes.

Now that your themelet is developed, you can install it in your theme.

806

Figure 75.16: The Themelet sub-generator automates the themelet creation process, making it quick and easy.

Installing a Themelet

After you’ve developed your themelet, follow the steps below to install it into your theme.

Note: Gulp is included as a local dependency in generated themes, so you are not required to
install it. It can be accessed by running node_modules\.bin\gulp followed by the Gulp task from a
generated theme’s root folder.

1. Navigate to your theme’s root folder and run the following command:

gulp extend

2. Choose Themelet as the theme asset to extend.

3. Select Search globally installed npm modules, Search npm registry, or Specify a package URL to
locate the themelet.

Figure 75.17: You can extend your theme using globally installed npmmodules, published npmmodules, or via a package URL.

807

Note: You can retrieve the URL for a package by running

`npm show package-name dist.tarball`.

4. Highlight your themelet, press spacebar to activate it, and press Enter to install it.

5. Run gulp deploy to build and deploy your theme with the new themelet updates.

Your themelet is installed! As you can see, themelets are a handy tool to add to your theme
development bag o’ tricks.

Related Topics

Importing Resources with Your Themes
Creating Themes

75.10 Creating a Thumbnail Preview for Your Theme

When you apply a theme to your site pages, you have to choose from the list of available themes in
the site selector. The only identification for each theme is the theme’s name, along with a small
thumbnail preview image that gives a brief impression of the theme. By default, themes don’t
provide a thumbnail image, so you must create one. This is even more important when developing
color schemes for a theme. Names are not displayed for color schemes, so a thumbnail preview is
required to identify them.

Follow these steps to create a thumbnail preview for your theme:

1. With your theme applied to your site and an optional color scheme chosen, take a screenshot
that best represents it.

2. Crop any unwanted areas and re-size the screenshot to 150 pixels high by 120 pixels wide.
Your thumbnail must be these exact dimensions to display properly.

3. Save the image as a .png file named thumbnail.png and place it in the theme’s src/images

folder (create this folder if it doesn’t already exist). On redeployment, the thumbnail.png file
automatically becomes the theme’s thumbnail.

Note: The Theme Builder Gradle plugin doesn’t recognize a thumbnail.png file. If you’re using
this plugin to build your theme instead, youmust create a screenshot.png file in your theme’s images
folder that is 1080 pixels high by 864 pixels wide. The thumbnail is automatically generated from
the screenshot for you when the theme is built.

Now, when you apply the theme, its thumbnail displays along with the other themes that are
available to your site.

Related Topics

Creating Themes
Creating Reusable Pieces of Code for Your Themes
Creating Color Schemes for Your Theme

808

Figure 75.18: Your theme thumbnail is displayed with the rest of the available themes.

75.11 Creating Color Schemes for Your Theme

Color schemes give your theme additional color palettes. They only require a small amount of
changes to your theme’s CSS. This is an easy way to subtly change the look of your theme, while
maintaining the same design and feel to it.

Follow these steps to create color schemes for your theme:

1. Create a folder to hold color schemes (color_schemes for example) in the theme’s css folder
and add a .scss file to it for each color scheme your theme supports.

2. Choose a CSS class to identify each color scheme, and specify this class in the color scheme’s
styles. The color scheme’s name is a good choice. This class is added to the site’s <body>

element when the color scheme is applied, so youmust specify this class in the color schemes
styles for them to work. For example, you could specify .day for a color scheme CSS file
named _day.scss:

body.day { background-color: #DDF; }

.day a { color: #66A; }

809

Figure 75.19: Your theme thumbnail is displayed with the rest of the available themes.

Note: The default color scheme uses the theme's `_custom.scss` for

styling, so you don't need to specify its name in its styles.

3. Import the color scheme .scss files into the theme’s _custom.scss file. The example below
imports _day.scss and _night.scss files:

@import "color_schemes/day";

@import "color_schemes/night";

4. Create a folder for each color scheme in your theme’s images folder, and add a thumbnail
preview for each color scheme. The folder name must match the color scheme’s CSS class
name you specified in step 2.

5. Open the theme’s liferay-look-and-feel.xml file and follow the pattern below to add the
default color scheme. A default color scheme is required so users can return to the theme’s
default look and feel after choosing a different color scheme. Note that the color scheme’s name
value is arbitrary, but the <css-class> element’s value must match the CSS class you specified

810

in step 2. If the default color scheme styling is in the theme’s _custom.scss file, use default

for the <css-class>. Also note the inclusion of the <color-scheme-images-path> element. This
specifies the theme thumbnail image location. Place this element in the first color scheme to
configure the images path for all the color schemes:

<theme id="my-theme-id" name="My Theme Name">

<color-scheme id="01" name="My Default Color Scheme Name">

<default-cs>true</default-cs>

<css-class>default</css-class>

<color-scheme-images-path>

${images-path}/my_color_schemes_folder_name/${css-class}

</color-scheme-images-path>

</color-scheme>

...

</theme>

Note: Color schemes are sorted alphabetically by `name` rather than `id`.

For example, a color scheme named `Clouds` and `id` `02` would be selected

by default over a color scheme named `Day` with `id` `01`. The

`<default-cs>` element overrides the alphabetical sorting and sets the color

scheme that is selected by default when the theme is chosen.

6. Add the remaining color schemes below the default color scheme, using the pattern below:

<color-scheme id="id-number" name="Color Scheme Name">

<css-class>color-scheme-css-class</css-class>

</color-scheme>

An example liferay-look-and-feel.xml file is shown below:

<look-and-feel>

<compatibility>

<version>7.1.0+</version>

</compatibility>

<theme id="my-liferay-theme" name="My Liferay Theme">

<template-extension>ftl</template-extension>

<color-scheme id="01" name="Default">

<default-cs>true</default-cs>

<css-class>default</css-class>

<color-scheme-images-path>

${images-path}/color_schemes/${css-class}

</color-scheme-images-path>

</color-scheme>

<color-scheme id="02" name="Red">

<css-class>red</css-class>

</color-scheme>

<color-scheme id="03" name="Green">

<css-class>green</css-class>

</color-scheme>

</theme>

</look-and-feel>

There you have it. Now you can go color scheme crazy with your themes!

811

Figure 75.20: Color schemes give administrators some choices for your theme’s look.

Related Topics

Creating Layout Templates
Creating a Thumbnail Preview for Your Theme

75.12 Making Configurable Theme Settings

Every time you want to make a change to a theme, you must make the change and then deploy it to
your server. For a Site Administrator, this process is tedious, especially if it’s a minor change to a
theme, such as a banner color change. What happens when it must be changed back? It must be
deployed again. For larger theme changes, this process is unavoidable, but for smaller changes,
there’s a better way: configurable theme settings. The Theme Developer can control the visibility
and value of theme elements and provide variations of theme elements for the Site Administrator
to configure and choose in the Control Panel. This tutorial covers how to create configurable theme
settings for your theme.

Follow these steps:

1. Open your theme’s WEB-INF/liferay-look-and-feel.xml file, or create it if it doesn’t exist, and
follow the pattern below to nest a <setting/> element inside the parent <settings> element
for each setting the theme requires:

<look-and-feel>

<compatibility>

<version>7.1.0+</version>

</compatibility>

<theme id="your-theme-name" name="Your Theme Name">

812

<template-extension>ftl</template-extension>

<settings>

<setting configurable="true" key="theme-setting-key"

options="true,false" type="select" value="true" />

<setting configurable="true" key="theme-setting-key"

type="text" value="My placeholder text" />

</settings>

<portlet-decorator>

portlet decorators...

</portlet-decorator>

</theme>

</look-and-feel>

The example configuration below adds a text input setting for custom text:

<settings>

<setting configurable="true" key="my-custom-text"

type="text" value="Liferay rocks!" />

</settings>

The available theme <setting> attributes are shown below:
configurable: whether the setting is configurable or static
key: the language key that identifies the theme setting
options: sets the options for the select menu if the type is select
type: the type of UI to render to control the theme setting. Possible values are checkbox, select,
text, or textarea.
value: sets the default value for the theme setting
You can find more information about setting attributes and all other configurations for the
liferay-look-and-feel.xml in its DTD docs.

2. Add init_custom.ftl to your theme templates if it doesn’t already exist, and follow the patterns
below to define your theme setting variables in it:
Booleans (a select box with the options true and false or a checkbox with values yes and no):

<#assign my_variable_name =

getterUtil.getBoolean(themeDisplay.getThemeSetting("theme-setting-key"))/>

Strings (a text input or text area input):

<#assign my_variable_name =

getterUtil.getString(themeDisplay.getThemeSetting("theme-setting-key"))/>

The example configuration below adds the custom text setting:

<#assign my_custom_text =

getterUtil.getString(themeDisplay.getThemeSetting("my-custom-text"))/>

3. Apply your theme settings to the theme template. The example configuration below prints
the value for the my_custom_text variable in a <p> element:
portal_normal.ftl:

813

https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-look-and-feel_7_1_0.dtd.html#settings

<p>${my_custom_text}</p>

4. Deploy and install the theme, and open the Control Menu → Site Administration → Build → Pages.
From this point, you can configure theme settings for two scopes:

• Public or private page set: Click the gear icon next to the page set you want to configure.
Then, under the Look and Feel tab, choose your settings and click Save to apply the
changes to the page set.

• An individual page: Open the Actionsmenu next to the page and select Configure. Then,
click the Look and Feel tab and select the Define a Specific look and feel for this page option.
Choose your settings and click Save to apply the changes to the page.

Figure 75.21: Here are examples of configurable settings for the site Admin.

Now you know how to make configurable theme settings for your themes!

814

Related Topics

Creating Reusable Pieces of Code for Your Themes
Listing Your Theme’s Extensions
Importing Resources with a Theme

75.13 Overwriting and Extending Liferay Theme Tasks

Themes created with the Liferay Theme Generator have access to several default gulp theme tasks
that provide the standard features required to develop and build your theme (build, deploy, watch,
etc.). You may, however, want to run additional processes—such as minifying your JavaScript files—
on your theme’s files prior to deploying the theme to the server. The Liferay Theme Generator’s
APIs expose a hookFn property that lets you hook into the default gulp theme tasks to inject your
own logic.

Follow these steps to hook into the default Liferay theme tasks:

1. Identify the gulp task or sub task that you want to hook into or overwrite. The tasks and their
sub tasks are listed in their [task-name].js file in the tasks folder of the liferay-theme-tasks

package. For example, the gulp build task and sub tasks are defined in the build.js file:

'build:clean',

'build:base',

'build:src',

'build:web-inf',

'build:liferay-look-and-feel',

'build:hook',

'build:themelets',

'build:rename-css-dir',

'build:prep-css',

'build:compile-css',

'build:fix-url-functions',

'build:move-compiled-css',

'build:remove-old-css-dir',

'build:fix-at-directives',

'build:r2',

'build:war',

2. Open your theme’s gulpfile.js file and locate the liferayThemeTasks.registerTasks()method.
This method registers the default gulp theme tasks. Add the hookFn property to the
registerTasks()method’s configuration object, making sure to pass in the gulp instance:

liferayThemeTasks.registerTasks({

gulp: gulp,

hookFn: function(gulp) {

}

});

3. Inside the hookFn() function, use the gulp.hook() method to specify the theme task or sub
task that you want to hook into. You can inject your code before or after a task by prefixing it
with the before: or after: keywords. Alternatively, you can use the gulp.task() method to
overwrite a gulp task. Both methods have two parameters: the task or sub task you want to
hook into and a callback function that invokes done or returns a stream with the logic that
you want to inject. A few example configuration patterns are shown below:

815

https://github.com/liferay/liferay-themes-sdk/tree/master/packages/liferay-theme-tasks/tasks
https://github.com/liferay/liferay-themes-sdk/tree/master/packages/liferay-theme-tasks
https://github.com/liferay/liferay-themes-sdk/blob/master/packages/liferay-theme-tasks/tasks/build.js#L25-L39

liferayThemeTasks.registerTasks({

gulp: gulp,

hookFn: function(gulp) {

gulp.hook('before:build:src', function(done) {

// Fires before build:src task

});

gulp.hook('after:build', function(done) {

// Fires after build task

});

gulp.task('build:base', function(done) {

// Overwrites build:base task

});

}

});

The example below fires before the build:war sub-task and reads the JavaScript files in the
theme’s build folder, minifies themwith the gulp-uglifymodule, places themback in the ./build/js
folder, invokes done, and finally logs that the JavaScript was minified. To follow along, replace
your theme’s gulpfile.js with the contents shown below, install the gulp-uglify module and the
fancy-log module, and run gulp deploy:
'use strict';

var gulp = require('gulp');

var log = require('fancy-log');

var uglify = require('gulp-uglify');

var liferayThemeTasks = require('liferay-theme-tasks');

liferayThemeTasks.registerTasks({

gulp: gulp,

hookFn: function(gulp) {

gulp.hook('before:build:war', function(done) {

// Fires before build `war` task

gulp.src('./build/js/*.js')

.pipe(uglify())

.pipe(gulp.dest('./build/js'))

.on('end', done);

log('Your JS is now minified...');

});

}

});

You should see something similar to the output shown below:
[15:58:07] Finished 'build:r2' after 198 ms

[15:58:07] Starting 'build:war'...

[15:58:07] Your JS is now minified...

[15:58:07] Starting 'plugin:version'...

[15:58:07] Finished 'plugin:version' after 2.52 ms

Note: The hook callback function must invoke the done argument or return a stream.

Now you know how to hook into and overwrite the default Liferay theme tasks!

Related Topics

Creating Themes
Creating Reusable Pieces of Code for Your Themes
Using Developer Mode with Themes

816

https://www.npmjs.com/package/gulp-uglify
https://www.npmjs.com/package/fancy-log

75.14 Compiling and Building Themes with Ant, Gradle, and Maven

Liferay’s Theme Builder gives developers who aren’t using Liferay’s Theme Generator (e.g., Gradle
or Maven) a way to compile and build a themeWAR file. To use the Theme Builder, you must apply
it to your project. If you’re unsure how to structure themes for Liferay DXP, see the Introduction to
Themes tutorial.

Follow the instructions below to apply the Theme Builder plugin and build your themeWAR.

Step 1: Apply the Theme Builder Plugin to Your Theme Project

Liferay provides two Theme Builder plugins depending on your build tool:

• com.liferay.portal.tools.theme.builder (Ant, Maven, etc.)
• com.liferay.gradle.plugins.theme.builder (Gradle)

If you want to apply the Theme Builder plugin to an Ant project, examine the build.xml file as
an example below:

<?xml version="1.0"?>

<!DOCTYPE project>

<project>

<path id="theme.builder.classpath">

<fileset dir="[PATH_TO_THEME_BUILDER_JAR]" includes="com.liferay.portal.tools.theme.builder-*.jar" />

</path>

<taskdef classpathref="theme.builder.classpath" resource="com/liferay/portal/tools/theme/builder/ant/taskdefs.properties" />

<target name="build-theme">

<build-theme

diffsDir="diffs"

outputDir="../dist"

parentDir="[PATH_TO_STYLED_THEME]/classes/META-INF/resources/_styled"

parentName="_styled"

unstyledDir="[PATH_TO_UNSTYLED_THEME]/classes/META-INF/resources/_unstyled"

/>

</target>

</project>

You should first supply the path to the Theme Builder JAR. The above code configures the literal
path to the JAR on your local machine. As an alternative, you could configure Ivy to do this for
you behind the scenes. Then create an Ant target (e.g., build-theme) that configures the required
parameters to build your theme.

For assistance applying the Theme Builder plugin for a Gradle or Maven project, see the Theme
Builder Gradle Plugin or Building Themes in a Maven Project articles, respectively.

Step 2: Build Your Theme

Execute the appropriate command based on your build tool:

• Ant: ant build-theme

• Gradle: gradlew buildTheme

• Maven: mvn verify

TheWAR is generated in the following folder, depending on the build tool you used:

817

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.tools.theme.builder/
https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.gradle.plugins.theme.builder/
http://ant.apache.org/ivy/

• Ant: /dist
• Gradle: /build
• Maven: /target

That’s it! You’ve successfully configured and leveraged the Theme Builder in your project. You
can also use the Theme Builder to migrate a Plugins SDK theme to Liferay Workspace. See the
Migrating a Theme from the Plugins SDK toWorkspace tutorial for details.

Related Topics

Creating Themes
Theme Template

75.15 Injecting Additional Context Variables and Functionality into Your Templates

JSP templates are the predominant templating framework in Liferay DXP. Themes, application
display templates (ADTs), DDM templates, and more make use of JSPs as a templating engine. JSPs,
however, are not the only templating language supported by Liferay DXP. Since many developers
prefer other templating frameworks (e.g., FreeMarker), Liferay DXP enables you to use other
template formats by offering the Context Contributors framework.

Because JSPs are “native” to Java EE, they have access to all the contextual objects inherent to
the platform, like the request and the session. Through these objects, developers can normally
obtain Liferay DXP-specific context information by accessing container objects like themeDisplay

or serviceContext.
Template formats like FreeMarker aren’t native to Java EE, so they don’t have access to these

objects. If your template needs contextual information such as the current user, the page, or
anything else, Java EE won’t make it available to the template like it does for JSPs: you must
inject it yourself into the template. Liferay DXP, however, gives you a head start by injecting a
contextObjects map of common variables (e.g., themeDisplay, locale, user, etc.) by default into
FreeMarker templates (e.g., themes). This map is usually referred to as the context of a template.
If you need to access some other context object that Liferay DXP doesn’t provide by default, you
must modify or add to a template’s context. To do that, you create a context contributor.

Context contributorsmodify a template’s context by injecting variables and functionality usable
by the template framework. This lets you use non-JSP templating languages for themes, ADTs,
and any other templates used in Liferay DXP. For example, suppose you want your theme to
change color based on the user’s organization. You could create a context contributor to inject the
user’s organization to your theme’s context, and then determine the theme’s color based on that
information.

Context contributors are already used in Liferay DXP by default. Liferay DXP’s Product Menu
display is determined by a variable injected by a context contributor. You’ll learn more about this
later.

First, you’ll learn how to create your own context contributor, and then you’ll examine one
example of how Liferay DXP uses context contributors.

1. Create a generic OSGi module using your favorite third party tool, or use Blade CLI.

2. Create a unique package name in the module’s src directory and create a new Java class
in that package. To follow naming conventions, begin the class name with the entity you

818

want to inject context-specific variables for, followed by TemplateContextContributor (e.g.,
ProductMenuTemplateContextContributor).

3. Directly above the class’s declaration, insert the following annotation:

@Component(

immediate = true,

property = {"type=" + TemplateContextContributor.[Type of Contributor]},

service = TemplateContextContributor.class

)

The immediate element instructs themodule to start immediately once deployed to LiferayDXP.
The type property should be set to one of the two fields defined in the TemplateContextCon-
tributor interface: TYPE_GLOBAL or TYPE_THEME. The TYPE_THEME field should be set if you only
wish to inject context-specific variables for your theme; otherwise, setting the TYPE_GLOBAL

field affects every context execution in Liferay DXP, like themes, ADTs, DDM templates, etc.
Finally, your service element should be set to TemplateContextContributor.class.
The ProductMenuTemplateContextContributor class’s @Component annotation follows a similar
layout:

@Component(

immediate = true,

property = {"type=" + TemplateContextContributor.TYPE_THEME},

service = TemplateContextContributor.class

)

4. Implement the TemplateContextContributor interface in your -TemplateContextContributor
class. This only requires implementing the prepare(Map<String,Object>, HttpServletRequest)

method.
Notice that the preparemethod receives the contextObjectsmap as a parameter. This is your
template’s context that was described earlier. This method should be used to edit the context
by injecting new or modified variables into the contextObjectsmap.

For a quick example of how you can implement the TemplateContextContributor interface to
inject variables into a template’s context, examine the ProductMenuTemplateContextContributor class
used by Liferay DXP by default. This class injects variables into Liferay DXP’s FreeMarker theme
and determines whether the Product Menu is displayed in the current theme.

The ProductMenuTemplateContextContributor class implements the prepare(...) method, which
injects a modified variable (bodyCssClass) and a new variable (liferay_product_menu_state) into the
theme context:

@Override

public void prepare(

Map<String, Object> contextObjects, HttpServletRequest request) {

if (!isShowProductMenu(request)) {

return;

}

String cssClass = GetterUtil.getString(

contextObjects.get("bodyCssClass"));

String productMenuState = SessionClicks.get(

request,

ProductNavigationProductMenuWebKeys.

819

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/template/TemplateContextContributor.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/template/TemplateContextContributor.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/template/TemplateContextContributor.html

PRODUCT_NAVIGATION_PRODUCT_MENU_STATE,

"closed");

contextObjects.put(

"bodyCssClass", cssClass + StringPool.SPACE + productMenuState);

contextObjects.put("liferay_product_menu_state", productMenuState);

}

This method prepares the context contributor to inject variables into the theme to be used by
the Product Menu. For this example, the cssClass and productMenuState variables are defined and
then placed in the contextObjectsmap. By doing this, these variables have been injected into the
theme context, making them accessible to the theme. Specifically, the cssClass variable provides
styling for the Product Menu and the productMenuState variable determines whether the visible
Product Menu should be open or closed.

The preparemethod above also determines whether to show the Product Menu or not with the
following if statement:

if (!isShowProductMenu(request)) {

return;

}

The isShowProductMenu(...) method injects functionality into the theme’s context by
providing an option to show/hide the Product Menu. This method is also included in the
ProductMenuTemplateContextContributor class:

protected boolean isShowProductMenu(HttpServletRequest request) {

ThemeDisplay themeDisplay = (ThemeDisplay)request.getAttribute(

WebKeys.THEME_DISPLAY);

if (themeDisplay.isImpersonated()) {

return true;

}

if (!themeDisplay.isSignedIn()) {

return false;

}

User user = themeDisplay.getUser();

if (!user.isSetupComplete()) {

return false;

}

return true;

}

The ProductMenuTemplateContextContributor provides an easy way to inject variables into Liferay
DXP’s theme directly related to the Product Menu. You can do the same with your custom context
contributor. With the power to inject additional variables to any context in Liferay DXP, you’re free
to fully harness the power of your chosen templating language.

Related Topics

Customizing the Product Menu
Creating Themes
Theme Contributors

820

75.16 Packaging Independent UI Resources for Your Site

If you want to package UI resources independent of a specific theme and include them on a Liferay
DXP page, Theme Contributors are your best option. If, instead, you’d like to include separate UI
resources on a Liferay DXP page that are attached to a theme, you should look into themelets.

A Theme Contributor is a module that contains UI resources to use in Liferay DXP. Once a
Theme Contributor is deployed to Liferay DXP, it’s scanned for all valid CSS and JS files, and then
its resources are included on the page. You can, therefore, style these UI components as you like,
and the styles are applied for the current theme.

This tutorial demonstrates how to

• Identify a Theme Contributor module.
• Create a Theme Contributor module.

Next, you’ll learn how to create a Theme Contributor.

Creating Theme Contributors

The standard UI for User menus and navigation are packaged as Theme Contributors. For example,
the Control Menu, Product Menu, and Simulation Panel are packaged as Theme Contributor
modules in Liferay DXP, separating them from the theme. This means that these UI components
must be handled outside the theme.

If you want to edit or style these standard UI components, you’ll need to create your own Theme
Contributor and add your modifications on top. You can also add new UI components to Liferay
DXP by creating a Theme Contributor.

To create a Theme Contributor module, follow these steps:

1. Create a generic OSGi module using your favorite third party tool, or use Blade CLI. You can
also use the Blade Template to create your module, in which case you can skip step 2.

2. To identify your module as a Theme Contributor, add the Liferay-Theme-Contributor-Type and
Web-ContextPath headers to your module’s bnd.bnd file. For example, see the Control Menu
module’s bnd.bnd:

Bundle-Name: Liferay Product Navigation Product Menu Theme Contributor

Bundle-SymbolicName: com.liferay.product.navigation.product.menu.theme.contributor

Bundle-Version: 3.0.4

Liferay-Theme-Contributor-Type: product-navigation-product-menu

Web-ContextPath: /product-navigation-product-menu-theme-contributor

The Theme Contributor type helps Liferay DXP better identify your module. For example, if
you’re creating a Theme Contributor to override an existing Theme Contributor, you should
try to use the same type to maximize compatibility with future developments. The Web-

ContextPath header sets the context fromwhich the Theme Contributor’s resources are hosted.

3. Because you’ll often be overriding CSS of another Theme Contributor, you should load your
CSS after theirs. You can do this by setting a weight for your Theme Contributor. In your
bnd.bnd file, add the following header:

Liferay-Theme-Contributor-Weight: [value]

821

https://search.maven.org/search?q=a:com.liferay.product.navigation.control.menu.theme.contributor
https://search.maven.org/search?q=a:com.liferay.product.navigation.control.menu.theme.contributor

Figure 75.22: The Control Menu, Product Menu, and Simulation Panel are packaged as Theme Contributor modules.

The higher the value, the higher the priority. If your Theme Contributor has a weight of 100,
it will be loaded after one with a weight of 99, allowing your CSS to override theirs.

4. Create a src/main/resources/META-INF/resources folder in your module and place your re-
sources (CSS and JS) in that folder.

5. Build and deploy your module to see your modifications applied to Liferay DXP pages and
themes.

That’s all you need to do to create a Theme Contributor for your site. Remember, with great
power comes great responsibility, so use Theme Contributors wisely. The UI contributions affect
every page and aren’t affected by theme deployments.

Related Topics

Creating Themes
Themelets
Importing Resources with Your Themes
Theme Contributor Template

75.17 Using Liferay DXP's Macros in Your Theme

822

Macros can assign theme template fragments to a variable. This keeps your theme templates
from becoming cluttered and makes them easier to read. Liferay DXP defines several macros in
FTL_Liferay.ftl template that you can use in your FreeMarker theme templates to include theme
resources, standard portlets, and more. Liferay DXP also exposes its taglibs as FreeMarker macros.
See the corresponding taglib tutorial for more information on using the taglib in your FreeMarker
templates. This tutorial shows how to use macros in your FreeMarker theme templates.

Follow these steps:

1. Select one of the macros shown in the table below:

Macro | Parameters | Description | Example |

--- | --- | --- | --- |

breadcrumbs | default_preferences | Adds the Breadcrumbs portlet with optional preferences | `<@liferay.breadcrumbs />` |

control_menu | N/A | Adds the Control Menu portlet | `<@liferay.control_menu />` |

css | file_name | Adds an external stylesheet with the specified file name location | `<@liferay.css file_name="${css_folder}/mycss.css"/>` |

date | format | Prints the date in the current locale with the given format | `<@liferay.date format="/yyyy/MM/dd/HH/" />` |

js | file_name | Adds an external JavaScript file with the specified file name source | `<@liferay.js file_name="${javascript_folder}/myJs.js"/>` |

language | key | Prints the specified language key in the current locale | `<@liferay.language key="last-modified" />` |

language_format | arguments
key | Formats the given language key with the specified arguments. For example, passing `go-to-

x` as the key and `Mars` as the arguments prints *Go to Mars*. | `<@liferay.language_format arguments="${site_name}" key="go-to-

x" />` |

languages | default_preferences | Adds the Languages portlet with optional preferences | `<@liferay.languages />` |

navigation_menu | default_preferences
instance_id | Adds the Navigation Menu portlet with optional preferences and instance ID. | `<@liferay.navigation_menu />` |

search | default_preferences | Adds the Search portlet with optional preferences | `<@liferay.search />` |

search_bar | default_preferences | Adds the Search Bar portlet with optional preferences | `<@liferay.search_bar />` |

user_personal_bar | N/A | Adds the User Personal Bar portlet | `<@liferay.user_personal_bar />` |

2. Call the macro in your theme template. Liferay DXP’s default FreeMarker macro calls are
namespaced with liferay. For example, to include the Search Bar portlet, you would add the
macro call shown below:

<@liferay.search_bar>

3. Include any required or optional arguments, such as portlet preferences, in the macro call.
For example, Liferay DXP’s languagemacro directive includes a language key parameter:

<#macro language

key

>

${languageUtil.get(locale, key)}

</#macro>

You can pass an argument in the macro call like this:

<@liferay.language key="powered-by" />

The example below sets the Search portlet’s Portlet Decorator to barebone:

823

https://freemarker.apache.org/docs/ref_directive_macro.html
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/portal-template/portal-template-freemarker/src/main/resources/FTL_liferay.ftl

<@liferay.search default_preferences=

freeMarkerPortletPreferences.getPreferences(

"portletSetupPortletDecoratorId", "barebone"

)

/>

You can also pass multiple portlet preferences in an object, as shown in the example below
for the Navigation Menu portlet:

<#assign secondaryNavigationPreferencesMap =

{

"displayStyle": "ddmTemplate_NAVBAR-BLANK-JUSTIFIED-FTL",

"portletSetupPortletDecoratorId": "barebone",

"rootLayoutType": "relative",

"siteNavigationMenuId": "0",

"siteNavigationMenuType": "1"

}

/>

<@liferay.navigation_menu

default_preferences=

freeMarkerPortletPreferences.getPreferences(secondaryNavigationPreferencesMap)

instance_id="main_navigation_menu"

/>

Note: Portlet preferences are unique to each portlet, so first you must determine which pref-
erences you want to configure. There are two ways to determine the proper key/value pair for a
portlet preference. The first is to set the portlet preference manually, and then check the values in
the portletPreferences.preferences column of the database as a hint for what to configure.

Another approach is to search each app in your bundle for the keyword preferences--. This
returns app JSPs that have the portlet preferences defined for the portlet.

Now you know how to use Liferay DXP’s macros in your theme templates!

Related Topics

Creating Themes
Creating Reusable Pieces of Code for Your Themes
Theme Reference Guide

824

CHAPTER 76

IMPORTING RESOURCES WITH A THEME

To truly appreciate a theme, you must view it with content. Showcasing a theme in the proper
context is key to communicating the true intentions of its design. Who better to do this than
the theme’s designer? Designers can provide a sample context that optimizes the design of their
themes. The Resources Importer does this for you.

Note: The Resources Importer is deprecated as of 7.0.

The Resources Importer module lets theme developers import files and web content with a
theme. Administrators can use the site or site template created by the Resources Importer to
showcase the theme. In fact, all standalone themes that are uploaded to Liferay Marketplacemust
use the Resources Importer. This ensures a uniform experience for Marketplace users: a user can
download a theme fromMarketplace, install it, go to Sites or Site Templates in the Control Panel
and immediately see their new theme in action.

Using the Resources Importer involves the following steps:

• Preparing and Organizing Resources
• Creating a Sitemap for the Resources Importer
• Defining Assets for the Resources Importer (optional)
• SpecifyingWhere to Import Your Theme’s Resources

This section of tutorials explains how to use the Resources Importer to import resources with
your theme.

76.1 Preparing and Organizing Web Content for the Resources Importer

You must create the resources to import with your theme. You can create resources from scratch
and/or bring in resources that you’ve already created. This tutorial covers how to prepare and
organize your resources for the Resources Importer.

First, you must prepare your web content for the Resources Importer.

825

Preparing Your Web Content

You can leverage your HTML (basic web content), JSON (structures), or VM or FTL (templates) files
with the Resource Importer. All web content articles require a structure and template. Note that
some articles may share the same structure and perhaps even the same template—this is the case
for all basic web content articles. Follow these steps to prepare your web content articles:

1. Select Edit from the article’s options menu, click the Options icon at the top right of the page
and select View Source. Copy the article’s raw XML into an XML file locally. Create a folder for
the article under resources-importer/journal/articles/ and rename it as desired. The web
content article’s XML fills in the data required by the structure. An example web content
article’s XML is shown below:

<?xml version="1.0"?>

<root available-locales="en_US" default-locale="en_US">

<dynamic-element name="content" type="text_area" index-type="keyword" index="0">

<dynamic-content language-id="en_US">

<![CDATA[

<center>

<p></p>

</center>

<p>In the mid-20th century, after two of the

most violent wars in history, mankind turned

its gaze upwards to the stars. Instead of

continuing to strive against one another,

man choose instead to strive against the

limits that we had bound ourselves to. And

so the Great Space Race began.</p>

<p>At first the race was to reach space--get

outside the earth's atmosphere, and when

that had been reached, we shot for the moon.

After sending men to the moon, robots to

Mars, and probes beyond the reaches of our

solar system, it seemed that there was

nowhere left to go.</p>

<p>The Space Program aims to change that.

Beyond national boundaries, beyond what

anyone can imagine that we can do. The sky

is not the limit.</p>

]]>

</dynamic-content>

</dynamic-element>

</root>

2. Download the web content article’s structure. Open the structure and click the Source tab to
view the structure’s file. Copy and paste its contents into a new JSON file in the resources-

importer/journal/structures/ folder. The structure JSON sets a wireframe, or blueprint, for
an article’s data. If you’re saving a basic web content article, you can copy the structure below
(replace en_US with your language):

{

"availableLanguageIds": [

"en_US"

],

"defaultLanguageId": "en_US",

"fields": [

826

{

"label": {

"en_US": "Content"

},

"predefinedValue": {

"en_US": ""

},

"style": {

"en_US": ""

},

"tip": {

"en_US": ""

},

"dataType": "html",

"fieldNamespace": "ddm",

"indexType": "text",

"localizable": true,

"name": "content",

"readOnly": false,

"repeatable": false,

"required": false,

"showLabel": true,

"type": "ddm-text-html"

}

]

}

3. Download the structure’s matching template. Open the Actions menu for the structure and
select Manage Templates to view the templates that use it. Create a folder for the template
under resources-importer/journal/templates/ and copy and paste its contents into a new FTL
file. The template defines how the data should be displayed. If you’re saving a basic web
content article, you can copy the FreeMarker template below:

${content.getData()}

Repeat the steps above for each web content article you have. Note that some web content
articles may share the same structure and template; In these cases, only one copy of the structure
and template is required for all web content articles that use them. Once your web content articles
are saved, you can place them in their proper folder structure.

Organizing Your Resources

Add your resources under the [theme-name]/src/WEB-INF/src/resources-importer folder and its sub-
folders. Place your resources in the folders outlined below:

• [theme-name]/src/WEB-INF/src/resources-importer/

– sitemap.json - defines the pages, layout templates, and portlets
– assets.json - (optional) specifies details on the assets
– document_library/

* documents/ - contains documents and media files (assets)

– journal/

827

* articles/ - contains web content (HTML) and folders grouping web content ar-
ticles (XML) by template. Each folder name must match the file name of the
corresponding template. For example, create folder Template 1/ to hold an article
based on template file Template 1.ftl.

* structures/ - contains structures (JSON) and folders of child structures. Each
folder name must match the file name of the corresponding parent structure.
For example, create folder Structure 1/ to hold a child of structure file Structure

1.json.

* templates/ - groups templates (VM or FTL) into folders by structure. Each folder
name must match the file name of the corresponding structure. For example,
create folder Structure 1/ to hold a template for structure file Structure 1.json.

Related Topics

Creating a Sitemap for the Resources Importer
Defining Assets for the Resources Importer
SpecifyingWhere to Import Your Theme’s Resources

828

CHAPTER 77

CREATING A SITEMAP FOR THE RESOURCES
IMPORTER

You have two options for specifying resources to be imported with your theme: a sitemap or an
archive LAR file. Using a sitemap.json file is the most flexible approach, so we recommend it;
unlike LAR files, a sitemap.json can be created in one version of Liferay DXP and used in another.
LAR files are version-specific, and can only be imported in the same version in which they were
created.

The sitemap.json specifies the site pages, layout templates, web content, assets, and portlet
configurations provided with the theme. This file describes the contents and hierarchy of the
site to import as a site or site template. If you’re developing themes for Liferay Marketplace, you
must use the sitemap.json to specify resources to be imported with your theme. Even if you’re
not familiar with JSON, the sitemap.json file is easy to understand. An example sitemap.json file is
shown below:

{

"layoutTemplateId": "2_columns_ii",

"privatePages": [

{

"friendlyURL": "/private-page",

"name": "Private Page",

"title": "Private Page"

}

],

"publicPages": [

{

"columns": [

[

{

"portletId": "com_liferay_login_web_portlet_LoginPortlet"

},

{

"portletId":

"com_liferay_site_navigation_menu_web_portlet_SiteNavigationMenuPortlet"

},

{

"portletId":

"com_liferay_journal_content_web_portlet_JournalContentPortlet",

"portletPreferences": {

"articleId": "Without Border.html",

"groupId": "${groupId}",

829

"portletSetupPortletDecoratorId": "borderless"

}

},

{

"portletId": "com_liferay_journal_content_web_portlet_JournalContentPortlet",

"portletPreferences": {

"articleId": "Custom Title.html",

"groupId": "${groupId}",

"portletSetupPortletDecoratorId": "decorate",

"portletSetupTitle_en_US": "Web Content Display with Custom Title",

"portletSetupUseCustomTitle": "true"

}

}

],

[

{

"portletId": "com_liferay_hello_world_web_portlet_HelloWorldPortlet"

},

{

"portletId":

"com_liferay_site_navigation_menu_web_portlet_SiteNavigationMenuPortlet_INSTANCE_${groupId}",

"portletPreferences": {

"displayStyle": "[custom]",

"headerType": "root-layout",

"includedLayouts": "all",

"nestedChildren": "1",

"rootLayoutLevel": "3",

"rootLayoutType": "relative"

}

},

"Web Content with Image.html",

{

"portletId": "com_liferay_nested_portlets_web_portlet_NestedPortletsPortlet",

"portletPreferences": {

"columns": [

[

{

"portletId":

"com_liferay_journal_content_web_portlet_JournalContentPortlet",

"portletPreferences": {

"articleId": "Child Web Content 1.xml",

"groupId": "${groupId}",

"portletSetupPortletDecoratorId": "decorate",

"portletSetupTitle_en_US":

"Web Content Display with Child Structure 1",

"portletSetupUseCustomTitle": "true"

}

}

],

[

{

"portletId":

"com_liferay_journal_content_web_portlet_JournalContentPortlet",

"portletPreferences": {

"articleId": "Child Web Content 2.xml",

"groupId": "${groupId}",

"portletSetupPortletDecoratorId": "decorate",

"portletSetupTitle_en_US":

"Web Content Display with Child Structure 2",

"portletSetupUseCustomTitle": "true"

}

}

]

],

"layoutTemplateId": "2_columns_i"

}

}

]

830

],

"friendlyURL": "/home",

"nameMap": {

"en_US": "Welcome",

"fr_FR": "Bienvenue"

},

"title": "Welcome"

},

{

"columns": [

[

{

"portletId": "com_liferay_login_web_portlet_LoginPortlet"

}

],

[

{

"portletId": "com_liferay_hello_world_web_portlet_HelloWorldPortlet"

}

]

],

"friendlyURL": "/layout-prototypes-parent-page",

"layouts": [

{

"friendlyURL": "/layout-prototypes-page-1",

"layoutPrototypeLinkEnabled": "true",

"layoutPrototypeUuid": "371647ba-3649-4039-bfe6-ae32cf404737",

"name": "Layout Prototypes Page 1",

"title": "Layout Prototypes Page 1"

},

{

"friendlyURL": "/layout-prototypes-page-2",

"layoutPrototypeUuid": "c98067d0-fc10-9556-7364-238d39693bc4",

"name": "Layout Prototypes Page 2",

"title": "Layout Prototypes Page 2"

}

],

"name": "Layout Prototypes",

"title": "Layout Prototypes"

},

{

"columns": [

[

{

"portletId": "com_liferay_login_web_portlet_LoginPortlet"

}

],

[

{

"portletId": "com_liferay_hello_world_web_portlet_HelloWorldPortlet"

}

]

],

"friendlyURL": "/parent-page",

"layouts": [

{

"friendlyURL": "/child-page-1",

"name": "Child Page 1",

"title": "Child Page 1"

},

{

"friendlyURL": "/child-page-2",

"name": "Child Page 2",

"title": "Child Page 2"

}

],

"name": "Parent Page",

"title": "Parent Page"

831

},

{

"friendlyURL": "/url-page",

"name": "URL Page",

"title": "URL Page",

"type": "url"

},

{

"friendlyURL": "/link-page",

"name": "Link to another Page",

"title": "Link to another Page",

"type": "link_to_layout",

"typeSettings": "linkToLayoutId=1"

},

{

"friendlyURL": "/hidden-page",

"name": "Hidden Page",

"title": "Hidden Page",

"hidden": "true"

}

]

}

If you don’t understand the sitemap at this point, don’t worry. This section of tutorials covers
how to create a sitemap for your theme, from defining pages to defining portlets.

77.1 Defining Layout Templates in a Sitemap

The first thing you should declare in your sitemap.json file is a default layout template ID so the
target site or site template can reference the layout template to use for its pages. When defined
outside the scope of a page, the layoutTemplateId sets the default layout template for the theme’s
pages:

{

"layoutTemplateId": "2_columns_ii",

"publicPages": [

{

"friendlyURL": "/my-page",

"name": "My Page",

"title": "My Page"

}

]

}

When placed inside a page configuration, the layoutTemplateId sets the layout template for the
individual page. In the example below, the Hidden Page and theWelcome page both use the default
2_columns_ii layout template, while the Custom Layout Page overrides the default layout template
and uses the 2_columns_i layout template instead:

{

"layoutTemplateId":"2_columns_ii",

"publicPages": [

{

"friendlyURL": "/welcome-page",

"name": "Welcome",

"title": "Welcome"

},

{

"friendlyURL": "/custom-layout-page",

"name": "Custom Layout Page",

832

"title": "Custom Layout Page",

"layoutTemplateId": "2_columns_i"

},

{

"friendlyURL": "/hidden-page",

"name": "Hidden Page",

"title": "Hidden Page",

"hidden": "true"

}

]

}

Related Topics

Preparing and OrganizingWeb Content for the Resources Importer
Defining Portlets in a Sitemap
SpecifyingWhere to Import Your Theme’s Resources

77.2 Defining Pages in a Sitemap

A sitemap defines the layouts—pages—that your site or site template uses. This tutorial covers the
configuration options that are available for pages in a sitemap.

Note: Pages are imported into a site template by default. Site templates only support the
importing of either public page sets or private page sets, not both.

If you want to import both public and private page sets, as shown in the example sitemap.json

below, you must import your resources into a site.

You can specify a name for a page, title, friendly URL, whether it is hidden, and much more.
The example below defines a default layout template and both public and private page sets to
import into a site:

{

"layoutTemplateId": "2_columns_ii",

"privatePages": [

{

"friendlyURL": "/private-page",

"name": "Private Page",

"title": "Private Page"

}

],

"publicPages": [

{

"friendlyURL": "/welcome-page",

"nameMap": {

"en_US": "Welcome",

"fr_FR": "Bienvenue"

},

"title": "Welcome"

},

{

"friendlyURL": "/custom-layout-page",

"name": "Custom Layout Page",

"title": "Custom Layout Page",

"layoutTemplateId": "2_columns_i"

},

{

"friendlyURL": "/hidden-page",

833

"name": "Hidden Page",

"title": "Hidden Page",

"hidden": "true"

}

]

}

You can create child pages by configuring the layouts element for a page configuration:

{

"friendlyURL": "/parent-page",

"layouts": [

{

"friendlyURL": "/child-page-1",

"name": "Child Page 1",

"title": "Child Page 1"

},

{

"friendlyURL": "/child-page-2",

"name": "Child Page 2",

"title": "Child Page 2"

}

],

"name": "Parent Page",

"title": "Parent Page"

}

These examples use some of the available page configuration attributes. The full list is shown
below.

colorSchemeId: Specifies a different color scheme (by ID) than the default color scheme to use
for the page.

columns: Specifies the column contents for the page.
friendlyURL: Sets the page’s friendly URL.
hidden: Sets whether the page is hidden.
layoutCss: Sets custom CSS for the page to load after the theme.
layoutPrototypeLinkEnabled: Sets whether the page inherits changes made to the page tem-

plate (if the page has one).
layoutPrototypeName: Specifies the page template (by name) to use for the page. If this is

defined, the page template’s UUID is retrieved using the name, and layoutPrototypeUuid is not
required.

layoutPrototypeUuid: Specifies the page template (by UUID) to use for the page. If
layoutPrototypeName is defined, this is not required.

layouts: Specifies child pages for a page set.
name: The page’s name.
nameMap: Passes a name object with multiple name key/value pairs. You can use this to pass

translations for a page’s title, as shown in the example above.
privatePages: Specifies private pages.
publicPages: Specifies public pages.
themeId: Specifies a different theme (by ID) than the default theme bundled with the

sitemap.json to use for the page.
title: The page’s title.
type: Sets the page type. The default value is portlet (empty page). Possible values are copy

(copy of a page of this site), embedded, full_page_application, link_to_layout, node (page set), panel,
portlet, and url (link to URL).

typeSettings: Specifies settings (using key/value pairs) for the page type.

834

Related Topics

Preparing and OrganizingWeb Content for the Resources Importer
Defining Layout Templates in a Sitemap
SpecifyingWhere to Import Your Theme’s Resources

77.3 Defining Portlets in a Sitemap

You can embed portlets in a sitemap for the pages you define. You can embed themwith the default
settings or provide portlet preferences for a more custom look and feel. This tutorial covers both
these options.

Follow these steps:

1. Note the portlet’s ID. This is the javax.portlet.name attribute of the portlet spec. For conve-
nience, The IDs for portlets available out-of-the-box are listed in the Fully Qualified Portlet
IDs reference guide. For custom portlets, this property is listed in the portlet class as the
javax.portlet.name= service property.

2. List the portlet ID in the column of the layout you want to display the portlet on. An example
configuration is shown below:

{

"layoutTemplateId": "2_columns_ii",

"publicPages": [

{

"columns": [

[

{

"portletId": "com_liferay_login_web_portlet_LoginPortlet"

},

{

"portletId":

"com_liferay_site_navigation_menu_web_portlet_SiteNavigationMenuPortlet"

}

],

[

{

"portletId": "com_liferay_hello_world_web_portlet_HelloWorldPortlet"

}

]

],

"friendlyURL": "/home",

"nameMap": {

"en_US": "Welcome",

"fr_FR": "Bienvenue"

},

"title": "Welcome"

}

]

}

This approach embeds the portlet with its default settings. To customize the portlet, you
must configure the portlet’s preferences, as described in the next step.

3. Optionally specify portlet preferences for a portlet with the portletPreferences key. Below is
an example for theWeb Content Display portlet:

835

{

"portletId": "com_liferay_journal_content_web_portlet_JournalContentPortlet",

"portletPreferences": {

"articleId": "Custom Title.xml",

"groupId": "${groupId}",

"portletSetupPortletDecoratorId": "decorate",

"portletSetupTitle_en_US": "Web Content Display with Custom Title",

"portletSetupUseCustomTitle": "true"

}

}

portletSetupPortletDecoratorId: Specifies the portlet decorator to use for the portlet
(borderless || barebone || decorate). See the Applying Portlet Decorators to Embedded Portlets
tutorial for more info.

Tip: You can specify an application display template (ADT) for a portlet in the sitemap.json file
by setting the displayStyle and displayStyleGroupId portlet preferences, as shown in the example
below:

"portletId": "com_liferay_asset_publisher_web_portlet_AssetPublisherPortlet",

"portletPreferences": {

"displayStyleGroupId": "10197",

"displayStyle": "ddmTemplate_6fe4851b-53bc-4ca7-868a-c836982836f4"

}

Portlet preferences are unique to each portlet, so first you must determine which preferences
you want to configure. There are two ways to determine the proper key/value pair for a portlet
preference. The first is to set the portlet preference manually, and then check the values in the
portletPreferences.preferences column of the database as a hint for what to configure in your
sitemap.json. For example, you can configure the Asset Publisher to display assets that match the
specified asset tags, using the following configuration:

"queryName0": "assetTags",

"queryValues0": "MyAssetTagName"

Another approach is to search each app in your bundle for the keyword preferences--. This
returns some of the app’s JSPs that have the portlet preferences defined for the portlet.

Note: Portlet preferences that require an existing configuration, such as a tag or category, may
require you to create the configuration on the Global site first, so that the Resources Importer finds
a match when deployed with the theme.

Related Topics

Preparing and OrganizingWeb Content for the Resources Importer
Defining Pages in a Sitemap
SpecifyingWhere to Import Your Theme’s Resources

836

77.4 Retrieving Portlet IDs with the Gogo Shell

To include a portlet in a sitemap, you must have its ID. For convenience, IDs for out-of-the-box
portlets appear in the Fully Qualified Portlet IDs reference guide. If you’ve installed purchased or
developed portlets, you can retrieve their IDs using the Gogo Shell, as this tutorial instructs.

Follow these steps to use the Gogo Shell to retrieve a portlet ID:

1. Open the Control Panel and go to Configuration → Gogo Shell.

2. Run the command lb [app prefix], and locate the app’s web bundle. For example, run lb

blogs to find the blogs web bundle.

100|Active | 10|Liferay Blogs Web (3.0.7)

3. Run the command scr:list [bundle ID], and locate the app’s component ID. The blogs portlet
entry is shown below. The last number preceding the bundle’s state is the component ID:

[100] com.liferay.blogs.web.internal.portlet.BlogsPortlet enabled

[196] [active]

4. Run the command scr:info [component ID] to list the portlet’s information. For example, to
list the info for the blogs portlet component, run scr:info 196. Note that the bundle and/or
component ID may be different for your instance.

5. Search for javax.portlet.name in the results. javax.portlet.name’s value is the portlet ID re-
quired for the sitemap. The blogs portlet’s ID is shown below:

javax.portlet.name = com_liferay_blogs_web_portlet_BlogsPortlet

Figure 77.1: Portlet IDs can be found via the Gogo Shell.

Related Topics

Defining Pages in a Sitemap
Defining Portlets in a Sitemap
Preparing and OrganizingWeb Content for the Resources Importer

837

77.5 Defining Assets for the Resources Importer

The sitemap.json file defines the pages of the site or site template to import—along with the layout
templates, portlets, and portlet preferences of these pages. You may also want to provide details
about the assets you include with the theme. An assets.json file lets you provide this information.
Create the assets.json in your theme’s [theme-name]/src/WEB-INF/src/resources-importer folder.

Tags can be applied to any asset. Abstract summaries and small images can be applied
to web content articles. For example, the following assets.json file specifies two tags for the
company_logo.png image, one tag for the Custom Title.xml web content article, and an abstract sum-
mary and small image for the Child Web Content 1.json article structure:

{

"assets": [

{

"name": "company_logo.png",

"tags": [

"logo",

"company"

]

},

{

"name": "Custom Title.xml",

"tags": [

"web content"

]

},

{

"abstractSummary": "This is an abstract summary.",

"name": "Child Web Content 1.json",

"smallImage": "company_logo.png"

}

]

}

Now you know how to configure assets for your web content!

Related Topics

Preparing and OrganizingWeb Content for the Resources Importer
Creating a Sitemap for the Resources Importer
SpecifyingWhere to Import Your Theme’s Resources

77.6 Specifying Where to Import Your Theme's Resources

By default, resources are imported into a new site template named after the theme, but you can
also import resources into a new site or existing sites or site templates. This tutorial covers all
these options.

First you must enable Developer Mode for the Resources Importer.

Enabling Developer Mode

Before specifying where to import your resources, you must enable Developer Mode in your theme.
To do this, add the following property to your theme’s liferay-plugin-package.properties file:

838

`resources-importer-developer-mode-enabled=true`

This is enabled by default for themes generated with the Liferay Theme Generator. This is a
convenience feature for theme developers. With this setting enabled, importing resources into a
site or site template that already exists recreates the site or site template. Importing resources into
a site template reapplies the site template and its resources to the sites that are based on the site
template. Without resources-importer-developer-mode-enabled=true, you must manually delete the
sites or site templates built by the Resources Importer each time you want to apply changes from
your theme’s src/WEB-INF/src/resources-importer folder.

Warning: the resources-importer-developer-mode-enabled=true setting can be dangerous since
it involves deleting (and re-creating) the affected site or site template. It’s only intended to be used
during development. Never use it in production.

With Developer Mode enabled in the Resource Importer, you can choose where you want to
import your theme’s resources.

Importing Resources into Existing Site Templates and Sites

By default, resources are imported into a new site template named after the theme. If you want
your resources to be imported into an existing site template, you must specify a value for the
resources-importer-target-value property in your theme’s liferay-plugin-package.properties file:

#resources-importer-target-class-name

resources-importer-target-value=[site-template-name]

Youmust import your resources into a site if you define both public and private page sets in
your sitemap.json. To import resources into an existing site, uncomment the resources-importer-

target-class-name property and set it to com.liferay.portal.kernel.model.Group:

resources-importer-target-class-name=com.liferay.portal.kernel.model.Group

resources-importer-target-value=[site-name]

Double check the name that you’re specifying. If you specify the wrong value, you could end
up deleting (and re-creating) the wrong site or site template!

Warning: It’s safer to import theme resources into a site template than into an actual site. The
resources-importer-target-class-name=com.liferay.portal.kernel.model.Group setting can be handy
for development and testing but should be used cautiously. Don’t use this setting in a theme
deployed to a production Liferay instance or a theme submitted to Liferay Marketplace. To prepare
a theme for deployment to a productionLiferay instance, use the default setting so that the resources
are imported into a site template. You can do this explicitly by setting resources-importer-target-

class-name=com.liferay.portal.kernel.model.LayoutSetPrototype or implicitly by commenting out
or removing the resources-importer-target-class-name property.

To view your theme and its resources, deploy the theme, log in as an administrator, and check
the Sites or Site Templates section of the Control Panel to make sure your resources were deployed
correctly. From the Control Panel you can easily view your theme and its resources:

839

• If you imported into a site template, open its actions menu and select View Pages to see it.
• If you imported directly into a site, open its actions menu and select Go to Public Pages to see
it.

It’s just that easy to import resources with your theme!

Related Topics

Preparing and OrganizingWeb Content for the Resources Importer
Creating a Sitemap for the Resources Importer
Defining Assets for the Resources Importer

77.7 Archiving Site Resources

Although a sitemap.json is the recommended approach for including resources with a theme, you
can also export your site’s data in a LAR (Liferay Archive) file. A LAR file is version-specific; it won’t
work on any version of Liferay DXP other than the one from which it was exported. This approach
does, however, require less configuration, since it does not require a sitemap or other files. So, if
you’re using the exported resources in the same version of Liferay DXP and it’s not for a theme on
Liferay Marketplace, you may prefer a LAR file.

To create an archive.lar, export the contents of a site using the site scope. Then place the
archive.lar file in your theme’s [theme-name]/src/WEB-INF/src/resources-importer folder. A LAR
archive does not require a sitemap.json file or any other files in your [theme-name]/src/WEB-

INF/src/resources-importer folder.

Related Topics

840

CHAPTER 78

UPGRADING YOUR THEME FROM LIFERAY PORTAL
6.2 TO 7.1

This section guides you through the process of upgrading your 6.2 theme to run on 7.0. While
you’re at it, you should leverage theme improvements, including support for Sass, Bootstrap 4 and
Lexicon 2.0.

Theme upgrades involve these steps:

• Updating project metadata
• Updating CSS
• Updating theme templates
• Updating resources importer configuration and content
• Applying Clay design patterns

As an example, these tutorials apply the steps to a theme called the Lunar Resort theme de-
veloped in the Liferay Portal 6.2 Developing a Liferay Theme Learning Path. It’s similar to many
Liferay Portal 6.2 themes, as it extends the _styled theme, adds configurable settings, and incor-
porats a responsive design that leverages Font Awesome icons and Bootstrap. The theme ZIP file
contains its original source code.

Before upgrading a theme, consider migrating the theme to use the Liferay JS Theme Toolkit.
7.0 doesn’t require this migration, but the Liferay JS Theme Toolkit’s Gulp upgrade task automates
many upgrade steps. Themes that use the Liferay JS Theme Toolkit can also leverage exclusive
features, such as Themelets.

If your theme uses Bootstrap 3 and Lexicon CSS, you can still use Bootstrap 3 and Lexicon CSS
alongside Bootstrap 4 and Clay CSS markup, thanks to Liferay DXP’s compatibility layer.

Note: The compatibility layer is meant as a short-term solution to ensure that your Bootstrap 3
and Lexicon CSS components aren’t broken while you update your theme to use Bootstrap 4 and
Clay CSS. It will be disabled in a future release. Migrate your theme to use Bootstrap 4 and Clay
CSS as soon as you’re able to.

Follow the steps in the Running the 6.2 theme upgrade task tutorial to learn how to migrate
your theme to use the Liferay JS Theme Toolkit, including its Gulp upgrade task. Otherwise, you

841

https://github.com/liferay/liferay-portal/tree/6.2.x/portal-web/docroot/html/themes/_styled
/documents/10184/656312/lunar-resort-theme-migration-6.2.zip
https://github.com/liferay/liferay-themes-sdk/tree/master/packages
https://getbootstrap.com/docs/4.3/migration/
https://clayui.com/docs/css-framework/scss.html

Figure 78.1: The Lunar Resort example theme upgraded in this tutorial uses a clean, minimal design.

must follow the steps in the remaining tutorials in this section to upgrade your 6.2 theme to 7.1
manually.

78.1 Running the Gulp Upgrade Task for 6.2 Themes

You can upgrade Liferay Portal 6.2 theme 7.0, regardless of the development environment (Plugins
SDK, Maven, etc.) you used. If you migrate your theme to use the Liferay JS Theme Toolkit, you
can leverage the theme’s Gulp upgrade task.

Without the Liferay JS Theme Toolkit, you must follow the directions in the remaining tutorials
in this section to upgrade your theme manually.

Here’s what the Upgrade Task does:

• Updates the theme’s Liferay version

842

• Updates the theme’s Bootstrap version
• Updates the theme’s Lexicon version
• Suggests specific code updates

Here are the steps for using the Gulp upgrade task:

1. Migrate your 6.2 theme to use the Liferay JS Theme Toolkit. Note that you must have the
Liferay Theme Generator installed to migrate your theme to use the Liferay JS Theme Toolkit:

yo liferay-theme:import

Youmust provide the absolute path to your 6.2 theme’s root folder. The import task does not
work for relative paths.

2. Navigate to your theme’s root directory and run the command below to initially upgrade your
6.2 theme to 7.0:

gulp upgrade

Here’s what the 6.2 to 7.0 upgrade task does:

• Updates the theme’s Liferay version
• Updates the CSS
• Suggests specific code updates

The task continues upgrading CSS files, prompting you to update CSS file names. For 7.0,
Sass files should use the .scss extension and file names for Sass partials should start with an
underscore (e.g., _custom.scss). The upgrade task prompts you for each CSS file to rename.

Note: The `gulp upgrade` task overwrites the theme's files. We recommend

that you backup your theme's files before running it.

The upgrade task automatically upgrades CSS code that it can identify. For

everything else, it suggests upgrades.

3. Run the gulp upgrade command again to upgrade the 7.0 theme to 7.1.

Here’s what it does:

• Creates core code for generating theme base files
• Collects removed Bootstrap and Lexicon variables
• Updates Bootstrap version references
• Updates Lexicon version references
• Updates Liferay version references

843

The Gulp upgrade task lists any deprecated or removed variables. For other areas of the code it
suspects might need updates, it logs suggestions. The task also reports changes that may affect
theme templates.

The Gulp upgrade task jump-starts the upgrade process, but it doesn’t complete it. Manual
updates are required.

The rest of the tutorials in this section explain all the 6.2 theme upgrade steps, regardless
of whether the Gulp upgrade task performs them. Steps the upgrade task performs are noted in
context. Even if you’ve already executed the upgrade task, it’s best to learn all the steps and make
sure they’re applied to your theme.

Related Topics

Creating Themes
Updating 6.2 Project Metadata

78.2 Updating 6.2 Project Metadata

If your theme uses the Liferay JS Theme Toolkit, the Gulp upgrade task automatically updates some
of your theme’s metadata as part of the upgrade process. Follow the steps below to update your
theme’s metadata manually:

1. Open your theme’s liferay-plugin-package.properties file and change the liferay-versions

property value to 7.1.0+:

liferay-versions=7.1.0+

2. Open the liferay-look-and-feel.xml file and specify 7.1.0+ as the compatibility version:

<look-and-feel>

<compatibility>

<version>7.1.0+</version>

</compatibility>

...

</look-and-feel>

3. While you’re updating liferay-look-and-feel.xml, enable your theme to use Portlet Decora-
tors.

4. If your themeuses the Liferay JSThemeToolkit, theGulp upgrade task updates the package.json
file’s Liferay version references to 7.1, and it updates the liferayTheme’s templateLanguage to
ftl (since Velocity theme templates are no longer supported):

"liferayTheme": {

...

"templateLanguage": "ftl",

"version": "7.1"

},

Your theme’s Liferay version references are updated for 7.0.

844

https://github.com/liferay/liferay-themes-sdk/tree/master/packages

Related Topics

Updating 6.2 CSS Code
Developing Themes

845

CHAPTER 79

UPDATING 6.2 CSS CODE

7.0’s UI improvements required these CSS-related changes:

• Renaming CSS files
• Removing unneeded CSS files
• Updating CSS rules and imports
• Modifications to CSS responsiveness tokens

The theme upgrade process involves conforming to these changes. Here’s how to update your
theme’s CSS to leverage the styling improvements.

79.1 Updating CSS File Names for Clay and Sass

Although Sass was available in Liferay Portal 6.2, only Sass partial files followed the Sass naming
convention (using file suffix .scss). In 7.0 themes, all Sass files must end in scss, and aui filename
prefixes have been replaced with clay to reflect the introduction of Clay (previously Lexicon CSS).

Note: The Gulp upgrade task renames CSS files automatically.

Follow these steps to update your CSS file names manually:

1. Change each CSS file name’s suffix in your theme from .css to .scss, then prepend an un-
derscore (_) to all Sass partial file names, except main.scss and aui.scss. The Lunar Resort’s
updated files are shown below:

- `css/`

- `_aui_variables.scss`

- `_custom.scss`

2. Rename any CSS files that use the name aui in your theme to use the name clay instead.
Below are the Lunar Resort’s updated CSS file names:

- `css/`

- `_clay_variables.scss`

- `_custom.scss`

847

https://clayui.com/docs/getting-started/clay.html

The full list of core files to rename is shown below for reference. If you modified a CSS file
shown in the table below, you must update its name. If you didn’t modify the file, no action is
required:

CSS File Name Updates

Original CSS File Name | Updated CSS File Name |
application.css |

_application.scss| aui.css | clay.scss| base.css | _base.scss| custom.css | _custom.scss| dockbar.css |
removed| extras.css | _extras.scss| layout.css | _layout.scss| main.css | main.scss| navigation.css |
_navigation.scss| portal.css | _portal.scss| portlet.css | _portlet.scss| taglib.css | _taglib.scss|

Related Topics

Running the Gulp Upgrade Task for 6.2 Themes
Updating 6.2 CSS Rules

79.2 Updating 6.2 CSS Rules and Imports

7.0 uses Bootstrap 4’s CSS rule syntax. Font Awesome icons have also been moved, requiring
changes to your imports. If your theme uses the Liferay JS Theme Toolkit, the Gulp upgrade task
reports automatic CSS updates and suggests manual updates. For example, here is part of the task
log for the Lunar Resort theme upgrade from 6.2 to 7.0. For each update performed and suggested,
the task reports a file name and line number range:

--

Bootstrap Upgrade (2 to 3)

--

File: src/css/_aui_variables.scss

Line 5: "$white" has been removed

Line 11: "$baseBorderRadius" has changed to "$border-radius-base"

Line 15: "$btnBackground" has changed to "$btn-default-bg"

Line 16: "$btnBackgroundHighlight" has been removed

Line 17: "$btnBorder" has changed to "$btn-default-border"

...

File: src/css/custom.css

Line 201: Padding no longer affects width or height, you may need to

change your rule (lines 201-227)

Line 207: Padding no longer affects width or height, you may need to

change your rule (lines 207-226)

Line 212: You would change height from "62px" to "82px"

...

Manually Updating CSS Rules

Follow these steps to update your theme’s CSS rules manually:

1. Since Bootstrap 3 adopted the box-sizing: border-box property for all elements and pseudo-
elements (e.g., :before and :after), padding no longer affects dimensions. Bootstrap’s docu-
mentation describes the box sizing changes. In all CSS rules that use padding, make sure to
update the width and height. For example, examine the height value change in this CSS rule
for the Lunar Resort theme’s _custom.scss file:
Original:

848

https://getbootstrap.com/docs/3.3/css/#less-mixins-box-sizing
https://getbootstrap.com/docs/3.3/css/#less-mixins-box-sizing

#reserveBtn {

background-color: #00C4FB;

border-radius: 10px;

color: #FFF;

font-size: 1.5em;

height: 62px;

margin: 30px;

padding: 10px 0;

...

}

Updated:

#reserveBtn {

background-color: #00C4FB;

border-radius: 10px;

color: #FFF;

font-size: 1.5em;

height: 82px;

margin: 30px;

padding: 10px 0;

...

}

Note: For individual elements, you can overwrite the

`box-sizing:border-box` rule with `box-sizing:content-box`.

2. The following variables are removed in Bootstrap 4. Remove any of these if they are used in
your theme:

$line-height-computed

$padding-base-horizontal

$padding-base-vertical

$padding-large-horizontal

$padding-large-vertical

$padding-small-horizontal

$padding-small-vertical

$padding-xs-horizontal

$padding-xs-vertical

$gray-base

$gray-darker

$gray-dark

$gray

$gray-light

$gray-lighter

$brand-primary

$brand-success

$brand-info

$brand-warning

$brand-danger

$state-success-text

$state-success-bg

$state-success-border

$state-info-text

$state-info-bg

$state-info-border

$state-warning-text

$state-warning-bg

$state-warning-border

849

$state-danger-text

$state-danger-bg

$state-danger-border

See the Migrating from 2.x to 3.0 guide for CSS rules that changed in Bootstrap 3. Likewise, you
can refer to the Migrating to v4 guide for updating CSS rules to Bootstrap 4.

Updating Font Awesome Imports

Font Awesome icons were moved to their own file (font-awesome.scss) to avoid the IE9 CSS selector
limitation. If you include these imports in your _custom.scss file, you must remove them:

@import "aui/alloy-font-awesome/scss/mixins-alloy";

@import "aui/alloy-font-awesome/scss/variables";

Related Topics

Updating 6.2 CSS Responsiveness
Copying an Existing Theme’s Files

79.3 Updating the Responsiveness

Bootstrap 4 explicit media queries replaced the Bootstrap 2 respond-tomixins for CSS responsive-
ness. Follow these steps to update your theme’s responsiveness:

1. Open your _custom.scss file.

2. Replace all respond-to mixins with corresponding media queries shown below. Note that
some of the dimensions are slightly different:
Media Query Replacements

Liferay Portal 6.2 Mixin | 7.0 Media Query |

————————————–
|:———————————————————- | @include respond-to(phone) (max-width: 767px) | @include
media-breakpoint-down(sm) (max-width: 767px) | @include respond-to(tablet) (min-width: 768px,
max-width: 979px) | @include media-breakpoint-only(md) (min-width: 768px, max-width: 991px)
| @include respond-to(phone, tablet) (max-width: 979px) | @include media-breakpoint-down(md)

(max-width: 991px) | @include respond-to(desktop, tablet) (min-width: 768px) | @include media-

breakpoint-up(md) (min-width: 768px) | @include respond-to(desktop) (min-width: 980px) | @include
media-breakpoint-up(lg) (min-width: 992px) |

For example, here is a comparison between the Lunar Resort theme’s original and updated
syntax:

Original:

@include respond-to(phone, tablet) {

html #wrapper #banner #navigation {

...

}

...

}

850

http://getbootstrap.com/migration/#migrating-from-2x-to-30
https://getbootstrap.com/docs/4.0/migration/

Updated:

@include media-breakpoint-down(md) {

html #wrapper #banner #navigation {

...

}

...

}

Related Topics

Updating 6.2 Theme Templates
Updating CSS File Names for Clay and Sass

79.4 Updating 6.2 Theme Templates

7.0 theme templates are essentially the same as Liferay Portal 6.2 theme templates. Here are the
main changes:

• Velocity templates were deprecated in Liferay Portal CE 7.0 and are now removed in favor of
FreeMarker templates in Liferay DXP. Below are the key reasons for this move:

– FreeMarker is developed and maintained regularly, while Velocity is no longer actively
being developed.

– FreeMarker is faster and supports more sophisticated macros.

– FreeMarker supports using taglibs directly rather than requiring a method to represent
them. You can pass body content to them, parameters, etc.

• The Dockbar has been replaced and reorganized into a set of three distinct menus:

– The Product Menu: Manage Site and page navigation, content, settings and pages for the
current Site, and navigate to user account settings, etc.

– The Control Menu: Configure and add content to the page and view the page in a simula-
tion window.

– The User Personal Bar: Display notifications and the user’s avatar and name.

Start by converting your Velocity theme templates to FreeMarker. You can refer to Apache’s
FreeMarker documentation for help. Common Liferay DXP FreeMarker variables and macros can
be found in FTL_liferay.ftl

If you used the Gulp upgrade task, it reports the required theme template changes in the log. For
example, here are the 6.2 to 7.0 upgrade log and 7.0 to 7.1 upgrade log for the Lunar Resort theme:

851

https://freemarker.apache.org/docs/ref.html
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/portal-template/portal-template-freemarker/src/main/resources/FTL_liferay.ftl
running-the-upgrade-task-for-6.2-themes

Figure 79.1: The Dockbar was removed in 7.0 andmust be replaced with the new Control Menu.

--

Liferay Upgrade (6.2 to 7)

--

File: portal_normal.ftl

Warning: <@liferay.dockbar /> is deprecated, replace with

<@liferay.control_menu /> for new admin controls.

Warning: not all admin controls will be visible without

<@liferay.control_menu />

Warning: ${theme} variable is no longer available in Freemarker

templates, see https://goo.gl/9fXzYt for more information.

[18:57:23] Finished 'upgrade:log-changes' after 5.61 ms

[18:57:23] Finished 'upgrade' after 19 s

--

Liferay Upgrade (7.0 to 7.1)

--

Renamed aui.scss to clay.scss

[19:16:54] Finished 'upgrade:log-changes' after 2.53 ms

[19:16:54] Finished 'upgrade' after 16 min

The log warns about removed and deprecated code and suggests replacements when applicable.
Next, you’ll learn how to update various theme templates to 7.0. If you didn’t modify any theme

templates, you can skip these sections.

Updating Portal Normal FTL

If you didn’t customize portal_normal.ftl, you can skip this section. Follow these steps to update
portal_normal.ftl:

1. Open your modified portal_normal.ftl file and replace the following 6.2 directives with the
updated syntax. This change is described in the 7.0 Breaking Changes reference document:

6.2 Updated

${theme.include(top_head_include)}<@liferay_util["include"] page=top_head_include />

${theme.include(body_top_include)}<@liferay_util["include"] page=body_top_include />

${theme.include(content_include)}<@liferay_util["include"] page=content_include />

${theme.wrapPortlet("portlet.ftl",

content_include)}

<@liferay_theme["wrap-portlet"] page="portlet.ftl">

<@liferay_util["include"] page=content_include /> </@>

852

6.2 Updated

${theme.include(body_bottom_include)}<@liferay_util["include"] page=body_bottom_include />

${theme.include(bottom_include)}<@liferay_util["include"] page=bottom_include />

${theme_settings["my-

theme-setting"]}

${themeDisplay.getThemeSetting("my-theme-setting")}

${theme.runtime("56",

"articleId=" +

my_article_id)}

<@liferay_portlet["runtime"]

portletName="com_liferay_journal_content_web_portlet_JournalContentPortlet"

queryString="articleId=" + my_article_id />

2. Optionally remove the breadcrumbs and page title code:

<nav id="breadcrumbs">

<@liferay.breadcrumbs />

</nav>

...

<h2 class="page-title">

${the_title}

</h2>

3. If you used the split Dockbar in your Liferay Portal 6.2 theme, remove dockbar-split from the
body element’s class value so it matches the markup below:

<body class="${css_class}">

4. Find the <@liferay.language key="skip-to-

content" /> element and replace it with the updated Liferay UI quick access macro
shown below:

<@liferay_ui["quick-access"] contentId="#main-content" />

5. Replace the <@liferay.dockbar />macro with the updated Control menu macro:

<@liferay.control_menu />

6. Add the <#if...></#if> wrappers to the navigation.ftl theme template include:

<#if has_navigation && is_setup_complete>

<#include "${full_templates_path}/navigation.ftl" />

</#if>

7. Replace the content <div> with an HTML 5 section element. The section element is more
accurate and provides better accessibility for screen readers:

<section id="content">

8. Add the <h1 class="hide-accessible">${the_title}</h1>header element just inside the content
<section> to support accessibility.

If you modified the navigation template for your theme, follow the steps in the next section.

853

Updating Navigation FTL

Follow these steps to update your modified navigation.ftl file:

1. Below the <nav class="${nav_css_class}" id="navigation" role="navigation"> element, add
the following hidden heading for accessibility screen readers:

<h1 class="hide-accessible">

<@liferay.language key="navigation" />

</h1>

2. To access the layout, add the following variable declaration below the <#assign

nav_item_css_class = "" /> variable declaration:

<#assign nav_item_layout = nav_item.getLayout() />

3. Replace the ${nav_item.icon()}variable in the <a aria-labelledby="layout_${nav_item.getLayoutId()}"...

anchor with the following element:

<@liferay_theme["layout-icon"] layout=nav_item_layout />

The navigation template is updated. You can update portlet.ftl next.

Updating Portlet FTL

Follow these steps to update your modified portlet.ftl file:

1. Find the <a class="icon-monospaced portlet-icon-back text-default" href="${portlet_back_url}"

title="<@liferay.language key="return-to-full-page" />"> element and add the list-

unstyled class to it:

<a

class="icon-monospaced list-unstyled portlet-icon-back text-default"

href="${portlet_back_url}"

title="<@liferay.language key="return-to-full-page" />"

>

2. Find the <div class="autofit-float autofit-row"> element and add the portlet-header class
to it:

<div class="autofit-float autofit-row portlet-header">

The portlet template is updated. You can update init_custom.ftl next.

854

Updating Init Custom FTL

If your theme uses configurable theme settings, update them to use the new syntax, following the
patterns below.

Original syntax:

<#assign theme_setting_variable =

getterUtil.getBoolean(theme_settings["theme-setting-key"])>

<#assign theme_setting_variable =

getterUtil.getString(theme_settings["theme-setting-key"])>

Updated syntax:

<#assign theme_setting_variable =

getterUtil.getBoolean(themeDisplay.getThemeSetting("theme-setting-key"))/>

<#assign theme_setting_variable =

themeDisplay.getThemeSetting("theme-setting-key")/>

For example, here are the Lunar Resort theme’s updated theme settings:

<#assign show_breadcrumbs =

getterUtil.getBoolean(themeDisplay.getThemeSetting("show-breadcrumbs"))/>

<#assign show_page_title =

getterUtil.getBoolean(themeDisplay.getThemeSetting("show-page-title"))/>

That covers most, if not all, of the theme template changes. If you modified any other
FreeMarker theme templates, compare them with templates in the _unstyled theme. If your theme
uses the Liferay JS Theme Toolkit, refer to the suggested changes that the Gulp upgrade task reports.

Related Topics

Updating CSS Code
Making Configurable Theme Settings

79.5 Updating the Resources Importer

The Resources Importer is now an OSGi module in Liferay’s Web Experience application suite.
Since the suite is bundled with Liferay DXP, you don’t have to download the Resources Importer
separately. The following components have been updated and are the focus of this tutorial:

• Plugin properties
• Web content article files and folder structure
• Sitemap

Note: Due to the page and article import order, articles that link to pages in the Site’s layout
cause a null pointer exception issue. These links have been removed from the example Lunar
Resort theme’s web content articles to avoid this issue.

Start updating the plugin properties for the Resources Importer.

855

https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-theme/frontend-theme-unstyled/src/main/resources/META-INF/resources/_unstyled/templates
https://issues.liferay.com/browse/LPS-64859

Updating liferay-plugin-package.properties

Follow the steps in this section to upgrade Plugins SDK themes. Skip to the next section for all
other themes.

1. Open the src\WEB-INF\liferay-plugin-package.properties file and remove the required-

deployment-contexts property. This is no longer needed since the Resources Importer is
bundled with Liferay DXP.

2. The group model class’s fully-qualified class name has changed. Replace the resources-

importer-target-class-name property’s value with the updated one below:

com.liferay.portal.kernel.model.Group

Now that your liferay-plugin-package.properties is updated, you can update your theme’s web
content.

Updating Web Content

All web content articles must be written in XML and have a structure for article creation and a
template for rendering.

Note: The example Lunar Resort theme’s updated XML articles are in the ZIP file’s /resources-
importer/journal/articles/Basic Web Content/ folder for reference.

Follow these steps to update your web content:

1. Create a subfolder, for example BASIC_WEB_CONTENT, in the /resources-importer/journal/articles/
folder, and move all the basic HTML articles (articles that did not require a structure or
template previously) into it.

2. Create a subfolder in the /resources-importer/journal/templates/ folder with the same name
as the folder you created in step 1. The articles and template folder names must match for
the web content to import properly.

3. XMLarticle structures arenowwritten in JSON.Create afile, for example BASIC_WEB_CONTENT.json,
in the /resources-importer/journal/structures/ folder. The structure namemust match the
folder names you created in the previous steps. To ensure the syntax is correct for web
content articles that used a structure and template before, we recommend that you recreate
the structure and template in Liferay DXP.

4. In the JSON file you just created, add a JSON structure for the basic web content that follows
the pattern below:

{

"availableLanguageIds": [

"en_US"

],

"defaultLanguageId": "en_US",

"fields": [

{

"label": {

"en_US": "Content"

856

},

"predefinedValue": {

"en_US": ""

},

"style": {

"en_US": ""

},

"tip": {

"en_US": ""

},

"dataType": "html",

"fieldNamespace": "ddm",

"indexType": "keyword",

"localizable": true,

"name": "content",

"readOnly": false,

"repeatable": false,

"required": false,

"showLabel": true,

"type": "ddm-text-html"

}

]

}

5. For basic web content, create a FreeMarker template file (e.g., [template-folder-name].ftl)
in the template subfolder you created in step 2, and add the method below to retrieve the
article’s data:

${content.getData()}

6. Use this syntax to migrate basic web content articles from HTML to XML. Remember to
change your .html file extension to .xml:

<?xml version="1.0"?>

<root available-locales="en_US" default-locale="en_US">

<dynamic-element name="content" type="text_area"

index-type="keyword" index="0">

<dynamic-content language-id="en_US">

<![CDATA[

ORIGINAL HTML CONTENT GOES HERE

]]>

</dynamic-content>

</dynamic-element>

</root>

7. 7.0’s updated Bootstrap requires that you replace all span[number] classes with the updated
syntax below:

col-[device-size]-[number]

[device-size] can be xs, sm, md, or lg. mdworks formost cases. The original and updated classes
for the Lunar Resort’s 2 column description.xml article are shown below for reference:

Original:

857

<?xml version="1.0"?>

<root available-locales="en_US" default-locale="en_US">

<dynamic-element name="content" type="text_area"

index-type="keyword" index="0">

<dynamic-content language-id="en_US">

<![CDATA[

<div class="container-fluid">

<div class="span4" id="columnLeft">

Out of This World

</div>

<div class="span8" id="columnRight">

Come to the Lunar Resort...

</div>

</div>

]]>

</dynamic-content>

</dynamic-element>

</root>

Updated:

<?xml version="1.0"?>

<root available-locales="en_US" default-locale="en_US">

<dynamic-element name="content" type="text_area"

index-type="keyword" index="0">

<dynamic-content language-id="en_US">

<![CDATA[

<div class="container-fluid">

<div class="col-md-4" id="columnLeft">

Out of This World

</div>

<div class="col-md-8" id="columnRight">

Come to the Lunar Resort...

</div>

</div>

]]>

</dynamic-content>

</dynamic-element>

</root>

Bootstrap’s documentation explains the updated grid system.

Next, you must update your theme’s sitemap file.

Updating the Sitemap

In Liferay Portal 6.2, portlet IDs were incremental numbers. In 7.0, they’re explicit class names.
Update your sitemap.json file with the new portlet IDs.

Some common portlet IDs are specified in the sitemap.json example in the Creating a Sitemap
for the Resources Importer tutorial.

You can also retrieve a portlet’s ID from the UI:

1. In the portlet’s Options menu, select Look and Feel Configuration.

2. Select the Advanced Styling tab.

The Portlet ID value appears in the blue box.

858

https://getbootstrap.com/docs/4.0/layout/grid/

Figure 79.2: You can find the portlet ID in the Look and Feel Configurationmenu.

Figure 79.3: The portlet ID appears within the blue box in the Advanced Styling tab.

859

The Portlet ID Quick Reference Guide shows all the default portlet IDs. Check liferay-

portlet.xml for the portlet ID number in 6.2 and replace it with the updated ID in the quick
reference Guide.

Remember to use the updated .xml extension for your web content articles in your sitemap.

Related Topics

Updating 6.2 CSS Code
Applying Clay Design Patterns to 6.2 Themes

79.6 Applying Clay Design Patterns

7.0 uses Clay, a web implementation of Liferay’s Lexicon Experience Language. The Lexicon
Experience Language provides styling guidelines and best practices for application UIs. Clay’s
CSS, HTML, and JavaScript components enable developers to build fully-realized UIs quickly and
effectively. Liferay DXP’s compatibility layer let’s you use Lexicon CSS markup alongside Clay CSS.

Note: The compatibility layer is meant as a short-term solution to ensure that your Bootstrap 3
and Lexicon CSS components aren’t broken while you update your theme to use Bootstrap 4 and
Clay CSS. It will be disabled in a future release. Migrate your theme to use Bootstrap 4 and Clay
CSS as soon as you’re able to.

This section demonstrates how to apply Clay to your HTMLmarkup. For example, this is the
Liferay Portal 6.2 Lunar Resort’s reservation form:

<p>

Thanks for choosing to stay at the Liferay Lunar Resort! Please fill out the

form below to book your stay. We know you have a choice in where to stay on

the Moon...

oh wait no you don't. Thanks for picking us anyways. We'll see you soon on

the Moon!

</p>

<form class="form-horizontal">

<fieldset>

<legend>Reservation Form</legend>

<div class="control-group">

<label class="control-label" for="inputName">Name</label>

<div class="controls">

<input type="text" id="inputName"

placeholder="Enter your Name here" required="required">

</div>

</div>

<div class="control-group">

<label class="control-label" for="inputEmail">Email</label>

<div class="controls">

<input type="email" id="inputEmail"

placeholder="Enter your E-Mail here" required="required">

</div>

</div>

<div class="control-group">

<div class="controls">

<button type="submit" class="btn">Submit</button>

</div>

860

https://liferay.github.io/clay/
https://lexicondesign.io/
https://lexiconcss.wedeploy.io/
https://clayui.com/
https://getbootstrap.com/docs/4.3/migration/
https://clayui.com/docs/css-framework/scss.html

</div>

</fieldset>

</form>

<p style="padding-bottom:25px;">

Thanks again for booking with Liferay. When you book with Liferay, you

remember your stay. Please take a moment to fill out our guestbook below.

</p>

The HTML code above uses Bootstrap 2’s markup and CSS classes. Here’s the Lunar Resort
form’s updated Clay markup:

<p>

Thanks for choosing to stay at the Liferay Lunar Resort! Please fill out the

form below to book your stay. We know you have a choice in where to stay on

the Moon...

oh wait no you don't. Thanks for picking us anyways. We'll see you soon on

the Moon!

</p>

<form role="form-horizontal">

<fieldset>

<legend>Reservation Form</legend>

<div class="form-group">

<label for="inputName">Name</label>

<input type="text" id="inputName" class="form-control"

placeholder="Enter your Name here" required="required">

</div>

<div class="form-group">

<label for="inputEmail">Email</label>

<input type="email" id="inputEmail" class="form-control"

placeholder="Enter your E-Mail here" required="required">

</div>

<div class="form-group">

<button type="submit" class="btn btn-primary">Submit

</button>

</div>

</fieldset>

</form>

<p style="padding-bottom:25px;">Thanks again for booking with Liferay. When

you book with Liferay, you remember your stay. Please take a moment to fill

out our guestbook below.</p>

The Clay updates applied to the form are as follows:

• The control-group classes were updated to form-group classes.
• The control-label classes were removed from the label elements.
• The <div class=""controls> elements were removed.
• The form-control class was added to each input element.
• To emphasize the form’s submit button, the btn-primary class was added.

You can apply similar Clay patterns to your theme’s HTML files.
You’ve updated your theme to 7.0! You can deploy it from your theme project. Now your users

can continue enjoying the visual styles you’ve created in your upgraded themes.

Related Topics

Liferay Theme Generator
Upgrading to 7.0

861

CHAPTER 80

UPGRADING YOUR THEME FROM LIFERAY PORTAL
7.0 TO 7.1

This section of tutorials guides you through the process of upgrading your 7.0 theme to run on 7.0.
While you’re at it, you should leverage theme improvements, including support for Bootstrap 4 and
Lexicon 2.0.

Theme upgrades involve these steps:

• Updating project metadata
• Updating CSS
• Updating theme templates

No matter the environment in which you’re developing your theme, these tutorials explain
everything required to upgrade it. The easiest option is to use the gulp upgrade task. This, however,
is only available for themes created with the Liferay Theme Generator. If you’re upgrading in an
environment other than the themes generator, follow the other tutorials in this section to upgrade
your theme manually.

80.1 Upgrading Themes CreatedWith the Liferay Theme Generator

A Liferay Portal 7.0 theme can be upgraded to 7.0, regardless of its project environment (Liferay
ThemeGenerator, Plugins SDK,Maven, etc.). But a theme createdwith the LiferayThemeGenerator
can leverage the theme’s gulp upgrade task. If you’re developing your theme in an environment
other than the Themes Generator, the gulp upgrade task doesn’t work for your theme. Please follow
the manual directions in the remaining tutorials in this section to upgrade your theme manually.

Here’s what the Upgrade Task does:

• Updates the theme’s Liferay version
• Updates the theme’s Bootstrap version
• Updates the theme’s Lexicon version
• Suggests specific code updates

Here are the steps for using the theme Gulp upgrade task:

863

1. Navigate to your theme’s root directory.

2. Update the path of your Liferay DXP server in your theme’s liferay-theme.json file to point to
your 7.1 Liferay DXP server. You can use the gulp init task to update the path to your server.

3. Run the command below to update liferay-theme-tasks to the latest version:

npm update liferay-theme-tasks

4. Run the command below to upgrade the theme:

gulp upgrade

Here’s what it does:

• Copies the existing theme to a folder called _backup

• Creates core code for generating theme base files
• Collects removed Bootstrap and Lexicon variables
• Updates Bootstrap version references
• Updates Lexicon version references
• Updates Liferay version references

Note: The gulp upgrade task overwrites the theme’s files. We recommend that you backup your
theme’s files before running it.

The Gulp task list any deprecated or removed variables. For other areas of the code it suspects
might need updates, it logs suggestions. The task also reports changes that may affect theme
templates.

The Gulp upgrade task jump-starts the upgrade process, but it doesn’t complete it. Manual
updates are required.

The rest of the tutorials in this section explain all the themeupgrade steps, regardless ofwhether
the gulp upgrade task performs them. Steps the upgrade task performs are noted in context. Even
if you’ve already executed the upgrade task, it’s best to learn all the steps and make sure they’re
applied to your theme.

Related Topics

Creating Themes
Updating Project Metadata

80.2 Updating Project Metadata

If your theme uses the Liferay Theme Generator, the gulp upgrade task automatically updates
your theme’s metadata as part of the upgrade process. If you’re developing your theme in an
environment other than the themes generator, follow the steps below to update your theme’s
metadata manually:

864

1. Open your theme’s liferay-plugin-package.properties file and change the liferay-versions

property value to 7.1.0+:

liferay-versions=7.1.0+

2. Open the liferay-look-and-feel.xml file and specify 7.1.0+ as the compatibility version:

<look-and-feel>

<compatibility>

<version>7.1.0+</version>

</compatibility>

...

</look-and-feel>

3. If your theme uses the Liferay Theme Generator, open the package.json file and update the
file’s Liferay version references to 7.1. Update the liferayTheme’s templateLanguage to ftl

(since Velocity theme templates are no longer supported), and update its version to 7.1:

"liferayTheme": {

...

"templateLanguage": "ftl",

"version": "7.1"

},

4. Update the liferay-theme-deps-7-0 dependency to liferay-theme-deps-7.1 with the version
below, and add the liferay-theme-tasks dependency as shown in the example configuration
below:

"devDependencies": {

"gulp": "3.9.1",

"liferay-theme-tasks": "8.0.0-alpha.6",

"liferay-theme-deps-7.1": "8.0.0-alpha.6"

},

Your theme’s Liferay version references are updated for 7.0.

Related Topics

Updating CSS Code
Developing Themes

80.3 Updating CSS Code

7.0’s UI improvements required these CSS-related changes:

• Renaming CSS files
• Class variable changes
• Updating core imports

The theme upgrade process involves conforming to these changes. Now you’ll update your
theme’s CSS files to reflect these changes. Start with updating CSS file names.

865

Updating CSS File Names for Clay

Some of the CSS filenames have changed to reflect the introduction of Clay (previously Lexicon
CSS). The filename changes for the unstyled theme are listed below. Refer to the Theme Reference
Guide for a complete list of expected theme CSS files.

The old 7.0 aui filenames are shown below:

• css/

– _aui_custom.scss

– _aui_variables.scss

– aui.scss

Rename the aui files to match the updated 7.1 clay filenames shown below:

• css/

– _clay_custom.scss

– _clay_variables.scss

– clay.scss

Next, you can note the removed and deprecated variables and mixins for Bootstrap 4 and
Lexicon.

Class Variable Changes

7.0 uses Bootstrap 4’s CSS rule syntax. The new syntax lets developers leverage Bootstrap 4 features
and improvements. If your theme does not use the Liferay Theme Generator, you can refer to the
Migrating to v4 guide for updating CSS rules to Bootstrap 4.

If your theme uses the Liferay Theme Generator, the gulp upgrade task suggests manual updates.
For example, here is part of the task log for the 7.0Westeros Bank theme:

--

Lexicon Upgrade (1.0 to 2.0)

--

File: _variables_custom.scss

$brand-default was deprecated in Lexicon CSS 1.x.x and has been removed

in the new Clay 2.x.x version

The log lists removed and/or deprecated variables and suggests possible changes. For each
update performed or suggested, the task reports a file name. For reference, here’s the full list of
variable changes:

The following variables were removed in Bootstrap 4:

$line-height-computed

$padding-base-horizontal

$padding-base-vertical

$padding-large-horizontal

$padding-large-vertical

$padding-small-horizontal

$padding-small-vertical

$padding-xs-horizontal

$padding-xs-vertical

$gray-base

866

https://getbootstrap.com/docs/4.0/migration/

$gray-darker

$gray-dark

$gray

$gray-light

$gray-lighter

$brand-primary

$brand-success

$brand-info

$brand-warning

$brand-danger

$state-success-text

$state-success-bg

$state-success-border

$state-info-text

$state-info-bg

$state-info-border

$state-warning-text

$state-warning-bg

$state-warning-border

$state-danger-text

$state-danger-bg

$state-danger-border

See Bootstrap Migration Guide for a full list of the changes.
The following Lexicon variables were deprecated in Lexicon CSS 1.x.x and are removed in the

new Clay 2.x.x version:

$atlas-theme

$box-shadow-default

$box-shadow-default-bg

$box-shadow-default-blur

$box-shadow-default-spread

$box-shadow-default-x

$box-shadow-default-y

$brand-danger-active

$brand-danger-hover

$brand-default

$brand-default-active

$brand-default-hover

$brand-info-active

$brand-info-hover

$brand-primary-active

$brand-primary-hover

$brand-success-active

$brand-success-hover

$brand-warning-active

$brand-warning-hover

$inverse-active-bg

$inverse-active-border

$inverse-active-color

$inverse-bg

$inverse-border

$inverse-color

$inverse-disabled-color

$inverse-header-bg

$inverse-header-border

$inverse-header-color

$inverse-hover-bg

$inverse-hover-border

$inverse-hover-color

$inverse-link-color

$inverse-link-hover-color

$state-danger-bg

$state-danger-border

$state-danger-text

$state-default-bg

867

https://getbootstrap.com/docs/4.0/migration/

$state-default-border

$state-default-text

$state-info-bg

$state-info-border

$state-info-text

$state-primary-bg

$state-primary-border

$state-primary-text

$state-success-bg

$state-success-border

$state-success-text

$state-warning-bg

$state-warning-border

$state-warning-text

The following Lexicon mixins are removed in Clay 2.x.x:
@mixin color-placeholder:
Lexicon’s color-placeholder($element, $color: $input-color-placeholder)mixin is deprecated

as of v1.0.9 and was removed in v2.0.0. Please use placeholder($color: $input-color-placeholder)

instead.
@mixin select-box-icon:
Lexicon’s select-box-icon($color)mixin is deprecated as of v1.0.10 and was removed in v2.0.0.

Please use background-image: lx-icon($name, $color) instead.
Note that if the gulp upgrade task detects any variables in your theme that have been removed

in Clay from the previous LexiconCSS version, it adds the _variables_deprecated.scss file to your
theme with the variables to make sure the theme compiles and to decouple it from future upgrades.
If you wish to include this file manually, here are its contents for reference:

@warn "You're using deprecated variables. Please refer to the update guides

to remove its usage";

// Deprecated `$brand-*-*` as of v1.0.24, removed in v2.0.0

$brand-default: #869CAD !default; // Atlas

$brand-default-active: darken($brand-default, 12%) !default; // Atlas

$brand-default-hover: darken($brand-default, 8%) !default; // Atlas

$brand-primary: #65B6F0 !default;

$brand-primary-active: darken($brand-primary, 12%) !default; // Atlas

$brand-primary-hover: darken($brand-primary, 8%) !default; // Atlas

$brand-success: #76BD4A !default;

$brand-success-active: darken($brand-success, 12%) !default; // Atlas

$brand-success-hover: darken($brand-success, 8%) !default; // Atlas

$brand-info: #1E5EC8 !default;

$brand-info-active: darken($brand-info, 12%) !default; // Atlas

$brand-info-hover: darken($brand-info, 8%) !default; // Atlas

$brand-warning: #F5984C !default;

$brand-warning-active: darken($brand-warning, 12%) !default; // Atlas

$brand-warning-hover: darken($brand-warning, 8%) !default; // Atlas

$brand-danger: #C67 !default;

$brand-danger-active: darken($brand-danger, 12%) !default; // Atlas

$brand-danger-hover: darken($brand-danger, 8%) !default; // Atlas

// Box Shadow

// Defines global box-shadows

// Deprecated `$box-shadow-default-*` as of v1.0.24, removed in v2.0.0

$box-shadow-default-x: 0 !default; // Atlas

$box-shadow-default-y: 0 !default; // Atlas

868

$box-shadow-default-blur: 3px !default; // Atlas

$box-shadow-default-spread: 1px !default; // Atlas

$box-shadow-default-bg: rgba(0, 0, 0, 0.2) !default; // Atlas

$box-shadow-default: $box-shadow-default-x $box-shadow-default-y $box-shadow-default-blur $box-shadow-default-spread $box-

shadow-default-bg !default; // Atlas

// Inverse Colors

// Deprecated `$inverse-*` as of v1.0.24, removed in v2.0.0

$inverse-bg: #1F282E !default; // Atlas

$inverse-border: darken($inverse-bg, 10%) !default; // Atlas

$inverse-color: #869CAD !default; // Atlas

$inverse-active-bg: #3A4D5A !default; // Atlas

$inverse-active-border: darken($inverse-active-bg, 1%) !default; // Atlas

$inverse-active-color: #FFF !default; // Atlas

$inverse-disabled-color: #394956 !default; // Atlas

$inverse-hover-bg: #1C252C !default; // Atlas

$inverse-hover-border: darken($inverse-hover-bg, 1%) !default; // Atlas

$inverse-hover-color: $inverse-color !default; // Atlas

$inverse-header-bg: #1B2228 !default; // Atlas

$inverse-header-border: darken($inverse-header-bg, 1%) !default; // Atlas

$inverse-header-color: $inverse-color !default; // Atlas

$inverse-link-color: #FFF !default; // Atlas

$inverse-link-hover-color: $inverse-link-color !default; // Atlas

// States for Form and alert

// Deprecated `$state-*-*` as of v1.0.24, removed in v2.0.0

$state-default-text: $brand-default !default; // Atlas

$state-default-bg: lighten($state-default-text, 34%) !default; // Atlas

$state-default-border: $state-default-text !default; // Atlas

$state-primary-text: $brand-primary !default; // Atlas

$state-primary-bg: lighten($state-primary-text, 12%) !default; // Atlas

$state-primary-border: $state-primary-text !default; // Atlas

$state-success-text: $brand-success !default;

$state-success-bg: lighten($state-success-text, 34%) !default;

$state-success-border: $state-success-text !default;

$state-info-text: $brand-info !default;

$state-info-bg: lighten($state-info-text, 34%) !default;

$state-info-border: $state-info-text !default;

$state-warning-text: $brand-warning !default;

$state-warning-bg: #F8F4D5 !default;

$state-warning-border: $state-warning-text !default;

$state-danger-text: $brand-danger !default;

$state-danger-bg: lighten($state-danger-text, 34%) !default;

$state-danger-border: $state-danger-text !default;

After updating your theme’s CSS variables and mixins, you should update the Font Awesome
Icon imports.

869

Updating Font Awesome Icon Imports

Originally in Liferay Portal CE 7.0 and Liferay DXP, Font Awesome icons were imported in
_aui_variables.scss (now renamed _clay_variables.scss). Font Awesome icons were later moved
to the compatibility layer. If your 7.0 theme was made prior to this move and you modified
_aui_variables.scss, you must remove the Font Awesome imports shown below:

// Icon paths

$FontAwesomePath: "aui/lexicon/fonts/alloy-font-awesome/font";

$font-awesome-path: "aui/lexicon/fonts/alloy-font-awesome/font";

$icon-font-path: "aui/lexicon/fonts/";

Next you can update the core imports.

Updating Core Imports

Update the old aui lexicon paths to use the clay paths instead, as shown in the table below:

Pattern|Replacement| @import "/aui/lexicon/bootstrap/mixins/";|removed| @import "/aui/lexicon/lexicon-

base/mixins/";|removed| @import "/aui/lexicon/atlas-theme/mixins/";|removed| @import "aui/lexicon/atlas-

variables";|@import "clay/atlas-variables";| @import "aui/lexicon/atlas";|@import "clay/atlas";|

Related Topics

Updating Theme Templates
Copying an Existing Theme’s Files

80.4 Updating Theme Templates

7.0 theme templates are essentially the same as Liferay Portal 7.0 theme templates. Here are the
main changes:

• Velocity templates were deprecated in Liferay Portal CE 7.0 and are now removed in favor of
FreeMarker templates in Liferay DXP.

Key reasons for using FreeMarker templates and removing Velocity templates are these:

• FreeMarker is developed and maintained regularly, while Velocity is no longer actively being
developed.

• FreeMarker is faster and supports more sophisticated macros.

• FreeMarker supports using taglibs directly rather than requiring a method to represent them.
You can pass body content to them, parameters, etc.

You should start by addressing the Velocity theme templates. Since Velocity theme templates
are no longer supported, youmust convert your Velocity theme templates to FreeMarker.

If you’re using the Liferay Theme Generator, the gulp upgrade command reports the required
theme template changes in the log.

For example, here is the gulp upgrade log for theWesteros Bank theme:

870

--

Liferay Upgrade (7.0 to 7.1)

--

Renamed aui.scss to clay.scss

File: footer.ftl

Warning: .container-fluid-1280 has been deprecated. Please use

.container-fluid.container-fluid-max-xl instead.

File: portal_normal.ftl

Warning: .navbar-header has been removed. This container should be

removed in most cases. Please, use your own container if necessary.

The log warns about removed and deprecated code and suggests replacements when applicable.
For reference, the main changes appear below:

• List items inside a container with the list-inline class now require the list-inline-item

class.

• The container-fluid-1280 class has been deprecated. Please use container-fluid container-

fluid-max-xl instead.

• Responsive navbar behaviors are now applied to the navbar class via the required navbar-

expand-{breakpoint} class.

• The navbar-toggle class is now navbar-toggler and has different inner markup.

• The navbar-header class has been removed. This container should be removed in most cases.
Please, use your own container if necessary.

Next, you’ll learn how to update various theme templates to 7.0. If you didn’t modify any theme
templates, you can skip these sections.

Updating Portal Normal FTL

The first one to update is the portal_normal.ftl theme template. If you didn’t customize
portal_normal.ftl, you can skip this section. Follow the steps below to update portal_normal.ftl:

1. Open your modified portal_normal.ftl file and remove the breadcrumbs:

<nav id="breadcrumbs">

<@liferay.breadcrumbs />

</nav>

2. Remove id="main-surface" from the body tag. This is not needed for SPA to work properly:

<body class="${css_class}" id="main-surface">

If you modified the portlet template for your theme, follow the steps in the next section.

871

https://getbootstrap.com/docs/4.0/migration/#typography
https://getbootstrap.com/docs/4.0/migration/#navbar
https://getbootstrap.com/docs/4.0/migration/#navbar

Updating Portlet FTL

Follow these steps to update your modified portlet.ftl file:

1. Find the <a class="icon-monospaced portlet-icon-back text-default" href="${portlet_back_url}"

title="<@liferay.language key="return-to-full-page" />"> element and add the list-

unstyled class to it:

<a

class="icon-monospaced list-unstyled portlet-icon-back text-default"

href="${portlet_back_url}"

title="<@liferay.language key="return-to-full-page" />"

>

2. Find the <div class="autofit-float autofit-row"> element and add the portlet-header class
to it:

<div class="autofit-float autofit-row portlet-header">

The portlet template is updated. That covers most, if not all, of the required theme template
changes. If you modified any other FreeMarker theme templates, you can compare them with
templates in the _unstyled theme. If your theme uses the Liferay Theme Generator, refer to the
suggested changes that the gulp upgrade task reports.

Related Topics

Updating CSS Code
Making Configurable Theme Settings

80.5 Using the Bootstrap 3 Lexicon CSS Compatibility Layer

By default, Liferay DXP includes Bootstrap 4 out-of-the-box. Bootstrap 4 has been completely
rewritten and therefore includes some notable changes and compatibility updates that may be
cause for concern if your theme uses Bootstrap 3 or Lexicon CSS. Not to worry though. To en-
sure that your upgrade runs smoothly, Liferay DXP includes a compatibility layer so you can use
Bootstrap 3 markup and Lexicon CSS markup alongside the new Bootstrap 4 and Clay CSS. The
bundled icon fonts (Font Awesome v3.2.1 and Glyphicons 3) weremoved to the compatibility layer’s
_components.scss file as well. If your theme extends the Styled base theme, this compatibility layer
is included by default.

Note: The compatibility layer is meant as a short-term solution to ensure that your Bootstrap 3
and Lexicon CSS components aren’t broken while you update your theme to use Bootstrap 4 and
Clay CSS. It will be disabled in a future release. Migrate your theme to use Bootstrap 4 and Clay
CSS as soon as you’re able to.

Follow these guidelines to update your markup:

1. See how your theme looks with the compatibility layer enabled (it’s enabled by default).

872

https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-theme/frontend-theme-unstyled/src/main/resources/META-INF/resources/_unstyled/templates
https://getbootstrap.com/docs/4.1/migration/
http://getbootstrap.com/docs/4.1/getting-started/browsers-devices/
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-theme/frontend-theme-styled/src/main/resources/META-INF/resources/_styled/css/compat/_components.scss#L3-L4
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-theme/frontend-theme-styled
https://getbootstrap.com/docs/4.3/migration/
https://clayui.com/docs/css-framework/scss.html

2. Individually disable the component(s) in the compatibility layer that you don’t need. These
are listed in the css/compat/_variables.scss file. For convenience, the components are listed
below:

// Compatibility layer components config

$compat-alerts: true !default;

$compat-basic_search: true !default;

$compat-breadcrumbs: true !default;

$compat-button_groups: true !default;

$compat-buttons: true !default;

$compat-cards: true !default;

$compat-component_animations: true !default;

$compat-dropdowns: true !default;

$compat-figures: true !default;

$compat-form_validation: true !default;

$compat-forms: true !default;

$compat-grid: true !default;

$compat-icons: true !default;

$compat-labels: true !default;

$compat-liferay: true !default;

$compat-list_groups: true !default;

$compat-management_bar: true !default;

$compat-modals: true !default;

$compat-nav_tabs: true !default;

$compat-navbar: true !default;

$compat-navs: true !default;

$compat-pager: true !default;

$compat-pagination: true !default;

$compat-panels: true !default;

$compat-progress_bars: true !default;

$compat-responsive_utilities: true !default;

$compat\noindent\hrulefill: true !default;

$compat-simple_flexbox_grid: true !default;

$compat-stickers: true !default;

$compat-tables: true !default;

$compat-toggle_card: true !default;

$compat-toggle_switch: true !default;

$compat-toolbar: true !default;

$compat-user_icons: true !default;

$compat-utilities: true !default;

To disable a component, add the component you want to remove compatibility for to
/src/css/_clay_custom.scss (create this file if it doesn’t exist) and set its value to false. The
example below removes compatibility for alerts and cards:

$compat-alerts: false !default;

$compat-cards: false !default;

Note: Some Liferay DXP components haven't been migrated to Bootstrap 4.

Disabling certain components might cause portions of the UI to break.

Therefore, after upgrading your markup, we recommend that you re-enable any

components you disable. Proceed with caution.

3. Update your markup to Bootstrap 4 and Clay CSS until you’re satisfied with the result.

873

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-theme/frontend-theme-styled/src/main/resources/META-INF/resources/_styled/css/compat/_variables.scss

4. Re-enable any components you disabled in the compatibility layer by removing any compo-
nents you set to false in /src/css/_clay_custom.scss. This ensures that Liferay DXP’s UI isn’t
broken.

Now you know how to use the Bootstrap 3 and Lexicon CSS compatibility layer to provide a
smooth transition during your theme upgrade.

Related Topics

Updating CSS Code
Updating Project Metadata

874

CHAPTER 81

LAYOUT TEMPLATES

Layout templates define how content can be placed on a page. Liferay DXP includes several default
layout templates out-of-the-box that you can use to organize content on your pages:

Figure 81.1: There are many default layout templates to choose from.

If you require a layout for your content that’s not provided, you can create your own layout
templates. In this section of tutorials, you’ll learn how to develop layout templates for Liferay DXP.

81.1 Creating Layout Templates

Layout Templates specify how content is arranged on your site pages, as shown in the 1-2-1 Columns
layout below:

The Liferay Theme Generator provides a Layouts sub-generator that helps automate layout
template creation. This tutorial covers how to use this tool to create layout templates. Install the

875

Figure 81.2: The 1-2-1 Columns page layout creates a nice flow for your content.

Liferay Theme Generator if it’s not already installed, then follow these steps to create a layout
template:

1. Open the Command Line and navigate to the folder you want to create your layout template
in.

2. Run The Layouts sub-generator and follow the prompts to create your layout:

`yo liferay-theme:layout`

Note: Run the Layouts sub-generator from the theme's root folder to

bundle it with the theme. This adds the layout template to the theme's

`src/layouttpl/custom` folder. This **only works** for generated themes.

Every row consists of 12 sections, so columns can range in size from 1 to 12.

Once you've entered a value, the generator asks the size you want your row

and column to be and presents you with the available width(s).

![You must specify the width for each column in the row.](./images/layout-column-widths.png)

Choose from the available option(s) with your arrow keys and press Enter to

make your selection. Repeat this process for the remaining columns.

876

Figure 81.3: The Layouts sub-generator automates the layout creation process.

The Layouts sub-generator provides the following options for layout

templates:

- *Add a row:* Adds a row below the last row.

- *Insert row:* Displays a vi to insert your row. Use your arrow keys to

choose where to insert your row, highlighted in blue, then press Enter to

insert the row.

![Rows can be inserted using the layout vi.](./images/insert-row.png)

- *Remove row:* Displays a vi to remove your row. Use your arrow keys to

select the row you want to remove, highlighted in red, then press Enter to

remove the row.

![Rows are removed using the layout vi.](./images/remove-row.png)

![Select the *Finish layout* option to complete your design.](./images/finish-layout.png)

3. Run gulp deploy to deploy your layout template to the server you specified. If the layout is
bundled with your theme, deploy the theme to deploy the layout template.

Related Topics

Importing Resources with Your Themes
Creating Themes

81.2 Creating Layout Templates Manually

Although you can generate layout templates with the Liferay Theme Generator,
you may prefer to create or modify them manually using your own tools. In this tutorial you’ll

877

learn the anatomy of Liferay DXP’s layout templates so you can create layout templates manually
or modify existing ones.

Understanding the Anatomy

Layout templates are made of rows and columns. The design you create specifies where users can
place portlets on the page. An example row’s HTMLmarkup is shown below:

<div class="portlet-layout row">

<div class="col-md-4 col-sm-6 portlet-column portlet-column-first"

id="column-1">

${processor.processColumn("column-1",

"portlet-column-content portlet-column-content-first")}

</div>

<div class="col-md-8 col-sm-6 portlet-column portlet-column-last"

id="column-2">

${processor.processColumn("column-2",

"portlet-column-content portlet-column-content-last")}

</div>

</div>

Each row has a div, with the classes portlet-layout and row, that contains child divs for each
column. Each column is indicated with the class portlet-column, as well as a class that specifies
whether it is the first (portlet-column-first), last (portlet-column-last), or only column in the row
(portlet-column-only).

Columns use the Bootstrap grid system and can therefore range in width from 1 to 12. Sizes
are indicated with the number that follows the col-[breakpoint] class prefix (e.g. col-md-6). These
specify two things: the percentage based width of the element and the media query breakpoint (xs,
sm, md, or lg) for when this element expands to 100%width. 12 is the maximum amount, so col-md-6

indicates 6/12 width, or 50%. These classes can also be mixed to achieve more advanced layouts,
as shown above. In the example, medium sized viewports display column-1 at 33.33% width and
column-2 at 66.66% width, but on small sized view ports both column-1 and column-2 are 50% width.

The processor (${processor.processColumn()}) processes each column’s content, taking two
arguments: the column’s id, and the classes portlet-column-content and portlet-column-content-

[case] (if applicable), where [case] refers to the first, last, or only column in the row.

Note: Velocity layout templates are supported, but deprecated as of 7.0. We recommend that
you convert your Velocity layout templates to FreeMarker at your earliest convenience.

Now that you understand a layout template’s anatomy, you can write your own Liferay DXP
layout templates!

Related Topics

Layout Templates with the Liferay Theme Generator
Creating Themes
Creating Custom Layout Template Thumbnail Previews

81.3 Creating Custom Layout Template Thumbnail Previews

878

https://getbootstrap.com/docs/4.0/layout/grid/

If you created a layout templatewith theThemeGenerator, it generated a default thumbnail preview
for your layout template. Follow these steps to create a custom preview thumbnail for a layout
template:

1. Open the Command-line and navigate to the docroot/layouttpl/custom folder of your layout
template. If you created the layout template in a theme created with the Liferay Theme
Generator, the thumbnail is located in your theme’s src/layouttpl/custom folder.

2. Replace the thumbnail PNG file, if it exists, with a custom thumbnail PNG with the same
dimensions (120 x 120 px), or create a new one.

3. If including the layout templatewith a theme, specify the thumbnail’s location in your theme’s
liferay-look-and-feel.xml, using the <thumbnail-path> tag. Below is an example configuration
for the Porygon theme:

<layout-template id="porygon_50_50_width_limited"

name="Porygon 2 Columns (50/50) width limited">

<template-path>

/layoutttpl/custom/porygon_50_50_width_limited.ftl

</template-path>

<thumbnail-path>

/layoutttpl/custom/porygon_50_50_width_limited.png

</thumbnail-path>

</layout-template>

Deploy your layout template to your app server to use it. If your layout template is bundled with
a theme, it deploys when the theme is deployed. Now you know how to create a custom thumbnail
preview for your Liferay DXP layout templates!

Related topics

Layout Templates with the Liferay Theme Generator
Creating Layout Templates Manually
Creating Themes

81.4 Including Layout Templates with a Theme

Although you can deploy a layout template by itself, you can also bundle it with a theme. To include
a layout template with a theme, follow these steps:

1. Open your theme’s liferay-look-and-feel.xml file, and nest <layout-templates> tags in be-
tween the <theme>...</theme> tags so it matches the configuration below:

<theme id="my-theme-name" name="My Theme Name">

...

<layout-templates>

<custom>

//layout template code goes here

</custom>

</layout-templates>

...

</theme>

879

2. Place the layout template in between the <custom>...</custom> tags, using the <layout-

template> tag. The <layout-template> tag’s id attribute must match the layout template’s
filename. Below is an example configuration:

<layout-template id="my_liferay_layout_template"

name="My Liferay Layout Template">

3. Specify the layout template’s path with a <template-path> tag, as shown below:

<template-path>

/layoutttpl/custom/my_liferay_layout_template.ftl

</template-path>

4. Specify the layout template thumbnail’s path with a <thumbnail-path> tag, as shown below:

<thumbnail-path>

/layoutttpl/custom/my_liferay_layout_template.png

</thumbnail-path>

5. Place the completed layout in your theme’s src/layouttpl folder. Below is an example liferay-
look-and-feel configuration:

<theme id="my-theme-name" name="My Theme Name">

...

<layout-templates>

<custom>

<layout-template id="my_liferay_layout_template"

name="My Liferay Layout Template">

<template-path>

/layoutttpl/custom/my_liferay_layout_template.ftl

</template-path>

<thumbnail-path>

/layoutttpl/custom/my_liferay_layout_template.png

</thumbnail-path>

</layout-template>

</custom>

</layout-templates>

...

</theme>

Now you know how to include layout templates with your Liferay DXP themes!

Related topics

Creating Custom Layout Template Thumbnail Previews
Layout Templates with the Liferay Theme Generator
Creating Layout Templates Manually

880

81.5 Upgrading 6.2 Layout Templates to 7.1

Upgrading your Liferay DXP 6.2 layout template to 7.0 a few updates:

1. Open your layout template’s liferay-plugin-package.properties file and update the liferay-

versions property to 7.1.0+:

liferay-versions=7.1.0+

2. Update the Bootstrap span[number] classes to use the newer col-[size]-[number] classes. See
Creating Layout Templates Manually for more information on Bootstrap’s grid system.

3. Save the changes.

Note: Velocity layout templates are supported, but deprecated as of 7.0. We recommend that
you convert yourVelocity layout templates to FreeMarker at your earliest convenience. See Creating
Layout Templates Manually for an example of the updated syntax.

Related Topics

Layout Templates with the Liferay Theme Generator
Creating Layout Templates Manually
Including Layout Templates with a Theme

81.6 Upgrading 7.0 Layout Templates to 7.1

If you’re upgrading your Liferay DXP 7.0 layout template to 7.0, you must upgrade your layout
template version to 7.1:

1. Open your layout template’s liferay-plugin-package.properties file.

2. Update the liferay-versions property to 7.1.0+:

liferay-versions=7.1.0+

3. Save the changes.

Note: Velocity layout templates are supported, but deprecated as of 7.0. We recommend that
you convert yourVelocity layout templates to FreeMarker at your earliest convenience. See Creating
Layout Templates Manually for an example of the updated syntax.

Related Topics

Layout Templates with the Liferay Theme Generator
Creating Layout Templates Manually
Including Layout Templates with a Theme

881

CHAPTER 82

PORTLETS AND THEMES

The default theme sets the basic look and feel for all your portlets, and, through Portlet Decorators,
gives you a way to fine-tune the look of individual portlets with the click of a mouse. But you aren’t
limited to defaults. The following sections explain

• how to modify themes to create custom templates for your portlets

• how to create your own decorators to customize the look of your portlets individually

• how to embed portlets in your themes, a function that lets you choose portlets to deploy
automatically on any page where a given theme is used.

82.1 Theming Portlets

Themes can provide additional styles for your apps. You can change the markup for portlet
containers by modifying the theme’s portlet.ftl file.

This tutorial demonstrates how to style portlets with your themes.

Portlet FTL

Although you can individually style a portlet via the theme’s CSS or the portlet’s Look and Feel
Configurationmenu, youmay want tomodify the default look and feel for all portlets in your site. A
portlet’s template–its container, CSS classes, and overall HTML Markup–is defined via the theme’s
portlet.ftl file. To provide a custom style for all portlets, use the CSS classes in this file for the
various container elements, in conjunction with the portlet decorators to achieve the desired look
and feel. Be cautious: changes to portlet.ftl affect all the portlets in your site when the theme is
applied.

To help you with your bearings as you modify your portlet’s template, below is a quick look at
the portlet.ftl file that’s included in the default theme of 7.0.

<#assign

portlet_display = portletDisplay

portlet_back_url = htmlUtil.escapeHREF(portlet_display.getURLBack())

portlet_content_css_class = "portlet-content"

portlet_display_name = htmlUtil.escape(portlet_display.getPortletDisplayName())

883

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-theme/frontend-theme-classic/src/templates/portlet.ftl

portlet_display_root_portlet_id = htmlUtil.escapeAttribute(portlet_display.getRootPortletId())

portlet_id = htmlUtil.escapeAttribute(portlet_display.getId())

portlet_title = htmlUtil.escape(portlet_display.getTitle())

/>

The variables shown above are used throughout the template, so its important that you under-
stand them before modifying the file:

• portletDisplay: is fetched from the themeDisplay object and contains information about the
portlet.

• portlet_back_url: URL to return to the previous page when the portlet WindowState is maxi-
mized.

• portlet_display_name: The “friendly” name of the portlet as displayed in the GUI.
• portlet_display_root_portlet_id: The root portlet ID of the portlet.
• portlet_id: The ID of the portlet (not the same as the portlet namespace)
• portlet_title: The portlet name set in the portlet Java class (usually from a Keys.java class).

Next, a condition checks if the portlet header should be displayed. If the portlet has a port-
let toolbar (Configuration, Permissions, Look and Feel), the condition is true and the header is
displayed:

<#if portlet_display.isPortletDecorate() && !portlet_display.isStateMax()

&& portlet_display.getPortletConfigurationIconMenu()??

&& portlet_display.getPortletToolbar()??>

You can use a similar pattern if you want to dynamically show portions of the portlet’s UI.
Next, the portlet title menus are defined. These are used in portlets that let you add resources

(Web Content Display, Media Gallery, Documents and Media):

portlet_title_menus = portlet_toolbar.getPortletTitleMenus(portlet_display_root_portlet_id, renderRequest, renderResponse)

The configuration below contains the information for the configuration menu (Configuration,
Permissions, Look and Feel):

portlet_configuration_icons = portlet_configuration_icon_menu.getPortletConfigurationIcons(portlet_display_root_portlet_id, renderRequest, renderResponse)

The rest of the file contains the HTMLmarkup for the portlet topper and the portlet content.
This section barely scratches the surface of the portlet.ftl file. You must examine the portlet.ftl

file yourself and determine what elements and classes need updated for your theme and site.
Now that you aremore familiar with your theme’s portlet.ftl file, you can learn the role Portlet

Decorators play in the overall look and feel of your portlets.

Portlet Decorators

With Portlet Decorators, you can customize the style of the application wrapper. Themes come
bundled with three default portlet decorators in their liferay-look-and-feel.xml:

• Barebone: this decorator displays the bare application content, showing neither the wrapping
box nor the custom application title.

• Borderless: this decorator shows the title at the top, but does not display a wrapping box.

884

• decorate: this is the default Portlet Decorator when using the Classic theme. It wraps the
application in a white box with a border, and displays the title at the top.

Now you know how to make your portlets stylish! But if default decorators are not stylish
enough for you, [EDITOR: Our defaults are always stylish!] go to Portlet Decorators to learn how
make and apply your own.

Related Topics

Look and Feel Configuration
Creating Configurable Styles For Portlet Wrappers
Themes and Layout Templates

885

CHAPTER 83

CREATING CONFIGURABLE STYLES FOR PORTLET
WRAPPERS

Portlet Decorators customize the style of an application’s wrapper. If you inspect the markup of
your application when it’s on a page you’ll observe that it is wrapped by two layers. Among other
things, these layers provide some common basic features like drag and drop and the application
border style. In order to protect these features, you can’t modify themarkup of these layers directly
with a theme.

With Portlet Decorators, you can add a CSS class to one of these wrapping layers via a user’s
setting. By defining styles for this class in your theme, you can change the look and feel of the
application instances where the Portlet Decorator is applied, including its wrapper.

The figure below shows the markup of the layers wrapping a Liferay DXP application when the
Decorate Portlet Decorator is applied:

Figure 83.1: Portlet Decorators add the decorator’s CSS class to the application’s wrapper

Once your Portlet Decorator is complete, apply it to your applications through the Look and

887

Feel Configuration menu.

Figure 83.2: Portlet Decorators can be applied through the Look and Feel Configuration menu

The tutorials in this section detail how to customize Portlet Decorators and apply them to your
applications.

83.1 Adding Portlet Decorators to a Theme

Portlet Decorators are associated with a particular theme. If your theme does not define any portlet
decorators, none are available. It is recommended that you provide a few decorators for your
portlets to cover the basic use cases.

For example, the Liferay Portal CE 7.1 Classic theme includes three Portlet Decorators:

• Decorate: this is the default Application Decorator when using the Classic theme. It wraps
the application in a white box with a border, and displays the title at the top. theme.

• Borderless: this decorator shows the title at the top, but does not display a wrapping box.

• Barebone: this decorator displays the bare application content, showing neither thewrapping
box nor the custom application title.

Note: Upgrading to Liferay DXP assigns the borderless decorator automatically to those portlets
that had the Show Borders option set to false in previous versions of Liferay.

This tutorial demonstrates how to

• Add Portlet Decorators to your theme

888

https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-theme/frontend-theme-classic

Figure 83.3: The Classic theme’s Decorate Application Decorator wraps the portlet in a white box.

• Affect theme markup with Portlet Decorators

Adding Portlet Decorators to a Theme

Adding Portlet Decorators to your theme is similar to adding Color Schemes. Follow these steps:

1. Configure your theme’s liferay-look-and-feel.xml
2. Define the Application Decorator CSS styles
3. Optional: Add conditions to your theme’s markup

Configuring liferay-look-and-feel.xml

The first thing you must do is declare the Portlet Decorators in your theme’s liferay-look-and-

feel.xml.

889

Figure 83.4: The Classic theme’s Borderless Application Decorator displays the application’s custom title.

The Document Type Definition for the liferay-look-and-feel.xml contains the information and
rules to add Portlet Decorators (in the code referred as portlet-decorators) to your theme.

Here is how the classic theme defines Portlet Decorators in its liferay-look-and-feel.xml:

<?xml version="1.0"?>

<!DOCTYPE look-and-feel PUBLIC "-//Liferay//DTD Look and Feel 7.0.0//EN" "http://www.liferay.com/dtd/liferay-look-and-

feel_7_0_0.dtd">

<look-and-feel>

<compatibility>

<version>7.1.0+</version>

</compatibility>

...

<theme id="classic" name="Classic">

...

<portlet-decorator id="barebone" name="Barebone">

<portlet-decorator-css-class>portlet-barebone</portlet-decorator-css-class>

</portlet-decorator>

<portlet-decorator id="borderless" name="Borderless">

890

https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-look-and-feel_7_0_0.dtd.html#portlet-decorator

Figure 83.5: The Classic theme’s Barebone Application Decorator displays only the application’s content.

<portlet-decorator-css-class>portlet-borderless</portlet-decorator-css-class>

</portlet-decorator>

<portlet-decorator id="decorate" name="Decorate">

<default-portlet-decorator>true</default-portlet-decorator>

<portlet-decorator-css-class>portlet-decorate</portlet-decorator-css-class>

</portlet-decorator>

</theme>

</look-and-feel>

The portlet-decorator element contains all the information about the Application Decorator:

• id: this required attribute contains a unique string that identifies this specific Application
Decorator. This is the value that is stored when applying an Application Decorator, and it can
be used to refer to this decorator in your theme templates.

• name: this required attribute is a user friendly identifier for the Application Decorator to be
displayed in the Look and Feel UI.

• portlet-decorator-css-class: this required element contains the name of the CSS class that is
added to the application wrapping layer when this Application Decorator is applied.

• default-portlet-decorator: use this optional element to identify the default Application Dec-
orator for your theme.

You can define as many Portlet Decorators as you want, but it’s recommended to include at
least one for the decorate, borderless and barebone use cases.

891

Define the Styles for Your Application Decorator CSS Class

Once you’ve declared your Portlet Decorators, it’s time to define their effect in the application look
and feel. While the previous step was straightforward, this one asks for some creativity.

As an example, look at the _portlet_decorator.scss of the Classic theme:

.portlet-decorate .portlet-content {

background: #FFF;

border: 1px solid #DEEEEE;

}

.portlet-barebone .portlet-content {

padding: 0;

}

Once your CSS styles are written, import the CSS file into your _custom.scss:

@import "portlet_decorator"

That’s all that’s required to add Portlet Decorators to your theme. If you want to modify your
application’s markup with your Portlet Decorators, read the next section.

Changing Your Application Markup with Portlet Decorators

So far you’ve seen how to use Portlet Decorators to change the look and feel of an application with
styles.

It’s possible to go a step further and alter the markup of your application based on the Applica-
tion Decorator applied. For this, you must edit the portlet.ftl template for your theme, retrieve
the portletDecoratorId of the current Application Decorator from the portletDisplay object, and
make some decisions based on it.

For example, this is how the Classic theme shows the application title when the barebone
Application Decorator is not applied:

<#if !stringUtil.equals(portlet_display.getPortletDecoratorId(), "barebone")>

<h2 class="portlet-title-text">${portlet_title}</h2>

</#if>

Now you know how to add Portlet Decorators to your theme. Let your creativity be your guide.

Related Topics

Themelets
Making Applications Configurable

83.2 Applying Portlet Decorators to Embedded Portlets

Once you have installed a theme that contains Portlet Decorators, site administrators can apply
them to a portlet instance by selecting the Application Decorator in the Look and Feel Configura-
tion dialog. If your theme contains embedded portlets, it’s also possible to apply an Application
Decorator other than the default one by setting its preferences.

This tutorial demonstrates how to apply Portlet Decorators to Embedded Portlets in your theme.

892

Setting Application Decorator Preferences

To define a default Application Decorator for your theme’s embedded portlets, you must set a
default decorator in the portlet preferences.

For example, the Classic theme declares an Application Decorator with Id barebone and applies
it to the embedded Search portlet in its portal_normal.ftl:

<div class="navbar navbar-top navigation-bar-secondary">

<div class="container user-personal-bar">

<#assign preferences =

freeMarkerPortletPreferences.getPreferences(

"portletSetupPortletDecoratorId", "barebone"

) />

<#if show_header_search>

<div class="ml-auto mr-4 navbar-form" role="search">

<@liferay.search default_preferences="${preferences}" />

</div>

</#if>

<@liferay.user_personal_bar />

</div>

</div>

To set the default decorator for your embedded portlets, follow these steps:

1. Set the value for the portletSetupPortletDecoratorId to the Id of the Application Decorator you
want to use. The example below assigns the barebone decorator to the preferences variable:

<#assign preferences = freeMarkerPortletPreferences.getPreferences(

"portletSetupPortletDecoratorId", "barebone"

) />

2. Next, set the default_preferences attribute of the portlet’s tag to the variable you just defined
(preferences in the last step):

<@liferay.search default_preferences= "${preferences}" />

Your embedded portlets now have a custom default Application Decorator!

Related Topics

Embedding Portlets in Themes
Theming Portlets

83.3 Embedding Portlets in Themes

You may occasionally want to embed a portlet in a theme, making the portlet visible on all pages
where the theme is used. Since there are numerous drawbacks to hard-coding a specific portlet
into place, the Portlet Providers framework offers an alternative that displays the appropriate portlet
based on a given entity type and action.

In this tutorial, you’ll learn how to declare an entity type and action in a custom theme, and
you’ll create a module that finds the correct portlet to use based on those given parameters. You’ll
first learn how to embed portlets into a theme.

893

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-theme/frontend-theme-classic/src/templates/portal_normal.ftl

Adding a Portlet to a Custom Theme

The first thing you should do is open the template file for which you want to declare an embedded
portlet. For example, the portal_normal.ftl template file is a popular place to declare embedded
portlets. To avoid problems, it’s usually best to embed portlets with an entity type and action, but
youmay encounter circumstances where you’ll want to hard code it by portlet name. Bothmethods
are covered here.

Embedding a Portlet by Entity Type and Action

Start by inserting the following declaration where you want the portlet embedded:

<@liferay_portlet["runtime"]

portletProviderAction=ACTION

portletProviderClassName="CLASS_NAME"

/>

This declaration expects two parameters: the type of action and the class name of the entity
type the portlet should handle. Here’s an example of an embedded portlet declaration that uses
the class name:

<@liferay_portlet["runtime"]

portletProviderAction=portletProviderAction.VIEW

portletProviderClassName="com.liferay.portal.kernel.servlet.taglib.ui.LanguageEntry"

/>

This declares that the theme is requesting to view language entries. Liferay DXP determines
which deployed portlet to use in this case by providing the portlet with the highest service ranking.

Note: In some cases, a default portlet is already provided to fulfill certain requests. You can
override the default portlet with your custom portlet by specifying a higher service rank. To do
this, set the following property in your class’ @Component declaration:

property= {"service.ranking:Integer=20"}

Make sure you set the service ranking higher than the default portlet being used.

There are five different kinds of actions supported by the Portlet Providers framework: ADD,
BROWSE, EDIT, PREVIEW, and VIEW. Specify the entity type and action in your theme’s runtime declara-
tion.

Great! Your theme declaration is complete. However, the Portal is not yet configured to handle
this request. You must create a module that can find the portlet that fits the theme’s request.

1. Create an OSGi module.

2. Create a unique package name in themodule’s src directory, and create a new Java class in that
package. To follow naming conventions, name the class based on the entity type and action
type, followed by PortletProvider (e.g., SiteNavigationLanguageEntryViewPortletProvider). The
class should extend the BasePortletProvider class and implement the appropriate portlet
provider interface based on the action you chose in your theme (e.g., ViewPortletProvider,
BrowsePortletProvider, etc.).

3. Directly above the class’s declaration, insert the following annotation:

894

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BasePortletProvider.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/ViewPortletProvider.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BrowsePortletProvider.html

@Component(

immediate = true,

property = {"model.class.name=CLASS_NAME"},

service = INTERFACE.class

)

The property element should match the entity type you specified in your theme declara-
tion (e.g., com.liferay.portal.kernel.servlet.taglib.ui.LanguageEntry). Also, your service el-
ement should match the interface you’re implementing (e.g., ViewPortletProvider.class).
You can view an example of a similar @Component annotation in the RolesSelectorEditPortlet-
Provider class.

4. Specify the methods you want to implement. Make sure to retrieve the portlet ID and page
ID that should be provided when this service is called by your theme.
A common use case is to implement the getPortletId() and getPlid(ThemeDisplay)methods.
You can view the SiteNavigationLanguageViewPortletProvider for an example of how these
methods can be implemented to provide a portlet for embedding in a theme. This example
module returns the portlet ID of the Language portlet specified in SiteNavigationLanguage-
PortletKeys. It also returns the PLID, which is the ID that uniquely identifies a page used by
your theme. By retrieving these, your theme will know which portlet to use, and which page
to use it on.

The only thing left to do is generate themodule’s JAR file and copy it to your Portal’s osgi/modules
directory. Once the module is installed and activated in your Portal’s service registry, your embed-
ded portlet is available for use wherever your theme is used.

You successfully requested a portlet based on the entity and action types required, and created
and deployed a module that retrieves the portlet and embeds it in your theme.

Embedding a Portlet by Portlet Name

If you’d like to embed a specific portlet in the theme, you can hard code it by providing its instance
ID and name:

<@liferay_portlet["runtime"]

instanceId="INSTANCE_ID"

portletName="PORTLET_NAME"

/>

Note: If your portlet is instanceable, an instance ID must be provided; otherwise, you can re-
move this line. To set yourportlet to non-instanceable, set theproperty com.liferay.portlet.instanceable
in the component annotation of your portlet to false.

The portlet name must be the same as javax.portlet.name’s value.
Here’s an example of an embedded portlet declaration that uses the portlet name to embed a

web content portlet:

<@liferay_portlet["runtime"]

portletName="com_liferay_journal_content_web_portlet_JournalContentPortlet"

/>

You can also set default preferences for an application. This process is covered next.

895

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/roles/roles-selector-web/src/main/java/com/liferay/roles/selector/web/internal/portlet/RolesSelectorEditPortletProvider.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/roles/roles-selector-web/src/main/java/com/liferay/roles/selector/web/internal/portlet/RolesSelectorEditPortletProvider.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/site-navigation/site-navigation-language-web/src/main/java/com/liferay/site/navigation/language/web/internal/portlet/SiteNavigationLanguageViewPortletProvider.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/site-navigation/site-navigation-language-api/src/main/java/com/liferay/site/navigation/language/constants/SiteNavigationLanguagePortletKeys.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/site-navigation/site-navigation-language-api/src/main/java/com/liferay/site/navigation/language/constants/SiteNavigationLanguagePortletKeys.java

Setting Default Preferences for an Embedded Portlet

Follow these steps to set default portlet preferences for an embedded portlet:

1. Retrieve portlet preferences using the freeMarkerPortletPreferences object. The example
below retrieves the barebone portlet decorator:

<#assign preferences = freeMarkerPortletPreferences.getPreferences(

"portletSetupPortletDecoratorId", "barebone"

) />

2. Set the defaultPreferences attribute of the embeddedportlet to the freeMarkerPortletPreferences
object you just configured:

<@liferay_portlet["runtime"]

defaultPreferences="${preferences}"

portletName="com_liferay_login_web_portlet_LoginPortlet"

/>

Now you know how to set default preferences for embedded portlets! Next you can see the
additional attributes you can use for your embedded portlets.

Additional Attributes for Portlets

Below are some additional attributes you can define for embedded portlets:
defaultPreferences: A string of Portlet Preferences for the application. This includes look and

feel configurations.
instanceId: The instance ID for the app, if the application is instanceable.
persistSettings: Whether to have an application use its default settings, which will persist

across layouts. The default value is true.
settingsScope: Specifies which settings to use for the application. The default value is

portletInstance, but it can be set to group or company.
Now you know how to embed a portlet in your theme by class name and by portlet name and

how to configure your embedded portlet!

Related Topics

Embedding Portlets in Themes
Portlets
Service Builder

896

CHAPTER 84

CLAY CSS AND THEMES

Lexicon is a design language that provides a common framework for building consistent UIs. Clay,
the web implementation of Lexicon, is an extension of Bootstrap’s open source CSS Framework.
Bootstrap is by far the most popular CSS framework on the web. Built with Sass, Clay CSS fills the
front-end gaps between Bootstrap and the specific needs of Liferay DXP.

These tutorials look briefly at Clay CSS and show you how to use it in your themes.

84.1 Importing Clay CSS into a Theme

Clay CSS fills the gaps between Bootstrap and the specific needs of Liferay DXP. Bootstrap features
have been extended to cover more use cases. Here are some of the new components added by Clay
CSS:

• Aspect Ratio
• Cards
• DropdownWide and Dropdown Full
• Figures
• Nameplates
• Sidebar / Sidenav
• Stickers
• SVG Icons
• Timelines
• Toggles

Several reusable CSS patterns have also been added to help accomplish time consuming tasks
such as these:

• truncating text
• content filling the remaining container width
• truncating text inside table cells
• table cells filling remaining container width and table cells only being as wide as their content
• open and close icons inside collapsible panels

897

https://lexicondesign.io/
https://clayui.com/

• nested vertical navigations
• slide out panels
• notification icons/messages
• vertical alignment of content

Next you can learn more about Clay’s structure.

Clay CSS Structure

Clay CSS is bundled with two sub-themes: Clay Base and Atlas. Clay Base is Liferay DXP’s Bootstrap
API extension. It adds all the features and components you need and inherits Bootstrap’s styles.
As a result, Clay Base is fully compatible with third party themes that leverage Bootstrap’s Sass
variable API.

Atlas is Liferay DXP’s custom Bootstrap theme that is used in the Classic Theme. Its purpose is
to overwrite and manipulate Bootstrap and Clay Base to create its classic look and feel. Atlas is
equivalent to installing a Bootstrap third party theme.

Note: It is not recommended to integrate third party themes with Atlas, as it adds variables and
styles that are outside the scope of Bootstrap’s API.

You can learn how to customize the Atlas theme next.

Customizing Atlas in Liferay DXP

If you want to include all the Classic Theme’s files, you can skip these steps and move on to the
next section.

Follow these steps to customize the Atlas theme:

1. In your theme’s /src/css directory (for legacy ant themes, place in /_diff/css) add a file
named clay.scss with the code below and save:

@import "clay/atlas";

2. Add a file named _imports.scss with the code below and save:

@import "bourbon";

@import "mixins";

@import "clay/atlas-variables";

3. Add a file named font_awesome.scss and add the font-awesome path and import:

// Icon paths

$FontAwesomePath: "font-awesome/font";

@import "font-awesome/scss/font-awesome";

4. Add a file named _clay_variables.scss. All your Atlas, Bootstrap, and Clay Base variable
modifications must be placed in this file.

5. Add a file named _custom.scss with the code below and save:

898

https://claycss.com/
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-theme/frontend-theme-styled/src/main/resources/META-INF/resources/_styled/css/clay
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-theme/frontend-theme-styled/src/main/resources/META-INF/resources/_styled/css/clay/atlas

/* Use these inject tags to dynamically create imports for

themelet styles. You can place them where ever you like in this file. ⁎/

/* inject:imports ⁎/

/* endinject ⁎/

/* This file allows you to override default styles in one central

location for easier upgrade and maintenance. ⁎/

Place your custom CSS in this file. Next you can learn how to extend Atlas with the Classic
theme.

Extending Atlas with the Classic Theme

To extend the Atlas theme with the Classic theme, copy all the files located in these directories into
your theme:

frontend-theme-classic/src/css

frontend-theme-classic/src/images

frontend-theme-classic/src/js

frontend-theme-classic/src/templates

You can also automatically copy these files into your theme using the gulp kickstart command
and following the prompts.

Next you can learn how to customize the Clay Base.

Customizing Clay Base

You can customize Clay Base with just a few imports.
In your custom theme’s /src/css folder (legacy ant themes: /_diff/css) add a file named

font_awesome.scss with the code below and save:

// Icon paths

$FontAwesomePath: "font-awesome/font";

@import "font-awesome/scss/font-awesome";

Then in that same folder, add a file named _clay_variables.scss. All your Atlas, Bootstrap, and
Clay Base variable modifications must be placed in this file.

As mentioned earlier, any custom CSS should be placed in _custom.scss.
Now you know how to use Clay CSS in your theme!

Related Topics

Applying Clay Styles to Your App
Integrating Third Party Themes with Clay

84.2 Integrating Third Party Themes with Clay

Clay Base provides all the features and components your theme needs and inherits Bootstrap’s
styles. As a result, Clay Base is fully compatible with third party themes that leverage Bootstrap’s
Sass variable API.

899

https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-theme/frontend-theme-styled/src/main/resources/META-INF/resources/_styled/css/clay

The Styled Theme uses Clay Base to provide its styles and components. Therefore, as a best
practice, you should use the Styled base theme to integrate third party themes.

Note: You can purchase third party themes from the Liferay Marketplace. Third party themes
must be built with Sass to be compatible. Make sure Sass files are included before making any
theme purchase.

Follow these steps to integrate a third party theme with Clay Base:

1. Create a new theme with the Styled Theme as its base. This is the default base theme for
newly created themes, so no further action is required. This provides the Clay Base files you
need.

2. In the theme’s /src/css folder (legacy ant themes: /_diff/css) add a file named
font_awesome.scss with the code below and save:

// Icon paths

$FontAwesomePath: "font-awesome/font";

@import "font-awesome/scss/font-awesome";

3. In that same folder, add a file named _clay_variables.scss. All your Atlas, Bootstrap, and Clay
Base variable modifications must be placed in this file.

4. Create a folder inside /src/css (for legacy ant themes, /_diff/css) that contains your third
party theme (e.g. /src/css/awesome-theme or /_diff/css/awesome-theme)

5. Copy the CSS contents of the theme to the folder you just created.

6. In _clay_variables.scss, import the file containing the theme variables. For example, @import
"awesome-theme/variables.scss";

Note: You may omit the leading underscore when importing Sass files.

7. In _custom.scss, import the file containing the CSS. For example, @import "awesome-

theme/main.scss";

8. Deploy your theme with gulp deploy (for legacy ant themes, use ant deploy)

Now you know how to integrate third party themes with Clay Base!

Related Topics

Applying Clay Styles to Your App
Importing Clay CSS into a Theme

900

https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-theme/frontend-theme-styled
https://web.liferay.com/marketplace

CHAPTER 85

LIFERAY JAVASCRIPT APIS

The Liferay JavaScript object exposes methods, objects, and properties that you can use to access
Liferay DXP-specific information. This section contains a comprehensive list of some of the most
useful utilities you can find inside the Liferay object.

85.1 Accessing ThemeDisplay Information

The Liferay global JavaScript Object exposes useful methods, objects, and properties, each con-
taining a wealth of information, one of which is ThemeDisplay. If you have experience with Java
development in Liferay DXP, youmay be familiar with ThemeDisplay. The JavaScript object exposes
the same information as the ThemeDisplay Java Class. It gives you access to valuable information
that you can use in your applications, such as the Portal instance, the current user, the user’s lan-
guage, whether the user is signed in or being impersonated, the file path to the theme’s resources,
and much more.

The Liferay global object is automatically available in Liferay DXP at runtime. To access the
ThemeDisplay object, use the following dot notation in your app:

`Liferay.ThemeDisplay.method-name`

This tutorial describes some of the most commonly used ThemeDisplaymethods for retrieving
IDs, file paths, and login information. An exhaustive list of all of the available methods is displayed
in the table at the end of this tutorial.

Retrieving IDs

The methods below retrieve various Portal elements related to the current user:
getCompanyId: Returns the company ID.
getLanguageId: Returns the user’s language ID.
getScopeGroupId: Returns the group ID of the current site.
getUserId: Returns the user’s ID.
getUserName: Returns the user’s name.
Next you can learn how to access file paths for various deployed entities.

901

Retrieving File Paths

The methods below retrieve file paths for various theme resources:
getPathImage: Returns the relative path of the portlet’s image directory.
getPathJavaScript: Returns the relative path of the directory containing the portlet’s JavaScript

source files.
getPathMain: Returns the path of the portal instance’s main directory.
getPathThemeImages: Returns the path of the current theme’s image directory.
getPathThemeRoot: Returns the relative path of the current theme’s root directory.
Next you can learn how to retrieve information for the current user.

Retrieving Login Information

The methods below return a boolean value indicating whether the current user is signed in or
being impersonated:

isImpersonated: Returns true if the current user is being impersonated. Authorized adminis-
trative users can impersonate act as another user to test that user’s account.

isSignedIn: Returns true if the user is logged in to the portal.
The example configuration below alerts users with a standard message if they are a guest or a

personal greeting if they are signed in. This is a basic example, and perhaps a bit invasive, but it
illustrates how you can create unique experiences for each user with the ThemeDisplay APIs:

if(Liferay.ThemeDisplay.isSignedIn()){

alert('Hello ' + Liferay.ThemeDisplay.getUserName() + '. Welcome Back.')

}

else {

alert('Hello Guest.')

}

Liferay ThemeDisplay Methods

A complete list of the available Liferay.ThemeDisplaymethods is shown in the table below:

Method Type Description

getLayoutId number
getLayoutRelativeURL string Returns the relative URL for

the page
getLayoutURL string
getParentLayoutId number
isControlPanel boolean
isPrivateLayout boolean
isVirtualLayout boolean
getBCP47LanguageId number
getCDNBaseURL string Returns the content delivery

network (CDN) base URL, or
the current portal URL if the
CDN base URL is null

902

Method Type Description

getCDNDynamicRe-
sourcesHost

string Returns the content delivery
network (CDN) dynamic
resources host, or the current
portal URL if the CDN dynamic
resources host is null

getCDNHost string
getCompanyGroupId number
getCompanyId number Returns the portal instance ID
getDefaultLanguageId number
getDoAsUserIdEncoded string
getLanguageId number Returns the user’s language ID
getParentGroupId number
getPathContext string
getPathImage string Returns the relative path of the

portlet’s image directory
getPathJavaScript string Returns the relative path of the

directory containing the
portlet’s JavaScript source files

getPathMain string Returns the path of the portal
instance’s main directory

getPathThemeImages string Returns the path of the current
theme’s image directory

getPathThemeRoot string Returns the relative path of the
current theme’s root directory

getPlid string Returns the primary key of the
page

getPortalURL string Returns the portal instance’s
base URL

getScopeGroupId number Returns the ID of the scoped or
sub-scoped active group
(e.g. site)

getScopeGroupIdOrLive-
GroupId

number

getSessionId number Returns the session ID, or a
blank string if the session ID is
not available to the application

getSiteGroupId number
getURLControlPanel string
getURLHome string
getUserId number Returns the ID of the user for

which the current request is
being handled

getUserName string Returns the user’s name
isAddSessionIdToURL boolean
isFreeformLayout boolean

903

Method Type Description

isImpersonated boolean Returns true if the current
user is being impersonated.
Authorized administrative
users can impersonate act as
another user to test that user’s
account

isSignedIn boolean Returns true if the user is
logged in to the portal

isStateExclusive boolean
isStateMaximized boolean
isStatePopUp boolean

Related Topics

Liferay DXP JavaScript Utilities

85.2 Working with URLs in JavaScript

The Liferay global JavaScript Object exposes methods, objects, and properties that access
the portal context. Four of these are helpful when working with URLS: authToken, currentURL,
currentURLEncoded, and PortletURL. If you have experience with Java development in Liferay DXP,
you may have worked with some of these before. The Liferay global object is automatically
available at runtime, so no additional dependencies are required.

This tutorial covers how to use the Liferay global JavaScript object to manipulate URLs. A
complete list of the available methods and properties appears in the tables at the end of this
tutorial.

Liferay PortletURL

The Liferay.PortletURL object providesmethods for creating portlet API URLs (actionURL, renderURL,
and resourceURL), through JavaScript. Below is an example configuration:

var portletURL = Liferay.PortletURL.createURL(themeDisplay.getURLControlPanel());

portletURL.setDoAsGroupId('true');

portletURL.setLifecycle(Liferay.PortletURL.ACTION_PHASE);

portletURL.setParameter('cmd', 'add_temp');

portletURL.setParameter('javax.portlet.action', '/document_library/upload_file_entry');

portletURL.setParameter('p_auth', Liferay.authToken);

portletURL.setPortletId(Liferay.PortletKeys.DOCUMENT_LIBRARY);

See the Portlet URL Methods and Properties section for more information about the methods
and properties used in the example above.

904

Liferay AuthToken

The Liferay.authToken property holds the current authentication token value as a String. The
authToken is used to validate permissions when you make calls to services. To use the authToken in a
URL, pass Liferay.authToken as the URL’s p_auth parameter, as shown in the example below:

portletURL.setParameter('p_auth', Liferay.authToken);

Liferay CurrentURL

The Liferay.currentURL property holds the path of the current URL from the server root.
For example, if checked from my.domain.com/es/web/guest/home, the value is /es/web/guest/home,

as shown below:

// Inside my.domain.com/es/web/guest/home

console.log(Liferay.currentURL); // "/es/web/guest/home"

Liferay CurrentURLEncoded

The Liferay.currentURLEncoded property holds the path of the current URL, encoded in ASCII for
safe transmission over the Internet, from the server root.

For example, if checked from my.domain.com/es/web/guest/home, the value is %2Fes%2Fweb%2Fguest%2Fhome,
as shown below:

// Inside my.domain.com/es/web/guest/home

console.log(Liferay.currentURLEncoded); // "%2Fes%2Fweb%2Fguest%2Fhome"

Portlet URL Methods and Properties

Liferay.PortletURLMethods:

Method Parameters Returns

createURL basePortletURL, params new PortletURL(null, params,

basePortletURL);

createActionURL new
PortletURL(PortletURL.ACTION_PHASE);

createRenderURL new
PortletURL(PortletURL.RENDER_PHASE);

createResourceURL new
PortletURL(PortletURL.RESOURCE_PHASE);

Liferay.PortletURL Properties:

Property Value

ACTION_PHASE “1”
RENDER_PHASE “0”
RESOURCE_PHASE “2”

905

Once the portlet URL is created, you have access to several methods that you can use to manip-
ulate the URL further:

Method Description Parameters Returns

setDoAsGroupId Sets the ID of the site,
organization, or user
group for the URL

doAsGroupId The updated Portlet
URL Object

setDoAsUserId Sets the ID of the user
to impersonate

doAsUserId The updated Portlet
URL Object

setEscapeXML Sets whether the URL
should be XML
escaped

true or false The updated Portlet
URL Object

setLifecycle Sets the portlet
lifecycle of this URL’s
target portlet

lifecycle The updated Portlet
URL Object

setName sets the portlet URL’s
javax.portlet.action

name

name The updated Portlet
URL Object

setParameter Creates an individual
parameter or replaces
an existing reserved
parameter

key,value The updated Portlet
URL Object

setParameters Creates multiple
parameters and/or
replaces existing
reserved parameters

{key:value,…} The updated Portlet
URL Object

setPlid Sets the portlet layout
ID

plid The updated Portlet
URL Object

setPortletId Sets the ID of the
target portlet

portletId The updated Portlet
URL Object

setPortletMode Sets the portlet mode,
if the URL triggers a
request

portletMode The updated Portlet
URL Object

setResourceId Sets the ID of the
URL’s target resource

ResourceId The updated Portlet
URL Object

setSecure Sets whether to make
the URL secure
(HTTPS).

true or false The updated Portlet
URL Object

setWindowState Sets the portlet’s
window state, if the
URL triggers a request

windowState The updated Portlet
URL Object

toString Returns the URL as a
String

The portlet URL as a
String

_isReservedParam Returns whether the
parameter is reserved

paramName true if the parameter
is reserved

906

Now you know how to manipulate URLs using methods within the Liferay global JavaScript
object.

Related Topics

Liferay DXP JavaScript Utilities
Liferay Theme Display

85.3 Liferay DXP JavaScript Utilities

This tutorial explains some of the utility methods and objects inside the Liferay global JavaScript
object.

Liferay Browser

The Liferay.Browser object contains methods that expose the current user agent characteristics
without the need of accessing and parsing the global window.navigator object.

The available methods for the Liferay.Browser object are listed in the table below:

Method Return Type Description

acceptsGzip boolean Returns whether the browser
accepts gzip file compression

getMajorVersion number Returns the major version of
the browser

getRevision number Returns the revision version of
the browser

getVersion number Returns the major.minor
version of the browser

isAir boolean Returns whether the browser
is Adobe AIR

isChrome boolean Returns whether the browser
is Chrome

isFirefox boolean Returns whether the browser
is Firefox

isGecko boolean Returns whether the browser
is Gecko

isIe boolean Returns whether the browser
is Internet Explorer

isIphone boolean Returns whether the browser
is on an Iphone

isLinux boolean Returns whether the browser
is being viewed on Linux

isMac boolean Returns whether the browser
is being viewed on Mac

907

Method Return Type Description

isMobile boolean Returns whether the browser
is being viewed on a mobile
device

isMozilla boolean Returns whether the browser
is Mozilla

isOpera boolean Returns whether the browser
is Opera

isRtf boolean Returns whether the browser
supports RTF

isSafari boolean Returns whether the browser
is Safari

isSun boolean Returns whether the browser
is being viewed on Sun OS

isWebKit boolean Returns whether the browser
isWebKit

isWindows boolean Returns whether the browser
is being viewed onWindows

Related Topics

Accessing ThemeDisplay Information

85.4 Invoking Liferay Services

Liferay DXP providesmanyweb services out-of-the-box. To see a comprehensive list of the available
web services, navigate to http://localhost:8080/api/jsonws (assuming your localhost is running on
port 8080). If you’ve deployed your own Service Builder-generated JSON web services, follow these
guidelines for invoking them. These services are useful for creating single page applications and
can even be used to create custom front-ends in Liferay DXP.

This tutorial explains how to invoke these web services using JavaScript.

Invoking Web Services via JavaScript

7.0 contains a global JavaScript object called Liferay that has many useful utilities. One method is
Liferay.Service, which invokes JSON web services.

The Liferay.Servicemethod takes four possible arguments:
service {string|object}: Specify the service name or an object with the keys as the service to

call, and the value as the service configuration object. (Required)
data {object|node|string}: Specify the data to send to the service. If the object passed is the ID

of a form or a form element, the form fields will be serialized and used as the data.
successCallback {function}: A function to execute when the server returns a response. It

receives a JSON object as its first parameter.

908

exceptionCallback {function}: A function to execute when the response from the server con-
tains a service exception. It receives an exception message as its first parameter.

One of the benefits of using the Liferay.Servicemethod versus using a standard AJAX request
is that it handles the authentication for you.

Below is an example configuration of the Liferay.Servicemethod:

Liferay.Service(

'/user/get-user-by-email-address',

{

companyId: Liferay.ThemeDisplay.getCompanyId(),

emailAddress: 'test@example.com'

},

function(obj) {

console.log(obj);

}

);

The example above retrieves information about a user by passing its companyId and emailAddress.
The response data resembles the following JSON object:

{

"agreedToTermsOfUse": true,

"comments": "",

"companyId": "20116",

"contactId": "20157",

"createDate": 1471990639779,

"defaultUser": false,

"emailAddress": "test@example.com",

"emailAddressVerified": true,

"facebookId": "0",

"failedLoginAttempts": 0,

"firstName": "Test",

"googleUserId": "",

"graceLoginCount": 0,

"greeting": "Welcome Test Test!",

"jobTitle": "",

"languageId": "en_US",

"lastFailedLoginDate": null,

"lastLoginDate": 1471996720765,

"lastLoginIP": "127.0.0.1",

"lastName": "Test",

"ldapServerId": "-1",

"lockout": false,

"lockoutDate": null,

"loginDate": 1472077523149,

"loginIP": "127.0.0.1",

"middleName": "",

"modifiedDate": 1472077523149,

"mvccVersion": "7",

"openId": "",

"portraitId": "0",

"reminderQueryAnswer": "test",

"reminderQueryQuestion": "what-is-your-father's-middle-name",

"screenName": "test",

"status": 0,

"timeZoneId": "UTC",

"userId": "20156",

"uuid": "c641a7c9-5acb-aa68-b3ea-5575e1845d2f"

}

Now that you know how to send an individual request, you’re ready to run batch requests.

909

Batching Requests

Another way to invoke the Liferay.Service method is by passing an object with the keys of the
service to call and the value of the service configuration object.

Below is an example configuration for a batch request:

Liferay.Service(

{

'/user/get-user-by-email-address': {

companyId: Liferay.ThemeDisplay.getCompanyId(),

emailAddress: 'test@example.com'

}

},

function(obj) {

console.log(obj);

}

);

You can invokemultiple services with the same request by passing in an array of service objects.
Here’s an example:

Liferay.Service(

[

{

'/user/get-user-by-email-address': {

companyId: Liferay.ThemeDisplay.getCompanyId(),

emailAddress: 'test@example.com'

}

},

{

'/role/get-user-roles': {

userId: Liferay.ThemeDisplay.getUserId()

}

}

],

function(obj) {

// obj is now an array of response objects

// obj[0] == /user/get-user-by-email-address data

// obj[1] == /role/get-user-roles data

console.log(obj);

}

);

Next you can learn how to nest your requests.

Nesting Requests

Nested service calls bind information from related objects together in a JSON object. You can call
other services in the same HTTP request and conveniently nest returned objects.

You can use variables to reference objects returned from service calls. Variable names must
start with a dollar sign ($).

The example in this section retrieves user data with /user/get-user-by-id and uses the contactId
returned from that service to then invoke /contact/get-contact in the same request.

Note: You must flag parameters that take values from existing variables. To flag a parameter,
insert the @ prefix before the parameter name.

Below is an example configuration that demonstrates these concepts:

910

Liferay.Service(

{

"$user = /user/get-user-by-id": {

"userId": Liferay.ThemeDisplay.getUserId(),

"$contact = /contact/get-contact": {

"@contactId": "$user.contactId"

}

}

},

function(obj) {

console.log(obj);

}

);

Here is what the response data would look like for the request above:

{

"agreedToTermsOfUse": true,

"comments": "",

"companyId": "20116",

"contactId": "20157",

"createDate": 1471990639779,

"defaultUser": false,

"emailAddress": "test@example.com",

"emailAddressVerified": true,

"facebookId": "0",

"failedLoginAttempts": 0,

"firstName": "Test",

"googleUserId": "",

"graceLoginCount": 0,

"greeting": "Welcome Test Test!",

"jobTitle": "",

"languageId": "en_US",

"lastFailedLoginDate": null,

"lastLoginDate": 1472231639378,

"lastLoginIP": "127.0.0.1",

[...]

"screenName": "test",

"status": 0,

"timeZoneId": "UTC",

"userId": "20156",

"uuid": "c641a7c9-5acb-aa68-b3ea-5575e1845d2f",

"contact": {

"accountId": "20118",

"birthday": 0,

[...]

"createDate": 1471990639779,

"emailAddress": "test@example.com",

"employeeNumber": "",

"employeeStatusId": "",

"facebookSn": "",

"firstName": "Test",

"lastName": "Test",

"male": true,

"middleName": "",

"modifiedDate": 1471990639779,

[...]

"userName": ""

}

}

Now that you know how to process requests, you can learn how to filter the results.

911

Filtering Results

If you don’t want all the properties returned by a service, you can define a whitelist of properties.
This returns only the specific properties you request in the object.

Below is an example of whitelisting properties:

Liferay.Service(

{

'$user[emailAddress,firstName] = /user/get-user-by-id': {

userId: Liferay.ThemeDisplay.getUserId()

}

},

function(obj) {

console.log(obj);

}

);

To specify whitelist properties, place the properties in square brackets (e.g., [whiteList]) im-
mediately following the name of your variable. The example above requests only the emailAddress

and firstName of the user.
Below is the filtered response:

{

"firstName": "Test",

"emailAddress": "test@example.com"

}

Next you can learn how to populate the inner parameters of the request.

Inner Parameters

When you pass in an object parameter, you’ll often need to populate its inner parameters (i.e.,
fields).

Consider a default parameter serviceContext of type ServiceContext. To make an appropriate
call to JSONweb services youmight need to set serviceContext fields such as scopeGroupId, as shown
below:

Liferay.Service(

'/example/some-web-service',

{

serviceContext: {

scopeGroupId: 123

}

},

function(obj) {

console.log(obj);

}

);

Now you know how to invoke Liferay services!

Related Topics

Liferay DXP JavaScript Utilities
Accessing ThemeDisplay Information

912

CHAPTER 86

JAVASCRIPT MODULE LOADERS

A JavaScript module encapsulates code into a useful unit that exports its capability/value. This
makes it easier to see the broader scope, easier to find what you’re looking for, and keeps related
code close together. A normal web page usually loads JavaScript files via HTML script tags. That’s
fine for small websites, but when developing large scale web applications, a more robust orga-
nization and loader is needed. A module loader lets an application load dependencies easily by
specifying a string that identifies the JavaScript module’s name.

These tutorials show you how to load JavaScript modules in Portal.

86.1 Loading AMDModules in Liferay

Modularized JavaScript code is a specification for the JavaScript language called Asynchronous
Module Definition, or AMD. The Liferay AMDModule Loader is the native loader that you can use
to load your AMDmodules. This tutorial covers how to use the Liferay AMDModule Loader.

Note: While you can manually configure the AMD Loader, we recommend that you use the
liferay-npm-bundler instead.

Configuring Your AMDModule for the Loader

Follow these steps to prepare your module:

1. Wrap your AMD module code with the Liferay.Loader.define() method, such as the one
shown below:

Liferay.Loader.define('my-dialog', ['my-node', 'my-plugin-base'],

function(myNode, myPluginBase) {

return {

log: function(text) {

console.log('module my-dialog: ' + text);

}

};

});

913

https://github.com/liferay/liferay-amd-loader#amd-module-loader

2. You can modify the configuration to load the module when another module is triggered or
when a condition is met. The configuration below specifies that this module should be loaded
if the developer requests the my-testmodule:

Liferay.Loader.define('my-dialog', ['my-node', 'my-plugin-base'],

function(myNode, myPluginBase) {

return {

log: function(text) {

console.log('module my-dialog: ' + text);

}

};

}, {

condition: {

trigger: 'my-test',

test: function() {

var el = document.createElement('input');

return ('placeholder' in el);

}

},

path: 'my-dialog.js'

});

The Liferay AMD Loader uses the definition, along with the listed dependencies, as well as
any other configurations specified, to create a config.json file. This configuration object tells
the loader which modules are available, where they are located, and what dependencies they
require. Below is an example of a generated config.json file:

{

"frontend-js-web@1.0.0/html/js/parser": {

"dependencies": []

},

"frontend-js-web@1.0.0/html/js/list-display": {

"dependencies": ["exports"]

},

"frontend-js-web@1.0.0/html/js/autocomplete": {

"dependencies": ["exports", "./parser", "./list-display"]

}

}

3. Load your module in your scripts. Pass the module name to the Liferay.Loader.require

method. The example below loads a module called my-dialog:

Liferay.Loader.require('my-dialog', function(myDialog) {

// your code here

}, function(error) {

console.error(error);

});

Note: By default, the AMD Loader times out in seven seconds. Since Liferay DXP Fix Pack 3
and Liferay Portal 7.1 CE GA 2, you can configure this value through System Settings. Open the
Control Panel and navigate to Configuration → System Settings → PLATFORM → Infrastructure, and
select JavaScript Loader. Set the Module Definition Timeout configuration to the time you want and
click Save.

914

Related Topics

Loading Modules with AUI Script
Using npm in Your Portlets

86.2 Using External JavaScript Libraries

You can use external JavaScript libraries in your portlets (i.e., anything but Metal.js, jQuery, or
Lodash, which are included by default). There are a few methods you can use to make external
libraries available. The method you should choose depends on the external libraries you plan to
use and how you plan to use them.

This tutorial covers how to adapt external libraries for the JavaScript Loaders.

Configuring Libraries to Support UMD

If you’re the owner of the library, you should make sure that it supports UMD (Universal Module
Definition). You can configure your code to support UMD with the template shown below:

// Assuming your "module" will be exported as "mylibrary"

(function (root, factory) {

if (typeof Liferay.Loader.define === 'function' && Liferay.Loader.define.amd) {

// AMD. Register as a "named" module.

Liferay.Loader.define('mylibrary', [], factory);

} else if (typeof module === 'object' && module.exports) {

// Node. Does not work with strict CommonJS, but

// only CommonJS-like environments that support module.exports,

// like Node.

module.exports = factory();

} else {

// Browser globals (root is window)

root.mylibrary = factory();

}

}(this, function () {

// Your library code goes here

return {};

}));

Next you can learn how to use libraries that you host.

Using Libraries That You Host

If you’re hosting the library (and not loading it from a CDN), youmust hide the Liferay AMD Loader
to use your Library. Follow these steps:

1. Open the Control Panel, navigate to Configuration → System Settings.

2. Click JavaScript Loader under Platform → Infrastructure.

3. Uncheck the expose global option.

Note: Once this option is unchecked, you can no longer use the Liferay.Loader.define or
Liferay.Loader.require functions in your app. Also, if you’re using third party libraries that are

915

https://github.com/umdjs/umd

AMD compatible, they could stop working after unchecking this option because they usually use
global functions like require() or define().

Now you know how to adapt external libraries for Liferay’s JavaScript Loaders.

Related Topics

Liferay AMDModule Loader
Using ES2015+ Modules in Your Portlet

86.3 Loading Modules with AUI Script

The aui:script tag is a JSP tag that loads JavaScript in script tags on the page, while ensuring that
certain resources are loaded before executing.

Note: AUI is deprecated and no longer in active development in 7.0, but all the tags will remain
fully functional in LiferayDXP 7.1. Eventually, these tagswill be replacedwith Clay tag counterparts.

Using aui:script

The aui:script tag supports the following options:

• require: Requires an AMDmodule to load with the Liferay AMDModule Loader.
• use: Uses an AlloyUI/YUI module that is loaded via the YUI loader.
• position: The position the script tag is put on the page. Possible options are inline or auto.
• sandbox: Whether to wrap the script tag in an anonymous function. If set to true, in addition
to the wrapping, $ and _ are defined for jQuery and underscore.

Next you can learn how to load ES2015 and Metal.js modules.

Loading ES2015 and Metal.js Modules

You can use aui:script to load your ES2015 and Metal.js modules like this:

<aui:script require="metal-clipboard/src/Clipboard">

new metalClipboardSrcClipboard.default();

</aui:script>

alternatively, you can specify a variable for your module by adding as variableName after the
module name, as shown in the example below:

<aui:script require="metal-clipboard/src/Clipboard as myModule">

new myModule.default();

</aui:script>

This resolves the dependencies of the registered Clipboard.js and loads them in order until all
of them are satisfied and the requested module can be safely executed.

In the browser, the aui:script translates to the full HTML shown below:

916

https://claycss.com/
https://github.com/liferay/liferay-amd-loader#amd-module-loader
https://metaljs.com/

<script type="text/javascript">

Liferay.Loader.require("metal-clipboard/src/Clipboard",

function(metalClipboardSrcClipboard) {

(function() {

new metalClipboardSrcClipboard.default();

})()

}, function(error) {

console.error(error)

});

</script>

Next you can learn how to load AlloyUI modules.

Loading AlloyUI Modules

You can use the use attribute to load AlloyUI/YUI modules:
<aui:script use="aui-base">

A.one('#someNodeId').on(

'click',

function(event) {

alert('Thank you for clicking.')

}

);

</aui:script>

This loads the aui-base AlloyUI component and makes it available to the code inside the
aui:script.

In the browser, the aui:script translates to the full HTML shown below:
<script type="text/javascript">

AUI().use("aui-base",

function(A){

A.one('#someNodeId').on(

'click',

function(event) {

alert('Thank you for clicking.')

}

);

}

);

</script>

Next you can learn how to load AlloyUI modules together with ES2015 and Metal.js modules.

Loading AlloyUI Modules and ES2015 and Metal.js Modules Together

You may want to load an AUI module along with an ES2015 module or Metal.js module in an
aui:script. The aui:script tag doesn’t support both the require and use attributes in the same
configuration. Not to worry though. You can use the aui:script’s require attribute to load the
ES2015 andMetal.js modules, while loading the AUImodule(s) with the AUI().use() function within
the script. Below is an example configuration:
<aui:script require="path-to/metal/module">

AUI().use(

'liferay-aui-module',

function(A) {

let var = pathToMetalModule.default;

}

);

</aui:script>

Now you know how to load modules with the aui:script tag!

917

Related Topics

Using External JavaScript Libraries
Loading AMDModules

918

CHAPTER 87

USING FRONT-END FRAMEWORKS IN YOUR
PORTLETS

You can use the most popular Front-End frameworks in your portlets with just a fewminor updates
to the standard portlet configuration. To help kick-start your portlet project, you can choose from
several Blade portlet project templates. The following templates are covered in this section:

• Angular
• React
• Vue

Alternatively, you can use Liferay DXP’s Liferay JS Generator to build JavaScript-based portlets.
The tutorials in this section show how to use front-end frameworks in your portlets.

Note: JavaScript Server-Side-Rendering is not supported out-of-the-box. To use JS frameworks
for site rendering, youmust set up your server-side (or search-crawler) rendering generation to
support them.

87.1 Using React in Your Portlets

You can use the npmReact portlet template to automatemuch of the required configuration for you
or create the module manually. For convenience, all manual steps are listed below. This tutorial
shows how to use React in your portlets, whether you’re migrating an existing React project or
building a fresh project. See the npm React portlet template reference docs for more information
on the portlet’s anatomy or the react npm portlet sample for a React portlet example that you can
test and deploy right now. Get started by creating your OSGi module and configuring its metadata.

Configuring Metadata

Follow these steps to create the module and configure its metadata for React:

1. Create an OSGi module. For example, use the npm React portlet template.

919

2. Specify the Web-ContextPath BND Header in your project’s bnd.bnd file. Below is the default
configuration for the npm React portlet template:

Web-ContextPath: /my-npm-react-portlet

3. Create a .babelrc file and add the following presets to it:

{

"presets": ["env", "react"]

}

4. Optionally add a .npmbundlerrc file to your project’s root folder. This file is not required. You
can, however, configure this file to customize the liferay-npm-bundler to suit your needs, such
as to ignore files.

5. Include the following dependency in your build.gradle file:

compileOnly group: "com.liferay",

name: "com.liferay.frontend.js.loader.modules.extender.api",

version: "2.0.2"

6. Create a package.json in your project if it doesn’t already exist with the configuration shown
below. Update the "main" JS path to point to your app’s main JS file. Note that the liferay-

npm-bundler is added last to the build script. List any additional build processes before this
that your project requires:

{

"dependencies": {

"react": "15.6.2",

"react-dom": "15.6.2"

},

"description": "React Portlet",

"devDependencies": {

"babel-cli": "^6.26.0",

"babel-preset-env": "^1.7.0",

"babel-preset-react": "6.24.1",

"liferay-npm-bundler": "^2.0.0"

},

"main": "js/index.js",

"name": "my-npm-react-portlet",

"scripts": {

"build": "babel --source-maps -d

build/resources/main/META-INF/resources

src/main/resources/META-INF/resources && liferay-npm-bundler"

},

"version": "1.0.0"

}

To use ES2015+ syntax in your portlet, you must transpile it for the browser. Babel, included in
your build script, takes care of this for you.

Next You can configure the portlet.

920

Configuring the Portlet

Follow these steps to configure your portlet:

1. Create a Component class that implements the Portlet.class service:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.name=" + MyNpmReactPortletKeys.MyNpmReact,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

public class MyNpmReactPortlet extends MVCPortlet {

...

}

2. If your React project includes CSS styling as well, add the following additional property to
specify the location of the main CSS file:

"com.liferay.portlet.header-portlet-css=/css/main.css"

Note that this path is relative to the resources path. If using Sass, drop the .scss exten-
sion in this property and use .css instead. For example, if your main CSS file is located
in src/main/resources/META-INF/resources/css/app.scss, then you would have the following
configuration:

"com.liferay.portlet.header-portlet-css=/css/app.css"

3. To improve code maintenance, use the NPMResolver APIs to alias your module’s package
name. The example below exposes the module’s name as bootstrapRequire:

@Override

public void doView(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

JSPackage jsPackage = _npmResolver.getJSPackage();

renderRequest.setAttribute(

MyNpmReactWebKeys.BOOTSTRAP_REQUIRE,

jsPackage.getResolvedId() + " as bootstrapRequire");

super.doView(renderRequest, renderResponse);

}

@Reference

private NPMResolver _npmResolver;

4. Inside your init.jsp, add the following Java scriptlet to access the bootstrapRequire variable
in your portlet’s view.jsp:

921

<%

String bootstrapRequire = (String)renderRequest.getAttribute(

MyNpmReactWebKeys.BOOTSTRAP_REQUIRE

);

%>

Next you can learn how to render your app’s component.

Rendering Your Component

Follow these steps to render your app component:

1. Inside your app’s main JS file (index.js for example), use the function below to render your
component:

import React from 'react';

import ReactDOM from 'react-dom';

import AppComponent from './components/App' //parent component

export default function(elementId) {

ReactDOM.render(<AppComponent />, document.getElementById(elementId));

}

2. Open your view.jsp and add an element container to house your component. Then add an
<aui:script> tag and pass your aliased module name as the require attribute’s value. Finally,
call your module’s default function that you exported in the previous step and pass the
container element in as the element ID. Adding the <portlet:namespace /> to the <div>’s id
ensures that it is unique to the portlet and doesn’t clash with any existing elements on the
page:

<%@ include file="/init.jsp" %>

<div id="<portlet:namespace />-root"></div>

<aui:script require="<%= bootstrapRequire %>">

bootstrapRequire.default('<portlet:namespace />-root');

</aui:script>

Now you know how to use React in your projects!

Related Topics

Using Angular in Your Portlets
Using Vue in Your Portlets
Using npm in Your Portlets

87.2 Using Vue in Your Portlets

You can create a Vue project manually or use the npm Vue portlet template to automate much
of the required configuration for you. For convenience, all manual steps are listed below. This
tutorial shows how to use Vue JS in your portlets, whether you’re migrating an existing Vue project
or building a fresh one. See the npmVue portlet template reference docs for more information on
the portlet’s anatomy or the npmVue portlet sample for a Vue portlet example that you can test
and deploy right now. Get started by creating your OSGi module and configuring its metadata.

922

Configuring Metadata

Follow these steps to create the module and configure its metadata for Vue:

1. Create an OSGi module. For example, use the npmVue portlet template.

2. Specify the Web-ContextPath BND Header in your project’s bnd.bnd file. Below is the default
configuration for the npmVue portlet template:

Web-ContextPath: /my-npm-vue-portlet

3. Create a .babelrc file and add the following presets to it:

{

"presets": ["env"]

}

4. Optionally add a .npmbundlerrc file to your project’s root folder. This file is not required. You
can, however, configure this file to customize the liferay-npm-bundler to suit your needs,
such as to ignore files.

5. Include the following dependency to your build.gradle file:

compileOnly group: "com.liferay",

name: "com.liferay.frontend.js.loader.modules.extender.api",

version: "2.0.2"

6. Create a package.json in your project if it doesn’t already exist and add the configuration
shown below to it. Update the "main" JS path to point to your app’s main JS file. Note that
the liferay-npm-bundler is added last to the build script. List any additional build processes
before this that your project requires:

{

"dependencies": {

"vue": "2.4.4"

},

"description": "Vue.js Portlet",

"devDependencies": {

"babel-cli": "^6.26.0",

"babel-preset-env": "^1.7.0",

"liferay-npm-bundler": "^2.0.0"

},

"main": "js/index.js",

"name": "my-npm-vuejs-portlet",

"scripts": {

"build": "babel --source-maps -d

build/resources/main/META-INF/resources

src/main/resources/META-INF/resources && liferay-npm-bundler"

},

"version": "1.0.0"

}

To use ES2015+ syntax in your portlet, you must transpile it for the browser. Babel, included in
your build script, takes care of this for you.

Next You can configure the portlet.

923

Configuring the Portlet

Follow these steps to configure your portlet:

1. Create a Component class that implements the Portlet.class service:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.name=" + MyNpmVuejsPortletKeys.MyNpmVuejs,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

public class MyNpmVuejsPortlet extends MVCPortlet {

...

}

2. If your Vue project includes CSS styling, add the following additional property to specify the
location of the main CSS file:

"com.liferay.portlet.header-portlet-css=/css/main.css"

Note that this path is relative to the resources path. If using Sass, drop the .scss exten-
sion in this property and use .css instead. For example, if your main CSS file is located
in src/main/resources/META-INF/resources/css/app.scss, then you would have the following
configuration:

"com.liferay.portlet.header-portlet-css=/css/app.css"

3. To improve code maintenance, use the NPMResolver APIs to alias your module’s package
name. The example below exposes the module’s name as bootstrapRequire:

@Override

public void doView(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

JSPackage jsPackage = _npmResolver.getJSPackage();

renderRequest.setAttribute(

MyNpmVuejsWebKeys.BOOTSTRAP_REQUIRE,

jsPackage.getResolvedId() + " as bootstrapRequire");

super.doView(renderRequest, renderResponse);

}

@Reference

private NPMResolver _npmResolver;

4. Inside your init.jsp, add the following Java scriptlet to access the bootstrapRequire variable
in your portlet’s view.jsp:

924

<%

String bootstrapRequire = (String)renderRequest.getAttribute(

MyNpmVuejsWebKeys.BOOTSTRAP_REQUIRE

);

%>

Next you can learn how to render your app’s component.

Rendering Your Component

Follow these steps to render your app component:

1. Inside your app’s main JS file (index.js for example), use the function below to render your
component:

import Vue from 'vue/dist/vue.common';

export default function(portletNamespace) {

// Application 1

new Vue({

el: `#${portletNamespace}-root`,

data: {

message: 'Hello from Vue.js!',

},

methods: {

reverseMessage: function() {

this.message = this.message

.split('')

.reverse()

.join('');

},

},

});

}

2. Open your view.jsp and add an element container to house your component. Then, add an
<aui:script> and pass your aliased module name as the require attribute’s value. Finally, call
your module’s default function that you exported in the previous step and pass the portlet
namespace. Adding the <portlet:namespace /> to the <div>’s id ensures that it is unique to the
portlet and doesn’t clash with any existing elements on the page:

<%@ include file="/init.jsp" %>

<div id="<portlet:namespace />-root"></div>

<aui:script require="<%= bootstrapRequire %>">

bootstrapRequire.default('<portlet:namespace />');

</aui:script>

Now you know how to use Vue in your projects!

Related Topics

Using Angular in Your Portlets
Using React in Your Portlets
Using npm in Your Portlets

925

87.3 Using Angular in Your Portlets

You can use the npm Angular portlet template to automate much of the required configuration
for you, or create the module manually. For convenience, all manual steps are listed below. This
tutorial shows how to use Angular in your portlets, whether you’re migrating an existing Angular
project or building a fresh one. See the npm Angular portlet template reference docs for more
information on the portlet’s anatomy. Get started by creating your OSGi module and configuring
its metadata.

Configuring Metadata

Follow these steps to create the module and configure its metadata for Angular:

1. Create an OSGi module. For example, use the npm Angular portlet template.

2. Specify the Web-ContextPath BND Header in your project’s bnd.bnd file. Below is the default
configuration for the npm Angular portlet template:

Web-ContextPath: /my-npm-angular-portlet

3. Create a .tsconfig.json file and add the following configuration to it:

{

"compilerOptions": {

"emitDecoratorMetadata": true,

"experimentalDecorators": true,

"lib": ["es2015", "dom"],

"moduleResolution": "node",

"outDir": "build/resources/main/META-INF/resources/lib",

"sourceMap": true,

"suppressImplicitAnyIndexErrors": true,

"target": "es5",

"typeRoots": ["./node_modules/@types/"],

"module": "commonjs",

"strict": true,

"noFallthroughCasesInSwitch": true,

"inlineSources": true,

"declaration": false,

"skipLibCheck": true,

"types": ["jasmine", "node"]

},

"include": ["src/main/resources/META-INF/resources/**/*.ts"]

}

4. Optionally add a .npmbundlerrc file to your project’s root folder. This file is not required. You
can, however, configure this file to customize the liferay-npm-bundler to suit your needs,
such as to ignore files.

5. Include the following dependency to your build.gradle file:

compileOnly group: "com.liferay",

name: "com.liferay.frontend.js.loader.modules.extender.api",

version: "2.0.2"

926

6. Create a package.json in your project if it doesn’t already exist and add the configuration
shown below to it. Update the "main" JS path to point to your app’s main JS file. Note that
the liferay-npm-bundler is added last to the build script. List any additional build processes
before this that your project requires, such as the tsc (Typescript) process shown below:

{

"dependencies": {

"@angular/animations": "^5.0.0",

"@angular/common": "^5.0.0",

"@angular/compiler": "^5.0.0",

"@angular/core": "^5.0.0",

"@angular/forms": "^5.0.0",

"@angular/http": "^5.0.0",

"@angular/platform-browser": "^5.0.0",

"@angular/platform-browser-dynamic": "^5.0.0",

"@angular/platform-server": "^5.0.0",

"@angular/router": "^5.0.0",

"@ngx-translate/core": "^9.1.1",

"core-js": "^2.5.1",

"rxjs": "^5.5.2",

"zone.js": "0.8.12"

},

"description": "Angular Portlet",

"devDependencies": {

"@angular/cli": "^1.6.7",

"@angular/compiler-cli": "^5.0.0",

"@compodoc/compodoc": "1.0.0-beta.10",

"@types/bootstrap": "^3.3.33",

"@types/bootstrap-datepicker": "0.0.6",

"@types/jasmine": "2.5.48",

"@types/jquery": "^2.0.46",

"@types/moment": "^2.13.0",

"@types/node": "~6.0.60",

"@types/toastr": "^2.1.34",

"chalk": "1.1.3",

"codelyzer": "3.1.2",

"del": "^3.0.0",

"gulp": "^3.9.1",

"gulp-flatten": "^0.3.1",

"gulp-sass": "^3.1.0",

"inline-ng2-resources": "^1.1.0",

"jasmine-core": "~2.6.2",

"jasmine-spec-reporter": "~3.2.0",

"karma": "1.7.0",

"karma-chrome-launcher": "~2.1.1",

"karma-cli": "~1.0.1",

"karma-coverage-istanbul-reporter": "^1.1.0",

"karma-jasmine": "~1.1.0",

"karma-jasmine-html-reporter": "^0.2.2",

"karma-junit-reporter": "1.2.0",

"karma-remap-istanbul": "^0.2.1",

"karma-spec-reporter": "0.0.31",

"liferay-npm-bundler": "^2.0.0",

"protractor": "~5.1.0",

"rollup": "0.41.6",

"rollup-plugin-commonjs": "^8.0.2",

"rollup-plugin-node-resolve": "3.0.0",

"shelljs": "0.7.7",

"sorcery": "0.10.0",

"ts-node": "~2.0.0",

"tslint": "5.4.0",

"typescript": "2.4.2",

"webpack": "2.6.1",

"yargs": "8.0.1"

},

"main": "js/angular-loader.js",

927

"name": "my-npm-angular-portlet",

"scripts": {

"build": "tsc && babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-

INF/resources && liferay-npm-bundler"

},

"version": "1.0.0"

}

Next You can configure the portlet.

Configuring the Portlet

Follow these steps to configure your portlet:

1. Create a Component class that implements the Portlet.class service:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.name=" + MyNpmAngularPortletKeys.MyNpmAngular,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

public class MyNpmAngularPortlet extends MVCPortlet {

...

}

2. If your Angular project includes CSS styling, add the following additional property to specify
the location of the main CSS file:

"com.liferay.portlet.header-portlet-css=/css/main.css"

Note that this path is relative to the resources path. If using Sass, drop the .scss exten-
sion in this property and use .css instead. For example, if your main CSS file is located
in src/main/resources/META-INF/resources/css/app.scss, then you would have the following
configuration:

"com.liferay.portlet.header-portlet-css=/css/app.css"

3. To improve code maintenance, use the NPMResolver APIs to alias your module’s package
name. The example below exposes the module’s name as bootstrapRequire:

@Override

public void doView(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

JSPackage jsPackage = _npmResolver.getJSPackage();

renderRequest.setAttribute(

MyNpmAngularWebKeys.BOOTSTRAP_REQUIRE,

928

jsPackage.getResolvedId() + " as bootstrapRequire");

super.doView(renderRequest, renderResponse);

}

@Reference

private NPMResolver _npmResolver;

4. Inside your init.jsp, add the following Java scriptlet to access the bootstrapRequire variable
in your portlet’s view.jsp:

<%

String bootstrapRequire = (String)renderRequest.getAttribute(

MyNpmAngularWebKeys.BOOTSTRAP_REQUIRE

);

%>

Next you can learn how to render your app’s component.

Rendering Your Component

Follow these steps to render your app component:

1. Inside your app’s main TS file (main.ts for example), use the function below to render your
component:

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppComponent } from './app/app.component';

import { AppModule } from './app/app.module';

import { DynamicLoader } from './app/dynamic.loader';

export default function(rootId: any) {

platformBrowserDynamic()

.bootstrapModule(AppModule)

.then((injector: any) => {

// Load the bootstrap component dynamically so that we can attach it

// to the portlet's DOM, which is different for each portlet

// instance and, thus, cannot be determined until the page is

// rendered (during runtime).

// The rootId argument is passed from view.jsp where we can obtain

// the portlet's namespace by using JSP tags.

const dynamicLoader = new DynamicLoader(injector);

dynamicLoader.loadComponent(AppComponent, rootId);

});

}

2. In a separate file, such as angular-loader.ts, you can add the following configuration:

// Import needed polyfills before application is launched

import 'reflect-metadata';

import 'zone.js';

// Declare Liferay AMD loader

929

declare var Liferay: any;

// Launch application

export default function(rootId: any) {

Liferay.Loader.require('my-npm-angular-portlet@1.0.0/js/main',

(main: any) => {

main.default(rootId);

});

}

3. Open your view.jsp and add an element container to house your component. Then, add an
<aui:script> and pass your aliased module name as the require attribute’s value. Finally, call
your module’s default function that you exported in the previous step, and pass the container
element in as the root ID. Adding the <portlet:namespace /> to the <div>’s id ensures that it is
unique to the portlet and doesn’t clash with any existing elements on the page:

<%@ include file="/init.jsp" %>

<div id="<portlet:namespace />-root"></div>

<aui:script require="<%= bootstrapRequire %>">

bootstrapRequire.default('#<portlet:namespace />-root');

</aui:script>

Now you know how to use Angular in your projects!

Related Topics

Using React in Your Portlets
Using Vue in Your Portlets
Using npm in Your Portlets

87.4 Creating and Bundling JavaScript Widgets with JavaScript Tooling

The Liferay JS Generator generates JavaScript widgets for Liferay DXP. It is just one of Liferay JS
Bundle Toolkit’s tools.

Important: To use the Liferay JS Generator, you must have the Liferay JS Portlet Extender
installed in your Liferay DXP instance. The JS Portlet Extender is a Labs application available from
Liferay Marketplace for Liferay Digital Enterprise 7.1 and Liferay Portal CE 7.1. Apps designated as
Labs are experimental and not supported by Liferay. They’re released to accelerate the availability
of useful and cutting-edge features. This status may change without notice. Please download and
use Labs apps at your own discretion.

Portlets are a Java standard, so you must have a knowledge and understanding of how Java
works to write one. This can be quite the hurdle for front-end developers whowant to use JavaScript
frameworks in theirwidgets. Thanks to the JS Portlet Extender and liferay-npm-bundler, developers
can easily create and develop JavaScript widgets in Liferay DXP using pure JavaScript tooling.

930

https://github.com/liferay/liferay-npm-build-tools/tree/master/packages
https://web.liferay.com/marketplace/-/mp/application/115543020
https://web.liferay.com/marketplace/-/mp/application/115542926

Figure 87.1: The JS Portlet Extender lets you use pure JavaScript tooling to write widgets.

Note: JavaScript Server-Side-Rendering is not supported out-of-the-box. To use JS frameworks
for site rendering, youmust set up your server-side (or search-crawler) rendering generation to
support them.

This section explains how to configure these options for generated JS widgets:

• Installing the Liferay JS Generator and generating a bundle
• Configuring system and instance settings
• Localization
• Setting portlet properties
• Using translation features

87.5 Installing the Bundle Generator and Generating a Bundle

This tutorial shows how to install the Liferay JS Generator and how to use it to create JavaScript
widgets.

Note: The Liferay Bundle Generator is deprecated as of v2.7.1 of the Liferay JS Toolkit. It has
been renamed the Liferay JS Generator. If you’re still running the Liferay Bundle Generator, we

931

https://www.npmjs.com/package/generator-liferay-js
https://github.com/liferay/liferay-js-toolkit

recommend that you install the Liferay JS Generator instead at your earliest convenience, as the
Liferay Bundle Generator will be removed in future versions.

Important: To use the Liferay JS Generator, you must have the Liferay JS Portlet Extender
installed in your Liferay DXP instance. The JS Portlet Extender is a Labs application available from
Liferay Marketplace for Liferay Digital Enterprise 7.1 and Liferay Portal CE 7.1. Apps designated as
Labs are experimental and not supported by Liferay. They’re released to accelerate the availability
of useful and cutting-edge features. This status may change without notice. Please download and
use Labs apps at your own discretion.

Follow these steps to create your JavaScript widget:

1. Install Node.js. Note that Node Package Manager (npm) is installed with this as well. You’ll
use npm to install the remaining dependencies and generator, and configure your npm
environment.

2. Install Yeoman for the generator:

npm install -g yeoman

3. Install the Liferay JS Generator:

npm install -g generator-liferay-js

4. Run the generator with the command below, select the JavaScript widget you want to create,
and answer the prompts that follow.

yo liferay-js

5. If you specified your app server information when your widget was generated, you can deploy
your widget by running the command below. You can verify this by checking the value of the
liferayDir entry in the widget’s .npmbuildrc.

npm run deploy

Great! Now you know how to install and run the Liferay JS Generator.

Related Topics

liferay-npm-bundler
Using npm in Your Portlets
Applying Clay Styles to Your App

932

https://web.liferay.com/marketplace/-/mp/application/115543020
https://web.liferay.com/marketplace/-/mp/application/115542926
http://nodejs.org/
http://yeoman.io/

Figure 87.2: The liferay-bundle generator prompts you for widget options.

87.6 Configuring System Settings and Instance Settings for Your JavaScript Widget

As of v1.1.0 of the JS Portlet Extender, you can define configuration options for your widget. These
options are passed to the widget’s JavaScript entry point as the configuration parameter. See the
main entry point’s reference for more information on the entry point. Follow these steps to set
system and/or portlet instance settings for your widget:

1. Add a /features folder in your project’s root folder if it doesn’t already exist.

Note: This location can be overridden with the

`create-jar.features.configuration` option in your project's `.npmbundlerrc`

file. See

[OSGi bundle configuration options](/docs/7-1/reference/-/knowledge_base/r/configuring-liferay-npm-bundler#osgi-bundle-

creation-options)

for all the available options for the bundle.

2. Create a configuration.json file in the /features folder and follow the pattern below. See the
Configuration JSON reference for an explanation of each of the available options:

{

"system": {

"category": "{category identifier}",

"name": "{name of configuration}",

"fields": {

"{field id 1}": {

"type": "{field type}",

"name": "{field name}",

933

"description": "{field description}",

"default": "{default value}",

"options": {

"{option id 1}": "{option name 1}",

"{option id 2}": "{option name 2}",

"{option id n}": "{option name n}"

}

},

"{field id 2}": {},

"{field id n}": {}

}

},

"portletInstance": {

"name": "{name of configuration}",

"fields": {

"{field id 1}": {

"type": "{field type}",

"name": "{field name}",

"description": "{field description}",

"default": "{default value}",

"options": {

"{option id 1}": "{option name 1}",

"{option id 2}": "{option name 2}",

"{option id n}": "{option name n}"

}

},

"{field id 2}": {},

"{field id n}": {}

}

}

}

3. Access a system setting’s value or a portlet instance setting’s value with the syntax
configuration.system or configuration.portletInstance respectively. For instance, to retrieve
the {field id 1} system setting’s value, you would use configuration.system.{field id 1}.
Note that all fields are passed as strings no matter what type they declare in their descriptor.

Awesome! Now you know how to configure system settings and portlet instance settings for
your widget.

Related Topics

• Localizing YourWidget
• Using Translation Features in Your JavaScriptWidget
• Configuring Portlet Properties for Your JavaScriptWidget

87.7 Localizing Your Widget

Follow the steps below to learn how to localize your widget:

1. If you didn’t choose to use localization when you generated the bundle, follow this
step to enable it in your bundle now, otherwise you can skip this step. Create a
/features/localization folder in your project and add a Language.properties file to it.

934

Add a create-jar.features.localization key to your .npmbuildrc file that points to the
Language.properties file. An example configuration is shown below:
{ “create-jar”: { “output-dir”: “dist”, “features”: { “js-extender”: true, “web-context”: “/my-
test-js-widget”, “localization”: “features/localization/Language”, “settings”: “features/set-
tings.json” } }, … }

Note: The default file path is shown above. You can update this value,

if you want to place your `Language.properties` file in a different

location.

2. Configure the Language.propertiesfile andprovide the localizedpropertyfiles (e.g. Language_[locale].properties)
with the language keys for each available translation. The JavaScript basedwidget configuration
is shown below:
javax.portlet.title.my_js_portlet_project=My JS widget Project porlet-namespace=Porlet
Namespace context-path=Context Path portlet-element-id=Portlet Element Id configu-
ration=Configuration fruit=Favourite fruit fruit-help=Choose the fruit you like the most
an-orange=An orange a-pear=A pear an-apple=An apple

3. Retrieve a language key’s localized value in JavaScript with the Liferay.Language.get('key')

method.

Great! Now you know how to localize your widget!

Related Topics

• Configuring System Settings and Instance Settings for Your JavaScriptWidget
• Using Translation Features in Your JavaScriptWidget
• Configuring Portlet Properties for Your JavaScriptWidget

87.8 Configuring Portlet Properties for Your JSWidget

Follow these steps to configure your portlet’s properties:

1. Open your generated JavaScript widget’s package.json file.

2. Set the properties under the portlet entry. Note that these are the same properties you
would define in the Java @Component annotation of a portlet, as defined in the liferay-portlet-
app_7_2_0.dtd. An example configuration is shown below:

"portlet": {

"com.liferay.portlet.display-category": "category.sample",

"com.liferay.portlet.header-portlet-css": "/css/styles.css",

"com.liferay.portlet.instanceable": true,

"javax.portlet.name": "my_js_portlet_project",

"javax.portlet.security-role-ref": "power-user,user",

"javax.portlet.resource-bundle": "content.Language"

},

935

https://docs.liferay.com/dxp/portal/7.2-latest/definitions/liferay-portlet-app_7_2_0.dtd.html
https://docs.liferay.com/dxp/portal/7.2-latest/definitions/liferay-portlet-app_7_2_0.dtd.html

3. Deploy your bundle to apply the changes.

Great! Now you know how to configure your JavaScript portlet’s properties.

Related Topics

• Configuring System Settings and Instance Settings for Your JavaScriptWidget
• Localizing YourWidget
• Using Translation Features in Your JavaScriptWidget

87.9 Using Translation Features in Your Widget

By default, the Liferay JS Generator creates an empty configuration for translation. The translate
script instructs the user how to add new supported locales or configure the credentials when it is
run. The translate target reads the supported locales you have defined in the supportedLocales key
of your .npmbuildrc file and checks your *language.properties files to make sure they match.

Note: To use the translation features, you must have a Microsoft Translator key. Provide your
credentials through either the translatorTextKey variable in your .npmbuildrc file, or provide them
in the TRANSLATOR_TEXT_KEY environment variable.

Follow these steps to add a new supported locale and automatically create a language properties
file for it with translations:

1. Add the locale to the supportedLocales array in your .npmbuildrc file.

2. Run the translate target with the command below:

npm run translate

3. The translate target automatically creates a language properties file for each new supported
locale with translations for your language keys. It also warns about locales that are not
supported, but have a *language.properties file.

Great! Now you know how to use the Liferay JS Generator’s translation features in your app.

Related Topics

• Configuring System Settings and Instance Settings for Your JavaScriptWidget
• Localizing YourWidget
• Configuring Portlet Properties for Your JavaScriptWidget

936

CHAPTER 88

FRONT-END TAGLIBS

You have access to a powerful set of taglibs for creating commonly used UI components in your
apps, themes, and web content. The following taglibs are covered in this section of tutorials:

• AUI: lets you create common UI components such as forms, buttons, and more.

• Chart: visualizes data. You can create bar charts, line charts, scatter charts, spline charts,
and much more.

• Clay: lets you addClay components, such as alerts, buttons, drop-downmenus, formelements,
and more to your apps.

• Frontend: Lets you create UI components commonly used throughout Portal’s apps, such as
add menus, cards, management bars, and more.

• Liferay UI: lets you create common UI components such as icons, tabs, and more.

Note: Each taglib is available as a FreeMarker macro, except for the Chart taglib. The Chart
taglib is not available as a FreeMarker macro. The tutorials in this section provide the proper
syntax to use for each macro. See the FreeMarker Taglib Mappings reference for a complete list of
the available FreeMarker taglib macros.

In this section of tutorials, you’ll learn how to use taglibs to build awesome user interfaces for
your apps!

937

https://clayui.com/docs/components/alerts.html

CHAPTER 89

USING THE LIFERAY UI TAGLIB

The Liferay UI tag library provides tags that implement commonly used UI components. These
tags make your markup consistent, responsive, and accessible.

You can find a list of the available Liferay UI taglibs in the Liferay UI taglibdocs. Each taglib has
a list of attributes that can be passed to the tag. Some of these are required and some are optional.
See the taglibdocs to view the requirements for each tag. You’ll find the full markup generated by
the tags in their JSPs in their Liferay Github Repo folders.

To use the Liferay-UI taglib library in your apps, you must add the following declaration to your
JSP:

<%@ taglib prefix="liferay-ui" uri="http://liferay.com/tld/ui" %>

The Liferay-UI taglib is also available via a macro for your FreeMarker theme and web content
templates. Follow this syntax:

<@liferay_ui["tag-name"] attribute="string value" attribute=10 />

This section of tutorials covers how to create UI components with the Liferay UI taglibs. Each
tutorial contains code examples along with a screenshot of the resulting UI.

89.1 Liferay UI Icons

The Liferay UI taglibs provide several icons you can include in your apps. To add an icon to your
app, use the liferay-ui:icon tag and specify the icon with either the icon, iconCssClass, or image
attribute. An example of each use case is shown below.

The image attribute specifies Liferay UI icons to use (as defined in the Unstyled theme’s
images/common folder). Here’s an example configuration for a JSP:

<div class="col-md-3">

<liferay-ui:icon image="subscribe" />

Subscribe

</div>

939

https://docs.liferay.com/portal/7.1-latest/taglibs/util-taglib/liferay-ui/tld-summary.html
https://github.com/liferay/liferay-portal/tree/7.1.x/portal-web/docroot/html/taglib/ui
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-theme/frontend-theme-unstyled/src/main/resources/META-INF/resources/_unstyled/images

Figure 89.1: Use the image attribute to use a theme icon.

The Liferay UI taglib also exposes language flag icons. To use a language flag icon, provide
the ../language/ relative path before the icon’s name. Below is an example snippet from theWeb
Content Search portlet that displays the current language’s flag along with a localized message:

<liferay-ui:icon

image='<%= "../language/" + languageId %>'

message='<%= LanguageUtil.format(

request,

"this-result-comes-from-the-x-version-of-this-content",

snippetLocale.getDisplayLanguage(locale),

false

) %>'

/>

You can achieve the same result in FreeMarker with the following code that uses the available
init.ftl variables and Liferay DXP macros:

<#assign flag_message>

<@liferay.language_format

arguments=language

key="this-result-comes-from-the-x-version-of-this-content"

/>

</#assign>

<@liferay_ui["icon"]

image="../language/${language_id}"

message=flag_message

/>

The full list of available icons is shown in the figures below:
The icon attribute specifies Font Awesome icons to use:

<liferay-ui:icon icon="angle-down" />

The iconCssClass attribute specifies a glyphicon to use:

<liferay-ui:icon

iconCssClass="icon-remove-sign"

label="<%= true %>"

message="unsubscribe"

url="<%= unsubscribeURL %>"

/>

The examples above use some of the icon’s available attributes. See the Icon taglibdocs for the
full list.

Related Topics

Clay Icons
Liferay UI Icon Lists
Liferay UI Icon Menus

940

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-theme/frontend-theme-unstyled/src/main/resources/META-INF/resources/_unstyled/templates/init.ftl
https://fontawesome.com/v3.2.1/icons/
http://marcoceppi.github.io/bootstrap-glyphicons/
https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/liferay-ui/icon.html

Figure 89.2: The Liferay UI taglib offers multiple icons for use in your app.

Figure 89.3: Liferay UI icons can be configured based on language.

Figure 89.4: You can use the icon attribute to include Font Awesome icons in your app.

941

Figure 89.5: You can use Font Awesome icons in your app.

89.2 Liferay UI Icon Lists

An icon list displays icons in a horizontal list, instead of in a pop-up navigation menu like an icon
menu. You can see an example of an icon list menu in amessage board thread. The thread’s actions
are visible at all times for administrators:

Figure 89.6: Icon lists display an app’s actions at all times.

Create the list menu with the liferay-ui:icon-list tag and nest icons for each list item, as
shown below:

<div class="thread-actions">

<liferay-ui:icon-list>

<liferay-ui:icon

iconCssClass="icon-lock"

message="permissions"

method="get"

url="<%= permissionsURL %>"

useDialog="<%= true %>"

/>

<liferay-rss:rss

delta="<%= rssDelta %>"

displayStyle="<%= rssDisplayStyle %>"

feedType="<%= rssFeedType %>"

url="<%= MBRSSUtil.getRSSURL(plid, 0, message.getThreadId(), 0, themeDisplay) %>"

/>

<liferay-ui:icon

iconCssClass="icon-remove-sign"

message="unsubscribe"

url="<%= unsubscribeURL %>"

/>

<liferay-ui:icon

iconCssClass="icon-lock"

message="lock"

url="<%= lockThreadURL %>"

/>

942

<liferay-ui:icon

iconCssClass="icon-move"

message="move"

url="<%= editThreadURL %>"

/>

<liferay-ui:icon-delete

showIcon="<%= true %>"

trash="<%= trashHelper.isTrashEnabled(themeDisplay.getScopeGroupId()) %>"

url="<%= deleteURL %>"

/>

</liferay-ui:icon-list>

</div>

See the Icon List taglibdocs for the full list of available attributes.

Related Topics

Clay Icons
Liferay UI Icon Menus
Liferay UI Icons

89.3 Liferay UI Icon Menus

You can add a pop-up navigation menu to your app with the liferay-ui:icon-menu tag. Icon menus
display menu options when needed, storing them away in a collapsed menu when they’re not. This
keeps the UI clean and uncluttered. Just as with an icon list, you nest icons for each navigation
item. You can see an example of a icon menu in a site’s actions menu in the My Sites portlet:

Figure 89.7: Setting up an iconmenu is a piece of cake.

Example JSP configuration:

<liferay-ui:icon-menu

direction="left-side"

icon="<%= StringPool.BLANK %>"

markupView="lexicon"

message="<%= StringPool.BLANK %>"

showWhenSingleIcon="<%= true %>"

>

943

https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/liferay-ui/icon-list.html

<liferay-ui:icon

message="go-to-public-pages"

target="_blank"

url="<%= group.getDisplayURL(themeDisplay, false) %>"

/>

<liferay-ui:icon

message="leave"

url="<%= leaveURL %>"

/>

</liferay-ui:icon-menu>

Note that the url attribute is required for icons to render properly. See the IconMenu taglibdocs
for the full list of attributes.

Related Topics

Clay Icons
Liferay UI Icon Lists
Liferay UI Icons

89.4 Liferay UI Tabs

Tabs create dividers that organize content into individual sections. Content can be embedded or
included from another JSP.

To add tabs to your app, use the <liferay-ui:tabs> tag and specify each tab’s name as a comma-
separated list for the names attribute. For example, three tabs named tab1, tab2, and tab3, look like
this in the JSP:

<liferay-ui:tabs names="tab1,tab2,tab3">

</liferay-ui:tabs>

Each tab requires a corresponding section to display content. Nest liferay-ui:section tags for
each of the tabs. Within each section, you can add HTML content or add content indirectly by
including content from another JSP (via the <%@ includefile="filepath"%> directive). The example
snippet below is from the Calendar portlet’s configuration.jsp:

<liferay-ui:tabs

names='<%= "user-settings,display-settings,rss" %>'

param="tabs2"

refresh="<%= false %>"

type="tabs nav-tabs-default"

>

<liferay-ui:section>

<%@ include file="/configuration/user_settings.jspf" %>

</liferay-ui:section>

<liferay-ui:section>

<%@ include file="/configuration/display_settings.jspf" %>

</liferay-ui:section>

<liferay-ui:section>

<%@ include file="/configuration/rss.jspf" %>

</liferay-ui:section>

</liferay-ui:tabs>

944

https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/liferay-ui/icon-menu.html

Figure 89.8: Tabs are a useful way to organize configuration options into individual sections within the same UI.

The example above uses some of the tab’s available attributes. See the Tabs taglibdocs for the
full list of attributes.

Related Topics

Clay Navigation Bars
Clay Dropdown Menus and Action Menus
Liferay UI Icon Help

89.5 Liferay UI Icon Help

The icon help tag lets you communicate additional information to your users in an unobtrusive way.
It renders as an iconic question mark that provides more information through a pop-up tooltip on
mouse over. You can see an example of this in the Control Panel:

Note: If you have installed a custom theme you may also need to add the following imports to
your view.jsp to make liferay-ui:icon-help tag work:

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme"%>

<liferay-theme:defineObjects />

945

https://docs.liferay.com/dxp/portal/7.1-latest/taglibs/util-taglib/liferay-ui/tabs.html

Figure 89.9: Here’s an example of the icon help tag.

Add the <liferay-ui:icon-help/> tag next to the UI that needs tooltip information. Define the
informational text with the required message attribute. Below is an example snippet for one of the
Server Administration’s clean up actions:

<h5>

<liferay-ui:message key="clean-up-permissions" />

<liferay-ui:icon-help message="clean-up-permissions-help" />

</h5>

Note that the message is supplied via a language key. While you can use a string for the tooltip’s
message for testing purposes, a language key is considered best practice and should be used in
production.

Related Topics

Clay Badges
Clay Stickers
Liferay UI Icon Menus

946

Figure 89.10: help icons are used throughout the Control Panel.

947

CHAPTER 90

USING LIFERAY FRONT-END TAGLIBS IN YOUR
PORTLET

The Liferay Front-end tag library provides a set of tags for creating common front-end UI compo-
nents in your app.

To use the Front-end taglib in you apps, add the following declaration to your JSP:

<%@ taglib prefix="liferay-frontend" uri="http://liferay.com/tld/frontend" %>

The Liferay Front-end taglib is also available via a macro for your FreeMarker theme templates
and web content templates. Follow this syntax:

<@liferay_frontend["tag-name"] attribute="string value" attribute=10 />

The following Front-end UI components are covered in this section of tutorials:

• Add Menu
• Cards
• Info Bar
• Management Bar

The tutorials in this section cover how to create these components with the Front-end taglibs.
Each tutorial contains a set of examples along with a screenshot of the resulting UI.

90.1 Liferay Front-end AddMenu

The add menu tag creates an add menu button for one or multiple items. It’s used for actions
that add entities (e.g. a new blog entry), and is part of the Management Bar. Use the <liferay-

frontend:add-menu> tag to create the add menu and nest a <liferay-frontend:add-menu-item> tag for
each item.

Note: This pattern is deprecated as of 7.0. We recommend that you use the Clay Management
Toolbar’s creation menu pattern instead.

949

When the menu has one item, the button triggers the item’s action as shown in the example
below for the Blogs Admin App:

<liferay-frontend:management-bar-buttons>

...

<liferay-frontend:add-menu

inline="<%= true %>"

>

<liferay-frontend:add-menu-item

title='<%= LanguageUtil.get(request, "add-blog-entry") %>'

url="<%= addEntryURL %>"

/>

</liferay-frontend:add-menu>

</liferay-frontend:management-bar-buttons>

Figure 90.1: The add button pattern consists of an add-menu tag and at least one add-menu-item tag.

When the menu has multiple items, they display in a pop-up menu. For example, the Message
Boards Admin application has the configuration below:

<liferay-frontend:add-menu>

...

<liferay-frontend:add-menu-item title='<%= LanguageUtil.get(request,

"thread") %>' url="<%= addMessageURL.toString() %>" />

...

<liferay-frontend:add-menu-item title='<%= LanguageUtil.get(request,

(categoryId == MBCategoryConstants.DEFAULT_PARENT_CATEGORY_ID) ?

"category[message-board]" : "subcategory[message-board]") %>'

url="<%= addCategoryURL.toString() %>" />

...

</liferay-frontend:add-menu>

The examples above use some of the available attributes. See the add menu and add menu item
taglibdocs for the full list of available attributes for the tags.

Related Topics

Liferay Frontend Cards
Liferay Frontend Info Bar
Liferay Frontend Management Bar

90.2 Liferay Front-end Cards

If you have data you want to compare that’s heavy on image usage, cards are the component for
the job. Cards visually represent data in a minimal and compact format. Use them for images,
document libraries, user profiles, and more. There are four main types of Cards covered in this
tutorial:

950

https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/add-menu.html
https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/add-menu-item.html

Figure 90.2: The add button pattern consists of an add-menu tag and at least one add-menu-item tag.

• Horizontal Cards
• Icon Cards
• Vertical Cards
• User Cards

Examples of each card are shown below.

Horizontal Card

Horizontal cards are used primarily to display documents, such as files and folders. An example
configuration is shown below:

<liferay-frontend:horizontal-card

text="Documents"

url="/docs/7-1/tutorials/-/knowledge_base/t/clay-icons"

>

<liferay-frontend:horizontal-card-col>

<liferay-frontend:horizontal-card-icon

icon="folder"

/>

</liferay-frontend:horizontal-card-col>

</liferay-frontend:horizontal-card>

Figure 90.3: Horizontal cards are perfect to display files and documents.

951

The <liferay-frontend:horizontal-card-icon> tag uses Clay Icons for its icon attribute.

Icon Vertical Card

Icon vertical cards, as the name suggests, are cards that display information in a vertical format that
emphasizes an icon. These cards show content that doesn’t have an associated image. Instead, an
icon representing the type of content is displayed. The example snippet below displays information
for a web content article:

<liferay-frontend:icon-vertical-card

cssClass="article-preview-content"

icon="web-content"

title="<%= title %>"

>

<liferay-frontend:vertical-card-sticker-bottom>

<liferay-ui:user-portrait

cssClass="sticker sticker-bottom"

userId="<%= assetRenderer.getUserId() %>"

/>

</liferay-frontend:vertical-card-sticker-bottom>

<liferay-frontend:vertical-card-footer>

<aui:workflow-status

markupView="lexicon"

showIcon="<%= false %>"

showLabel="<%= false %>"

status="<%= article.getStatus() %>"

/>

</liferay-frontend:vertical-card-footer>

</liferay-frontend:icon-vertical-card>

Vertical Card

Vertical cards display information in a vertical card format, as opposed to a horizontal format.
If the content has an associated image (like a blog header image) you can use a vertical card to
display the image. If there is no associated image, you can use an icon vertical card to represent
the content’s type instead (e.g. a PDF file). The example below displays a vertical card for a web
content article when an image preview is available:

<liferay-frontend:vertical-card

cssClass="article-preview-content"

imageUrl="<%= articleImageURL %>"

title="<%= title %>"

>

<liferay-frontend:vertical-card-sticker-bottom>

<liferay-ui:user-portrait

cssClass="sticker sticker-bottom"

userId="<%= assetRenderer.getUserId() %>"

/>

</liferay-frontend:vertical-card-sticker-bottom>

<liferay-frontend:vertical-card-footer>

<aui:workflow-status

markupView="lexicon"

showIcon="<%= false %>"

showLabel="<%= false %>"

status="<%= article.getStatus() %>"

/>

</liferay-frontend:vertical-card-footer>

</liferay-frontend:vertical-card>

952

Figure 90.4: Vertical icon cards are perfect to display an entity selection, such as a web content article.

HTML Vertical Card

The HTML Vertical card lets you display custom HTML in the header of the vertical card. The
example below embeds a video:

<liferay-util:buffer var = "customThumbnailHtml">

<div class="embed-responsive embed-responsive-16by9">

<iframe class="embed-responsive-item"

src="https://www.youtube.com/embed/8Bg9jPJpGOM?rel=0"

allowfullscreen></iframe>

</div>

</liferay-util:buffer>

<div class="container">

<div class="row">

<div class="col-md-4">

<liferay-frontend:html-vertical-card

html="<%= customThumbnailHtml %>"

953

Figure 90.5: Vertical cards are perfect to display files and documents.

954

title="My Video"

>

</liferay-frontend:html-vertical-card>

</div>

</div>

</div>

Figure 90.6: Html vertical cards let you display custom HTML in the card’s header.

User Vertical Card

The User Vertical card displays user profile selections in the icon view of the Management Bar.
Below is an example snippet from the User Admin portlet:

<liferay-frontend:user-vertical-card

actionJsp="/membership_request_action.jsp"

actionJspServletContext="<%= application %>"

resultRow="<%= row %>"

subtitle="<%= membershipRequestUser.getEmailAddress() %>"

title="<%= HtmlUtil.escape(membershipRequestUser.getFullName()) %>"

userId="<%= membershipRequest.getUserId() %>"

>

<liferay-frontend:vertical-card-header>

<liferay-ui:message

arguments="<%= LanguageUtil.getTimeDescription(

request,

System.currentTimeMillis() - membershipRequest.getCreateDate().getTime(),

true) %>"

key="x-ago"

translateArguments="<%= false %>"

/>

</liferay-frontend:vertical-card-header>

</liferay-frontend:user-vertical-card>

955

Figure 90.7: User vertical cards are perfect to display files and documents.

Related Topics

Liferay Front-end Add Menu
Liferay Front-end Info Bar
Liferay Front-end Management Bar

90.3 Liferay Front-end Info Bar

An info bar provides a button that toggles the visibility of additional sidebar information. This is
perfect for providing more detailed metadata for a search result, such as the file size, type, URL,
etc.

The configuration has two key parts: the info bar—and buttons—and the sidebar panel.
Info bar:

956

Figure 90.8: The info bar tags create a sidebar panel toggler that reveals additional info.

957

<liferay-frontend:info-bar>

<liferay-frontend:info-bar-buttons>

<liferay-frontend:info-bar-sidenav-toggler-button

icon="info-circle"

label="my info"

/>

</liferay-frontend:info-bar-buttons>

</liferay-frontend:info-bar>

The <liferay-frontend:info-bar-sidenav-toggler-button> tag uses Clay Icons for the icon at-
tribute.

Sidebar panel:

<div class="closed container-fluid-1280 sidenav-container sidenav-right" id="<portlet:namespace />infoPanelId">

<liferay-frontend:sidebar-panel>

<div>

<h2>sidebar content</h2>

<p>Here is some content</p>

</div>

</liferay-frontend:sidebar-panel>

</div>

Note that the sidebar panel’s wrapper <div> has the classes closed and sidenav-right. The info
button toggles the classes open and closed, showing and hiding the sidebar panel. The sidenav-right

class specifies that the panel should open on the right.

Figure 90.9: The info bar tags create a sidebar panel toggler that reveals additional info.

The examples above use some of the available attributes. See the info bar, info bar buttons,
info bar sidenav toggler button, and sidebar panel taglibdocs for the full list of available attributes
for the tags.

Related Topics

Liferay Front-end Add Menu
Liferay Front-end Cards
Liferay Front-end Management Bar

958

https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/info-bar.html
https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/info-bar-buttons.html
https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/info-bar-sidenav-toggler-button.html
https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/sidebar-panel.html

CHAPTER 91

LIFERAY FRONT-END MANAGEMENT BAR

The Management Bar gives administrators control over search container results. It lets you filter,
sort, and choose a display style for search results, so you can quickly identify the document, web
content, asset entry, or whatever you’re looking for in your app. The Management Bar is fully
customizable, so you can implement all the controls, or just the ones your app requires.

Figure 91.1: The Management Bar lets the user customize how the app displays content.

Note: The Liferay Front-end Management Bar is deprecated as of 7.0. We recommend that you

959

use the Clay Management Toolbar instead.

The Management Bar has a few key sections. Each section is grouped and configured using
different taglibs:

The <liferay-frontend:management-bar-buttons> tag wraps the Management Bar’s button ele-
ments:

Figure 91.2: The management-bar-buttons tag contains the Management Bar’s main buttons.

The <liferay-frontend:management-bar-sidenav-toggler-button> tag implements slide-out navi-
gation for the info button.

The <liferay-frontend:management-bar-display-buttons> tag renders the app’s display style op-
tions.

Figure 91.3: The management-bar-display-buttons tag contains the content’s display options.

The <liferay-frontend:management-bar-filters> tag wraps the app’s filtering options. This filter
should be included in all control panel applications. Filtering options can include sort criteria, sort
ordering, and more.

Figure 91.4: The management-bar-filters tag contains the content filtering options.

Finally, the <liferay-frontend:management-bar-action-buttons> tag wraps the actions that you
can execute over selected items. You can select multiple items between pages. The management
bar keeps track of the number of selected items for you.

Figure 91.5: The management bar keeps track of the items selected and displays the actions to execute on them.

For example, here’s the Management Bar configuration in the Trash app:

960

https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/management-bar-buttons.html
https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/management-bar-sidenav-toggler-button.html
https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/management-bar-display-buttons.html
https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/management-bar-filters.html
https://docs.liferay.com/dxp/apps/foundation/latest/taglibdocs/liferay-frontend/management-bar-action-buttons.html

<liferay-frontend:management-bar

includeCheckBox="<%= true %>"

searchContainerId="trash"

>

<liferay-frontend:management-bar-buttons>

<liferay-frontend:management-bar-sidenav-toggler-button />

<liferay-portlet:actionURL name="changeDisplayStyle"

varImpl="changeDisplayStyleURL">

<portlet:param name="redirect" value="<%= currentURL %>" />

</liferay-portlet:actionURL>

<liferay-frontend:management-bar-display-buttons

displayViews='<%= new String[] {"descriptive", "icon",

"list"} %>'

portletURL="<%= changeDisplayStyleURL %>"

selectedDisplayStyle="<%= trashDisplayContext.getDisplayStyle()

%>"

/>

</liferay-frontend:management-bar-buttons>

<liferay-frontend:management-bar-filters>

<liferay-frontend:management-bar-navigation

navigationKeys='<%= new String[] {"all"} %>'

portletURL="<%= trashDisplayContext.getPortletURL() %>"

/>

<liferay-frontend:management-bar-sort

orderByCol="<%= trashDisplayContext.getOrderByCol() %>"

orderByType="<%= trashDisplayContext.getOrderByType() %>"

orderColumns='<%= new String[] {"removed-date"} %>'

portletURL="<%= trashDisplayContext.getPortletURL() %>"

/>

</liferay-frontend:management-bar-filters>

<liferay-frontend:management-bar-action-buttons>

<liferay-frontend:management-bar-sidenav-toggler-button />

<liferay-frontend:management-bar-button href="javascript:;"

icon="trash" id="deleteSelectedEntries" label="delete" />

</liferay-frontend:management-bar-action-buttons>

</liferay-frontend:management-bar>

91.1 Including Actions in the Management Bar

While an actions menu is typically included with each search container result, you can also include
these actions in the management bar. This keeps everything organized within the same UI. This
update adds a checkbox next to each search container result, as well as adds one in themanagement
bar itself to select all results. The actions are displayed when a checkbox is checked—individual or
select all—and hidden from view otherwise.

Follow these steps to include actions in your management bar:

1. Update the <liferay-frontend:management-bar> tag to include the checkbox and provide the
search container’s ID:

<liferay-frontend:management-bar

includeCheckBox="<%= true %>"

searchContainerId="mySearchContainerId"

>

961

Figure 91.6: You can select individual results or all results at once.

2. After the closing </liferay-frontend:management-bar-filters> tag, add the <liferay-

frontend:management-bar-action-buttons> tags:

<liferay-frontend:management-bar-action-buttons>

</liferay-frontend:management-bar-action-buttons>

3. Use the available management bar button taglibs (e.g. management-bar-button) to build the
action buttons for your app’s management bar. A code snippet from the Site admin portlet is
shown below:

<liferay-frontend:management-bar-action-buttons>

<liferay-frontend:management-bar-sidenav-toggler-button

icon="info-circle"

label="info"

/>

<liferay-frontend:management-bar-button

href="javascript:deleteEntries();"

icon="trash"

id="deleteSites"

label="delete"

/>

</liferay-frontend:management-bar-action-buttons>

Figure 91.7: You can have as many actions as your app requires.

962

Related Topics

Disabling All or Portions of the Management Bar
Clay Management Toolbar

91.2 Disabling All or Portions of the Management Bar

When there are no search results to display, you should disable all the Management Bar’s buttons,
except the sidenav toggler button.

You can disable the Management Bar by adding the disabled attribute to the liferay-

frontend:management-bar tag:

<liferay-frontend:management-bar

disabled="<%= total == 0 %>"

includeCheckBox="<%= true %>"

searchContainerId="<%= searchContainerId %>"

>

You can also disable individual components by adding the disabled attribute to the correspond-
ing tag. The example below disables the display buttons when the search container displays 0
results, since changing the display style has no effect when there aren’t any results to view:

<liferay-frontend:management-bar-display-buttons

disabled="<%= total == 0 %>"

displayViews='<%= new String[] {"descriptive", "icon", "list"} %>'

portletURL="<%= changeDisplayStyleURL %>"

selectedDisplayStyle="<%= displayStyle %>"

/>

Figure 91.8: You can disable all or portions of the Management Bar.

963

Related Topics

Including Actions in the Management Bar
Clay Management Toolbar

964

CHAPTER 92

USING THE LIFERAY UTIL TAGLIB

The Liferay Util taglib is used to pull other resources into a portlet or theme. You can use it to
specify which resources to insert at the bottom or top of the page’s HTML.

To use the Liferay-Util taglib, add the following declaration to your JSP:

<%@ taglib prefix="liferay-util" uri="http://liferay.com/tld/util" %>

The Liferay-Util taglib is also available via a macro for your FreeMarker theme templates and
web content templates. Follow this syntax:

<@liferay_util["tag-name"] attribute="string value" attribute=10 />

This section of tutorials covers the available Liferay Util tags you can use in your app to inject
content into portlets and themes.

92.1 Using Liferay Util Body Bottom

The body bottom tag is not a self-closing tag. It lets you add additional HTML or scripts to the
bottom of the body tag. content placed between the opening and closing of this tag is passed to the
body_bottom.jsp and outputs in this JSP.

This tag also has an optional outputKey attribute. If several portlets on the page include the
same resource with this tag, you can specify the same outputKey value for each tag so the resource
is only loaded once.

The example configuration below uses the <liferay-util:body-bottom> tag to include JavaScript
provided by the portlet’s bundle:

<liferay-util:body-bottom outputKey="bodybottom" >

<script

src="/o/my-liferay-util-portlet/js/my_custom_javascript_body_bottom.js"

type="text/javascript"></script>

</liferay-util:body-bottom>

Now you know how to use the <liferay-util:body-bottom> tag to include additional resources in
the bottom of the page’s body.

965

https://github.com/liferay/liferay-portal/blob/7.1.x/portal-web/docroot/html/common/themes/body_bottom.jsp#L26-L31

Related Topics

Using the Liferay Util HTML Body Top Tag
Using the Liferay Util HTML Top Tag
Using the Liferay UI Taglib

92.2 Using Liferay Util Body Top

The body top tag is not a self-closing tag. The content placed between the opening and closing
of this tag is moved to the top of the body tag. When something is passed using this taglib, the
body_top.jsp is passed markup and outputs in this JSP.

This tag also has an optional outputKey attribute. If several portlets on the page include the
same resource with this tag, you can specify the same outputKey value for each tag so the resource
is only loaded once.

The example configuration below uses the <liferay-util:body-top> tag to include JavaScript
provided by the portlet’s bundle:

<liferay-util:body-top outputKey="bodytop" >

<script

src="/o/my-liferay-util-portlet/js/my_custom_javascript_body_top.js"

type="text/javascript"></script>

</liferay-util:body-top>

Now you know how to use the <liferay-util:body-top> tag to include additional resources in
the top of the page’s body.

Related Topics

Using the Liferay Util HTML Body Bottom Tag
Using the Liferay Util HTML Bottom Tag
Using the Clay Taglib

92.3 Using Liferay Util Buffer

The buffer tag is not a self-closing tag. The content placed between the opening and closing of this
tag is saved to a buffer and its output is assigned to the Java variable declared with the tag’s var
attribute. The output is returned as a String, letting you post-process it. For example, you can use
this to override a JSP’s existing contents.

The example below saves the link’s generated markup to a buffer and then uses the returned
string as the argument for a liferay-ui:message key:

<liferay-util:buffer

var="linkContent"

>

<aui:a

href="https://portal.liferay.dev/"

target="_blank">the Liferay Portal project

</aui:a>

</liferay-util:buffer>

<liferay-ui:message

966

https://github.com/liferay/liferay-portal/blob/7.1.x/portal-web/docroot/html/common/themes/body_top.jsp#L25-L31

arguments="<%= linkContent %>"

key="see-x-for-more-information"

translateArguments="<%= false %>"

/>

Now you know how to use the <liferay-util:buffer> tag to save content to a buffer.

Figure 92.1: You can use the Liferay Util Buffer tag to save pieces of markup to reuse in your JSP.

Related Topics

JSP Overrides Using OSGi Fragments
Using the Liferay Util Param Tag
Using the Liferay Front-End Taglibs

92.4 Using Liferay Util Dynamic Include

The dynamic include tag lets you specify a point or points in a JSP or theme where a developer
can inject additional HTML, resources, or functionality, using the DynamicIncludeRegistry. You can
read more about the OSGi Service Registry here. The key attribute identifies the extension point.
See the Dynamic Include tutorials section for example configurations that use dynamic include
extension points to inject additional functionality.

The example configuration below uses the <liferay-util:dynamic-include> tag to include an
extension point before the primary code and an extension point after the primary code:

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<liferay-util:dynamic-include key="/path/to/jsp#pre" />

<div>

<p>And here we have our content</p>

</div>

<liferay-util:dynamic-include key="/path/to/jsp#post" />

Now you know how to use the <liferay-util:dynamic-include> tag to add extension points to
your app.

Related Topics

Dynamic Includes
Using the Liferay Util Body Top Tag
Using the Chart Taglib

967

http://docs.spring.io/osgi/docs/current/reference/html/service-registry.html

92.5 Using Liferay Util Get URL

The get URL tag scrapes the URL provided by the url attribute. If a value is provided for the var

attribute, the content from the screen scrape is scoped to that variable. Otherwise, the scraped
content is displayed where the taglib is used.

A basic configuration for the <liferay-util:get-url> tag is shown below:

<liferay-util:get-url url="https://portal.liferay.dev/" />

Here is an example that uses the var attribute:

<liferay-util:get-url url="https://portal.liferay.dev/" var="ldn" />

<div>

<h2>We stole Liferay Portal, here it is.</h2>

<div class="ldn">

<%= ldn %>

</div>

</div>

Figure 92.2: You can use the Liferay Util Get URL tag to scrape URLs.

Now you know how to use the <liferay-util:get-url> tag to scrape URLs.

Related Topics

Using the Liferay Util Param Tag
Using the Liferay Util Include Tag
Using the AUI Taglib

968

92.6 Using Liferay Util HTML Bottom

The HTML bottom tag is not a self-closing tag. Content placed between the opening and closing of
this tag is moved to the bottom of the <html> tag. When something is passed using this taglib, the
bottom.jsp is passed markup and outputs in this JSP.

This tag also has an optional outputKey attribute. If several portlets on the page include the
same resource with this tag, you can specify the same outputKey value for each tag so the resource
is only loaded once.

The example configuration below uses the <liferay-util:html-bottom> tag to include JavaScript
(a common use case) provided by the portlet’s bundle:

<liferay-util:html-bottom outputKey="htmlbottom">

<script src="/o/my-liferay-util-portlet/js/my_custom_javascript.js"

type="text/javascript"></script>

</liferay-util:html-bottom>

Now you know how to use the <liferay-util:html-bottom> tag to include additional resources in
the bottom of the page’s HTML tag.

Related Topics

Using the Liferay Util HTML Body Bottom Tag
Using the Liferay Util HTML Top Tag
Using the Liferay UI Taglib

92.7 Using Liferay Util HTML Top

The HTML top tag is not a self-closing tag. The content placed between the opening and closing of
this tag is moved to the <head> tag. When something is passed using this taglib, the top_head.jsp is
passed markup and outputs in this JSP.

This tag also has an optional outputKey attribute. If several portlets on the page include the
same resource with this tag, you can specify the same outputKey value for each tag so the resource
is only loaded once.

The example configuration below uses the <liferay-util:html-top> tag to include additional
CSS styles provided by the portlet’s bundle:

<liferay-util:html-top outputKey="htmltop">

<link data-senna-track="permanent"

href="/o/my-liferay-util-portlet/css/my-custom-styles.css"

rel="stylesheet" type="text/css" />

</liferay-util:html-top>

Now you know how to use the <liferay-util:html-top> tag to include additional resources in
the top of the page’s HTML tag.

969

https://github.com/liferay/liferay-portal/blob/master/portal-web/docroot/html/common/themes/bottom.jsp#L53-L59
https://github.com/liferay/liferay-portal/blob/master/portal-web/docroot/html/common/themes/top_head.jsp#L147-L153

Related Topics

Using the Liferay Util HTML Bottom Tag
Using the Liferay Util Body Top Tag
Using the Clay Taglib

92.8 Using Liferay Util Include

The include tag lets you include other JSP files in your portlet’s JSP, theme, or web content. This
can increase readability as well as provide separation of concerns for JSP files.

The page attribute is required and specifies the path to the JSP or JSPF to include. The
servletContext refers to the request context that the included JSP should use. Passing <%=

application %> to this attribute lets the included JSP use the same request object as other objects
that might be set in the prior JSP.

Below is an example configuration for the <liferay-util:include> tag:

<liferay-util:include

page="/relative/path/to/file.jsp"

servletContext="<%= application %>"

/>

Now you know how to use the <liferay-util:include> tag to include other JSPs in your portlets,
themes, and web content.

Related Topics

Using the Liferay Util Param Tag
Using the Liferay Util Dynamic Include Tag
Using the Liferay Front-End Taglibs

92.9 Using Liferay Util Param

The param tag lets you set a parameter for an included JSP page. This configuration requires two
JSPs. JSP A, the main view of the app, includes JSP B and sets its parameter value. This lets you
dynamically set content when you include the JSP.

For example, say you have your main functionality in my-app.jsp, and you have additional
functionality provided by more-content.jsp. You could have the example configuration shown
below:

more-content.jsp:

<%@ page import="com.liferay.portal.kernel.util.ParamUtil" %>

<%

String answer = ParamUtil.getString(request, "answer");

%>

<div>

<p>The answer to life, the universe and everything is <%= answer %>.</p>

</div>

Then in my-app.jsp, you can include more-content.jsp and set the value of the answer parameter:

970

<liferay-util:include page="/path/to/more-content.jsp" servletContext="<%= application %>">

<liferay-util:param name="answer" value="42" />

</liferay-util:include>

This results in the following output in my-app.jsp:

The answer to life, the universe and everything is 42.

Now you know how to use the <liferay-util:param> tag to set parameters for included JSPs. You
can use this approach to include common reusable pieces of code in your apps.

Related Topics

Using the Liferay Util Include Tag
Using the Liferay Util Body Top Tag
Using the Chart Taglib

92.10 Using Liferay Util Whitespace Remover

The whitespace remover tag removes line breaks and tabs from code blocks included between the
opening and closing of the tag. Below is an example configuration for the <liferay-util:whitespace-
remover> tag:

with remover:

<liferay-util:whitespace-remover>

<p>Here is some text with tabs.</p>

</liferay-util:whitespace-remover>

result:

Here is some text withtabs.

Now you know how to use the <liferay-util:whitespace-remover> tag to ensure that your code
formatting is consistent.

Related Topics

Using the Liferay Util Param Tag
Using the Liferay Util Buffer Tag
Using the AUI Taglib

971

CHAPTER 93

USING THE CLAY TAGLIB IN YOUR PORTLETS

The Liferay Clay tag library provides a set of tags for creating Clay UI components in your app.

Note: AUI taglibs are deprecated as of 7.0. We recommend that you use Clay taglibs to avoid
future compatibility issues.

To use the Clay taglib in your apps, add the following declaration to your JSP:

<%@ taglib prefix="clay" uri="http://liferay.com/tld/clay" %>

The Liferay Clay taglib is also available via a macro for your FreeMarker theme templates and
web content templates. Follow this syntax:

<@clay["tag-name"] attribute="string value" attribute=10 />

Clay taglibs provide the following UI components for your apps:

• Alerts
• Badges
• Buttons
• Cards
• Dropdown Menus and Action Menus
• Form Elements
• Icons
• Labels and links
• Management Toolbar
• Navigation Bars
• Progress Bars
• Stickers

The tutorials in this section cover how to create these components with the Clay taglibs. Each
tutorial contains a set of clay component examples along with a screenshot of the resulting UI.

973

https://clayui.com/

93.1 Clay Alerts

Clay alerts come in two types: embedded and stripe. This tutorial covers both types and provides
several examples of each.

Embedded Alerts

Embedded alerts are usually used inside forms. The element that contains it determines an
embedded alert’s width. The close action is not required for embedded alerts. The following
embedded alerts can be created with Clay taglibs:

Danger alert (embedded):

<clay:alert

message="This is an error message."

style="danger"

title="Error"

/>

Figure 93.1: The danger alert notifies the user of an error or issue.

Success alert (embedded):

<clay:alert

message="This is a success message."

style="success"

title="Success"

/>

Figure 93.2: The success alert notifies the user when an action is successful.

Info alert (embedded):

<clay:alert

message="This is an info message."

title="Info"

/>

Figure 93.3: The info alert displays general information to the user.

Warning alert (embedded):

974

<clay:alert

message="This is a warning message."

style="warning"

title="Warning"

/>

Figure 93.4: The warning alert displays a warning message to the user.

Stripe Alerts

Stripe alerts are placed below the last navigation element (either the header or the navigation bar),
and they usually appear on Save action, communicating the status of the action once received from
the server. Unlike embedded alerts, stripe alerts require the close action. A stripe alert is always
the full width of the container and pushes all the content below it. The following stripe alerts can
be created with Clay taglibs:

Danger alert (stripe):

<clay:stripe

message="This is an error message."

style="danger"

title="Error"

/>

Figure 93.5: The danger striped alert notifies the user that an action has failed.

Success alert (stripe):

<clay:stripe

message="This is a success message."

style="success"

title="Success"

/>

Figure 93.6: The success striped alert notifies the user that an action has completed successfully.

Info alert (stripe):

<clay:stripe

message="This is an info message."

title="Info"

/>

975

Figure 93.7: The info striped alert displays general information about an action to the user.

Warning alert (stripe):

<clay:stripe

message="This is a warning message."

style="warning"

title="Warning"

/>

Figure 93.8: The warning striped alert warns the user about an action.

Now you know how to alert users!

Related Topics

Clay Buttons
Clay Form Elements
Clay Labels and Links

93.2 Clay Badges

Badges help highlight important information such as notifications or new and unread messages.
Badges have circular borders and are only used to specify a number. This tutorial covers the
different types of Clay badges you can add to your app.

Badge Types

The following badge styles are available:
Primary badge:

<div class="col-md-1">

<clay:badge label="8" />

<div>Primary</div>

</div>

Secondary badge:

<div class="col-md-1">

<clay:badge label="87" style="secondary" />

<div>Secondary</div>

</div>

976

Figure 93.9: A primary badge is bright blue, commanding attention like the primary button of a form.

Figure 93.10: A secondary badge is light-grey and draws less focus than a primary button.

Info badge:

<div class="col-md-1">

<clay:badge label="91" style="info" />

<div>Info</div>

</div>

Figure 93.11: A info badge is dark blue andmeant for numbers related to general information.

Error badge:

<div class="col-md-1">

<clay:badge label="130" style="danger" />

977

<div>Error</div>

</div>

Figure 93.12: An error badge displays numbers related to an error.

Success badge:

<div class="col-md-1">

<clay:badge label="1111" style="success" />

<div>Success</div>

</div>

Figure 93.13: A success badge displays numbers related to a successful action.

Warning badge:

<div class="col-md-1">

<clay:badge label="21" style="warning" />

<div>Warning</div>

</div>

Now you know how to use badges to keep track of values in your app.

Related Topics

Clay Labels and Links
Clay Cards
Clay Stickers

978

Figure 93.14: A warning badge displays numbers related to warnings that should be addressed.

93.3 Clay Buttons

Buttons come in several types and variations. This tutorial covers the different styles and variations
of buttons you can create with the Clay taglibs.

Types

Primary button: Used for the most important actions. Two primary buttons should not be together
or near each other.

Primary button with label:

<clay:button label="Primary" />

Figure 93.15: A primary button is bright blue, grabbing the user’s attention.

Secondary button: Used for secondary actions. There can be multiple secondary buttons
together or near each other.

<div class="col">

<clay:button label="Secondary" style="secondary" />

</div>

<div class="col">

<clay:button ariaLabel="Wiki" icon="wiki" style="secondary" />

</div>

Borderless button: Used in cases such as toolbars where the secondary button would be too
heavy for the design. This keeps the design clean.

<div class="col">

<clay:button label="Borderless" style="borderless" />

</div>

<div class="col">

<clay:button ariaLabel="Page Template" icon="page-template" style="borderless" />

</div>

979

Figure 93.16: A secondary button draws less attention than a primary button and is meant for secondary actions.

Figure 93.17: Borderless buttons remove the dark outline from the button.

Link button: Used for Cancel actions.

<div class="col">

<clay:button label="Link" style="link" />

</div>

<div class="col">

<clay:button ariaLabel="Add Role" icon="add-role" style="link" />

</div>

Figure 93.18: You can also turn buttons into links.

You can use labels or icons for your buttons. Below is an example of a Primary button with an
icon:

<clay:button ariaLabel="Workflow" icon="workflow" />

Figure 93.19: Buttons can also display icons.

You can disable a button by adding the disabled attribute:

<div class="col">

<clay:button disabled="<%= true %>" label="Primary" />

</div>

<div class="col">

<clay:button ariaLabel="Workflow" disabled="<%= true %>" icon="workflow" />

</div>

980

Figure 93.20: Buttons can be disabled if you don’t want the user to interact with them.

Variations

Button with icon and text:

<clay:button icon="share" label="Share" />

Figure 93.21: Buttons can display both icons and text.

Button with monospaced text:

<clay:button icon="indent-less" monospaced="<%= true %>" style="secondary" />

Figure 93.22: Buttons can display monospaced text.

Block level button:

<clay:button block="<%= true %>" label="Button" />

Figure 93.23: Block level buttons span the entire width of the container.

Plus button:

<clay:button icon="plus" monospaced="<%= true %>" style="secondary" />

Action button:

<clay:button icon="ellipsis-v" monospaced="<%= true %>" style="borderless" />

981

Figure 93.24: : A plus button is used for add actions in an app.

Figure 93.25: : An action button is used to display actions menus.

Related Topics

Clay Alerts
Clay Buttons
Clay Labels and Links

93.4 Clay Cards

Cards visually represent data. Use them for images, document libraries, user profiles and more.
There are four main types of Cards:

• Image Cards
• File Cards
• User Cards
• Horizontal Cards

Each of these types is covered in this tutorial.

Image Cards

Image Cards are used for image/document galleries.
Image Card:

<clay:image-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

href="#1"

imageAlt="thumbnail"

imageSrc="https://images.unsplash.com/photo-1506976773555-b3da30a63b57"

subtitle="Author Action"

title="Madrid"

/>

Image Card with icon:

<clay:image-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

icon="camera"

subtitle="Author Action"

title="<%= SVG_FILE_TITLE %>"

/>

982

Figure 93.26: Image Cards display images and documents.

Image Card empty:

<clay:image-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

subtitle="Author Action"

title="<%= SVG_FILE_TITLE %>"

/>

Cards can also contain file types. Specify the file type with the filetype attribute:

<clay:image-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

fileType="JPG"

fileTypeStyle="danger"

href="#1"

imageAlt="thumbnail"

imageSrc="https://images.unsplash.com/photo-1499310226026-b9d598980b90"

subtitle="Author Action"

title="California"

/>

Include the labels attribute to add a label to a Card:

<clay:image-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

fileType="JPG"

fileTypeStyle="danger"

href="#1"

imageAlt="thumbnail"

imageSrc="https://images.unsplash.com/photo-1503703294279-c83bdf7b4bf4"

983

Figure 93.27: Image Cards can also display icons instead of images.

labels="<%= cardsDisplayContext.getLabels() %>"

subtitle="Author Action"

title="Beetle"

/>

Include the selectable attribute to make cards selectable (include a checkbox):

<clay:image-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

fileType="JPG"

fileTypeStyle="danger"

href="#1"

imageAlt="thumbnail"

imageSrc="https://images.unsplash.com/photo-1506020647804-b04ee956dc04"

labels="<%= cardsDisplayContext.getLabels() %>"

selectable="<%= true %>"

selected="<%= true %>"

subtitle="Author Action"

title="Beetle"

/>

File Cards

File Cards display an icon of the file’s type. They represent file types other than image files (i.e. PDF,
MP3, DOC, etc.).

<clay:file-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

984

Figure 93.28: Cards can also display nothing.

fileType="MP3"

fileTypeStyle="warning"

labels="<%= cardsDisplayContext.getLabels() %>"

labelStylesMap="<%= cardsDisplayContext.getLabelStylesMap() %>"

selectable="<%= true %>"

selected="<%= true %>"

subtitle="Jimi Hendrix"

title="<%= MP3_FILE_TITLE %>"

/>

You can optionally use the labelStylesMap attribute to pass a HashMap ofmultiple labels, as shown
above.

The example below specifies a list icon instead of the default file icon:

<clay:file-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

fileType="DOC"

fileTypeStyle="info"

icon="list"

labels="<%= cardsDisplayContext.getLabels() %>"

selectable="<%= true %>"

selected="<%= true %>"

subtitle="Paco de Lucia"

title="<%= DOC_FILE_TITLE %>"

/>

Note: The full list of available Liferay icons can be found on the Clay CSS website.

985

https://claycss.com/docs/components/icons-lexicon.html#clay-lexicon-icons

Figure 93.29: Cards can also contain file types.

User Cards

User Cards display user profile images or the initials of the user’s name or name+surname.
User Card with initials:

<clay:user-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

initials="HS"

name="User Name"

subtitle="Latest Action"

userColor="danger"

/>

User Card with profile image:

<clay:user-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

disabled="<%= true %>"

imageAlt="thumbnail"

imageSrc="https://images.unsplash.com/photo-1502290822284-9538ef1f1291"

name="User name"

selectable="<%= true %>"

selected="<%= true %>"

subtitle="Latest Action"

/>

986

Figure 93.30: You can include labels in Cards.

Horizontal Cards

Horizontal Cards represent folders and can have the same amount of information as other Cards.
The key difference is that horizontal Cards let you remove the image portion of the Card, since
only the folder icon is required.

<clay:horizontal-card

actionItems="<%= cardsDisplayContext.getDefaultActionItems() %>"

selectable="<%= true %>"

selected="<%= true %>"

title="ReallySuperInsanelyJustIncrediblyLongAndTotallyNotPossibleWordButWeAreReallyTryingToCoverAllOurBasesHereJustInCaseSomeoneIsNutsAsPerUsual"

/>

Now you know how to use Cards in your UI to display information in your apps.

Related Topics

Clay Badges
Clay Labels and Links
Clay Stickers

93.5 Clay DropdownMenus and Action Menus

987

Figure 93.31: Cards can be selectable.

You can add dropdownmenus to your app via the clay:dropdown-menu and clay:actions-menu taglibs.
The Clay taglibs provide several menu variations for you to choose. Both taglibs with several
examples are shown below.

DropdownMenus

Basic dropdown menu:

<clay:dropdown-menu

items="<%= dropdownsDisplayContext.getDefaultDropdownItems() %>"

label="Default"

/>

The dropdown menu’s items are defined in its Java class–dropdownDisplayContext in this case.
Menu items are NavigationItem objects. You can disable menu items with the setDisabled(true)

method and make a menu item active with the setActive(true)method. The href attribute is set
with the setHref()method, and labels are defined with the setLabel()method. Here’s an example
implementation of the dropdownDisplayContext class:

if (_defaultDropdownItems != null) {

return _defaultDropdownItems;

}

988

Figure 93.32: File Cards display file type icons.

_defaultDropdownItems = new ArrayList<>();

for (int i = 0; i < 4; i++) {

NavigationItem navigationItem = new NavigationItem();

if (i == 1) {

navigationItem.setDisabled(true);

}

else if (i == 2) {

navigationItem.setActive(true);

}

navigationItem.setHref("#" + i);

navigationItem.setLabel("Option " + i);

_defaultDropdownItems.add(navigationItem);

}

return _defaultDropdownItems;

}

You can organize menu items into groups by setting the NavigationItem’s type to TYPE_GROUP

and nesting the items in separate ArrayLists. You can add a horizontal separator to separate
the groups visually with the setSeparator(true) method. Below is a code snippet from the
dropdownsDisplayContext class:

989

Figure 93.33: User Cards can display a user’s initials.

Figure 93.34: A User Card can also display a profile image.

990

Figure 93.35: : Horizontal Cards are good for displaying folders.

Figure 93.36: Clay taglibs provide everything you need to add dropdownmenus to your app.

group1NavigationItem.setSeparator(true);

group1NavigationItem.setType(NavigationItem.TYPE_GROUP);

Corresponding taglib:

<clay:dropdown-menu

items="<%= dropdownsDisplayContext.getGroupDropdownItems() %>"

label="Dividers"

/>

You can also add inputs to dropdown menus. To add an input to a dropdown menu, set
the input’s type with the setType()method (e.g. NavigationItem.TYPE_CHECKBOX), its name with the
setInputName()method, and its value with the setInputValue()method. Here’s an example imple-
mentation:

navigationItem.setInputName("checkbox" + i);

navigationItem.setInputValue("checkboxValue" + i);

navigationItem.setLabel("Group 1 - Option " + i);

navigationItem.setType(NavigationItem.TYPE_CHECKBOX);

Corresponding taglib:

<clay:dropdown-menu

buttonLabel="Done"

items="<%= dropdownsDisplayContext.getInputDropdownItems() %>"

991

Figure 93.37: You can organize dropdownmenu items into groups.

label="Inputs"

searchable="<%= true %>"

/>

Menu items can also contain icons. To add an icon to a menu item, use the setIcon()method.
Below is an example:

navigationItem.setIcon("check-circle-full")

Corresponding taglib:

<clay:dropdown-menu

items="<%= dropdownsDisplayContext.getIconDropdownItems() %>"

itemsIconAlignment="left"

label="Icons"

/>

Actions Menus

Basic actions menu:

<clay:dropdown-actions

items="<%= dropdownsDisplayContext.getDefaultDropdownItems() %>"

/>

992

Figure 93.38: Inputs can be included in dropdownmenus.

An actions menu can also display help text to the user:

<clay:dropdown-actions

buttonLabel="More"

buttonStyle="secondary"

caption="Showing 4 of 32 Options"

helpText="You can customize this menu or see all you have by pressing \"more\"."

items="<%= dropdownsDisplayContext.getDefaultDropdownItems() %>"

/>

Clay taglibs make it easy to add dropdown menus and action menus to your apps.

Related Topics

Clay Form Elements
Clay Navigation Bars

993

Figure 93.39: Icons can be included in dropdownmenus.

Figure 93.40: You can also create Actions menus with Clay taglibs.

994

Figure 93.41: You can provide help text in Actions menus.

995

Clay Progress Bars

93.6 Clay Form Elements

The Liferay Clay tag library provides several tags for creating form elements. An example of each
tag is shown below.

Checkbox

Checkboxes give the user a true or false input.

<clay:checkbox

checked="<%= true %>"

hideLabel="<%= true %>"

label="My Input"

name="name"

/>

Attributes:
checked: Whether the checkbox is checked
disabled: Whether the checkbox is enabled
hideLabel: Whether to display the checkbox label
indeterminate: Checkbox variable for multiple selection
label: The checkbox’s label
name: The checkbox’s name

Figure 93.42: Clay taglibs provide checkboxes.

Radio

A radio button lets the user select one choice from a set of options in a form.

<clay:radio

checked="<%= true %>"

hideLabel="<%= true %>"

label="My Input"

name="name"

/>

Attributes:
checked: Whether the radio button is checked
hideLabel: Whether to display the radio button label
disabled: Whether the radio button is enabled
label: The radio button’s label
name: The radio button’s name

996

Figure 93.43: Clay taglibs provide radio buttons.

Selector

A selector gives the user a select box with a set of options to choose from.
The Java scriplet below creates eight dummy options for the selector:

<%

List<Map<String, Object>> options = new ArrayList<>();

for (int i = 0; i < 8; i++) {

Map<String, Object> option = new HashMap<>();

option.put("label", "Sample " + i);

option.put("value", i);

options.add(option);

}

%>

<clay:select

label="Regular Select Element"

name="name"

options="<%= options %>"

/>

If you want let users select multiple options at once, set the multiple attribute to true:

<clay:select

label="Multiple Select Element"

multiple="<%= true %>"

name="name"

options="<%= options %>"

/>

Attributes:
disabled: Whether the selector is enabled label: The selector’s labelmultiple: Whether multi-

ple options can be selected name: The selector’s name
Now you know how to use Clay taglibs to add common form elements to your app!

Related Topics

Clay Buttons
Clay Icons
Clay Labels and Links

93.7 Clay Icons

The Liferay Clay taglibs provide several icons that you can use in your apps. Use the clay:icon tag
and specify the icon with the symbol attribute:

<clay:icon symbol="folder" />

997

Figure 93.44: Clay taglibs provide select boxes.

998

Figure 93.45: You can let users select multiple options from the select menu.

Figure 93.46: You can include icons in your app with the Clay taglib.

The full list of icons is shown below:
The Liferay Clay taglibs also provide a set of language flag icons that you can use in your app.

The full list of language flags is shown below:

Related Topics

Clay Badges
Clay Stickers
Clay Icon Component

93.8 Clay Labels and Links

Liferay Clay taglibs provide tags for creating labels and links in your app. This tutorial shows how
to add both of these UI elements to your apps.

Labels

The Liferay Clay taglibs provide a few different labels for your app. Use the clay:label tag to add
a label to your app. You can create color-coded labels, removable labels, and labels that contain
links. The sections below demonstrate all of these options.

999

https://v2.clayui.com/docs/components/icons.html

Figure 93.47: The Clay taglib gives you access to several Liferay DXP icons.

Figure 93.48: You can include language flags in your apps.

1000

Color-coded Labels

The Liferay Clay labels come in four different colors: dark-blue for info, light-gray for status, orange
for pending, red for rejected, and green for approved.

Info labels are dark-blue, and since they stand out a bit more than status labels, they are best
for conveying general information. To use an info label, set the style attribute to info:

<clay:label label="Label text" style="info" />

Figure 93.49: Info labels convey general information.

Status labels are light-gray, and due to their neutral color, they are best for conveying basic
information. Status labels are the default label and therefore require no style attribute:

<clay:label label="Status" />

Figure 93.50: Status labels are the least flashy and best for displaying basic information.

Warning labels are orange, and due to their color, they are best for conveying awarningmessage.
To use a warning label, set the style attribute to warning:

<clay:label label="Pending" style="warning" />

Figure 93.51: Warning labels notify the user of issues, but nothing app breaking.

Danger labels are red and indicate that something is wrong or has failed. To use a danger label,
set the style attribute to danger:

<clay:label label="Rejected" style="danger" />

Success labels are green and indicate that something has completed successfully. To use a
success label, set the style attribute to success:

<clay:label label="Approved" style="success" />

Labels can also be bigger. Set the size attribute to lg to display large labels:

<clay:label label="Approved" size="lg" style="success" />

1001

Figure 93.52: Danger labels convey a sense of urgency that must be addressed.

Figure 93.53: Success labels indicate a successful action.

Removable Labels

If you want to let a user close a label (e.g. a temporary notification), you can make the label
removable by setting the closeable attribute to true.

<clay:label closeable="<%= true %>" label="Normal Label" />

Figure 93.54: Labels can be removable.

Labels with Links

You can make a label a link by adding the href attribute to it just as you would an anchor tag:

<clay:label href="#" label="Label Text" />

Figure 93.55: Labels can also be links.

Links

You can add traditional hyperlinks to your app with the <clay:link> tag:

<clay:link href="#" label="link text" />

Now you know how to add links and labels to your apps!

1002

Figure 93.56: Clay taglibs also provide link elements.

Related Topics

Clay Badges
Clay Cards
Clay Form Elements

93.9 Clay Management Toolbar

The Management Toolbar gives administrators control over search container results in their apps.
It lets you filter, sort, and choose a view type for search results, so you can quickly identify the
document, web content, asset entry, or whatever you’re looking for. The Management Toolbar is
fully customizable, so you can implement all the controls or just the ones your app requires.

Figure 93.57: The Management ToolBar lets the user customize how the app displays content.

To create a management toolbar, use the clay:management-toolbar taglib. The toolbar contains
a few key sections. Each section is grouped and configured using different attributes. These
attributes are described in more detail below.

Using a Display Context to Configure the Management Toolbar

If you’re using a Display Context—a separate class to configure your display options for your
management toolbar—to define all or some of the configuration options for the toolbar, you can
specify the Display Context with the displayContext attribute. An example is shown below:

<clay:management-toolbar

displayContext="<%= viewUADEntitiesManagementToolbarDisplayContext %>"

/>

You can see an example use case of a Display Context in the Filtering and Sorting Items with the
Management Toolbar tutorial. A Display Context is not required for a management toolbar’s con-
figuration. You can provide as much or as little of the configuration options for your management
toolbar through the Display Context as you like.

1003

Checkbox and Actions

The actionItems, searchContainerId, selectable, and totalItems attributes let you include a checkbox
in the toolbar to select all search container results and run bulk actions on them. Actions and total
items display when an individual result is checked, or when the master checkbox is checked in the
toolbar.

actionItems: The list of dropdown items to display when a result is checked or the master
checkbox in the Management Toolbar is checked. You can select multiple results between pages.
The Management Toolbar keeps track of the number of selected results for you.

searchContainerId: The ID of the search container connected to the Management Toolbar
selectable: Whether to include a checkbox in the Management Toolbar
totalItems: The total number of items across pagination. This number displays when one or

multiple items are selected.
An example configuration is shown below:

actionItems="<%=

new JSPDropdownItemList(pageContext) {

{

add(

dropdownItem -> {

dropdownItem.setHref("#edit");

dropdownItem.setLabel("Edit");

});

add(

dropdownItem -> {

dropdownItem.setHref("#download");

dropdownItem.setIcon("download");

dropdownItem.setLabel("Download");

dropdownItem.setQuickAction(true);

});

add(

dropdownItem -> {

dropdownItem.setHref("#delete");

dropdownItem.setLabel("Delete");

dropdownItem.setIcon("trash");

dropdownItem.setQuickAction(true);

});

}

}

%>"

Action items are listed in the Actions menu, along with the number of items selected across
pagination.

Figure 93.58: Actions are also listed in the Management Toolbar’s dropdownmenu when an item, multiple items, or the master checkbox is checked.

If an action has an icon specified, such as the Delete and Download actions in the example
above, the icon is displayed next to the action menu as well.

1004

Figure 93.59: The Management Toolbar keeps track of the results selected and displays the actions to execute on them.

Filtering and Sorting Search Results

The filterItems, sortingOrder, and sortingURL attributes let you filter and sort search container
results. Filtering and sorting are grouped together in one convenient dropdown menu.

filterItems: Sets the search container’s filtering options. This filter should be included in all
control panel applications. Filtering options can include sort criteria, sort ordering, and more.

sortingOrder: The current sorting order: ascending or descending.
sortingURL: The URL to change the sorting order
The example below adds two filter options and two sorting options:

filterItems="<%=

new DropdownItemList(_request) {

{

addGroup(

dropdownGroupItem -> {

dropdownGroupItem.setDropdownItemList(

new DropdownItemList(_request) {

{

add(

dropdownItem -> {

dropdownItem.setHref("#1");

dropdownItem.setLabel("Filter 1");

});

add(

dropdownItem -> {

dropdownItem.setHref("#2");

dropdownItem.setLabel("Filter 2");

});

}

}

);

dropdownGroupItem.setLabel("Filter By");

});

addGroup(

dropdownGroupItem -> {

dropdownGroupItem.setDropdownItemList(

new DropdownItemList(_request) {

{

add(

dropdownItem -> {

dropdownItem.setHref("#3");

dropdownItem.setLabel("Order 1");

});

add(

dropdownItem -> {

dropdownItem.setHref("#4");

dropdownItem.setLabel("Order 2");

});

}

}

1005

);

dropdownGroupItem.setLabel("Order By");

});

}

}

%>"

Figure 93.60: You can also sort and filter search container results.

Search Form

The clearResultsURL, searchActionURL, searchFormName, searchInputName, and searchValue attributes
let you configure the search form. The main portion of the Management Toolbar is reserved for
the search form.

clearResultsURL: The URL to reset the search
searchActionURL: The action URL to send the search form
searchFormName: The search form’s name
searchInputName: The search input’s name
searchValue: The search input’s value
An example configuration is shown below:

<clay:management-toolbar

clearResultsURL="<%= searchURL %>"

disabled="<%= isDisabled %>"

namespace="<%= renderResponse.getNamespace() %>"

searchActionURL="<%= searchURL %>"

searchFormName="fm"

searchInputName="<%= DisplayTerms.KEYWORDS %>"

searchValue="<%= ParamUtil.getString(request, searchInputName) %>"

selectable="<%= false %>"

totalItems="<%= totalItems %>"

/>

Info Panel

The infoPanelId and showInfoButton attributes let you add a retractable sidebar panel that displays
additional information related to a search container result.

infoPanelId: The ID of the info panel to toggle
showInfoButton: Whether to show the info button
In the example configuration below, the showInfoButton attribute is provided in the Display

Context—specified with the displayContext attribute—and the infoPanelId is explicitly set in the
JSP:

1006

Figure 93.61: The search form comprises most of the Management Toolbar, letting users search through the search container results.

<clay:management-toolbar

displayContext="<%= journalDisplayContext %>"

infoPanelId="infoPanelId"

namespace="<%= renderResponse.getNamespace() %>"

searchContainerId="<=% searchContainerId %>"

/>

Figure 93.62: The info panel keeps your UI clutter-free.

1007

View Types

The viewTypes attribute specifies the display options for the search container results. There are
three display options to choose from:

Cards: Displays search result columns on a horizontal or vertical card.

Figure 93.63: The Management Toolbar’s icon display view gives a quick summary of the content’s description and status.

List: Displays a detailed description along with summarized details for the search result
columns.

Figure 93.64: The Management Toolbar’s List view type gives the content’s full description.

Table: The default view. Lists the search result columns from left to right.
An example configuration is shown below:

viewTypes="<%=

new JSPViewTypeItemList(pageContext, baseURL, selectedType) {

{

addCardViewTypeItem(

viewTypeItem -> {

viewTypeItem.setActive(true);

viewTypeItem.setLabel("Card");

});

addListViewTypeItem(

viewTypeItem -> {

viewTypeItem.setLabel("List");

1008

Figure 93.65: The Management Toolbar’s Table view type list the content’s information in individual columns.

});

addTableViewTypeItem(

viewTypeItem -> {

viewTypeItem.setLabel("Table");

});

}

}

%>"

While the example above shows how to configure the view types in the JSP, you must also
specify when to use each view type.

Figure 93.66: : The Management Toolbar offers three view type options.

Creation Menu

The creationMenu attribute creates an add menu button for one or multiple items. It’s used for
creating new entities (e.g. a new blog entry).

Use the addPrimaryDropdownItem()method to add the top level items to the dropdown menu, or
use the addFavoriteDropdownItem()method to add secondary items to the dropdown menu.

The example configuration below adds two primary creation menu items and two secondary
creation menu items:

creationMenu="<%=

new JSPCreationMenu(pageContext) {

{

addPrimaryDropdownItem(

dropdownItem -> {

dropdownItem.setHref("#1");

dropdownItem.setLabel("Sample 1");

1009

});

addPrimaryDropdownItem(

dropdownItem -> {

dropdownItem.setHref("#2");

dropdownItem.setLabel("Sample 2");

});

addFavoriteDropdownItem(

dropdownItem -> {

dropdownItem.setHref("#3");

dropdownItem.setLabel("Favorite 1");

});

addFavoriteDropdownItem(

dropdownItem -> {

dropdownItem.setHref("#4");

dropdownItem.setLabel("Other item");

});

}

};

%>"

Figure 93.67: : The Management Toolbar lets you optionally add a Creation Menu for creating new entities.

Related Topics

Clay Dropdown Menus and Action Menus
Clay Icons
Clay Navigation Bars

93.10 Clay Navigation Bars

Similar to dropdown menus, navigation bars display a list of navigation items. The key difference
is navigation bars are displayed in a horizontal bar with all navigation items visible at all times.
The navigation bar also indicates the active navigation item with an underline. Navigation bars
come in two styles: white background with dark-grey text (default) and dark-grey background with
white text (inverted).

Default navigation bar:

<clay:navigation-bar

navigationItems="<%= navigationBarsDisplayContext.getNavigationItems() %>"

/>

Inverted navigation bar (set inverted attribute to true):

1010

Figure 93.68: You can include navigation bars in your apps.

<clay:navigation-bar

inverted="<%= true %>"

navigationItems="<%= navigationBarsDisplayContext.getNavigationItems() %>"

/>

Figure 93.69: Navigation bars can be inverted if you prefer.

Related Topics

Clay Dropdown Menus and Action Menus
Clay Form Elements
Clay Progress Bars

93.11 Clay Progress Bars

You can add progress bars to your app with the clay:progressbar tag. These indicate the completion
percentage of a task and come in three status styles: default (blue), warning (red), and complete

(green with checkmark). You can provide a minimum value (minValue) and a maximum value
(maxValue).

Default progress bar:

<clay:progressbar

maxValue="<%= 100 %>"

minValue="<%= 0 %>"

value="<%= 30 %>"

/>

Figure 93.70: You can include progress bars in your apps.

Warning progress bar:

<clay:progressbar

maxValue="<%= 100 %>"

minValue="<%= 0 %>"

status="warning"

value="<%= 70 %>"

/>

1011

Figure 93.71: warning progress bars indicate that the progress has not completed due to an error.

Complete progress bar:

<clay:progressbar

status="complete"

/>

Figure 93.72: The complete progress bar indicates the progress is complete.

Clay taglibs make it easy to track progress in your apps.

Related Topics

Clay Dropdown Menus and Action Menus
Clay Icons
Clay Navigation Bars

93.12 Clay Stickers

Whereas badges display numbers and labels display short information, stickers are small visual
indicators of the content (usually the content type). They can include a small label or a Liferay
icon, and they come in two shapes: circle and square.

Square sticker with label:

<clay:sticker label="JPG" />

Figure 93.73: You can include stickers in your apps.

Square sticker with icon:

<clay:sticker icon="picture" />

Circle sticker:

<clay:sticker label="JPG" shape="circle" />

Stickers can be positioned in any corner of a div. Indicate their position with the position

attribute: top-left, bottom-left, top-right, or bottom-right:

1012

Figure 93.74: Stickers can include icons.

Figure 93.75: You can also have circle stickers.

<div class="aspect-ratio">

<clay:sticker label="PDF" position="top-left" style="danger" />

</div>

Figure 93.76: You can specify the position of the sticker within a container.

Now you know how to use Clay stickers in your app!

Related Topics

Clay Badges
Clay Cards
Clay Icons

1013

CHAPTER 94

USING THE CHART TAGLIB IN YOUR PORTLETS

Lines, splines, bars, pies and more, the Chart tag Library provides everything you need to model
data. Each taglib gives you access to the corresponding Clay component. These components
contain the default configuration for the UI.

To use the Chart taglib in your apps, add the following declaration to your JSP:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

This section of tutorials covers the types of charts you can create with the Chart taglibs. Each
tutorial contains a set of chart examples along with sample Java data and a figure displaying the
rendered results.

94.1 Bar Charts

Bar charts contain multiple sets of data. A bar chart models the data in bars. Each data series
(createdwith the addColumns()method) is definedwith a new instance of the MultiValueColumn object,
which takes an ID and a set of values. This tutorial shows how to configure your portlet to use bar
charts.

Follow these steps:

1. Import the chart taglib along with the BarChartConfig and MultiValueColumn classes into your
bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.point.bar.BarChartConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.MultiValueColumn" %>

2. Add the following Java scriptlet to the top of your view.jsp:

<%

BarChartConfig _barChartConfig = new BarChartConfig();

_barChartConfig.addColumns(

new MultiValueColumn("data1", 100, 20, 30),

new MultiValueColumn("data2", 20, 70, 100)

1015

https://github.com/liferay/clay/tree/2.x-stable/packages/clay-charts/src
https://docs.liferay.com/portal/7.1-latest/apps/frontend-taglib-1.0.1/javadocs/com/liferay/frontend/taglib/chart/model/MultiValueColumn.html

Figure 94.1: You can create many different types of charts with the chart taglibs.

1016

);

%>

3. Add the <chart> taglib to the view.jsp, passing the _barChartConfig as the config attribute’s
value:

<chart:bar

config="<%= _barChartConfig %>"

/>

Figure 94.2: A bar chart models the data in bars.

Related Topics

Line Charts
Donut Charts
Combination Charts

94.2 Line Charts

Line charts contain multiple sets of data. A Line chart displays the data linearly. Each data series
(createdwith the addColumns()method) is definedwith a new instance of the MultiValueColumn object,
which takes an ID and a set of values. This tutorial shows how to configure your portlet to use line
charts.

1017

https://docs.liferay.com/portal/7.1-latest/apps/frontend-taglib-1.0.1/javadocs/com/liferay/frontend/taglib/chart/model/MultiValueColumn.html

Follow these steps:

1. Import the chart taglib along with the LineChartConfig and MultiValueColumn classes into your
bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.point.line.LineChartConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.MultiValueColumn" %>

2. Add the following Java scriptlet to the top of your view.jsp:

<%

LineChartConfig _lineChartConfig = new LineChartConfig();

_lineChartConfig.addColumns(

new MultiValueColumn("data1", 100, 20, 30),

new MultiValueColumn("data2", 20, 70, 100)

);

%>

3. Add the <chart> taglib to the view.jsp, passing the _lineChartConfig as the config attribute’s
value:

<chart:line

config="<%= _lineChartConfig %>"

/>

Related Topics

Spline Charts
Step Charts
Predictive Charts

94.3 Scatter Charts

Scatter charts contain multiple sets of data. A scatter chart models the data as individual points.
Each data series (created with the addColumns() method) is defined with a new instance of the
MultiValueColumn object, which takes an ID and a set of values. This tutorial shows how to configure
your portlet to use scatter charts.

Follow these steps:

1. Import the chart taglib along with the ScatterChartConfig and MultiValueColumn classes into
your bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.point.scatter.ScatterChartConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.MultiValueColumn" %>

2. Add the following Java scriptlet to the top of your view.jsp:

1018

https://docs.liferay.com/portal/7.1-latest/apps/frontend-taglib-1.0.1/javadocs/com/liferay/frontend/taglib/chart/model/MultiValueColumn.html

Figure 94.3: A Line chart displays the data linearly.

<%

ScatterChartConfig _scatterChartConfig = new ScatterChartConfig();

_scatterChartConfig.addColumns(

new MultiValueColumn("data1", 100, 20, 30),

new MultiValueColumn("data2", 20, 70, 100)

);

%>

3. Add the <chart> taglib to the view.jsp, passing the _scatterChartConfig as the config attribute’s
value:

<chart:scatter

config="<%= _scatterChartConfig %>"

/>

Related Topics

Line Charts
Step Charts
Predictive Charts

1019

Figure 94.4: A scatter chart models the data as individual points.

94.4 Spline Charts

Spline charts contain multiple sets of data. A spline chart connects points of data with a smooth
curve. Each data series (created with the addColumns() method) is defined with a new instance
of the MultiValueColumn object, which takes an ID and a set of values. This tutorial shows how to
configure your portlet to use spline charts.

Follow these steps:

1. Import the chart taglib along with the SplineChartConfig and MultiValueColumn classes into
your bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.point.spline.SplineChartConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.MultiValueColumn" %>

2. Add the following Java scriptlet to the top of your view.jsp:

<%

SplineChartConfig _splineChartConfig = new SplineChartConfig();

1020

https://docs.liferay.com/portal/7.1-latest/apps/frontend-taglib-1.0.1/javadocs/com/liferay/frontend/taglib/chart/model/MultiValueColumn.html

_splineChartConfig.addColumns(

new MultiValueColumn("data1", 100, 20, 30),

new MultiValueColumn("data2", 20, 70, 100)

);

%>

3. Add the <chart> taglib to the view.jsp, passing the _splineChartConfig as the config attribute’s
value:

<chart:spline

config="<%= _splineChartConfig %>"

/>

Figure 94.5: A spline chart connects points of data with a smooth curve.

You can also use an area spline chart if you prefer. An area spline chart highlights the area
under the spline curve.

<chart:area-spline

config="<%= _splineChartConfig %>"

/>

1021

Figure 94.6: An area spline chart highlights the area under the spline curve.

Related Topics

Line Charts
Step Charts
Scatter Charts

94.5 Step Charts

Step charts contain multiple sets of data. A step chart steps between the points of data, resembling
steps. Each data series (created with the addColumns()method) is defined with a new instance of the
MultiValueColumn object, which takes an ID and a set of values. This tutorial shows how to configure
your portlet to use step charts.

Follow these steps:

1. Import the chart taglib along with the StepChartConfig and MultiValueColumn classes into your
bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.point.step.StepChartConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.MultiValueColumn" %>

2. Add the following Java scriptlet to the top of your view.jsp:

<%

StepChartConfig _stepChartConfig = new StepChartConfig();

1022

https://docs.liferay.com/portal/7.1-latest/apps/frontend-taglib-1.0.1/javadocs/com/liferay/frontend/taglib/chart/model/MultiValueColumn.html

_stepChartConfig.addColumns(

new MultiValueColumn("data1", 100, 20, 30),

new MultiValueColumn("data2", 20, 70, 100)

);

%>

3. Add the <chart> taglib to the view.jsp, passing the _stepChartConfig as the config attribute’s
value:

<chart:step

config="<%= _stepChartConfig %>"

/>

Figure 94.7: A step chart steps between the points of data, resembling steps.

You can also use an area step chart if you prefer. An area step chart highlights the area covered
by a step graph.

<chart:area-step

config="<%= _stepChartConfig %>"

/>

1023

Figure 94.8: An area step chart highlights the area covered by a step graph.

Related Topics

Line Charts
Spline Charts
Scatter Charts

94.6 Combination Charts

Combination charts have minor differences from other charts. In a combination chart, you must
define the representation type of each data set: AREA, AREA_SPLINE, AREA_STEP, BAR, BUBBLE, DONUT,
GAUGE, LINE, PIE, SCATTER, SPLINE, or STEP. Each data set in a combination chart is an instance of the
TypedMultiValueColumn object. Each object receives an ID, the representation type, and values for
the data. This tutorial shows how to configure your portlet to use combination charts.

Follow these steps:

1. Import the chart taglib along with the CombinationChartConfig, MultiValueColumn, and
MultiValueColumn.Type classes into your bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.combination.CombinationChartConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.MultiValueColumn" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.TypedMultiValueColumn.Type" %>

2. Add the following Java scriptlet to the top of your view.jsp:

1024

https://docs.liferay.com/portal/7.1-latest/apps/frontend-taglib-1.0.1/javadocs/com/liferay/frontend/taglib/chart/model/TypedMultiValueColumn.html

<%

CombinationChartConfig _combinationChartConfig =

new CombinationChartConfig();

_combinationChartConfig.addColumns(

new TypedMultiValueColumn(

"data1", Type.BAR, 30, 20, 50, 40, 60, 50),

new TypedMultiValueColumn(

"data2", Type.BAR, 200, 130, 90, 240, 130, 220),

new TypedMultiValueColumn(

"data3", Type.SPLINE, 300, 200, 160, 400, 250, 250),

new TypedMultiValueColumn(

"data4", Type.LINE, 200, 130, 90, 240, 130, 220),

new TypedMultiValueColumn(

"data5", Type.BAR, 130, 120, 150, 140, 160, 150),

new TypedMultiValueColumn(

"data6", Type.AREA, 90, 70, 20, 50, 60, 120)

);

_combinationChartConfig.addGroup("data1", "data2");

%>

3. Add the <chart> taglib to the view.jsp, passing the _combinationChartConfig as the config at-
tribute’s value:

<chart:combination

config="<%= _combinationChartConfig %>"

/>

Figure 94.9: A combination chart displays a variety of data set types.

1025

Related Topics

Bar Charts
Line Charts
Geomap Charts

94.7 Donut Charts

Donut charts are percentage-based. A donut chart is similar to a pie chart, but it has a hole in
the center. Each data set must be defined as a new instance of the SingleValueColumn object. This
tutorial shows how to configure your portlet to use donut charts.

Follow these steps:

1. Import the chart taglib along with the DonutChartConfig and SingleValueColumn classes into
your bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.percentage.donut.DonutChartConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.SingleValueColumn" %>

2. Add the following Java scriptlet to the top of your view.jsp:

<%

DonutChartConfig _donutChartConfig = new DonutChartConfig();

_donutChartConfig.addColumns(

new SingleValueColumn("data1", 30),

new SingleValueColumn("data2", 70)

);

%>

3. Add the <chart> taglib to the view.jsp, passing the _donutChartConfig as the config attribute’s
value:

<chart:donut

config="<%= _donutChartConfig %>"

/>

Related Topics

Pie Charts
Gauge Charts
Bar Charts

1026

https://docs.liferay.com/portal/7.1-latest/apps/frontend-taglib-1.0.1/javadocs/com/liferay/frontend/taglib/chart/model/SingleValueColumn.html

Figure 94.10: A donut chart is similar to a pie chart, but it has a hole in the center.

94.8 Gauge Charts

Gauge charts are percentage-based. A gauge chart shows where percentage-based data falls over a
given range. Each data set must be defined as a new instance of the SingleValueColumn object. This
tutorial shows how to configure your portlet to use gauge charts.

Follow these steps:

1. Import the chart taglib along with the GaugeChartConfig and SingleValueColumn classes into
your bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.gauge.GaugeChartConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.SingleValueColumn" %>

2. Add the following Java scriptlet to the top of your view.jsp:

<%

GaugeChartConfig _gaugeChartConfig = new GaugeChartConfig();

_gaugeChartConfig.addColumn(

new SingleValueColumn("data1", 85.4)

);

%>

1027

https://docs.liferay.com/portal/7.1-latest/apps/frontend-taglib-1.0.1/javadocs/com/liferay/frontend/taglib/chart/model/SingleValueColumn.html

3. Add the <chart> taglib to the view.jsp, passing the _gaugeChartConfig as the config attribute’s
value:

<chart:gauge

config="<%= _gaugeChartConfig %>"

/>

Figure 94.11: A gauge chart shows where percentage-based data falls over a given range.

Related Topics

Pie Charts
Donut Charts
Bar Charts

94.9 Pie Charts

Pie charts are percentage-based. A pie chart models percentage-based data as individual slices of
pie. Each data set must be defined as a new instance of the SingleValueColumn object. This tutorial
shows how to configure your portlet to use pie charts.

Follow these steps:

1. Import the chart taglib along with the PieChartConfig and SingleValueColumn classes into your
bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.percentage.pie.PieChartConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.SingleValueColumn" %>

2. Add the following Java scriptlet to the top of your view.jsp:

1028

https://docs.liferay.com/portal/7.1-latest/apps/frontend-taglib-1.0.1/javadocs/com/liferay/frontend/taglib/chart/model/SingleValueColumn.html

<%

PieChartConfig _pieChartConfig = new PieChartConfig();

_pieChartConfig.addColumn(

new SingleValueColumn("data1", 85.4)

);

%>

3. Add the <chart> taglib to the view.jsp, passing the _pieChartConfig as the config attribute’s
value:

<chart:pie

config="<%= _pieChartConfig %>"

/>

Figure 94.12: A pie chart models percentage-based data as individual slices of pie.

Related Topics

Donut Charts
Gauge Charts
Spline Charts

1029

94.10 Geomap Charts

A Geomap Chart lets you visualize data based on geography, given a specified color range—a lighter
color representing a lower rank and a darker a higher rank usually. The default configuration comes
from the Clay charts geomap component: which ranges from light-blue (#b1d4ff) to dark-blue
(#0065e4) and ranks the geography based on the location’s pop_est value (specified in the geomap’s
JSON file).

Figure 94.13: A Geomap chart displays a heatmap representing the data.

This tutorial shows how to configure your portlet to use geomap charts. Follow these steps:

1. Import the chart taglib along with the GeomapConfig, GeomapColor, and GeomapColorRange classes
into your bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.geomap.GeomapConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.geomap.GeomapColor" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.geomap.GeomapColorRange" %>

2. Add the following Java scriptlet to the top of your view.jsp. The colors—a color for minimum
and a color for maximum—are completely configurable, as shown in the second example

1030

https://github.com/liferay/clay/blob/2.x-stable/packages/clay-charts/src/Geomap.js#L90-L104

configuration below: _geomapConfig2. Create a new GeomapColorRange and set the minimum
and maximum color values with the setMax() and setMin() methods. Specify the highlight
color—the color displayed when youmouse over an area—with the setSelected()method. use
the geomapColor.setValue()method to specify the JSON property to determine the geomap’s
ranking. Specify the JSON filepath with the setDataHREF() method. The example below
displays a geomap based on the length of each location’s name:

<%

GeomapConfig _geomapConfig1 = new GeomapConfig();

GeomapConfig _geomapConfig2 = new GeomapConfig();

GeomapColor geomapColor = new GeomapColor();

GeomapColorRange geomapColorRange = new GeomapColorRange();

geomapColorRange.setMax("#b2150a");

geomapColorRange.setMin("#ee3e32");

geomapColor.setGeomapColorRange(geomapColorRange);

geomapColor.setSelected("#a9615c");

geomapColor.setValue("name_len");

_geomapConfig2.setColor(geomapColor);

StringBuilder sb = new StringBuilder();

sb.append(_portletRequest.getScheme());

sb.append(StringPool.COLON);

sb.append(StringPool.SLASH);

sb.append(StringPool.SLASH);

sb.append(_portletRequest.getServerName());

sb.append(StringPool.COLON);

sb.append(_portletRequest.getServerPort());

sb.append(_portletRequest.getContextPath());

sb.append(StringPool.SLASH);

sb.append("geomap.geo.json");

_geomapConfig1.setDataHREF(sb.toString());

_geomapConfig2.setDataHREF(sb.toString());

%>

3. Add the <chart> taglib to the view.jsp along with any styling information for the geomap, such
as the size and margins as shown below:

<style type="text/css">

.geomap {

margin: 10px 0 10px 0;

}

.geomap svg {

width: 100%;

height: 500px !important;

}

</style>

<chart:geomap

config="<%= _geomapConfig1 %>"

id="geomap-default-colors"

/>

<chart:geomap

config="<%= _geomapConfig2 %>"

id="geomap-custom-colors"

/>

1031

Figure 94.14: Geomap charts can be customized to fit the look and feel you desire.

Related Topics

Bar Charts
Pie Charts
Combination Charts

94.11 Predictive Charts

Predictive charts let you visualize current data along with predicted/forecasted data within a given
value range.

This tutorial shows how to configure your portlet to use predictive charts. Follow these steps:

1. Import the chart taglib along with the PredictiveChartConfig and MixedDataColumn classes into
your bundle’s init.jsp file:

<%@ taglib prefix="chart" uri="http://liferay.com/tld/chart" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.predictive.PredictiveChartConfig" %>

<%@ page import="com.liferay.frontend.taglib.chart.model.MixedDataColumn" %>

1032

Figure 94.15: Predicted/forecasted data is surrounded by a highlighted area of possible values.

2. Add the following Java scriptlet to the top of your view.jsp. Add a MixedDataColumn object —a
column that supports both single number values and arrays of three numbers—for each
data series. Single number values define existing data. Arrays of numbers are used as the
prediction/forecast data and contain three numbers: a minimum value, an estimated value,
and amaximumvalue. The estimated value is rendered solid and surrounded by a highlighted
area with borders specified by the minimum and maximum values. This lets you visualize
your estimated values, while also giving you an idea of the possible value ranges. Use the
addDataColumn()method to add each data series:

<%

private PredictiveChartConfig _predictiveChartConfig = new

PredictiveChartConfig();

MixedDataColumn mixedDataColumn1 = new MixedDataColumn(

"data1", 130, 340, 200, 500, 80, 240, 40,

new Number[] {370, 400, 450}, new Number[] {210, 240, 270},

new Number[] {150, 180, 210}, new Number[] {60, 90, 120},

new Number[] {310, 340, 370}

);

_predictiveChartConfig.addDataColumn(mixedDataColumn1);

MixedDataColumn mixedDataColumn2 = new MixedDataColumn(

"data2", 210, 160, 50, 125, 230, 110, 90,

Arrays.asList(170, 200, 230), Arrays.asList(10, 40, 70),

Arrays.asList(350, 380, 410), Arrays.asList(260, 290, 320),

Arrays.asList(30, 70, 150)

);

_predictiveChartConfig.addDataColumn(mixedDataColumn2);

_predictiveChartConfig.setAxisXTickFormat("%b");

_predictiveChartConfig.setPredictionDate("2018-07-01");

List<String> timeseries = new ArrayList<>();

timeseries.add("2018-01-01");

1033

https://docs.liferay.com/portal/7.1-latest/apps/frontend-taglib-1.0.1/javadocs/com/liferay/frontend/taglib/chart/model/MixedDataColumn.html

timeseries.add("2018-02-01");

timeseries.add("2018-03-01");

timeseries.add("2018-04-01");

timeseries.add("2018-05-01");

timeseries.add("2018-06-01");

timeseries.add("2018-07-01");

timeseries.add("2018-08-01");

timeseries.add("2018-09-01");

timeseries.add("2018-10-01");

timeseries.add("2018-11-01");

timeseries.add("2018-12-01");

_predictiveChartConfig.setTimeseries(timeseries);

%>

Predictive charts have the following properties:

axisXTickFormat: An optional string which specfies the time formatting on the X axis. For
more information onwhich formats can be specified please refer to d3’s time format README.
This value is set using the setAxisXTickFormat()method.

Prediction Date: A date as a string that represents the point in the timeline from when the
forecast/prediction is shown. This value is parsed as a Date object in JavaScript and set using
the setPredictionDate()method.

Time Series: A timeline for the data which is displayed on the X axis of the chart. This value
is set as an array of dates (2018-01-01 for example).

3. Add the <chart> taglib to the view.jsp, passing the _predictiveChartConfig as the config at-
tribute’s value:

<chart:predictive

config="<%= _predictiveChartConfig %>"

/>

The area contained within the light-blue rectangle is the point from which the predicted/fore-
casted values are shown:

Figure 94.16: A predictive chart lets you visualize estimated future data alongside existing data.

1034

https://github.com/d3/d3-time-format/blob/master/README.md#locale_format

Related Topics

Line Charts
Combination Charts
Geomap Charts

94.12 Refreshing Charts to Reflect Real Time Data

The polling interval property is an optional property for all charts. It specifies the time in mil-
liseconds for the chart’s data to refresh. You can use this for charts that receive any kind of real
time data, such as a JSON file that changes periodically. This ensures that the chart is up to date,
reflecting the most recent data. This tutorial shows how to configure your portlet’s chart to reflect
real time data.

Use the setPollingInterval()method for your chart’s configuration object to specify the refresh
rate. An example view.jsp configuration is shown below:

<%

LineChartConfig _pollingIntervalLineChartConfig = new LineChartConfig();

_pollingIntervalLineChartConfig.put("data", "/foo.json");

_pollingIntervalLineChartConfig.setPollingInterval(2000);

%>

<chart:line

componentId="polling-interval-line-chart"

config="<%= _pollingIntervalLineChartConfig %>"

/>

Figure 94.17: The polling interval property lets you refresh charts at a given interval to reflect real time data.

Related Topics

Bar Charts
Scatter Charts
Donut Charts

1035

CHAPTER 95

USING AUI TAGLIBS

The AUI tag library provides tags that implement commonly used UI components. These tags make
your markup consistent, responsive, and accessible.

You can find a list of the available <aui> taglibs in the AUI taglibdocs. Each taglib has a list of
attributes that can be passed to the tag. Some of these are required, and some are optional. See the
taglibdocs to view the requirements for each tag. You’ll find the full markup generated by the tags
in their JSPs in their Liferay Github Repo folders.

To use the AUI taglib library in your apps, you must add the following declaration to your JSP:

<%@ taglib prefix="aui" uri="http://liferay.com/tld/aui" %>

The AUI taglib is also available via a macro for your FreeMarker theme templates and web
content templates. Follow this syntax:

<@liferay_aui["tag-name"] attribute="string value" attribute=10 />

This section of tutorials covers how to create UI components with the AUI taglibs. Each tutorial
contains code examples along with a screenshot of the resulting UI.

95.1 Building Formswith AUI Tags

The AUI tag library provides all the components you need to build forms for your applications. AUI
tags provide many benefits to standard form elements, such as custom namespacing, localization,
and even validation. They provide multiple attributes that let you create the experience you want
for your users.

This tutorial shows you how to build forms using AUI tags. Follow these steps to build a form:

1. Add the aui taglib declaration to your portlet’s view.jsp if you haven’t already:

<%@ taglib prefix="aui" uri="http://liferay.com/tld/aui" %>

2. Build your form using the tags shown below. Each tag links to the corresponding taglibdoc
that list the available attributes:

1037

https://docs.liferay.com/portal/7.1-latest/taglibs/util-taglib/aui/tld-summary.html
https://github.com/liferay/liferay-portal/tree/7.1.x/portal-web/docroot/html/taglib/aui
https://docs.liferay.com/portal/7.1-latest/taglibs/util-taglib/aui/tld-summary.html

• <aui:input>

• <aui:button>

• <aui:button-row>

• <aui:container>

• <aui:col>

• <aui:row>

• <aui:field-wrapper>

• <aui:fieldset>

• <aui:fieldset-group>

• <aui:form>

• <aui:select>

• <aui:option>

An example form is shown below:

<aui:form name="fm">

<aui:fieldset-group markupView="lexicon">

<aui:fieldset label="Personal Information">

<aui:row>

<aui:col width="50">

<aui:input label="First Name" name="firstName" type="text" />

</aui:col>

<aui:col width="50">

<aui:input label="Last Name" name="lastName" type="text" />

</aui:col>

</aui:row>

<aui:row>

<aui:col width="50">

<aui:input label="Username" name="username" type="text" />

</aui:col>

<aui:col width="50">

<aui:input label="Email" name="email" type="email" />

</aui:col>

</aui:row>

</aui:fieldset>

</aui:fieldset-group>

<aui:fieldset-group markupView="lexicon">

<aui:fieldset label="Miscellaneous">

<aui:input label="Hobbies" name="hobbies" type="textarea" />

<aui:input label="Receive email updates" name="emailUpdates" type="checkbox" />

</aui:fieldset>

</aui:fieldset-group>

<aui:button-row>

<aui:button name="submitButton" type="submit" value="Submit" />

</aui:button-row>

</aui:form>

3. Optionally add validation to your form fields. Nest a <aui:validator> tag inside each formfield
that you want to validate. Specify the validation rule with the <aui:validator> tag’s name at-
tribute (The available validation rules are shown in the table below). You can override a field’s
default validation error message with the errorMessage attribute. An example configuration
is shown below:

<aui:form name="myForm">

<aui:input name="password" id="password" label="Password"

required="true" />

<aui:input name="confirmPassword" id="password"

label="Confirm Password" required="true">

1038

https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/input.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/button.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/button-row.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/container.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/col.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/row.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/field-wrapper.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/fieldset.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/fieldset-group.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/form.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/select.html
https://docs.liferay.com/ce/portal/7.1-latest/taglibs/util-taglib/aui/option.html

Figure 95.1: The AUI tags provide everything you need to build forms for your applications.

<aui:validator name="equalTo"

errorMessage="The passwords much match. Please try again." >

'#<portlet:namespace>password'

</aui:validator>

</aui:input>

</aui:form>

The full list of available validation rules is shown in the table below:

Rule | Description | Default Error Message |

--- | --- | --- |

`acceptFiles` | Specifies that the field can only contain the file types given. Each file extension must be separated by a comma. For example </br> `<aui:validator name="acceptFiles">'jpg,png,tif,gif'</aui:validator>` | 'Please enter a file with a valid extension ([supported extensions]).' |

`alpha` | Permits alphabetic characters | 'Please enter only alpha characters.' |

`alphanum` | Permits alphanumeric characters | 'Please enter only alphanumeric characters.' |

`date` | Permits dates | 'Please enter a valid date.' |

`digits` | Permits digits | 'Please enter only digits.' |

`email` | Permits an email address | 'Please enter a valid email address.' |

`equalTo` | Permits contents equal to another field with the specified field ID. For example, </br> `<aui:validator name="equalTo">'#<portlet:namespace/>password'</aui:validator>` | 'Please enter the same value again.' |

`max` | Permits an integer value less than the specified value. For example, a max value of 20 is specified with </br> `<aui:validator name="max">20</aui:validator>` | 'Please enter a value less than or equal to [max value].' |

`maxLength` | Permits a maximum field length of the specified size (follows the same syntax as `max`) | 'Please enter no more than [max] characters.' |

`min` | Permits an integer value greater than the specified minimum value (follows the same syntax as `max`) | 'Please enter a value greater than or equal to [min value].' |

`minLength` | Permits a field length longer than the specified size (follows the same syntax as `max`). | 'Please enter at least [min] characters.' |

`number` | Permits numerical values | 'Please enter a valid number.' |

`range` | Permits a number between the specified range. For example, a range between 1.23 and 10 is specified here </br> `<aui:validator name="range">[1.23,10]</aui:validator>` | 'Please enter a value between [0] and [1].' |

`rangeLength` | Permits a field length between the specified range (follows the same syntax as `range`) | 'Please enter a value between [0] and [1] characters long.' |

1039

Figure 95.2: The AUI tags also provide validation for form fields.

`required` | Prevents a blank field | 'This field is required.' |

`url` | Permits a URL value | 'Please enter a valid URL.' |

Now you know how to build user-friendly forms for your applications.

Related Topics

Using the Chart Taglib in Your Portlets
Using Liferay Front-end Taglibs in Your Portlet
Using the Clay Taglib in Your portlets

1040

CHAPTER 96

MOBILE

Liferay provides two ways to create native Android and iOS apps that work with your Liferay
instances: Liferay Screens and the Liferay Mobile SDK. Liferay Screens does this via ready-to-use
components called Screenlets. Since Screenlets already contain the code required to call your Liferay
instance–and a complete UI–all you need to do is insert and configure them in your Android or
iOS app. Screens provides Screenlets for common tasks such as logging in, viewing web content,
adding DDL records, and more. You can also customize each Screenlet to fit your specific needs, or
write your own Screenlet. Behind the scenes, Screenlets use the LiferayMobile SDK to call Liferay’s
remote services.

The Liferay Mobile SDK is a lower-level tool that lets you manually invoke Liferay’s remote
services. You’ll need to use the Mobile SDK to write your own Screenlets, or call Liferay’s remote
services independent of Screens. In most cases, you’ll find that using Screens saves you time and
effort. For example, although you can use the Mobile SDK to implement login in your app, Screens
already provides this via Login Screenlet. There are certain cases, however, where using theMobile
SDK makes sense. For example, if you need to call one or more Liferay remote services but your
app’s UI doesn’t need to reflect this, then it doesn’t make sense to use Screenlets for this purpose.
Each Screenlet must contain a UI.

Regardless of your specific needs, Liferay has you covered with Liferay Screens and the Liferay
Mobile SDK. This section of tutorials contains the following sections that show you how to use
both:

• Android Apps with Liferay Screens

• iOS Apps with Liferay Screens

• Using Xamarin with Liferay Screens

• Liferay Mobile SDK

Venture forth to become a mobile guru!

1041

CHAPTER 97

ANDROID APPS WITH LIFERAY SCREENS

Liferay Screens speeds up and simplifies developing native mobile apps that use Liferay. Its power
lies in its Screenlets. A Screenlet is a visual component that you insert into your native app to
leverage Liferay Portal’s content and services. On Android, Screenlets are available to log in to
your portal, create accounts, submit forms, display content, and more. You can use any number of
Screenlets in your app; they’re independent, so you can use them in modular fashion. Screenlets
on Android also deliver UI flexibility with pluggable Views that implement elegant user interfaces.
Liferay’s reference documentation for Android Screenlets describes each Screenlet’s features and
Views.

You might be thinking, “These Screenlets sound like the greatest thing since taco Tuesdays,
but what if they don’t fit in with my app’s UI?What if they don’t behave exactly how I want them
to? What if there’s no Screenlet for what I want to do?” Fret not! You can customize Screenlets
to fit your needs by changing or extending their UI and behavior. You can even write your own
Screenlets! What’s more, Screens seamlessly integrates with your existing Android projects.

Screenlets leverage the Liferay Mobile SDK to make server calls. The Mobile SDK is a low-level
layer on top of the Liferay JSON API. To write your own Screenlets, you must familiarize yourself
with Liferay’s remote services. If no existing Screenlet meets your needs, consider customizing
an existing Screenlet, creating a Screenlet, or directly using the Mobile SDK. Creating a Screenlet
involves writing Mobile SDK calls and constructing the Screenlet; if you don’t plan to reuse or
distribute the implementation then you may want to forgo writing a Screenlet and, instead, work
with the Mobile SDK. A benefit of integrating an existing Screenlet into your app, however, is that
the Mobile SDK’s details are abstracted from you.

These tutorials show you how to use, customize, create, and distribute Screenlets for Android.
They show you how to create Views too. There’s even a tutorial that explains the nitty-gritty details
of the Liferay Screens architecture. No matter how deep you want to go, you’ll use Screenlets in no
time. Start by preparing your Android project to use Liferay Screens.

97.1 Preparing Android Projects for Liferay Screens

To use Liferay Screens, you must install it in your Android project and then configure it to com-
municate with your Liferay DXP instance. Note that Screens is released as an AAR file hosted in
jCenter.

1043

https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview
http://tools.android.com/tech-docs/new-build-system/aar-format

Figure 97.1: Here’s an app that uses a Liferay Screens Sign Up Screenlet.

There are three different ways to install Screens. This tutorial shows you each:

1. With Gradle: Gradle is the build system Android Studio uses to build Android projects. We
therefore recommend that you use it to install Screens.

2. With Maven
3. Manually

Note: After installation, you must configure Liferay Screens to communicate with your Liferay
DXP instance. The last section in this tutorial shows you how to do this.

Requirements

Liferay Screens for Android includes the Component Library (the Screenlets) and a sample project.
It requires the following software:

• Android Studio 3.0 or above.
• Android SDK 4.1 (API Level 16) or above.

1044

• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, or Liferay DXP
• Liferay Screens Compatibility Plugin (CE or DXP/EE, depending on your portal edition). This
app is preinstalled in Liferay CE Portal 7.0/7.1 CE and Liferay DXP.

• Liferay Screens source code.

Liferay Screens for Android uses EventBus internally.

Securing JSONWeb Services

Each Screenlet in Liferay Screens calls one or more of Liferay DXP’s JSON web services, which
are enabled by default. The Screenlet reference documentation lists the web services that each
Screenlet calls. To use a Screenlet, its web services must be enabled in the portal. It’s possible,
however, to disable the web services needed by Screenlets you’re not using. For instructions on
this, see the tutorial Configuring JSONWeb Services. You can also use Service Access Policies for
more fine-grained control over accessible services.

Using Gradle to Install Liferay Screens

To use Gradle to install Liferay Screens in your Android Studio project, you must edit your app’s
build.gradle file. Note that your project has two build.gradle files: one for the project and another
for the app module. You can find them under Gradle Scripts in your Android Studio project. This
screenshot highlights the app module’s build.gradle file:

Figure 97.2: The appmodule’s build.gradle file.

In the app module’s build.gradle file, add the following line of code inside the dependencies

element:

implementation 'com.liferay.mobile:liferay-screens:+'

Note that the + symbol tells Gradle to install the newest version of Screens. If your app relies on
a specific version of Screens, you can replace the + symbol with that version.

If you’re not sure where to add the above lines, see the below screenshot.
Once you edit build.gradle, a message appears at the top of the file that asks you to sync your app

with its Gradle files. Syncing the Gradle files incorporates the changes you make to them. Syncing
also downloads and installs any new dependencies, like the Liferay Screens dependency that you
just added. Sync the Gradle files now by clicking the Sync Now link in the message. The following
screenshot shows the top of an edited build.gradle file with the Sync Now link highlighted by a red
box:

1045

http://www.liferay.com/downloads/liferay-portal/available-releases
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726
https://github.com/greenrobot/EventBus

Figure 97.3: After editing the appmodule’s build.gradle file, click Sync Now to incorporate the changes in your app.

In the case of conflictwith the appcompat-v7or other support libraries (com.android.support:appcompat-
v7, com.android.support:support-v4), you have several options:

• Explicitly add the versions of the conflicting libraries you want to use. For example:

implementation 'com.android.support:design:27.0.2'

implementation 'com.android.support:support-media-compat:27.0.2'

implementation 'com.android.support:exifinterface:27.0.2'

• Remove the com.android.support:appcompat-v7 dependency from your project and use the one
embedded in Liferay Screens.

• Exclude the problematic library from Liferay Screens. For example:

implementation ('com.liferay.mobile:liferay-screens:+') {

exclude group: 'com.android.support:', module: 'design'

}

• Ignore the inspection, adding a comment like this:

//noinspection GradleCompatible

• Ignore the warning–Liferay Screens will work without problems.

Although we strongly recommend that you use Gradle to install Screens, the following section
shows you how to install Screens with Maven.

Using Maven to Install Liferay Screens

Note that we strongly recommend that you use Gradle to install Screens. It’s possible though to use
Maven to install Screens. Follow these steps to configure Liferay Screens in a Maven project:

1. Add the following dependency to your pom.xml:

<dependency>

<groupId>com.liferay.mobile</groupId>

<artifactId>liferay-screens</artifactId>

<version>LATEST</version>

</dependency>

2. Force a Maven update to download all the dependencies.

If Maven doesn’t automatically locate the artifact, you must add jCenter as a new repository in
your maven settings (e.g., .m2/settings.xml file):

1046

<profiles>

<profile>

<repositories>

<repository>

<id>bintray-liferay-liferay-mobile</id>

<name>bintray</name>

<url>http://dl.bintray.com/liferay/liferay-mobile</url>

</repository>

</repositories>

<pluginRepositories>

<pluginRepository>

<id>bintray-liferay-liferay-mobile</id>

<name>bintray-plugins</name>

<url>http://dl.bintray.com/liferay/liferay-mobile</url>

</pluginRepository>

</pluginRepositories>

<id>bintray</id>

</profile>

</profiles>

<activeProfiles>

<activeProfile>bintray</activeProfile>

</activeProfiles>

Nice work!

Manual Configuration in Gradle

Although we strongly recommend that you use Gradle to install Screens automatically, it’s possible
to use Gradle to install Screens manually. Follow these steps to use Gradle to install Screens and its
dependencies manually in your Android project:

1. Download the latest version of Liferay Screens for Android.

2. Copy the contents of Android/library into a folder outside your project.

3. In your project, configure a settings.gradle file with the paths to the library folders:

include ':core'

project(':core').projectDir = new File(settingsDir, '../../library/core')

project(':core').name = 'liferay-screens'

4. Include the required dependencies in your build.gradle file:

implementation project(':liferay-screens')

You can also configure the .aar binary files (in Android/dist) as local .aar file dependencies.
You can download all necessary files from jCenter.

To check your configuration, you can compile and execute a blank activity and import a Liferay
Screens class (like Login Screenlet).

Next, you’ll set up communication with Liferay DXP.

1047

https://github.com/liferay/liferay-screens/releases
https://bintray.com/liferay/liferay-mobile/liferay-screens/view

Configuring Communication with Liferay DXP

Before using Liferay Screens, youmust configure it to communicate with your Liferay DXP instance.
To do this, you must provide Screens the following information:

• Your Liferay DXP instance’s ID

• The ID of the site your app needs to communicate with

• Your Liferay DXP instance’s version

• Any other information required by specific Screenlets

Fortunately, this is straightforward. In your Android project’s res/values folder, create a new
file called server_context.xml. Add the following code to the new file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<!-- Change these values for your Liferay DXP installation -->

<string name="liferay_server">http://10.0.2.2:8080</string>

<string name="liferay_company_id">10155</string>

<string name="liferay_group_id">10182</string>

<integer name="liferay_portal_version">71</integer>

</resources>

As the above comment indicates, make sure to change these values to match your Liferay DXP
instance. The server address http://10.0.2.2:8080 is suitable for testing with Android Studio’s
emulator, because it corresponds to localhost:8080 through the emulator. If you’re using the
Genymotion emulator, you should, however, use address 192.168.56.1 instead of localhost.

The liferay_company_id value is your Liferay DXP instance’s ID. You can find it in your Liferay
DXP instance at Control Panel → Configuration → Virtual Instances. The instance’s ID is in the Instance
ID column. Copy and paste this value into the liferay_company_id value in server_context.xml.

The liferay_group_id value is the ID of the site your app needs to communicate with. To find this
value, first go to the site in your Liferay DXP instance that you want your app to communicate with.
In the Site Administration menu, select Configuration → Site Settings. The site ID is listed at the top of
the General tab. Copy and paste this value into the liferay_group_id value in server_context.xml.

The liferay_portal_version value 71 tells Screens that it’s communicating with a Liferay CE
Portal 7.1 or Liferay DXP 7.1 instance. Here are the supported liferay_portal_version values and
the portal versions they correspond to:

• 71: Liferay CE Portal 7.1 or Liferay DXP 7.1
• 70: Liferay CE Portal 7.0 or Liferay DXP 7.0
• 62: Liferay Portal 6.2 CE/EE

You can also configure Screenlet properties in your server_context.xml file. The example prop-
erties listed below, liferay_recordset_id and liferay_recordset_fields, enable DDL Form Screenlet
and DDL List Screenlet to interact with a Liferay DXP instance’s DDLs. You can see an additional
example server_context.xml file here.

1048

https://github.com/liferay/liferay-screens/blob/master/android/samples/bankofwesteros/src/main/res/values/server_context.xml

<!-- Change these values for your Liferay DXP installation -->

<string name="liferay_recordset_id">20935</string>

<string name="liferay_recordset_fields">Title</string>

Super! Your Android project’s ready for Liferay Screens.

Example Apps

As you use Screens to develop your apps, you may want to refer to some example apps that also use
it. There are two demo applications available:

• test-app: A showcase app containing all the currently available Screenlets.
• Westeros Bank: An example app that uses Screenlets to manage technical issues for the
Westeros Bank. It’s also available in Google Play.

Great! Now you’re ready to put Screens to use. The following tutorials show you how to do this.

Related Topics

Using Screenlets in Android Apps
Using Views in Android Screenlets
Preparing iOS Projects for Liferay Screens

97.2 Using Screenlets in Android Apps

You can start using Screenlets once you’ve prepared your project to use Liferay Screens. There are
plenty of Liferay Screenlets available and they’re described in the Screenlet reference documenta-
tion. It is very straightforward to use Screenlets. This tutorial shows you how to insert Screenlets
into your android app and configure them. You’ll be a Screenlet master in no time!

First, in Android Studio’s visual layout editor or your favorite editor, open your app’s layout
XML file and insert the Screenlet in your activity or fragment layout. The following screenshot, for
example, shows the Login Screenlet inserted in an activity’s FrameLayout.

Next, set the Screenlet’s attributes. If it’s a Liferay Screenlet, refer to the Screenlet reference
documentation to learn the Screenlet’s required and supported attributes. This screenshot shows
the attributes of the Login Screenlet being set:

To configure your app to listen for events the Screenlet triggers, implement the Screenlet’s
listener interface in your activity or fragment class. Refer to the Screenlet’s documentation to learn
its listener interface. Then register your activity or fragment as the Screenlet’s listener. The activity
class, for example, in the screenshot below, declares that it implements the Login Screenlet’s
LoginListener interface, and it registers itself to listen for the Screenlet’s events.

Make sure to implement all methods required by the Screenlet’s listener interface. For Liferay’s
Screenlets, the listener methods are listed in each Screenlet’s reference documentation. That’s all
there is to it! Awesome! Now you know how to use Screenlets in your Android apps.

Related Topics
Preparing Android Projects for Liferay Screens
Using Views in Android Screenlets
Creating Android Screenlets
Using Screenlets in iOS apps

1049

https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app
https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://play.google.com/store/apps/details?id=com.liferay.mobile.screens.bankofwesteros

Figure 97.4: Here’s the Login Screenlet in an activity’s layout in Android Studio.

Figure 97.5: You can set a Screenlet’s attributes via the app’s layout XML file.

1050

Figure 97.6: Implement the Screenlet’s listener in your activity or fragment class.

97.3 Using Views in Android Screenlets

You can use a Liferay Screens View to set a Screenlet’s look and feel independent of the Screenlet’s
core functionality. Liferay’s Screenlets come with several Views, and more are being developed
by Liferay and the community. The Screenlet reference documentation lists the Views available
for each Screenlet included with Screens. This tutorial shows you how to use Views in Android
Screenlets. It’s straightforward; you’ll master using Views in no time!

Views and View Sets

Before using Views, you should know what components make them up. Note that what follows is a
simple description, sufficient for learning how to use different Views. For a detailed description of
the View layer in Liferay Screens, see the tutorial Architecture of Liferay Screens for Android.

A View consists of the following items:
Screenlet class: A Java class that coordinates and implements the Screenlet’s functionality.

The Screenlet class contains attributes for configuring the Screenlet’s behavior, a reference to the
Screenlet’s View class, methods for invoking server operations, and more.

View class: A Java class that implements a View’s behavior. This class usually listens for the UI
components’ events.

Layout: An XML file that defines a View’s UI components. The View class is usually this file’s
root element. To use a View, youmust specify its layout in the Screenlet XML (you’ll see an example
of this shortly).

Note that because it contains a Screenlet class and a specific set of UI components, a View can
only be used with one particular Screenlet. For example, the Default View for Login Screenlet can
only be used with Login Screenlet. Multiple Views for several Screenlets can be combined into
a View Set. A View Set typically implements a similar look and feel for several Screenlets. This
lets an app use a View Set to present a cohesive look and feel. For example, the Bank ofWesteros
sample app uses the Westeros View Set’s Views with several Screenlets to present the red and white

1051

https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros/src/main

motif you can see here on Google Play. Liferay Screens for Android comes with the Default View
Set, but Liferay makes additional View Sets (e.g., Material, Lexicon, and Westeros) available in
jCenter. Anyone can create View Sets and publish them in public repositories like Maven Central
and jCenter.

To install View Sets besides Default, add them as dependencies in your project. The build.gradle
file code snippet here specifies the Material, Lexicon, andWesteros View Sets as dependencies:

dependencies {

...

implementation 'com.liferay.mobile:liferay-material-viewset:+'

implementation 'com.liferay.mobile:liferay-lexicon-viewset:+'

implementation 'com.liferay.mobile:liferay-westeros-viewset:+'

...

}

Here are the View Sets that Liferay currently provides for Screens:
Default: Comes standard with a Screenlet. It’s used by a Screenlet if no layout ID is specified

or if no View is found with the layout ID. The Default Views can be used as parent Views for your
customViews. Refer to the architecture tutorial for more details.

Material: DemonstratesViews built from scratch. It followsGoogle’sMaterial Design guidelines.
Refer to the View creation tutorial for instructions on creating your own Views.

Lexicon: Demonstrates Views built from scratch. It follows Liferay’s Lexicon Design guidelines.
Westeros: Customizes the behavior and appearance of the Westeros Bank demo app.
Now that you know about Views and View Sets, you’re ready to put them to use!

Using Views

To use a View in a Screenlet, specify the View’s layout as the liferay:layoutId attribute’s value
when inserting the Screenlet XML in an activity or fragment layout. For example, to use
Login Screenlet with its Material View, insert the Screenlet’s XML with liferay:layoutId set to
@layout/login_material:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

liferay:layoutId="@layout/login_material"

/>

The following links list the View layouts available in each View Set:

• Default
• Material
• Lexicon
• Westeros

If the View you want to use is part of a View Set, your app or activity’s theme must also in-
herit the theme that defines that View Set’s styles. For example, the following code in an app’s
res/values/styles.xml tells AppTheme.NoActionBar to use the Material View Set as its parent theme:

<resources>

<style name="AppTheme.NoActionBar" parent="material_theme">

<item name="colorPrimary">@color/colorPrimary</item>

<item name="colorPrimaryDark">@color/colorPrimaryDark</item>

1052

https://play.google.com/store/apps/details?id=com.liferay.mobile.screens.bankofwesteros
https://developer.android.com/design/material/index.html
https://lexicondesign.io/
https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/res/layout
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material/src/main/res/layout
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/lexicon/src/main/res/layout
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros/src/main/res/layout

<item name="colorAccent">@color/colorAccent</item>

<item name="windowActionBar">false</item>

<item name="windowNoTitle">true</item>

</style>

...

</resources>

To use the Default, Lexicon, or Westeros View Set, inherit default_theme, lexicon_theme or
westeros_theme, respectively.

That’s it! Great! Now you know how to use Views to spruce up your Android Screenlets. This
opens up a world of possibilities, like writing your own Views.

Related Topics

Preparing Android Projects for Liferay Screens
Using Screenlets in Android Apps
Creating Android Views
Architecture of Liferay Screens for Android
Using Themes in iOS Screenlets

97.4 Using Offline Mode in Android

Offline mode in Liferay Screens lets your apps function when connectivity is unavailable or in-
termittent. Even though the steady march of technology makes connections more stable and
prevalent, there are still plenty of places the Internet has trouble reaching. Areas with complex
terrain, including cities with large buildings, often lack stable connections. Remote areas typically
don’t have connections at all. Using Screens’s offline mode in your apps gives your users flexibility
in these situations.

This tutorial shows you how to use offline mode in Screenlets. For an explanation of how
offlinemode works, see the tutorial Architecture of OfflineMode in Liferay Screens. Offlinemode’s
architecture is the same on iOS and Android, although its use on these platforms differs.

Configuring Screenlets for Offline Mode

If you want to enable offline mode in any of your screenlets, you must configure the offlinePolicy

attribute when inserting the Screenlet’s XML in a layout. This attribute can take four possible
values:

• REMOTE_ONLY

• CACHE_ONLY

• REMOTE_FIRST

• CACHE_FIRST

For a description of these values, see the section Using Policies with Offline Mode in the offline
mode architecture tutorial. Note that each Screenlet behaves a bit differently with offline mode.
For specific details, see the Screenlet reference documentation.

1053

Handling Synchronization

Under some scenarios, values stored in the local cache need to be synchronized with the portal.
To do this, you need to use the CacheSyncService class. This class sends information from the local
cache to the portal. To register CacheSyncService with your app, you must add the following code to
your AndroidManifest.xml file:

<receiver android:name=".CacheReceiver">

<intent-filter>

<action android:name="com.liferay.mobile.screens.auth.login.success"/>

<action android:name="com.liferay.mobile.screens.cache.resync"/>

<action android:name="android.net.conn.CONNECTIVITY_CHANGE"/>

</intent-filter>

</receiver>

<service

android:name=".CacheSyncService"

android:exported="false"/>

This code registers the CacheReceiver and CacheSyncService components. The CacheReceiver is
invoked in the following scenarios:

• When a connectivity change occurs (for example, when the network connection is restored).
• When Login Screenlet successfully completes the login.
• When a specific resync intent is broadcasted. In this case, use context.sendBroadcast(new

Intent("com.liferay.mobile.screens.cache.resync"));.

The CacheSyncService performs the synchronization process when invoked from the above
receiver. This is currently an unassisted process. Future versions will include some kind of control
mechanism.

Related Topics

Architecture of Offline Mode in Liferay Screens
Using Screenlets in Android Apps
Using Offline Mode in iOS
Using Screenlets in iOS Apps

1054

CHAPTER 98

ARCHITECTURE OF LIFERAY SCREENS FOR ANDROID

Liferay Screens applies architectural ideas fromModel View Presenter, Model View ViewModel,
and VIPER. Screens isn’t considered a canonical implementation of these architectures, because it
isn’t an app, but it borrows from them to separate presentation layers from business-logic. This
tutorial explains Screen’s high-level architecture, its components’ low-level architecture, and the
Android Screenlet lifecycle. Now go ahead and get started examining Screens’s building blocks!

98.1 High-Level Architecture

Liferay Screens for Android is composed of a Core, a Screenlet layer, a View layer, Interactors, and
Server Connectors. Interactors are technically part of the core, but are worth covering separately.
They facilitate interaction with both local and remote data sources, as well as communication
between the Screenlet layer and the Liferay Mobile SDK.

Each component is described below.
Core: includes all the base classes for developing other Screens components. It’s a micro-

framework that lets developers write their own Screenlets, Views, and Interactors.
Screenlets: Java view classes for inserting into any activity or fragment view hierarchy. They

render a selected layout in the runtime and in Android Studio’s visual editor and react to UI events,
sending any necessary server requests. You can set a Screenlet’s properties from its layout XML
file and Java classes. The Screenlets bundled with Liferay Screens are known collectively as the
Screenlet Library.

Server Connectors: a collection of classes that interact with different Liferay DXP versions.
These classes abstract away the complexity of communicating with different versions. This allows
the developer to call API methods and the correct Interactor without worrying about the specific
Liferay DXP version.

Interactors: implement specific use cases for communicating with servers. They can use local
and remote data sources. Most Interactors use the Liferay Mobile SDK to exchange data with a
Liferay instance. If a user action or use case needs to execute more than one query on a local or
remote store, the sequence is done in the corresponding Interactor. If a Screenlet supports more
than one user action or use case, an Interactor must be created for each. Interactors are typically
bound to one specific Liferay version, and instantiated by a Server Connector. Interactors run in a
background thread and can therefore perform intensive operations without blocking the UI thread.

1055

http://en.wikipedia.org/wiki/Model-view-presenter
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://www.objc.io/issue-13/viper.html

Figure 98.1: Here are the high-level components of Liferay Screens for Android. The dashed arrow connectors represent a “uses” relationship, in which a component uses
the component its pointing to.

Views: a set of layouts and accompanying custom view classes that present Screenlets to the
user.

Next, the core layer is described in detail.

Related Topics

Core Layer
Screenlet Layer
View Layer
Screenlet Lifecycle

98.2 Core Layer

The core layer is the micro-framework that lets developers write Screenlets in a structured and
isolated way. All Screenlets share a common structure based on the core classes, but each Screenlet
can have a unique purpose and communication API.

Here are the core’s main components:
Interactor: the base class for all Liferay Portal interactions and use cases that a Screenlet

supports. Interactors call services through the Liferay Mobile SDK and receive responses asyn-
chronously through the EventBus, eventually changing a View’s state. Their actions can vary in
complexity, from performing simple algorithms to requesting data asynchronously from a server
or database. A Screenlet can have multiple Interactors, each dedicated to supporting a specific
operation.

BaseScreenlet: the base class for all Screenlet classes. It receives user events from a Screenlet’s
View, instantiates and calls the Interactors, and then updates the View with operation results.
Classes that extend it can override its template methods:

1056

https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/base/interactor/Interactor.java
https://github.com/greenrobot/EventBus
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/base/BaseScreenlet.java
http://www.oodesign.com/template-method-pattern.html

Figure 98.2: Here’s the core layer of Liferay Screens for Android.

• createScreenletView: typically inflates the Screenlet’s View and gets the attribute values from
the XML definition.

• createInteractor: instantiates an Interactor for the specified action. If a Screenlet only supports
one Interactor type then that type of Interactor is always instantiated.

• onUserAction: runs the Interactor associated with the specified action.

Screenlet View: implements the Screenlet’s UI. It’s instantiated by the Screenlet’s
createScreenletView method. It renders a specific UI using standard layout files and up-
dates the UI with data changes. When developing your own Views that extend a parent View, you
can read the parent Screenlet’s properties or call its methods from this class.

EventBus: notifies the Interactor when asynchronous operations complete. It decouples the
AsyncTask class instance from the activity life cycle, to avoid problems typically associated with
AsyncTask instances.

LiferayMobile SDK: calls a Liferay instance’s remote services in a type-safe and transparent
way.

SessionContext: a singleton class that holds the logged in user’s session. Apps can use an
implicit login, invisible to the user, or a login that relies on explicit user input to create the session.
User logins can be implemented with the Login Screenlet. This is explained in detail here.

LiferayServerContext: a singleton object that holds server configuration parameters. It’s
loaded from the server_context.xml file, or from any other XML file that overrides the keys defined

1057

https://github.com/greenrobot/EventBus
https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/context/SessionContext.java
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/context/LiferayServerContext.java

in the server_context.xml.
server_context.xml: specifies the default server, companyId (Liferay instance ID) and groupId

(site ID). You can also configure other Screens parameters in this file, such as the current Liferay
version (with the attribute liferay_portal_version) or an alternative ServiceVersionFactory to access
custom backends.

LiferayScreensContext: a singleton object that holds a reference to the application context.
It’s used internally where necessary.

ServiceVersionFactory: an interface that defines all the server operations supported in Liferay
Screens. This is created and accessed through a ServiceProvider that creates the Server Connectors
needed to interact with a specific Liferay version. The ServiceVersionFactory is an implementation
of an Abstract Factory pattern.

Now that you know what makes up the core layer, you’re ready to learn the Screenlet layer’s
details.

Related Topics

High-Level Architecture
Screenlet Layer
View Layer
Screenlet Lifecycle

98.3 Screenlet Layer

The Screenlet layer contains the Screenlets available in Liferay Screens for Android. The following
diagram uses Screenlet classes prefixed with MyScreenlet to show the Screenlet layer’s relationship
with the core, View, and Interactor components.

Screenlets are comprised of several Java classes and an XML descriptor file:
MyScreenletViewModel: an interface that defines the attributes shown in the UI. It typically

accounts for all the input and output values presented to the user. For instance, LoginViewModel
includes attributes like the user name and password. The Screenlet can read the attribute values,
invoke Interactor operations, and change these values based on operation results.

MyScreenlet: a class that represents the Screenlet component the app developer interacts with.
It includes the following things:

• Attribute fields for configuring the Screenlet’s behavior. They are read in the Screenlet’s
createScreenletViewmethod and their default values can optionally be set there too.

• A reference to the Screenlet’s View, specified by the liferay:layoutId attribute’s value. Note:
a View must implement the Screenlet’s ViewModel interface.

• Any number of methods for invoking Interactor operations. You can optionally make them
public for app developers to call. They can also handle UI events received in the view class
through a regular listener (such as Android’s OnClickListener) or events forwarded to the
Screenlet via the performUserActionmethod.

• An optional (but recommended) listener object for the Screenlet to call on a particular event.

MyScreenletInteractor: implements an end-to-end use case that communicates with a server
or consumes a Liferay service. It might perform several intermediate steps. For example, it might
send a request to a server, compute a local value based on the response, and then send this value

1058

https://github.com/liferay/liferay-screens/blob/develop/android/library/core/src/main/res/values/server_context.xml
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/context/LiferayScreensContext.java
https://github.com/liferay/liferay-screens/blob/develop/android/library/core/src/main/java/com/liferay/mobile/screens/util/ServiceVersionFactory.java
https://github.com/liferay/liferay-screens/blob/develop/android/library/core/src/main/java/com/liferay/mobile/screens/util/ServiceProvider.java
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login/view/LoginViewModel.java

Figure 98.3: This diagram illustrates the Android Screenlet layer’s relationship to other Screens components.

to a different server. On completing an interaction, the Interactor must notify its listeners, one
of which is typically the Screenlet class instance. The number of Interactors a Screenlet requires
depends on the number of server use cases it supports. For example, the Login Screenlet class only
supports one use case (log in the user), so it has only one Interactor. The DDL Forms Screenlet
class, however, supports several use cases (load the form, load a record, submit the form, etc.), so
it uses a different Interactor class for each use case.

MyScreenletConnector62 andMyScreenletConnector70: the classes that create the Interactors
required to communicate with a specific Liferay version. The ServiceProvider creates a singleton
ServiceVersionFactory that returns the right Connector.

MyScreenletDefaultView: a class that renders the Screenlet’s UI with the default layout. The
class in Figure 3, for example, belongs to the Default View set. The View object and the layout file
communicate using standard mechanisms, like a findViewByIdmethod or a listener object. User
actions are received by a specified listener (for example, OnClickListener) and then passed to the
Screenlet object via the performUserActionmethod.

myscreenlet_default.xml: an XML file that specifies how to render the Screenlet’s View. Here’s

1059

https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login/LoginScreenlet.java
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/ddl/form/DDLFormScreenlet.java

a skeleton of a Screenlet’s layout XML file:

<?xml version="1.0" encoding="utf-8"?>

<com.your.package.MyScreenletView

xmlns:android="http://schemas.android.com/apk/res/android">

<!-- Put your regular components here: EditText, Button, etc. -->

</com.your.package.MyScreenletView>

Refer to the tutorial Creating Android Screenlets for more Screenlet details. Next, the View
layer’s details are described.

Related Topics

High-Level Architecture
Core Layer
View Layer
Screenlet Lifecycle

98.4 View Layer

The View layer lets developers set a Screenlet’s look and feel. Each Screenlet’s liferay:layoutId
attribute specifies its View. A View consists of a Screenlet class, view class, and layout XML file.
The layout XML file specifies the UI components, while the Screenlet class and view class control
the View’s behavior. By inheriting one or more of these View layer components from another View,
the different View types allow varying levels of control over a Screenlet’s UI design and behavior.

There are several different View types:
Themed: presents the same structure as the current View, but alters the theme colors and

tints of the View’s resources. All existing Views can be themed with different styles. The View’s
colors reflect the current value of the Android color palette. If you want to use one View Set with
another View Set’s colors, you can use those colors in your app’s theme (e.g. colorPrimary_default,
colorPrimary_material, colorPrimary_westeros).

Child: presents the same behavior and UI components as its parent, but can change the UI
components’ appearance and position. A Child View specifies visual changes in its own layout
XML file; it inherits the parent’s view class and Screenlet class. It can’t add or remove any UI
components. The parent must be a Full View. Creating a Child View is ideal when you only need to
make visual changes to an existing View. For example, you might create a Child View for Login
Screenlet’s Default View to set new positions and sizes for the standard text boxes.

Extended: inherits the parent View’s behavior and appearance, but lets you change and add
to both. You can do so by creating a custom view class and a new layout XML file. An Extended
View inherits all the parent View’s other classes, including its Screenlet, listeners, and Interactors;
if you need to customize any of them, you must create a Full View to do so. An Extended View’s
parent must be a Full View. Creating an Extended View is ideal for adding, removing, or changing
an existing View’s UI components. For example, you can extend the Login Screenlet’s Default View
to present different UI components for the user name and password fields.

Full: provides a complete standalone View. It doesn’t inherit another View’s UI components or
behavior. When creating a Full View, you must therefore create its Screenlet class, view class, and
layout XML file. You should create a Full Viewwhen you don’t need to inherit another View or when

1060

https://www.google.com/design/spec/style/color.html#color-color-palette

you need to alter the core behavior of a Screenlet by customizing its listeners or calling custom
Interactors. For example, you could implement a Full View with a new Interactor for calling a
different Liferay Portal instance. Default Views are Full Views.

Figure 98.4: This diagram illustrates the View layer of Liferay Screens for Android.

Liferay Screens Views are organized into View sets that contain Views for several Screenlets.
Liferay’s available View sets are listed here:

• Default: a mandatory View Set supplied by Liferay. It’s used by a Screenlet if no layout ID is
specified or if no View is found with the layout ID. The Default View Set uses a neutral, flat
white and blue design with standard UI components. In the Login Screenlet, for example,
the Default View uses standard text boxes for the user name and password, but the text boxes
are styled with the Default View’s flat white and blue design. You can customize this View
Set’s properties, such as its components’ colors, positions, and sizes. See the Default View
Set’s styles.xml file for specific values. Since the Default View Set contains Full Views, you
can use them to create your own custom Child and Extended Views.

• Material: the View Set containing Views that conform to Android’s Material design guidelines.

• Westeros: the View Set containing Views for the Bank ofWesteros sample app.

For information on creating or customizing Views, see the tutorial Creating Android Views.
Great! Now you know how Liferay Screens for Android is composed. However, there’s some-

thing you should know before moving on: how Screenlets interact with the Android life cycle.

Related Topics

High-Level Architecture

1061

https://github.com/liferay/liferay-screens/tree/master/android/library/core/src/main/java/com/liferay/mobile/screens/viewsets/defaultviews
https://github.com/liferay/liferay-screens/tree/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/res/values/styles.xml
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material
https://developer.android.com/design/material/index.html
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros
https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros

Core Layer
Screenlet Layer
Screenlet Lifecycle

98.5 Screenlet Lifecycle

Liferay Screens automatically saves and restores Screenlets’ states using the Android SDKmeth-
ods onSaveInstanceState and onRestoreInstanceState. Each Screenlet uses a uniquely generated
identifier (screenletId) to assign action results to action sources.

The Screenlets’ states are restored after the onCreate and onStartmethods, as specified by the
standard Android lifecycle. It’s a best practice to execute Screenlet methods inside the activity’s
onResumemethod; this helps assure that actions and tasks find their destinations.

Related Topics

High-Level Architecture
Core Layer
Screenlet Layer
View Layer

98.6 Architecture of Offline Mode in Liferay Screens

Mobile users may encounter difficulty getting or maintaining a network connection at certain
locations or times of day. Using offline mode with Screenlets ensures that your app still functions
in these situations. You should note, however, that some difficulties may arise when using an
app offline. For example, allowing users to edit data in an app when they’re offline may cause
synchronization conflicts with the portal when they reconnect. By detailing how offline mode is
implemented in Liferay Screens, this tutorial helps you be aware of such difficulties and know how
to handle them.

Understanding Offline Mode's Basics

Screenlets in Liferay Screens support the following phases:

1. Get information from the portal.
2. Show information to the user.
3. Collect the user’s input (if necessary).
4. Send input to the portal (if necessary).

The following diagram summarizes these phases:
Note that not all Screenlets need to execute each phase. For example, theWeb Content Display

Screenlet only needs to retrieve and display portal content. Conversely, Login Screenlet and Sign
Up Screenlet only need to handle user input. Only the most complex Screenlets, like the DDL Form
Screenlet and the User Portrait Screenlet, need to do both.

So what does all this have to do with offline mode? Liferay Screens’s offline infrastructure is
a small layer of code that intercepts information going to and coming from the portal. It stores

1062

http://developer.android.com/training/basics/activity-lifecycle/recreating.html

Figure 98.5: A Screenlet’s basic phases when requesting and submitting data to the portal.

this information in a local data store for use when there’s no Internet connection. The following
diagram illustrates this, with Local cache representing the local data store:

With offline mode enabled, any Screenlet can persist information exchanged with the portal.
You can also configure exactly how offline mode works with the Screenlet you’re using. You do this
through policies.

Using Policies with Offline Mode

Policies configure how a Screenlet behaves with offline mode when it sends or receives data. The
Screenlet adheres to the policy even if the data operation fails. Screenlets support the following
policies:

remote-only: The Screenlet only uses network connections to load data. Screenlets functioned
this way prior to the introduction of offline mode. Use this policy when you want the Screenlet
always to use remote content. Your appwon’t work, however, if a network connection is unavailable.
Also, apps using this policy tend to be slower due to network lag. Note that if the request succeeds,
the Screenlet stores the data in the local cache for later use.

cache-only: The Screenlet only uses local storage to load data (it doesn’t use the network
connection). Use this policy when you want the Screenlet to always use offline content. Note that

1063

Figure 98.6: This is the same diagram as before, with the addition of the local cache for offline mode.

in the app’s local cache, some portal data may not exist or may be outdated.
remote-first: The Screenlet first tries to use the network connection to load data. If this fails, it

then tries to load data from local storage. Use this policy when you want the Screenlet to use the
latest portal data when there’s a connection, but also want to support a fallback mechanism when
the connection is gone. Note that the Screenlet may use outdated information when there’s no
connection. In many cases, however, this is better than showing your users no information at all.

cache-first: The Screenlet first tries to load data from local storage. If this fails, it then tries to
use the network connection. Use this policy when you want the Screenlet to optimize performance
and network efficiency. You can update data in a background process, or let the user update on-
demand (via an option, for example). Note that while the information retrieved from local storage
may be outdated, loading times and bandwidth consumption are typically lower.

These policies behave a bit differently depending on the data’s direction. In other words, when
a Screenlet set to a specific policy retrieves information from the portal, it may behave differently
than when it submits information to the portal. As an example, consider the possible scenarios for
User Portrait Screenlet:

• When loading the portrait:

1064

– remote-only: The Screenlet always attempts to load the portrait from the portal. If the
request fails, the operation also fails.

– cache-only: The Screenlet always attempts to load the portrait from the local cache.
The operation fails if the portrait doesn’t exist there.

– remote-first: The Screenlet first attempts to load the portrait from the portal. If the
request succeeds, the Screenlet stores the portrait locally for later use. If the request
fails, the Screenlet tries to load the portrait from the local cache. If the local cache
doesn’t contain the portrait, the Screenlet can’t load it, and calls the standard error
handling code (call the delegate, use the default placeholder, etc…).

– cache-first: The Screenlet first attempts to load the portrait from the local cache. If the
portrait doesn’t exist there, it’s then requested from the server.

• When submitting the portrait:

– remote-only: The Screenlet first sends the new portrait to the portal. If the submission
succeeds, the Screenlet also stores the portrait in the local cache. If the submission
fails, the operation also fails.

– cache-only: The Screenlet only stores the portrait locally. The portrait may be loaded
from the cache later, or synchronized with the portal.

– remote-first: The Screenlet first tries to send the new portrait to the portal. If this fails
due to lack of network connectivity, the Screenlet stores the portrait in the local cache
for later synchronization with the portal.

– cache-first: The screenlet first stores the new portrait locally, then sends it to the
portal. If the submission fails, the Screenlet still stores the portrait locally, but the send
operation fails.

Understanding Synchronization

Synchronization can be a tricky problem to solve. What initially seems straightforward quickly
evolves into scenarios where you’re not sure which version of the data to use. Having offline users
complicates things further. The following diagram illustrates how the Screenlet retrieves and
stores portal data.

When a user edits the data in the app, the Screenlet needs to send the new data to the portal.
But what happens if the user is offline? In this case, the new data can’t reach the portal and the
local and portal data are out-of-sync. In this scenario, the app has the new data while the portal
has the old data. The app’s data in this synchronization state is called the dirty version. Put away
your soap and washcloth. We don’t recommend giving your mobile device a bath. In this context,
dirty means that the data should be synchronized with the portal as soon as possible. When the
Screenlet synchronizes the dirty version, it removes the dirty flag from the local data.

There are other complicated synchronization states. For example, portal data may change
while out-of-sync with a Screenlet’s local data. To avoid data loss, the local data can’t overwrite the
portal data, and vice versa. In this situation, the synchronization process produces a conflict when
it runs. The following diagram illustrates this.

The developer needs to resolve the conflict by choosing the local data or portal data. Synchro-
nization conflicts have four possible resolutions:

1065

Figure 98.7: The Screenlet requests the resource from the portal and stores it in the app’s local cache.

1. Keep the local version: The Screenlet overwrites the portal data with the local data. This
results in the local cache and the portal having the same version of the data (Version 2 in the
above diagram).

2. Keep remote version: The Screenlet overwrites the local data with the portal data. This
results in the local cache and the portal having the same version of the data (Version 3 in the
above diagram).

3. Discard: The Screenlet removes the local data, and the portal data isn’t overwritten.

4. Ignore: The Screenlet doesn’t change any data. The next synchronization event reproduces
the conflict.

Great! Now that you know how offline mode works, you’re ready to put it to use.

Related Topics

Using Offline Mode in Android
Using Offline Mode in iOS
Using Screenlets in Android Apps
Using Screenlets in iOS Apps

1066

Figure 98.8: The updated data is said to be dirty when the Screenlet can’t send it to the portal.

1067

Figure 98.9: The dirty flag is removed once synchronization completes.

1068

Figure 98.10: Users have changed the data independently in the app and in the portal, causing a synchronization conflict.

1069

CHAPTER 99

CREATING ANDROID SCREENLETS

The Screenlets that come with Liferay Screens cover common use cases for mobile apps that
use Liferay. They authenticate users, interact with Dynamic Data Lists, view assets, and more.
However, what if there’s no Screenlet for your specific use case? No sweat! You can create your
own. Extensibility is a key strength of Liferay Screens.

This tutorial explains how to create your own Screenlets. As an example, it references code
from the sample Add Bookmark Screenlet, that saves bookmarks to Liferay’s Bookmarks portlet.

In general, you use the following steps to create Screenlets:

1. Determine your Screenlet’s location. Where you create your Screenlet depends on how you’ll
use it.

2. Create the Screenlet’s UI (its View). Although this tutorial presents all the information you
need to create a View for your Screenlet, you may first want to learn how to create a View.
For more information on Views in general, see the tutorial on using Views with Screenlets.

3. Create the Screenlet’s Interactor. Interactors are Screenlet components that make server
calls.

4. Define the Screenlet’s attributes. These are the XML attributes the app developer can set when
inserting the Screenlet’s XML. These attributes control aspects of the Screenlet’s behavior.
You’ll add functionality to these attributes in the Screenlet class.

5. Create the Screenlet class. The Screenlet class is the Screenlet’s central component. It
controls the Screenlet’s behavior and is the component the app developer interacts with when
inserting a Screenlet.

To understand the components that make up a Screenlet, you should first learn the architecture
of Liferay Screens for Android.

Without further ado, let the Screenlet creation begin!

99.1 Determining Your Screenlet's Location

1071

https://github.com/liferay/liferay-screens/tree/master/android/samples/addbookmarkscreenlet

Where you should create your Screenlet depends on how you plan to use it. If you don’t plan to
reuse your Screenlet in another app or don’t want to redistribute it, create it in a new package inside
your Android app project. This lets you reference and access Liferay Screens’s core, in addition to
all the View Sets you may have imported.

If you want to reuse your Screenlet in another app, create it in a new Android application
module. The tutorial Packaging Android Screenlets explains how to do this. When your Screenlet’s
project is in place, you can start by creating the Screenlet’s UI.

99.2 Creating the UI

In Liferay Screens for Android, Screenlet UIs are called Views. Every Screenlet must have at least
one View. A View consists of the following components:

• The ViewModel interface: Defines the methods the View needs to update the UI.

• A layout XML file: Defines the UI components that the View presents to the end user.

• AViewclass: Renders theUI, handles user interactions, and communicateswith the Screenlet
class. The View class implements the View Model interface.

• The Screenlet class: Although technically part of a View, the Screenlet class depends on all
the other Screenlet components. You therefore won’t create the Screenlet class until the end
of this tutorial.

Creating the Screenlet's ViewModel and Layout

The first items to create for a Screenlet’s View are itsViewModel interface and layout. The following
steps explain how:

1. To define the methods that every Screenlet’s View class must implement, Screens provides
the BaseViewModel interface. Your ViewModel interface should extend BaseViewModel to define
any additional methods needed by your Screenlet. This includes any getters and setters for
the attributes you want to use.

For example, Add Bookmark Screenlet needs attributes for each bookmark’s URL and title. Its
View Model interface, AddBookmarkViewModel, therefore, defines getters and setters for these
attributes:

public interface AddBookmarkViewModel extends BaseViewModel {

String getURL();

void setURL(String value);

String getTitle();

void setTitle(String value);

}

1072

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/view/BaseViewModel.java

2. Define your Screenlet’s UI by writing a standard Android layout XML file. The layout’s root
element should be the fully qualified class name of your Screenlet’s View class. You’ll create
that class in the next step, but determine its name now and name the layout’s root element
after it. Finally, add any UI elements your View needs.
For example, Add Bookmark Screenlet’s layout needs two text fields: one for entering a
bookmark’s URL and one for entering its title. The layout also needs a button for saving the
bookmark. The Screenlet defines this UI in its bookmark_default.xml layout file:

<?xml version="1.0" encoding="utf-8"?>

<com.your.package.AddBookmarkView

xmlns:android="http://schemas.android.com/apk/res/android"

style="@style/default_screenlet">

<EditText

android:id="@+id/url"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginBottom="15dp"

android:hint="URL Address"

android:inputType="textUri"/>

<EditText

android:id="@+id/title"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginBottom="15dp"

android:hint="Title"/>

<Button

android:id="@+id/add_button"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="Add Bookmark"/>

</com.your.package.AddBookmarkView>

Next, you’ll create your Screenlet’s View class.

Creating the Screenlet's View Class

Your Screenlet needs a View class to support the layout you just created. This class must extend
an Android layout class (e.g. LinearLayout, ListView), implement your View Model interface, and
implement a separate listener interface to handle user actions. Follow these steps to create this
View class:

1. Create a View class that extends the Android layout class appropriate for your Screenlet’s UI.
For example, Add Bookmark Screenlet renders its UI components in a single column, so its
View class (AddBookmarkView) extends Android’s LinearLayout. Your View class’s constructors
should call the parent layout class’s constructors. For example, AddBookmarkView’s constructors
call those of LinearLayout:

public AddBookmarkView(Context context) {

super(context);

}

public AddBookmarkView(Context context, AttributeSet attributes) {

super(context, attributes);

}

1073

https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/res/layout/bookmark_default.xml
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/view/AddBookmarkView.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/view/AddBookmarkView.java
https://developer.android.com/reference/android/widget/LinearLayout.html
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/view/AddBookmarkView.java#L20-L30

Figure 99.1: Add Bookmark Screenlet’s layout contains two text fields and a button.

public AddBookmarkView(Context context, AttributeSet attributes, int defaultStyle) {

super(context, attributes, defaultStyle);

}

2. Add instance variables for your View Model’s attributes and BaseScreenlet. For example,
Add Bookmark Screenlet needs instance variables for a bookmark’s URL and title. Because
all Screenlet classes extend the BaseScreenlet class, a BaseScreenlet variable in your View
class ensures that your View always has a reference to the Screenlet. For example, here are
AddBookmarkView’s instance variables:

private EditText urlText;

private EditText titleText;

private BaseScreenlet screenlet;

1074

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/BaseScreenlet.java

3. Implement your View Model interface. Implement your View Model’s getter and setter
methods to get and set the inner value of each component, respectively. For example, here’s
AddBookmarkView’s implementation of AddBookmarkViewModel:

public String getURL() {

return urlText.getText().toString();

}

public void setURL(String value) {

urlText.setText(value);

}

public String getTitle() {

return titleText.getText().toString();

}

public void setTitle(String value) {

titleText.setText(value);

}

4. Implement a listener interface to handle user actions in the Screenlet. For example, Add
Bookmark Screenlet must detect when the user presses the save button. The AddBookmarkView

class enables this by implementing Android’s View.OnClickListener interface, which defines
a single method: onClick. The Screenlet’s onClick implementation gets a reference to the
Screenlet and calls its performUserAction()method (you’ll create performUserAction() in the
Screenlet class shortly):

public void onClick(View v) {

AddBookmarkScreenlet screenlet = (AddBookmarkScreenlet) getParent();

screenlet.performUserAction();

}

You can set the listener to the appropriate UI element by implementing an onFinishInflate()

method. This method should also retrieve and assign any other UI elements from your
layout. For example, the onFinishInflate() implementation in AddBookmarkView retrieves the
URL and title attributes from the layout, and sets them to the urlText and titleText variables,
respectively. This method then retrieves the button from the layout and sets this View class
as the button’s click listener:

protected void onFinishInflate() {

super.onFinishInflate();

urlText = (EditText) findViewById(R.id.url);

titleText = (EditText) findViewById(R.id.title_bookmark);

Button addButton = (Button) findViewById(R.id.add_button);

addButton.setOnClickListener(this);

}

5. Implement the BaseViewModel interface’s methods: showStartOperation, showFinishOperation,
showFailedOperation, getScreenlet, and setScreenlet. In the show*Operationmethods, you can
log what happens in your Screenlet when the server operation starts, finishes successfully,
or fails, respectively. In the getScreenlet and setScreenlet methods, you must get and set
the BaseScreenlet variable, respectively. This ensures that the View always has a Screenlet
reference. For example, Add Bookmark Screenlet implements these methods as follows:

1075

https://developer.android.com/reference/android/view/View.OnClickListener.html
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/view/BaseViewModel.java

@Override

public void showStartOperation(String actionName) {

}

@Override

public void showFinishOperation(String actionName) {

LiferayLogger.i("Add bookmark successful");

}

@Override

public void showFailedOperation(String actionName, Exception e) {

LiferayLogger.e("Could not add bookmark", e);

}

@Override

public BaseScreenlet getScreenlet() {

return screenlet;

}

@Override

public void setScreenlet(BaseScreenlet screenlet) {

this.screenlet = screenlet;

}

Note that although youmust implement the show[something]Operationmethods, you can leave
their implementations empty if you don’t need to take any specific action.

Click here to see the complete example AddBookmarkView class.
Great! Your View class is finished. Now you’re ready to create your Screenlet’s Interactor class.

Related Topics

Creating the Interactor
Defining the Attributes
Creating the Screenlet Class
Packaging Your Screenlets

99.3 Creating the Interactor

A Screenlet’s Interactor makes the service call to retrieve the data you need from a Liferay instance.
An Interactor is made up of several components:

1. The event class. This class lets you handle communication between the Screenlet’s compo-
nents via event objects that contain the server call’s results. Screens uses the EventBus library
for this. Screens supplies the BasicEvent class and BaseListEvent class for communicating
JSONObject and JSONArray results within Screenlets, respectively. You can create your own
event classes by extending BasicEvent. You should create your own event classes when you
must communicate objects other than JSONObject or JSONArray. The example Add Bookmark
Screenlet only needs to communicate JSONObject instances, so it uses BasicEvent.

2. The listener interface. This defines the methods the app developer needs to respond to the
Screenlet’s behavior. For example, Login Screenlet’s listener defines the onLoginSuccess and
onLoginFailuremethods. Screens calls these methods when login succeeds or fails, respec-
tively. By implementing these methods in the activity or fragment class that contains the

1076

https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/view/AddBookmarkView.java
https://greenrobot.github.io/EventBus/
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/event/BasicEvent.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/BaseListEvent.java

Screenlet, the app developer can respond to login success and failure. Similarly, the example
Add Bookmark Screenlet’s listener interface defines two methods: one for responding to
the Screenlet’s failure to add a bookmark and one for responding to its success to add a
bookmark:

public interface AddBookmarkListener {

void onAddBookmarkFailure(Exception exception);

void onAddBookmarkSuccess();

}

3. The Interactor class. This class must extend Screens’s BaseRemoteInteractorwith your listener
and event as type arguments. The listener lets the Interactor class send the server call’s results
to any classes that implement the listener. In the implementation of the method that makes
the server call, the executemethod, you must use the Mobile SDK to make an asynchronous
service call. This means you must get a session and then make the server call. You make
the server call by creating an instance of the Mobile SDK service (e.g., BookmarksEntryService)
that can call the Liferay service you need and then making the call. The Interactor class must
also process the event object that contains the call’s results and then notify the listener of
those results. You do this by implementing the onSuccess and onFailure methods to invoke
the corresponding getListener()methods.
For example, the AddBookmarkInteractor class is Add Bookmark Screenlet’s Interactor class.
This class implements the executemethod, which adds a bookmark to a folder in a Liferay
instance’s Bookmarks portlet. This method first validates the bookmark’s URL and folder.
It then calls the getJSONObjectmethod to add the bookmark, and concludes by returning a
new BasicEvent object created from the JSONObject. The if statement in the getJSONObject

method checks the Liferay version so it can create the appropriate BookmarksEntryService

instance needed to make the server call. Regardless of the Liferay version, the getSession()

method retrieves the existing session created by Login Screenlet upon successful login. The
session’s addEntrymethodmakes the server call. The Screenlet calls the onSuccess or onFailure
method to notify the listener of the server call’s success or failure, respectively. In either case,
the BasicEvent object contains the server call’s results. Since this Screenlet doesn’t retrieve
anything from the server, however, there’s no need to process the BasicEvent object in the
onSuccessmethod; calling the listener’s onAddBookmarkSuccessmethod is sufficient. Here’s the
complete code for AddBookmarkInteractor:

public class AddBookmarkInteractor extends BaseRemoteInteractor<AddBookmarkListener, BasicEvent> {

@Override

public BasicEvent execute(Object[] args) throws Exception {

String url = (String) args[0];

String title = (String) args[1];

long folderId = (long) args[2];

validate(url, folderId);

JSONObject jsonObject = getJSONObject(url, title, folderId);

return new BasicEvent(jsonObject);

}

@Override

public void onSuccess(BasicEvent event) throws Exception {

getListener().onAddBookmarkSuccess();

1077

https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/interactor/AddBookmarkListener.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/interactor/AddBookmarkListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/BaseRemoteInteractor.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/interactor/AddBookmarkInteractor.java

}

@Override

public void onFailure(BasicEvent event) {

getListener().onAddBookmarkFailure(event.getException());

}

private void validate(String url, long folderId) {

if (url == null || url.isEmpty() || !URLUtil.isValidUrl(url)) {

throw new IllegalArgumentException("Invalid url");

} else if (folderId == 0) {

throw new IllegalArgumentException("folderId not set");

}

}

@NonNull

private JSONObject getJSONObject(String url, String title, long folderId) throws Exception {

if (LiferayServerContext.isLiferay7()) {

return new BookmarksEntryService(getSession()).addEntry(LiferayServerContext.getGroupId(),

folderId, title, url, "", null);

} else {

return new com.liferay.mobile.android.v62.bookmarksentry.BookmarksEntryService(

getSession()).addEntry(LiferayServerContext.getGroupId(), folderId, title, url, "", null);

}

}

}

Sweetness! Your Screenlet’s Interactor is done. Next, you’ll create the Screenlet class.

Related Topics

Creating the UI
Defining the Attributes
Creating the Screenlet Class
Packaging Your Screenlets

99.4 Defining the Attributes

Before creating the Screenlet class, you should define its attributes. These are the attributes the
app developer can set when inserting the Screenlet’s XML in an activity or fragment layout. For
example, to use Login Screenlet, the app developer could insert the following Login Screenlet XML
in an activity or fragment layout:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:basicAuthMethod="email"

app:layoutId="@layout/login_default"

/>

The app developer can set the liferay attributes basicAuthMethod and layoutId to set Login
Screenlet’s authentication method and View, respectively. The Screenlet class reads these settings
to enable the appropriate functionality.

When creating a Screenlet, you can define the attributes you want to make available to app
developers. You do this in an XML file inside your Android project’s res/values directory. For

1078

example, Add Bookmark Screenlet’s attributes are defined in the Screenlet’s bookmark_attrs.xml
file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<declare-styleable name="AddBookmarkScreenlet">

<attr name="layoutId"/>

<attr name="folderId"/>

<attr name="defaultTitle" format="string"/>

</declare-styleable>

</resources>

This defines the attributes layoutId, folderId, and defaultTitle. Add Bookmark Screenlet’s
Screenlet class adds functionality to these attributes. Here’s a brief description of what each does:

• layoutId: Sets the View that displays the Screenlet. This functions the same as the layoutId

attribute in Liferay’s existing Screenlets.

• folderId: Sets the folder ID in the Bookmarks portlet where the Screenlet adds bookmarks.

• defaultTitle: Sets each Bookmark’s default title.

Now that you’ve defined your Screenlet’s attributes, you’re ready to create the Screenlet class.

Related Topics

Creating the UI
Creating the Interactor
Creating the Screenlet Class
Packaging Your Screenlets

99.5 Creating the Screenlet Class

The Screenlet class is the central hub of a Screenlet. It contains attributes for configuring the
Screenlet’s behavior, a reference to the Screenlet’sView,methods for invoking Interactor operations,
and more. When using a Screenlet, app developers primarily interact with its Screenlet class. In
other words, if a Screenlet were to become self-aware, it would happen in its Screenlet class (though
we’re reasonably confident this won’t happen).

Tomake all this possible, your Screenlet classmust implement the Interactor’s listener interface
and extend Screens’s BaseScreenlet class with the ViewModel interface and Interactor class as type
arguments. Your Screenlet class should also contain instance variables and accompanying getters
and setters for the listener and any other attributes that the app developer needs to access. For
constructors, you can call BaseScreenlet’s constructors.

For example, AddBookmark Screenlet’s Screenlet class extends BaseScreenlet<AddBookmarkViewModel,
AddBookmarkInteractor> and implements AddBookmarkListener. It also contains instance variables
for AddBookmarkListener and the bookmark’s folder ID, and getters and setters for these variables.
Also note the constructors call BaseScreenlet’s constructors:

public class AddBookmarkScreenlet extends

BaseScreenlet<AddBookmarkViewModel, AddBookmarkInteractor>

implements AddBookmarkListener {

1079

https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/res/values/bookmark_attrs.xml
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/res/values/bookmark_attrs.xml
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/BaseScreenlet.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/BaseScreenlet.java#L45-L61
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/AddBookmarkScreenlet.java

private long folderId;

private AddBookmarkListener listener;

public AddBookmarkScreenlet(Context context) {

super(context);

}

public AddBookmarkScreenlet(Context context, AttributeSet attributes) {

super(context, attributes);

}

public AddBookmarkScreenlet(Context context, AttributeSet attributes, int defaultStyle) {

super(context, attributes, defaultStyle);

}

public long getFolderId() {

return folderId;

}

public void setFolderId(long folderId) {

this.folderId = folderId;

}

public AddBookmarkListener getListener() {

return listener;

}

public void setListener(AddBookmarkListener listener) {

this.listener = listener;

}

...

Next, implement the Screenlet’s listener methods. This lets the Screenlet class receive the
server call’s results and thus act as the listener. These methods should communicate the server
call’s results to the View (via the View Model) and any other listener instances (via the Screen-
let class’s listener instance). For example, here are Add Bookmark Screenlet’s listener method
implementations:

public void onAddBookmarkSuccess() {

getViewModel().showFinishOperation(null);

if (listener != null) {

listener.onAddBookmarkSuccess();

}

}

public void onAddBookmarkFailure(Exception e) {

getViewModel().showFailedOperation(null, e);

if (listener != null) {

listener.onAddBookmarkFailure(e);

}

}

These methods are called when the server call succeeds or fails, respectively. They first
use getViewModel() to get a View Model instance and then call the BaseViewModel methods
showFinishOperation and showFailedOperation to send the server call’s results to the View. The
showFinishOperation call sends null because a successful server call to add a bookmark doesn’t
return any objects. If a successful server call in your Screenlet returns any objects you need to
display, then you should send them in this showFinishOperation call. The showFailedOperation call
sends the Exception that results from a failed server call to the View. This lets you display an

1080

informative error to the user. The onAddBookmarkSuccess and onAddBookmarkFailure implementations
then call the listener instance’s method of the same name. This sends the server call’s results to
any other classes that implement the listener interface, such as the activity or fragment that uses
the Screenlet.

Next, you must implement BaseScreenlet’s abstract methods:

• createScreenletView: Reads the app developer’s Screenlet attribute settings, and inflates the
View. You’ll use an Android TypedArray to retrieve the attribute settings. You should set the
attribute values to the appropriate variables, and set any default values you need to display
via a View Model reference.
For example, Add Bookmark Screenlet’s createScreenletViewmethod gets the app developer’s
attribute settings via a TypedArray. This includes the layoutId, defaultTitle, and folderId

attributes. The layoutId is used to inflate a View reference (view), which is then cast to a View
Model instance (viewModel). The View Model instance’s setTitlemethod is then called with
defaultTitle to set the bookmark’s default title. The method concludes by returning the View
reference.

@Override

protected View createScreenletView(Context context, AttributeSet attributes) {

TypedArray typedArray = context.getTheme()

.obtainStyledAttributes(attributes, R.styleable.AddBookmarkScreenlet, 0, 0);

int layoutId = typedArray.getResourceId(R.styleable.AddBookmarkScreenlet_layoutId, 0);

View view = LayoutInflater.from(context).inflate(layoutId, null);

String defaultTitle = typedArray.getString(R.styleable.AddBookmarkScreenlet_defaultTitle);

folderId = castToLong(typedArray.getString(R.styleable.AddBookmarkScreenlet_folderId));

typedArray.recycle();

AddBookmarkViewModel viewModel = (AddBookmarkViewModel) view;

viewModel.setTitle(defaultTitle);

return view;

}

• createInteractor: Instantiates the Screenlet’s Interactor. For example, Add Bookmark Screen-
let’s createInteractor method calls the AddBookmarkInteractor constructor to create a new
instance of this Interactor:

@Override

protected AddBookmarkInteractor createInteractor(String actionName) {

return new AddBookmarkInteractor(getScreenletId());

}

• onUserAction: Retrieves any data the user has entered in the View, and starts the Screenlet’s
server operation via an Interactor instance. If your Screenlet doesn’t take user input, this
method only needs to do the latter.
The example Add Bookmark Screenlet takes user input (the bookmark’s URL and title), so
its onUserAction method must retrieve this data. This method does so via a View Model
instance it retrieves with the getViewModel() method. The onUserAction method starts the
server operation by calling the Interactor’s start method with the user input. Note that

1081

https://developer.android.com/reference/android/content/res/TypedArray.html

the Interactor inherits the start method from the BaseInteractor class. Invoking the start

method causes the Interactor’s executemethod to run in a background thread:

@Override

protected void onUserAction(String userActionName, AddBookmarkInteractor interactor, Object... args) {

AddBookmarkViewModel viewModel = getViewModel();

String url = viewModel.getURL();

String title = viewModel.getTitle();

interactor.start(url, title, folderId);

}

Nice! Your Screenlet is finished! You can now use it the same way you would any other. If you
created your Screenlet in its own project, you can also package and distribute it via the Screens
project, JCenter, or Maven Central.

To finish the Add Bookmark Screenlet example, the following section shows you how to use
this Screenlet. It also shows how you can set default attribute values in an app’s server_context.xml
file. Although you may not need to do this when using your Screenlets, it might come in handy on
your way to becoming a master of Screenlets.

Related Topics

Creating the UI
Creating the Interactor
Defining the Attributes
Packaging Your Screenlets

99.6 Using Your Screenlet

To use any Screenlet, you must follow these general steps:

1. Insert the Screenlet’s XML in the activity or fragment layout you want the Screenlet to appear
in. You can fine-tune the Screenlet’s behavior by setting the Screenlet XML’s attributes.

2. Implement the Screenlet’s listener in the activity or fragment class.

As an example of this, the Liferay Screens Test App uses Add Bookmark Screenlet. You can find
the following Add Bookmark Screenlet XML in the Test App’s add_bookmark.xml layout:

<com.liferay.mobile.screens.bookmark.AddBookmarkScreenlet

android:id="@+id/bookmark_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:folderId="@string/bookmark_folder"

app:layoutId="@layout/bookmark_default" />

Note that the layout specified by app:layoutId (bookmark_default) matches the layout file of
the Screenlet’s View (bookmark_default.xml). This is how you specify the View that displays your
Screenlet. For example, if Add Bookmark Screenlet had another View defined in a layout file
named bookmark_awesome.xml, you could use that layout by specifying @layout/bookmark_awesome as
the app:layoutId attribute’s value.

1082

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/BaseInteractor.java
https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/layout/add_bookmark.xml

Also note that the app:folderId attribute specifies @string/bookmark_folder as the bookmark
folder’s ID. This is an alternative way of specifying an attribute’s value. Instead of specifying the
value directly, the Test App specifies the value in its server_context.xml file:

...

<string name="bookmark_folder">20622</string>

...

This name attribute’s value, bookmark_folder is then used in the Screenlet XML to set the
app:folderId attribute to 20622.

Related Topics

Using Screenlets in Android Apps

99.7 Packaging Your Screenlets

To reuse your Screenlet in another app or distribute it, you can package it in a module (Android
library). You can optionally share it with other developers via jCenter or Maven Central. Developers
can then use your Screenlet by adding its module as a project dependency in their apps. This
tutorial explains how to package and distribute Screenlets by following these steps:

1. Create a new Android module.
2. Configure dependencies between each module.
3. Distribute the module by uploading it to jCenter or Maven Central.

Now get ready to package and distribute Screenlets like a pro!

Create a New Android Module

Android Studio’s Create New Module wizard can automatically create a module and add it to your
settings.gradle file. Go to File → New Module…, select Android Library in the More Modules section,
and click Next. Then name your module and click Next. The wizard’s final step lets you add a new
activity. Since your module doesn’t need one, select Blank Activity and click Finish. Android Studio
creates a new build.gradle file with an Android Library configuration and adds the new module to
your settings.gradle file.

If you prefer to create a new module manually, examine the build.gradle file from the Material
View set or Westeros app as an example. After creating the module, import it into your project by
specifying its location in settings.gradle. Here’s an example configuration:

// Change YOUR_MODULE_NAME and RELATIVE_ROUTE_TO_YOUR_MODULE to match your module

include ':YOUR_MODULE_NAME'

project(':YOUR_MODULE_NAME').projectDir = new File(settingsDir, 'RELATIVE_ROUTE_TO_YOUR_MODULE')

Now that you have a module, you’re ready to configure its dependencies.

1083

https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/values/server_context.xml#L23-L24
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/material/build.gradle
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/material/build.gradle
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/build.gradle
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/settings.gradle

Configure Dependencies Between Each Module

Next, you must configure your app to use the module. To do so, add a project implementation
statement to your build.gradle file’s dependencies:

// Change YOUR_MODULE_NAME to match your module's name

dependencies {

...

implementation project (':YOUR_MODULE_NAME')

...

}

Your module must also specify dependencies for overriding existing Screenlets and creating
new ones. This usually requires adding Liferay Screens and the View Sets your Screenlet currently
uses to your build.gradle file’s dependencies. To add Liferay Screens as a dependency, add to your
build.gradle file’s dependencies the following project implementation statement:

implementation 'com.liferay.mobile:liferay-screens:+'

Awesome! Now you’re ready to share your Screenlet with the world!

Upload the Module to jCenter or Maven Central

Tomake yourmodule available to anyone, you can upload yourmodule to jCenter or Maven Central.
Before doing so, youmust configure your build.gradle file appropriately for those repositories. Use
the material orWesteros View Set’s build.gradle file as an example. After entering your bintray api
key, execute gradlew bintrayupload to upload your project to jCenter. Developers can then use your
Screenlet as any other Android dependency by specifying its repository, artifact, group ID, and
version in their Gradle files. Congratulations on publishing your Screenlet!

Related Topics

Creating Android Screenlets
Preparing Android Projects for Liferay Screens
Using Screenlets in Android Apps
Creating Android Views

1084

https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/build.gradle

CHAPTER 100

CREATING ANDROID LIST SCREENLETS

It’s very common for mobile apps to display lists. Liferay Screens lets you display asset lists and
DDL lists in your Android app by using Asset List Screenlet and DDL List Screenlet, respectively.
Screens also includes list Screenlets for displaying lists of other Liferay entities like web content
articles, images, andmore. The Screenlet reference documentation lists all the Screenlets included
with Liferay Screens. If there’s not a list Screenlet for the entity you want to display in a list, you
must create your own. A list Screenlet can display any entity from a Liferay instance. For example,
you can create a list Screenlet that displays standard Liferay entities like User, or custom entities
from custom Liferay apps.

This tutorial uses code from the sample Bookmark List Screenlet to show you how to create
your own list Screenlet. This Screenlet displays a list of bookmarks from Liferay’s Bookmarks
portlet. You can find this Screenlet’s complete code here in GitHub.

Note that because this tutorial focuses on creating a list Screenlet, it doesn’t explain general
Screenlet concepts and components. Before beginning, you should therefore read the following
tutorials:

• Screens architecture tutorial
• Basic Screenlet creation tutorial

You’ll create the list Screenlet by following these steps:

1. Creating the Model Class
2. Creating the View
3. Creating the Interactor
4. Creating the Screenlet Class

First though, you should understand how pagination works with list Screenlets.

100.1 Pagination

To ensure that users can scroll smoothly through large lists of items, list Screenlets support fluent
pagination. Support for this is built into the list Screenlet framework. You’ll see this as you construct
your list Screenlet.

Now you’re ready to begin!

1085

https://github.com/liferay/liferay-screens/tree/master/android/samples/listbookmarkscreenlet

100.2 Creating the Model Class

Entities come back from Liferay in JSON. To work with these results efficiently in your app, you
must convert them to model objects that represent the entity in Liferay. Although Screens’s
BaseListInteractor transforms the JSON entities into Map objects for you, you still must convert
these into proper entity objects for use in your app. You’ll do this via a model class.

For example, Bookmark List Screenlet’s model class (Bookmark) creates Bookmark objects that
contain a bookmark’s URL and other data. To ensure quick access to the URL, the constructor that
takes a Map<String, Object> extracts it from the Map and sets it to the url variable. To allow access to
any other data, the same constructor sets the entire Map to the values variable. Besides the getters
and setter, the rest of this class implements Android’s Parcelable interface:

import android.os.Parcel;

import android.os.Parcelable;

import java.util.Map;

public class Bookmark implements Parcelable {

private String url;

private Map values;

public static final Creator<Bookmark> CREATOR = new Creator<Bookmark>() {

@Override

public Bookmark createFromParcel(Parcel in) {

return new Bookmark(in);

}

@Override

public Bookmark[] newArray(int size) {

return new Bookmark[size];

}

};

public Bookmark() {

super();

}

protected Bookmark(Parcel in) {

url = in.readString();

}

public Bookmark(Map<String, Object> stringObjectMap) {

url = (String) stringObjectMap.get("url");

values = stringObjectMap;

}

@Override

public void writeToParcel(Parcel dest, int flags) {

dest.writeString(url);

}

@Override

public int describeContents() {

return 0;

}

public String getUrl() {

return url;

}

public Map getValues() {

1086

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/BaseListInteractor.java
https://developer.android.com/reference/android/os/Parcelable.html

return values;

}

public void setValues(Map values) {

this.values = values;

}

}

Now that you have your model class, you can create your Screenlet’s View.

Related Topics

Creating the View
Creating the Interactor
Creating the Screenlet Class

100.3 Creating the View

Recall from the basic Screenlet creation tutorial that a View defines a Screenlet’s UI. To accommo-
date its list, a list Screenlet’s View is constructed a bit differently than that of a non-list Screenlet.
To create a List Screenlet’s View, you’ll create the following components:

1. Row Layout: the layout for each list row.
2. Adapter Class: an Android adapter class that populates each list row with data.
3. View Class: the class that controls the View. This class serves the same purpose in list

Screenlets as it does in non-list Screenlets.
4. Main Layout: the layout for the list as a whole. Note this is different from the row layout,

which defines the UI for individual rows.

First, you’ll create the row layout.

Creating the Row Layout

Before constructing the rest of the View, you should first define the layout to use for each row in
the list. For example, Bookmark List Screenlet needs to display a bookmark in each row. Its row
layout (res/layout/bookmark_row.xml) is therefore a LinearLayout containing a single TextView that
displays the bookmark’s URL:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

<TextView

android:id="@+id/bookmark_url"

android:layout_width="match_parent"

android:layout_height="wrap_content"/>

</LinearLayout>

As you can see, this example is very simple. Row layouts, however, can be as simple or complex
as you need them to be to display your content.

Next, you’ll create the adapter class.

1087

http://developer.android.com/guide/topics/ui/declaring-layout.html#AdapterViews

Creating the Adapter Class

Android adapters fill a layout with content. In the example Bookmark List Screenlet, the layout is
the row layout (bookmark_row.xml) and the content is each list item (a URL). To make list scrolling
smooth, the adapter class should use an Android view holder. To make this easier, you can extend
the list Screenlet framework’s BaseListAdapter class with your model class and view holder as type
arguments. By extending BaseListAdapter, your adapter needs only two methods:

• createViewHolder: instantiates the view holder
• fillHolder: fills in the view holder for each row

Your view holder should also contain variables for any data each row needs to display. The
view holder must assign these variables to the corresponding row layout elements, and set the
appropriate data to them.

For example, Bookmark List Screenlet’s adapter class (BookmarkAdapter) extends BaseListAdapter
with Bookmark and BookmarkAdapter.BookmarkViewHolder as type arguments. This class’s view holder
is an inner class that extends BaseListAdapter’s view holder. Since Bookmark List Screenlet only
needs to display a URL in each row, the view holder only needs one variable: url. The view holder’s
constructor assigns the TextView from bookmark_row.xml to this variable. The bindmethod then sets
the bookmark’s URL as the TextView’s text. The other methods in BookmarkAdapter leverage the view
holder. The createViewHoldermethod instantiates BookmarkViewHolder. The fillHoldermethod calls
the view holder’s bindmethod to set the bookmark’s URL as the url variable’s text:

public class BookmarkAdapter extends BaseListAdapter<Bookmark, BookmarkAdapter.BookmarkViewHolder> {

public BookmarkAdapter(int layoutId, int progressLayoutId, BaseListAdapterListener listener) {

super(layoutId, progressLayoutId, listener);

}

@NonNull

@Override

public BookmarkViewHolder createViewHolder(View view, BaseListAdapterListener listener) {

return new BookmarkAdapter.BookmarkViewHolder(view, listener);

}

@Override

protected void fillHolder(Bookmark entry, BookmarkViewHolder holder) {

holder.bind(entry);

}

public class BookmarkViewHolder extends BaseListAdapter.ViewHolder {

private final TextView url;

public BookmarkViewHolder(View view, BaseListAdapterListener listener) {

super(view, listener);

url = (TextView) view.findViewById(R.id.bookmark_url);

}

public void bind(Bookmark entry) {

url.setText(entry.getUrl());

}

}

}

Great! Your adapter class is finished. Next, you’ll create the View class.

1088

https://developer.android.com/guide/topics/ui/declaring-layout.html#AdapterViews
https://developer.android.com/training/improving-layouts/smooth-scrolling.html#ViewHolder
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListAdapter.java

Creating the View Class

Now that your adapter exists, you can create your list Screenlet’s View class. Recall from the basic
Screenlet creation tutorial that the View class is the central hub of any Screenlet’s UI. It renders
the UI, handles user interactions, and communicates with the Screenlet class. The list Screenlet
framework provides most of this functionality for you via the BaseListScreenletView class. Your
View class must extend this class to provide your row layout ID and an instance of your adapter.
You’ll do this by overriding BaseListScreenletView’s getItemLayoutId and createListAdaptermethods.
Note that inmany cases this is the only custom functionality yourView class needs. If it needsmore,
you can provide it by creating new methods or overriding other BaseListScreenletViewmethods.

Create your View class by extending BaseListScreenletView with your model class, view
holder, and adapter as type arguments. This is required for your View class to represent your
model objects in a view holder, inside an adapter. For example, Bookmark List Screenlet’s
View class (BookmarkListView) must represent Bookmark instances in a BookmarkViewHolder inside
a BookmarkAdapter. The BookmarkListView class must therefore extend BaseListScreenletView

parameterized with Bookmark, BookmarkAdapter.BookmarkViewHolder, and BookmarkAdapter. Besides
overriding createListAdapter to return a BookmarkAdapter instance, the only other functionality
that this View class needs to support is to get the layout for each row in the list. The overridden
getItemLayoutIdmethod does this by returning the row layout bookmark_row:

import android.content.Context;

import android.util.AttributeSet;

import com.liferay.mobile.screens.base.list.BaseListScreenletView;

public class BookmarkListView

extends BaseListScreenletView<Bookmark, BookmarkAdapter.BookmarkViewHolder, BookmarkAdapter> {

public BookmarkListView(Context context) {

super(context);

}

public BookmarkListView(Context context, AttributeSet attributes) {

super(context, attributes);

}

public BookmarkListView(Context context, AttributeSet attributes, int defaultStyle) {

super(context, attributes, defaultStyle);

}

@Override

protected BookmarkAdapter createListAdapter(int itemLayoutId, int itemProgressLayoutId) {

return new BookmarkAdapter(itemLayoutId, itemProgressLayoutId, this);

}

@Override

protected int getItemLayoutId() {

return R.layout.bookmark_row;

}

}

Next, you’ll create your View’s main layout.

Creating the View's Main Layout

Although you already created a layout for your list rows, you must still create a layout to define the
list as a whole. This layout must contain:

1089

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListScreenletView.java

• The View class’s fully qualified name as the layout’s first element.
• An Android RecyclerView to let your app efficiently scroll through a potentially large list of
items.

• An Android ProgressBar to indicate progress when loading the list.

Apart from the View class and styling, this layout’s code is the same for all list Screenlets. For
example, here’s Bookmark List Screenlet’s layout res/layout/list_bookmarks.xml:

<com.liferay.mobile.screens.listbookmark.BookmarkListView

xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/liferay_list_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent">

<ProgressBar

android:id="@+id/liferay_progress"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_gravity="center"

android:visibility="gone"/>

<android.support.v7.widget.RecyclerView

android:id="@+id/liferay_recycler_list"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:visibility="gone"/>

</com.liferay.mobile.screens.listbookmark.BookmarkListView>

Warning: The android:id values in your View’s layout XMLmust exactlymatch the ones shown
here. These values are hardcoded into the Screens framework and changing them will cause your
app to crash.

Great job! Your View is finished. Next, you’ll create your Screenlet’s Interactor.

Related Topics

Creating the Model Class
Creating the Interactor
Creating the Screenlet Class

100.4 Creating the Interactor

Recall from the basic Screenlet creation tutorial that Interactors retrieve and process a server call’s
results. Also recall that the following components make up an Interactor:

1. Event
2. Listener
3. Interactor Class

These components perform the same basic functions in list Screenlets as they do in non-list
Screenlets. Creating them, however, is a bit different. Each of the following sections show you how
to create one of these components. First, you’ll create the event.

1090

http://developer.android.com/training/material/lists-cards.html#RecyclerView
https://developer.android.com/reference/android/widget/ProgressBar.html

Creating the Event

Screens uses the EventBus library to handle communication within Screenlets. Screenlet com-
ponents therefore communicate with each other by using event classes that contain the server
call’s results. Your list Screenlet’s event class must extend the ListEvent class parameterized with
your model class. Your event class should also contain a private instance variable for the model
class, a constructor that sets this variable, and a no-argument constructor that calls the superclass
constructor. For example, Bookmark List Screenlet’s event class (BookmarkEvent) communicates
Bookmark objects. It therefore extends ListEvent with Bookmark as a type argument, and defines a
private Bookmark variable that its BookmarkEvent(Bookmark bookmark) constructor sets:

public class BookmarkEvent extends ListEvent<Bookmark> {

private Bookmark bookmark;

public BookmarkEvent() {

super();

}

public BookmarkEvent(Bookmark bookmark) {

this.bookmark = bookmark;

}

...

You must also implement ListEvent’s abstract methods in your event class. Note that these
methods support offline mode. Although these methods are briefly described here, supporting
offline mode in your Screenlets is addressed in detail in a separate tutorial.

• getListKey: returns the ID for the cache. This ID is typically the data each list row displays.
For example, the getListKeymethod in BookmarkEvent returns the bookmark’s URL:

@Override

public String getListKey() {

return bookmark.getUrl();

}

• getModel: unwraps the model entity to the cache by returning the model class instance. For
example, the getModelmethod in BookmarkEventmethod returns the bookmark:

@Override

public Bookmark getModel() {

return bookmark;

}

Next, you’ll create your Screenlet’s listener.

Creating the Listener

Recall that listeners let the app developer respond to events that occur in Screenlets. For example,
an app developer using Login Screenlet in an activity must implement LoginListener in that activity
to respond to login success or failure. When creating a list Screenlet, however, you don’t have
to create a separate listener. Developers can use your list Screenlet in an activity or fragment by
implementing the BaseListListener interface parameterized with your model class. For example,
to use Bookmark List Screenlet in an activity, an app developer’s activity declaration could look
like this:

1091

http://greenrobot.org/eventbus/
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/ListEvent.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java

public class BookmarkListActivity extends AppCompatActivity

implements BaseListListener<Bookmark> {...

The BaseListListener interface defines the following methods that the app developer can im-
plement in their activity or fragment:

• void onListPageFailed(int startRow, Exception e): Responds to the Screenlet’s failure to re-
trieve entities from the server.

• void onListPageReceived(int startRow, int endRow, List<E> entries, int rowCount): Re-
sponds to the Screenlet’s success in retrieving entities from the server.

• void onListItemSelected(E element, View view): Responds to a user selection in the list.

If these methods meet your list Screenlet’s needs, then you can move on to the next section
in this tutorial. If you want to let app developers respond to more actions, however, you must
create your own listener that extends BaseListListener parameterized with your model class. For
example, Bookmark List Screenlet contains such a listener: BookmarkListListener. This listener
defines a single method that notifies the app developer when the Interactor is called:

public interface BookmarkListListener extends BaseListListener<Bookmark> {

void interactorCalled();

}

Next, you’ll create the Interactor class.

Creating the Interactor Class

Recall that as an Interactor’s central component, the Interactor class makes the service call
to retrieve entities from Liferay DXP, and processes the results of that call. The list Screenlet
framework’s BaseListInteractor class provides most of the functionality that Interactor classes in
list Screenlets require. You must, however, extend BaseListInteractor to make your service calls
and handle their results via your model and event classes. Your Interactor class must therefore
extend BaseListInteractor, parameterized with BaseListInteractorListener<YourModelClass> and
your event class. For example, Bookmark List Screenlet’s Interactor class, BookmarkListInteractor,
extends BaseListInteractor parameterized with BaseListInteractorListener<Bookmark> and
BookmarkEvent:

public class BookmarkListInteractor extends

BaseListInteractor<BaseListInteractorListener<Bookmark>, BookmarkEvent> {...

Your Interactor must also override the methods needed to make the server call and process the
results:

• getPageRowsRequest: Retrieves the specifiedpageof entities. In the example BookmarkListInteractor,
this method first uses the args parameter to retrieve the ID of the folder to retrieve bookmarks
from. It then sets the comparator (more on this shortly) if the app developer sets one
when inserting the Screenlet XML in a fragment or activity. The getPageRowsRequest

method finishes by calling BookmarksEntryService’s getEntries method to retrieve a page of
bookmarks. Note that the service call, like the service call in the basic Screenlet creation
tutorial, uses LiferayServerContext.isLiferay7() to check the portal version to make sure the
correct service instance is used. This isn’t required if you only plan to use your Screenlet

1092

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/BaseListInteractor.java

with one portal version. Also note that the groupId variable used to make the service
calls isn’t set anywhere in getPageRowsRequest or BookmarkListInteractor. Interactors that
extend BaseListInteractor, like BookmarkListInteractor, inherit this variable via the Screens
framework. You’ll set it when you create the Screenlet class. Here’s BookmarkListInteractor’s
complete getPageRowsRequestmethod:

@Override

protected JSONArray getPageRowsRequest(Query query, Object... args) throws Exception {

long folderId = (long) args[0];

if (args[1] != null) {

query.setComparator((String) args[1]);

}

if (LiferayServerContext.isLiferay7()) {

return new BookmarksEntryService(getSession()).getEntries(groupId, folderId,

query.getStartRow(), query.getEndRow(), query.getComparatorJSONWrapper());

} else {

return new com.liferay.mobile.android.v62.bookmarksentry.BookmarksEntryService(

getSession()).getEntries(groupId, folderId, query.getStartRow(),

query.getEndRow(), query.getComparatorJSONWrapper());

}

}

You might now be asking yourself what a comparator is. A comparator is a class in the
Liferay DXP instance that sorts a portlet’s entities. For example, the Bookmarks portlet
contains several comparators that can sort entities by different criteria. Click here to see
these comparators. Although it’s not required, you can develop your list Screenlet to use a
comparator to sort its entities. Since Bookmark List Screenlet supports comparators, you’ll
see more of this as you progress through this tutorial.

• getPageRowCountRequest: Retrieves the number of entities, to enable pagination. In the ex-
ample BookmarkListInteractor, this method first uses the args parameter to get the ID of the
folder in which to count bookmarks. It then calls BookmarksEntryService’s getEntriesCount

method to retrieve the number of bookmarks:

@Override

protected Integer getPageRowCountRequest(Object... args) throws Exception {

long folderId = (long) args[0];

if (LiferayServerContext.isLiferay7()) {

return new BookmarksEntryService(getSession()).getEntriesCount(groupId, folderId);

} else {

return new com.liferay.mobile.android.v62.bookmarksentry.BookmarksEntryService(

getSession()).getEntriesCount(groupId, folderId);

}

}

• createEntity: Returns an instance of your event that contains the server call’s results.
This method receives the results as Map<String, Object>, which it uses to instantiate
your model class. It then uses this model instance to create the event object. In the
example BookmarkListInteractor, this method passes the Map<String, Object> to the Bookmark

constructor. It then uses the resulting Bookmark to create and return a BookmarkEvent:

@Override

protected BookmarkEvent createEntity(Map<String, Object> stringObjectMap) {

Bookmark bookmark = new Bookmark(stringObjectMap);

1093

https://github.com/liferay/liferay-portal/tree/master/modules/apps/collaboration/bookmarks/bookmarks-api/src/main/java/com/liferay/bookmarks/util/comparator

return new BookmarkEvent(bookmark);

}

• getIdFromArgs: a boilerplate method that returns the value of the first object argument as a
string. This serves as a cache key for offline mode:

@Override

protected String getIdFromArgs(Object... args) {

return String.valueOf(args[0]);

}

You must implement this method even if you don’t intend to support offline mode in your
Screenlet. Having this method in your Interactor class makes it simpler to add offline mode
functionality later. Supporting offline mode in your Screenlets is addressed in detail in a
separate tutorial.

To see the complete BookmarkListInteractor class, click here.
Next, you’ll create the Screenlet class.

Related Topics

Creating the Model Class
Creating the View
Creating the Screenlet Class

100.5 Creating the Screenlet Class

Recall from the basic Screenlet creation tutorial that the Screenlet class serves as your Screenlet’s
focal point. It governs the Screenlet’s behavior and is the primary component the app developer
interacts with. As with non-list Screenlets, you should first define any XML attributes that you
want to make available to the app developer. For example, Bookmark List Screenlet defines the
following attributes:

• groupId: the ID of the site containing the Bookmarks portlet
• folderId: the ID of the Bookmarks portlet folder to retrieve bookmarks from
• comparator: the name of the comparator to use to sort the bookmarks

The Screenlet defines these attributes in its res/values/bookmark_attrs.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<declare-styleable name="BookmarkListScreenlet">

<attr name="groupId"/>

<attr name="folderId"/>

<attr format="string" name="comparator"/>

</declare-styleable>

</resources>

1094

https://github.com/liferay/liferay-screens/blob/master/android/samples/listbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/listbookmark/BookmarkListInteractor.java

Now you’re ready to create your Screenlet class. Because the BaseListScreenlet class provides
the basic functionality for all Screenlet classes in list Screenlets, including methods for pagination
and other default behavior, your Screenlet class must extend BaseListScreenletwith your model
class and Interactor as type arguments.

For example, Bookmark List Screenlet’s Screenlet class–BookmarkListScreenlet–extends
BaseListScreenlet parameterized with Bookmark and BookmarkListInteractor:

public class BookmarkListScreenlet

extends BaseListScreenlet<Bookmark, BookmarkListInteractor> {...

You must also create instance variables for the XML attributes that you want to pass to your In-
teractor. For example, recall that the request methods in BookmarkListInteractor receive two Object

arguments: the folder ID and the comparator. The BookmarkListScreenlet class must therefore
contain variables for these parameters so it can pass them to the Interactor:

private long folderId;

private String comparator;

For constructors, leverage the superclass constructors. For example, here are BookmarkListScreenlet’s
constructors:

public BookmarkListScreenlet(Context context) {

super(context);

}

public BookmarkListScreenlet(Context context, AttributeSet attrs) {

super(context, attrs);

}

public BookmarkListScreenlet(Context context, AttributeSet attrs, int defStyleAttr) {

super(context, attrs, defStyleAttr);

}

public BookmarkListScreenlet(Context context, AttributeSet attrs, int defStyleAttr,

int defStyleRes) {

super(context, attrs, defStyleAttr, defStyleRes);

}

Now you must implement the errormethod. This is a boilerplate method that uses a listener in
the Screenlet framework to propagate any exception, and the user action that produced it, that
occurs during the service call. This method does this by checking for a listener and then calling its
errormethod with the Exception and userAction:

@Override

public void error(Exception e, String userAction) {

if (getListener() != null) {

getListener().error(e, userAction);

}

}

Next, override the createScreenletView method to read the values of the XML attributes you
defined earlier and create the Screenlet’s View. Recall from the basic Screenlet creation tutorial that
thismethod assigns the attribute values to their corresponding instance variables. For example, the
createScreenletViewmethod in BookmarkListScreenlet assigns the folderId and comparator attribute
values to variables of the same name. This method also sets the local variable groupId. Recall that
the Screens framework propagates this variable to your Interactor. Finish the createScreenletView

method by calling the superclass’s createScreenletViewmethod. This instantiates the View for you:

1095

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListScreenlet.java

@Override

protected View createScreenletView(Context context, AttributeSet attributes) {

TypedArray typedArray = context.getTheme().obtainStyledAttributes(attributes,

R.styleable.BookmarkListScreenlet, 0, 0);

groupId = typedArray.getInt(R.styleable.BookmarkListScreenlet_groupId,

(int) LiferayServerContext.getGroupId());

folderId = typedArray.getInt(R.styleable.BookmarkListScreenlet_folderId, 0);

comparator = typedArray.getString(R.styleable.BookmarkListScreenlet_comparator);

typedArray.recycle();

return super.createScreenletView(context, attributes);

}

Next, override the loadRowsmethod to start your Interactor and thereby retrieve the list rows
from the server. This method takes an instance of your Interactor as an argument, which you use to
call the Interactor’s startmethod. Note that the Interactor inherits start from BaseListInteractor.
You can also use the loadRows method to execute any other code that you want to run when the
Interactor starts. For example, the loadRowsmethod in BookmarkListScreenletfirst retrieves a listener
instance so it can call the listener’s interactorCalledmethod. It then starts the server operation to
retrieve the list rows by calling the Interactor’s startmethod with folderId and comparator:

@Override

protected void loadRows(BookmarkListInteractor interactor) {

((BookmarkListListener) getListener()).interactorCalled();

interactor.start(folderId, comparator);

}

Note that if your Interactor doesn’t require arguments, then you can pass the startmethod 0 or
null. Calling start with no arguments, however, causes the server call to fail.

Lastly, override the createInteractormethod to instantiate your Interactor. Since that’s all this
method needs to do, call your Interactor’s constructor and return the new instance. For example,
BookmarkListScreenlet’s createInteractormethod returns a new BookmarkListInteractor:

@Override

protected BookmarkListInteractor createInteractor(String actionName) {

return new BookmarkListInteractor();

}

You’re done! Your Screenlet is a ready-to-use component that you can use in your app. You
can even package your Screenlet and contribute it to the Screens project, or distribute it in Maven
Central or jCenter.

Related Topics

Creating the Model Class
Creating the View
Creating the Interactor

100.6 Using the List Screenlet

You can now use your new list Screenlet the same way you use any other Screenlet:

1096

1. Insert the Screenlet’s XML in the layout of the activity or fragment you want to use the
Screenlet in. For example, here’s Bookmark List Screenlet’s XML:

<com.liferay.mobile.screens.listbookmark.BookmarkListScreenlet

android:id="@+id/bookmarklist_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:comparator="FULLY_QUALIFIED_COMPARATOR_CLASS"

app:folderId="YOUR_FOLDER_ID"

app:groupId="YOUR_GROUP_ID"

app:layoutId="@layout/list_bookmarks"/>

Note that to set a comparator, you must use its fully qualified class name. For example, to
use the Bookmarks portlet’s EntryURLComparator, set app:comparator in the Screenlet XML as
follows:

app:comparator="com.liferay.bookmarks.util.comparator.EntryURLComparator"

2. Implement the Screenlet’s listener in the activity or fragment class. If your list Screenlet
doesn’t have a custom listener, then you can do this by implementing BaseListListener pa-
rameterized with your model class. For example:

public class YourListActivity extends AppCompatActivity

implements BaseListListener<YourModelClass> {...

If you created a custom listener for your list Screenlet, however, then your activity or fragment
must implement it instead. For example, recall that the example Bookmark List Screenlet’s
listener is BookmarkListListener. To use this Screenlet, you must therefore implement this
listener in the class of the activity or fragment that you want to use the Screenlet in. For
example:

public class ListBookmarksActivity extends AppCompatActivity

implements BookmarkListListener {...

See the full example of this here in GitHub.

Well done! Now you know how to create list Screenlets.

Related Topics

Using Screenlets in Android Apps

1097

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-api/src/main/java/com/liferay/bookmarks/util/comparator/EntryURLComparator.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/ListBookmarksActivity.java

CHAPTER 101

CREATING ANDROID VIEWS

By creating your own Views, you can customize your mobile app’s layout, style, and functionality.
You can create them from scratch or use an existing View as a foundation. Views include a View
class for implementing Screenlet behavior, a Screenlet class for notifying listeners and invoking
Interactors, and an XML file for specifying the UI. The four Liferay Screens View types support
different levels of customization and parent View inheritance. Here’s what each View type offers:

ThemedView: presents the same structure as the current View, but alters the theme colors and
tints of the View’s resources. All existing Views can be themed with different styles. The View’s
colors reflect the current value of the Android color palette. If you want to use one View Set with
another View Set’s colors, you can use those colors in your app’s theme (e.g. colorPrimary_default,
colorPrimary_material, colorPrimary_westeros).

Child View: presents the same UI components as its parent View, but lets you change their
appearance and position.

Extended View: inherits its parent View’s functionality and appearance, but lets you add to and
modify both.

Full View: provides a complete standalone View for a Screenlet. A full View is ideal for imple-
menting completely different functionality and appearance from a Screenlet’s current theme.

This tutorial explains how to create all four types of Views. To understand View concepts and
components, you might want to examine the architecture of Liferay Screens for Android. And the
tutorial Creating Android Screenlets can help you create or extend any Screenlet classes your View
requires. Now get ready to create some great Views!

101.1 Determining Your View's Location

First, decide whether you’ll reuse your view or if it’s just for your current app. If you don’t plan to
reuse it in another app or don’t want to redistribute it, create it in your app project.

If you want to reuse your View in another app, create it in a new Android application module;
the tutorial Packaging Android Screenlets explains how. When your View’s project is in place, you
can start creating it.

First, you’ll learn how to create a Themed View.

1099

https://www.google.com/design/spec/style/color.html#color-color-palette

101.2 Themed Views

Screens provides several existing View Sets that you can reuse and customize in your app to create
a ThemedView. If you use or override the Android color palette’s values (for example, primaryColor,
secondaryColor, etc…), you’ll reuse the View Set’s general structure, but be able to use the new
colors (also with tinted resources). Note that you must create Themed Views inside your app. This
is because Themed Views depend on the app or activity theme.

Each View Set has its own Android theme. These are listed here:

• Default View Set: default_theme
• Lexicon View Set: lexicon_theme
• Material View Set: material_theme
• Westeros View Set: westeros_theme

You can easily style all your Screenlets by setting your app or activity theme to inherit a View
Set’s Android theme. For example, you can use the following code to reuse the styles (and layouts)
from material_theme in your own theme:

<style name="AppTheme.NoActionBar" parent="material_theme">

<item name="colorPrimary">#B91D6D</item>

<item name="colorPrimaryDark">#670E3B</item>

<item name="colorAccent">#BBBBBB</item>

</style>

<application android:theme="@style/AppTheme.NoActionBar"

...

>

Note that this code overrides the AppTheme.NoActionBar theme’s colors with your own color
settings for colorPrimary, colorPrimaryDark, and colorAccent. Screenlets will also use these new
colors, and tint images and other resources accordingly. Liferay Screens uses the default Android
color palette names from the Support Library.

You can also override only the parent View Set’s theme colors. This way you can set a default
color palette and override only the View Set colors you want. The color names for eachView Set are
the default Android names, followed by an underscore and theView Set’s lowercase name (_default,
_material, and _westeros). For example, the following code overrides colorPrimary, colorPrimaryDark,
and colorAccent for only the material_theme:

<resources>

<color name="colorPrimary_material">#B91D6D</color>

<color name="colorPrimaryDark_material">#670E3B</color>

<color name="colorAccent_material">#BBBBBB</color>

</resources>

Liferay Screens also lets you use one View Set’s layout with a Screenlet, and use another View
Set’s general style and colors. To do this, pass a layoutId attribute to a Screenlet that is already
styled with another View Set’s theme. The Screenlet uses the layout structure specified in layoutId,
but inherits the general style and colors from the View Set’s theme. For example, this code tells
Login Screenlet to use the Default View Set’s layout structure, but use the styles and colors defined
earlier in AppTheme.NoActionBar:

1100

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:basicAuthMethod="email"

app:layoutId="@layout/login_default"

app:credentialsStorage="shared_preferences" />

<application android:theme="@style/AppTheme.NoActionBar"

...

>

Related Topics

Child Views
Extended Views
Full Views
Packaging Your Views

101.3 Child Views

A Child View presents the same behavior and UI components as its parent, but can change the UI
components’ appearance and position. It can’t add or remove any UI components. A Child View
specifies visual changes in its own layout XML file; it inherits the parent’s View class and Screenlet
class. The parent must be a Full View.

The Child View discussed here presents the same UI components as the Login Screenlet’s
Default View, but uses a more compact layout.

You can follow these steps to create a Child View:

1. Create a new layout XML file named after the View’s Screenlet and its intended use case. A
good way to start building your UI is to duplicate the parent’s layout XML file and use it as a
template. However you start building your UI, name the root element after the parent View’s
fully-qualified class name and specify the parent’s UI components with the same IDs.

In the example here, the Child View’s layout file login_compact.xml resembles its parent’s
layout file login_default.xml– the layout of the Login Screenlet’s Default View. The child
View’s name compact describes its use case: display the Screenlet’s components in a more
compact layout. The IDs of its EditText and Button components match those of the parent
View. Its root element uses the parent View class’s fully-qualified name:

<?xml version="1.0" encoding="utf-8"?>

<com.liferay.mobile.screens.viewsets.defaultviews.auth.login.LoginView

xmlns:android="http://schemas.android.com/apk/res/android"

style="@style/default_screenlet">

<EditText

android:id="@+id/liferay_login"

style="@style/default_edit_text"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginBottom="15dp"

android:drawableLeft="@drawable/default_mail_icon"

android:hint="@string/email_address"

android:inputType="text" />

1101

https://github.com/liferay/liferay-screens/tree/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/res/layout/login_default.xml

<EditText

android:id="@+id/liferay_password"

style="@style/default_edit_text"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginBottom="15dp"

android:drawableLeft="@drawable/default_lock_icon"

android:hint="@string/password"

android:inputType="textPassword" />

<Button

android:id="@+id/liferay_login_button"

android:layout_width="match_parent"

android:layout_height="match_parent"

style="@style/default_button"

android:text="@string/sign_in" />

</com.liferay.mobile.screens.viewsets.defaultviews.auth.login.LoginView>

You can browse other layouts for Screens’s Default Views on GitHub.

2. Insert your View’s Screenlet in any of your activities or fragments, using your new
layout’s name as the liferay:layoutId attribute’s value. For example, to use the
new login_compact layout, insert LoginScreenlet in an activity or fragment and set
liferay:layoutId="@layout/login_compact".

Another good Child View layout file to examine is sign_up_material.xml. It presents the same UI
components and functionality as the Sign Up Screenlet’s Default View, but using Android’s Material
design.

Related Topics

Themed Views
Extended Views
Full Views
Packaging Your Views

101.4 Extended Views

An Extended View inherits the parent View’s behavior and appearance, but lets you change and add
to both. You can do so by writing a customView class and a new layout XML file. An Extended View
inherits all of the parent View’s other classes, including its Screenlet, listeners, and Interactors. An
Extended View’s parent must be a Full View.

The example Extended View discussed here presents the same UI components as the Login
Screenlet’s Default View, but adds functionality: computing password strength. Of course, you’re
not restricted to password strength computations; you can implement anything you want.

1. Create a new layout XML file named after the View’s Screenlet and its intended use case. A
goodway to start building yourUI is to duplicate the parent’s layout XMLfile anduse it as a tem-
plate. The new layout file for the Login Screenlet’s ExtendedView is called login_password.xml,
because it’s based on the Login Screenlet’s Default View layout file login_default.xml and it
adds a password strength computation.

1102

https://github.com/liferay/liferay-screens/tree/master/android/library/core/src/main/res/layout
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/material/src/main/res/layout/sign_up_material.xml
http://www.google.com/design/spec/material-design/introduction.html
http://www.google.com/design/spec/material-design/introduction.html
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/res/layout/login_default.xml

2. Create a new customView class that extends the parentView class. Name it after the Screenlet
and the functionality you’ll add or override. The example View class LoginCheckPasswordView
extends the Default View’s LoginView class, overriding the onClickmethod to compute pass-
word strength:

public class LoginCheckPasswordView extends LoginView {

// parent's constructors go here...

@Override

public void onClick(View view) {

// compute password strength

if (passwordIsStrong) {

super.onClick(view);

}

else {

// Present user message

}

}

}

3. Rename the layout XMLfile’s root element after your customView’s fully-qualified class name.
For example, the root element in login_password.xml is com.your.package.LoginCheckPasswordView:

<com.your.package.LoginCheckPasswordView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

...

4. Insert your View’s Screenlet in any of your activities or fragments, using your new
layout’s name as the liferay:layoutId attribute’s value. For example, to use the
new login_password layout, insert LoginScreenlet in an activity or fragment, and set
liferay:layoutId="@layout/login_password".

The Bank ofWesteros sample app’s Westeros View Set has a couple of Extended Views that you
can examine. It has an Extended View that adds a new button to show the password in the clear for
the Login Screenlet. The View uses custom layout file login_westeros.xml and customView class
LoginView. TheWesteros View Set also contains an Extended View for the User Portrait Screenlet; it
changes the border color and width of the user’s portrait picture and it uses the custom layout file
userportrait_westeros.xml and the customView class UserPortraitView.

Related Topics

Themed Views
Child Views
Full Views
Packaging Your Views

1103

https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/viewsets/defaultviews/auth/login/LoginView.java
https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/res/layout/login_westeros.xml
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/auth/login/LoginView.java
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/res/layout/userportrait_westeros.xml
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/userportrait/UserPortraitView.java

101.5 Full Views

A Full View has a unique Screenlet class, a View class, and layout XML file. It’s standalone and
doesn’t inherit from any View. You should create a Full View if there’s no other View that you can
extend to meet your needs or if your Screenlet’s behavior can only be augmented by customizing
its listeners or calling custom Interactors. To create a Full View, you must create its Screenlet class,
View class, and layout XML file. The example Full View here for the Login Screenlet presents a
single EditText component for the user name. For the password, it uses Secure.ANDROID_ID. The
Screens Test App uses this Full View.

You can follow these steps to create a Full View:

1. Create a new layout XML file and build your UI in it. A good way to start building your UI
is to duplicate another View’s layout XML file and use it as a template. Name your layout
XML file after the View’s Screenlet and intended use case. Name its root element after the
fully-qualified class name of your customView (you’ll create this next).

The Test App’s Full View layout XML file for the Login Screenlet is called login_full.xml. It
specifies EditText and Button elements copied from the LongScreenlet’s Default View file
login_default.xml.

<?xml version="1.0" encoding="utf-8"?>

<com.your.package.LoginFullView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

<EditText

android:id="@+id/liferay_login"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginBottom="20dp"

android:hint="Email Address"

android:inputType="textEmailAddress"/>

<Button

android:id="@+id/liferay_login_button"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="Sign In"/>

</com.your.package.LoginFullView>

2. Create a new customView class named after the layout’s root element. The tutorial on creating
Android Screenlets explains how to create a View class. Note that you don’t have to extend
a View class to implement a View Model interface, but you might want to for convenience.
The customView class LoginFullView, for example, implements the LoginViewModel interface
by extending the Default LoginView class. To return the ANDROID_ID, the LoginFullView custom
View class overrides the getPassword()method.

3. Create a new Screenlet class that inherits the base Screenlet class. This new class is where
you can add custom behavior to the listeners or call custom Interactors. The Screenlet
class LoginFullScreenlet, for example, extends LoginScreenlet and overrides the onUserAction

method to log Interactor calls.

1104

http://developer.android.com/reference/android/provider/Settings.Secure.html#ANDROID_ID
https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app
https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/fullview
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/layout/login_full.xml
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/res/layout/login_default.xml
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/fullview/LoginFullView.java
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login/view/LoginViewModel.java
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/viewsets/defaultviews/auth/login/LoginView.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/fullview/LoginFullScreenlet.java
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login/LoginScreenlet.java

4. Insert your View’s Screenlet in any of your activities or fragments, using your new
layout’s name as the liferay:layoutId attribute’s value. For example, to use the
new login_password layout, insert LoginScreenlet in an activity or fragment, and set
liferay:layoutId="@layout/login_password".

The Westeros View Set’s full view for the Sign Up Screenlet uses a custom Screenlet class to add
a new listener. The custom Screenlet class also adds a new user action that calls the base Interactor
SignUpInteractor.

Related Topics

Themed Views
Child Views
Extended Views
Packaging Your Views

101.6 Packaging Your Views

If you want to distribute or reuse Views, you should package them in a module that is then added
as an app’s project dependency. To do this, use the material sub-project as a template for your new
build.gradle file.

To use a packaged View, you must import its module into your project by specifying its location
in your settings.gradle file. The Bank ofWesteros and test-app projects use customViews westeros
and material, respectively. These projects exemplify using independent Views in a project.

If you want to redistribute your View and let others use it, you can upload it to jCenter or Maven
Central. In the example build.gradle file, after entering your bintray api key you can execute
gradlew bintrayupload to upload your project to jCenter. When finished, anyone can use the View
as they would any Android dependency by adding the repository, artifact, group ID, and version to
their Gradle file.

Related Topics

Creating Android Views

1105

https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/auth/signup
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/auth/signup/SignUpScreenlet.java
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/auth/signup/SignUpListener.java
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/material/build.gradle
https://github.com/liferay/liferay-screens/blob/master/android/samples/bankofwesteros/settings.gradle
https://github.com/liferay/liferay-screens/blob/master/android/samples/bankofwesteros/build.gradle

CHAPTER 102

SUPPORTING OFFLINE MODE

Offline mode lets Screenlets function without a network connection. For offline mode to work with
your Screenlet, you must manually add support for it. Fortunately, Liferay Screens 2.0 introduced
a simpler way of implementing offline mode support in Android Screenlets:

1. Create an event class (or update it if your Screenlet already has one).
2. Update your Screenlet’s classes to leverage the offline mode cache.

How you implement these steps depends on how your Screenlet communicates with the server:

• Write Screenlets: Write data to a server. The Add Bookmark Screenlet created in the basic
Screenlet creation tutorial is a good example of a simple write Screenlet. It asks the user to
enter a URL and a title, which it then sends to the Bookmarks portlet in Liferay DXP to create
a bookmark.

• Read Screenlets: Read data from a server. The Web Content Display Screenlet included
with Liferay Screens is a good example of a read Screenlet. It retrieves web content from
Liferay DXP for display in an Android app. Click here to seeWeb Content Display Screenlet’s
documentation.

Offline mode implementation differs only slightly between write and read Screenlets. The
tutorials in this section use a write Screenlet (Add Bookmark Screenlet) to show you how to support
offline mode, and point out any differences needed for a read Screenlet.

Before getting started, be sure to read the basic Screenlet creation tutorial to familiarize yourself
with Add Bookmark Screenlet’s code.

102.1 Create or Update the Event Class

Recall from the basic Screenlet creation tutorial that an event class is required to handle communi-
cation between Screenlet components. Also recall that many Screenlets can use the event class
included with Screens, BasicEvent, as their event class. For offline mode to work, however, you
must create an event class that extends CacheEvent (click here to see CacheEvent). Your event class
has one primary responsibility: store and provide access to the arguments passed to the Interactor.
To accomplish this, your event class should do these things:

1107

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/event/CacheEvent.java

• Extend CacheEvent. For the arguments, define variables and public getter methods.
• Define a no-argument constructor that only calls the corresponding superclass constructor.
• Define a constructor that sets the Interactor’s arguments.

In the case of Add Bookmark Screenlet, the arguments are the bookmark’s URL, folder ID, and
title. For example, here’s the full code for this Screenlet’s event class, BookmarkEvent:

public class BookmarkEvent extends CacheEvent {

private String url;

private String title;

private long folderId;

public BookmarkEvent() {

super();

}

public BookmarkEvent(String url, String title, long folderId) {

this.url = url;

this.title = title;

this.folderId = folderId;

}

public String getURL() {

return url;

}

public String getTitle() {

return title;

}

public long getFolderId() {

return folderId;

}

}

Next, you’ll update the listener.

Related Topics

Update the Listener
Update the Interactor Class
Update the Screenlet Class
Sync the Cache with the Server

102.2 Update the Listener

Recall from the basic Screenlet creation tutorial that the listener interface defines a successmethod
and a failure method. This lets implementing classes respond to the server call’s success or failure.
Listeners that support offline mode offer the same functionality, although differently. Offline mode
listeners must extend BaseCacheListener, which defines only this errormethod:

void error(Exception e, String userAction);

1108

By extending BaseCacheListener, your listener no longer needs an explicit failure method be-
cause it inherits the errormethod instead. This errormethod also includes an argument for the
user action that triggered the exception.

You can therefore update your listener to support offline mode by extending BaseCacheListener

and deleting the failure method. For example, here’s Add Bookmark Screenlet’s listener,
AddBookmarkListener, after being updated to support offline mode:

public interface AddBookmarkListener extends BaseCacheListener {

onAddBookmarkSuccess();

}

Note that you must also remove any failure method implementations (such as in an activity or
fragment that implements the listener), and replace any failure method calls with errormethod
calls. You’ll do the latter next when updating the Interactor class.

Related Topics

Create or Update the Event Class
Update the Interactor Class
Update the Screenlet Class
Sync the Cache with the Server

102.3 Update the Interactor Class

Recall from the basic Screenlet creation tutorial that Interactor classes extend BaseRemoteInteractor

with the listener and event as type arguments. To support offline mode, your Interactor class must
instead extend one of the following classes. Which one depends on whether your Interactor writes
data to or reads data from a server:

• BaseCacheWriteInteractor: writes data to a server. Extend this class if your Screenlet is a write
Screenlet. Click here to see this class.

• BaseCacheReadInteractor: reads data from a server. Extend this class if your Screenlet is a read
Screenlet. Click here to see this class.

In either case, the type arguments are the same: the listener and the event. Note, however, that
the eventmust extend CacheEvent as described above. For example, sinceAddBookmark Screenlet is
a write Screenlet, to support offlinemode its Interactor class must extend BaseCacheWriteInteractor

with AddBookmarkListener and AddBookmarkEvent as type arguments:

public class AddBookmarkInteractor extends

BaseCacheWriteInteractor<AddBookmarkListener, BookmarkEvent> {...

If your Screenlet is a write Screenlet, you must change the Interactor’s executemethod to take
the event instead of var args (in read Screenlets, this method can still take var args). You can
then retrieve the data you need from the event. For example, to support offline mode, the execute

method in AddBookmarkInteractor takes BookmarkEvent as an argument. The bookmark’s URL, title,
and folder ID are then retrieved from the event for use in the getJSONObjectmethod that makes the
server call. The executemethod finishes by setting the resulting JSONObject to the event, and then
returning the event:

1109

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/BaseCacheWriteInteractor.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/BaseCacheReadInteractor.java

@Override

public BookmarkEvent execute(BookmarkEvent bookmarkEvent) throws Exception {

validate(bookmarkEvent.getUrl(), bookmarkEvent.getFolderId());

JSONObject jsonObject = getJSONObject(bookmarkEvent.getUrl(), bookmarkEvent.getTitle(),

bookmarkEvent.getFolderId());

bookmarkEvent.setJSONObject(jsonObject);

return bookmarkEvent;

}

If your Screenlet is a read Screenlet, then youmust also implement the getIdFromArgsmethod of
BaseCacheReadInteractor. This method takes the var args passed to the Interactor so you can return
the argument that identifies your entity. Note that because this method requires you to return a
String, you’ll often use String.valueOf to return non-string arguments as a string. For example, the
getIdFromArgs implementation in Comment Display Screenlet’s CommentLoadInteractor retrieves the
comment ID (a long) from the first argument and then returns it as a String:

@Override

protected String getIdFromArgs(Object... args) {

long commentId = (long) args[0];

return String.valueOf(commentId);

}

You should also change the onSuccessmethod to take an instance of your event class instead of
BasicEvent. This is the only change you need to make to this method. For example, the onSuccess

method in AddBookmarkInteractor supports offline mode by taking a BookmarkEvent instead of a
BasicEvent:

@Override

public void onSuccess(BookmarkEvent event) {

getListener().onAddBookmarkSuccess();

}

Nowmake the same change to the onFailuremethod, but replace the listener’s failure method
call with a call to the errormethod inherited from BaseCacheListener (see the listener section above
for an explanationof thismethod). For the errormethod’s arguments, you can retrieve the exception
from the event and define a string to use as the user action. For example, to support offline mode
the onFailuremethod in AddBookmarkInteractor takes a BookmarkEvent instead of a BasicEvent. Also,
the method’s error call defines the “ADD_BOOKMARK” string to indicate that the error occurred
while trying to add a bookmark to the server:

@Override public void onFailure(BookmarkEvent event) {

getListener().error(event.getException(), "ADD_BOOKMARK");

}

Related Topics

Create or Update the Event Class
Update the Listener
Update the Screenlet Class
Sync the Cache with the Server

1110

102.4 Update the Screenlet Class

Updating the Screenlet class for offlinemode is straightforward. In the Screenlet class’s onUserAction
method, you’ll change the call to the Interactor’s startmethod so that it takes only an event as an
argument. Before doing this, however, you should create an event instance and set its cache key.
A cache key is a value that identifies an entity in the local cache. This lets you retrieve the entity
from the cache for later synchronization with the server.

In Add Bookmark Screenlet, for example, a bookmark’s URL makes a good cache key. To
support offlinemode, the onUserActionmethod in AddBookmarkScreenlet creates a new BookmarkEvent

instance with a bookmark’s data and then uses the setCacheKeymethod to set the bookmark’s URL
as the event’s cache key. The Interactor’s start method takes this event as its argument:

BookmarkEvent event = new BookmarkEvent(url, title, folderId);

event.setCacheKey(url);

interactor.start(event);

Note that you don’t have to set a cache key to use offline mode. Instead, you can pass the event
to the startmethod without calling setCacheKey. However, this means that you’ll only be able to
access the most recent entity in the cache.

That’s it! Your write Screenlet now supports offline mode. There’s one more detail to keep in
mind, however, when using the Screenlet: syncing the cache with the server. You’ll learn about
this next.

Related Topics

Create or Update the Event Class
Update the Listener
Update the Interactor Class
Sync the Cache with the Server

102.5 Sync the Cache with the Server

When using a write Screenlet that supports offline mode, new data written to the cache must also
be synced with the server. The write Screenlets included with Liferay Screens do this for you.
However, you must do this manually when using a custom write Screenlet. You should do this in
the activity or fragment that uses the Screenlet–exactly where in this activity or fragment is up to
you though.

Note: You don’t have to do this when adding offline mode support to read Screenlets.

To sync a write Screenlet’s data with the server manually, follow these steps:

1. Retrieve the event that needs to be synced with the server. To do this, you must first get the
cache key associated with the event. Then use the key as an argument to the Cache.getObject

method.
2. Call the Interactor with the event. This syncs the data with the server.

1111

For example, the following code uses the Cache.findKeysmethod to retrieve all BookmarkEvent
keys in the cache. The loop that follows then retrieves the event that corresponds to each key, and
syncs it to the server by calling the Interactor:

String[] keys = Cache.findKeys(BookmarkEvent.class, groupId, userId, locale, 0,

Integer.MAX_VALUE);

for (String key : keys) {

BookmarkEvent event = Cache.getObject(BookmarkEvent.class, groupId, userId, key);

new AddBookmarkInteractor().execute(event);

}

Note that if you opted not to set a cache key in your Screenlet class, you can pass null in place
of a key.

Also note that you can use Android’s SharedPreferences APIs as an alternative way to store and
retrieve cache keys. For example, the following code stores cache keys in shared preferences:

SharedPreferences sharedPreferences = getSharedPreferences("MY_PREFERENCES", Context.MODE_PRIVATE);

HashSet<String> values = new HashSet<>();

sharedPreferences.edit().putStringSet("keysToSync", values).apply();

You can then retrieve the keys as you would retrieve any other key-value set from shared
preferences:

SharedPreferences sharedPreferences = getSharedPreferences("MY_PREFERENCES", Context.MODE_PRIVATE);

HashSet<String> keysToSync = sharedPreferences.getStringSet("keysToSync", new HashSet<>());

Related Topics

Create or Update the Event Class
Update the Listener
Update the Interactor Class
Update the Screenlet Class

102.6 Supporting Offline Mode in List Screenlets

A list Screenlet is a special type of read Screenlet that displays entities in a list. Recall from the list
Screenlet creation tutorial that list Screenlets have amodel class that encapsulates entities retrieved
from the server. To support offline mode, a list Screenlet’s event class must extend ListEvent with
the model class as a type argument. This event class also needs three things:

1. A default constructor
2. A getListKeymethod that returns a unique ID to store the entity with
3. A getModelmethod that returns the model instance

The list Screenlet creation tutorial contains example model and event classes that support
offline mode for Bookmark List Screenlet. Click the following links to see the sections in the
tutorial that show you how to create these classes:

• Creating the Model Class
• Creating the Event

1112

Related Topics

Supporting Offline Mode
Creating Android List Screenlets

102.7 Using Liferay Push in Android Apps

Liferay Screens supports push notifications in Android apps. To use them, you must configure
some APIs and modify your app to consume and/or produce push notifications. This tutorial shows
how to do all these things.

Configuring to Use Liferay Push Notifications

Your first step is to create and configure a Google project to use Google Cloud Messaging (GCM).
You also need to configure the Liferay Push app to use the project’s GCM API.

Follow these steps to create and configure a Google project to support cloud messaging:

1. On the Google CloudMessaging page, create a configuration file by clickingGet a Configuration
File. On the screen that appears, set your App name and Android package name, and then
click Continue To Choose and Configure Services. On the next screen, click Enable Google Cloud
Messaging.

2. Copy and save the Server API Key and Sender ID values you’re presented with. You’ll need to
use these values later as the push notifications API keys for Liferay Push.

Figure 102.1: You need the Server API Key and Sender ID to enable Liferay Push.

1113

https://developers.google.com/cloud-messaging/
https://developers.google.com/cloud-messaging/android/start/

Now that you’ve set up your Google project, you can configure the Liferay Push app to use the
project’s GCM API. Install the Liferay Push app from the Liferay Marketplace. In your Liferay DXP
instance’s Control Panel, navigate to Configuration → System Settings, select the Other tab, then select
Android Push Notifications Sender. Set the push notifications API Key to the value of the Server API
Key you generated in your Google project. You can also set the number of retries in the event that
sending a notification fails.

Figure 102.2: Set the API key and number of retries in your Liferay DXP instance.

Great! Your Liferay DXP instance is now ready to send push notifications to your Android apps!

Receiving and Sending Push Notifications

The Liferay Push Client for Android streamlines registering a device with the portal for receiving
and sending push notifications. Although the information below contains the main steps needed
to use the client, the readme explains them in detail.

In your Android application’s Gradle build file, add a new dependency on the Liferay Push
Client for Android:

dependencies {

...

implementation 'com.liferay.mobile:liferay-push:1.2.1'

}

1114

http://www.liferay.com/marketplace
https://github.com/liferay-mobile/liferay-push-android
https://github.com/liferay-mobile/liferay-push-android/blob/master/README.md

Make sure your app’s liferay-plugin-package.properties file specifies the Push Notifications
portlet as a required deployment context:

required-deployment-contexts=\

push-notifications-portlet\

...

Next, you’ll learn how to register listeners for push notifications.

Receiving Push Notifications

First, register your device in GCM with the SENDER_ID you generated previously:

Session session = new SessionImpl(YOUR_SERVER, new BasicAuthentication(YOUR_USER, YOUR_PASSWORD));

Push.with(session).register(this, YOUR_SENDER_ID);

If you’re using Liferay Screens to maintain a session, you can retrieve it and use it instead of
creating a new one:

Push.with(SessionContext.createSessionFromCurrentSession()).register(this, YOUR_SENDER_ID);

If you use these example lines of code, make sure to replace YOUR_SERVER, YOUR_USER,
YOUR_PASSWORD, and YOUR_SENDER_ID with your own values.

That’s it! You can attach a listener to store the registration ID or to process the notification sent
to the activity (using onPushNotification()). You can also register a receiver and service to process
the notification. You can refer to the Push Notifications project as an example push notifications
implementation.

Next, you’ll learn how to send push notifications.

Sending Push Notifications

Using the Liferay Push app, sending notifications to your app’s users is straightforward. You can
specify the user IDs along with the message content:

PushNotificationsDeviceLocalServiceUtil.sendPushNotification(userIds, content);

This example hook plugin sends a push notification each time a user creates a new DDL record
or updates an existing one.

In your app’s portal.properties file, you can add a listener for a class by creating a value.ob-
ject.listener property, set to a comma separated list of intended listener classes. Here’s an example
listener setting for DDLRecord objects:

value.object.listener.com.liferay.portlet.dynamicdatalists.model.DDLRecord=com.liferay.push.hooks.DDLRecordModelListener

Great! Now you know how to configure your Android apps to receive push notifications from
Liferay DXP.

In this tutorial, you’ve configured your portal to accommodate push notifications, registered
notification listeners, and implemented sending push notifications. Way to go!

Related Topics

Preparing Android Projects for Liferay Screens
Using Screenlets in Android Apps

1115

https://github.com/liferay/liferay-screens/tree/master/android/samples/pushnotifications
https://github.com/nhpatt/push-with-ddl-hook
https://docs.liferay.com/portal/6.2/propertiesdoc/portal.properties.html#Value%20Object
https://docs.liferay.com/portal/6.2/propertiesdoc/portal.properties.html#Value%20Object

102.8 Accessing the Liferay Session in Android

A session is a conversation state between the client and server. It typically consists of multiple
requests and responses between the two. To facilitate this communication, the session must have
the server IP address, and a user’s login credentials. Liferay Screens uses a Liferay Session to
access and query the JSONweb services provided by Liferay Portal. When you log in using a Liferay
Session, the portal returns the user’s information (name, email, user ID, etc…). Screens stores this
information and the active Liferay Session in Screens’s SessionContext class.

The SessionContext class is very powerful and lets you use Screens in many different scenarios.
For example, you can use SessionContext to request information with the JSONWS API provided by
Liferay. You can also use SessionContext to create anonymous sessions, or to log in a user without
showing a Login Screenlet.

This tutorial explains some common SessionContext use cases, and and also describes the class’s
most important methods.

Creating a Session from an Existing Session

When working with Liferay Screens, you may wish to call the remote JSON web services provided
by the Liferay Mobile SDK. Every operation with the Liferay Mobile SDK needs a Liferay Session
to provide the server address, user credentials, and any other required parameters. Since the
Login Screenlet creates a session when a user successfully logs in, you can retrieve this session
with the SessionContextmethod createSessionFromCurrentSession(). You can then use that session
to make the Mobile SDK service call. The following example shows this for calling the Mobile SDK’s
BookmarksEntryService:

Session sessionFromCurrentSession = SessionContext.createSessionFromCurrentSession();

sessionFromCurrentSession.setCallback(callback);

new BookmarksEntryService(sessionFromCurrentSession).methodCall()

If you need to check first to see if a user has logged in, you can use SessionContext.isLoggedIn().
Great! Now you know how to retrieve an existing session in your app. But what if you’re not

using the Login Screenlet? There won’t be an existing session to retrieve. No sweat! You can still
use SessionContext to create one manually. The next section shows you how to do this.

Creating a Session Manually

If you don’t use the Login Screenlet, then SessionContext doesn’t have a session for you to retrieve.
In this case, you must create one manually. You can do this with the SessionContext method
createBasicSession. The method takes a username and password as parameters, and creates a
session with those credentials. If you also need to access a user’s information, you must manually
call the User JSON web service, or call SessionContext.setLoggedUser(). The following code creates
a session with createBasicSession and then uses setLoggedUser to set the user in SessionContext:

LiferayScreensContext.init(this);

Session session = SessionContext.createBasicSession(USERNAME, PASSWORD);

SessionContext.setLoggedUser(USER);

Note that you can achieve the same thing by calling the interactor directly:

1116

LoginBasicInteractor loginBasicInteractor = new LoginBasicInteractor(0);

loginBasicInteractor.onScreenletAttached(this);

loginBasicInteractor.setLogin(USERNAME);

loginBasicInteractor.setPassword(PASSWORD);

loginBasicInteractor.login();

Super! Now you know how to create a session manually. The next section shows you how to
implement auto-login, and save or restore a session.

Implementing Auto-login and Saving or Restoring a Session

Although the Login Screenlet is awesome, your users may not want to enter their credentials every
time they open your app. It’s very common for apps to only require a single login. To implement
this in your app, see this video.

In short, youneed topass a storage type to theLogin Screenlet, and thenuse SessionContext.isLoggedIn()
to check for a session. If a session doesn’t exist, load the stored session from CredentialsStorage

with loadStoredCredentials(StorageType storageType). The following code shows a typical
implementation of this:

LiferayScreensContext.init(this); // If you haven't called a Screenlet yet

SessionContext.loadStoredCredentials(SHARED_PREFERENCES);

if (SessionContext.isLoggedIn()) {

// logged in

// consider doing a relogin here (see next section)

} else {

// send user to login form

}

Awesome! Now you know how to implement auto-login in your Liferay Screens apps. For
more information on available SessionContextmethods, see the Methods section at the end of this
tutorial. Next, you’ll learn how to implement relogin for cases where a user’s credentials change
on the server while they’re logged in.

Implementing Relogin

A session, whether created via Login Screenlet or auto-login, contains basic user data that verifies
the user in the Liferay instance. If that data changes in the server, then your session is outdated,
which may cause your app to behave inconsistently. Also, if a user is deleted, deactivated, or
otherwise changes their credentials in the server, the auto-login feature won’t deny access because
it doesn’t perform server transactions: it only retrieves an existing session from local storage. This
isn’t an optimal situation!

For such scenarios, you can use the relogin feature. This feature is implemented in a simple
method that determines if the current session is still valid. If the session is still valid, the user’s
data is updated with the most recent data from the server. If the session isn’t valid, the user is
logged out and must then log in again to create a new session.

To use this feature, call the SessionContextmethod relogin, with an object that implements the
LoginListener interface as an argument:

SessionContext.relogin(listener);

This method handles success or failure via the listener’s onLoginSuccess and onLoginFailure

methods, respectively. Note that this operation is done asynchronously in a background thread, so

1117

https://www.youtube.com/watch?v=kEZEahTzuck

the listener is called in that thread. If you also want to perform any UI operations, you must do so
in your UI thread. For example:

@Override

public void onLoginSuccess(final User user) {

runOnUiThread(new Runnable() {

@Override

public void run() {

// do any UI operation here

}

});

}

Great! Now you know how to implement relogin in your app. You’ve also seen how handy
SessionContext can be. It can do even more! The next section lists some additional SessionContext
methods, and some more detail on the ones used in this tutorial.

Methods

Method | Return Type | Explanation | logout() | void | Clears the stored user attributes and
session. | relogin(LoginListener) | void | Refreshes user data from the server. This recreates the
currentUser object if successful, or calls logout() on failure. When the server data is received,
the listener method onLoginSuccess is called with received user’s attributes. If an error occurs,
the listener method onLoginFailure is called. | isLoggedIn() | boolean | Returns true if there is a
stored Liferay Session in SessionContext. | createBasicSession(String username, String password) |
Session | Creates a Liferay Session using the default server and the supplied username and pass-
word. | createSessionFromCurrentSession() | Session | Creates a Liferay Session based on the stored
credentials and server. | getCurrentUser() | User | Returns a User object containing the server at-
tributes of the logged-in user. This includes the user’s email, user ID, name, and portrait ID.
| storeCredentials(StorageType storageType) | void | Stores the current session in the StorageType

supplied as a parameter. | removeStoredCredentials(StorageType storageType) | void | Clears the
StorageType of any user information and session. | loadStoredCredentials(StorageType storageType)

| void | Loads the session and user information from the StorageType parameter, and uses it as the
current session and user. |

For more information, see the SessionContext source code in GitHub.

Related Topics

Login Screenlet for Android
Using Screenlets in Android Apps

102.9 Adding Custom Interactors to Android Screenlets

Interactors are Screenlet components that implement server communication for a specific use case.
For example, the Login Screenlet’s interactor calls the LiferayMobile SDK service that authenticates
a user to the portal. Similarly, the Interactor for the Add Bookmark Screenlet calls the Liferay
Mobile SDK service that adds a bookmark to the Bookmarks portlet.

1118

https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/context/SessionContext.java

That’s all fine and well, but what if you want to customize a Screenlet’s server call? What if
you want to use a different back-end with a Screenlet? No problem! You can implement a custom
interactor for the Screenlet. You can plug in a different interactor that makes its server call by using
custom logic or network code. To do this, you must implement the current interactor’s interface
and then pass it to the Screenlet you want to override. You should do this inside your app’s code,
either in an inner class or a separate class.

In this tutorial, you’ll see an example interactor that overrides the Login Screenlet to always log
in the same user, without a password. You can find the complete code in the test-app on GitHub..
Note that this example implements the custom interactor in an inner class of an activity.

Implementing a Custom Interactor

1. Implement your custom interactor. You must inherit the original interactor’s interface, as
shown here:

private class CustomLoginInteractor extends LoginBasicInteractor {

public CustomLoginInteractor(int targetScreenletId) {

super(targetScreenletId);

}

@Override

public void login() throws Exception {

//custom implementation

}

}

2. Call the interactor’s listener. In your custom logic, you must call the interactor’s listener. In
this example, you must call onLoginFailure and onLoginSuccess, depending on your custom
logic’s result:

if (SUCCESS) {

getListener().onLoginSuccess(fakeUser);

}

else {

getListener().onLoginFailure(new AuthenticationException("bad login"));

}

3. Return your interactor in the custom listener. You must use setCustomInteractorListener to
set a specific listener that expects an Interactor created with actionName (a string):

_screenlet.setCustomInteractorListener(this);

@Override

public LoginInteractor createInteractor(String actionName) {

return new CustomLoginInteractor(_loginScreenlet.getScreenletId());

}

Great! Now you know how to implement custom interactors for Android Screenlets. The
next example builds on this by showing you how to access non-Liferay backends with a custom
interactor.

1119

https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/CustomInteractorActivity.java

Using Custom Interactors to Access Other Backends

Custom interactors are also capable of communicating with non-Liferay backends. The following
example illustrates this by creating a custom interactor for the Add Bookmark Screenlet that can
store bookmarks at Delicious. You can find this example’s complete code at this gist.

1. Create a new custom interactor. This interactor inherits BaseRemoteInteractor, the base class
of all interactors, with AddBookmarkListener as a type parameter. It also implements the
AddBookmarkInteractor class. The base code for this new interactor is shown here:

public class AddDeliciousInteractorImpl extends BaseRemoteInteractor<AddBookmarkListener>

implements AddBookmarkInteractor {

public AddDeliciousInteractorImpl(int targetScreenletId) {

super(targetScreenletId);

}

public void addBookmark(final String url, final String title, long folderId) throws Exception {

...

}

}

2. Implement your custom logic. In this example, you must implement the code for accessing
Delicious and inserting a new bookmark with the Delicious API. You can use the OkHttp
library to pass the API your bookmark’s URL and description. The following code shows this:

new Thread(new Runnable() {

@Override

public void run() {

try {

Headers headers = Headers.of("Authorization", "Bearer _OAUTH_TOKEN_");

OkHttpClient client = new OkHttpClient();

Request add = new Request.Builder()

.url("https://api.del.icio.us/api/v1/posts/add?url=" + url + "&description=" + title)

.headers(headers)

.build();

com.squareup.okhttp.Response response = client.newCall(get).execute();

String text = response.body().string();

...

}

catch (IOException e) {

LiferayLogger.e("Error sending", e);

...

}

}

}).start();

3. Notify your app of the results. You should use the EventBusUtil class to post an event
for this. Use the event to let other classes listen for the event. The following code uses
EventBusUtil.post(text) to post the event, and the onEventmethod to notify the listener:

1120

https://delicious.com
https://gist.github.com/nhpatt/7cbeb0df6f39ec8a9176
http://square.github.io/okhttp/
http://square.github.io/okhttp/

EventBusUtil.post(text);

...

public void onEvent(String text) {

getListener().onAddBookmarkSuccess();

}

Note that the code in the gist uses the custom BookmarkAdded class to model the operation’s
results.

4. In the activity or fragment you’re using the Screenlet in, implement CustomInteractorListener.
You must also reference your new custom interactor and connect it to the Screenlet:

_screenlet.setCustomInteractorListener(this);

@Override

public Interactor createInteractor(String actionName) {

return new AddDeliciousInteractorImpl(_screenlet.getScreenletId());

}

Awesome! Now you know how to create a custom interactor that can communicate with a
non-Liferay backend. This opens up even more possibilities for your apps.

Related Topics

Architecture of Liferay Screens for Android
Creating Android Screenlets

102.10 Rendering Web Content in Your Android App

Liferay DXP represents web content articles as JournalArticle entities. Liferay Screens provides
several ways to render these entities in your apps.

The simplest way to display a JournalArticle’s HTML in your app is to use Web Content Display
Screenlet. This Screenlet is very powerful and supports several complex use cases to fit your needs.
You can also use Web Content List Screenlet to display lists of web content articles. This tutorial
shows you how to use both Screenlets to display web content in your apps.

Retrieving Basic Web Content

Web Content Display Screenlet’s simplest use case is to render a JournalArticle’s HTML in an
Android WebView. Simply provide the JournalArticle’s articleId in the Screenlet XML, and the
Screenlet takes care of the rest (including decorating itself with the CSS needed to render it in a
small display). The following Screenlet XML shows this:

<com.liferay.mobile.screens.webcontent.display.WebContentDisplayScreenlet

android:layout_width="match_parent"

android:layout_height="match_parent"

app:articleId="YOUR_ARTICLE_ID" />

1121

https://gist.github.com/nhpatt/7cbeb0df6f39ec8a9176
http://developer.android.com/guide/webapps/webview.html

To render the content exactly as it appears on your mobile site, however, you must provide the
CSS inline or use a template. The HTML returned isn’t aware of a Liferay instance’s global CSS.

You can also use a listener to modify the HTML, as explained in the Screenlet reference docu-
mentation.

In the default security policy, an Android WebView doesn’t execute a page’s JavaScript. You can
enable such JavaScript execution by setting the javascriptEnabled property via XML:
<com.liferay.mobile.screens.webcontent.display.WebContentDisplayScreenlet

android:layout_width="match_parent"

android:layout_height="match_parent"

app:articleId="YOUR_ARTICLE_ID"

app:javascriptEnabled="true" />

Alternatively, you can set this property in your app’s fragment or activity class that contains the
Screenlet:
...

screenlet.setJavascriptEnabled(true);

...

You can also use the isJavascriptEnabled()method to check this property’s setting.
As you can see, this is all straightforward. What could go wrong? Famous last words. A common

mistake is to use the default groupId instead of the one for the site that contains your JournalArticle
entities.

If you need to use a default groupId in the rest of your app, but render another site’s HTML,
you can set the Web Content Display Screenlet’s groupId with the app:groupId attribute. You can
alternatively use the setGroupIdmethod in the activity or fragment code that uses the Screenlet.

Using Templates

Web Content Display Screenlet can also use templates to render JournalArticle entities. For exam-
ple, your Liferay instance may have a custom template specifically designed to display content on
mobile devices.

To use a template, specify its ID in the Screenlet XML’s templateId property:
<com.liferay.mobile.screens.webcontent.display.WebContentDisplayScreenlet

android:layout_width="match_parent"

android:layout_height="wrap_content"

app:articleId="YOUR_ARTICLE_ID"

app:templateId="YOUR_TEMPLATE_ID" />

Using Structures

Since mobile devices have limited screen space, you must often display only the most important
parts of a web content article. If your web content is structured, you can do this by using Web
Content Display Screenlet to display only specific fields from a JournalArticle’s structure. The
simplest way to do this is to specify the structure’s ID and a comma-delimited list of fields in
the Screenlet XML’s structureId and labelFields attributes, respectively. The following example
illustrates this:
<com.liferay.mobile.screens.webcontent.display.WebContentDisplayScreenlet

android:layout_width="match_parent"

android:layout_height="wrap_content"

liferay:articleId="YOUR_ARTICLE_ID"

liferay:labelFields="YOUR_LABELS"

liferay:layoutId="@layout/webcontentdisplay_structured_default"

liferay:structureId="YOUR_STRUCTURE_ID" />

1122

You can also use your own layout to render the structure fields exactly how you want. To do this,
your layout should inherit from WebContentStructuredDisplayView and read the information parsed
and stored in the webContent entity. By displaying two structure fields with such a custom layout,
the test app contains a complete example of this:

1. The layout file webcontentdisplaystructured_example.xml defines the custom layout:

<com.liferay.mobile.screens.testapp.webviewstructured.WebContentDisplayView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="match_parent">

<TextView

android:id="@+id/web_content_first_field"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:background="@android:color/holo_red_light" />

<TextView

android:id="@+id/web_content_second_field"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:background="@android:color/holo_green_light" />

</com.liferay.mobile.screens.testapp.webviewstructured.WebContentDisplayView>

2. The WebContentDisplayView class sets the custom layout’s functionality:

public class WebContentDisplayView extends WebContentStructuredDisplayView {

...

@Override

public void showFinishOperation(WebContent webContent) {

super.showFinishOperation(webContent);

DDMStructure ddmStructure = webContent.getDDMStructure();

TextView firstField = (TextView) findViewById(R.id.first_field);

firstField.setText(String.valueOf(ddmStructure.getField(0).getCurrentValue()));

TextView secondField = (TextView) findViewById(R.id.second_field);

secondField.setText(String.valueOf(ddmStructure.getField(1).getCurrentValue()));

}

}

3. The Screenlet XML’s layoutId attribute specifies the custom layout to use:

<com.liferay.mobile.screens.webcontent.display.WebContentDisplayScreenlet

android:layout_width="match_parent"

android:layout_height="wrap_content"

liferay:articleId="@string/liferay_article_structured_article_id"

liferay:labelFields="@string/liferay_article_structured_label_fields_first_field"

liferay:layoutId="@layout/webcontentdisplaystructured_example"

liferay:offlinePolicy="REMOTE_FIRST"

liferay:structureId="@string/liferay_article_structured_structure_id" />

Great! Now you know how to use structured web content withWeb Content Display Screenlet.
Next, you’ll learn how to display a list of web content articles in your app.

1123

https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/layout/webcontentdisplaystructured_example.xml
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/webviewstructured/WebContentDisplayView.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/layout/web_content_display_structured.xml

Displaying a List of Web Content Articles

The preceding examples show you how to useWeb Content Display Screenlet to display a single
web content article’s contents in your app. But what if you want to display a list of articles instead?
No problem! You can use Web Content List Screenlet for this. Web Content List Screenlet can
retrieve the contents of a web content folder and display only the labels you want. The Screenlet is
also aware of structured content, so you can render each row with certain structure fields. You can
also do this via a custom layout.

To use a web content folder with Web Content List Screenlet, specify the folder’s ID in the
Screenlet XML’s folderId attribute. To render a specific structure field for each article in the list,
specify that field in the Screenlet XML’s labelFields attribute. For example:

<com.liferay.mobile.screens.webcontent.list.WebContentListScreenlet

android:layout_width="match_parent"

android:layout_height="match_parent"

app:folderId="YOUR_FOLDER_ID"

app:labelFields="Text" />

You can also see an example of this in the test app’s web_content_display_list.xml layout file.
Also note that several methods in Screens’s WebContent class help you render content from

different locales. For example, getLocalized(name) receives a field’s name and returns the value in
the mobile device’s current locale. Such methods help you render a custom view without worrying
about the underlying structure, XML parsing, or HTTP calls.

Displaying a List of Assets

To render a list of different assets in your app, including web content articles, you can use Asset
List Screenlet. Asset List Screenlet can display a list of any assets from a Liferay instance. Like
Web Content List Screenlet, you can also access a web content article’s structure fields, or use a
custom layout to render each asset type. For more information, see the reference documentation
for Asset List Screenlet.

Related Topics

Using Screenlets in Android Apps
Using Views in Android Screenlets
Web Content Display Screenlet for Android
Web Content List Screenlet for Android
Asset List Screenlet for Android

102.11 Rendering Web Pages in Your Android App

The RenderingWeb Content tutorial shows you how to display web content from a Liferay DXP
site in your Android app. Displaying content is great, but what if you want to display an entire
page? No problem! Web Screenlet lets you display any web page. You can even customize the
page by injecting local or remote JavaScript and CSS files. When combined with Liferay DXP’s
server-side customization features (e.g., Application Display Templates), Web Screenlet gives you
almost limitless possibilities for displaying web pages in your Android apps.

In this tutorial, you’ll learn how to useWeb Screenlet to display web pages in your Android app.

1124

https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/layout/web_content_display_list.xml
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/webcontent/WebContent.java

Inserting Web Screenlet in Your App

InsertingWeb Screenlet in your app is the same as inserting any Screenlet in your app:

1. Insert the Screenlet’s XML in the layout of the activity or fragment you want to use the
Screenlet in. Also be sure to set any attributes that you need. For a list of Web Screenlet’s
available attributes, see the Attributes section of theWeb Screenlet reference doc.

For example, here’sWeb Screenlet’s XMLwith the Screenlet’s layoutId and autoLoad attributes
set to web_default and false, respectively:

<com.liferay.mobile.screens.web.WebScreenlet

android:id="@+id/web_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:layoutId="@layout/web_default"

app:autoLoad="false"

/>

Note that web_default specifies the Screenlet’s Default View, which is part of the Default View
Set.

2. To use a View that is part of a View Set, like the Default View, the app or activity theme must
inherit the theme that sets the View Set’s styles. For the Default View Set, this is default_theme.
For example, to set the app’s theme to inherit default_theme, open res/values/styles.xml and
set the base app theme’s parent to default_theme. In this example, the base app theme is
AppTheme:

<style name="AppTheme" parent="default_theme">

...

Next, you’ll implementWeb Screenlet’s listener.

Implementing Web Screenlet's Listener

To use any Screenlet in an activity or fragment, you must also implement the Screenlet’s listener
in that activity or fragment’s class. Web Screenlet’s listener is WebListener. Follow these steps to
implement WebListener:

1. Change the class declaration to implement WebListener, and import com.liferay.mobile.screens.web.WebListener:

...

import com.liferay.mobile.screens.web.WebListener;

...

public class YourActivity extends AppCompatActivity implements WebListener {...

2. Implement WebListener’s onPageLoaded method. This method is called when the Screenlet
loads the page successfully. How you implement it depends on what (if anything) you want
to happen upon page load. For example, this onPageLoaded implementation displays a toast
message indicating success:

1125

@Override

public void onPageLoaded(String url) {

Toast.makeText(this, "Page load successful!", Toast.LENGTH_SHORT).show();

}

3. Implement WebListener’s onScriptMessageHandler method. This method is called when
the Screenlet’s WebView sends a message. The namespace argument is the source names-
pace key, and the body argument is the source namespace body. For example, this
onScriptMessageHandler implementation parses data from the source namespace body if it
matches a specific namespace, and then starts a new activity with that data via an intent:

@Override

public void onScriptMessageHandler(String namespace, String body) {

if ("gallery".equals(namespace)) {

String[] allImgSrc = body.split(",");

int imgSrcPosition = Integer.parseInt(allImgSrc[allImgSrc.length - 1]);

Intent intent = new Intent(getApplicationContext(), DetailMediaGalleryActivity.class);

intent.putExtra("allImgSrc", allImgSrc);

intent.putExtra("imgSrcPosition", imgSrcPosition);

startActivity(intent);

}

}

4. Implement the errormethod. This method is called when an error occurs in the process. The
e argument contains the exception, and the userAction argument distinguishes the specific
action in which the error occurred. In most cases, you’ll use these arguments to log or
display the error. For example, this error implementation displays a toast message with the
exception’s message:

@Override

public void error(Exception e, String userAction) {

Toast.makeText(this, "Bad things happened: " + e.getMessage(), Toast.LENGTH_LONG).show();

}

5. Get a WebScreenlet reference and set the activity or fragment class as its listener. To do so,
import com.liferay.mobile.screens.web.WebScreenlet and add the following code to the end
of the onCreatemethod:

WebScreenlet screenlet = (WebScreenlet) findViewById(R.id.web_screenlet);

screenlet.setListener(this);

Note that the findViewById references the android:id value set in the Screenlet’s XML.

Next, you’ll use the same WebScreenlet reference to set the Screenlet’s parameters.

Setting Web Screenlet's Parameters

Web Screenlet has WebScreenletConfiguration and WebScreenletConfiguration.Builder objects that
supply the parameters the Screenlet needs to work. These parameters include the URL of the page
to load and the location of any JavaScript or CSS files that customize the page. You’ll set most of
these parameters via WebScreenletConfiguration.Builder’s methods.

1126

https://developer.android.com/reference/android/webkit/WebView.html

Note: For a full list of WebScreenletConfiguration.Builder’s methods, and a description of each,
see the table in the Configuration section ofWeb Screenlet’s reference doc.

To set Web Screenlet’s parameters, follow these steps in the method that initializes the activity
or fragment containing the Screenlet (e.g., onCreate in activities, onCreateView in fragments). You
can, however, do this in other methods as needed.

1. Use WebScreenletConfiguration.Builder(<url>), where <url> is the web page’s URL string, to
create a WebScreenletConfiguration.Builder object. If the page requires Liferay DXP authenti-
cation, then the user must be logged in via Login Screenlet or a SessionContextmethod, and
you must provide a relative URL to the WebScreenletConfiguration.Builder constructor. For
example, if such a page’s full URL is http://your.liferay.instance/web/guest/blog, then the
constructor’s argument is /web/guest/blog. For any other page that doesn’t require Liferay
DXP authentication, you must supply the full URL to the constructor.

2. Call the WebScreenletConfiguration.Buildermethods to set the parameters that you need.

Note: If the URL you supplied to the `WebScreenletConfiguration.Builder`

constructor is to a page that doesn't require Liferay DXP authentication, then

you must call the `WebScreenletConfiguration.Builder` method

`setWebType(WebScreenletConfiguration.WebType.OTHER)`. The default `WebType`

is `LIFERAY_AUTHENTICATED`, which is required to load Liferay DXP pages that

require authentication. If you need to set `LIFERAY_AUTHENTICATED` manually,

call `setWebType(WebScreenletConfiguration.WebType.LIFERAY_AUTHENTICATED)`.

3. Call the WebScreenletConfiguration.Builder instance’s load() method, which returns a
WebScreenletConfiguration object.

4. UseWebScreenlet’s setWebScreenletConfigurationmethod to set the WebScreenletConfiguration
object to theWeb Screenlet instance.

5. Call theWeb Screenlet instance’s load()method.

Here’s an example snippet of these steps in the onCreate() method of an activity in
which the Web Screenlet instance is screenlet, and the WebScreenletConfiguration object is
webScreenletConfiguration:

WebScreenletConfiguration webScreenletConfiguration =

new WebScreenletConfiguration.Builder("/web/westeros-hybrid/companynews")

.addRawCss(R.raw.portlet, "portlet.css")

.addLocalCss("gallery.css")

.addLocalJs("gallery.js")

.load();

screenlet.setWebScreenletConfiguration(webScreenletConfiguration);

screenlet.load();

There are a few things to note about this example:

• The relativeURL /web/westeros-hybrid/companynews supplied to the WebScreenletConfiguration.Builder
constructor, and the lack of a setWebType(WebScreenletConfiguration.WebType.OTHER) call, indi-
cates that thisWeb Screenlet instance loads a Liferay DXP page that requires authentication.

1127

• The addRawCssmethod adds the CSS file portlet.css from the app’s res/raw folder. Any files
that you add via the methods addRawCss or addRawJs must be located in res/raw (create this
folder if it doesn’t exist). Also note that youmust reference these files with R.raw.yourfilename.
For instance, the portlet.css file in this is example is referenced with R.raw.portlet.

• The addLocalCss and addLocalJs methods add the local files gallery.css and gallery.js, re-
spectively. Any files that you add via these methods must be in the first level of your app’s
assets folder. This folder must exist at the same level as your app’s res folder. Create the
assets folder in that location if it doesn’t exist.

Great! Now you know how to useWeb Screenlet in your Android apps.

Related Topics

Web Screenlet for Android
UsingWeb Screenlet with Cordova in Your Android App
Using Screenlets in Android Apps
RenderingWeb Content in Your Android App

102.12 Using Web Screenlet with Cordova in Your Android App

By using Cordova plugins in Web Screenlet, you can extend the functionality of the web page that
the Screenlet renders. This lets you tailor that page to your app’s needs.

You’ll get started by installing and configuring Cordova. There are two ways to do this: auto-
matically, or manually. The automatic method is covered first.

Installing and Configuring Cordova Automatically

Follow these steps to automatically create an empty Android project configured to use Cordova.
Note that you must have git, Node.js, and npm installed.

1. Install screens-cli:

npm install -g screens-cli

2. Create the file .plugins.screens in the folder you want to create your project in. In this file,
add all the Cordova plugins you want to use in your app. For example, you can add plugins
from Cordova or GitHub:

https://github.com/apache/cordova-plugin-wkwebview-engine.git

cordova-plugin-call-number

cordova-plugin-camera

3. In the folder containing your .plugins.screens file, run screens-cli to create your project:

screens-cli android <project-name>

This creates your project in the folder platforms/android/<project-name>. You can open it with
Android Studio.

1128

https://cordova.apache.org/plugins/
https://git-scm.com/
https://nodejs.org/en/

Installing and Configuring Cordova Manually

To install and configure Cordova manually, follow these steps:

1. Follow the Cordova getting started guide to install Cordova, create a Cordova project, and
add the Android platform to your Cordova project.

2. Install any Cordova plugins you want to use in your app. For example, this command adds
the Cordova plugin cordova-plugin-call-number:

cordova plugin add cordova-plugin-call-number

You can use cordova plugin to view the currently installed plugins.

3. Copy the following files and folders from your Cordova project to your Android project’s root
folder:

• /platforms/android/res/xml/config.xml

• /platforms/android/assets/www

You should also review other files like AndroidManifest.xml, resource files, and so on. Some
plugins add permissions or styles in such files that you may need to copy for those plugins to
work correctly in your Android app.

Using Cordova in Web Screenlet

Now that you’ve installed and configured Cordova in your Android project, you’re ready to use it
withWeb Screenlet. Follow these steps to do so:

1. Insert and configureWeb Screenlet in your app.

2. When you setWeb Screenlet’s parameters via the WebScreenletConfiguration.Builder object,
youmust enable Cordova by calling the enableCordovamethodwith a CordovaLifeCycleObserver
argument. CordovaLifeCycleObserver informs Cordova about the activity lifecycle. You can
create an instance of this observer by using its no-argument constructor.

For example, this code creates a CordovaLifeCycleObserver object that it then uses with
enableCordova when settingWeb Screenlet’s parameters:

CordovaLifeCycleObserver observer = new CordovaLifeCycleObserver();

WebScreenletConfiguration configuration =

new WebScreenletConfiguration

.Builder("/")

.addLocalJs("call.js")

.enableCordova(observer)

.load();

webScreenlet.setWebScreenletConfiguration(configuration);

webScreenlet.load();

3. Override the following Activitymethods to call their corresponding observer methods:

1129

https://cordova.apache.org/#getstarted
https://www.npmjs.com/package/cordova-plugin-call-number

@Override

protected void onStart() {

super.onStart();

observer.onStart();

}

@Override

protected void onStop() {

super.onStop();

observer.onStop();

}

@Override

public void onPause() {

super.onPause();

observer.onPause();

}

@Override

public void onResume() {

super.onResume();

observer.onResume();

}

@Override

public void onDestroy() {

super.onDestroy();

observer.onDestroy();

}

@Override

public void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);

observer.onSaveInstanceState(outState);

}

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

observer.onActivityResult(requestCode, resultCode, data);

}

@Override

public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions,

@NonNull int[] grantResults) {

super.onRequestPermissionsResult(requestCode, permissions, grantResults);

observer.onRequestPermissionsResult(requestCode, permissions, grantResults);

}

@Override

public void onConfigurationChanged(Configuration newConfig) {

super.onConfigurationChanged(newConfig);

observer.onConfigurationChanged(newConfig);

}

That’s it! Note, however, that you may also need to invoke Cordova from a JavaScript file,
depending on what you’re doing. For example, to use the Cordova plugin cordova-plugin-call-

number to call a number, you must add a JavaScript file with the following code:

1130

https://www.npmjs.com/package/cordova-plugin-call-number
https://www.npmjs.com/package/cordova-plugin-call-number

function callNumber() {

//This line triggers the Cordova plugin and makes a call

window.plugins.CallNumber.callNumber(null, function(){ alert("Calling failed.") }, "900000000", true);

}

setTimeout(callNumber, 3000);

If you run the app containing this code and wait three seconds, the plugin activates and calls
the number in the JavaScript file.

Great! Now you know how to useWeb Screenlet with Cordova.

Related Topics

RenderingWeb Pages in Your Android App
Web Screenlet for Android

102.13 Using OAuth 2 in Liferay Screens for Android

You can use OAuth 2 to authenticate using Login Screenlet with the following OAuth 2 grant types:

• Authorization Code (PKCE for native apps): Redirects users to a page in theirmobile browser
where they enter their credentials. Following login, the browser redirects users back to the
mobile app. User credentials can’t be compromised via the app because it never accesses
them—it uses a revocable token. This is also useful if users don’t want to enter their credentials
in the app. For example, users may not want to enter their Twitter credentials directly in a
3rd-party Twitter app, preferring instead to authenticate via Twitter’s official site. Note that
the site you redirect to for authentication must have OAuth 2 implemented.

• Resource Owner Password: Users authenticate by entering their credentials directly in the
app.

• Client Credentials: Authenticates without requiring user interaction. This is useful when
the app needs to access its own resources, not those of a specific user.

This tutorial shows you how to use these grant types with Login Screenlet. Note that before
getting started, you may want to see Liferay DXP’s OAuth 2.0 documentation for instructions on
registering an OAuth 2.0 application in the portal.

Authorization Code (PKCE)

Follow these steps to use the Authorization Code grant type with Login Screenlet:

1. Configure the URL where the mobile browser redirects after the user authenticates. To do
this, follow the first two steps in the Mobile SDK’s Authorization Code instructions. Note that
you must configure this URL in both the portal and your Android app.

2. Set Login Screenlet’s loginMode attribute to oauth2Redirect. There are two ways to do this:

• In code, as the Login Screenlet instance’s authenticationType variable. You must
set this variable via Login Screenlet’s setAuthenticationType method, using the
AuthenticationType enum constant OAUTH2REDIRECT:

1131

https://oauth.net/2/
https://oauth.net/2/grant-types/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/password/
https://oauth.net/2/grant-types/client-credentials/

loginScreenlet.setAuthenticationType(AuthenticationType.OAUTH2REDIRECT);

• When inserting Login Screenlet’s XML, set the loginMode attribute to oauth2Redirect.

3. In Login Screenlet’s XML, set Login Screenlet’s oauth2ClientId attribute to the IDof the portal’s
OAuth 2 application that you want to use. To find this value, navigate to that application in
the portal’s OAuth 2 Admin portlet.

4. In Login Screenlet’s XML, set Login Screenlet’s oauth2Redirect attribute to the URL you con-
figured in step 1.
Here’s an example of Login Screenlet’s XML with the attributes from the preceding steps:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:loginMode="oauth2Redirect"

app:oauth2Redirect="my-app://my-app"

app:oauth2ClientId="54321"

app:credentialsStorage="shared_preferences"

/>

5. In your activity that uses Login Screenlet, you must override the onActivityResultmethod to
implement the redirect you configured in the first step. You do this by calling Login Screenlet’s
resumeOAuth2RedirectFlowmethod:

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent intent) {

super.onActivityResult(requestCode, resultCode, intent);

if (requestCode == OAuth2SignIn.REDIRECT_REQUEST_CODE) {

loginScreenlet.resumeOAuth2RedirectFlow(intent);

}

}

Resource Owner Password

Follow these steps to use the Resource Owner Password grant type with Login Screenlet:

1. Set Login Screenlet’s loginMode attribute to oauth2UsernameAndPassword. There are two ways to
do this:

• In code, as the Login Screenlet instance’s authenticationType variable. You must
set this variable via Login Screenlet’s setAuthenticationType method, using the
AuthenticationType enum constant OAUTH2USERNAMEANDPASSWORD:

loginScreenlet.setAuthenticationType(AuthenticationType.OAUTH2USERNAMEANDPASSWORD);

• When insertingLogin Screenlet’s XML, set the loginMode attribute to oauth2UsernameAndPassword.

2. In Login Screenlet’s XML, set Login Screenlet’s oauth2ClientId attribute to the ID of the OAuth
2 application that you want to use. To find this value, navigate to that application in the OAuth
2 Admin portlet.

1132

3. In Login Screenlet’s XML, set Login Screenlet’s oauth2ClientSecret attribute to the same
OAuth 2 application’s client secret.

Here’s an example of Login Screenlet’s XML with the attributes from the preceding steps:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:loginMode="oauth2UsernameAndPassword"

app:oauth2ClientId="54321"

app:oauth2ClientSecret="12345"

app:basicAuthMethod="email"

app:credentialsStorage="shared_preferences"

/>

Client Credentials

The OAuth 2 Client Credentials grant type authenticates without requiring user interaction. This is
useful when the app needs to access its own resources, not those of a specific user.

Warning: The Client Credentials grant type poses a security risk to the portal. To authenticate
without user credentials, the mobile appmust contain the OAuth 2 application’s client ID and client
secret. Anyone who can access those values via the mobile app can also authenticate without user
credentials.

Follow these steps to use the Client Credentials grant type in your Android app:

1. Follow the Android Mobile SDK instructions for using the Client Credentials grant type.

2. The session object contains a valid authentication object. Pass the session as an argument to
the SessionContextmethod createOAuth2Session:

SessionContext.createOAuth2Session(session);

This initializes the Screens SessionContext object, authenticating any Screenlets that you use
in the Android app.

Related Topics

Using OAuth 2 in the Android Mobile SDK
Using Screenlets in Android Apps
OAuth 2.0

102.14 Android Best Practices

When developing Android projects with Liferay Screens, there are a few best practices that you
should follow to ensure your code is as clean and bug-free as possible. This tutorial lists these.

1133

Update Your Tools

You should first make sure that you have the latest tools installed. You should use the latest Android
API level with the latest version of Android Studio. Although Screens may work with Eclipse ADT
or manual Gradle builds, Android Studio is the preferred IDE.

Naming Conventions

Using the naming conventions described here leads to consistency and a better understanding of
the Screens library. This makes working with your Screenlets much simpler.

Also note that Liferay Screens follows Square’s Java conventions for Android, with tabs as
separator. The configuration for IDEA, findbugs, PMD, and checkstyle is available in the project’s
source code.

Screenlet Folder

Your Screenlet folder’s name should indicate your Screenlet’s functionality. For example, Login
Screenlet’s folder is named login.

If you have multiple Screenlets that operate on the same entity, you can place them inside a
folder named for that entity. For example, Asset Display Screenlet and Asset List Screenlet both
work with Liferay assets. They’re therefore in the Screens library’s asset folder.

Screenlets

Naming Screenlets properly is very important; they’re the main focus of Liferay Screens. You
should name your Screenlet with its principal action first, followed by Screenlet. Its Screenlet class
should also follow this pattern. For example, Login Screenlet’s principal action is to log users into
a Liferay DXP installation. This Screenlet’s Screenlet class is therefore LoginScreenlet.

View Models

Name your View models the same way you name Screenlets, but substitute ViewModel for Screenlet.
Also, place your View Models in a view folder in your Screenlet’s root folder. For example, Login
Screenlet’s View Model is named LoginViewModel and is in the login/view folder.

Interactors

Place your Screenlet’s Interactors in a folder named interactor in your Screenlet’s root folder. Name
each Interactor first with the object it operates on, followed by its action and the suffix Interactor.
If you wish, you can also put each Interactor in its own folder named after its action. For example,
Rating Screenlet has three Interactors. Each is in its own folder inside the interactor folder:

• delete/RatingDeleteInteractor: Deletes an asset’s ratings
• load/RatingLoadInteractor: Loads an asset’s ratings
• update/RatingUpdateInteractor: Updates an asset’s ratings

Views

Place Views in a view folder in the Screenlet’s root folder. If you’re creating a View Set, however, you
can place its Views in a separate viewsets folder outside your Screenlets’ root folders. This is what

1134

https://github.com/square/java-code-styles
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/java/com/liferay/mobile/screens/auth/login
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/java/com/liferay/mobile/screens/auth/login
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/java/com/liferay/mobile/screens/asset
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/java/com/liferay/mobile/screens/auth/login/view
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/java/com/liferay/mobile/screens/rating/interactor

the Screens Library does for its Material andWesteros View Sets. The material and westeros folders
contain thoseView Sets, respectively. Also note that in eachView, each Screenlet’sView class is in its
own folder. For example, theViewclass for Forgot Password Screenlet’sMaterialView is in the folder
viewsets/material/src/main/java/com/liferay/mobile/screens/viewsets/material/auth/forgotpassword.
Note that the auth folder in this path is the Screenlet’s module. Creating your Screenlets and Views
in modules isn’t required. Also note that the View’s layout file forgotpassword_material.xml is in
viewsets/material/src/main/res/layout.

Name a View’s layout XML and View class after your Screenlet, substituting View for
Screenlet where necessary. The layout’s filename should also be suffixed with _yourViewName.
For example, the XIB file and View class for Forgot Password Screenlet’s Material View are
forgotpassword_material.xml and ForgotPasswordView.java, respectively.

Avoid Hard Coded Elements

Using constants instead of hard-coded elements is a simple way to avoid bugs. Constants reduce
the likelihood that you’ll make a typo when referring to common elements. They also gather
these elements in a single location. For example, DDL Form Screenlet’s Screenlet class defines the
following constants for the user action names:

public static final String LOAD_FORM_ACTION = "loadForm";

public static final String LOAD_RECORD_ACTION = "loadRecord";

public static final String ADD_RECORD_ACTION = "addRecord";

public static final String UPDATE_RECORD_ACTION = "updateRecord";

public static final String UPLOAD_DOCUMENT_ACTION = "uploadDocument";

Avoid State in Interactors

Liferay Screens uses EventBus to ensure that the network or background operation isn’t lost when
the device changes orientation. For this to work, however, you must ensure that your Interactor’s
request is stateless.

If an Interactor needs some piece of information, you should pass it to the Interactor via the
start call and then attach it to the event. You can see an example of this in the sample AddBookmark
Screenlet from the Screenlet creation tutorial. The onUserAction method in the Screenlet class
(AddBookmarkScreenlet) passes a Bookmark’s URL and title from the ViewModel to the Interactor
via the Interactor’s startmethod:

@Override

protected void onUserAction(String userActionName, AddBookmarkInteractor interactor,

Object... args) {

AddBookmarkViewModel viewModel = getViewModel();

String url = viewModel.getURL();

String title = viewModel.getTitle();

interactor.start(url, title, folderId);

}

The startmethod calls the Interactor’s executemethod in a background thread. The execute

method in Add Bookmark Screenlet’s Interactor (AddBookmarkInteractor) creates a BasicEvent object
that contains the startmethod’s arguments:

@Override

public BasicEvent execute(Object[] args) throws Exception {

String url = (String) args[0];

String title = (String) args[1];

long folderId = (long) args[2];

1135

https://github.com/liferay/liferay-screens/tree/master/android/viewsets
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material/src/main/java/com/liferay/mobile/screens/viewsets/material/auth/forgotpassword
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material/src/main/java/com/liferay/mobile/screens/viewsets/material/auth/forgotpassword
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/material/src/main/res/layout/forgotpassword_material.xml
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/ddl/form/DDLFormScreenlet.java
http://greenrobot.org/eventbus/

validate(url, folderId);

JSONObject jsonObject = getJSONObject(url, title, folderId);

return new BasicEvent(jsonObject);

}

Stay in Your Layer

When accessing variables that belong to other Screenlet components, you should avoid those
outside your current Screenlet layer. This achieves better decoupling between the layers, which
tends to reduce bugs and simplify maintenance. For an explanation of the layers in Liferay Screens,
see the architecture tutorial. For example, don’t directly access View variables from an Interactor.
Instead, pass data from a View Model to the Interactor via the Interactor’s start method. The
example onUserActionmethod in the previous section illustrates this.

Related Topics

Liferay Screens for Android Troubleshooting and FAQs
Architecture of Liferay Screens for Android
Creating Android Screenlets

102.15 Liferay Screens for Android Troubleshooting and FAQs

Even though Liferay developed Screens for Android with great care, you may still run into some
common issues. Here are solutions and tips for solving these issues. You’ll also find answers to
common questions about Screens for Android.

General Troubleshooting

Before delving into specific issues, you should first make sure that you have the latest tools installed
and know where to get additional help if you need it. You should use the latest Android API level,
with the latest version of Android Studio. Although Screens can work with Eclipse ADT or manual
Gradle builds, Android Studio is the preferred IDE.

If you’re having trouble using Liferay Screens, it may help to investigate the sample apps
developed by Liferay. Both serve as good examples of how to use Screenlets and Views:

• Westeros Bank
• Test App

If you get stuck at any point, you can post your question on our forum. We’re happy to assist
you! If you found a bug or want to suggest an improvement, file a ticket in our Jira. Note that you
must log in first to be able to see the project.

Common Issues

This section contains information on common issues that can occur when using Liferay Screens.

1136

https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app
https://www.liferay.com/community/forums/-/message_boards/category/42706063
https://issues.liferay.com/browse/LMW/
https://issues.liferay.com/login.jsp?os_destination=%2Fbrowse%2F

1. Could not find com.liferay.mobile:liferay-screens

This error occurs when Gradle isn’t able to find Liferay Screens or the repository. First, check
that the Screens version number you’re trying to use exists in jCenter. You can use this link
to see all uploaded versions.
It’s also possible that you’re using an old Gradle plugin that doesn’t use jCenter as the default
repository. Screens uses version 1.2.3 and later. You can add jCenter as a new repository by
placing this code in your project’s build.gradle file:

repositories {

jcenter()

}

2. Failed to resolve: com.android.support:appcompat-v7
Liferay Screens uses the appcompat library from Google, as do all new Android projects
created with the latest Android Studio. The appcompat library uses a custom repository
maintained by Google, so it must be updated manually using the Android SDK Manager.
In the Android SDK Manager (located at Tools → Android → SDK Manager in Android Studio),
you must install at least version 14 of the Android Support Repository (in the Extras menu),
and version 22.1.1 of the Android Support Library.

3. Duplicate files copied in APK META-INF…
This is a common Android error when using libraries. It occurs because Gradle can’t merge
duplicated files such as license or notice files. To prevent this error, add the following code to
your build.gradle file:

android {

...

packagingOptions {

exclude 'META-INF/LICENSE'

exclude 'META-INF/NOTICE'

}

...

}

This error may not happen right away, but may only appear later on in the development
process. For this reason, it’s recommended that you put the above code in your build.gradle
file after creating your project.

4. Connect failed: ECONNREFUSED (Connection refused), or org.apache.http.conn.HttpHostConnectException
This error occurs when Liferay Screens and the underlying Liferay Mobile SDK can’t connect
to the Liferay Portal instance. If you get this error, you should first check the IP address
of the server to make sure it’s available. If you’ve overridden the default IP address in
server_context.xml, you should check to make sure that you’ve set it to the correct IP. Also, if
you’re using the Genymotion emulator, you must use 192.168.56.1 instead of localhost for
your app to communicate with a local Liferay instance.

5. java.io.IOException: open failed: EACCES (Permission denied)
Some Screenlets use temporary files to store information, such as when the User Portrait
Screenlet uploads a new portrait, or the DDL Form Screenlet uploads new files to the portal.
Your app needs to have the necessary permissions to use a specific Screenlet’s functionality.
In this case, add the following line to your AndroidManifest.xml:

1137

https://bintray.com/liferay/liferay-mobile/liferay-screens/view

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

If you’re using the device’s camera, you also need to add the following permission:

<uses-permission android:name="android.permission.CAMERA"/>

6. No JSON web service action with path …
This error most commonly occurs if you haven’t installed the Liferay Screens Compatibility
Plugin. This plugin adds new API calls to Liferay Portal.

FAQs

1. Do I have to use Android Studio?
No, Liferay Screens also works with Eclipse ADT. You can also compile your project manually
with Gradle or another build system. Justmake sure you use the compiled aar in your project’s
lib folder.
We strongly recommend, however, that you use Android Studio. Android Studio is the official
IDE for developing Android apps, and Eclipse ADT is no longer supported. Using Eclipse ADT
or compiling manually may cause unexpected issues that are difficult to overcome.

2. How does Screens handle orientation changes?
Liferay Screens uses an event bus, the EventBus library, to notify activities when the interactor
has finished its work.

3. How can I use a Liferay feature not available in Screens?
There are several ways you can use Liferay features not currently available in Screens. The
Liferay Mobile SDK gives you access to all of Liferay’s remote APIs. You can also create a
custom Screenlet to support any features not included in Screens by default.

4. How do I create a new Screenlet?
Screenlet creation is explained in detail here.

5. How can I customize a Screenlet?
You can customize Screenlets by creating new Views. Fortunately, there are tutorials for this!

6. Does Screens have offline support?
Yes, since Liferay Screens 1.3!

Related Topics

Preparing Android Projects for Liferay Screens
Creating Android Screenlets
Creating Android Views
Mobile SDK

1138

https://github.com/liferay/liferay-screens/tree/master/portal
https://github.com/liferay/liferay-screens/tree/master/portal
http://greenrobot.github.io/EventBus/
https://github.com/liferay/liferay-mobile-sdk

CHAPTER 103

IOS APPS WITH LIFERAY SCREENS

Liferay Screens speeds up and simplifies developing native mobile apps that use Liferay. Its power
lies in its Screenlets. A Screenlet is a visual component that you insert into your native app to
leverage Liferay DXP’s content and services. On iOS, Screenlets are available to log in to your portal,
create accounts, submit forms, display content, and more. You can use any number of Screenlets
in your app; they’re independent, so you can use them in modular fashion. Screenlets on iOS also
deliver UI flexibility with pluggable Themes that implement elegant user interfaces. The reference
documentation for iOS Screenlets describes each Screenlet’s features and Themes.

You might be thinking, “These Screenlets sound like the greatest thing since taco Tuesdays,
but what if they don’t fit in with my app’s UI?What if they don’t behave exactly how I want them
to? What if there’s no Screenlet for what I want to do?” Fret not! You can customize Screenlets
to fit your needs by changing or extending their UI and behavior. You can even write your own
Screenlets! What’s more, Screens seamlessly integrates with your existing iOS projects.

Screenlets leverage the Liferay Mobile SDK to make server calls. The Mobile SDK is a low-level
layer on top of the Liferay JSON API. To write your own Screenlets, you must familiarize yourself
with Liferay DXP’s web services. If no existing Screenlet meets your needs, consider customizing
an existing Screenlet, creating a Screenlet, or directly using the Mobile SDK. Creating a Screenlet
involves writing Mobile SDK calls and constructing the Screenlet; if you don’t plan to reuse or
distribute the implementation then you may want to forgo writing a Screenlet and instead work
with the Mobile SDK. A benefit of integrating an existing Screenlet into your app, however, is that
the Mobile SDK’s details are abstracted from you.

These tutorials show you how to use, customize, create, and distribute iOS Screenlets and their
Themes. There’s even a tutorial that explains the Liferay Screens architecture.

To get started, prepare your iOS project to use Liferay Screens.

103.1 Preparing iOS Projects for Liferay Screens

To develop iOS apps with Liferay Screens, you must first install and configure Screens in your
iOS project. Screens is released as a standard CocoaPods dependency. You must therefore install
Screens via CocoaPods. After completing the installation, you must configure your iOS project to
communicate with your Liferay DXP instance. This tutorial walks you through these processes.
You’ll be up and running in no time!

1139

https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview
https://cocoapods.org

Figure 103.1: The Liferay Screens Sign Up Screenlet lets users create an account in the portal.

First, you’ll review the requirements for Liferay Screens.

Requirements

Liferay Screens for iOS includes the Component Library (the Screenlets) and some sample projects
written in Swift. Screens is developed using Swift and development techniques that leverage
functional Swift code and the Model View Presenter architecture. You can use Swift or Objective-C
with Screens, and you can run Screens apps on iOS 9 and above.

Liferay Screens for iOS requires the following software:

• Xcode 9.3 or newer
• iOS 11 SDK
• CocoaPods 1 or newer
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, or Liferay DXP
• Liferay Screens Compatibility Plugin (CE or DXP/EE, depending on your portal edition). This
app is preinstalled in Liferay CE Portal 7.0/7.1 CE and Liferay DXP.

1140

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter
http://cocoapods.org
http://www.liferay.com/downloads/liferay-portal/available-releases
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Securing JSONWeb Services

Each Screenlet in Liferay Screens calls one or more of Liferay DXP’s JSON web services, which
are enabled by default. The Screenlet reference documentation lists the web services that each
Screenlet calls. To use a Screenlet, its web services must be enabled in the portal. It’s possible,
however, to disable the web services needed by Screenlets you’re not using. For instructions on
this, see the tutorial Configuring JSONWeb Services. You can also use Service Access Policies for
more fine-grained control over accessible services.

Configuring Your Project with CocoaPods

To use CocoaPods to prepare your iOS 9.0 (or above) project for Liferay Screens, follow these steps:

1. In your project’s root folder, add the following code to the file named Podfile, or create this
file if it doesn’t exist. Be sure to replace Your Target with your target’s name:

source 'https://github.com/CocoaPods/Specs.git'

platform :ios, '9.0'

use_frameworks!

target "Your Target" do

pod 'LiferayScreens'

end

the rest of your podfile

Note that Liferay Screens and some of its dependencies aren’t compatible with Swift 3.2 or
Swift 4.0. If your iOS project is compiled in Swift 3.2 or Swift 4.0, then your Podfile must
specify Screens and those dependencies for compilation in Swift 4.2. The post_install code
in the following Podfile does this. You must therefore use this Podfile if you want to use
Screens in a Swift 3.2 or Swift 4.0 app:

source 'https://github.com/CocoaPods/Specs.git'

platform :ios, '9.0'

use_frameworks!

target "Your Target" do

pod 'LiferayScreens'

end

post_install do |installer|

incompatiblePods = [

'Cosmos',

'CryptoSwift',

'KeychainAccess',

'Liferay-iOS-SDK',

'Liferay-OAuth',

'LiferayScreens',

'Kingfisher'

]

installer.pods_project.targets.each do |target|

if incompatiblePods.include? target.name

target.build_configurations.each do |config|

config.build_settings['SWIFT_VERSION'] = '4.2'

end

end

1141

target.build_configurations.each do |config|

config.build_settings['CONFIGURATION_BUILD_DIR'] = '$PODS_CONFIGURATION_BUILD_DIR'

end

end

end

the rest of your podfile

2. On the terminal, navigate to your project’s root folder and run this command:

pod repo update

This ensures you have the latest version of the CocoaPods repository on your machine. Note
that this command can take a while to run.

3. Still in your project’s root folder in the terminal, run this command:

pod install

Once this completes, quit Xcode and reopen your project by using the *.xcworkspace file in
your project’s root folder. From now on, you must use this file to open your project.

Great! To configure your project’s communication with Liferay DXP, you can skip the next
section and follow the instructions in the final section.

Configuring Communication with Liferay DXP

Configuring communication between Screenlets and Liferay DXP is easy. Liferay Screens uses a
property list (.plist) file to access your Liferay DXP instance. It must include the server’s URL,
the portal’s company ID, and the site’s group ID. Create a liferay-server-context.plist file and
specify values required for communicating with your Liferay DXP instance. As an example, refer
to liferay-server-context-sample.plist.

The values you need to specify in your liferay-server-context.plist are:

• server: Your Liferay DXP instance’s URL.
• version: Your Liferay DXP instance’s version. Supported values are 71 for Liferay CE Portal
7.1 or Liferay DXP 7.1, 70 for Liferay CE Portal 7.0 or Liferay DXP 7.0, and 62 for Liferay Portal
6.2 CE/EE.

• companyId: Your Liferay DXP instance’s identifier. You can find this value in the Instance ID
column of Control Panel → Portal Instances.

• groupId: The ID of the default site you want Screens to communicate with. You can find this
value in the Site ID field of the site’s Site Administration → Configuration → Site Settings menu.

• connectorFactoryClassName: Your Connector’s factory class name. This is optional. If you don’t
include it, the version value is used to determine which factory is the most suitable for that
version of Liferay DXP.

Great! Your iOS project is ready for Liferay Screens.

1142

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Resources/liferay-server-context-sample.plist

Figure 103.2: Here’s a property list file, called liferay-context.plist.

Related Topics

Using Screenlets in iOS Apps
Using Themes in iOS Screenlets
Preparing Android Projects for Liferay Screens

103.2 Using Screenlets in iOS Apps

Once you’ve prepared your iOS project to use Liferay Screens, you can use Screenlets in your app.
There are plenty of Liferay Screenlets available, and they’re described in the Screenlet reference
documentation. This tutorial shows you how to insert and configure Screenlets in iOS apps written
in Swift and Objective-C. It also explains how to localize them. You’ll be a Screenlet master in no
time!

Inserting and Configuring Screenlets in iOS Apps

The first step to using Screenlets in your iOS project is to add a new UIView to your project. In
Interface Builder, insert a new UIView into your Storyboard or XIB file. Figure 1 shows this.

Next, enter the Screenlet’s name as the Custom Class. For example, if you’re using the Login
Screenlet, then enter Login Screenlet as the class.

1143

Figure 103.3: Add a new UIView to your project.

1144

Figure 103.4: Change the Custom Class to match the Screenlet.

Now you need to conform the Screenlet’s delegate protocol in your ViewController class. For
example, the Login Screenlet’s delegate class is LoginScreenletDelegate. This is shown in the code
that follows. Note that you need to implement the functionality of onLoginResponse and onLoginError.
This is indicated by the comments in the code here:

class ViewController: UIViewController, LoginScreenletDelegate {

...

func screenlet(screenlet: BaseScreenlet,

onLoginResponseUserAttributes attributes: [String:AnyObject]) {

// handle succeeded login using passed user attributes

}

func screenlet(screenlet: BaseScreenlet,

onLoginError error: NSError) {

// handle failed login using passed error

}

...

If you’re using CocoaPods, you need to import Liferay Screens in your View Controller:

import LiferayScreens

Now that the Screenlet’s delegate protocol conforms in your ViewController class, go back to
Interface Builder and connect the Screenlet’s delegate to your View Controller. If the Screenlet
you’re using has more outlets, you can assign them as well.

Note that currently Xcode has some issues connecting outlets to Swift source code. To get
around this, you can change the delegate data type or assign the outlets in your code. In your View
Controller, follow these steps:

1. Declare an outlet to hold a reference to the Screenlet. You can connect it in Interface Builder
without any issues.

2. Assign the Screenlet’s delegate the viewDidLoadmethod. This is the connection typically done
in Interface Builder.

These steps are shown in the following code for Login Screenlet’s View Controller.

1145

http://stackoverflow.com/questions/26180268/interface-builder-iboutlet-and-protocols-for-delegate-and-datasource-in-swift/26180481#26180481

Figure 103.5: Connect the outlet with the Screenlet reference.

class ViewController: UIViewController, LoginScreenletDelegate {

@IBOutlet var screenlet: LoginScreenlet?

override func viewDidLoad() {

super.viewDidLoad()

self.screenlet?.delegate = self

}

...

Awesome! Now you know how to use Screenlets in your apps. If you need to use Screenlets
from Objective-C code, follow the instructions in the next section.

Using Screenlets fromObjective-C

If you want to invoke Screenlet classes from Objective-C code, there is an additional header file
that youmust import. You can import the header file LiferayScreens-Swift.h in all your Objective-C
files or configure a precompiler header file.

The first option involves adding the following import line all of your Objective-C files:

#import "LiferayScreens-Swift.h"

1146

Figure 103.6: Connect the Screenlet’s delegate in Interface Builder.

Alternatively, you can configure a precompiler header file by following these steps:

1. Create a precompiler header file (e.g., PrefixHeader.pch) and add it to your project.

2. Import LiferayScreens-Swift.h in the precompiler header file you just created.

3. Edit the following build settings of your target. Remember to replace path/to/your/file/with
the path to your PrefixHeader.pch file:

• Precompile Prefix Header: Yes
• Prefix Header: path/to/your/file/PrefixHeader.pch

You can use the precompiler header file PrefixHeader.pch as a template.
Super! Now you know how to use Screenlets from Objective-C code in your apps.

Localizing Screenlets

FollowApple’s standardmechanism to implement localization in your Screenlet. Note: even though
a Screenlet may support several languages, you must also support those languages in your app. In
other words, a Screenlet’s support for a language is only valid if your app supports that language.
To support a language, make sure to add it as a localization in your project’s settings.

Way to go! You now know how to use Screenlets in your iOS apps.

1147

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Showcase-objc/LiferayScreens-Showcase-Objc/PrefixHeader.pch
https://developer.apple.com/library/ios/documentation/MacOSX/Conceptual/BPInternational/Introduction/Introduction.html

Figure 103.7: The PrefixHeader.pch configuration in Xcode settings.

Related Topics

Preparing iOS Projects for Liferay Screens
Using Themes in iOS Screenlets
Creating iOS Screenlets
Using Screenlets in Android apps

103.3 Using Themes in iOS Screenlets

Using a Liferay Screens Theme, you can set your Screenlet’s UI components, style, and behavior.
They let you focus on a Screenlet’s UI and UX, without having to worry about its core functionality.
Liferay’s Screenlets come with several Themes, and more are being developed by Liferay and
the community. A Liferay Screenlet’s Themes are specified in its reference documentation. This
tutorial shows you how to use Themes in your iOS Screenlets.

To install a Theme in your iOS app’s Screenlet, you have two options, depending on how the
Theme has been published:

1. If the Theme has been packaged as a CocoaPods pod dependency, you can install it by adding
a line to your Podfile:

pod 'LiferayScreensThemeName'

Make sure to replace LiferayScreensThemeName with the Theme’s CocoaPods project name.

2. If the Theme isn’t available through CocoaPods, you can drag and drop the Theme’s folder
into your project. Liferay Screens detects the new classes and then applies the new design in
the runtime and in Interface Builder.

1148

Figure 103.8: The Xcode localizations in the project’s settings.

To use the installed Theme, specify its name in the Theme Name property field of the Base
Screenlet in Interface Builder. The names of each Screenlet’s Themes are listed in the Themes
section of the Screenlet’s reference documentation. If you leave the Theme name property blank
or enter a name for a Theme that can’t be found, the Screenlet’s Default Theme is used.

The initial release of Liferay Screens for iOS includes the following Themes for its Screenlets:

• Default: Comes standard with a Screenlet. It’s used by a Screenlet if no Theme name is
specified or the named Theme can’t be found. The Default Theme can be used as the parent
Theme for your custom Themes. Refer to the architecture tutorial for more details.

• Flat7: Demonstrates a Theme made from scratch. Refer to the Theme creation tutorial for
instructions on creating your own Theme.

• Westeros: Customizes the behavior and appearance of the Westeros Bank demo app.

That’s all there is to it! Great! Now you know how to use Themes to dress up Screenlets in your
iOS app. This opens up a world of possibilities–like writing your own Themes.

Related Topics

1149

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/WesterosBank

Figure 103.9: To install a Theme into an Xcode project, drag and drop the Theme’s folder into it.

Figure 103.10: In Interface Builder, you specify a Screenlet’s Theme by entering its name in the Theme Name field; this sets the Screenlet’s themeName property.

1150

Preparing iOS Projects for Liferay Screens
Creating iOS Themes
Using Screenlets in iOS Apps
Architecture of Liferay Screens for iOS
Using Views in Android Screenlets

103.4 Using Offline Mode in iOS

Offline mode in Liferay Screens lets your apps function when connectivity is unavailable or in-
termittent. Even though the steady march of technology makes connections more stable and
prevalent, there are still plenty of places the Internet has trouble reaching. Areas with complex
terrain, including cities with large buildings, often lack stable connections. Remote areas typically
don’t have connections at all. Using Screens’s offline mode in your apps gives your users flexibility
in these situations.

This tutorial shows you how to use offline mode in Screenlets. For an explanation of how
offlinemode works, see the tutorial Architecture of OfflineMode in Liferay Screens. Offlinemode’s
architecture is the same on iOS and Android, although its use on these platforms differs.

Configuring Screenlets for Offline Mode

If you want to enable the offline mode in any of your screenlets, you must configure the attribute
offlinePolicy. This attribute can take four possible values. For a description of these values, see
the section Using Policies with Offline Mode in the offline mode architecture tutorial. Note that
each Screenlet behaves a bit differently with offline mode. For specific details, see the Screenlet
reference documentation.

Handling Synchronization

Under some scenarios, values stored in the local cache need to be synchronized with the portal.
For that purpose you must use the SyncManager class. This class is responsible for sending the
information stored in the local cache that hasn’t been sent to the portal yet.

Use the following steps to start a synchronization process:

1. Create an instance of the SyncManager class. You must pass a CacheManager object in the con-
structor. You can get the current cache manager using SessionContext.currentCacheManager.

2. Set the delegate property. This delegate object receives the events produced in the syn-
chronization process. For more details on the delegate’s methods, see the API reference
documentation for the SyncManagerDelegate class.

3. Make sure you keep a strong reference to the SyncManager object while the process is running.

Related Topics

Architecture of Offline Mode in Liferay Screens
Using Screenlets in iOS Apps
Using Offline Mode in Android
Using Screenlets in Android Apps

1151

CHAPTER 104

ARCHITECTURE OF LIFERAY SCREENS FOR IOS

Liferay Screens separates its presentation and business-logic code using ideas fromModel View
Presenter, Model View ViewModel, and VIPER. However, Screens isn’t a canonical implementation
of these architectures because they’re designed for apps. Screens isn’t an app; it’s a suite of visual
components intended for use in apps.

The tutorials in this section explain the architecture of Liferay Screens for iOS. First is an
overview of the high level components that make up the system. This includes the Core, Screenlets,
and Themes. These components are then described in detail in the tutorials that follow. After you
get done examining these building blocks, you’ll be ready to create some amazing Screenlets and
Themes!

104.1 High Level Architecture of Liferay Screens for iOS

Liferay Screens for iOS is composed of a Core, a Screenlet layer, aView layer, and Server Connectors.
Server Connectors are technically part of the Core, but are worth describing separately. They
facilitate interaction with local and remote data sources and communication between the Screenlet
layer and the Liferay Mobile SDK.

Each component is described here:

• Core: A micro-framework that lets developers write their own Screenlets, views, and Server
Connector classes. The Core includes all the base classes for developing Screens components.

• Screenlets: Swift classes to insert in any UIView. Screenlets render a selected Theme in the
runtime and in Interface Builder. They also react to UI events to start server requests (via
Server Connectors), and define a set of @IBInspectable properties that can be configured from
Interface Builder. The Screenlets bundled with Liferay Screens are known as the Screenlet
library.

• Interactors: Implementations of specific use cases for communicating with servers or any
other data store. They can use local and remote data sources by using Server Connectors
or custom classes. If a user action or use case needs to execute more than one query on a
local or remote store, the sequence is done in the corresponding Interactor. If a Screenlet
supports more than one user action or use case, an Interactor must be created for each.

1153

http://en.wikipedia.org/wiki/Model-view-presenter
http://en.wikipedia.org/wiki/Model-view-presenter
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://www.objc.io/issue-13/viper.html

Figure 104.1: The high level components of Liferay Screens for iOS.

• Connectors (or Server Connectors): A collection of classes that can interact with local and
remote data sources and Liferay instances. Liferay’s own set of Connectors, Liferay Con-
nectors, use the Liferay Mobile SDK. All Server Connectors can run concurrently since they
use the NSOperation framework. It’s straightforward to define priorities and dependencies
between Connectors, so you can build your own graph of Connectors (operations) that can
the framework can resolve. Connectors are always created using a factory class so they can
be injected by the app developer.

• Themes: A set of XIB files and accompanying UIView classes that present Screenlets to the
user.

104.2 Core Layer of Liferay Screens for iOS

The Core is the micro-framework that lets developers write Screenlets in a structured and isolated
way. All Screenlets share a common structure based on the Core classes, but each Screenlet can
have a unique purpose and communication API.

From right to left, these are the main components:

• BaseScreenletView: The base class for all Screenlet View classes. Its child classes belong to
the Theme layer. View classes use standard XIB files to render a UI and then update it when
the data changes. The BaseScreenletView class contains template methods that child classes
may overwrite. When developing your own Theme from a parent Theme, you can read the
Screenlet’s properties or call its methods from this class. Any user action in the UI is received
in this class, and then redirected to the Screenlet class.

• BaseScreenlet: The base class for all Screenlet classes. Screenlet classes receive UI events
through the ScreenletView class, then instantiate Interactors to process and respond to that

1154

https://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationObjects/OperationObjects.html#//apple_ref/doc/uid/TP40008091-CH101-SW1
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenlet.swift

Figure 104.2: Here’s the core layer of Liferay Screens for iOS.

UI event. When the Interactor’s result is received, the ScreenletView (the UI) is updated
accordingly. The BaseScreenlet class contains a set of template methods that child classes
may overwrite.

• Interactor: The base class for all Interactors that a Screenlet supports. The Interactor class
implements a specific use case supported by the Screenlet. If the Screenlet supports several
use cases, it needs different Interactors. If the Interactor needs to retrieve remote data, it uses
a Server Connector to do so. When the Server Connector returns the operation’s result, the
Interactor returns that result to the Screenlet. The Screenlet then changes the ScreenletView

(the UI) status.

• ServerConnector: The base class for all Liferay Connectors that a Screenlet supports. Con-
nectors retrieve data asynchronously from local or remote data sources. The Interactor
classes instantiate and start these Connector classes.

• SessionContext: An object (typically a singleton) that holds the logged in user’s session.
Apps can use an implicit login, invisible to the user, or a login that relies on explicit user

1155

http://www.oodesign.com/template-method-pattern.html
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/Interactor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/ServerConnector.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Context/SessionContext.swift

input to create the session. User logins can be implemented with Login Screenlet. For more
information, see the tutorial on accessing the session in iOS.

• LiferayServerContext: A singleton object that holds server configuration parameters. It’s
loaded from the liferay-server-context.plist file. Most Screenlets use these parameters as
default values.

104.3 Screenlet Layer of Liferay Screens for iOS

The Screenlet layer contains the available Screenlets in Liferay Screens for iOS. The following
diagram shows the Screenlet layer in relation to the Core, Interactor, Theme, and Connector layers.
The Screenlet classes in the diagram are explained in this section.

Figure 104.3: This diagram illustrates the iOS Screenlet Layer’s relationship to other Screens components.

Screenlets are comprised of several Swift classes and an XIB file:

1156

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Context/LiferayServerContext.swift

• MyScreenletViewModel: A protocol that defines the attributes shown in the UI. It typically
accounts for all the input and output values presented to the user. For example, LoginViewModel
includes attributes like the user name and password. A Connector can be configured by
reading and validating these values. Also, the Screenlet can change these values based on
any default values and operation results.

• MyScreenlet: a class that represents the Screenlet component the app developer interacts
with. It includes the following things:

– Inspectable parameters for configuring the Screenlet’s behavior. The initial state can
be set in the Screenlet’s data.

– A reference to the Screenlet’sView, based on the selectedTheme. Tomeet the Screenlet’s
requirements, all Themes must implement the ViewModel protocol.

– Any number of methods for invoking Connectors. You can optionally make them public
for app developers to call.

– An optional (but recommended) delegate object the Screenlet can call on for particular
events.

• MyUserCaseInteractor: Each Interactor runs the operations that implement the use case.
These can be local operations, remote operations, or a combination thereof. Operations can
be executed sequentially or in parallel. The final results are stored in a result object that
can be read by the Screenlet when notified. The number of Interactor classes a Screenlet
requires depends on the number of use cases it supports.

• MyOperationConnector: This is related to the Interactor, but has one or more Connectors.
If the Server Connector is a back-end call, then there’s typically only a single request. Each
Server Connector is responsible for retrieving a set of related values. The results are stored
in a result object that can be read by the Interactor when notified. The number of Server
Connector classes an Interactor requires depends on the number of endpoints you need to
query, or even the number of different servers you need to support. Connectors are always
created using a factory class. You can therefore take advantage of Inversion of Control. This
way, you can implement your own factory class to use to create your own Connector objects.
To tell Screens to use your factory class, specify it in the liferay-server-context.plist file as
described in the tutorial on preparing your iOS project for Screens.

• MyScreenletView_themeX: A class that belongs to one specific Theme. In the diagram, this
Theme is ThemeX. The class renders the Screenlet’s UI by using its related XIB file. The View
object and XIB file communicate using standard mechanisms like @IBOutlet and @IBAction.
When a user action occurs in the XIB file, it’s received by BaseScreenletView and then passed to
the Screenlet class via the performActionmethod. To identify different events, the component’s
restorationIdentifier property is passed to the performActionmethod.

• MyScreenletView_themeX.xib: An XIB file that specifies how to render the Screen-
let’s View. Its name is very important. By convention, a Screenlet with a view class
named FooScreenletView and a Theme named BarTheme must have an XIB file named
FooScreenletView_barTheme.xib.

For more details, refer to the tutorials on creating iOS Screenlets.

1157

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Auth/LoginScreenlet/LoginViewModel.swift
https://developer.apple.com/library/ios/documentation/general/conceptual/DevPedia-CocoaCore/Delegation.html
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Inversion_of_control

104.4 Theme Layer of Liferay Screens for iOS

The Theme Layer lets developers set a Screenlet’s look and feel. The Screenlet property themeName

determines the Theme to load. This can be set by the Screenlet’s Theme Name field in Interface
Builder. A Theme consists of a view class for Screenlet behavior and an XIB file for the UI. By
inheriting one or more of these components from another Theme, the different Theme types allow
varying levels of control over a Screenlet’s UI design and behavior.

There are several Theme types:

• Default Theme: The standard Theme provided by Liferay. It can be used as a template to
create other Themes, or as the parent Theme of other Themes. EachTheme for each Screenlet
requires a View class. A Default Theme’s View class is named MyScreenletView_default, where
MyScreenlet is the Screenlet’s name. This class is similar to the standard ViewController in iOS;
it receives and handles UI events by using the standard @IBAction and @IBOutlet. The View
class usually uses an XIB file to build the UI components. This XIB file is bound to the class.

• Child Theme: Presents the same UI components as the parent Theme, but can change the
UI components’ appearance and position. A Child Theme specifies visual changes in its
own XIB file; it can’t add or remove any UI components. In the diagram, the Child Theme
inherits from the Default Theme. Creating a Child Theme is ideal when you only need to
make visual changes to an existing Theme. For example, you can create a Child Theme that
sets new positions and sizes for the standard text boxes in Login Screenlet’s Default Theme,
but without adding or overwriting existing code.

• Full: Provides a complete standalone theme. It has no parent Theme and implements
unique behavior and appearance for a Screenlet. Its View class must extend Screens’s
BaseScreenletView class and conform to the Screenlet’s view model protocol. It must also
specify a new UI in an XIB file. Refer to the Default Theme for an example of a Full Theme.

• Extended: Inherits the parent Theme’s behavior and appearance, but lets you change and
add code to both. You can do so by creating a new XIB file and a custom View class that
extends the parent Theme’s View class. In the diagram, the Extended Theme inherits the
Full Theme and extends its Screenlet’s View class. Refer to the Flat7 Theme for an example
of an Extended Theme.

Themes in Liferay Screens are organized into sets that contain Themes for several Screenlets.
Liferay’s available Theme sets are listed here:

• Default: A mandatory Theme set supplied by Liferay. It’s used if the Screenlet’s themeName
isn’t specified or is invalid. The Default Theme uses a neutral, flat white and blue design with
standard UI components. For example, the Login Screenlet uses standard text boxes for the
user name and password fields, but uses the Default Theme’s flat white and blue design.

• Flat7: A collection of Themes that use a flat black and green design, and UI components with
rounded edges. They’re Extended Themes.

• Westeros: The Theme for the Bank ofWesteros sample app.

For more details on Theme creation, see the tutorial series Creating iOS Themes.

1158

https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Default
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Flat7
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Default
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/LoginScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Flat7
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/WesterosBank/Theme
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/WesterosBank/App

Figure 104.4: The Theme Layer of Liferay Screens for iOS.

1159

CHAPTER 105

CREATING IOS SCREENLETS

The built-in Screenlets cover common use cases formobile apps that use Liferay. They authenticate
users, interact with Dynamic Data Lists, display assets, and more. What if, however, there’s no
Screenlet for your use case? No problem! You can create your own. Extensibility is a key strength
of Liferay Screens.

This tutorial series explains how to create your own Screenlets. As an example, it references
code from the sample Add Bookmark Screenlet, that saves bookmarks to Liferay’s Bookmarks
portlet.

In general, you use the following steps to create Screenlets:

1. Plan Your Screenlet: Your Screenlet’s features and use cases determine where you’ll create it
and the portal services you’ll call.

2. Create Your Screenlet’s UI (its Theme): Although these tutorials present all the information
you need to create a Theme for your Screenlet, you may first want to learn the steps for
creating a Theme. For more information on Themes in general, see the tutorial on using
Themes.

3. Create the Screenlet’s Interactor: Interactors are Screenlet components that make server
calls.

4. Create the Screenlet class: The Screenlet class is the Screenlet’s central component. It
controls the Screenlet’s behavior and is the component the app developer interacts with when
using a Screenlet.

The tutorials that follow walk you through these steps. Before getting started, make sure that
you’re familiar with the architecture of Liferay Screens.

105.1 Planning Your iOS Screenlet

Before creating your Screenlet, you must determine what it needs to do and how you want develop-
ers to use it. This determines where you’ll create your Screenlet and its functionality.

Where you should create your Screenlet depends on how you plan to use it. If you want to reuse
or redistribute it, you should create it in an empty Cocoa Touch Framework project in Xcode. You

1161

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark

can then use CocoaPods to publish it. The tutorial Packaging iOS Themes explains how to publish
an iOS Screenlet. Even though that tutorial refers to Themes, the steps for preparing Screenlets for
publication are the same. If you don’t plan to reuse or redistribute your Screenlet, create it in your
app’s Xcode project.

You must also determine your Screenlet’s functionality and what data your Screenlet requires.
This determines the actions your Screenlet must support and the Liferay remote services it must
call. For example, AddBookmark Screenlet only needs to respond to one action: adding a bookmark
to Liferay’s Bookmarks portlet. To add a bookmark, this Screenlet must call the Liferay instance’s
add-entry service for BookmarksEntry. If you’re running a Liferay instance locally on port 8080, click
here to see this service. To add a bookmark, this service requires the following parameters:

• groupId: The site ID in the Liferay instance that contains the Bookmarks portlet.

• folderId: The folder ID in the Bookmarks portlet that receives the new bookmark.

• name: The new bookmark’s title.

• url: The new bookmark’s URL.

• description: The new bookmark’s description.

• serviceContext: A Liferay ServiceContext object.

Add Bookmark Screenlet must therefore account for each of these parameters. When saving
a bookmark, the Screenlet asks the user to enter the bookmark’s URL and name. The user isn’t
required, however, to enter any other parameters. This is because the app developer sets the
groupId and folderId via the app’s code. Also, the Screenlet’s code automatically populates the
description and serviceContext.

105.2 Creating the iOS Screenlet's UI

In Liferay Screens for iOS, a Screenlet’s UI is called a Theme. Every Screenlet must have at least
one Theme. A Theme has the following components:

1. An XIB file: defines the UI components that the Theme presents to the end user.

2. AView class: renders the UI, handles user interactions, and communicates with the Screenlet
class.

First, create a new XIB file and use Interface Builder to construct your Screenlet’s UI. In many
cases, the Screenlet’s actionsmust be triggered from the Theme. To achieve this, make sure to use a
restorationIdentifier property to assign a unique ID to each UI component that triggers an action.
The user triggers the action by interacting with the UI component. If the action only changes the
UI’s state (that is, changes the UI component’s properties), then you can associate that component’s
event to an IBActionmethod as usual. Actions using restorationIdentifier are intended for use by
actions that need an Interactor, such as actions that make server requests or retrieve data from a
database.

For example, Add Bookmark Screenlet’s UI needs text boxes for entering a bookmark’s URL
and title. This UI also needs a button to support the Screenlet’s action: sending the bookmark to

1162

http://localhost:8080/api/jsonws?contextName=bookmarks&signature=%2Fbookmarks.bookmarksentry%2Fadd-entry-6-groupId-folderId-name-url-description-serviceContext
http://localhost:8080/api/jsonws?contextName=bookmarks&signature=%2Fbookmarks.bookmarksentry%2Fadd-entry-6-groupId-folderId-name-url-description-serviceContext

Figure 105.1: Here’s the sample Add Bookmark Screenlet’s XIB file rendered in Interface Builder.

a Liferay instance. The XIB file AddBookmarkView_default.xib defines this UI. Because the button
triggers the Screenlet’s action, it contains restorationIdentifier="add-bookmark".

Note: The Screenlet in this tutorial doesn’t support multiple Themes. If you want your Screenlet
to support multiple Themes, your View class must also conform a View Model protocol that you
create. For instructions on this, see the tutorial Supporting Multiple Themes in Your Screenlet.

Now you must create your Screenlet’s View class. This class controls the UI you just defined. In
the BaseScreenletView class, Screens provides the default functionality required by all View classes.
Your View class must therefore extend BaseScreenletView to provide the functionality unique to
your Screenlet. To support your UI, use standard @IBOutlets and @IBActions to connect all your
XIB’s UI components and events to your View class. You should also implement getters and setters
to get values from and set values to the UI components. Your View class should also implement any
required animations or front-end logic.

For example, AddBookmarkView_default is Add Bookmark Screenlet’s View class. This class ex-
tends BaseScreenletView and contains @IBOutlet references to the XIB’s text fields. The getters for
these references let the Theme retrieve the data the user enters into the corresponding text field:

import UIKit

import LiferayScreens

class AddBookmarkView_default: BaseScreenletView {

@IBOutlet weak var URLTextField: UITextField?

@IBOutlet weak var titleTextField: UITextField?

var URL: String? {

return URLTextField?.text

}

var title: String? {

return titleTextField?.text

}

}

1163

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/Themes/AddBookmarkView_default.xib
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/Themes/AddBookmarkView_default.swift

In Interface Builder, youmust now specify yourView class as your XIB file’s custom class. In Add
Bookmark Screenlet, for example, AddBookmarkView_default is set as the AddBookmarkView_default.xib
file’s custom class in Interface Builder.

If you’re using CocoaPods, make sure to explicitly set a valid module for the custom class–the
grayed-out Current default value only suggests a module.

Figure 105.2: In this XIB file, the custom class’s module is NOT specified.

Figure 105.3: The XIB file is bound to the custom class name, with the specified module.

105.3 Creating the iOS Screenlet's Interactor

Create an Interactor class for each of your Screenlet’s actions. In the Interactor class, Screens
provides the default functionality required by all Interactor classes. Your Interactor class must
therefore extend Interactor to provide the functionality unique to your Screenlet.

Note: You may wish to make your server call in a Connector instead of an Interactor. Doing so
provides an additional abstraction layer for your server call, leaving your Interactor to instantiate
your Connector and receive its results. For instructions on this, see the tutorial Create and Use a
Connector with Your Screenlet.

Interactors work synchronously, but you can use callbacks (delegates) or Connectors to run
their operations in the background. For example, the Liferay Mobile SDK provides the LRCallback

protocol for this purpose. This is described in the Mobile SDK tutorial on invoking Liferay services
asynchronously. Screens bridges this protocol to make it available in Swift. Your Interactor class
can conform this protocol to make its server calls asynchronously. To implement an Interactor
class:

• Your initializer must receive all required properties and a reference to the Screenlet.
• Override Interactor’s startmethod to perform the server operations your Screenlet requires
(e.g., invoke a Liferay operation via a Liferay Mobile SDK service).

1164

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/Interactor.swift
https://github.com/liferay/liferay-mobile-sdk/blob/master/ios/Source/Core/LRCallback.h
https://github.com/liferay/liferay-mobile-sdk/blob/master/ios/Source/Core/LRCallback.h

• Save the server response to an accessible property, if necessary. For example, if the server
call returns objects from a Liferay instance, you should store these objects in an accessible
property. This way your Screenlet can display those results to the user.

• You must invoke the methods callOnSuccess and callOnFailure to execute the closures
onSuccess and onFailure, respectively.

For example, the sample Add Bookmark Screenlet’s Interactor class AddBookmarkInteractor

makes the server call that adds a bookmark to a Liferay instance. This class extends the Interactor

class and conforms the LRCallback protocol. The latter ensures that the Interactor’s server call runs
asynchronously:

public class AddBookmarkInteractor: Interactor, LRCallback {...

To save the server call’s results, AddBookmarkInteractor defines the public variable
resultBookmarkInfo. This class also defines public constants for the bookmark’s folder ID,
title, and URL. The initializer sets these variables and calls Interactor’s constructor with a
reference to the base Screenlet class (BaseScreenlet):

public var resultBookmarkInfo: [String:AnyObject]?

public let folderId: Int64

public let title: String

public let url: String

public init(screenlet: BaseScreenlet, folderId: Int64, title: String, url: String) {

self.folderId = folderId

self.title = title

self.url = url

super.init(screenlet: screenlet)

}

The AddBookmarkInteractor class’s startmethod makes the server call. To do so, it must first get
a Session. Since Login Screenlet creates a session automatically upon successful login, the start

method retrieves this session with SessionContext.createSessionFromCurrentSession(). To make
the server call asynchronously, the start method must set a callback to this session. Because
AddBookmarkInteractor conforms the LRCallback protocol, setting self as the session’s callback ac-
complishes this. The startmethodmust then create a LRBookmarksEntryService_v7 instance and call
this instance’s addEntryWithGroupIdmethod. The latter method calls a Liferay instance’s add-entry
service for BookmarksEntry. The start method therefore provides the groupId, folderId, name, url,
description, and serviceContext arguments to addEntryWithGroupId. Note that this example provides
a hard-coded string for the description. Also, the serviceContext is nil because the Mobile SDK
handles the ServiceContext object for you:

override public func start() -> Bool {

let session = SessionContext.createSessionFromCurrentSession()

session?.callback = self

let service = LRBookmarksEntryService_v7(session: session)

do {

try service.addEntryWithGroupId(LiferayServerContext.groupId,

folderId: folderId,

name: title,

url: url,

description: "Added from Liferay Screens",

serviceContext: nil)

return true

1165

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/Interactor/AddBookmarkInteractor.swift

}

catch {

return false

}

}

Finally, the AddBookmarkInteractor class must conform the LRCallback protocol by implementing
the onFailure and onSuccessmethods. The onFailuremethod communicates the NSError object that
results from a failed server call. It does this by calling the base Interactor class’s callOnFailure

method with the error. When the server call succeeds, the onSuccessmethod sets the server call’s
results (the result argument) to the resultBookmarkInfo variable. The onSuccess method finishes
by calling the base Interactor class’s callOnSuccess method to communicate the success status
throughout the Screenlet:

public func onFailure(error: NSError!) {

self.callOnFailure(error)

}

public func onSuccess(result: AnyObject!) {

//Save result bookmark info

resultBookmarkInfo = (result as! [String:AnyObject])

self.callOnSuccess()

}

105.4 Creating the iOS Screenlet's Class

The Screenlet class is the central hub of a Screenlet. It contains the Screenlet’s properties, a
reference to the Screenlet’s View class, methods for invoking Interactor operations, and more.
When using a Screenlet, app developers primarily interact with its Screenlet class. In other words,
if a Screenlet were to become self-aware, it would happen in its Screenlet class (though we’re
reasonably confident this won’t happen).

Screens’s BaseScreenlet class is a base Screenlet class implementation. Since BaseScreenlet

provides most of a Screenlet class’s required functionality, your Screenlet class should extend
BaseScreenlet. This lets you focus on your Screenlet’s unique functionality. Your Screenlet class
must also include any @IBInspectable properties your Screenlet requires and a reference to your
Screenlet’s View class. To perform your Screenlet’s action, your Screenlet class must override
BaseScreenlet’s createInteractormethod. This method should create an instance of your Interactor
and then set the Interactor’s onSuccess and onFailure closures to define what happens when the
server call succeeds or fails, respectively.

For example, the AddBookmarkScreenlet class is the Screenlet class in Add Bookmark Screenlet.
This class extends BaseScreenlet and contains an @IBInspectable variable for the bookmark folder’s
ID (folderId). The AddBookmarkScreenlet class’s createInteractormethod first gets a reference to the
View class (AddBookmarkView_default). It then creates an AddBookmarkInteractor instance with this
Screenlet class (self), the folderId, the bookmark’s title, and the bookmark’s URL. Note that the
View class reference contains the bookmark title and URL that the user entered into the UI. The
createInteractor method then sets the Interactor’s onSuccess closure to print a success message
when the server call succeeds. Likewise, the Interactor’s onFailure closure is set to print an error
message when the server call fails. Note that you’re not restricted to only printing messages
here: you should set these closures to do whatever is best for your Screenlet. The createInteractor

1166

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/AddBookmarkScreenlet.swift

method finishes by returning the Interactor instance. Here’s the complete AddBookmarkScreenlet

class:

import UIKit

import LiferayScreens

public class AddBookmarkScreenlet: BaseScreenlet {

//MARK: Inspectables

@IBInspectable var folderId: Int64 = 0

//MARK: BaseScreenlet

override public func createInteractor(name name: String?, sender: AnyObject?) -> Interactor? {

let view = self.screenletView as! AddBookmarkView_default

let interactor = AddBookmarkInteractor(screenlet: self,

folderId: folderId,

title: view.title!,

url: view.URL!)

//Called when the Interactor's server call finishes succesfully

interactor.onSuccess = {

let bookmarkName = interactor.resultBookmarkInfo!["name"] as! String

print("Bookmark \"\(bookmarkName)\" saved!")

}

//Called when the Interactor's server call fails

interactor.onFailure = { _ in

print("An error occurred saving the bookmark")

}

return interactor

}

}

For reference, the sample Add Bookmark Screenlet’s final code is here on GitHub.

1167

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/AddBookmarkScreenlet.swift

CHAPTER 106

CREATING IOS LIST SCREENLETS

It’s very common for mobile apps to display lists. Liferay Screens lets you display asset lists and
DDL lists in your iOS app by using Asset List Screenlet and DDL List Screenlet, respectively. Screens
also includes list Screenlets for displaying lists of other Liferay entities like web content articles,
images, and more. The Screenlet reference documentation lists all the Screenlets included with
Liferay Screens. If there’s not a list Screenlet for the entity you want to display in a list, you must
create your own list Screenlet. A list Screenlet can display any entity from a Liferay instance. For
example, you can create a list Screenlet that displays standard Liferay entities like User, or custom
entities from custom Liferay apps.

The tutorials in this section use code from the sample Bookmark List Screenlet to show you
how to create your own list Screenlet. This Screenlet displays a list of bookmarks from Liferay’s
Bookmarks portlet. You can find this Screenlet’s complete code here in GitHub.

Note that because this tutorial focuses on creating a list Screenlet, it doesn’t explain general
Screenlet concepts and components. Before beginning, you should therefore read the following:

• Creating iOS Screenlets
• Supporting Multiple Themes in Your Screenlet
• Create and Use a Connector with Your Screenlet
• Add a Screenlet Delegate
• Creating and Using Your Screenlet’s Model Class

You’ll create a list Screenlet by following these steps:

1. Creating the Model class
2. Creating the Theme
3. Creating the Connector
4. Creating the Interactor
5. Creating the Delegate
6. Creating the Screenlet class

First though, you should understand how pagination works with list Screenlets.

1169

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/BookmarkListScreenlet

106.1 Pagination

To ensure that users can scroll smoothly through large lists of items, list Screenlets support fluent
pagination. Support for this is built into the list Screenlet framework. You’ll see this as you construct
your list Screenlet.

106.2 Creating the Model Class

Recall that a model class transforms each [String:AnyObject] entity Screens receives into a model
object that represents the corresponding Liferay entity. For instructions on creating your model
class, see the tutorial Creating and Using Your Screenlet’s Model Class. The example model class in
that tutorial is identical to Bookmark List Screenlet’s.

Next, you’ll create your list Screenlet’s theme.

106.3 Creating the iOS List Screenlet's Theme

Recall that each Screenlet needs a Theme to serve as its UI. A Theme needs an XIB file to define
the UI’s components and layout. Since a list Screenlet displays a list of entities, its XIB file must
contain a Table View. Use these steps to create your Theme’s XIB file:

1. In Xcode, create a new XIB file and name it according to these naming conventions. For ex-
ample, the XIB for Bookmark List Screenlet’s Default Theme is BookmarkListView_default.xib.

2. In Interface Builder, drag and drop a View from the Object Library to the canvas. Then add a
Table View to the View.

3. Resize the Table View to take up the entire View, and set the constraints the Table View needs
to maintain this size dynamically. This ensures that the list fills the Screenlet’s UI regardless
of the iOS device’s size or orientation.

For example, Bookmark List Screenlet’s XIB file uses a UITableView inside a parent View to show
the list of bookmarks.

Now you’ll create your Theme’s View class. Every Theme needs a View class that controls its
behavior. Since the XIB file uses a UITableView to show a list of guestbooks, your View class must
extend the BaseListTableView class. Liferay Screens provides this class to serve as the base class for
list Screenlets’ View classes. Since BaseListTableView provides most of the required functionality,
extending it lets you focus on the parts of your View class that are unique to your Screenlet. You
must also configure the XIB file to use your View class.

Follow these steps to create your Screenlet’s View class and configure the XIB file to use it:

1. Create your Theme’s View class, and name it according to these naming conventions. Since
the XIB uses UITableView, your View class must extend BaseListTableView. For example, this
is Bookmark List Screenlet’s View class declaration:

public class BookmarkListView_default: BaseListTableView {...

1170

http://www.iosnomad.com/blog/2014/4/21/fluent-pagination
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/Themes/Default/BookmarkListView_default.xib
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/TableView/BaseListTableView.swift

2. Now you must override the View class methods that fill the table cells’ contents. There are
two methods for this, depending on the cell type:

• Normal cells: the cells that show the entities. These cells typically use UILabel,
UIImage, or another UI component to show the entity. Override the doFillLoadedCell

method to fill these cells. For example, Bookmark List Screenlet’s View class overrides
doFillLoadedCell to set each cell’s textLabel to a bookmark’s name:

override public func doFillLoadedCell(row row: Int, cell: UITableViewCell,

object: AnyObject) {

let bookmark = object as! Bookmark

cell.textLabel?.text = bookmark.name

}

• Progress cell: the cell at the bottom of the list that indicates the list is loading the next
page of items. Override the doFillInProgressCellmethod to fill this cell. For example,
Bookmark List Screenlet’s View class overrides this method to set the cell’s textLabel to
the string "Loading...":

override public func doFillInProgressCell(row row: Int, cell: UITableViewCell) {

cell.textLabel?.text = "Loading..."

}

3. Return to the Theme’s XIB in Interface Builder, and set the View class as the the parent View’s
custom class. For example, if you were doing this for Bookmark List Screenlet you’d select
the Table View’s parent View, click the Identity inspector, and enter BookmarkListView_default
as the custom class.

4. With the Theme’s XIB still open in Interface Builder, set the parent View’s tableView outlet to
the Table View. To do this, select the parent View and click the Connections inspector. In the
Outlets section, drag and drop from the tableView’s circle icon (it turns into a plus icon on
mouseover) to the Table View in the XIB. The new outlet then appears in the Connections
inspector.

That’s it! Now that your Theme is finished, you can create the Connector.

106.4 Creating the iOS List Screenlet's Connector

Recall that Connectors make a server call. To support pagination, a List Screenlet’s Connector
class must extend the PaginationLiferayConnector class. The Connector class must also contain any
properties it needs to make the server call, and an initializer that sets them. To support pagination,
the initializer must also contain the following arguments, which you’ll pass to the superclass
initializer:

• startRow: The number representing the page’s first row.
• endRow: The number representing the page’s last row.
• computeRowCount: Whether to call the Connector’s doAddRowCountServiceCall method (you’ll
learn about this method shortly).

1171

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/PaginationLiferayConnector.swift

For example, Bookmark List Screenlet must retrieve bookmarks from a Bookmarks portlet
folder in a specific site. The Screenlet’s Connector class must therefore have properties for the
groupId (site ID) and folderId (Bookmarks folder ID), and an initializer that sets them. The initializer
also calls the superclass initializer with the startRow, endRow, and computeRowCount arguments:

import UIKit

import LiferayScreens

public class BookmarkListPageLiferayConnector: PaginationLiferayConnector {

public let groupId: Int64

public let folderId: Int64

//MARK: Initializer

public init(startRow: Int, endRow: Int, computeRowCount: Bool, groupId: Int64,

folderId: Int64) {

self.groupId = groupId

self.folderId = folderId

super.init(startRow: startRow, endRow: endRow, computeRowCount: computeRowCount)

}

...

Next, if youwant to validate any of your Screenlet’s properties, override the validateDatamethod
as described in the tutorial on creating Connectors. Note that Bookmark List Screenlet only needs
to validate the folderId:

override public func validateData() -> ValidationError? {

let error = super.validateData()

if error == nil {

if folderId <= 0 {

return ValidationError("Undefined folderId")

}

}

return error

}

Lastly, you must override the following two methods in the Connector class:

• doAddPageRowsServiceCall: calls the Liferay Mobile SDK service method that retrieves a page
of entities. The doAddPageRowsServiceCallmethod’s startRow and endRow arguments specify the
page’s first and last entities, respectively. Make the service call as you would in any Screenlet.
For example, the doAddPageRowsServiceCallmethod in BookmarkListPageLiferayConnector calls
the service’s getEntriesWithGroupIdmethod to retrieve a page of bookmarks from the folder
specified by folderId:

public override func doAddPageRowsServiceCall(session session: LRBatchSession,

startRow: Int, endRow: Int, obc: LRJSONObjectWrapper?) {

let service = LRBookmarksEntryService_v7(session: session)

do {

try service.getEntriesWithGroupId(groupId,

folderId: folderId,

start: Int32(startRow),

end: Int32(endRow))

}

catch {

1172

// ignore error: the service method returns nil because

// the request is sent later, in batch

}

}

Note that you don’t need to do anything in the catch statement because the request is sent later,
in batch. The session type LRBatchSession handles this for you. You’ll receive the request’s
results elsewhere, once the request completes.

• doAddRowCountServiceCall: calls the Liferay Mobile SDK service method that retrieves the total
number of entities. This supports pagination. Make the service call as you would in any
Screenlet. For example, the doAddRowCountServiceCall in BookmarkListPageLiferayConnector

calls the service’s getEntriesCountWithGroupIdmethod to retrieve the total number of book-
marks in the folder specified by folderId:

override public func doAddRowCountServiceCall(session session: LRBatchSession) {

let service = LRBookmarksEntryService_v7(session: session)

do {

try service.getEntriesCountWithGroupId(groupId, folderId: folderId)

}

catch {

// ignore error: the service method returns nil because

// the request is sent later, in batch

}

}

Now that you have your Connector class, you’re ready to create the Interactor.

106.5 Creating the iOS List Screenlet's Interactor

Recall that Interactors implement your Screenlet’s actions. In list Screenlets, loading entities is
usually the only action a user can take. The Interactor class of a list Screenlet that implements
fluent pagination must extend the BaseListPageLoadInteractor class. Your Interactor class must
also contain any properties the Screenlet needs, and an initializer that sets them. This initializer
also needs arguments for the following properties, which it passes to the superclass initializer:

• screenlet: A BaseListScreenlet reference. This ensures the Interactor always has a Screenlet
reference.

• page: The page number to retrieve.
• computeRowCount: Whether to call the Connector’s doAddRowCountServiceCallmethod.

For example, Bookmark List Screenlet’s Interactor class contains the same groupId and folderId

properties as the Connector, and an initializer that sets them. This initializer also passes the
screenlet, page, and computeRowCount arguments to the superclass initializer:

public class BookmarkListPageLoadInteractor : BaseListPageLoadInteractor {

private let groupId: Int64

private let folderId: Int64

init(screenlet: BaseListScreenlet,

page: Int,

1173

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListPageLoadInteractor.swift

computeRowCount: Bool,

groupId: Int64,

folderId: Int64) {

self.groupId = (groupId != 0) ? groupId : LiferayServerContext.groupId

self.folderId = folderId

super.init(screenlet: screenlet, page: page, computeRowCount: computeRowCount)

}

...

The Interactor class must also initiate the server request by instantiating the Connector, and
convert the results into model objects. Override the createListPageConnectormethod to create and
return an instance of your Connector. This method must first get a reference to the Screenlet
via the screenlet property. When calling the Connector’s initializer, use screenlet.firstRowForPage

to convert the page number (page) to the page’s start and end indices. You must also pass the
initializer any other properties it needs, like groupId. For example, BookmarkListPageLoadInteractor’s
createListPageConnectormethod does this to create a BookmarkListPageLiferayConnector instance:

public override func createListPageConnector() -> PaginationLiferayConnector {

let screenlet = self.screenlet as! BaseListScreenlet

return BookmarkListPageLiferayConnector(

startRow: screenlet.firstRowForPage(self.page),

endRow: screenlet.firstRowForPage(self.page + 1),

computeRowCount: self.computeRowCount,

groupId: groupId,

folderId: folderId)

}

Next, override the convertResultmethod to convert each [String:AnyObject] result into a model
object. The Screenlet calls this method once for each entity retrieved from the server. For example,
BookmarkListPageLoadInteractor’s convertResultmethod converts the [String:AnyObject] result into
a Bookmark object:

override public func convertResult(_ serverResult: [String:AnyObject]) -> AnyObject {

return Bookmark(attributes: serverResult)

}

You may also want to support offline mode in your Interactor. To do so, the Interactor must
override the cacheKey method to return a cache key unique to your Screenlet. For example,
BookmarkListPageLoadInteractor’s cacheKey method returns a cache key that includes the Screen-
let’s groupId and folderId settings:

override public func cacheKey(_ op: PaginationLiferayConnector) -> String {

return "\(groupId)-\(folderId)"

}

Great! Next, you’ll create your Screenlet’s delegate.

106.6 Creating the iOS List Screenlet's Delegate

Recall that a delegate is required if you want other classes to respond to your Screenlet’s actions.
Create your delegate by following the first step in the tutorial on adding a Screenlet delegate. A list
Screenlet’s delegate must also define a method for responding to a list item selection. For example,
Bookmark List Screenlet’s delegate needs the following methods:

1174

• screenlet(_:onBookmarkListResponse:): Returns the Bookmark results when the server call suc-
ceeds.

• screenlet(_:onBookmarkListError:): Returns the NSError object when the server call fails.
• screenlet(_:onBookmarkSelected:): Returns the Bookmark when a user selects it in the list.

The BookmarkListScreenletDelegate protocol defines these methods:
@objc public protocol BookmarkListScreenletDelegate : BaseScreenletDelegate {

optional func screenlet(screenlet: BookmarkListScreenlet,

onBookmarkListResponse bookmarks: [Bookmark])

optional func screenlet(screenlet: BookmarkListScreenlet,

onBookmarkListError error: NSError)

optional func screenlet(screenlet: BookmarkListScreenlet,

onBookmarkSelected bookmark: Bookmark)

}

Nice work! Next, you’ll create the Screenlet class.

106.7 Creating the iOS List Screenlet's Class

Now that your list Screenlet’s other components exist, you can create the Screenlet class. A list
Screenlet’s Screenlet class must extend the BaseListScreenlet class and define the configurable
properties the Screenlet needs. You should define these as IBInspectable properties. If you want to
support offline mode, you should also add an offlinePolicy property.

For example, Bookmark List Screenlet’s Screenlet class contains the IBInspectable properties
groupId, folderId, and offlinePolicy:
public class BookmarkListScreenlet: BaseListScreenlet {

@IBInspectable public var groupId: Int64 = 0

@IBInspectable public var folderId: Int64 = 0

@IBInspectable public var offlinePolicy: String? = CacheStrategyType.RemoteFirst.rawValue

...

Next, override the createPageLoadInteractormethod to create and return the Interactor. If your
Screenlet supports offline mode, you should also use offlinePolicy to pass a CacheStrategyType ob-
ject to the Interactor. For example, the createPageLoadInteractormethod in BookmarkListScreenlet

creates and returns a BookmarkListPageLoadInteractor instance. This method also sets the Interac-
tor’s cacheStrategy property to a CacheStrategyType object created with offlinePolicy:
override public func createPageLoadInteractor(

page page: Int,

computeRowCount: Bool) -> BaseListPageLoadInteractor {

let interactor = BookmarkListPageLoadInteractor(screenlet: self,

page: page,

computeRowCount: computeRowCount,

groupId: self.groupId,

folderId: self.folderId)

interactor.cacheStrategy = CacheStrategyType(rawValue: self.offlinePolicy ?? "") ?? .RemoteFirst

return interactor

}

1175

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/BookmarkListScreenlet.swift

Now get a reference to your delegate. The BaseScreenlet class, which BaseListScreenlet extends,
already defines the delegate property for the delegate object. Every list Screenlet therefore has this
property, and any app developer using the Screenlet can access it. To avoid casting this property
to your delegate every time you use it, add a computed property to your Screenlet class that does
so. For example, the following bookmarkListDelegate property in BookmarkListScreenlet casts the
delegate property to BookmarkListScreenletDelegate:

public var bookmarkListDelegate: BookmarkListScreenletDelegate? {

return delegate as? BookmarkListScreenletDelegate

}

Next, override the BaseListScreenletmethods that handle the Screenlet’s events. Because these
events correspond to the events your delegate methods handle, you’ll call your delegate methods
in these BaseListScreenletmethods:

• onLoadPageResult: Called when the Screenlet loads a page successfully. Override this method
to call your delegate’s screenlet(_:onBookmarkListResponse:) method. For example, here’s
BookmarkListScreenlet’s onLoadPageResultmethod:

override public func onLoadPageResult(page page: Int, rows: [AnyObject], rowCount: Int) {

super.onLoadPageResult(page: page, rows: rows, rowCount: rowCount)

bookmarkListDelegate?.screenlet?(screenlet: self, onBookmarkListResponse: rows as! [Bookmark])

}

• onLoadPageError: Called when the Screenlet fails to load a page. Override this method
to call your delegate’s screenlet(_:onBookmarkListError:) method. For example, here’s
BookmarkListScreenlet’s onLoadPageErrormethod:

override public func onLoadPageError(page page: Int, error: NSError) {

super.onLoadPageError(page: page, error: error)

bookmarkListDelegate?.screenlet?(screenlet: self, onBookmarkListError: error)

}

• onSelectedRow: Called when an item is selected in the list. Override this method to
call your delegate’s screenlet(_:onBookmarkSelected:) method. For example, here’s
BookmarkListScreenlet’s onSelectedRowmethod:

override public func onSelectedRow(_ row: AnyObject) {

bookmarkListDelegate?.screenlet?(screenlet: self, onBookmarkSelected: row as! Bookmark)

}

1176

CHAPTER 107

CREATING IOS THEMES

By creating your own Themes, you can customize your mobile app’s design and functionality. You
can create them from scratch or use an existing Theme as a foundation. Themes include a View
class for implementing Screenlet behavior and an XIB file for specifying the UI. The three Liferay
Screens Theme types support different levels of customization and parent Theme inheritance.
Here’s what each Theme type offers:

• Child Theme: Presents the same UI components as its parent Theme, but lets you change
their appearance and position.

• Extended Theme: Inherits its parent Theme’s functionality and appearance, but lets you add
to and modify both.

• Full Theme: Provides a complete standalone View for a Screenlet. A full Theme is ideal for
implementing functionality and appearance completely different from a Screenlet’s current
Theme.

The tutorials in this section explain how to create all three Theme types. To understand Theme
concepts and components, you might want to examine the architecture of Liferay Screens for iOS.
The tutorials on creating iOS Screenlets can help you create any Screenlet classes your Theme
requires.

107.1 Determining Your Theme's Location

After determining the type of Theme to create, you need to decide where to create it. If you want
to reuse or redistribute it, you should create it in an empty Cocoa Touch Framework project in
Xcode. The packaging tutorial explains how to package and publish with CocoaPods. If you’re not
planning to reuse or redistribute your Theme, you can create it directly inside your app project.

107.2 Creating an iOS Child Theme

1177

In a Child Theme, you leverage a parent Theme’s behavior and UI components, but you can
modify the appearance and position of the UI components. Note that you can’t add or remove
any components and the parent Theme must be a Full Theme. The Child Theme presents visual
changes with its own XIB file and inherits the parent’s View class.

For example, the Child Theme in Figure 1 presents the same UI components as the Login
Screenlet’s Default Theme, but enlarges them for viewing on devices with larger screens.

Figure 107.1: The UI components are enlarged in the example Child Theme’s XIB file.

You can follow these steps to create a Child Theme:

1. In Xcode, create a new XIB file that’s named after the Screenlet’s View class and your
Theme. By convention, an XIB file for a Screenlet with a View class named FooScreen-
letView and a Theme named BarTheme must be named FooScreenletView_barTheme.xib. You
can use content from the parent Theme’s XIB file as a foundation for your new XIB file. In
your new XIB, you can change the UI components’ visual properties (e.g., their position
and size). You mustn’t change, however, the XIB file’s custom class, outlet connection, or
restorationIdentifier–these must match those of the parent’s XIB file.

Note: The XIB file name serves as the Theme's Xcode name. For example,

the Theme in Figure 1 inherits from the Login Screenlet's Default Theme,

which uses the View class `LoginView_default`. The new child Theme is named

Large because it's purpose is to enlarge the Screenlet's UI components. In

Xcode, it's assigned the Theme Name *large*. The XIB file is named

`LoginView_large.xib`, after the Login Screenlet's View class and the

Theme's Xcode name.

You can optionally package your Theme and/or start using it.

107.3 Creating an iOS Extended Theme

1178

https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/LoginScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/LoginScreenlet

An Extended Theme inherits another Theme’s UI components and behavior, but lets you add to
or alter it by extending the parent Theme’s View class and creating a new XIB file. An Extended
Theme’s parent must be a Full Theme. The Flat7 Theme is an Extended Theme.

These steps explain how to create an Extended Theme:

1. In Xcode, create a new XIB file named after the Screenlet’s View class and your Theme. By
convention, an XIB file for a Screenlet with a View class named FooScreenletView and a Theme
named BarTheme must be named FooScreenletView_barTheme.xib. You can use the XIB file of
your parent Theme as a template. Build your UI changes in your new XIB file with Interface
Builder.

Figure 107.2: This example Extended Theme’s XIB file extends the Login Portlet’s UI and behavior with a switch that lets the user show or hide the password field value.

2. Create a new View class that extends the parent Theme’s View class. You should name this
class after the XIB file you just created. You can add or override functionality of the parent
Theme’s View class.

3. Set your new View class as the custom class for your Theme’s XIB file. If you added @IBOutlet

or @IBAction actions, bind them to your class.

Well done! You can optionally package your Theme and/or start using it.

107.4 Creating an iOS Full Theme

A Full Theme implements unique behavior and appearance for a Screenlet, without using a parent
Theme. Its View class must inherit Screens’s BaseScreenletView and conform to the Screenlet’s View

1179

https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Flat7
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift

Model protocol. It must also specify a new UI in an XIB file. As you create a Full Theme, you can
refer to the tutorial Creating iOS Screenlets to learn how to create these classes.

Follow these steps to create a Full Theme:

1. Create a new XIB file and use Interface Builder to build your UI. By convention, an XIB file for
a Screenlet with a View class named FooScreenletView and a Theme named BarTheme must be
named FooScreenletView_barTheme.xib. You can use the XIB file from the Screenlet’s default
Theme as a template.

Figure 107.3: This Full Theme for the Login Screenlet, includes a text field for entering the user name, uses the UDID for the password, and adds a Sign In button with the
same restorationIdentifier as the Default Theme.

2. Create a new View class for your Theme named after the XIB file you just created. As a
template, you can use the View class of your Screenlet’s Default Theme. Your new View class
must inherit BaseScreenletView and conform to the Screenlet’s *ScreenletViewModel protocol,
implementing the corresponding getters and setters. It should also add all the @IBOutlet

properties or @IBActionmethods you need to bind your UI components.

3. Set your Theme’s new View class as your XIB file’s custom class and bind any @IBOutlet and
@IBAction actions to your class.

Now that your theme is finished, you can optionally package and/or start using it. Note that a
Full Theme can serve as a parent to a Child and Extended Theme.

107.5 Packaging iOS Themes

Once you’ve created a Theme, you can package it for installation and use with its Screenlet. Your
Theme is a code library that you can package using CocoaPods.

Follow the steps here to package your Theme for use with CocoaPods. Note that it’s important
that you use the same names and identifiers described in these steps:

1. Create an empty Cocoa Touch Framework Xcode project.

2. Name your project LiferayScreensThemeName, replacing Namewith your Theme’s name. You can
specify any name, but it’s a best practice to use your Theme’s Xcode name, capitalizing its
first letter. The entire name becomes the Theme’s CocoaPods name.

3. Configure Liferay Screens for CocoaPods, using the steps described in Preparing iOS Projects
for Liferay Screens.

1180

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift

Figure 107.4: Choose Cocoa Touch Framework when creating a project for your Theme.

4. Prepare your Theme’s classes and resources bymaking sure your classes compile successfully
in Xcode and by explicitly specifying a valid module for the custom class–the grayed-out
Current default value only suggests a module.

Figure 107.5: This XIB file’s custom class’s module is NOT specified.

In the following screenshot, the setting for the custom class is correct:

Figure 107.6: The XIB file is bound to the custom class name, with the specified module.

1181

5. In your project’s root folder, add a file named LiferayScreensTheme-Name.podspec (change Name

to your Theme’s CocoaPods name–the value you used to replace Name in step 2). Note: you
must start your the .podspec file’s name and the project’s name with LiferayScreens.

Add the following content to the file:

Pod::Spec.new do |s|

s.name = 'LiferayScreensThemeName'

s.version = '1.0'

s.summary = 'Your theme description'

s.source = {

:git => 'https://your_repository_url.git',

:tag => 'v1.0'

}

s.platform = :ios, '8.0'

s.requires_arc = true

s.source_files = 'Your/Relative/Folder/**/*.{h,m,swift}'

s.resources = 'Your/Relative/Folder/**/*.{xib,png,plist,lproj}'

s.dependency 'LiferayScreens'

end

Make the following substitutions in the .podspec file:

• Replace Name in LiferayScreensThemeName, with your Theme’s CocoaPods name–the value
you used to replace Name in step 2.

• Replace your_repository_url with your repository’s URL.
• Replace Your/Relative/Folder/ with the path to your source and resource files.

6. Commit your changes and push your project’s branch to your Git repository.

Your Theme is now available for other developers to pull from your Git repository. You can,
alternatively, publish your Theme as a public Pod. For instructions, see the chapter Deploying a
library in the official CocoaPods guide.

Developers can now use your Theme by adding the following line to their app’s Podfile; they
must, of course, change Name to the Theme’s CocoaPods name and your_repository_url to your
repository’s URL:

pod 'LiferayScreensThemeName', :git => 'https://your_repository_url.git'

Nice work! Now you know how to package and distribute Screenlet Themes with CocoaPods.
Related Topics
Using Themes in iOS Screenlets
Architecture of Liferay Screens for iOS
Creating iOS Themes
Creating iOS Screenlets
Preparing Android Projects for Liferay Screens

1182

https://guides.cocoapods.org/making/getting-setup-with-trunk.html#deploying-a-library

107.6 Supporting Multiple Themes in Your iOS Screenlet

Themes let you present the same Screenlet with a different look and feel. For example, if you have
multiple apps that use the same Screenlet, you can use different Themes to match the Screenlet’s
appearance to each app’s style. Each Screenlet that comes with Liferay Screens supports the use of
multiple Themes. For your custom Screenlet to support different Themes, however, it must contain
a View Model protocol. A ViewModel abstracts the Theme used to display the Screenlet, thus letting
developers use other Themes. For example, note that the Screenlet class’s createInteractormethod
in the Screenlet creation tutorials accesses the View class (AddBookmarkView_default) directly when
getting a reference to the View class:

let view = self.screenletView as! AddBookmarkView_default

This is all fine and well, except it hard codes the Theme defined by AddBookmarkView_default! To
use a different Theme, you’d have to rewrite this line of code to use that Theme’s View class. This
isn’t very flexible! Instead of making your Screenlet take expensive yoga classes, you can abstract
the Theme’s View class via a View Model protocol.

This tutorial shows you how to add aViewModel to your Screenlet. The AddBookmark Screenlet
created in the Screenlet creation tutorials is used as an example. Note that you can also add a View
Model while creating your Screenlet.

Creating and Using a ViewModel

Follow these steps to add and use a View Model in your Screenlet:

1. Create a ViewModel protocol that defines your Screenlet’s attributes. These attributes are the
View class properties your Screenlet class uses. For example, the Screenlet class in Add Book-
mark Screenlet uses the View class properties title and URL. Add Bookmark Screenlet’s View
Model protocol (AddBookmarkViewModel) must therefore define variables for these properties:

import UIKit

@objc protocol AddBookmarkViewModel {

var URL: String? {get}

var title: String? {get}

}

2. Conform your View class to your Screenlet’s View Model protocol. Make sure to get/set
all the protocol’s properties. For example, here’s Add Bookmark Screenlet’s View Class
(AddBookmarkView_default) conformed to AddBookmarkViewModel:

import UIKit

import LiferayScreens

class AddBookmarkView_default: BaseScreenletView, AddBookmarkViewModel {

@IBOutlet weak var URLTextField: UITextField?

@IBOutlet weak var titleTextField: UITextField?

var URL: String? {

1183

https://github.com/liferay/liferay-screens/blob/develop/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/AddBookmarkScreenlet.swift
https://github.com/liferay/liferay-screens/blob/develop/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/AddBookmarkScreenlet.swift

return URLTextField?.text

}

var title: String? {

return titleTextField?.text

}

}

3. Create and use a View Model reference in your Screenlet class. By retrieving data from this
reference instead of a direct View class reference, you can use your Screenlet with other
Themes. For example, here’s the AddBookmarkScreenlet class with a viewModel property instead
of a direct reference to AddBookmarkView_default. This class’s createInteractormethod then
uses this property to get the title and URL properties in the AddBookmarkInteractor constructor:

...

//View Model reference

var viewModel: AddBookmarkViewModel {

return self.screenletView as! AddBookmarkViewModel

}

override public func createInteractor(name name: String?, sender: AnyObject?) -> Interactor? {

let interactor = AddBookmarkInteractor(screenlet: self,

folderId: folderId,

title: viewModel.title!,

url: viewModel.URL!)

// Called when the Interactor finishes succesfully

interactor.onSuccess = {

let bookmarkName = interactor.resultBookmarkInfo!["name"] as! String

print("Bookmark \"\(bookmarkName)\" saved!")

}

// Called when the Interactor finishes with an error

interactor.onFailure = { _ in

print("An error occurred saving the bookmark")

}

return interactor

}

...

That’s it! Now your Screenlet is ready to use other Themes that you create for it. See the tutorials
on creating iOS Themes for instructions on creating a Theme.

Related Topics

Creating iOS Themes
Creating iOS Screenlets
Architecture of Liferay Screens for iOS
Creating iOS List Screenlets

107.7 Adding Screenlet Actions

With multiple Interactors, it’s possible for a Screenlet to have multiple actions. You must create
an Interactor class for each action. For example, if your Screenlet needs to make two server

1184

calls, then you need two Interactors: one for each call. Your Screenlet class’s createInteractor

method must return an instance of each Interactor. Also, recall that each action name is
given by the restorationIdentifier of the UI components that trigger them. You should set this
restorationIdentifier to a constant in your Screenlet.

This tutorial walks you through the steps necessary to add an action to your Screenlet, and
trigger an action programmatically. As an example, this tutorial uses the advanced version of the
sample Add Bookmark Screenlet. This Screenlet is similar to the sample Add Bookmark Screenlet
created in the Screenlet creation tutorials. The advanced Add Bookmark Screenlet, however,
contains two actions:

1. Add Bookmark: Adds a bookmark to the Bookmarks portlet in a Liferay DXP installation. This
is the Screenlet’s main action, created in the Screenlet creation tutorials.

2. Get Title: Retrieves the title from a bookmark URL entered by the user. This tutorial shows
you how to implement this action.

Note that this tutorial doesn’t explain Screenlet creation in general. Before proceeding, make
sure you’ve read the Screenlet creation tutorials. Andwithout any further ado, it’s time to implement
your Screenlet’s action!

Implementing Your Action

Use the following steps to add an action to your your Screenlet:

1. Create a constant in your Screenlet class for each of your Screenlet’s actions. For example,
here are the constants in Add Bookmark Screenlet’s Screenlet class (AddBookmarkScreenlet):

static let AddBookmarkAction = "add-bookmark"

static let GetTitleAction = "get-title"

2. In your Theme’s XIB file, add any new UI components that you need to perform the action.
For example, Add Boookmark Screenlet’s XIB file needs a new button for getting the URL’s
title:

3. Wire the UI components in your XIB file to your View class. In your View class, you must
also register the events you want to react to (e.g., button clicks). The BaseScreenletView

class contains a set of userAction methods that you can call in your View class to per-
form actions programmatically. For example, it’s possible to trigger Add Bookmark
Screenlet’s GetTitleAction automatically whenever the user leaves the URLTextField. Since
BaseScreenletView is the delegate for all UITextField objects by default, this is done in the
View class (AddBookmarkView_default) by implementing the textFieldDidEndEditingmethod to
call the userActionmethod with the action name:

func textFieldDidEndEditing(textField: UITextField) {

if textField == URLTextField {

userAction(name: AddBookmarkScreenlet.GetTitleAction)

}

}

4. Update your View class or View Model protocol to account for the new action. For example,
Add Bookmark Screenlet contains a View Model (AddBookmarkViewModel) so it can support
multiple Themes. This View Model must allow the new action to set its title variable:

1185

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift
https://developer.apple.com/reference/uikit/uitextfielddelegate/1619591-textfielddidendediting

Figure 107.7: The sample Add Bookmark Screenlet’s XIB file contains a new button next to the Title field for retrieving the URL’s title.

import UIKit

@objc protocol AddBookmarkViewModel {

var URL: String? {get}

var title: String? {set get}

}

5. If your Screenlet uses a ViewModel, conform your View class to the updated ViewModel. For
example, the title variable in Add Bookmark Screenlet’s View class (AddBookmarkView_default)
must implement the setter from the previous step:

var title: String? {

get {

return titleTextField?.text

}

set {

self.titleTextField?.text = newValue

}

}

6. Create a new Interactor class for the new action. To do this, use the same steps detailed in
the Screenlet creation tutorial. For example, here’s the Interactor class for Add Bookmark
Screenlet’s Get Title action:

import UIKit

import LiferayScreens

public class GetWebTitleInteractor: Interactor {

public var resultTitle: String?

var url: String

//MARK: Initializer

public init(screenlet: BaseScreenlet, url: String) {

1186

self.url = url

super.init(screenlet: screenlet)

}

override public func start() -> Bool {

if let URL = NSURL(string: url) {

// Use the NSURLSession class to retrieve the HTML

NSURLSession.sharedSession().dataTaskWithURL(URL) {

(data, response, error) in

if let errorValue = error {

self.callOnFailure(errorValue)

}

else {

if let data = data, html = NSString(data: data, encoding: NSUTF8StringEncoding) {

self.resultTitle = self.parseTitle(html)

}

self.callOnSuccess()

}

}.resume()

return true

}

return false

}

// Parse the title from a webpage HTML

private func parseTitle(html: NSString) -> String {

let range1 = html.rangeOfString("<title>")

let range2 = html.rangeOfString("</title>")

let start = range1.location + range1.length

return html.substringWithRange(NSMakeRange(start, range2.location - start))

}

}

7. Update your Screenlet class’s createInteractor method so it returns the correct Inter-
actor for each action. For example, the createInteractor method in Add Bookmark
Screenlet’s Screenlet class (AddBookmarkScreenlet) contains a switch statement that returns
an AddBookmarkInteractor or GetWebTitleInteractor instance when the Add Bookmark or
Get Title action is called, respectively. Note that the createAddBookmarkInteractor() and
createGetTitleInteractor() methods create these instances. Although you don’t have to
create your Interactor instances in separate methods, doing so leads to cleaner code:

...

override public func createInteractor(name name: String, sender: AnyObject?)

-> Interactor? {

switch name {

case AddBookmarkScreenlet.AddBookmarkAction:

return createAddBookmarkInteractor()

case AddBookmarkScreenlet.GetTitleAction:

return createGetTitleInteractor()

default:

return nil

}

}

private func createAddBookmarkInteractor() -> Interactor {

let interactor = AddBookmarkInteractor(screenlet: self,

1187

folderId: folderId,

title: viewModel.title!,

url: viewModel.URL!)

// Called when the Interactor finishes succesfully

interactor.onSuccess = {

let bookmarkName = interactor.resultBookmarkInfo!["name"] as! String

print("Bookmark \"\(bookmarkName)\" saved!")

}

// Called when the Interactor finishes with an error

interactor.onFailure = { _ in

print("An error occurred saving the bookmark")

}

return interactor

}

private func createGetTitleInteractor() -> Interactor {

let interactor = GetWebTitleInteractor(screenlet: self, url: viewModel.URL!)

// Called when the Interactor finishes succesfully

interactor.onSuccess = {

let title = interactor.resultTitle

self.viewModel.title = title

}

// Called when the Interactor finishes with an error

interactor.onFailure = { _ in

print("An error occurred retrieving the title")

}

return interactor

}

...

Great! Now you know how to support multiple actions in your Screenlets. The next section
shows you how to trigger your actions programmatically.

Related Topics

Creating iOS Screenlets
Create and Use a Connector with Your Screenlet
Creating iOS List Screenlets
Architecture of Liferay Screens for iOS

107.8 Create and Use a Connector with Your Screenlet

In Liferay Screens, a Connector is a class that interacts asynchronously with local and remote data
sources and Liferay instances. Recall that callbacks also make asynchronous service calls. So
why bother with a Connector? Connectors provide a layer of abstraction by making your service
call outside your Interactor. For example, the Interactor in the Screenlet creation tutorial makes
the server call and and processes its results via LRCallback. This Screenlet could instead make its
server call in a separate Connector class, leaving the Interactor to instantiate the Connector and
receive its results. Connectors also let you validate your Screenlet’s data. For more information on
Connectors, see the tutorial on the architecture of Liferay Screens for iOS.

1188

This tutorial walks you through the steps required to create and use a Connector with your
Screenlets, using the advanced version of the sample Add Bookmark Screenlet as an example. This
Screenlet contains two actions:

1. Add Bookmark: Adds a bookmark to the Bookmarks portlet in a Liferay DXP installation. This
tutorial shows you how to create and use a Connector for this action.

2. Get Title: Retrieves the title from a bookmark URL entered by the user. This tutorial shows
you how to use a pre-existing Connector with this action.

Before proceeding, make sure you’ve read the Screenlet creation tutorial. First, you’ll learn
how to create your Connector.

Creating Connectors

When you create your Connector class, be sure to follow the naming convention specified in the
best practices tutorial.

Use the following steps to implement your Connector class:

1. Create your Connector class by extending the ServerConnector class. For example, here’s the
class declaration for Add Bookmark Screenlet’s Connector class, AddBookmarkLiferayConnector:

public class AddBookmarkLiferayConnector: ServerConnector {

...

}

2. Add the properties needed to call the Mobile SDK service, then create an initializer that
sets those properties. For example, AddBookmarkLiferayConnector needs properties for the
bookmark’s folder ID, title, and URL. It also needs an initializer to set those properties:

public let folderId: Int64

public let title: String

public let url: String

public init(folderId: Int64, title: String, url: String) {

self.folderId = folderId

self.title = title

self.url = url

super.init()

}

3. If you want to validate any of your Screenlet’s properties, override the validateDatamethod
to implement validation for those properties. You can use the ValidationError class
to encapsulate the errors. For example, the following validateData implementation in
AddBookmarkLiferayConnector ensures that folderId is greater than 0, and title and url contain
values. This method also uses ValidationError to represent the error:

override public func validateData() -> ValidationError? {

let error = super.validateData()

if error == nil {

if folderId <= 0 {

return ValidationError("Undefined folderId")

1189

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/ServerConnector.swift
https://github.com/liferay/liferay-screens/blob/develop/ios/Framework/Core/Extensions/NSError%2BScreens.swift

}

if title.isEmpty {

return ValidationError("Title cannot be empty")

}

if url.isEmpty {

return ValidationError("URL cannot be empty")

}

}

return error

}

4. Override the doRunmethod to call theMobile SDK service you need to call. Thismethod should
retrieve the result from the service and store it in a public property. Also be sure to handle
errors and empty results. For example, the following code defines the resultBookmarkInfo

property for storing the service’s results retrieved in the doRunmethod. Note that thismethod’s
service call is identical to the one in the AddBookmarkInteractor class’s start method in the
Screenlet creation tutorial. The doRunmethod, however, takes the additional step of saving
the result to the resultBookmarkInfo property. Also note that this doRunmethod handles errors
as NSError objects:

public var resultBookmarkInfo: [String:AnyObject]?

override public func doRun(session session: LRSession) {

let service = LRBookmarksEntryService_v7(session: session)

do {

let result = try service.addEntryWithGroupId(LiferayServerContext.groupId,

folderId: folderId,

name: title,

url: url,

description: "Added from Liferay Screens",

serviceContext: nil)

if let result = result as? [String: AnyObject] {

resultBookmarkInfo = result

lastError = nil

}

else {

lastError = NSError.errorWithCause(.InvalidServerResponse)

resultBookmarkInfo = nil

}

}

catch let error as NSError {

lastError = error

resultBookmarkInfo = nil

}

}

Well done! Now you know how to create a Connector class. To see the finished example
AddBookmarkLiferayConnector class, click here.

Using Connectors

To use a Connector, your Interactor class must extend the ServerConnectorInteractor class or one
of its following subclasses:

1190

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Connector/AddBookmarkLiferayConnector.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/ServerConnectorInteractor.swift

• ServerReadConnectorInteractor: Your Interactor class should extend this class when imple-
menting an action that retrieves information from a server or data source.

• ServerWriteConnectorInteractor: Your Interactor class should extend this class when imple-
menting an action that writes information to a server or data source.

When extending ServerConnectorInteractor or one of its subclasses, your Interactor class only
needs to override the createConnector and completedConnector methods. These methods create a
Connector instance and recover the Connector’s result, respectively.

Follow these steps to use a Connector in your Interactor:

1. Set your Interactor class’s superclass to ServerConnectorInteractor or one of its subclasses.
You should also remove any code that conforms a callback protocol, if it exists. For
example, Add Bookmark Screenlet’s Interactor class (AddBookmarkInteractor) extends
ServerWriteConnectorInteractor because it writes data to a Liferay DXP installation. At this
point, your Interactor should contain only the properties and initializer that it requires:

public class AddBookmarkInteractor: ServerWriteConnectorInteractor {

public let folderId: Int64

public let title: String

public let url: String

public var resultBookmark: Bookmark?

//MARK: Initializer

public init(screenlet: BaseScreenlet, folderId: Int64, title: String, url: String) {

self.folderId = folderId

self.title = title

self.url = url

super.init(screenlet: screenlet)

}

}

2. Override the createConnectormethod to return an instance of your Connector. For example,
the createConnectormethod in AddBookmarkInteractor returns an AddBookmarkLiferayConnector

instance created with the folderId, title, and url properties:

public override func createConnector() -> ServerConnector? {

return AddBookmarkLiferayConnector(folderId: folderId, title: title, url: url)

}

3. Override the completedConnectormethod to get the result from theConnector and store it in the
appropriate property. For example, the completedConnectormethod in AddBookmarkInteractor

first casts its ServerConnector argument to AddBookmarkLiferayConnector. It then gets the Con-
nector’s resultBookmarkInfo property and sets it to the Interactor’s resultBookmark property:

override public func completedConnector(c: ServerConnector) {

if let addCon = (c as? AddBookmarkLiferayConnector),

bookmarkInfo = addCon.resultBookmarkInfo {

self.resultBookmark = bookmarkInfo

}

}

1191

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/ServerReadConnectorInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/ServerWriteConnectorInteractor.swift

That’s it! To see the complete example AddBookmarkInteractor, click here.
If your Screenlet uses multiple Interactors, follow the same steps to use Connectors. Also,

Screens provides the ready-to-use HttpConnector for interacting with non-Liferay URL’s. To use
this Connector, set your Interactor to use HttpConnector. For example, the Add Bookmark Screen-
let action that retrieves a URL’s title doesn’t interact with a Liferay DXP installation; it retrieves
the title directly from the URL. Because this action’s Interactor class (GetWebTitleInteractor) re-
trieves data, it extends ServerReadConnectorInteractor. It also overrides the createConnector and
completedConnectormethods to use HttpConnector. Here’s the complete GetWebTitleInteractor:

import UIKit

import LiferayScreens

public class GetWebTitleInteractor: ServerReadConnectorInteractor {

public let url: String?

// title from the webpage

public var resultTitle: String?

//MARK: Initializer

public init(screenlet: BaseScreenlet, url: String) {

self.url = url

super.init(screenlet: screenlet)

}

//MARK: ServerConnectorInteractor

public override func createConnector() -> ServerConnector? {

if let url = url, URL = NSURL(string: url) {

return HttpConnector(url: URL)

}

return nil

}

override public func completedConnector(c: ServerConnector) {

if let httpCon = (c as? HttpConnector), data = httpCon.resultData,

html = NSString(data: data, encoding: NSUTF8StringEncoding) {

self.resultTitle = parseTitle(html)

}

}

//MARK: Private methods

// Parse the title from the webpage's HTML

private func parseTitle(html: NSString) -> String {

let range1 = html.rangeOfString("<title>")

let range2 = html.rangeOfString("</title>")

let start = range1.location + range1.length

return html.substringWithRange(NSMakeRange(start, range2.location - start))

}

}

Awesome! Now you know how to create and use Connectors in your Screenlets.

Related Topics

Creating iOS Screenlets
Adding Screenlet Actions

1192

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Interactor/AddBookmarkInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/HttpConnector.swift

Architecture of Liferay Screens for iOS
Creating iOS List Screenlets

107.9 Add a Screenlet Delegate

Screenlet delegates let other classes respond to your Screenlet’s actions. For example, Login
Screenlet’s delegate lets the app developer implement methods that respond to login success or
failure. Note that the reference documentation for each Screenlet that comes with Liferay Screens
lists the Screenlet’s delegate methods.

You can also create a delegate for your own Screenlet. This tutorial walks you through the steps
required to do this, using code from the advanced version of the sample Add Bookmark Screenlet
as an example. All the example code in this tutorial resides in this Screenlet’s Screenlet class.
Also note that this sample Screenlet has two actions: adding a bookmark to a Liferay instance’s
Bookmarks portlet, and retrieving a bookmark’s title from its URL. This tutorial only details creating
a delegate for adding a bookmark.

Follow these steps to add a delegate to your Screenlet:

1. Define a delegate protocol that extends the BaseScreenletDelegate class. In this protocol,
define success and failure methods so the conforming class can respond to the server call’s
success and failure, respectively. As parameters, these methods should take a Screenlet
instance and the success or failure object. For example, Add Bookmark Screenlet’s delegate
protocol (AddBookmarkScreenletDelegate) defines the following success and failure methods:

@objc public protocol AddBookmarkScreenletDelegate: BaseScreenletDelegate {

optional func screenlet(screenlet: AddBookmarkScreenlet,

onBookmarkAdded bookmark: [String: AnyObject])

optional func screenlet(screenlet: AddBookmarkScreenlet,

onAddBookmarkError error: NSError)

}

Both take an AddBookmarkScreenlet instance as their first argument. For their second argument,
the success method contains the bookmark added to the server, and the failure method
contains the NSError object. Note that in this example, the methods are optional. This means
that the delegate class doesn’t have to implement them.

2. In your Screenlet class, add a property for your delegate. This property should return
BaseScreenlet’s delegate property as an instance of your delegate. For example, the
addBookmarkDelegate property in AddBookmarkScreenlet returns the self.delegate property as
AddBookmarkScreenletDelegate:

var addBookmarkDelegate: AddBookmarkScreenletDelegate? {

return self.delegate as? AddBookmarkScreenletDelegate

}

3. Also in your Screenlet class, invoke the appropriate delegate methods in your Interactor’s
closures. For example, the interactor.onSuccess closure in AddBookmarkScreenlet calls the
delegate method that responds when the Screenlet successfully adds a bookmark. The

1193

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/AddBookmarkScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenlet.swift

interactor.onFailure closure calls the delegate method that responds when the Screenlet
fails to add a bookmark. Note that in this example, these closures are in the Screenlet class’s
Interactor method that adds a bookmark (createAddBookmarkInteractor). Be sure to call your
delegate methods wherever the appropriate Interactor’s closures are in your Screenlet class:

private func createAddBookmarkInteractor() -> Interactor {

let interactor = AddBookmarkInteractor(screenlet: self,

folderId: folderId,

title: viewModel.title!,

url: viewModel.URL!)

// Called when the Interactor finishes successfully

interactor.onSuccess = {

if let bookmark = interactor.resultBookmark {

self.addBookmarkDelegate?.screenlet?(self, onBookmarkAdded: bookmark)

}

}

// Called when the Interactor finishes with an error

interactor.onFailure = { error in

self.addBookmarkDelegate?.screenlet?(self, onAddBookmarkError: error)

}

return interactor

}

Great! Now you know how to add a delegate to your Screenlets.
Related Topics
Creating iOS Screenlets
Adding Screenlet Actions
Creating iOS List Screenlets
Architecture of Liferay Screens for iOS

107.10 Using and Creating Progress Presenters

Many apps display a progress indicator while performing an operation. For example, you’ve likely
seen the spinners in iOS apps that let you know the app is performing some kind of work. For more
information, see the iOS Human Interface Guidelines article on Progress Indicators.

You can display these in Screenlets by using classes that conform the ProgressPresenter protocol.
Liferay Screens includes two such classes:

• MBProgressHUDPresenter: Shows a message with a spinner in the middle of the screen. Liferay
Screens shows this presenter by default.

• NetworkActivityIndicatorPresenter: Shows the progress using the iOS network activity indica-
tor. This presenter doesn’t support messages.

This tutorial shows youhow to use and create progress presenters, using code from the advanced
version of the sample AddBookmark Screenlet as an example. First, you’ll learn how to use progress
presenters.

1194

https://developer.apple.com/ios/human-interface-guidelines/ui-controls/progress-indicators/
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/ProgressPresenter.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/MBProgressHUDPresenter.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/NetworkActivityIndicatorPresenter.swift
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced

Using Progress Presenters

The BaseScreenletView class contains the default progress presenter functionality. To show a presen-
ter other than the default MBProgressHUDPresenter, your View class must therefore override certain
BaseScreenletView functionality. Follow these steps to do this:

1. In your View class, override the BaseScreenletViewmethod createProgressPresenter to return
an instance of the desiredpresenter. For example, to use NetworkActivityIndicatorPresenter in
the sample Add Bookmark Screenlet, you must override the createProgressPresentermethod
in AddBookmarkView_default to return a NetworkActivityIndicatorPresenter instance:

override func createProgressPresenter() -> ProgressPresenter {

return NetworkActivityIndicatorPresenter()

}

2. In your View class, override the BaseScreenletView property progressMessages to return the
messages you want to use in the presenter. If the presenter doesn’t display messages, then
return an empty string. The progressMessages property should return the messages as [String
: ProgressMessages], where String is the Screenlet’s action name. ProgressMessages is a type
alias representing a dictionarywhere the progress type is the key, and the actualmessage is the
value. The three possible progress types correspond to the Screenlet action’s status: Working,
Failure, or Success. The progressMessages property therefore lets the presenter display the
appropriate message for the Screenlet action’s current status.
For example, the following code overrides the progressMessages property in Add Bookmark
Screenlet’s View class (AddBookmarkView_default). For each Screenlet action (AddBookmarkAction
and GetTitleAction), a message (NoProgressMessage) is assigned to the Screenlet operation’s
Working status. Since NoProgressMessage is an alias for an empty string, this tells the presenter
to display no message when the Screenlet attempts to add a bookmark or get a title. Note,
however, that the presenter still displays its progress indicator:

override var progressMessages: [String : ProgressMessages] {

return [

AddBookmarkScreenlet.AddBookmarkAction : [.Working: NoProgressMessage],

AddBookmarkScreenlet.GetTitleAction : [.Working: NoProgressMessage],

]

}

To display a message, replace NoProgressMessage with your message. For example, the follow-
ing code defines separate messages for Working, Success, and Failure:

override var progressMessages: [String : ProgressMessages] {

return [

AddBookmarkScreenlet.AddBookmarkAction : [

.Working: "Saving bookmark...",

.Success: "Bookmark saved!",

.Failure: "An error occurred saving the bookmark"

],

AddBookmarkScreenlet.GetTitleAction : [

.Working: "Getting site title...",

.Failure: "An error occurred retrieving the title"

],

]

}

Great! Now you know how to use progress presenters. Next, you’ll learn how to create your
own.

1195

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/ProgressPresenter.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/ProgressPresenter.swift

Creating Progress Presenters

Creating your own progress presenter isn’t as complicated as you might think. Recall that
a presenter in Liferay Screens is a class that conforms the ProgressPresenter protocol. You
can create your presenter by conforming this protocol from scratch, or by extending one of
Screens’s existing presenters that already conform this protocol (MBProgressHUDPresenter or
NetworkActivityIndicatorPresenter). In most cases, extending MBProgressHUDPresenter is sufficient.

For example, AddBookmark Screenlet’s AddBookmarkProgressPresenter extends MBProgressHUDPresenter
to display a different progress indicator for the Screenlet’s get title action. Use the following steps
to create a progress presenter that extends from an existing presenter. As an example, these steps
extend MBProgressHUDPresenter to add a progress indicator for the get title button:

1. In your View’s XIB file, add the activity indicator you want to use. For example, the XIB file in
Add Bookmark Screenlet contains an iOS UIActivityIndicatorView over the get title button:

Figure 107.8: The updated Add Bookmark Screenlet’s XIB file contains a new activity indicator over the get title button.

2. In your View class, create an outlet for the XIB’s new activity indicator. For example, Add
Bookmark Screenlet’s View class (AddBookmarkView_default) contains an @IBOutlet for the
UIActivityIndicatorView from the XIB:

@IBOutlet weak var activityIndicatorView: UIActivityIndicatorView?

Now youmust create your presenter class. You’ll do this here by extending an existing presenter
class. Use the following steps to do this:

1. Extend the existing presenter class you want to base your presenter on. Your presenter
class must contain properties for your presenter’s activity indicator and any other UI
components. It must also contain an initializer that sets these properties. For example,
AddBookmarkProgressPresenter extends MBProgressHUDPresenter and contains properties for the
get title button and UIActivityIndicatorView. Its initializer sets these properties:

1196

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/ProgressPresenter.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/ProgressPresenter/AddBookmarkProgressPresenter.swift

public class AddBookmarkProgressPresenter: MBProgressHUDPresenter {

let button: UIButton?

let activityIndicator: UIActivityIndicatorView?

public init(button: UIButton?, activityIndicator: UIActivityIndicatorView?) {

self.button = button

self.activityIndicator = activityIndicator

super.init()

}

...

2. Implement your presenter’s behavior by overriding the appropriate methods from the
presenter class that you’re extending. For example, AddBookmarkProgressPresenter overrides
MBProgressHUDPresenter’s showHUDInView and hideHUDFromView methods. The overridden
showHUDInView method hides the button and starts animating the activity indicator. The
overridden hideHUDFromViewmethod stops this animation and restores the button:

public override func showHUDInView(view: UIView, message: String?,

forInteractor interactor: Interactor) {

guard interactor is GetWebTitleInteractor else {

return super.showHUDInView(view, message: message,

forInteractor: interactor)

}

button?.hidden = true

activityIndicator?.startAnimating()

}

public override func hideHUDFromView(view: UIView?, message: String?,

forInteractor interactor: Interactor, withError error: NSError?) {

guard interactor is GetWebTitleInteractor else {

return super.hideHUDFromView(view, message: message,

forInteractor: interactor, withError: error)

}

activityIndicator?.stopAnimating()

button?.hidden = false

}

}

Great, that’s it! Now you can use your presenter the same way you would any other.

Related Topics

Creating iOS Screenlets
Creating iOS List Screenlets
Architecture of Liferay Screens for iOS

107.11 Creating and Using Your Screenlet's Model Class

Liferay Screens typically receives entities from a Liferay instance as [String:AnyObject], where
String is the entity’s attribute and AnyObject is the attribute’s value. Although you can use these
dictionary objects throughout your Screenlet, it’s often easier to create a model class that converts
each into an object that represents the corresponding Liferay entity. This is especially convenient

1197

for complex entities composed of many attribute-value pairs. Note that Liferay Screens already
provides several model classes for you.

At this point, you might be saying, “Ugh! I have complex entities and Screens doesn’t provide a
model class for them! I’m just going to give up and watch football.” Fret not! Although we’d never
come between you and football, creating and using your own model class is straightforward.

Using the advanced version of the sample Add Bookmark Screenlet as an example, this tutorial
shows you how to create and use a model class in your Screenlet. First, you’ll create your model
class.

Creating Your Model Class

Your model class must contain all the code necessary to transform each [String:AnyObject] that
comes back from the server into a model object that represents the corresponding Liferay entity.
This includes a constant for holding each [String:AnyObject], and initializer that sets this constant,
and a public property for each attribute value.

For example, the sample Add Bookmark Screenlet adds a bookmark to a Liferay instance’s
Bookmarks portlet. Since the Mobile SDK service method that adds the bookmark also returns it as
[String:AnyObject], the Screenlet can convert it into an object that represents bookmarks. It does
so with its Bookmarkmodel class. This class extends NSObject and sets the [String:AnyObject] to the
attributes constant via the initializer. This class also defines computed properties that return the
attribute values for each bookmark’s name and URL:

@objc public class Bookmark : NSObject {

public let attributes: [String:AnyObject]

public var name: String {

return attributes["name"] as! String

}

override public var description: String {

return attributes["description"] as! String

}

public var url: String {

return attributes["url"] as! String

}

public init(attributes: [String:AnyObject]) {

self.attributes = attributes

}

}

Next, you’ll put your model class to work.

Using Your Model Class

Now that your model class exists, you can use model objects anywhere your Screenlet handles
results. Exactly where depends on what Screenlet components your Screenlet uses. For exam-
ple, Add Bookmark Screenlet’s Connector, Interactor, delegate, and Screenlet class all handle
the Screenlet’s results. The steps here therefore show you how to use model objects in each of
these components. Note, however, that your Screenlet may lack a Connector or delegate: these
components are optional. Variations on these steps are therefore noted where applicable.

1198

https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Models
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Model/Bookmark.swift

1. Create model objects where the [String: AnyObject] results originate. For example, the
[String: AnyObject] results in Add Bookmark Screenlet originate in the Connector. Therefore,
this is where the Screenlet creates Bookmark objects. The following code in the Screenlet’s
Connector (AddBookmarkLiferayConnector) does this. The if statement following the service
call casts the results to [String: AnyObject], calls the Bookmark initializer with those results,
and stores the resulting Bookmark object to the public resultBookmarkInfo variable. Note that
this is only the code that makes the service call and creates the Bookmark object. Click here to
see the complete AddBookmarkLiferayConnector class:

...

// Public property for the results

public var resultBookmarkInfo: Bookmark?

...

override public func doRun(session session: LRSession) {

let service = LRBookmarksEntryService_v7(session: session)

do {

let result = try service.addEntryWithGroupId(LiferayServerContext.groupId,

folderId: folderId,

name: title,

url: url,

description: "Added from Liferay Screens",

serviceContext: nil)

// Creates Bookmark objects from the service call's results

if let result = result as? [String: AnyObject] {

resultBookmarkInfo = Bookmark(attributes: result)

lastError = nil

}

...

}

...

}

If your Screenlet doesn’t have Connector, then your Interactor’s startmethod makes your
server call and handles its results. Otherwise, the process for creating a Bookmark object from
[String: AnyObject] is the same.

2. Handle your model objects in your Screenlet’s Interactor. The Interactor processes your
Screenlet’s results, so it must also handle your model objects. If your Screenlet doesn’t
use a Connector, then you already did this in your Interactor’s startmethod as mentioned
at the end of the previous step. If your Screenlet uses a Connector, however, then this
happens in your Interactor’s completedConnectormethod. For example, the completedConnector
method in AddBookmark Screenlet’s Interactor (AddBookmarkInteractor) retrieves the Bookmark
via the Connector’s resultBookmarkInfo variable. This method then assigns the Bookmark to
the Interactor’s public resultBookmark variable. Note that this is only the code that handles
Bookmark objects. Click here to see the complete AddBookmarkInteractor class:

...

// Public property for the results

public var resultBookmark: Bookmark?

...

// The completedConnector method gets the results from the Connector

override public func completedConnector(c: ServerConnector) {

1199

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Connector/AddBookmarkLiferayConnector.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Connector/AddBookmarkLiferayConnector.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Interactor/AddBookmarkInteractor.swift

if let addCon = (c as? AddBookmarkLiferayConnector),

bookmark = addCon.resultBookmarkInfo {

self.resultBookmark = bookmark

}

}

3. If your Screenlet uses a delegate, your delegate protocol must account for your model ob-
jects. Skip this step if you don’t have a delegate. For example, Add Bookmark Screenlet’s
delegate (AddBookmarkScreenletDelegate) must communicate Bookmark objects. The delegate’s
first method does this via its second argument:

@objc public protocol AddBookmarkScreenletDelegate: BaseScreenletDelegate {

optional func screenlet(screenlet: AddBookmarkScreenlet,

onBookmarkAdded bookmark: Bookmark)

optional func screenlet(screenlet: AddBookmarkScreenlet,

onAddBookmarkError error: NSError)

}

4. Get themodel object from the Interactor in your Screenlet class’s interactor.onSuccess closure.
You can then use the model object however you wish. For example, the interactor.onSuccess

closure in Add Bookmark Screenlet’s Screenlet class (AddBookmarkScreenlet) retrieves the
Bookmark from the Interactor’s resultBookmark property. It then handles the Bookmark via the
delegate. Note that in this example, the closure is in the Screenlet class’s Interactor method
that adds a bookmark (createAddBookmarkInteractor). Be sure to get your model object wher-
ever the interactor.onSuccess closure is in your Screenlet class. Click here to see the complete
AddBookmarkScreenlet:

...

private func createAddBookmarkInteractor() -> Interactor {

let interactor = AddBookmarkInteractor(screenlet: self,

folderId: folderId,

title: viewModel.title!,

url: viewModel.URL!)

// Called when the Interactor finishes successfully

interactor.onSuccess = {

if let bookmark = interactor.resultBookmark {

self.addBookmarkDelegate?.screenlet?(self, onBookmarkAdded: bookmark)

}

}

// Called when the Interactor finishes with an error

interactor.onFailure = { error in

self.addBookmarkDelegate?.screenlet?(self, onAddBookmarkError: error)

}

return interactor

}

...

Awesome! Now you know how to create and use a model class in your Screenlet.

1200

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/AddBookmarkScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/AddBookmarkScreenlet.swift

Related Topics

Creating iOS Screenlets
Adding Screenlet Actions
Creating iOS List Screenlets
Architecture of Liferay Screens for iOS

107.12 Using Custom Cells with List Screenlets

In most list Screenlets, including those that come with Liferay Screens, the Default Theme uses
the default cells in iOS’s UITableView to show the list. The Theme creation steps in the list Screenlet
creation tutorial also instruct you to use these cells. You can, however, use custom cells to tailor
the list to your needs. To do this, you must create an extended Theme from a Theme that uses
UITableView’s default cells. This usually means extending a list Screenlet’s Default theme. This
tutorial shows you how to create such an extended Theme that contains a custom cell for your
list Screenlet. As an example, this tutorial uses code from the sample Bookmark List Screenlet’s
Custom Theme. You can refer to this Theme’s finished code here in GitHub at any time.

Note that besides creating your custom cell, this tutorial follows the same basic steps as the
Theme creation tutorial for creating an extended Theme. For example, you must still determine
where to create your Theme, and create your Theme’s XIB and View class.

First, you’ll create your Theme’s custom cell.

Creating Your Custom Cell

Once you decide where to create your Theme, you can get started. First, create your custom cell’s
XIB file and its companion class. Name them according to the naming conventions in the best
practices tutorial. After defining your cell’s UI in the XIB, create as many outlets and actions as you
need in its companion class. Also be sure to assign this class as the XIB’s custom class in Interface
Builder. Note that if you want to use different layouts for different rows, you must create an XIB file
and companion class for each.

For example, the following screenshot shows the XIB file BookmarkCell_default-custom.xib for
Bookmark List Screenlet’s custom cell. This cell must show a bookmark’s name and URL, so it
contains two labels.

Figure 107.9: The XIB file for Bookmark List Screenlet’s custom cell.

This XIB’s custom class, BookmarkCell_default_custom, contains an outlet for each label. The
bookmark variable also contains a didSet observer that sets the bookmark’s name and URL to the
respective label:

1201

https://developer.apple.com/reference/uikit/uitableview
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/BookmarkListScreenlet/Themes/TableView

import UIKit

class BookmarkCell_default_custom: UITableViewCell {

@IBOutlet weak var nameLabel: UILabel?

@IBOutlet weak var urlLabel: UILabel?

var bookmark: Bookmark? {

didSet {

nameLabel?.text = bookmark?.name

urlLabel?.text = bookmark?.url

}

}

}

Great! Now you have your custom cell. Next, you’ll create the rest of your Theme.

Creating Your Theme's XIB and View Class

Now you’re ready to create your Theme’s XIB file and View class. Create your XIB by copying the
parent Theme’s XIB and making any changes you need. You may not need to make any changes
besides the file name and custom class name. For example, the custom cell is the only differ-
ence between Bookmark List Screenlet’s Custom and Default Themes. These Themes’ XIB files
(BookmarkListView_default-custom.xib and BookmarkListView_default.xib) are therefore identical be-
sides their name and custom class; the size and position of their UI components are the same.

Now create your View class by extending the parent Theme’s View class. You should
also add a string constant to serve as the cell ID. In a moment, you’ll use this constant
to register your custom cell. For example, the View class in Bookmark List Screenlet’s
Custom Theme (BookmarkListView_default_custom) extends the Default Theme’s View class
(BookmarkListView_default) and defines the string constant BookmarkCellId:

public class BookmarkListView_default_custom: BookmarkListView_default {

let BookmarkCellId = "bookmarkCell"

…

Next, override the doRegisterCellNibs method to register your custom cell. In this method,
create a UINib instance for your cell and then register it with the UITableView instance (tableView) in-
herited from the BaseListTableView class. When registering the nib file, youmust use the string con-
stant you created earlier as the forCellReuseIdentifier. For example, here’s the doRegisterCellNibs

method in BookmarkListView_default-custom:

public override func doRegisterCellNibs() {

let nib = UINib(nibName: "BookmarkCell_default-custom", bundle: NSBundle.mainBundle())

tableView?.registerNib(nib, forCellReuseIdentifier: BookmarkCellId)

}

Also in your View class, override the doGetCellIdmethod to return the cell ID for each row. All
you need to do in this method is return the string constant you created earlier. For example, the
doGetCellIdmethod in BookmarkListView_default-custom returns the BookmarkCellId constant:

override public func doGetCellId(row row: Int, object: AnyObject?) -> String {

return BookmarkCellId

}

1202

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/TableView/BaseListTableView.swift

Now override the doFillLoadedCell method to fill the cell with data. Note that this method
isn’t called for in-progress cells; it’s only called for cells that display data. Also note that this
method’s object argument contains the data as AnyObject. You must cast this to your desired type
and then set it to the appropriate cell variable. For example, the doFillLoadedCell method in
BookmarkListView_default-custom casts the object argument to Bookmark and then sets it to the cell’s
bookmark variable:

override public func doFillLoadedCell(row row: Int, cell: UITableViewCell, object:AnyObject) {

if let bookmarkCell = cell as? BookmarkCell_default_custom, bookmark = object as? Bookmark {

bookmarkCell.bookmark = bookmark

}

}

The typical iOS UITableViewDelegate protocol and UITableViewDataSource protocol methods are
also available in your View class. You can override any of them if you need to (check first to make
sure they’re not already overridden). For example, BookmarkListView_default-custom implements
the following method to use a different cell height for each row:

public func tableView(tableView: UITableView, heightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {

return 80

}

When you finish, set your View class as your XIB file’s custom class.
Awesome! You’re done! Now you know how to implement your own custom cells for use in list

Screenlets.

Related Topics

Creating iOS List Screenlets
Creating iOS Themes
Sorting Your List Screenlet
Creating Complex Lists in Your List Screenlet
iOS Best Practices

107.13 Sorting Your List Screenlet

To sort your list Screenlet, you must point it to a comparator class in your portal. A comparator class
implements the logic that sorts your entities. You can create your own comparator class or use
those that already exist in your portal. Once your list is sorted, you can split it into sections. This
tutorial shows you how to sort your list Screenlet with a comparator and create sections for your
sorted list.

Note: To create a new comparator, you must create a class that extends the portal’s
OrderByComparator class with your entity as a type argument. Then you must override the methods
that implement the sort. For example, the portal’s EntryURLComparator class sorts bookmarks in
Liferay’s Bookmarks portlet by URL.

First, you’ll learn how to use a comparator to sort your list Screenlet.

1203

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableViewDelegate_Protocol/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableViewDataSource_Protocol/
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/OrderByComparator.html
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/collaboration/bookmarks/bookmarks-api/src/main/java/com/liferay/bookmarks/util/comparator/EntryURLComparator.java

Using a Comparator

To use a comparator, you must set the list Screenlet’s obcClassName property to the comparator’s
fully qualified class name. Do this in Interface Builder when inserting the Screenlet in an app,
just as you would set any other Screenlet property. For example, to set the sample Bookmark List
Screenlet to sort its list of bookmarks by URL, you must set Obc Class Name to com.liferay.book-
marks.util.comparator.EntryURLComparator in Interface Builder:

Figure 107.10: To use a comparator, set the Obc Class Name property in Interface Builder to the comparator’s fully qualified class name.

That’s it! Note that although all list Screenlets inherit the obcClassName property from the
BaseListScreenlet class, the list Screenlet must also make its service call with this property. See
the Screenlet reference documentation to see which list Screenlets included with Liferay Screens
support the obcClassName property. Also, Liferay DXP’s comparator classes can change between
versions. If you’re using one of these comparators, make sure you specify the one that matches
your Liferay DXP version.

Create Sections for Your List

Dividing lists into sections that contain like elements is common in iOS apps. To do this in list
Screenlets, first use a comparator to sort the list by the criteria you’ll use to create the sections.
Then override the BookmarkListPageLoadInteractor class’s sectionForRowObjectmethod in your list
Screenlet’s Interactor. This method is called for each item in the list and should return the informa-
tion necessary to place the item in a section. For example, the sample Bookmark List Screenlet’s
Interactor overrides the sectionForRowObjectmethod to group results by hostname:

1204

https://github.com/liferay/liferay-screens/blob/develop/ios/Framework/Core/Base/BaseListScreenlet/BaseListScreenlet.swift
https://github.com/liferay/liferay-screens/blob/develop/ios/Framework/Core/Base/BaseListScreenlet/BaseListScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/Interactor/BookmarkListPageLoadInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/Interactor/BookmarkListPageLoadInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/Interactor/BookmarkListPageLoadInteractor.swift

public override func sectionForRowObject(object: AnyObject) -> String? {

guard let bookmark = object as? Bookmark else {

return nil

}

let host = NSURL(string: bookmark.url)?.host?.lowercaseString

return host?.stringByReplacingOccurrencesOfString("www.", withString: "")

}

Note that this only produces predictable results when Bookmark List Screenlet is sorted by
EntryURLComparator as detailed in the preceding section.

And that’s all there is to it! Now you know how to sort and section your list Screenlet’s list.

Related Topics

Creating iOS List Screenlets
Using Custom Cells with List Screenlets
Creating Complex Lists in Your List Screenlet
iOS Best Practices

107.14 Creating Complex Lists in Your List Screenlet

Most list Screenlets’ Themes use iOS’s UITableView to display simple lists. Although UITableView is
great for this, it’s not so great for complex lists like grids or stacks. To create complex lists, you
should use iOS’s UICollectionView in your list Screenlet’s Theme.

This tutorial shows you how to create such a Theme, using the sample Bookmark List Screenlet’s
Collection Theme as an example. First, you’ll create the list’s cell.

Creating the Cell

You’ll create your list’s cell with the same sequence of steps used to create any list Screenlet’s cell.
Note, however, that how you perform these steps is a bit different:

1. Define your cell’s UI in a new XIB file. Because this cell is part of a Theme that
uses UICollectionView, you can shape it however you want. For example, here’s the
BookmarkCell_default-collection.xib file for the cell in Bookmark List Screenlet’s Collection
Theme. It’s a simple square that displays the bookmark’s URL and the URL’s first letter.

Figure 107.11: The XIB file for the cell in Bookmark List Screenlet’s custom View.

1205

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableView_Class/
https://developer.apple.com/reference/uikit/uicollectionview
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/BookmarkListScreenlet/Themes/CollectionView
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/BookmarkListScreenlet/Themes/CollectionView

2. Create your XIB file’s class by extending UICollectionViewCell. Create as many outlets and
actions as you need for your UI components and write the logic required for your cell’s UI to
function. For example, BookmarkCell_default_collection is the XIB file’s class in Bookmark
List Screenlet’s Custom Theme. This class extends UICollectionViewCell and contains outlets
for the URL (urlLabel) and the URL’s first letter (centerLabel). The bookmark variable’s didSet
observer sets the bookmark’s name and URL to the respective label. Also note that the
overridden prepareForReusemethod resets the labels for reuse:

import UIKit

import LiferayScreens

public class BookmarkCell_default_collection: UICollectionViewCell {

//MARK: Outlets

@IBOutlet weak var centerLabel: UILabel?

@IBOutlet weak var urlLabel: UILabel?

//MARK: Public properties

public var bookmark: Bookmark? {

didSet {

if let bookmark = bookmark, url = NSURL(string: bookmark.url),

firstLetter = url.host?.remove("www.").characters.first {

self.centerLabel?.text = String(firstLetter).uppercaseString

self.urlLabel?.text = bookmark.url.remove("http://").remove("https://").remove("www.")

}

}

}

//MARK: UICollectionViewCell

override public func prepareForReuse() {

super.prepareForReuse()

centerLabel?.text = "..."

urlLabel?.text = "..."

}

}

Now that your cell exists, you can create the rest of your Theme.

Creating the Theme's XIB and View Class

You’ll create the rest of your Theme with the same sequence of steps used to create any list Screen-
let’s Theme. Like creating the cell, how you perform these steps is a bit different because your
Theme uses UICollectionView instead of UITableView.

First, define your Theme’s UI in a new XIB file. Add a UICollectionView instead of a UITableView

to this file. For example, the BookmarkListView_default-collection.xibfile for Bookmark List Screen-
let’s Custom Theme contains a collection view.

Next, create the View class. Instead of extending BaseListTableView, this class must extend
Screens’s BaseListCollectionView class. The BaseListCollectionView class implements most of the
code necessary to use UICollectionView in your Screenlet. By extending it, you can focus on the
code unique to your Screenlet. Your View class should also contain a string constant to serve as
the cell ID. You’ll use this constant when you register your cell. For example, the View class
in Bookmark List Screenlet’s Collection Theme (BookmarkListView_default_collection) extends
BaseListCollectionView and defines the string constant BookmarkCellId:

1206

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/Themes/CollectionView/BookmarkListView_default-collection.xib
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/CollectionView/BaseListCollectionView.swift

public class BookmarkListView_default_collection : BaseListCollectionView {

let BookmarkCellId = "bookmarkCell"

…

In Interface Builder, set this new class as the XIB’s Custom Class.
Next, override the doRegisterCellNibs method to register the cell you created in the previ-

ous section. In this method, create a UINib instance for your cell and then register it with the
UICollectionView instance (collectionView) inherited from BaseListCollectionView. When register-
ing the nib file, you must use the string constant you created earlier as the forCellReuseIdentifier.
For example, here’s the doRegisterCellNibsmethod in BookmarkListView_default_collection:

public override func doRegisterCellNibs() {

let cellNib = UINib(nibName: "BookmarkCell_default-collection", bundle: nil)

collectionView?.registerNib(cellNib, forCellWithReuseIdentifier: BookmarkCellId)

}

Also in your View class, override the doGetCellId method to return the ID you registered the
cell with. For example, the doGetCellIdmethod in BookmarkListView_default_collection returns the
string constant BookmarkCellId:

public override func doGetCellId(indexPath indexPath: NSIndexPath, object: AnyObject?) -> String {

return BookmarkCellId

}

Next, override the doFillLoadedCell method to fill the cell with data. This method’s
object argument contains the data as AnyObject. You must cast this to your desired type and
then set it to the appropriate cell variable. For example, the doFillLoadedCell method in
BookmarkListView_default_collection casts the object argument to Bookmark and then sets it to the
cell’s bookmark variable:

public override func doFillLoadedCell(

indexPath indexPath: NSIndexPath,

cell: UICollectionViewCell,

object: AnyObject) {

if let cell = cell as? BookmarkCell_default_collection, bookmark = object as? Bookmark {

cell.bookmark = bookmark

}

}

Next, you’ll create the layout.

Creating the Layout

The layout object is a key part of UICollectionView. This object controls the position of the UI
elements, their size, and more. To customize the layout object, override the doCreateLayoutmethod
in yourView class. For example, the doCreateLayoutmethod in Bookmark List Screenlet’s View class
(BookmarkListView_default_collection) returns a UICollectionViewFlowLayout for the layout object.
This is a basic layout that gives you a simple way to customize things like item size, spacing between
items, scroll direction, and more:

public override func doCreateLayout() -> UICollectionViewLayout {

let layout = UICollectionViewFlowLayout()

layout.itemSize = CGSize(width: 110, height: 110)

layout.minimumLineSpacing = 10

layout.minimumInteritemSpacing = 10

1207

return layout

}

Great! You’re done! You can now use your new Theme the same way you would any other.
If you want to package your Theme to contribute it to the Liferay Screens project or distribute it

with CocoaPods, see the tutorial on packaging Themes.

Related Topics

Creating iOS List Screenlets
Creating iOS Themes
Sorting Your List Screenlet
Using Custom Cells with List Screenlets
iOS Best Practices

107.15 Accessing the Liferay Session in iOS

A session is a conversation state between the client and server. It typically consists of multiple
requests and responses between the two. To facilitate this communication, the session must have
the server IP address, and a user’s login credentials. Liferay Screens uses a Liferay Session to
access and query the JSONweb services provided by Liferay Portal. When you log in using a Liferay
Session, the portal returns the user’s information (name, email, user ID, etc…). Screens stores this
information and the active Liferay Session in Screens’s SessionContext class.

The SessionContext class is very powerful and lets you use Screens in many different scenarios.
For example, you can use SessionContext to request information with the JSONWS API provided
by Liferay, or with the Liferay Mobile SDK. You can also use SessionContext to create anonymous
sessions, or log in a user without showing Login Screenlet.

This tutorial explains some common SessionContext use cases, and also describes the class’s
most important methods.

Getting the Current session

The current session is established after the user successfully logs in with Login Screenlet. Use
SessionContext.currentContext to retrieve the session. Note this will return nil if the user didn’t
sign in with Login Screenlet. You can also use the SessionContext property isLoggedIn to determine
if a session exists. This returns false if there’s no current session.

Creating a Liferay Session

When working with Liferay Screens, you may wish to call the remote JSON web services pro-
vided by the Liferay Mobile SDK. Every operation with the Liferay Mobile SDK needs a Liferay
Session to provide the server address, user credentials, and any other required parameters. Login
Screenlet creates a session when a user successfully logs in. You can retrieve this session with
the SessionContext method createRequestSession(). Typically, you call this method through the
currentContext object. For example:

SessionContext.currentContext?.createRequestSession()

1208

You can then use the session to make the Mobile SDK service call. If you need to check first to
see if a user has logged in, you can use the SessionContext property isLoggedIn.

Great! Now you know how to retrieve an existing session in your app. But what if you’re not
using Login Screenlet? There won’t be an existing session to retrieve. No sweat! You can still use
SessionContext to create one manually. The next section shows you how to do this.

Creating a Session Manually

If you don’t use Login Screenlet, then SessionContext doesn’t have a session for you to retrieve.
In this case, you must create one manually. You can do this with the SessionContext method
loginWithBasic. The method takes a username, password, and user attributes as parameters, and
creates a session with those credentials. The following code uses loginWithBasic to create a session:

Session session = SessionContext.loginWithBasic(username: USERNAME, password: PASSWORD, userAttributes: [:]);

For the userAttributes parameter, you must provide some attributes associated with the logged
in user, such as their userId. For a complete list of attributes, see the user model interface.

Super! Now you know how to create a session manually. The next section shows you how to
implement auto-login, and save or restore a session.

Implementing Auto-login and Saving or Restoring a Session

Although Login Screenlet is awesome, your users may not want to enter their credentials every
time they open your app. It’s very common for apps to only require a single login. To implement
this in your app, see this video.

In short, you need to set saveCredentials to true in Login Screenlet. The next login then uses
the saved credentials. To make sure this also works when the app restarts, you must retrieve the
stored credentials by using the SessionContextmethod loadStoredCredentials. The following Swift
code shows a typical implementation of this:

if SessionContext.loadStoredCredentials() {

// user auto-logged in

// consider doing a relogin here (see next section)

}

else {

// send user to login screen with the login screenlet

}

Awesome! Now you know how to implement auto-login in your Liferay Screens apps. For
more information on available SessionContextmethods, see the Methods section at the end of this
tutorial. Next, you’ll learn how to implement relogin for cases where a user’s credentials change
on the server while they’re logged in.

Implementing Relogin

A session, whether created via Login Screenlet or auto-login, contains basic user data that verifies
the user in the Liferay instance. If that data changes in the server, then your session is outdated,
which may cause your app to behave inconsistently. Also, if a user is deleted, deactivated, or
otherwise changes their credentials in the server, the auto-login feature won’t deny access because
it doesn’t perform server transactions: it only retrieves an existing session from local storage. This
isn’t an optimal situation!

1209

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/User.html
https://www.youtube.com/watch?v=kEZEahTzuck

For such scenarios, you can use the relogin feature. This feature is implemented in a method
that determines if the current session is still valid. If the session is still valid, the user’s data is
updated with the most recent data from the server. If the session isn’t valid, the user is logged out
and must then log in again to create a new session.

To this feature, call the SessionContext.currentContextmethod relogin:

SessionContext.currentContext?.relogin(closure)

Note that this operation is done asynchronously in a background thread. The closure argument
is a function that eventually receives the new user attributes. In case of error, the closure is called
with nil attributes and the user is logged out of the session. The typical Swift code for a full relogin
is as follows. Note a trailing closure is used:

SessionContext.currentContext?.relogin { userAttributes in

if userAttributes == nil {

// couldn't retrieve the user attributes: user invalidated or password changed?

}

else {

// full re-login made. Everything is updated

}

}

Great! Now you know how to implement relogin in your app. You’ve also seen how handy
SessionContext can be. It can do even more! The next section lists some additional SessionContext
methods, and some more detail on the ones used in this tutorial.

Methods

Method | Return Type | Explanation | logout() | void | Clears the stored user attributes
and session. | relogin(closure) | void | Refreshes user data from the server. This recreates
currentContext if successful, or calls logout() on failure. When the server data is received,
the closure is called with received user’s attributes. If an error occurs, the closure is called
with nil. | loginWithBasic(username, password, userAttributes) | LRSession | Creates a Liferay
Session using the default server, and the supplied username, password, and user information.
| loginWithOAuth2(authentication, userAttributes) | LRSession | Creates a Liferay Session using
the default server and the supplied OAuth 2 tokens. This is intended to be used together with
OAuth 2 for Liferay Screens. | createRequestSession() | LRSession | Creates a Liferay Session based
on the current session’s server and user credentials. This Liferay Session is intended to be
used for only a single request (don’t reuse it). | createEphemeralBasicSession(username, password) |
LRSession | Creates a Liferay Session based on the provided username and password. Note that this
session isn’t stored anywhere. This is the method used to create a session for anonymous access.
Anonymous access is used by the Sign Up and Forgot Password Screenlets. | userAttribute(key:
String) | AnyObject | Returns a User object with the server attributes of the logged-in user. This
includes the user’s email, user ID, name, and portrait ID. | storeCredentials() | Bool | Stores the
current session. | removeStoredCredentials() | Bool | Clears the session and user information from
storage. | loadStoredCredentials() | Bool | Loads the session and user information from storage.
They’re then used, respectively, as the current session and user. |

1210

Properties

Property | Type | Explanation | currentContext | SessionContext | The current session established
through Login Screenlet, or the loginWithBasic or loginWithOAuth2 methods. | isLoggedIn | Bool |
Returns true if SessionContext contains a Liferay Session. | basicAuthUsername | String | The username
used to establish the current session (if any).| basicAuthPassword | String | The password used to
establish the current session (if any).| userId | Number | The user identifier used to establish the
current session (if any). |

For more information, see the SessionContext source code in GitHub.

Related Topics

Login Screenlet for iOS
Using Screenlets in iOS Apps
Using OAuth 2 in Liferay Screens for iOS

107.16 Adding Custom Interactors to iOS Screenlets

Interactors are Screenlet components that implement server communication for a specific use case.
For example, the Login Screenlet’s Interactor calls the LiferayMobile SDK service that authenticates
a user to the portal. Similarly, the Interactor for the Add Bookmark Screenlet calls the Liferay
Mobile SDK service that adds a bookmark to the Bookmarks portlet.

That’s all fine and well, but what if you want to customize a Screenlet’s server call? What if
you want to use a different back-end with a Screenlet? No problem! You can implement a custom
Interactor for the Screenlet. You can plug in a different Interactor that makes its server call by using
custom logic or network code. To do this, you must implement the current Interactor’s interface
and then pass it to the Screenlet you want to override. You should do this inside your app’s code.

In this tutorial, you’ll see an example Interactor that overrides the Login Screenlet to always
log in the same user, without a password.

Implementing a Custom Interactor

1. Implement your custom Interactor. You must inherit ServerConnectorInteractor, as shown
here:

class LoginCustomInteractor: ServerConnectorInteractor {

override func createConnector() -> ServerConnector? {

...

return connector

}

}

2. Implement the optional protocol that receives a customInteractorForAction, and return your
own Interactor:

1211

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Context/SessionContext.swift

func screenlet(screenlet: BaseScreenlet,

customInteractorForAction: String,

withSender: AnyObject?) -> Interactor? {

return LoginCustomInteractor()

}

Great! Now you know how to implement custom Interactors for iOS Screenlets.

Related Topics

Architecture of Liferay Screens for iOS
Creating iOS Screenlets

107.17 Rendering Web Content in Your iOS App

Liferay Screens provides several ways to render web content in your app. For historical reasons,
web content articles are JournalArticle entities in Liferay. UsingWeb Content Display Screenlet is
a simple and powerful way to display HTML from a JournalArticle in your app. To fit your needs,
this Screenlet supports several use cases. This tutorial describes them.

Retrieving Basic Web Content

The simplest use case for Web Content Display Screenlet is to retrieve a web content article’s
HTML and render it in a UIWebView. To do this, provide the web content article’s ID via the Article
Id attribute in Interface Builder. The Screenlet takes care of the rest. This includes rendering the
content to fit mobile devices, performing any required caching, and more.

To render the content exactly as it appears on your mobile site, however, you must provide the
CSS inline or use a template. The HTML returned isn’t aware of a Liferay instance’s global CSS.

You can also modify the rendered HTML with a delegate, as explained in the Web Content
Display Screenlet reference documentation.

As you can see, this is all fairly straightforward. What could go wrong? Famous last words. A
common mistake is to use the default site ID (groupId) instead of the one for the site that contains
your web content articles. To continue using a default groupId in your app, but use a different one
forWeb Content Display Screenlet, assign the Screenlet’s Group Id property in Interface Builder.

Using Templates

Web Content Display Screenlet can also use templates to render web content articles. For example,
your Liferay instance may have a custom template specifically designed to display content on
mobile devices. To use a template, set the template’s ID as the Screenlet’s templateId property
(Template Id in Interface Builder).

Recall that structured web content in Liferay can have many templates. You can create your
own template if there’s not one suitable for displaying web content in your app.

Rendering StructuredWeb Content

To render structured web content in Web Content Display Screenlet, you must create a custom
theme capable of doing so. Also, you must create a custom theme for each structure you want to

1212

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/

display in your app. In this case, you may find it convenient to create each theme inside a single
parent theme and use compound naming to indicate this relationship. For example, if you have
structures in your Liferay instance called book, employee, andmeeting, you must create a custom
theme for each. If you create these themes as children of another custom theme called mytheme,
you could name them mytheme.book, mytheme.employee, and mytheme.meeting.

Regardless of where you create your themes or what you name them, use the following steps to
create them:

1. Create a theme to render your web content. If you’ve already created your own theme, you
can skip this step.

2. In your theme, create a new class called WebContentDisplayView_themeName, extending from
BaseScreenletView. This class will hold the outlets and actions associated with the web con-
tent’s UI.

3. Create the UI in the WebContentDisplayView_themeName.xib file. This file should have a UIView

that contains the components you need to render the web content’s structure fields. For
example, if your structured web content contains latitude and longitude fields, you can use a
MKMapView component to render the map point.

4. Once your components are ready, change the root view’s class to WebContentDisplayView_themeName
(the class you created in the first step), and create the outlets and actions you need to manage
your UI components.

5. Conform the WebContentDisplayViewModel protocol in the WebContentDisplayView_themeName

class. This protocol requires you to add the htmlContent and recordContent properties. The
htmlContent property is intended for HTML web content; this isn’t your theme’s use case.
Your theme must display structured web content; use the recordContent property for this
content. In this property, set the structure field’s value as the corresponding outlet’s value.
For example:

public var htmlContent: String? {

get {

return nil

}

set {

// not used for structured Web Contents

}

}

public var recordContent: DDLRecord? {

didSet {

// set the outlets with record's values

set.myOutlet.myProperty = recordContent?["my_field_name"]?.currentValueAsLabel

}

}

Next, you’ll learn how to display a list of web content articles in your app.

Displaying a List of Web Content Articles

The preceding examples show you how to useWeb Content Display Screenlet to display a single
web content article’s contents in your app. But what if you want to display a list of articles instead?
No problem! You can do this by using Web Content List Screenlet, or Asset List Screenlet.

First, you’ll learn how to useWeb Content List Screenlet.

1213

Using Web Content List Screenlet

Web Content List Screenlet lets you retrieve and display a list of web content articles from a web
content folder. Follow these steps to use the Screenlet:

• Insert Web Content List Screenlet in your View Controller.

• Configure the Group Id and Folder Id properties in Interface Builder. The folder ID is the ID of
the web content folder you want to display articles from. To use the root folder, use 0 for the
Folder Id.

• To receive events related to the list, conform WebContentListScreenletDelegate. The events
contain the WebContent objects.

For more information on the Screenlet and its supported functionality, see the Web Content
List Screenlet reference documentation.

Using Asset List Screenlet

Asset List Screenlet is similar toWeb Content Display Screenlet in that it can display a list of items
from a Liferay instance. Asset List Screenlet, however, displays a list of assets. Since web content
is an asset, you can use Asset List Screenlet to show a list of web content articles. Consider the
following when doing this:

• In the delegate, screenlet:onAssetListResponse gets an array of Asset objects that represent
WebContent objects. Since WebContent is a child of Asset, you can cast the Asset objects to
WebContent. Each WebContent object has the html, structure, or structuredRecord properties.

• To render Asset List Screenlet with WebContent objects, you must create your own theme.
Create a class in your theme that extends AssetListView_default, and override the
doFillLoadedCellmethod. In this method, cast the object parameter as WebContent and then
retrieve field values from the web content’s structuredRecord property. If you want custom
cells, you can also override the doRegisterCellNibs and doCreateCellmethods. See the Asset
List Screenlet reference documentation for more details on customizing your asset list.

Related Topics

Using Screenlets in iOS Apps
Using Themes in iOS Screenlets
Creating iOS Themes
Web Content Display Screenlet for iOS
Web Content List Screenlet for iOS
Asset List Screenlet for iOS

107.18 Rendering Web Pages in Your iOS App

The RenderingWeb Content tutorial shows you how to display web content from a Liferay DXP
site in your iOS app. Displaying content is great, but what if you want to display an entire page?
No problem! Web Screenlet lets you display any web page. You can even customize the page by

1214

injecting local or remote JavaScript and CSS files. When combined with Liferay DXP’s server-
side customization features (e.g., Application Display Templates), Web Screenlet gives you almost
limitless possibilities for displaying web pages in your iOS apps.

In this tutorial, you’ll learn how to useWeb Screenlet to display web pages in your iOS app.

Inserting Web Screenlet in Your App

InsertingWeb Screenlet in your app is the same as inserting any Screenlet in your app:

1. In Interface Builder, insert a new view (UIView) in a new view controller. This new view should
be nested under the view controller’s existing view.

2. With the new view selected, open the Identity inspector and set the view’s Custom Class to
WebScreenlet.

3. Set any constraints that you want for the Screenlet in the scene.

The exact steps for configuringWeb Screenlet are unique toWeb Screenlet. First, you’ll conform
your view controller toWeb Screenlet’s delegate protocol.

Conforming to Web Screenlet's Delegate Protocol

To use any Screenlet, you must conform the class of the view controller that contains it to the
Screenlet’s delegate protocol. Web Screenlet’s delegate protocol is WebScreenletDelegate. Follow
these steps to conform your view controller to WebScreenletDelegate:

1. Import LiferayScreens and set your view controller to adopt the WebScreenletDelegate protocol:

import UIKit

import LiferayScreens

class ViewController: UIViewController, WebScreenletDelegate {...

2. Implement the WebScreenletDelegatemethod onWebLoad(_:url:). This method is called when
the Screenlet loads the page successfully. How you implement it depends onwhat (if anything)
you want to happen upon page load. Its arguments are the WebScreenlet instance and the
page URL. This example prints a message to the console indicating that the page was loaded:

func onWebLoad(_ screenlet: WebScreenlet, url: String) {

// Called when the page is loaded

print("\(url) was just loaded")

}

3. Implement the WebScreenletDelegate method screenlet(_:onError:). This method is called
when an error occurs loading the page, and therefore includes the NSError object. This lets
you log or print the error. For example, this implementation prints a message containing the
error’s description:

func screenlet(_ screenlet: WebScreenlet, onError error: NSError) {

print("Failed to load the page: \(error.localizedDescription)")

}

1215

4. Implement the WebScreenletDelegatemethod screenlet(_:onScriptMessageNamespace:onScriptMessage:).
This method is called when the Screenlet’s WKWebView sends a message. This method’s
arguments include the message’s namespace and the message. How you implement this
method depends on what you want to happen when the message is sent. For example, you
could perform a segue and include the message as the segue’s sender:

func screenlet(_ screenlet: WebScreenlet,

onScriptMessageNamespace namespace: String,

onScriptMessage message: String) {

performSegue(withIdentifier: "detail", sender: message)

}

5. Get a reference to theWeb Screenlet on your storyboard by using Interface Builder to create
an outlet to it in your view controller. It’s a best practice to name a Screenlet outlet after the
Screenlet it references, or simply screenlet. Here’s an exampleWeb Screenlet outlet:

@IBOutlet weak var webScreenlet: WebScreenlet?

6. In the view controller’s viewDidLoad() method, use the Web Screenlet reference you just
created to set the view controller as the Screenlet’s delegate. To do this, add the following
line of code just below the super.viewDidLoad() call:

self.webScreenlet?.delegate = self

Next, you’ll use the sameWeb Screenlet reference to set the Screenlet’s parameters.

Setting Web Screenlet's Parameters

Web Screenlet has WebScreenletConfiguration and WebScreenletConfigurationBuilder objects that
supply the parameters the Screenlet needs to work. These parameters include the URL of the page
to load and the location of any JavaScript or CSS files that customize the page. You’ll set most of
these parameters via WebScreenletConfigurationBuilder’s methods.

Note: For a full list of WebScreenletConfigurationBuilder’s methods, and a description of each,
see the table in the Configuration section ofWeb Screenlet’s reference doc.

To set Web Screenlet’s parameters, follow these steps in the viewDidLoad() method of a view
controller that usesWeb Screenlet:

1. Use WebScreenletConfigurationBuilder(<url>), where <url> is the web page’s URL string, to
create a WebScreenletConfigurationBuilder object. If the page requires Liferay DXP authen-
tication, then the user must be logged in via Login Screenlet or a SessionContext method,
and youmust provide a relative URL to the WebScreenletConfigurationBuilder constructor. For
example, if such a page’s full URL is http://your.liferay.instance/web/guest/blog, then the
constructor’s argument is /web/guest/blog. For any other page that doesn’t require Liferay
DXP authentication, you must supply the full URL to the constructor.

2. Call the WebScreenletConfigurationBuildermethods to set the parameters that you need.

1216

https://developer.apple.com/documentation/webkit/wkwebview

Note: If the URL you supplied to the `WebScreenletConfigurationBuilder`

constructor is to a page that doesn't require Liferay DXP authentication, then

you must call the `WebScreenletConfigurationBuilder` method

`set(webType: .other)`. The default `WebType` is `.liferayAuthenticated`,

which is required to load Liferay DXP pages that require authentication. If

you need to set `.liferayAuthenticated` manually, call

`set(webType: .liferayAuthenticated)`.

3. Call the WebScreenletConfigurationBuilder instance’s load() method, which returns a
WebScreenletConfiguration object.

4. Set the WebScreenletConfiguration object to theWeb Screenlet instance’s configuration prop-
erty.

5. Call theWeb Screenlet instance’s load()method.

Here’s an example snippet of these steps in the viewDidLoad() method of a view controller
in which theWeb Screenlet instance is webScreenlet, and the WebScreenletConfiguration object is
webScreenletConfiguration:

override func viewDidLoad() {

super.viewDidLoad()

self.webScreenlet?.delegate = self

let webScreenletConfiguration =

WebScreenletConfigurationBuilder(url: "/web/westeros-hybrid/companynews")

.addCss(localFile: "blogs")

.addJs(localFile: "blogs")

.load()

webScreenlet.configuration = webScreenletConfiguration

webScreenlet.load()

}

The relativeURL /web/westeros-hybrid/companynews supplied to the WebScreenletConfigurationBuilder
constructor, and the lack of a set(webType: .other) call, indicates that thisWeb Screenlet instance
loads a Liferay DXP page that requires authentication. The addCss and addJs calls add local CSS and
JavaScript files, respectively. Both files are named blogs.

Great! Now you know how to useWeb Screenlet in your iOS apps.

Related Topics

Web Screenlet for iOS
UsingWeb Screenlet with Cordova in Your iOS App
Using Screenlets in iOS Apps
RenderingWeb Content in Your iOS App

107.19 Using Web Screenlet with Cordova in Your iOS App

By using Cordova plugins in Web Screenlet, you can extend the functionality of the web page
that the Screenlet renders. This lets you tailor that page to your app’s needs. You’ll get started by
installing Cordova.

1217

https://cordova.apache.org/plugins/

Installing and Configuring Cordova Automatically

Follow these steps to automatically create an empty Android project configured to use Cordova.
Note that you must have git, Node.js and npm, and CocoaPods installed.

1. Install screens-cli:

npm install -g screens-cli

2. Create the file .plugins.screens in the folder you want to create your project in. In this file,
add all the Cordova plugins you want to use in your app. For example, you can add plugins
from Cordova or GitHub:

https://github.com/apache/cordova-plugin-wkwebview-engine.git

cordova-plugin-call-number

cordova-plugin-camera

Note that the WKWebView Engine plugin is mandatory in iOS.

3. In the folder containing your .plugins.screens file, run screens-cli to create your project:

screens-cli ios <project-name>

This creates your project in the folder platforms/ios/<project-name>.

4. Run the following in platforms/ios/<project-name>:

pod install

5. Open the <project-name>.xcworkspace file with Xcode.

Installing and Configuring Cordova Manually

Follow these steps to install and configure Cordova:

1. Follow the Cordova getting started guide to install Cordova, create a Cordova project, and
add the iOS platform to your Cordova project.

2. Install the Cordova WKWebView engine:

cordova plugin add cordova-plugin-wkwebview-engine

3. Install any other Cordova plugins you want to use in your app. You can use cordova plugin to
view the currently installed plugins.

4. Copy the following files and folders from your Cordova project to your iOS project’s root
folder:

• platforms/ios/<your-cordova-project>/config.xml

• platforms/ios/<your-cordova-project>/Plugins

• platforms/ios/www

5. In the config.xml file you just copied to your iOS project’s root folder, add <allow-

navigationhref="*" /> below <access origin="*" />.

1218

https://git-scm.com/
https://nodejs.org/en/
https://cocoapods.org/
https://cordova.apache.org/#getstarted
https://www.npmjs.com/package/cordova-plugin-ionic-wkwebview-engine

Using Cordova in Web Screenlet

Now that you’ve installed and configured Cordova in your iOS project, you’re ready to use it with
Web Screenlet. Follow these steps to do so:

1. Insert and configureWeb Screenlet in your app.

2. When you set Web Screenlet’s parameters via the WebScreenletConfigurationBuilder object,
call the enableCordova()method. For example, this code adds a local JavaScript file via addJs

and then calls enableCordova() before loading the configuration and the Screenlet:

let configuration = WebScreenletConfigurationBuilder(url: "url")

.addJs(localFile: "call")

.enableCordova()

.load()

webScreenlet?.configuration = configuration

webScreenlet?.load();

That’s it! Note, however, that you may also need to invoke Cordova from a JavaScript file,
depending on what you’re doing. For example, to use the Cordova plugin cordova-plugin-call-

number to call a number, then you must add a JavaScript file with the following code:

function callNumber() {

//This line triggers the Cordova plugin and makes a call

window.plugins.CallNumber.callNumber(null, function(){ alert("Calling failed.") }, "900000000", true);

}

setTimeout(callNumber, 3000);

If you run the app containing this code and wait three seconds, the plugin activates and calls
the number in the JavaScript file.

Great! Now you know how to useWeb Screenlet with Cordova.

Related Topics

RenderingWeb Pages in Your iOS App
Web Screenlet for iOS

107.20 Using OAuth 2 in Liferay Screens for iOS

You can use OAuth 2 to authenticate using Login Screenlet with the following OAuth 2 grant types:

• Authorization Code (PKCE for native apps): Redirects users to a page in theirmobile browser
where they enter their credentials. Following login, the browser redirects users back to the
mobile app. User credentials can’t be compromised via the app because it never accesses
them—it uses a token that can be revoked. This is also useful if users don’t want to enter their
credentials in the app. For example, users may not want to enter their Twitter credentials
directly in a 3rd-party Twitter app, preferring instead to authenticate via Twitter’s official site.
Note that the site you redirect to for authentication must have OAuth 2 implemented.

• Resource Owner Password: Users authenticate by entering their credentials directly in the
app.

1219

https://www.npmjs.com/package/cordova-plugin-call-number
https://www.npmjs.com/package/cordova-plugin-call-number
https://oauth.net/2/
https://oauth.net/2/grant-types/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/password/

• Client Credentials: Authenticates without requiring user interaction. This is useful when
the app needs to access its own resources, not those of a specific user.

This tutorial shows you how to use these grant types with Login Screenlet. Note that before
getting started, you may want to see Liferay DXP’s OAuth 2.0 documentation for instructions on
registering an OAuth 2.0 application in the portal.

Authorization Code (PKCE)

Follow these steps to use the Authorization Code grant type with Login Screenlet:

1. Configure the URL where the mobile browser redirects after the user authenticates. To do
this, follow the first two steps in the Mobile SDK’s Authorization Code instructions. Note that
you must configure this URL in both the portal and your iOS app.

2. Set Login Screenlet’s loginMode attribute to oauth2Redirect. There are two ways to do this:

• In code, as the Login Screenlet instance’s authType or loginMode property:

loginScreenlet.authType = .oauth2Redirect

// or

loginScreenlet.loginMode = "oauth2redirect"

Note that oauth2redirectmust be a string when set to loginMode.

• In Interface Builder, as the value of the Login Mode attribute. Do this the same way you
set other Screenlet attributes (via the Attributes inspector, with the Screenlet selected
in the storyboard). Be sure to enter oauth2redirect with no period preceding it.

3. Set Login Screenlet’s oauth2clientId attribute to the ID of the portal’s OAuth 2 application
that you want to use. To find this value, navigate to that application in the portal’s OAuth 2
Admin portlet.

4. Set Login Screenlet’s oauth2redirectUrl attribute to the URL you configured in step 1.

5. In your AppDelegate’s application(_:open:options:) method, call the SessionContextmethod
oauth2ResumeAuthorization with the URL. This notifies Liferay Screens when the redirect has
been performed. For more information on the application(_:open:options:) method, see the
section Handle Incoming URLs in Apple’s documentation on using custom URLs:

func application(_ app: UIApplication, open url: URL,

options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {

return SessionContext.oauth2ResumeAuthorization(url: url)

}

Note that you can cancel the authorization at any time by calling SessionContext.oauth2Cancel().

1220

https://oauth.net/2/grant-types/client-credentials/
https://developer.apple.com/documentation/uikit/core_app/communicating_with_other_apps_using_custom_urls

Resource Owner Password

Follow these steps to use the Resource Owner Password grant type with Login Screenlet:

1. Set Login Screenlet’s loginMode attribute to oauth2UsernameAndPassword. There are two ways to
do this:

• In code, as the Login Screenlet instance’s authType or loginMode property:

loginScreenlet.authType = .oauth2UsernameAndPassword

// or

loginScreenlet.loginMode = "oauth2UsernameAndPassword"

Note that oauth2UsernameAndPasswordmust be a string when setting loginMode.

• In Interface Builder, as the value of the Login Mode attribute. Do this the same way you
set other Screenlet attributes (via the Attributes inspector, with the Screenlet selected in
the storyboard). Be sure to enter oauth2UsernameAndPassword with no period preceding
it.

2. Set Login Screenlet’s oauth2clientId attribute to the ID of the OAuth 2 application that you
want to use. To find this value, navigate to that application in the OAuth 2 Admin portlet.

3. Set Login Screenlet’s oauth2clientSecret attribute to the same OAuth 2 application’s client
secret.

Client Credentials

The OAuth 2 Client Credentials grant type authenticates without requiring user interaction. This is
useful when the app needs to access its own resources, not those of a specific user.

Warning: The Client Credentials grant type poses a security risk to the portal. To authenticate
without user credentials, the mobile appmust contain the OAuth 2 application’s client ID and client
secret. Anyone who can access those values via the mobile app can also authenticate without user
credentials.

Follow these steps to use the Client Credentials grant type in your Screens app:

1. Follow the iOS Mobile SDK instructions for using the Client Credentials grant type.

2. The session object’s authentication property contains a valid authentication object. Cast it
to LROAuth2Authentication then pass it to the authentication argument of the SessionContext

method loginWithOAuth2:

let auth = session.authentication as! LROAuth2Authentication

SessionContext.loginWithOAuth2(authentication: auth, userAttributes: [:])

This initializes the Screens SessionContext object, authenticating any Screenlets that you use
in the iOS app.

1221

Related Topics

Using OAuth 2 in the iOS Mobile SDK
Using Screenlets in iOS Apps
OAuth 2.0

107.21 iOS Best Practices

When developing iOS projects with Liferay Screens, there are a few best practices that you should
follow to ensure your code is as clean and bug-free as possible. This tutorial lists these. Note that
this tutorial doesn’t cover Swift coding conventions for contributing to the Liferay Screens project
on GitHub. Click here to see these.

Naming Conventions

Using the naming conventions described here leads to consistency and a better understanding of
the Screens library. This makes working with your Screenlets much simpler.

Screenlet Folder

Your Screenlet folder’s name should indicate your Screenlet’s functionality. For example, Login
Screenlet’s folder is named LoginScreenlet.

If you have multiple Screenlets that operate on the same entity, you can place them inside a
folder named for that entity. For example, Asset Display Screenlet and Asset List Screenlet both
work with Liferay assets. They’re therefore in the Screens library’s Asset folder.

Screenlets

Naming Screenlets properly is very important; they’re the main focus of Liferay Screens. Your
Screenlet should be named with its principal action first, followed by Screenlet. Its Screenlet class
should also follow this pattern. For example, Login Screenlet’s principal action is to log users into
a Liferay instance. Its Screenlet class is LoginScreenlet.

View Models

You should place View Models in your Screenlet’s root folder and name them after your Screenlet.
For example, Forgot Password Screenlet’s View Model is in the ForgotPasswordScreenlet folder and
is named ForgotPasswordViewModel.

Interactors

You should place your Screenlet’s Interactors in a folder named Interactors in your Screenlet’s root
folder. You should name each Interactor with its action first, followed by Interactor. For example,
Rating Screenlet has three Interactors in its Interactors folder:

• DeleteRatingInteractor: Deletes an asset’s ratings
• LoadRatingsInteractor: Loads an asset’s ratings
• UpdateRatingInteractor: Updates an asset’s ratings

1222

https://github.com/liferay/liferay-screens/blob/master/ios/swift-style-guide.md
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/LoginScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/LoginScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Asset
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/ForgotPasswordScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Rating/Interactors

Connectors

Name your Connectors with the same naming conventions as Interactors, replacing Interactor with
Connector. If your Connector calls a Liferay service, precede Connector with Liferay. For example,
the Connector CommentAddLiferayConnector adds comments to an asset in a Liferay instance. A
Connector that retrieves a webpage’s title from any URL would be called GetWebsiteTitleConnector.

Themes

Place your Screenlet’s Themes in a folder named Themes in your Screenlet’s root folder. If you’re
creating a group of similarly styled Themes for multiple Screenlets, however, then you can
place them in a separate Themes folder outside of your Screenlets’ root folders. This is what
the Screens Library does for its Default and Flat7 Themes. The Default and Flat7 folders each
contain similarly styled Themes for several Screenlets. Also note that each Screenlet’s Theme
is in its own folder. For example, Forgot Password Screenlet’s Default Theme is in the folder
Themes/Default/Auth/ForgotPasswordScreenlet. Note that the Auth folder is the Screenlet’s module.
Creating your Screenlets and Themes in modules isn’t required.

Recall that a Theme consists of an XIB file and a View class. Name these after your Screenlet,
but with View instead of Screenlet. The filenames should also be suffixed with _yourThemeName.
For example, the XIB file and View class for Forgot Password Screenlet’s Default theme are
ForgotPasswordView_default.xib and ForgotPasswordView_default.swift, respectively.

Avoid Hardcoded Elements

Using constants instead of hard coded elements is a simple way to avoid bugs. Constants reduce
the likelihood that you’ll make a typo when referring to common elements. They also gather these
elements in a single location. For example, when you add an action to your Screenlet, each Screenlet
action used as a restorationIdentifier in the View class is defined as a constant in the Screenlet
class. The Screenlet class’s createInteractormethod then uses the constants to distinguish between
the actions. If you instead typed each action manually in both places, a typo could break your
Screenlet and would be difficult to track down. Defining the actions in one place via constants
avoids this potentially maddening complication.

Screenlet attributes, like those listed in each Screenlet’s reference documentation, are another
good example of this. Although you can set these directly in Interface Builder, it’s better to set them
via constants in a plist file. This puts all your Screenlets’ attributes in a single location that is also
subject to version control. For instructions on setting attributes in a plist file, see the Configuring
Communication with Liferay section of the tutorial on preparing iOS projects for Liferay Screens.

To retrieve these values in your code, you can use the following LiferayServerContextmethods:

• propertyForKey: Get a property as an AnyObject

• numberPropertyForKey: Get a property as an NSNumber.
• longPropertyForKey: Get a property as an Int64.
• intPropertyForKey: Get a property as an Int.
• booleanPropertyForKey: Get a property as a Bool.
• datePropertyForKey: Get a property as an NSDate.
• stringPropertyForKey: Get a property as a String.

For example, the following code retrieves the galleryFolderId value and sets it to Image Gallery
Screenlet’s folderId attribute:

1223

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Comment/Add/Connectors/CommentAddLiferayConnector.swift
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Default/Auth/ForgotPasswordScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Default/Auth/ForgotPasswordScreenlet

@IBOutlet weak var imageGalleryScreenlet: ImageGalleryScreenlet? {

didSet {

imageGalleryScreenlet?.delegate = self

imageGalleryScreenlet?.presentingViewController = self

imageGalleryScreenlet?.repositoryId = LiferayServerContext.groupId

imageGalleryScreenlet?.folderId = LiferayServerContext.longPropertyForKey("galleryFolderId")

}

}

Stay in Your Layer

When accessing variables that belong to other Screenlet components, you should avoid those
outside your current Screenlet layer. This achieves better decoupling between the layers, which
tends to reduce bugs and simplify maintenance. For an explanation of the layers in Liferay Screens,
see the architecture tutorial. For example, you shouldn’t directly access View variables from an
Interactor. This Interactor’s startmethod gets a View instance and accesses its title variable:

public class MyInteractor: Interactor {

override func start() -> Bool {

if let view = self.screenlet.screenletView as? MyView {

let title = view.title

...

}

}

}

Instead, you should pass the variable to the Interactor’s initializer. The Interactor now contains
its own title variable, set in its initializer:

public class MyInteractor: Interactor {

public let title: String

//MARK: Initializer

public init(screenlet: BaseScreenlet, title: String) {

self.title = title

super.init(screenlet: screenlet)

}

}

The Screenlet class’s createInteractormethod calls this initializer when creating an instance of
the Interactor. Also note that the Screenlet’s View Model is used to retrieve the View’s title. As
explained in the tutorial Supporting Multiple Themes in Your iOS Screenlet, a View Model serves
as an abstraction layer for your View, which lets you use different Themes with a Screenlet:

public class MyScreenlet: BaseScreenlet {

...

override public func createInteractor(name name: String, sender: AnyObject?) -> Interactor? {

let interactor = MyInteractor(self, title: viewModel.title)

...

}

...

}

There are, however, a few placeswhere you can break this rule (otherwise it wouldn’t be possible
for layers to interact):

1224

• The Screenlet class’s createInteractor method. To get the user’s input, this method must
access the View’s computed properties.

• The Interactor’s onSuccess closure in the Screenlet class. Here, you must retrieve the Interac-
tor’s result object.

• When using a Connector, the Interactor’s completedConnectormethod. In this method, you
must retrieve the Connector’s result object.

• The Screenlet class’s View Model references. This is required for the Screenlet to communi-
cate with the View.

Related Topics

Creating iOS Screenlets
Creating iOS List Screenlets
Creating iOS Themes
Supporting Multiple Themes in Your iOS Screenlet
Adding Screenlet Actions
Create and Use a Connector with Your Screenlet
Architecture of Liferay Screens for iOS

1225

CHAPTER 108

USING XAMARIN WITH LIFERAY SCREENS

Liferay Screens for Android and iOS lets you use Screenlets to develop native mobile apps on each
platform. Screenlets are complete visual components that you insert in your app to leverage Liferay
DXP’s content and services. Since Liferay Screens 3.0, you can use Screenlets with Xamarin to
develop hybrid mobile apps for Android and iOS.

The tutorials in this section show you how to develop hybrid mobile apps using Liferay Screens
and Xamarin. You’ll start by preparing your Xamarin project for Screens. You’ll then learn how to
use Screenlets in Xamarin, customize their appearance, and more.

Note: These tutorials assume that you know how to use Xamarin. If you need assistance with
Xamarin, see its documentation.

108.1 Preparing Xamarin Projects for Liferay Screens

To use Liferay Screens with Xamarin, you must install Screens in your Xamarin project. You must
then configure your project to communicate with your Liferay DXP instance. Note that Liferay
Screens for Xamarin is released as a NuGet package hosted in NuGet.org.

Note: After installation, you must configure Liferay Screens to communicate with your Liferay
DXP instance. The last section in this tutorial shows you how to do this.

Requirements and Example Projects

Liferay Screens for Xamarin includes the bindings necessary to use all Screenlets included with
Screens. The following software is required:

• Visual Studio
• Android SDK 4.1 (API Level 16) or above
• Liferay Portal CE 7.0/7.1, or Liferay DXP
• Liferay Screens NuGet package

1227

https://www.xamarin.com/
https://developer.xamarin.com/
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://www.nuget.org/packages/LiferayScreens
http://www.liferay.com/downloads/liferay-portal/available-releases
https://www.nuget.org/packages/LiferayScreens

Also note that if you get confused or stuck while using Screens for Xamarin, the official Liferay
Screens repository contains two sample Xamarin projects that you can reference:

• Showcase-Android: An example app for Xamarin.Android containing all the currently avail-
able Screenlets.

• Showcase-iOS:An example app for Xamarin.iOS containing all the currently available Screen-
lets.

Securing JSONWeb Services

Each Screenlet in Liferay Screens calls one or more of Liferay DXP’s JSON web services, which
are enabled by default. The Screenlet reference documentation for Android and iOS lists the web
services that each Screenlet calls. To use a Screenlet, its web services must be enabled in the
portal. It’s possible, however, to disable the web services needed by Screenlets you’re not using.
For instructions on this, see the tutorial Configuring JSONWeb Services. You can also use Service
Access Policies for more fine-grained control over accessible services.

Install Liferay Screens in Xamarin Solutions

Follow these steps to install Liferay Screens in your Xamarin project:

1. Open your project in Visual Studio.

2. Right click your project’s Packages folder and then select Add packages….

3. Look for LiferayScreens and install the latest version.

4. Accept the license agreements for any dependencies. These are necessary to use Liferay
Screens in Xamarin.

5. Check your configuration one of these ways:

• Rebuild and execute your project, and import a Liferay Screens path (e.g.,
Com.Liferay.Mobile.Screens.Auth.Login).

• In your project, select References → From Packages and look for the LiferayScreens* file.
Open that file in the Assembly Browser. You should then see all the available Liferay
Screens files.

Next, you’ll set up communication with Liferay DXP.

Configuring Communication with Liferay DXP

Before using Liferay Screens, you must configure your project to communicate with your Liferay
DXP instance. To do this, you must provide your project with the following information:

• Your Liferay DXP instance’s ID.
• The ID of the Liferay DXP site your app needs to communicate with.
• Your Liferay DXP instance’s version.
• Any other information required by specific Screenlets.

1228

https://github.com/liferay/liferay-screens
https://github.com/liferay/liferay-screens
https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-Android
https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-iOS

Fortunately, this is straightforward. Do the following in your Xamarin projects:

• For Xamarin.Android, create a new file called server_context.xml in the Resources/values

folder. Add the following code to this file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<!-- Change these values for your portal installation -->

<string name="liferay_server">http://10.0.2.2:8080</string>

<integer name="liferay_company_id">20116</integer>

<integer name="liferay_group_id">20143</integer>

<integer name="liferay_portal_version">71</integer>

</resources>

• For Xamarin.iOS, create a new file called liferay-server-context.plist in the Resources folder.
Add the following code to this file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>server</key>

<string>http://localhost:8080</string>

<key>version</key>

<integer>71</integer>

<key>companyId</key>

<real>20116</real>

<key>groupId</key>

<real>20143</real>

</dict>

</plist>

Make sure to change these values to match those of your Liferay DXP instance. The server
address http://10.0.2.2:8080 is suitable for testing with Android Studio’s emulator, because it
corresponds to localhost:8080 through the emulator. If you’re using the Genymotion emulator, you
should, however, use 192.168.56.1 instead of localhost.

The liferay_company_id and companyId values are your Liferay DXP instance’s ID. You can find
this in your Liferay DXP instance at Control Panel → Configuration → Virtual Instances. The instance’s
ID is in the Instance ID column.

The liferay_group_id and groupId values are the ID of the site your app needs to communicate
with. To find this value, first go to the site in your Liferay DXP instance that you want your app to
communicate with. In the Site Administration menu, select Configuration → Site Settings. The site ID
is listed at the top of the General tab.

The liferay_portal_version and version value 71 tells Screens that it’s communicating with a
Liferay CE Portal 7.1 or Liferay DXP 7.1 instance. Here are the supported values and the portal
versions they correspond to:

• 71: Liferay CE Portal 7.1 or Liferay DXP 7.1
• 70: Liferay CE Portal 7.0 or Liferay DXP 7.0
• 62: Liferay Portal 6.2 CE/EE

1229

You can also configure Screenlet properties in server_context.xml and liferay-server-

context.plist. The example server_context.xml properties listed below, liferay_recordset_id and
liferay_recordset_fields, enable DDL Form Screenlet and DDL List Screenlet to interact with a
Liferay DXP instance’s DDLs:

<!-- Change these values for your portal installation -->

<integer name="liferay_recordset_id">20935</integer>

<string name="liferay_recordset_fields">Title</string>

For additional examples of these files, see the Showcase-Android and Showcase-iOS sample
projects.

Super! Your Xamarin projects are ready for Liferay Screens.

Related Topics

Using Screenlets in Xamarin Apps
Using Views in Xamarin.Android
Using Themes in Xamarin.iOS
Creating Xamarin Views and Themes
Liferay Screens for Xamarin Troubleshooting and FAQs

108.2 Using Screenlets in Xamarin Apps

You can start using Screenlets once you’ve prepared your Xamarin project to use Liferay Screens.
The Screenlet reference documentation describes the available Screenlets:

• Screenlets in Liferay Screens for Android
• Screenlets in Liferay Screens for iOS

Using Screenlets is very straightforward. This tutorial shows you how to insert and configure
Screenlets in your Xamarin app. You’ll be a Screenlet master in no time!

Xamarin.iOS

Follow these steps to insert Screenlets in your Xamarin.iOS app:

1. Insert a view (UIView) in your storyboard (in Visual Studio’s iOS Designer or Xcode’s Interface
Builder). Note that if you’re editing an XIB file, you must insert the view inside the XIB’s
parent view.

2. Set the view’s class to the class of the Screenlet youwant to use. For example, Login Screenlet’s
class is LoginScreenlet. If you’re using Xamarin Designer for iOS in Visual Studio, you must
also give the view a name so you can refer to it in your view controller’s code.

For example, the following video shows the first two steps for inserting Login Screenlet in a
Xamarin Designer for iOS storyboard.

1230

https://github.com/liferay/liferay-screens/blob/develop/xamarin/Samples/Showcase-Android/Resources/values/server_context.xml
https://github.com/liferay/liferay-screens/blob/develop/xamarin/Samples/Showcase-iOS/Resources/liferay-server-context.plist

3. Configure the Screenlet’s behavior in your app by implementing the Screenlet’s delegate
in your view controller. To configure your app to listen for events the Screenlet triggers,
implement the Screenlet’s delegate methods and register the view controller as the delegate.
Make sure to annotate each delegate method with [Export(...)]. This ensures the method
can be called from Objective-C, which is required for it to work in Screens. You should also
set any Screenlet attributes you need. Each Liferay Screenlet’s reference documentation lists
its available attributes and delegate methods.

Note: In Liferay Screens for Xamarin, Screenlet delegates are prefixed

with an `I`. For example, Login Screenlet's delegate in native code is

`LoginScreenletDelegate`, while in Xamarin it's `ILoginScreenletDelegate`.

For example, here's a view controller that implements Login Screenlet's

delegate, `ILoginScreenletDelegate`. Note that the `ViewDidLoad()` method

sets the Screenlet's `ThemeName` attribute (`ThemeName` is available for all

Screenlets via `BaseScreenlet` inheritance) and registers the view

controller as the delegate. This view controller also implements the

`OnLoginResponseUserAttributes` method, which is called upon successful

login. Also note this method's `[Export(...)]` annotation:

public partial class ViewController : UIViewController, ILoginScreenletDelegate

{

protected ViewController(IntPtr handle) : base(handle) {}

public override void ViewDidLoad()

{

base.ViewDidLoad();

// Set the Screenlet's attributes

this.loginScreenlet.ThemeName = "demo";

// Registers this view controller as the delegate

this.loginScreenlet.Delegate = this;

}

...

// Delegate methods

[Export("screenlet:onLoginResponseUserAttributes:")]

public virtual void OnLoginResponseUserAttributes(BaseScreenlet screenlet,

NSDictionary<NSString, NSObject> attributes)

{

...

}

}

See the Showcase-iOS app for more examples of view controllers that use Liferay’s Screenlets.

Xamarin.Android

Follow these steps to insert Screenlets in your Xamarin.Android app:

1. Open your app’s layout AXML file and insert the Screenlet’s XML in your activity or fragment
layout. For example, here’s Login Screenlet’s XML in an activity’s FrameLayout:

1231

https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-iOS/ViewController

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

android:orientation="vertical"

android:layout_width="match_parent"

android:layout_height="match_parent">

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:basicAuthMethod="email"/>

</FrameLayout>

2. Set the Screenlet’s attributes. If it’s a Liferay Screenlet, refer to the Screenlet reference
documentation to learn the Screenlet’s required and supported attributes. This screenshot
shows Login Screenlet’s attributes being set:

Figure 108.1: You can set a Screenlet’s attributes via the app’s layout AXML file.

3. To configure your app to listen for events the Screenlet triggers, implement the Screenlet’s
listener interface in your activity or fragment class. Refer to the Screenlet’s reference doc-
umentation to learn its listener interface. Then register that activity or fragment as the
Screenlet’s listener.

Note: In Liferay Screens for Xamarin, Screenlet listeners are prefixed

with an `I`. For example, Login Screenlet's listener in native code is

`LoginListener`, while in Xamarin it's `ILoginListener`.

For example, the following activity class implements Login Screenlet's

`ILoginListener` interface, and registers itself as the Screenlet's

listener via `loginScreenlet.Listener = this`. Note that the listener

methods `OnLoginSuccess` and `OnLoginFailure` are called when login succeeds

and fails, respectively. In this case, these methods print simple toast

messages:

[Activity]

public class LoginActivity : Activity, ILoginListener

1232

{

LoginScreenlet loginScreenlet;

protected override void OnCreate(Bundle savedInstanceState)

{

base.OnCreate(savedInstanceState);

SetContentView(Resource.Layout.LoginView);

loginScreenlet = (LoginScreenlet) FindViewById(Resource.Id.login_screenlet);

loginScreenlet.Listener = this;

}

// ILoginListener

public void OnLoginSuccess(User p0)

{

Toast.MakeText(this, "Login success: " + p0.Id, ToastLength.Short).Show();

}

public void OnLoginFailure(Java.Lang.Exception p0)

{

Android.Util.Log.Debug("LoginScreenlet", $"Login failed: {p0.Message}");

}

}

See the Showcase-Android app for more examples of activities that use Liferay’s Screenlets.

Related Topics

Preparing Xamarin Projects for Liferay Screens
Using Views in Xamarin.Android
Using Themes in Xamarin.iOS
Creating Xamarin Views and Themes
Liferay Screens for Xamarin Troubleshooting and FAQs

108.3 Using Views in Xamarin.Android

You can use a Liferay Screens View to set a Screenlet’s look and feel independent of the Screenlet’s
core functionality. Liferay’s Screenlets come with several Views, and more are being developed by
Liferay and the community. The Screenlet reference documentation lists the Views available for
each Screenlet included with Screens. This tutorial shows you how to use Views in Xamarin.An-
droid.

Views and View Sets

The concepts and components that compriseViews andView Sets in Liferay Screens for Xamarin are
the same as they are in Liferay Screens for Android. For a brief description of these components,
see the section on Views and View Sets in the general tutorial on using Views. For a detailed
description of the View layer in Liferay Screens, see the tutorial Architecture of Liferay Screens for
Android.

Using Views

Follow these steps to use a View in Xamarin.Android:

1233

https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-Android/Activities

1. Copy the layout of the View you want to use from the Liferay Screens repository to your app’s
res/layout folder. Alternatively, you can create a new layout. The following links list the View
layouts available in each View Set:

• Default
• Material
• Westeros

For example, this is Login Screenlet’s Material View, login_material.xml:

<com.liferay.mobile.screens.viewsets.material.auth.login.LoginView

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:liferay="http://schemas.android.com/apk/res-auto"

android:paddingLeft="40dp"

android:paddingRight="40dp"

style="@style/default_screenlet">

<LinearLayout

android:id="@+id/basic_authentication_login"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

<LinearLayout style="@style/material_row">

<ImageView

android:id="@+id/drawable_login"

android:contentDescription="@string/user_login_icon"

android:src="@drawable/material_email"

style="@style/material_icon"/>

<EditText

android:id="@+id/liferay_login"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:layout_marginTop="8dp"

android:inputType="text"

android:labelFor="@+id/liferay_login"/>

</LinearLayout>

<LinearLayout style="@style/material_row">

<ImageView

android:id="@+id/drawable_password"

android:contentDescription="@string/password_icon"

android:src="@drawable/material_https"

style="@style/material_icon"/>

<EditText

android:id="@+id/liferay_password"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:layout_marginTop="8dp"

android:hint="@string/password"

android:inputType="textPassword"/>

</LinearLayout>

<FrameLayout

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginTop="32dp">

1234

https://github.com/liferay/liferay-screens
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/res/layout
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material/src/main/res/layout
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros/src/main/res/layout

<Button

android:id="@+id/liferay_login_button"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:layout_margin="10dp"

android:text="@string/sign_in"/>

<com.liferay.mobile.screens.base.ModalProgressBar

android:id="@+id/liferay_progress"

android:layout_width="wrap_content"

android:layout_height="match_parent"

android:layout_gravity="center_vertical|left"

android:layout_margin="10dp"

android:theme="@style/white_theme"

android:visibility="invisible"

liferay:actionViewId="@id/liferay_login_button"/>

</FrameLayout>

</LinearLayout>

<Button

android:id="@+id/oauth_authentication_login"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="@string/authorize_application"

android:visibility="gone"/>

</com.liferay.mobile.screens.viewsets.material.auth.login.LoginView>

2. When you insert the Screenlet’s XML in the layout of the activity or fragment you want the
Screenlet to appear in, set the liferay:layoutId attribute to the View’s layout. For exam-
ple, here’s Login Screenlet’s XML with liferay:layoutId set to @layout/login_material, which
specifies Login Screenlet’s Material View from the previous step:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

liferay:layoutId="@layout/login_material"

/>

3. If the View you want to use is part of a View Set (e.g., the Material View is part of the Material
View Set), your app or activity’s theme must also inherit the theme that defines that View
Set’s styles. For example, the following code in an app’s Resources/values/Styles.xml tells
AppTheme.NoActionBar to use the Material View Set as its parent theme:

<resources>

<style name="AppTheme.NoActionBar" parent="material_theme">

<item name="colorPrimary">@color/colorPrimary</item>

<item name="colorPrimaryDark">@color/colorPrimaryDark</item>

<item name="colorAccent">@color/colorAccent</item>

<item name="windowActionBar">false</item>

<item name="windowNoTitle">true</item>

</style>

...

</resources>

To use the Default orWesteros View Set, inherit default_theme or westeros_theme, respectively.

Awesome! Now you know how to use Views to spruce up your Xamarin.Android Screenlets.

1235

Related Topics

Preparing Xamarin Projects for Liferay Screens
Using Screenlets in Xamarin Apps
Using Themes in Xamarin.iOS
Creating Xamarin Views and Themes
Liferay Screens for Xamarin Troubleshooting and FAQs

108.4 Using Themes in Xamarin.iOS

Themes in Xamarin.iOS are analogous to Views in Xamarin.Android. Like Views, Themes let you set
a Screenlet’s look and feel independent of the Screenlet’s core functionality. Liferay’s Screenlets
come with several Themes, and more are being developed by Liferay and the community. The
Screenlet reference documentation lists the Themes available for each Screenlet included with
Screens. This tutorial shows you how to use Themes in Xamarin.iOS.

Installing and Using Themes

Follow these steps to install and use a Theme:

1. If the Theme is packaged as a NuGet dependency, you can install it in your project via NuGet.
To do so, right-click your project’s Packages folder and then selectAdd packages…. Then search
for the Theme and install it. If the Theme isn’t available in NuGet, you can drag and drop the
Theme’s folder directly into your project.

2. To use the installed Theme, set its name to the Screenlet instance’s ThemeName property in your
view controller that implements the Screenlet’s delegate. All Screenlets inherit this property
from BaseScreenlet. For example, this code sets Login Screenlet’s ThemeName property to the
Material Theme:

loginScreenlet.ThemeName = "material"

If you don’t set this property or enter an invalid or missing Theme, the Screenlet uses its
Default Theme. Each Screenlet’s available Themes are listed in the Themes section of the
Screenlet’s reference documentation.

Great, that’s it! Now you know how to use Themes to dress up Screenlets in your Xamarin.iOS
apps.

Related Topics

Preparing Xamarin Projects for Liferay Screens
Using Screenlets in Xamarin Apps
Using Views in Xamarin.Android
Creating Xamarin Views and Themes
Liferay Screens for Xamarin Troubleshooting and FAQs

1236

108.5 Creating Xamarin Views and Themes

Recall that Views in Xamarin.Android and Themes in Xamarin.iOS are analogous components
that let you customize a Screenlet’s look and feel. You can use the Views and Themes provided by
Liferay Screens, or write your own. Writing your own lets you tailor a Screenlet’s UI to your exact
specifications. This tutorial shows you how to do this.

You can create Views and Themes from scratch, or use an existing one as a foundation. Views
and Themes include a View class for implementing the Screenlet UI’s behavior, a Screenlet class for
notifying listeners/delegates and invoking Interactors, and an AXML or XIB file for defining the UI.

There are also different types of Views and Themes. These are discussed in the tutorials on
creating Views and Themes in native code. You should read those tutorials before creating Views
in Xamarin.Android or Themes in Xamarin.iOS.

First, you’ll determine where to create your View or Theme.

Determining the Location of Your View or Theme

If you plan to reuse or redistribute your View or Theme, create it in a new Xamarin project as a
multiplatform library for code sharing. Otherwise, create it in your app’s project.

Creating a Xamarin.Android View

Creating Views for Xamarin.Android is very similar to doing so in native code. You can create the
following View types:

• Themed View: Creating a Themed View in Xamarin.Android is identical to doing so in native
code. In Xamarin.Android, however, only the Default View Set is available to extend.

• Child View: Creating a Child View in Xamarin.Android is identical to doing so in native code.

• Extended View: Creating an Extended View in Xamarin.Android differs from doing so in
native code. The next section shows you how.

Extended View

To create an Extended View in Xamarin.Android, follow the steps for creating an Extended View in
native code, but make sure your customView class in the second step is the appropriate C# class.
For example, here’s the View class from the native code tutorial, converted to C#:

using System;

using Android.Content;

using Android.Util;

using Com.Liferay.Mobile.Screens.Viewsets.Defaultviews.Auth.Login;

namespace ShowcaseAndroid.CustomViews

{

public class LoginCheckPasswordView : LoginView

{

public LoginCheckPasswordView(Context context) : base(context) { }

public LoginCheckPasswordView(Context context, IAttributeSet attributes) : base(context, attributes) {}

public LoginCheckPasswordView(Context context, IAttributeSet attributes, int defaultStyle) : base(context, attributes, defaultStyle) {}

public override void OnClick(Android.Views.View view)

1237

https://developer.xamarin.com/guides/cross-platform/application_fundamentals/nuget-multiplatform-libraries/

{

// compute password strength

if (PasswordIsStrong) {

base.OnClick(view);

}

else {

// Present user message

}

}

}

}

Awesome! Now you know how to create Extended Views in Xamarin.Android.

Creating a Xamarin.iOS Theme

Creating Themes for Xamarin.iOS is very similar to doing so in native code. You can create the
following Theme types in Xamarin.iOS:

• Child Theme: presents the same UI components as its parent Theme, but lets you change
their appearance and position.

• Extended Theme: inherits its parent Theme’s functionality and appearance, but lets you add
to and modify both.

First, you’ll learn how to create a Child Theme in Xamarin.iOS.

Child Theme

Child Themes leverage a parent Theme’s behavior and UI components, letting you modify the
appearance and position of those components. Note that you can’t add or remove components,
and the parent Theme must be a Full Theme. The Child Theme presents visual changes with its
own XIB file and inherits the parent’s View class.

Follow these steps to create a Child Theme in Xamarin.iOS:

1. In Visual Studio, create a new XIB file named after the Screenlet’s View class and your Theme.
By convention, an XIB file for a Screenlet with a View class named LoginView and a Theme
named demo should be named LoginView_demo. You can use content from the parent Theme’s
XIB file as a foundation for your new XIB file. In your new XIB, you can change the UI
components’ visual properties (e.g., their position and size). You mustn’t change, however,
the XIB file’s custom class, outlet connection, or restorationIdentifier. These must match
those of the parent XIB file.

2. In the View Controller, set the Screenlet’s ThemeName property to the Theme’s name. For
example, this sets Login Screenlet’s ThemeName property to the demo Theme from the first step:

this.loginScreenlet.ThemeName = "demo";

This causes Liferay Screens to look for the file LoginView_demo in all apps’ bundles. If that file
doesn’t exist, Screens uses the Default Theme instead (LoginView_default).

You can see an example of LoginView_demo in the Showcase-iOS demo app. Fantastic! Next, you’ll
learn how to create an Extended Theme.

1238

https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-iOS/CustomViews

Extended Theme

An Extended Theme inherits another Theme’s UI components and behavior, but lets you add to
or alter both. For example, you can extend the parent Theme’s View class to change the parent
Theme’s behavior. You can also create a new XIB file that contains new or modified UI components.
An Extended Theme’s parent must be a Full Theme.

Follow these steps to create an Extended Theme:

1. In Visual Studio, create a new XIB file named after the Screenlet’s View class and your Theme.
By convention, an XIB file for a Screenlet with a View class named LoginView and a Theme
named demo should be named LoginView_demo. You can use the parent Theme’s XIB file as
a template. Make your Theme’s UI changes by editing your XIB file in Visual Studio’s iOS
Designer or Xcode’s Interface Builder.

2. Create a new View class that extends the parent Theme’s View class. You should name this
class after the XIB file you just created. You can add to or override functionality of the parent
Theme’sView class. Here’s an example that extends theView class of Login Screenlet’s default
Theme (LoginView_default). Note that it changes the login button’s background color and
disables the progress presenter:

using LiferayScreens;

using System;

namespace ShowcaseiOS

{

public partial class LoginView_demo : LoginView_default

{

public LoginView_demo (IntPtr handle) : base (handle) { }

public override void OnCreated()

{

// You can change the login button color from code

this.LoginButton.BackgroundColor = UIKit.UIColor.DarkGray;

}

// If you don't want a progress presenter, create an empty one

public override IProgressPresenter CreateProgressPresenter()

{

return new NoneProgressPresenter();

}

}

}

3. Set your new View class as the custom class for your Theme’s XIB file:

Well done! Now you know how to create an Extended Theme.

Related Topics

Creating Android Views (native code)
Creating iOS Themes (native code)
Preparing Xamarin Projects for Liferay Screens
Using Screenlets in Xamarin Apps
Using Views in Xamarin.Android
Using Themes in Xamarin.iOS
Liferay Screens for Xamarin Troubleshooting and FAQs

1239

Figure 108.2: Set new View class in XIB Theme file.

108.6 Liferay Screens for Xamarin Troubleshooting and FAQs

Even though Liferay developed Liferay Screens for Xamarin with great care, you may still run into
some common issues. This tutorial lists tips and solutions for these issues, as well as answers to
common questions about Screens for Xamarin.

General Troubleshooting

Before exploring specific issues, you should first make sure that you’ve installed the correct ver-
sions of Visual Studio and the Mono .NET framework. Each Screenlet’s reference documentation
(available for Android and iOS) lists these versions.

It may also help to investigate the sample Xamarin.Android and Xamarin.iOS apps developed
by Liferay. Both are good examples of how to use Screenlets, Views (Android), and Themes (iOS):

• Showcase-Android
• Showcase-iOS

If you get stuck at any point, you can post your question on our forum. We’re happy to assist
you!

Common Issues

1. Build issues:

Running Clean in Visual Studio may not be enough. Close Visual Studio, remove all the bin

and obj folders that weren’t removed by the clean, then rebuild your project.

2. NSUnknownKeyException error in Xamarin.iOS:

1240

https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-Android
https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-Android
https://www.liferay.com/community/forums/-/message_boards/category/42706063

This error occurs when Liferay Screens for iOS has a wrong module name in an XIB file. You
must solve this in Xcode, removing themodule name in the XIB file’s Custom Class assignment
in Interface Builder.

3. The selector is already registered error in Xamarin.iOS:

This error occurs because one or moremethods share the same name. To fix this, the binding
file must be updated. Please file a ticket in our Jira or post the issue on our forum.

4. Xamarin.iOS crashes unexpectedly without any error messages in the console:

Check the log file. On Mac OS, do this via the Console. OnWindows, use the Event Viewer. In
the app, you must click User Reports and then look for your app’s name. Note that there may
be more than one log file.

5. The app doesn’t call delegate methods in Xamarin.iOS:

When you implement the delegate methods in your view controller, make sure to annotate
them with [Export(...)]. You must also set the view controller to the Screenlet instance’s
Delegate property. Here’s an example of such a view controller that implements Login Screen-
let’s delegate, ILoginScreenletDelegate:

public partial class ViewController : UIViewController, ILoginScreenletDelegate

{

protected ViewController(IntPtr handle) : base(handle) {}

public override void ViewDidLoad()

{

base.ViewDidLoad();

this.loginScreenlet.Delegate = this;

}

[Export("screenlet:onLoginResponseUserAttributes:")]

public virtual void OnLoginResponseUserAttributes(BaseScreenlet screenlet,

NSDictionary<NSString, NSObject> attributes)

{

...

}

...

}

DataType Mapping

For a better understanding of Xamarin code and example apps, see this list to compare type
mapping between platforms. You must write Xamarin apps in C#, which has some differences
compared to native code:

• Delegate (iOS) or listener (Android) classes:

These classes are important because they listen for a Screenlet’s events. In Liferay
Screens for Xamarin, Screenlet delegates and listeners are prefixed with an I. For example,
Login Screenlet’s delegate in native code is LoginScreenletDelegate, while in Xamarin it’s
ILoginScreenletDelegate. Similarly, Login Screenlet’s listener in native code is LoginListener,
while in Xamarin it’s ILoginListener. Use a similar naming scheme when you define a
class/interface pair where the class is a standard implementation of the interface.

1241

https://issues.liferay.com/browse/LMW/
https://www.liferay.com/community/forums/-/message_boards/category/42706063

• Getter and setter methods:
To get or set a value in native code, you use its getter and setter methods. In Liferay Screens
for Xamarin, you should convert such methods to properties. If you have only one of these
methods, you can call the method itself. For example:

// If you implemented a setter and a getter, call the property

loginScreenlet.Listener = this;

// Otherwise, call the method

loginScreenlet.getListener();

• Pascal case convention:
C# code is usually written in Pascal case. However, you should use Camel case for protected
instance fields or parameters.

Language Equivalents between Swift and C

• Protocols in Swift are analogous to interfaces in C#:

// Swift

protocol DoThings {

func MyMethod() -> String

}

// C#

interface DoThings

{

string MyMethod();

}

• Initializers in Swift are analogous to constructors in C#:

// Swift

class MyClass {

var myVar : String = ""

init(myVar : String) {

self.myVar = myVar

}

}

var testing = MyClass(myVar: "Test")

// C#

class MyClass {

protected string myVar = "";

public MyClass() {}

public MyClass(string myVar) {

this.myVar = myVar;

}

}

var testing = new MyClass(myVar: "Test");

To learn more about language equivalents between Swift and C#, see this quick reference.

1242

https://download.microsoft.com/download/4/6/9/469501F4-5F6B-4E51-897C-9A216CFB30A3/SwiftCSharpPoster.pdf

Language Equivalents between Java and C

To extend or implement a class or interface, Java requires that you use the extends or implements
keywords. C# doesn’t require this:

// Java

class Bird extends Vertebrate implements Actions {

...

}

// C#

class Bird : Vertebrate, Actions {

...

}

To learn more about language equivalents between Java and C#, see the C# for Java developers
cheat sheet.

FAQs

1. Do I have to use Visual Studio?
No, but we strongly recommend it. If you wish, however, you can use Xamarin Studio or
Visual Studio Code instead.

2. What’s the meaning of [Export(...)] above delegate method names?
In short, this attribute makes properties and methods available in Objective-C. Xamarin’s
documentation explains this attribute in detail.

Related Topics

Preparing Xamarin Projects for Liferay Screens
Using Screenlets in Xamarin Apps
Using Views in Xamarin.Android
Creating Xamarin Views and Themes
Using Themes in Xamarin.iOS

1243

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjbr8bgz_XXAhWMMyYKHeUPA5wQFgg7MAA&url=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2FD%2FE%2FE%2FDEE91FC0-7AA9-4F6E-9FFA-8658AA0FA080%2FCSharp%2520for%2520Java%2520Developers%2520-%2520Cheat%2520Sheet.pdf&usg=AOvVaw1i0RzOcmyol7LhD59k9cUE
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjbr8bgz_XXAhWMMyYKHeUPA5wQFgg7MAA&url=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2FD%2FE%2FE%2FDEE91FC0-7AA9-4F6E-9FFA-8658AA0FA080%2FCSharp%2520for%2520Java%2520Developers%2520-%2520Cheat%2520Sheet.pdf&usg=AOvVaw1i0RzOcmyol7LhD59k9cUE
https://developer.xamarin.com/api/type/MonoTouch.Foundation.ExportAttribute/
https://developer.xamarin.com/api/type/MonoTouch.Foundation.ExportAttribute/

CHAPTER 109

MOBILE SDK

Want to wield Liferay’s power in your mobile apps? Thanks to Liferay’s Mobile SDK, you can do just
that. The Liferay Mobile SDK provides a way to streamline consuming Liferay core web services,
Liferay utilities, and custom app web services. It’s a low-level layer that wraps Liferay JSON web
services, making them easy to call in native mobile apps. It takes care of authentication, makes
HTTP requests (synchronously or asynchronously), parses JSON results, and handles server-side
exceptions so you can concentrate on using the services in your app. The Liferay Mobile SDK
bridges the gap between your native app and Liferay services. The official project page gives you
access to the SDK releases, provides the latest SDK news, and has forums for you to engage in
mobile app development discussions. The Liferay Mobile SDK is available as separate downloads
for Android and iOS.

There are two different types of Mobile SDKs that you need to add to your app’s project, de-
pending on the remote services you need to call. Liferay’s prebuilt Mobile SDK includes the classes
required to construct remote service calls in general. It also contains the classes required to call
the specific remote services of Liferay’s core portlets. Core portlets are included with every Liferay
installation (these are also referred to as out-of-the-box or built-in portlets). However, you need
to build an additional Mobile SDK if you want to leverage your custom portlet’s remote services.
Once built, this Mobile SDK contains only the classes required to call those services. Therefore,
you must install it in your app alongside Liferay’s prebuilt Mobile SDK to leverage your custom
portlet’s remote services.

Note that Liferay also provides Liferay Screens for constructing mobile apps that connect
to Liferay. Screens uses components called screenlets to leverage and abstract the Mobile SDK’s
low-level service calls. However, if there’s not a screenlet for your use case, or you need more
control over the service call, then you may want to use the Mobile SDK directly. You should read
the Screens tutorials in addition to the Mobile SDK tutorials here to decide which better fits your
needs.

This section’s tutorials cover using the Mobile SDK in Android and iOS app development. The
following tutorials introduce these topics and are followed by in-depth tutorials on each:

• Creating Android Apps that Use the Mobile SDK
• Creating iOS Apps that Use the Mobile SDK

In addition, the following tutorial covers building Mobile SDKs to support your custom portlet
services:

1245

https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview
https://www.liferay.com/products/liferay-screens

Figure 109.1: Liferay’s Mobile SDK enables your native app to communicate with Liferay.

1246

• Building Mobile SDKs

Fasten your seatbelt–it’s time to go mobile with Liferay’s Mobile SDK!
Related Topics:
Android Apps with Liferay Screens
iOS Apps with Liferay Screens
Building Mobile SDKs

1247

CHAPTER 110

CREATING ANDROID APPS THAT USE THE MOBILE
SDK

The Liferay Mobile SDK provides a way to streamline the consumption of Liferay DXP’s core web
services and utilities, as well as those of custom apps. It wraps Liferay DXP’s JSON web services,
making them easy to call in native mobile apps. It handles authentication, makes HTTP requests
(synchronously or asynchronously), parses JSON results, and handles server-side exceptions so
you can concentrate on using the services in your app.

The Liferay Mobile SDK comes with the Liferay Android SDK. The official project page gives
you access to the SDK releases, provides the latest SDK news, and has forums for you to engage in
mobile app development discussions. Once you configure the Mobile SDK in your app, you can
invoke Liferay DXP services in it.

The Android Mobile SDK app development tutorials cover these topics:

• Making Liferay and Custom Portlet Services Available in Your Android App
• Invoking Liferay Services in Your Android App
• Invoking Services Asynchronously from Your Android App
• Sending Your Android App’s Requests Using Batch Processing

A great way to start is by setting up the Mobile SDK your Android project. This makes Liferay
DXP’s services available in your app.

110.1 Related Topics

Invoking Liferay Services in Your Android App
Creating iOS Apps that Use the Mobile SDK
Building Mobile SDKs

110.2 Making Liferay and Custom Portlet Services Available in Your Android App

1249

https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview

Figure 110.1: Liferay’s Mobile SDK enables your native app to communicate with Liferay DXP.

1250

You must install the correct Mobile SDKs in your Android project to call the remote services you
need in your app. You should first install Liferay’s prebuilt Mobile SDK. This is required for any app
that leverages Liferay. To call your custom portlet’s services, you also need to install the Mobile
SDK that you built for it. For instructions on building a Mobile SDK for your custom portlet, see the
tutorial Building Mobile SDKs.

This tutorial shows you how to install Liferay’s prebuilt Mobile SDK, and any custom built
Mobile SDKs. First, you’ll learn how to use Gradle or Maven to install Liferay’s prebuilt Mobile SDK.
You’ll then learn how to install a Mobile SDK manually, which is required for installing any custom
built Mobile SDKs. Now go forth and fear no remote service!

Adding the SDK to Your Gradle Project

If your Android project is using Gradle as the build system, you can add Liferay’s prebuilt Mobile
SDK as a dependency to your project. All versions are available at the JCenter and Maven Central
repositories. Both repositories are listed here, but you only need to have one in your app:

repositories {

jcenter()

mavenCentral()

}

dependencies {

compile group: 'com.liferay.mobile', name: 'liferay-android-sdk', version: '7.1.+'

}

If you get errors such as Duplicate files copied in APK META-INF/NOTICE when building with
Gradle, add this to your build.gradle file:

android {

...

packagingOptions {

exclude 'META-INF/LICENSE'

exclude 'META-INF/NOTICE'

}

...

}

That’s all there is to it! When your project syncs with your Gradle files, Liferay’s prebuilt Mobile
SDK downloads to your project. The instructions for doing this with Maven are shown next.

Adding the SDK to Your Maven Project

You can also add the Liferay’s prebuilt Mobile SDK as a dependency to your project using Maven.
To do so, add the following code to your pom.xml file:

<dependency>

<groupId>com.liferay.mobile</groupId>

<artifactId>liferay-android-sdk</artifactId>

<version>LATEST</version>

</dependency>

Awesome! However, what if you’re not using Gradle or Maven? What if you want to install a
custom built Mobile SDK? No problem! The next section shows you how to install a Mobile SDK
manually.

1251

Manually Adding the SDK to Your Android Project

Use the following steps to manually set up a Mobile SDK in your Android project:

1. To install Liferay’s prebuilt Mobile SDK, first download the latest version of liferay-android-
sdk-[version].jar. If you built your own Mobile SDK, find its JAR file on your machine. This
is detailed in the Building Mobile SDKs tutorial.

2. Copy the JAR into your Android project’s /libs folder.

3. If you’re manually installing Liferay’s prebuilt Mobile SDK, you also need to download and
copy these dependencies to your Android Project’s /libs folder:

• httpclient-android-4.3.3.jar

• httpmime-4.3.3.jar

4. Start using it!

Great! Now you know how to manually install a Mobile SDK in your Android apps.

Making Custom Portlet Services Available in Your Android App

If you want to invoke remote web services for your custom portlet, then you need to generate its
client libraries by building an Android Mobile SDK yourself. Building an SDK is covered in the
tutorial Building Mobile SDKs. Once you build an SDK to a JAR file, you can install it using the
manual installation steps above (make sure to use the JAR file you built instead of Liferay’s prebuilt
JAR file). Note that because your custom built SDKs contain only the client libraries for calling your
custom portlet services, you must install them alongside Liferay’s prebuilt SDK. Liferay’s prebuilt
SDK contains additional classes that are required to construct any remote service call.

Super! Now that the remote services you need are available in your app, you’re ready to call
them.

Related Topics

Invoking Liferay Services in Your Android App
Creating iOS Apps that Use the Mobile SDK
Building Mobile SDKs

110.3 Invoking Liferay Services in Your Android App

Once the appropriate Mobile SDKs are set up in your Android project, you can access and invoke
Liferay DXP services in your app. This tutorial takes you through the steps you must follow to
invoke these services:

1. Create a session.
2. Import the Liferay DXP services you need to call.
3. Create a service object and call the service methods.

Since some service calls require special treatment, this tutorial also shows you how to handle
them. But first, you’ll learn about securing Liferay DXP’s JSON web services in the portal.

1252

https://github.com/liferay/liferay-mobile-sdk/releases/
http://search.maven.org/remotecontent?filepath=org/apache/httpcomponents/httpclient-android/4.3.3/httpclient-android-4.3.3.jar
http://search.maven.org/remotecontent?filepath=org/apache/httpcomponents/httpmime/4.3.3/httpmime-4.3.3.jar

Securing JSONWeb Services

The Liferay Mobile SDK calls Liferay DXP’s JSON web services, which are enabled by default. The
web services you call via the Mobile SDK must remain enabled for those calls to work. It’s possible,
however, to disable the web services that you don’t need to call. For instructions on this, see
the tutorial Configuring JSONWeb Services. You can also use Service Access Policies for more
fine-grained control over accessible services.

Step 1: Create a Session

A session is a conversion state between the client and server, that consists of multiple requests and
responses between the two. You need a session to pass requests between your app and the Mobile
SDK. In most cases, sessions need to be created with user authentication. The imports and code
required to create a session are shown here:

import com.liferay.mobile.android.auth.basic.BasicAuthentication;

import com.liferay.mobile.android.service.Session;

import com.liferay.mobile.android.service.SessionImpl;

...

Session session = new SessionImpl("http://10.0.2.2:8080",

new BasicAuthentication("test@example.com", "test"));

The arguments to SessionImpl are used to create the session. The first parameter is the URL of
the Liferay instance you’re connecting to. If you’re running your app on Android Studio’s emulator,
http://10.0.2.2:8080 is equivalent to http://localhost:8080. Be sure to replace this with the correct
address for your server.

Warning: Be careful when using administrator credentials on a production Liferay instance, as
you’ll have permission to call any service. Make sure not to modify data by accident. Of course, the
default administrator credentials should be disabled on a production Liferay instance.

The second parameter creates a new BasicAuthentication object containing the user’s creden-
tials. Depending on the authentication method used by your Liferay instance, you need to provide
the user’s email address, screen name, or user ID. You also need to provide the user’s password.
The BasicAuthentication object tells the session to use Basic Authentication to authenticate each
service call. The Mobile SDK also supports OAuth authentication, as long as the OAuth Provider
portlet is deployed to your Liferay instance. To learn how to use OAuth authentication with the
Mobile SDK, see the OAuth sample app. Also, note that the OAuth Provider portlet is only available
to customers with an active Liferay subscription.

If you’re building a sign in view for your app, you can use the SignIn utility class to check if the
credentials given by the user are valid.

import com.liferay.mobile.android.auth.SignIn;

...

SignIn.signIn(session, new JSONObjectAsyncTaskCallback() {

@Override

public void onSuccess(JSONObject userJSONObject) {

System.out.println("Successful sign-in, user details: " + userJSONObject)

}

@Override

public void onFailure(Exception e) {

e.printStackTrace();

}

1253

https://github.com/brunofarache/liferay-android-sdk-oauth

});

Note that the Mobile SDK doesn’t keep a persistent connection or session with the server. Each
request is sent with the user’s credentials (except when using OAuth). However, the SignIn class
provides a way to return user information after a successful sign-in.

Next, you’re shown how to create an unauthenticated session in the limited cases where this is
possible.

Creating an Unauthenticated Session

In some cases, it’s possible to create a Session instance without user credentials. However, most
Liferay remote methods don’t accept unauthenticated remote calls. Making a call with an unau-
thenticated session generates an Authentication access required exception in most cases.

Unauthenticated service calls only work if the remote method in the Liferay instance or
your plugin has the @AccessControlled annotation. This is shown here for the hypothetical class
FooServiceImpl and its method bar:

import com.liferay.portal.security.ac.AccessControlled;

...

public class FooServiceImpl extends FooServiceBaseImpl {

...

@AccessControlled(guestAccessEnabled = true)

public void bar() { ... }

...

To make such a call, you need to use the constructor that accepts the server URL only:

Session session = new SessionImpl("http://10.0.2.2:8080");

Fantastic! Now that you have a session, you can use it to call Liferay’s services.

Step 2: Import the Liferay Services You Need

First, you should determine the Liferay services you need to call. You can find the available services
at http://localhost:8080/api/jsonws. Be sure to replace http://localhost:8080 in this URLwith your
server’s address.

Add the imports for the services you need to call. For example, if you’re building a blogs app,
you can import BlogsEntryService:

import com.liferay.mobile.android.v62.blogsentry.BlogsEntryService;

Note that the Liferay version (.v62) is used in the package namespace. Since the Mobile SDK is
built for a specific Liferay version, service classes for different Liferay versions are separated by
their package names. In this example, the Mobile SDK classes use the .v62 package, which means
this Mobile SDK is compatible with Liferay 6.2. Mobile SDK classes compatible with Liferay 7.0 use
the v7 package. This namespacing lets your app support multiple Liferay versions.

1254

http://localhost:8080/api/jsonws

Step 3: Create a Service Object and Call its Service Methods

Once you have a session and the required imports, you’re ready to make the service call. This
is done by creating a service object for the service you want to call, and then calling its service
methods. For example, if you’re creating a blogs app, you need to use BlogsEntryService to get all
the blogs entries from a site. This is demonstrated by the following code:

BlogsEntryService service = new BlogsEntryService(session);

JSONArray jsonArray = service.getGroupEntries(10184, 0, 0, -1, -1);

This fetches all blog entries from the Guest site. In this example, the Guest site’s groupId is 10184.
Note that many service methods require groupId as a parameter. You can get the user’s groups by
calling the getUserSites()method from GroupService.

Service method return types can be void, String, JSONArray, or JSONObject. Primitive type wrap-
pers can be Boolean, Integer, Long, or Double.

This BlogsEntryService call is a basic example of a synchronous service call; the method only
returns after the request finishes. However, Android doesn’t allownetwork communication froman
app’s main UI thread. Service calls issued from the main UI thread need need to be asynchronous.
For instructions on doing this, see the tutorial Invoking Services Asynchronously fromYourAndroid
App.

Great! Now you’re familiar with the basics of accessing Liferay services through the Mobile
SDK. However, there are some special cases you may run into when making service calls from your
app. These are discussed in the following sections.

Non-Primitive Arguments

There are some special cases in which a service method’s arguments aren’t primitives. In these
cases, you should use JSONObjectWrapper. For example:

JSONObjectWrapper wrapper = new JSONObjectWrapper(new JSONObject());

You must pass a JSON containing the object properties and their values. On the server side,
your object is instantiated and setters for each property are called with the values from the JSON
you passed.

There are other cases in which service methods require interfaces or abstract classes as argu-
ments. Since it’s impossible for the SDK to guess which implementation you want to use, you must
initialize JSONObjectWrapper with the class name. For example:

JSONObjectWrapper wrapper = new JSONObjectWrapper(className, new JSONObject());

The server looks for the class name in its classpath and instantiates the object for you. It then
calls setters, as in the previous example. The abstract class OrderByComparator is a good example of
this. This is discussed next.

OrderByComparator

On the server side, OrderByComparator is an abstract class. You must therefore pass the name of a
class that implements it. For example:

String className = "com.liferay.portlet.bookmarks.util.comparator.EntryNameComparator";

JSONObjectWrapper orderByComparator = new JSONObjectWrapper(className, new JSONObject());

1255

If the service you’re calling accepts null for a comparator argument, pass null to the service
call.

You may want to set the ascending property for a comparator. Unfortunately, as of Liferay
6.2, most Liferay OrderByComparator implementations don’t have a setter for this property and it
isn’t possible to set from the Mobile SDK. Future Liferay versions may address this. However, you
may have a custom OrderByComparator that has a setter for ascending. In this case, you can use the
following code:

String className = "com.example.MyOrderByComparator";

JSONObject jsonObject = new JSONObject();

jsonObject.put("ascending", true);

JSONObjectWrapper orderByComparator = new JSONObjectWrapper(className, jsonObject);

For more examples, see the test case OrderByComparatorTest.java.

ServiceContext

Another non-primitive argument is ServiceContext. It requires special attention because most
Liferay service methods require it. However, you aren’t required to pass it to the SDK; you can pass
null instead. The server then creates a ServiceContext instance for you, using default values.

If youneed to set properties for ServiceContext, you can do so by adding them to a new JSONObject

and then passing it as the ServiceContext argument:

JSONObject jsonObject = new JSONObject();

jsonObject.put("addGroupPermissions", true);

jsonObject.put("addGuestPermissions", true);

JSONObjectWrapper serviceContext = new JSONObjectWrapper(jsonObject);

For more examples, see the test case ServiceContextTest.java.

Binaries

Some Liferay services require argument types such as byte arrays (byte[]) and Files (java.io.File).
The Mobile SDK converts byte arrays to strings before sending the POST request. For example,

"hello".getBytes("UTF-8") becomes a JSON array such as "[104,101,108,108,111]". The Mobile SDK
does this for you so you don’t have worry about it; you only need to pass the byte array to the
method.

However, you need to be careful when using such methods. This is because you’re allocating
memory for the whole byte array, which may cause memory issues if the content is large.

Other Liferay service methods require java.io.File as an argument. In these cases, the Mobile
SDK requires InputStreamBody instead. To accomodate this, you need to create an InputStream and
pass it to the InputStreamBody constructor, along with the file’s mime type and name. For example:

InputStream is = context.getAssets().open("file.png");

InputStreamBody file = new InputStreamBody(is, "image/png", "file.png");

The Mobile SDK sends a multipart form request to the Liferay instance. On the server side, a
File instance is created and sent to the service method you’re calling.

It’s also possible to cancel or monitor service calls that upload data to Liferay. Every
service that uploads data returns an AsyncTask instance. You can use it to cancel the upload

1256

https://github.com/liferay/liferay-mobile-sdk/blob/master/android/src/test/java/com/liferay/mobile/android/OrderByComparatorTest.java
https://github.com/liferay/liferay-mobile-sdk/blob/master/android/src/test/java/com/liferay/mobile/android/ServiceContextTest.java

if needed. If want to listen for upload progress to create a progress bar, you can create an
UploadProgressAsyncTaskCallback callback and set it to the current Session object. Its onProgress

method is called for each byte chunk sent. It passes the total number of uploaded bytes so far. For
example:

session.setCallback(

new UploadProgressAsyncTaskCallback<JSONObject>() {

(...)

public void onProgress(int totalBytes) {

// This method will be called for each byte chunk sent.

// The totalBytes argument will contain the total number

// of uploaded bytes, from 0 to the total size of the

// request.

}

(...)

}

);

For more examples on this subject, see the addFileEntry*methods in DLAppServiceTest.java.
As you can see, the Mobile SDK does a great deal of work for you even when special service

method arguments are required.

Related Topics

Invoking Services Asynchronously from Your Android App
Building Mobile SDKs
Creating iOS Apps that Use the Mobile SDK

110.4 Invoking Services Asynchronously from Your Android App

Android doesn’t allow synchronous HTTP requests to be made from the main UI thread. You can
use Android’s AsyncTask to make synchronous requests from threads other than the main UI thread.
If you don’t want to use AsyncTask, you can make asynchronous requests through the Mobile SDK.
To do so, you need to implement and instantiate a callback class, and then set it to the session.
When theMobile SDKmakes your service calls for that session, it thenmakes them asynchronously.
To make synchronous calls again, set null as the session’s callback.

With the following steps, this tutorial shows you how to implement asynchronous requests in
your Android app:

1. Implement and instantiate your callback class.
2. Set the callback on the session.
3. Call Liferay services.

Now go ahead and get started!

1257

https://github.com/liferay/liferay-mobile-sdk/blob/master/android/src/test/java/com/liferay/mobile/android/DLAppServiceTest.java
http://developer.android.com/reference/android/os/AsyncTask.html

Implementing and Instantiating Your Callback Class

Before implementing and instantiating your callback class, you should add the required imports.
The imports you add depend on the return type of the service method you’re calling. For example,
if you need to call the service method getGroupEntries to retrieve blog entries from a site’s Blogs
portlet, you need to import the Mobile SDK’s AsyncTaskCallback and JSONArrayAsyncTaskCallback:

import com.liferay.mobile.android.task.callback.AsyncTaskCallback;

import com.liferay.mobile.android.task.callback.typed.JSONArrayAsyncTaskCallback;

This is because the getGroupEntries returns a JSONArray. There are multiple AsyncTaskCallback

implementations, one for each method return type:

• JSONObjectAsyncTaskCallback

• JSONArrayAsyncTackCallback

• StringAsyncTaskCallback

• BooleanAsyncTaskCallback

• IntegerAsyncTaskCallback

• LongAsyncTaskCallback

• DoubleAsyncTaskCallback

It’s alsopossible to use a generic AsyncTaskCallback implementation called GenericAsyncTaskCallback.
To do so, you must implement a transformmethod and handle JSON parsing yourself.

If you still don’t want to use any of these callbacks, you can implement AsyncTaskCallback directly.
However, you should be careful when doing so. You should always get the first element of the
JSONArray passed as a parameter to the onPostExecute(JSONArray jsonArray)method (for example,
jsonArray.get(0)).

Next, implement and instantiate your callback class. When implementing your callback class,
you need to implement its onFailure and onSuccessmethods. Thesemethods respectivley determine
what your app does when the request fails or succeeds. The onFailure() method is called if an
exception occurs during the request. This could be triggered by a connection exception (e.g., a
request timeout) or a ServerException. If a ServerException occurs, it’s because something went
wrong on the server side. For example, if you pass a groupId that doesn’t exist, the Liferay instance
complains about it, and the Mobile SDK wraps the error message with ServerException.

The onSuccess method is called on the main UI thread after the request finishes. Since the
request is asynchronous, the service call immediately returns a null object. The service delivers
the service’s real return value to the callback’s onSuccess()method, instead.

Example code is shown here for AsyncTaskCallback and JSONArrayAsyncTaskCallback:

AsyncTaskCallback callback = new JSONArrayAsyncTaskCallback() {

public void onFailure(Exception exception) {

// Implement exception handling code

}

public void onSuccess(JSONArray result) {

// Called after request has finished successfully

}

};

Now that you have your callback class, you can set it to the session.

1258

Setting the Callback to the Session

Once you’ve implemented and instantiated your callback class, you’re ready to set it to the session.
If you haven’t created a session yet, do so now. The tutorial Invoking Liferay Services in Your
Android App shows you how to create a session. Now you’re ready to set the callback to the session.
For example, this is done here for AsyncTaskCallback:

session.setCallback(callback);

Pretty simple! Now you’re ready to make the service call.

Making the Service Call

Last but certainly not least, make the service call. This is done the same as calling any other service:
create a service object from the session and use it to make the service call. This is also described
in the tutorial Invoking Liferay Services in Your Android App. An example service call that gets all
the blog entries from a site’s Blogs portlet is shown here:

service.getGroupEntries(10184, 0, 0, -1, -1);

The example code from the above sections is shown together here:

import com.liferay.mobile.android.task.callback.AsyncTaskCallback;

import com.liferay.mobile.android.task.callback.typed.JSONArrayAsyncTaskCallback;

...

AsyncTaskCallback callback = new JSONArrayAsyncTaskCallback() {

public void onFailure(Exception exception) {

// Implement exception handling code

}

public void onSuccess(JSONArray result) {

// Called after request has finished successfully

}

};

// create a session first

session.setCallback(callback);

// create a service object first

service.getGroupEntries(10184, 0, 0, -1, -1);

Great! Now you know how to invoke services asynchronously from your Android app.

Related Topics

Creating iOS Apps that Use the Mobile SDK
Building Mobile SDKs

1259

110.5 Sending Your Android App's Requests Using Batch Processing

The Mobile SDK also allows sending requests in batch. This can be much more efficient than
sending separate requests. For example, suppose you want to delete ten blog entries in a site’s
Blogs portlet at the same time. Instead of making a request for each deletion, you can create a
batch of calls and send them all together.

This tutorial shows you how to implement batch processing for your Android app. It’s assumed
that you already know how to invoke Liferay services from your Android app. If you don’t, see the
tutorial Invoking Liferay Services in Your Android App. Now get ready to whip up a fresh batch of
service calls!

Implementing Batch Processing

Making service calls in batch only requires two extra steps over making them one at a time:

• Create a batch session with BatchSessionImpl.
• Make the batch service calls with the invokemethod of BatchSessionImpl.

The rest of the steps are the same as making other service calls. You still need a service object,
and you still need to call its service methods. As an example, here’s a code snippet from an app
that deletes a Blogs portlet’s blog entries synchronously in batch:

import com.liferay.mobile.android.service.BatchSessionImpl;

BatchSessionImpl batch = new BatchSessionImpl(session);

BlogsEntryService service = new BlogsEntryService(batch);

service.deleteEntry(1);

service.deleteEntry(2);

service.deleteEntry(3);

JSONArray jsonArray = batch.invoke();

So what’s going on here? After the import, BatchSessionImpl is used with a pre-existing session
to create a batch session. Note that the BatchSessionImpl constructor takes either credentials or
a session. Passing a session to the constructor is useful when you already have a Session object
and want to reuse the same credentials. After creating the service object, several deleteEntry
service calls are created. Since the service object is created with a batch session, these calls aren’t
made immediately; they return null instead. The calls aren’t made until issued in batch by calling
the invoke()method on the batch session object. It returns a JSONArray containing the results for
each service call. Since this example contains three deleteEntry calls, the jsonArray contains three
objects. The results are ordered the same as the service calls.

Great! But what if you want to make batch calls asynchronously? No problem! Set the callback
as a BatchAsyncTaskCallback instance:

import com.liferay.mobile.android.task.callback.BatchAsyncTaskCallback;

batch.setCallback(new BatchAsyncTaskCallback() {

public void onFailure(Exception exception) {

}

public void onSuccess(JSONArray results) {

// The result is always a JSONArray

1260

}

});

This is similar to the procedure for making asynchronous calls as described in the tutorial
Invoking Services Asynchronously fromYour Android App. Awesome! Now you know how to make
efficient service calls in batch!

Related Topics

Invoking Liferay Services in Your Android App
Invoking Services Asynchronously from Your Android App
Creating iOS Apps that Use the Mobile SDK

110.6 Using OAuth 2 in the Android Mobile SDK

You can use OAuth 2 to authenticate with the following OAuth 2 grant types:

• Authorization Code (PKCE for native apps): Redirects users to a page in theirmobile browser
where they enter their credentials. Following login, the browser redirects users back to the
mobile app. User credentials can’t be compromised via the app because it never accesses
them—it uses a token that can be revoked. This is also useful if users don’t want to enter their
credentials in the app. For example, users may not want to enter their Twitter credentials
directly in a 3rd-party Twitter app, preferring instead to authenticate via Twitter’s official site.
Note that the site you redirect to for authentication must have OAuth 2 implemented.

• Resource Owner Password: Users authenticate by entering their credentials directly in the
app.

• Client Credentials: Authenticates without requiring user interaction. This is useful when
the app needs to access its own resources, not those of a specific user.

This tutorial shows you how to use these grant types with the Mobile SDK. Note that before
getting started, you may want to see Liferay DXP’s OAuth 2.0 documentation for instructions on
registering an OAuth 2.0 application in the portal.

Authorization Code (PKCE)

To authenticate via the Authorization Code grant type, you must call this OAuth2SignInmethod:

OAuth2SignIn.signInWithRedirect(Activity activity, Session session, String clientId,

List<String> scopes, Uri redirectUri, CustomTabsIntent customTabsIntent)

Here are descriptions of this method’s parameters:

• activity: The activity to use to present the mobile browser.
• session: The session that you want to authenticate. Its server property must be set.
• clientId: The ID of the portal’s OAuth 2 application that you want to use. To find this value,
navigate to that application in the portal’s OAuth 2 Admin portlet.

1261

https://oauth.net/2/
https://oauth.net/2/grant-types/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/password/
https://oauth.net/2/grant-types/client-credentials/

• scopes: The portal permissions to request. You can define a set of permissions associated with
an OAuth 2 application in the portal’s OAuth 2 Admin portlet. Use this property to request a
subset of those permissions.

• redirectUri: The URI that the user is redirected to after successful login in themobile browser.
You must configure this URI in the portal via the OAuth 2 Admin portlet, and associate the
URI with the Android app.

• customTabsIntent: The object used to customize the appearance of themobile browserwindow
shown for authentication.

This signInWithRedirectmethod opens the mobile browser to initiate authentication. You must
also configure the redirect URI in your Android app, which sends the user back to the Android app
when authentication completes.

Here’s an example of this workflow:

1. Configure the redirect URI in the portal via the OAuth2 Administration portlet. In the portal,
navigate to Control Panel → Configuration → OAuth2 Administration and select or create the
OAuth 2 application you want to use. Then enter the redirect URI in the Callback URIs field.
The redirect URI in this example is my-app://my-app:

Figure 110.2: Enter the redirect URI in the portal’s OAuth 2 application you want to use.

2. In your Android app, register your redirect URI by editing the AndroidManifest.xml file. Add
the following code to this file:

<activity

android:name="com.liferay.mobile.android.auth.oauth2.OAuth2RedirectActivity"

tools:node="replace">

<intent-filter>

<action android:name="android.intent.action.VIEW"/>

<category android:name="android.intent.category.DEFAULT"/>

<category android:name="android.intent.category.BROWSABLE"/>

1262

<data android:scheme="<your-scheme>"/>

</intent-filter>

</activity>

If you don’t want to use a custom scheme and you need to use HTTPS, add this instead:

<activity

android:name="com.liferay.mobile.android.auth.oauth2.OAuth2RedirectActivity"

tools:node="replace">

<intent-filter>

<action android:name="android.intent.action.VIEW"/>

<category android:name="android.intent.category.DEFAULT"/>

<category android:name="android.intent.category.BROWSABLE"/>

<data android:scheme="https"

android:host="your.custom.domain"

android:path="/oauth2redirect"/>

</intent-filter>

</activity>

3. In the activity inwhichyouwant toperform the authentication, call OAuth2SignIn.signInWithRedirect:

private void doLogin() {

Session session = new SessionImpl("http://my-server.com");

OAuth2SignIn.signInWithRedirect(this, session, "54321", new ArrayList<>(),

Uri.parse("my-app://my-app"), null);

}

This opens the mobile browser with the login page.

4. In the same activity, you must override the method onActivityResult to receive
the authentication’s result. In this method, you do this by calling the method
OAuth2SignIn.resumeAuthorizationFlowWithIntent:

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent intent) {

super.onActivityResult(requestCode, resultCode, intent);

if (requestCode == OAuth2SignIn.REDIRECT_REQUEST_CODE) {

Session session = new SessionImpl("http://my-server.com");

OAuth2SignIn.resumeAuthorizationFlowWithIntent(this, session, intent,

new SessionCallback() {

@Override

public void onSuccess(Session session) {

// Login success

}

@Override

public void onFailure(Exception e) {

// Login error

}

);

}

}

Resource Owner Password

Authenticating via the Resource Owner Password grant type is similar to authenticating via the
PKCE grant type, except you don’t need to configure a redirect URL. You instead handle the user’s
credentials directly in your Android app via a different OAuth2SignInmethod:

1263

public static Session signInWithUsernameAndPassword(String username, String password, Session session,

String clientId, String clientSecret, List<String> scopes, SessionCallback callback)

Compared to the OAuth2SignIn.signInWithRedirectmethod used for the PKCE grant type, this one
requires the user’s credentials instead of a redirect URI. It also requires the OAuth 2 application’s
client secret from the portal, and a callback.

Here are descriptions of this method’s parameters:

• username: The user’s username.
• password: The user’s password.
• session: The session that you want to authenticate. Its server property must be set.
• clientId: The ID of the portal’s OAuth 2 application that you want to use. To find this value,
navigate to that application in the portal’s OAuth 2 Admin portlet.

• clientSecret: The client secret of the same OAuth 2 application in the portal.
• scopes: The portal permissions to request. You can define a set of permissions associated with
an OAuth 2 application in the portal’s OAuth 2 Admin portlet. Use this property to request a
subset of those permissions.

• callback: A SessionCallback object containing the authentication’s result. If authentication
succeeds, you receive a non-null session containing the authentication; otherwise you receive
an error.

Note: You can call the OAuth2SignIn.signInWithUsernameAndPasswordmethod without a callback
by passing null in place of the callback. This causes the request to execute synchronously. If you
provide a callback, the request is executed asynchronously in another thread and the callback
receives the response.

Here’s an example of calling the OAuth2SignIn.signInWithUsernameAndPassword method for the
Resource Owner Password grant type. After creating the session, the method is called with a
SessionCallback created as an anonymous inner class:

Session session = new SessionImpl("http://my-server.com");

OAuth2SignIn.signInWithUsernameAndPassword("username", "password", session, "12345", "12345",

new ArrayList<>(), new SessionCallback() {

@Override

public void onSuccess(Session session) {

// Login correct

}

@Override

public void onFailure(Exception e) {

// Login error

}

});

Client Credentials

The OAuth 2 Client Credentials grant type authenticates without requiring user interaction. This is
useful when the app needs to access its own resources, not those of a specific user.

Warning: The Client Credentials grant type poses a security risk to the portal. To authenticate
without user credentials, the mobile appmust contain the OAuth 2 application’s client ID and client

1264

secret. Anyone who can access those values via the mobile app can also authenticate without user
credentials.

To authenticatewith theClientCredentials grant type, youmust call the OAuth2SignIn.clientCredentialsSignIn
method. Note that this method lacks arguments for user credentials or redirect URIs:

public static Session clientCredentialsSignIn(Session session, String clientId, String clientSecret,

List<String> scopes, SessionCallback callback)

Here are descriptions of this method’s parameters:

• sesssion: The session that you want to authenticate. Its server property must be set.
• clientId: The ID of the portal’s OAuth 2 application that you want to use. To find this value,
navigate to that application in the portal’s OAuth 2 Admin portlet.

• clientSecret: The client secret of the same OAuth 2 application in the portal.
• scopes: The portal permissions to request. You can define a set of permissions associated with
an OAuth 2 application in the portal’s OAuth 2 Admin portlet. Use this property to request a
subset of those permissions.

• callback: A SessionCallback object containing the authentication’s result. If authentication
succeeds, you receive a non-null session containing the authentication; otherwise you receive
an error.

Note: You can call the OAuth2SignIn.clientCredentialsSignIn method without a callback by
passing null in place of the callback. This causes the request to execute synchronously. If you
provide a callback, the request is executed asynchronously in another thread and the callback
receives the response.

Here’s an example of calling the OAuth2SignIn.clientCredentialsSignInmethod for the Resource
Owner Password grant type. After creating the session, the method is called with a SessionCallback

created as an anonymous inner class:

Session session = new SessionImpl("http://my-server.com");

OAuth2SignIn.clientCredentialsSignIn(session, "12345", "12345", new ArrayList<>(),

new SessionCallback() {

@Override

public void onSuccess(Session session) {

// Login correct

}

@Override

public void onFailure(Exception e) {

// Login error

}

});

Related Topics

Using OAuth 2 in Liferay Screens for Android
OAuth 2.0

1265

CHAPTER 111

CREATING IOS APPS THAT USE THE MOBILE SDK

The Liferay Mobile SDK provides a way to streamline the consumption of Liferay DXP’s core web
services and utilities, as well as those of custom apps. It wraps Liferay DXP’s JSON web services,
making them easy to call in native mobile apps. It handles authentication, makes HTTP requests
(synchronously or asynchronously), parses JSON results, and handles server-side exceptions so
you can concentrate on using the services in your app.

The Liferay Mobile SDK comes with the Liferay iOS SDK. The official project page gives you
access to the SDK releases, provides the latest SDK news, and has forums for you to engage in
mobile app development discussions. Once you configure the Mobile SDK in your app, you can
invoke Liferay DXP services in it.

The iOS Mobile SDK app development tutorials cover these topics:

• Making Liferay and Custom Portlet Services Available in Your iOS App
• Invoking Liferay Services in Your iOS App
• Invoking Services Asynchronously from Your iOS App
• Sending Your iOS App’s Requests Using Batch Processing

A great way to start is by setting up the Mobile SDK your iOS project. This makes Liferay DXP’s
services available in your app.

111.1 Related Topics

Invoking Liferay Services in Your iOS App
Building Mobile SDKs
Creating Android Apps that Use the Mobile SDK

111.2 Making Liferay and Custom Portlet Services Available in Your iOS App

Your iOS app is no doubt pretty great, or at least off to a great start. Now you want it to access
Liferay services. How do you accomplish this? Use Liferay’s iOS Mobile SDK, of course! You must
install the correct Mobile SDKs in your iOS project to call the remote services you need in your app.

1267

https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview

Figure 111.1: Liferay’s Mobile SDK enables your native app to communicate with Liferay.

1268

You should first install Liferay’s prebuilt Mobile SDK. This is required for any app that leverages
Liferay. To call your custom portlet’s services, you also need to install the Mobile SDK that you built
for it. For instructions on building a Mobile SDK for your custom portlet, see the tutorial Building
Mobile SDKs.

This tutorial shows you how to install Liferay’s prebuilt Mobile SDK, and any custom built
Mobile SDKs. First, you’ll learn how to use CocoaPods to install Liferay’s prebuilt Mobile SDK.
You’ll then learn how to install a Mobile SDK manually, which is required for installing any custom
built Mobile SDKs. Now go forth and fear no remote service!

Installing the SDK Using CocoaPods

Using CocoaPods is the simplest way to install Liferay’s prebuilt Mobile SDK. The steps for doing so
are shown here:

1. Make sure you have CocoaPods installed.

2. Create a file called Podfile in your project. Add the following line in this file:

pod 'Liferay-iOS-SDK'

3. Run pod install from your project’s directory. This downloads the latest version of the
Liferay iOS Mobile SDK and creates a .xcworkspace file. CocoaPods also downloads all the
necessary dependencies and configures your workspace. Note that you may have to run
pod repo update before running pod install; this ensures you have the latest version of the
CocoaPods repository on your machine.

4. Use the .xcworkspace file to open your project in Xcode.

5. If you’re importing dependencies as frameworks (use_frameworks! in your Podfile), you need
to import the LRMobileSDKmodule:

@import LRMobileSDK; // (Objective-C)

import LRMobileSDK // (Swift)

For more information on how CocoaPods works, see their documentation. Next, you’ll learn
how to install a Mobile SDK manually.

Installing an iOS SDKManually

You can also install Mobile SDKsmanually. This is required if you built one for your custom portlet’s
services. You can also install install Liferay’s prebuilt Mobile SDKmanually if you don’t want to use
CocoaPods.

1. To install Liferay’s prebuilt Mobile SDK, first download the latest version of the Liferay iOS
Mobile SDK ZIP file. If you built your own Mobile SDK, find its ZIP file on your machine. This
is detailed in the Building Mobile SDKs tutorial.

2. Unzip the file into your Xcode project.

3. Within Xcode, right-click on your project and click Add Files to ‘Project Name’.

1269

https://cocoapods.org/
https://cocoapods.org/
http://guides.cocoapods.org/using/index.html
https://github.com/liferay/liferay-mobile-sdk/releases

4. Add the core and v7 folders. Note the v7 folder’s name can change for each Liferay version.
In this example, the SDK is built for Liferay 7.0.

5. If you’re manually installing Liferay’s prebuilt Mobile SDK, it also requires AFNetworking
2.6.3. Add its source code to your project.

Great! Now you know how to manually install a Mobile SDK in your iOS apps.

Understanding Liferay and iOS Compatibility

Each LiferayMobile SDK is designed to workwith a specific Liferay version. The LiferayMobile SDK
version number reflects this. The first two digits of each Mobile SDK’s version number correspond
to the compatible Liferay version. For example, a Mobile SDK version 6.2.* is compatible with
Liferay 6.2, while a Mobile SDK version 7.0.* is compatible with Liferay 7.0. Any digits after the
first two correspond to the internal Liferay Mobile SDK build.

The Mobile SDK’s service class names are also suffixed with the Mobile SDK’s version number.
This lets your app support several Liferay versions. For example, you can add Mobile SDK versions
6.2.0.22 and 7.0.3 to the same project. The Mobile SDK service classes supporting Liferay versions
6.2 and 7.0 end in _v62.m and _v7.m, respectively. To find out the Liferay versions your app connects
to, use the [LRPortalVersionUtil getPortalVersion:...] method.

The Liferay iOS Mobile SDK is compatible with iOS versions 7.0 and up. Older iOS versions may
work, but compatibility is untested.

Making Custom Portlet Services Available in Your iOS App

If you want to invoke remote web services for your custom portlet, then you need to generate its
client libraries by building an iOS Mobile SDK yourself. Building an SDK is covered in the tutorial
Building Mobile SDKs. Once you build an SDK to a ZIP file, you can install it using the manual
installation steps above (make sure to use the ZIP file you built instead of Liferay’s prebuilt ZIP
file). Note that because your custom built SDKs contain only the client libraries for calling your
custom portlet services, you must install them alongside Liferay’s prebuilt SDK. Liferay’s prebuilt
SDK contains additional classes that are required to construct any remote service call.

Related Topics

Building Mobile SDKs
Creating Android Apps that Use the Mobile SDK

111.3 Invoking Liferay Services in Your iOS App

Once the appropriate Mobile SDKs are set up in your iOS project, you can access and invoke
@product services in your app. This tutorial takes you through the steps you must follow to invoke
these services:

1. Create a session.
2. Import the @product services you need to call.
3. Create a service object and call the service methods.

1270

https://github.com/AFNetworking/AFNetworking/releases/tag/2.6.3
https://github.com/AFNetworking/AFNetworking/releases/tag/2.6.3

Since some service calls require special treatment, this tutorial also shows you how to handle
them. Note that the code snippets in this tutorial are written in Objective-C.

First, you’ll learn about securing Liferay DXP’s JSON web services in the portal.

Securing JSONWeb Services

The Liferay Mobile SDK calls Liferay DXP’s JSON web services, which are enabled by default. The
web services you call via the Mobile SDK must remain enabled for those calls to work. It’s possible,
however, to disable the web services that you don’t need to call. For instructions on this, see
the tutorial Configuring JSONWeb Services. You can also use Service Access Policies for more
fine-grained control over accessible services.

Step 1: Create a Session

A session is a conversion state between the client and server, consisting of multiple requests and
responses between the two. You need a session to pass requests between your app and the Mobile
SDK. In most cases, sessions need to be created with user authentication. The imports and code
required to create a session are shown here:

#import "LRBasicAuthentication.h"

#import "LRSession.h"

LRSession *session = [[LRSession alloc] initWithServer:@"http://localhost:8080"

authentication:[[LRBasicAuthentication alloc] initWithUsername:@"test@example.com" password:@"test"]];

The LRSession object is created with initializers specifying the Liferay instance to connect to and
the credentials of the user to authenticate. The initWithServer parameter sets the URL of the Liferay
instance you’re connecting to. In this case, the Liferay instance is running on http://localhost:8080.
The iOS emulator is also running on the same machine. Next, the authentication parameter takes
an LRBasicAuthentication instance with the credentials of the user to authenticate. Depending on
the authentication method used by your Liferay instance, you need to provide the user’s email
address, screen name, or user ID to the initWithUsername parameter. You also need to provide the
user’s password to the password parameter.

Using LRBasicAuthentication tells the session to authenticate each service call with Basic Au-
thentication. The Mobile SDK also supports OAuth 2 authentication. For instructions on this, see
the tutorial Using OAuth 2 in the iOS Mobile SDK.

Warning: Be careful when using administrator credentials on a production portal instance, as
you’ll have permission to call any service. Make sure not to modify data accidentally. Of course,
the default administrator credentials should be disabled on a production portal instance.

If you’re building a sign in view for your app, you can use the LRSignIn utility class to check if
the credentials given by the user are valid:

#import "LRSignIn.h"

[session

onSuccess:^(id result) {

user = result;

[monitor signal];

}

onFailure:^(NSError *e) {

error = e;

1271

[monitor signal];

}

];

[LRSignIn signInWithSession:session callback:session.callback error:&error];

The Mobile SDK doesn’t keep a persistent connection or session with the server. Each request
is sent with the user’s credentials (except when using OAuth). However, the SignIn class provides a
way to return user information after a successful sign-in.

You can persist credentials with LRCredentialStorage. It safely saves the username and password
in the keychain:

[LRCredentialStorage storeCredentialForServer:@"http://localhost:8080"

username:@"test@example.com" password:@"test"];

After credentials are stored, you can retrieve them with:

NSURLCredential *credential = [LRCredentialStorage getCredential];

Alternatively, you can create an LRSession instance directly with:

LRSession *session = [LRCredentialStorage getSession];

For more examples of this, see CredentialStorageTest.m.
Next, you’re shown how to create an unauthenticated session in the limited cases where this is

possible.

Creating an Unauthenticated Session

In some cases, it’s possible to create an LRSession instance without user credentials. However,
most Liferay remote methods don’t accept unauthenticated remote calls. Making a call with an
unauthenticated session generates an Authentication access required exception in most cases.

Unauthenticated service calls only work if the remote method in the Liferay instance or
your plugin has the @AccessControlled annotation. This is shown here for the hypothetical class
FooServiceImpl and its method bar:

import com.liferay.portal.security.ac.AccessControlled;

...

public class FooServiceImpl extends FooServiceBaseImpl {

...

@AccessControlled(guestAccessEnabled = true)

public void bar() { ... }

...

To make such a call, you need to use the constructor that accepts the server URL only:

LRSession *session = [[LRSession alloc] initWithServer:@"http://localhost:8080"];

Fantastic! Now that you have a session, you can use it to call Liferay’s services.

1272

https://github.com/liferay/liferay-mobile-sdk/blob/ios-6.2.0.17/ios/Test/CredentialStorageTest.m

Step 2: Import the Service

First, you should determine the Liferay services you need to call. You can find the available services
at http://localhost:8080/api/jsonws. Be sure to replace http://localhost:8080 in this URLwith your
server’s address.

Once you determine the services you need to call, add their imports. For example, if you’re
building a blogs app, you can import LRBlogsEntryService:

#import "LRBlogsEntryService_v62.h"

Note that the Liferay version (_v62) is used in the service class’s name. This corresponds to
the Liferay version it’s compatible with. In this example, _v62 is used, which means this Mobile
SDK class is compatible with Liferay 6.2. Mobile SDK classes compatible with Liferay 7.0 use _v7

instead. Because service class names contain the Liferay version they’re compatible with, you can
use several Mobile SDKs simultaneously to support different Liferay versions in the same app.

Step 3: Calling the Service

Once you have a session and have imported the service class, you’re ready to make the service call.
This is done by creating a service object for the service you want to call, and then calling its service
methods. For example, if you’re creating a blogs app, you need to use LRBlogsEntryService to get all
the blogs entries from a site. This is demonstrated by the following code.

LRBlogsEntryService_v62 *service = [[LRBlogsEntryService_v62 alloc] initWithSession:session];

NSError *error;

NSArray *entries = [service getGroupEntriesWithGroupId:10184 status:0 start:-1 end:-1 error:&error];

This fetches all blog entries from the Guest site. In this example, the Guest site’s groupId is 10184.
Note that many service methods require groupId as a parameter. You can get the user’s groups by
calling [LRGroupService_v62 getUserSites:&error].

Service method return types can be void, NSString, NSArray, NSDictionary, NSNumber, and BOOL.
This LRBlogsEntryService call is a basic example of a synchronous service call. The method in a

synchronous service call returns only after the request is finished.

Non-Primitive Arguments

There are some special cases in which service method arguments aren’t primitives. In these cases,
you should use LRJSONObjectWrapper. For example:

LRJSONObjectWrapper *wrapper = [[LRJSONObjectWrapper alloc]

initWithJSONObject:[NSDictionary dictionary]];

You must pass a dictionary containing the object’s properties and their values. On the server
side, your object is instantiated and setters for each property are called with the values from the
dictionary.

There are some other cases in which service methods require interfaces or abstract classes as
arguments. Since it’s impossible for the SDK to guess which implementation you want to use, you
must initialize LRJSONObjectWrapper with the class name. For example:

LRJSONObjectWrapper *wrapper = [[LRJSONObjectWrapper alloc]

initWithClassName:@"com.example.MyClass" jsonObject:[NSDictionary dictionary]];

1273

http://localhost:8080/api/jsonws

The server looks for the class name in its classpath and instantiates the object for you. It then
calls setters, as in the previous example. The abstract class OrderByComparator is a good example of
this. This is discussed next.

OrderByComparator

On the server side, OrderByComparator is an abstract class. You must therefore pass the name of a
class that implements it. For example:

NSString *className = @"com.liferay.portlet.bookmarks.util.comparator.EntryNameComparator";

LRJSONObjectWrapper *orderByComparator = [[LRJSONObjectWrapper alloc] initWithClassName:className jsonObject:[NSDictionary dictionary]];

If the service you’re calling accepts null for a comparator argument, pass nil to the service call.
You may want to set the ascending property for a comparator. Unfortunately, as of Liferay

6.2, most Liferay OrderByComparator implementations don’t have a setter for this property and it
isn’t possible to set from the Mobile SDK. Future Liferay versions may address this. However, you
may have a custom OrderByComparator that has a setter for ascending. In this case, you can use the
following code:

NSString *className = @"com.example.MyOrderByComparator";

NSDictionary *jsonObject = @{

@"ascending": @(YES)

};

LRJSONObjectWrapper *orderByComparator = [[LRJSONObjectWrapper alloc]

initWithClassName:className jsonObject:jsonObject];

For more examples, see the test case OrderByComparatorTest.m.

ServiceContext

Another non-primitive argument is ServiceContext. It requires special attention because most
Liferay service methods require it. However, you aren’t required to pass it to the SDK; you can pass
nil instead. The server then creates a ServiceContext instance for you, using default values.

If you need to set properties for ServiceContext, you can do so by adding them to a new
NSDictionary and then passing it as the ServiceContext argument:

NSDictionary *jsonObject = @{

@"addGroupPermissions": @(YES),

@"addGuestPermissions": @(YES)

};

LRJSONObjectWrapper *serviceContext = [[LRJSONObjectWrapper alloc] initWithJSONObject:jsonObject];

For more examples, see the test case ServiceContextTest.m.

Binaries

Some Liferay services require binary argument types like NSData or LRUploadData. The Mobile SDK
converts NSData instances to NSString before sending the POST request. For example, [@"hello"
dataUsingEncoding:NSUTF8StringEncoding] becomes a JSON array such as "[104,101,108,108,111]".
The Mobile SDK does this for you, so you don’t have worry about it; you only need to pass the NSData

instance to the method.

1274

https://github.com/liferay/liferay-mobile-sdk/blob/ios-6.2.0.17/ios/Test/OrderByComparatorTest.m
https://github.com/liferay/liferay-mobile-sdk/blob/ios-6.2.0.17/ios/Test/ServiceContextTest.m

However, you need to be careful when using such methods. This is because you’re allocating
memory for the whole NSData, which may cause memory issues if the content is large.

Other Liferay service methods require java.io.File as an argument. In these cases the Mobile
SDK requires LRUploadData instead. Here are two examples of creating LRUploadData instances:

LRUploadData *upload = [[LRUploadData alloc]

initWithData:data fileName:@"file.png" mimeType:@"image/png"];

LRUploadData *upload = [[LRUploadData alloc]

initWithInputStream:is length:length fileName:@"file.png" mimeType:@"image/png"];

The first constructor accepts an NSData argument, while the second accepts NSInputStream. As
you can see, you also need to pass the file’s mime type and name. The length is the size in bytes of
the content being sent. The SDK sends a multipart form request to the Liferay instance. On the
server side, a File instance is created and sent to the service method you’re calling.

It’s also possible to monitor service calls that upload data to Liferay. If want to listen for upload
progress to create a progress bar, you can create a LRProgressDelegate delegate and set it to an
LRUploadData object. Its onProgressBytes method is called for each byte chunk sent. It passes the
bytes that were sent, the total number of bytes sent so far, and the total request size. For example:

@interface ProgressDelegate : NSObject <LRProgressDelegate>

@end

@implementation ProgressDelegate

- (void)onProgressBytes:(NSUInteger)bytes sent:(long long)sent

total:(long long)total {

// bytes contains the byte values that were sent.

// sent will contain the total number of bytes sent.

// total will contain the total size of the request in bytes.

}

@end

For more examples of this, see the test case FileUploadTest.m.

Related Topics

Building Mobile SDKs
Creating Android Apps that Use the Mobile SDK

111.4 Invoking Services Asynchronously from Your iOS App

The main drawback of using synchronous requests from your app is that each request must ter-
minate before another can begin. If you’re sending a large number of synchronous requests,
performance suffers as a bottleneck forms while each one waits to be processed. Fortunately,
Liferay’s iOS SDK allows asynchronous HTTP requests. To do so, you need to set a callback to the
session object. If you want to make synchronous requests again, you can set the callback to nil.

With the following steps, this tutorial shows you how to implement asynchronous requests in
your iOS app:

1275

https://github.com/liferay/liferay-mobile-sdk/blob/ios-6.2.0.17/ios/Test/FileUploadTest.m

1. Implement your callback class.
2. Instantiate your callback class and set it to the session.
3. Call Liferay services.

Objective-C is used in the code snippets that follow. Let the requesting begin!

Implementing Your Callback Class

To configure asynchronous requests, first create a class that conforms to the LRCallback protocol.
When implementing this callback class, you need to implement its onFailure and onSuccessmethods.
These methods respectively determine what your app does when the request fails or succeeds. If
a server side exception or a connection error occurs during the request, the onFailuremethod is
called with an NSError instance that contains information about the error. Note that the onSuccess

result parameter doesn’t have a specific type. When deciding what to cast it to, you need to check
the type in the service method signature.

The example code here implements a callback class for an app that retrieves blog entries from
a Blogs portlet. The service method for this call is getGroupEntriesWithGroupId, which returns an
NSArray instance. The onSuccessmethod’s result parameter is therefore cast to this type:

#import "LRCallback.h"

@interface BlogsEntriesCallback : NSObject <LRCallback>

@end

#import "BlogsEntriesCallback.h"

@implementation BlogsEntriesCallback

- (void)onFailure:(NSError *)error {

// Implement error handling code

}

- (void)onSuccess:(id)result {

// Called after request has finished successfully

NSArray *entries = (NSArray *)result;

}

@end

Awesome! Now you have a callback class that you can use with the session.

Set the Callback to the Session

Next, create an instance of this callback and set it to the session. If you haven’t created a session
yet, do so now. The tutorial Invoking Liferay Services in Your iOS App shows you how to create
a session. Now you’re ready to set the callback to the session. For example, this is done here for
BlogsEntriesCallback:

BlogsEntriesCallback *callback = [[BlogsEntriesCallback alloc] init];

[session setCallback:callback];

Pretty simple! Now you’re ready to make the service call.

1276

Making the Service Call

Last but certainly not least, make the service call. This is done the same as calling any other service:
create a service object from the session and use it to make the service call. This is also described
in the tutorial Invoking Liferay Services in Your iOS App. Here, an example service call that gets all
the blog entries from a site’s Blogs portlet is shown:

[service getGroupEntriesWithGroupId:10184 status:0 start:-1 end:-1 error:&error];

Since the request is asynchronous, getGroupEntriesWithGroupId immediately returns nil. Once
the request finishes successfully, the onSuccessmethod of your callback is invoked with the results
on the main UI thread.

Great! Now you know how to make asynchronous requests in your iOS apps. However, there’s
another way to accomplish the same thing. This is discussed next.

Using Blocks as Callbacks

Instead of implementing a separate callback class, you can use an Objective-C block as a callback.
An example of this is shown here for an asynchronous call that retrieves a user’s sites. Note that
this includes all the code required to make the call:

LRSession *session = [[LRSession alloc]

initWithServer:@"http://localhost:8080" username:@"test@example.com" password:@"test"];

[session

onSuccess:^(id result) {

// Called after request has finished successfully

}

onFailure:^(NSError *e) {

// Implement error handling code

}

];

LRGroupService_v62 *service = [[LRGroupService_v62 alloc] initWithSession:session];

NSError *error;

[service getUserSites:&error];

When using a block as a callback, take care not to also set an LRCallback instance to the session.
If you do, it gets overridden. Otherwise, support for blocks works the same way as described in the
previous sections.

Super! Now you know two different ways to make asynchronous service requests in your iOS
apps.

Related Topics

Invoking Liferay Services in Your iOS App
Creating Android Apps that Use the Mobile SDK

111.5 Sending Your iOS App's Requests Using Batch Processing

The Mobile SDK also allows sending requests in batch. This can be much more efficient than
sending separate requests. For example, suppose you want to delete ten blog entries in a site’s

1277

Blogs portlet at the same time. Instead of making a request for each deletion, you can create a
batch of calls and send them all together.

This tutorial shows you how to implement batch processing for your iOS app. It’s assumed that
you already know how to invoke Liferay services from your iOS app. If you don’t, see the tutorial
Invoking Liferay Services in Your iOS App. Objective-C is used in the code snippets that follow.
Now it’s time to whip up a fresh batch of requests!

Implementing Batch Processing

Making service calls in batch only requires two extra steps over making them one at a time:

• Create a batch session with LRBatchSession.
• Make the batch service calls with the invokemethod of LRBatchSession.

The rest of the steps are the same as making other service calls. You still need a service object,
and you still need to call its service methods. As an example, here’s a code snippet from an app
that deletes a Blogs portlet’s blog entries synchronously in batch:

#import "LRBatchSession.h"

LRBatchSession *batch = [[LRBatchSession alloc]

initWithServer:@"http://localhost:8080" username:@"test@example.com" password:@"test"];

LRBlogsEntryService_v62 *service = [[LRBlogsEntryService_v62 alloc] initWithSession:batch];

NSError *error;

[service deleteEntryWithEntryId:1 error:&error];

[service deleteEntryWithEntryId:2 error:&error];

[service deleteEntryWithEntryId:3 error:&error];

NSArray *entries = [batch invoke:&error];

So what’s going on here? After the import, LRBatchSession is used with a Liferay instance’s URL
and a user’s credentials to create a batch session. You can alternatively pass a pre-existing session

to the constructor. This is useful when you already have a session object and want to reuse the
same credentials. Next, the service calls are made as usual (in this case, deleteEntryWithEntryId).
With asynchronous calls, these methods return nil right away. Finally, call [batch invoke:&error].
This returns an NSArray containing the results for each service call (the return type for batch calls
is always NSArray). Since there are three deleteEntryWithEntryId calls, the entries array contains
three objects. The order of the results matches the order of the service calls.

If you want to make batch calls asynchronously, set the callback to the session as usual.

[batch setCallback:callback];

Great! Now you know how to utilize batch processing to speed up your app’s requests.

Related Topics

Invoking Liferay Services in Your iOS App
Creating Android Apps that Use the Mobile SDK

1278

111.6 Using OAuth 2 in the iOS Mobile SDK

You can use OAuth 2 to authenticate using the following OAuth 2 grant types:

• Authorization Code (PKCE for native apps): Redirects users to a page in theirmobile browser
where they enter their credentials. Following login, the browser redirects users back to the
mobile app. User credentials can’t be compromised via the app because it never accesses
them—it uses a token that can be easily revoked. This is also useful if users don’t want to enter
their credentials in the app. For example, usersmay notwant to enter their Twitter credentials
directly in a 3rd-party Twitter app, preferring instead to authenticate via Twitter’s official site.
Note that the site you redirect to for authentication must have OAuth 2 implemented.

• Resource Owner Password: Users authenticate by entering their credentials directly in the
app.

• Client Credentials: Authenticates without requiring user interaction. This is useful when
the app needs to access its own resources, not those of a specific user.

This tutorial shows you how to use these grant types with the Mobile SDK. Note that before
getting started, you may want to see Liferay DXP’s OAuth 2.0 documentation for instructions on
registering an OAuth 2.0 application in the portal.

Authorization Code (PKCE)

To authenticate via the Authorization Code grant type, you must call the following LROAuth2SignIn

method:

LROAuth2SignIn.signIn(withRedirectURL: URL, session: LRSession, clientId: String,

scopes: [String], callback: (LRSession?, Error?) -> Void) -> LROAuth2AuthorizationFlow

Here are descriptions of this method’s parameters:

• withRedirectURL: The URL that the user is redirected to after successful login in the mobile
browser. You must configure this URL in the portal via the OAuth 2 Admin portlet, and
associate the URL with the iOS app.

• session: The session that you want to authenticate. Its server property must be set.
• clientId: The ID of the portal’s OAuth 2 application that you want to use. To find this value,
navigate to that application in the portal’s OAuth 2 Admin portlet.

• scopes: The portal permissions to request. You can define a set of permissions associated with
an OAuth 2 application in the portal’s OAuth 2 Admin portlet. Use this property to request a
subset of those permissions.

• callback: A function called with the authentication’s result. If authentication succeeds, you
receive a non-null session containing the authentication; otherwise you receive an error.

This LROAuth2SignIn.signIn method returns an LROAuth2AuthorizationFlow object that rep-
resents an ongoing authentication request. You must save this as an AppDelegate property
and then call the LROAuth2AuthorizationFlow method resumeAuthorizationFlowWithURL in the
application(_:open:options:) method.

Here’s an example of this workflow:

1279

https://oauth.net/2/
https://oauth.net/2/grant-types/
https://oauth.net/2/grant-types/authorization-code/
https://oauth.net/2/grant-types/password/
https://oauth.net/2/grant-types/client-credentials/
https://developer.apple.com/documentation/uikit/core_app/communicating_with_other_apps_using_custom_urls

1. Configure the redirect URI in the portal via the OAuth2 Administration portlet. In the portal,
navigate to Control Panel → Configuration → OAuth2 Administration and select or create the
OAuth 2 application you want to use. Then enter the redirect URI in the Callback URIs field.
The redirect URI in this example is my-app://my-app:

Figure 111.2: Enter the redirect URL in the portal’s OAuth 2 application you want to use.

2. In your iOS app, register your redirect URL via the Info tab in your project settings. For
instructions on this, see the section Register Your URL Scheme in Apple’s documentation on
using custom URLs.

Figure 111.3: Register the redirect URL in your iOS app.

3. In your AppDelegate, create a LROAuth2AuthorizationFlow property. You’ll set this property later
when you call the LROAuth2SignIn.signInmethod:

var authorizationFlow: LROAuth2AuthorizationFlow?

4. In the view controller in which you’ll call LROAuth2SignIn.signIn, define the callback that runs
with the authentication’s result. This callback can perform any action you need. In this
example, if the authentication succeeds the callback prints a success message and calls a
sample method that tests the session’s user credentials; otherwise it prints an error message:

1280

https://developer.apple.com/documentation/uikit/core_app/communicating_with_other_apps_using_custom_urls
https://developer.apple.com/documentation/uikit/core_app/communicating_with_other_apps_using_custom_urls

let oauth2Callback: (LRSession?, Error?) -> Void = { session, error in

if let session = session {

print("Login successful")

testCredentials(session: session)

}

else {

print(error!)

}

}

5. In the same view controller, call the LROAuth2SignIn.signInmethodwith the above parameters.
Set the resulting LROAuth2AuthorizationFlow to the AppDelegate property you created in step 3.
This example does this in a loginWithRedirect()method:

func loginWithRedirect() {

let session = LRSession(server: "http://my-server.com")

let redirectUrl = URL(string: "my-app://my-app")!

let clientIdRedirect = "54321"

let authorizationFlow = LROAuth2SignIn.signIn(withRedirectURL: redirectUrl,

session: session, clientId: clientIdRedirect, scopes: [], callback: oauth2Callback)

(UIApplication.shared.delegate as! AppDelegate).authorizationFlow = authorizationFlow

}

6. In your AppDelegate’s application(_:open:options:) method, call the LROAuth2AuthorizationFlow
method resumeAuthorizationFlowwith theURL. Formore informationon the application(_:open:options:)
method, see the section Handle Incoming URLs in Apple’s documentation on using custom
URLs:

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate {

...

var authorizationFlow: LROAuth2AuthorizationFlow?

func application(_ app: UIApplication, open url: URL,

options: [UIApplicationOpenURLOptionsKey : Any] = [:]) -> Bool {

if let authorizationFlow = authorizationFlow {

return authorizationFlow.resumeAuthorizationFlow(with: url)

}

}

...

}

Resource Owner Password

Authenticating via the Resource Owner Password grant type is similar to authenticating via the
PKCE grant type, except you don’t need a redirect URL. You instead handle the user’s credentials
directly in your iOS app via a slightly different LROAuth2SignIn.signInmethod:

LROAuth2SignIn.signIn(withUsername: String, password: String, session: LRSession, clientId: String,

clientSecret: String, scopes: [String], callback: (LRSession?, Error?) -> Void) -> LRSession?

1281

https://developer.apple.com/documentation/uikit/core_app/communicating_with_other_apps_using_custom_urls
https://developer.apple.com/documentation/uikit/core_app/communicating_with_other_apps_using_custom_urls

Compared to the LROAuth2SignIn.signInmethod used for the PKCE grant type, this one requires
the user’s credentials instead of a redirect URL. It also requires the OAuth 2 application’s client
secret from the portal.

Here are descriptions of this method’s parameters:

• withUsername: The user’s username.
• password: The user’s password.
• session: The session that you want to authenticate. Its server property must be set.
• clientId: The ID of the portal’s OAuth 2 application that you want to use. To find this value,
navigate to that application in the portal’s OAuth 2 Admin portlet.

• clientSecret: The client secret of the same OAuth 2 application in the portal.
• scopes: The portal permissions to request. You can define a set of permissions associated with
an OAuth 2 application in the portal’s OAuth 2 Admin portlet. Use this property to request a
subset of those permissions.

• callback: A function called with the authentication’s result. If authentication succeeds, you
receive a non-null session containing the authentication; otherwise you receive an error.

Note: You can call the LROAuth2SignIn.signInmethod without a callback by passing nil as the
callback argument. This causes the request to execute synchronously. If you provide a callback,
the request is executed asynchronously in another thread and the callback receives the response.

Follow these steps to call the LROAuth2SignIn.signInmethod for the Resource Owner Password
grant type:

1. If you want to provide a callback, define it in the view controller in which you’ll call
LROAuth2SignIn.signIn. This callback can perform any action you need. In this example, if
the authentication succeeds the callback prints a success message and calls a sample method
that tests the session’s user credentials; otherwise it prints an error message:

let oauth2Callback: (LRSession?, Error?) -> Void = { session, error in

if let session = session {

print("Login successful")

testCredentials(session: session)

}

else {

print(error!)

}

}

2. In the same view controller, call the LROAuth2SignIn.signInmethodwith the above parameters.
This example does this in a loginWithUsernameAndPassword()method:

func loginWithUsernameAndPassword() {

if password.isEmpty {

fatalError("you have to enter the password")

}

let session = LRSession(server: "http://my-server.com")

let clientId = "12345"

let clientSecret = "12345"

_ = try? LROAuth2SignIn.signIn(withUsername: "test@example.com", password: password,

session: session, clientId: clientId, clientSecret: clientSecret, scopes: [],

callback: oauth2Callback)

}

1282

Client Credentials

The OAuth 2 Client Credentials grant type authenticates without requiring user interaction. This is
useful when the app needs to access its own resources, not those of a specific user.

Warning: The Client Credentials grant type poses a security risk to the portal. To authenticate
without user credentials, the mobile appmust contain the OAuth 2 application’s client ID and client
secret. Anyone who can access those values via the mobile app can also authenticate without user
credentials.

To authenticate with the Client Credentials grant type, you must call the LROAuth2SignIn.signIn

method that lacks arguments for user credentials or redirect URLs:

LROAuth2SignIn.clientCredentialsSignIn(with: LRSession, clientId: String,

clientSecret: String, scopes: [String], callback: (LRSession?, Error?) -> Void)

Here are descriptions of this method’s parameters:

• with: The session that you want to authenticate. Its server property must be set.
• clientId: The ID of the portal’s OAuth 2 application that you want to use. To find this value,
navigate to that application in the portal’s OAuth 2 Admin portlet.

• clientSecret: The client secret of the same OAuth 2 application in the portal.
• scopes: The portal permissions to request. You can define a set of permissions associated with
an OAuth 2 application in the portal’s OAuth 2 Admin portlet. Use this property to request a
subset of those permissions.

• callback: A function called with the authentication’s result. If authentication succeeds, you
receive a non-null session containing the authentication; otherwise you receive an error.

Note: You can call the LROAuth2SignIn.signInmethod without a callback by passing nil as the
callback argument. This causes the request to execute synchronously. If you provide a callback,
the request is executed asynchronously in another thread and the callback receives the response.

Follow these steps to call the LROAuth2SignIn.signIn method for the Client Credentials grant
type:

1. If you want to provide a callback, define it in the view controller in which you’ll call
LROAuth2SignIn.signIn. This callback can perform any action you need. In this example, if
the authentication succeeds the callback prints a success message and calls a sample method
that tests the session’s user credentials; otherwise it prints an error message:

let oauth2Callback: (LRSession?, Error?) -> Void = { session, error in

if let session = session {

print("Login successful")

testCredentials(session: session)

}

else {

print(error!)

}

}

2. In the same view controller, call the LROAuth2SignIn.signInmethodwith the above parameters.
This example does this in a loginWithClientCredentials()method:

1283

func loginWithClientCredentials() {

let session = LRSession(server: "http://my-server.com")

let clientId = "12345"

let clientSecret = "12345"

_ = try? LROAuth2SignIn.clientCredentialsSignIn(with: session, clientId: clientId,

clientSecret: clientSecret, scopes: [], callback: oauth2Callback)

}

Related Topics

Using OAuth 2 in Liferay Screens for iOS
OAuth 2.0

111.7 Building Mobile SDKs

The Liferay Mobile SDK lets you connect your Android and iOS apps to a Liferay DXP instance. By
accessing built-in portal services through Liferay’s prebuilt Mobile SDK, your apps can access the
out-of-the-box functionality in a Liferay DXP instance. But what if you want to call custom services
that belong to a custom portlet? No problem! In this case, you need to build your own Mobile SDK
that can call these custom portlet services.

Note that when you build a Mobile SDK for a portlet, it contains only the classes needed to call
that portlet’s remote services. You still need to install Liferay’s prebuilt Mobile SDK in your app. It
contains the framework required to construct remote service calls in general.

The Liferay Mobile SDK project contains a Mobile SDK Builder that generates a customMobile
SDK for the Android and iOS platforms. The Mobile SDK Builder does this by generating client
libraries that let your native mobile apps invoke a custom portlet’s remote web services. Think of
the Mobile SDK Builder as a Service Builder on the client side.

This tutorial covers how to build a custom Mobile SDK for Android and iOS. You’ll begin by
making sure the remote services are configured for any custom portlets you have.

Configuring Your Portlet's Remote Services

For the Mobile SDK Builder to discover a portlet’s remote services, the services must be available
and accompanied by aWeb Service Deployment Descriptor (WSDD). For instructions on creating a
portlet’s remote services and building itsWSDD, click here.

Next, you’ll download the Liferay Mobile SDK’s source code.

Downloading the Liferay Mobile SDK

To build a Mobile SDK for your custom portlet’s services, you need to have the Liferay Mobile SDK’s
source code on your local machine. This code also contains the Mobile SDK Builder. You can get
this code by cloning the Mobile SDK project via Git, or by downloading it from GitHub. To clone
the Mobile SDK project with Git, open a terminal and navigate to the directory on your machine in
which you want to put the Mobile SDK. Then run this command:

git clone git@github.com:liferay/liferay-mobile-sdk.git

1284

https://github.com/liferay/liferay-mobile-sdk
https://github.com/liferay/liferay-mobile-sdk

Since the Mobile SDK changes frequently, you should check out the latest stable release for
your chosen mobile platform (Android or iOS). Click here to see the list of available stable releases.
Stable releases correspond to tags in GitHub that begin with the mobile platform and end with the
Liferay Mobile SDK version. For example, the android-7.0.6 tag corresponds to version 7.0.6 of the
Liferay Mobile SDK for Android. To check out this tag in a new branch of the same name, you can
use this command:

git checkout tags/android-7.0.6 -b android-7.0.6

Alternatively, you can download the ZIP or TAR.GZ file listed under each tag on GitHub.
Now you’re ready to build the Mobile SDK!

Building a Liferay Mobile SDK

After you’ve downloaded the Mobile SDK’s source code, you must build the module in which you’ll
build your custom portlet’s Mobile SDK. The Mobile SDK Builder comes with a command line
wizard that helps you build this module. To start the wizard, run the following command in the
Mobile SDK source code’s root folder:

./gradlew createModule

This starts the wizard with the most commonly required properties it needs to generate code
for your portlet. If you need more control over these properties, run the same command with the
all argument:

./gradlew createModule -P=all

Thewizard should look similar to this screenshot. Note that default values are in square brackets
with blue text:

Figure 111.4: The Mobile SDK Builder’s wizard lets you specify property values for building your module.

So what properties are available, and what do they do? Fantastic question! You can set the
followingproperties during or after running createModule. If youwant orneed to set these properties
after running createModule, you can do so in your module’s gradle.properties file. The values in
parentheses are the keys used in gradle.properties:

1285

https://github.com/liferay/liferay-mobile-sdk/releases

• Context (context): Your portlet’s web context. For example, if you’re generating a Mobile
SDK for Liferay DXP’s Calendar portlet, which is generally deployed to the calendar context,
then you should set the context value to calendar. If there are no services available at the
specified context, you may have forgotten to generate your portlet’s WSDD.

• Platforms (platforms): Theplatforms to build theMobile SDK for. Bydefault, you cangenerate
code for Android and iOS (android,ios).

• Server URL (url): Your Liferay DXP instance’s URL. To discover your services, the Mobile
SDK Builder tries to connect to this instance at the specified context.

• Filter (filter): Specifies the portlet entities the Mobile SDK can access. A blank value
specifies all portlet entity services. For example, the Calendar portlet’s entities include
CalendarBooking and CalendarResource. To generate a Mobile SDK for only the CalendarBooking

entity, set the filter’s value to calendarbooking (all lowercase).

• Module Version (version): The version number appended to your Mobile SDK’s JAR (Android)
and ZIP files (iOS). The sections on packaging your Mobile SDK explain this further.

• Package Name (packageName): On Android, this is the package your Mobile SDK’s classes are
written to (iOS doesn’t use packages). Note that the Liferay DXP version is appended to
the end of the package name. For example, if you’re using Liferay Portal 7.0 or Liferay
DXP Digital Enterprise 7.0, and specify com.liferay.mobile.android as the package name, the
Mobile SDK Builder appends v7 to the package name, yielding com.liferay.mobile.android.v7.
This prevents collisions between classes with the same name, which lets you use Mobile SDKs
for more than one portal version in the same app. You can use the Portal Version property to
change the portal version.

• POM Description (description): Your POM file’s description.

Note that there’s also a destination property that can only be set in the gradle.properties file.
This property specifies the destination for the generated source files. You won’t generally need to
change this.

After you set the properties you need, the Mobile SDK Builder generates your module in the
folder modules/${your_portlet_context}.

Now you can build your Mobile SDK. To do this, navigate to your module and run this command:

../../gradlew generate

By default, the builder writes the source files to android/src/gen/java and ios/Source in your
module’s folder.

If you update your portlet’s remote services on the server side and need to update your Mobile
SDK, simply run ../../gradlew generate again.

Awesome! Now you know how to create and regenerate a Mobile SDK for your custom portlet’s
remote services. Next, you’ll finish by packaging your Mobile SDK for the Android and iOS.

Packaging Your Mobile SDK for Android

To package your Mobile SDK in a JAR file for use in an Android project, run the following command
from your module’s folder:

../../gradlew jar

1286

This packages your Mobile SDK in the following file:

• modules/${your_portlet_context}/build/libs/liferay-${your_portlet_context}-android-sdk-

${version}.jar

To call your portlet’s remote services, you must first install this file in your Android project. To
do so, copy the file into your Android app’s app/libs folder. Note that you must also install Liferay’s
prebuilt Mobile SDK in your app. Click here for instructions on doing this.

Also note that if you regenerate your Mobile SDK to include new functionality, you can update
your module’s version in its gradle.properties file. For example, if you added or changed a service
method in the Mobile SDK you initially built, you could update it’s version by setting version=1.1 in
your module’s gradle.properties file.

To learn how to use the Mobile SDK in your Android app, see the rest of the Android Mobile SDK
documentation. You can also use your Mobile SDK to create custom Screenlets in Liferay Screens.

Packaging Your Mobile SDK for iOS

To package your Mobile SDK in a ZIP file for use in an iOS project, run the following command
from your module’s folder:

../../gradlew zip

This packages your Mobile SDK in the following file:

• modules/${your_portlet_context}/build/liferay-${your_portlet_context}-ios-sdk-${version}.zip

To call your portlet’s remote services, you must first install this file in your Xcode project. To do
so, simply unzip it and add its files to your Xcode project.

To learn how to use the Mobile SDK in your iOS app, see the rest of the iOS Mobile SDK docu-
mentation. You can also use your Mobile SDK to create custom Screenlets in Liferay Screens.

Related Topics

Creating Android Apps that Use the Mobile SDK
Creating iOS Apps that Use the Mobile SDK
Android Apps with Liferay Screens
iOS Apps with Liferay Screens

1287

CHAPTER 112

TRACKING CUSTOM ASSETS

Liferay Analytics Cloud can detect and analyze built-in Liferay DXP assets like Forms, Blogs,
Documents andMedia, andWeb Content. To analyze assets in your custom app, however, you must
tag your app’s HTML so the Analytics Cloud JavaScript plugin can detect and track user interaction
with your assets.

112.1 Asset Events

The Analytics Cloud JavaScript plugin contains the following events that you can track:
AssetClicked: User clicks the asset area. Also carries information about the tag clicked.
AssetDepthReached: Scroll event in the asset area. Also carries information about the content

depth the user reached (e.g., how far down a blog post the user scrolled).
AssetViewed: User views the asset.
AssetDownloaded: User clicks a link that downloads the asset.
AssetSubmitted: Form submission in the asset area. This requires an input type of submit to be

placed under an HTML form element.

112.2 Required Metadata

You must have the following information to enable tracking for a custom entity. You must specify
this information in HTML via the attributes listed:

Asset Type (String): The asset type to track. The HTML attribute for this is data-analytics-

asset-type. Note that the value for this attribute is not your entity’s exact type. For custom entities,
this value is always custom.

Asset ID (String): The asset’s unique identifier. The HTML attribute for this is data-analytics-
asset-id.

Asset Category (String, Optional): The category of the custom app that contains the asset. The
HTML attribute for this is data-analytics-asset-category. You can use this to identify the custom
app by name (e.g., “polls”). Note that within a category, all asset IDs must be unique.

Asset Title (String, Optional): The asset’s title. The HTML attribute for this is data-analytics-
asset-title.

1289

https://help.liferay.com/hc/en-us/categories/360000608871-Liferay-Analytics-Cloud-Admin-Guide

112.3 Tracking Asset Events

For example, if you want to track a poll in a custom Polls app, you might use HTML like this:

<div>

<h1> What's your favorite food? </h1>

<form action="/submit.php">

<div>

<input type="radio" id="sushi" name="food" value="Sushi"

checked>

<label for="sushi">Sushi</label>

</div>

<div>

<input type="radio" id="pizza" name="food" value="Pizza">

<label for="pizza">Pizza</label>

</div>

<input type="submit" value="Submit" />

</form>

</div>

To track this poll’s events, add the above attributes to the div:

<div data-analytics-asset-type="custom"

data-analytics-asset-id="favorite-food-poll"

data-analytics-asset-category="polls"

data-analytics-asset-title="What is your favorite food Poll">

<h1> What's your favorite food? </h1>

...

</div>

Note that you must add these attributes to each individual asset that you want Analytics Cloud
to track. However, you can populate the attributes’ values via a script, therefore automating this
process for each asset.

Tracking Downloads

To track downloads, you must tag the element that triggers the action with this attribute:

data-analytics-asset-action="download"

For example, here’s the above poll with a download link for a PDF file that contains the poll’s
instructions:

<div data-analytics-asset-type="custom"

data-analytics-asset-id="favorite-food-poll"

data-analytics-asset-category="polls"

data-analytics-asset-title="What is your favorite food Poll">

Download the Poll Instructions

<h1> What's your favorite food? </h1>

...

</div>

112.4 Related Topics

Asset Framework
Liferay Analytics Cloud Admin Guide

1290

https://help.liferay.com/hc/en-us/categories/360000608871-Liferay-Analytics-Cloud-Admin-Guide

CHAPTER 113

WEB EXPERIENCE MANAGEMENT

Web Experience Management encompasses Liferay’s features and tools for building Sites and
creating content. Many of these, likeWeb Content Management and Page Templates, are graphical
tools used by administrators and marketers. Others, like Page Fragments, let web developers to
flex their muscles in content creation. These tutorials cover where web development intersects
with user experience and how to use Liferay’sWeb Experience frameworks to integrate custom
applications into Liferay DXP.

Specifically, you’ll learn about

• Developing Fragments

• Screen Navigation

1291

CHAPTER 114

DEVELOPING PAGE FRAGMENTS

The goal of Page Fragments is to take a mock-up design and realize it on a web page as accurately
as possible. To do this, developers are given a space where they have a “blank slate.” You have three
tools at your disposal to accomplish this:

HTML: The markup of the fragment. Fragments use standard HTML with special tags to add
dynamic behavior.

CSS: CSS styles and positions the fragment’s markup.
JavaScript: JavaScript provides dynamic behavior to the fragment.
The HTML, CSS, and JavaScript are all completely standard, just like anywhere else on the web,

but are also enhanced with Liferay-specific features. You can specify text and images as editable,
as well as providing for “rich text”: that is, text with additional formatting. Liferay portlets can
also be embedded in Fragments as “widgets,” making pages with Fragments more dynamic than
regular web content.

114.1 Creating a Fragment

The first example is simple. If you aren’t sure about the basics of Fragments and Collections, you
should read Creating Page Fragments first so you know what you’re getting yourself into.

1. Go to Site Administration and for your selected site click Build → Fragments.

2. Create a new Collection named Developing Fragments.

3. Inside of the new Collection, create a new Fragment named Basic Fragment.

You’re now on the Fragment editing page. There are four panes on this screen. You enter HTML
in the top left pane, CSS in the top right, JavaScript in the bottom left, and preview the results in
the bottom right.

You can look at the three editing panes as if each were writing to a separate file. Everything in
the HTML pane goes to index.html, the CSS pane goes to index.css, and the JavaScript one goes to
index.js. The preview pane renders everything as it will look on the page. Here’s how this works:

1. Add the following code inside the div in the HTML pane:

1293

<h1>

This text is styled, so it will look pretty!

</h1>

2. Add the following code to the CSS pane inside the fragment block:

width: 100%;

background-color: white;

text-align: center;

padding: 2em 0;

font-size: 28px;

3. Add this code below it and replace the ##### with the auto-generated number provided for
the fragment

.fragment_##### h1 {

font-weight: 100;

width: calc(100% - 1em);

max-width: 60ch;

margin: 0 auto;

font-size: 28px;

}

4. Click Publish to save your work and make it available to add to a content page.

As you work, you can observe the preview in the preview pane.
From here, the Fragment can be used to create a Content Page. To see this process in action, see

the Building Content Pages from Fragments tutorial. Next, you’ll explore some Fragment-specific
tags.

114.2 Fragment Specific Tags

While HTML, CSS, and JavaScript are universal tools for building websites, Liferay DXP includes
some additional tools to make fragments more powerful. One tag can make text editable not just
in the HTML editor, but also at the time of publishing. The other enables you to embed Liferay
portlets into your fragment in the form of “Widgets.”

Making Text Editable

Making text editable allows the marketer or web admin to modify the text before publishing it.
This way, you can reuse a single fragment with different headings or different text for different
pages. Fragments make creating content easy and this feature can save you the work of duplicating
work just to change the text.

You can make any text of a fragment editable by enclosing it in an <lfr-editable> tag like this:

<lfr-editable id="unique-id" type="text">

This is editable text!

</lfr-editable>

1294

Figure 114.1: The Fragment editor with HTML and CSS code and a live preview.

The lfr-editable tag doesn’t render without a unique id.
The following three type options are available inside of of lfr-editable tag:
text: Creates a space for plain text that can be edited before publishing.
image: Must contain a valid tag which can then be replaced with any image before

publishing—including those from Documents and Media.
rich-text: Provides rich text formatting, such as bold, italics, underline, links, and predefined

styles.

Note: If you want to make text inside an HTML element editable, you must use the rich-text

type. The text type strips HTML formatting out of the text before rendering.

Now add editable text to a Fragment, add the Fragment to a Content Page, and then edit the
text before publishing:

1. Go back into the Fragment you were working on before.

1295

2. Inside the <h1> in the HTML pane, surround the text with <lfr-editable> tags so that it looks
like this.

<h1>

<lfr-editable id="heading" type="text">

This text is styled, so it will look pretty!

</lfr-editable>

</h1>

3. Click Publish.

Now your fragment contains editable text. Add it to a Content Page to be published:

1. Go to Navigation → Site Pages.

2. Select the Page Templates tab at the top.

3. Create a new Collection named Templates for Developing Fragments and a New Page Template
inside of it named Editable Page Template.

4. From the menu on the right, add your fragment to the page.

5. Click on the text that you defined as editable and change it.

Figure 114.2: You can edit text in the Page Template editor.

Similarly, the rich-text type provides the same functionality with additional features in the
editor.

The template saves automatically, and when it is turned into a page, the new text is displayed.

Making Images Editable

Like text, you can set images images as editable. An editable image can be selected from the user’s
local files or from the Documents and Media Library. You must be careful with defining styles for
editable images since an image that without the proper dimensions or that is forced into a poorly
sized space can have major negative effects on your layout.

Images use the same <lfr-editable> tag as text, but with the image type, like this:

<lfr-editable id="unique-id" type="image">

</lfr-editable>

After you add the lfr-editable tagwith the type image to a Fragment, when you add that Fragment
to a page, you can then click on the editable image and select a replacement.

1296

Including Widgets Within A Fragment

You can add more dynamic behavior to a Fragment by including a widget. Currently, you can only
embed a portlet as a widget, but other types of widgets will be available in the future.

To include a widget you need to know its registered name. For example, the Site Navigation
Menu portlet is registered as nav. Each portlet which is registered has an lfr-widget-[name] tag
that’s used to embed it. For example: the Navigation Menu tag is <lfr-widget-nav />. You could
embed it in a block like this:

<div class="nav-widget">

<lfr-widget-nav>

</lfr-widget-nav>

</div>

Implement this in your Fragment:

1. Go to the Fragments page.

2. Go to the Developing Fragments collection and add a new Fragment inside of it named Widget
Fragment.

3. Insert the following code in the main <div> in the HTML pane:

<div class="container-fluid">

<div class="row">

<div class="col-md-10">

<lfr-widget-nav>

</lfr-widget-nav>

</div>

</div>

</div>

4. Click Publish.

Now you need to add it to a Content Page to display it.

1. Go to Navigation → Site Pages.

2. Select the Page Templates tab at the top.

3. Go to the Templates for Developing Fragments Collection.

4. Create a new Page Template named Widget Page Template.

5. In the new Page Template, from the menu on the right, add your fragment to the page.

6. Exit the template editor and it saves automatically.

7. Go to the Pages tab.

8. Click the + icon to create a new page.

9. Select the Widget Page Template and save.

10. Now go back to your site, and select your new page.

For the full list of widgets that can be imbedded, see the EmbeddingWidgets in Page Fragments
reference article.

1297

Embedding Your Widget in a Fragment

If you have a custom widget that you want to embed in a fragment, you can configure that widget
to be embeddable. In order to embed your widget, it must be an OSGi Component. Inside the
@Component annotation for the portlet class that you want to embed, add this property:

"com.liferay.fragment.entry.processor.portlet.alias=app-name"

When you deploy your widget, it’s available to add. The name you specify in the property must
be appended to the lfr-widget tag like this:

<lfr-widget-app-name>

</lfr-widget-app-name>

NOTE: According to theW3C HTML standards, custom elements cannot be self closing. There-
fore, even though you cannot add anything between the opening and closing <lfr-widget...> tags,
you cannot use the self closing notation for the tag.

Embedding widgets in Fragments opens a world of options. Now that you’ve explored some of
the power of Fragments, next you’ll learn about best practices for development.

114.3 Recommendations and Best Practices

In general all your code should be semantic and highly reusable. A main concern is making sure
that everything is namespaced properly so it won’t interfere with other elements on the page
outside of the Fragment.

CSS

While you can write any CSS in a fragment, it’s recommended to prefix it with a class specific to the
fragment to avoid impacting other fragments. To facilitate this, when creating a new fragment,
the HTML includes a div with an automatically generated class name and the CSS shows a sample
selector using that class. Use it as the basis for all selectors you add.

JavaScript

Avoid adding a lot of JavaScript code, since it isn’t easily reusable. Instead, reference external JS
libraries.

Developing A Fragment Using Desktop Tools

You can develop a fragment using any preferred desktop tools. Since the Fragment is HTML, CSS,
and JavaScript, you could use a text editor or a specialized tool with its own built in previews.

To import a Collection into Liferay, it must be archived in a .zip with the contents in the
following format:

• collection.json: a text filewhichdescribes your collectionwith the format {"name":"<collection-
name>","description":"<collection-description>"}

1298

– [fragment-name]/: a folder containing all of the files for a single Page Fragment.

* fragment.json: a text file that describes a Page Fragment with the format
{"jsPath":"src/index.js","htmlPath":"src/index.html","cssPath":"src/index.css","name":"<fragment-

name>"}

* src/: a folder containing the source code files for the fragment.

· index.html: the HTML source for the fragment

· index.css: the CSS source for the fragment

· index.js: the JavaScript source for the fragment

A collection can contain any number of fragments, so you can have lots of subfolders in the
collection. This format is the same as what’s exported from within Liferay.

Developers can also create fragments to be imported into an existing collection. Put them in a
similarly formatted .zip, but without the Collection information at the top level:

• [fragment-name]/: a folder containing all the files for a single Page Fragment.

• fragment.json: a text file that describes aPageFragmentwith the format {"jsPath":"src/index.js","htmlPath":"src/index.html","cssPath":"src/index.css","name":"<fragment-
name>"}

• src/: a folder containing the source code files for the fragment.

– index.html: the HTML source for the fragment

– index.css: the CSS source for the fragment

– index.js: the JavaScript source for the fragment

Multiple fragments can be included in a single .zip file with each having its own folder at the
top level.

1299

CHAPTER 115

SCREEN NAVIGATION FRAMEWORK

The Screen Navigation Framework is for customizing and extending application UIs. You can use it
to make Liferay’s applications your own and to make your applications customizable by others.

To make this work, the framework assumes a specific structure for screens and supports one or
two levels of navigation. Each item in the top level navigation is a ScreenNavigationCategory. Each
item in the second level is a ScreenNavigationEntry. Categories are usually represented by tabs,
while entries use a second level of navigation. You need not have any Entries in your application,
but you must have at least one Category.

The Screen structure normally renders Navigation Categories as horizontal tabs at the top of
the page and Navigation Entries as a vertical list of items along the left side of the page. The screen
box containing the content uses the rest of the screen. You can customize this default layout for
your needs.

Secondary navigation is optional; youmay only need category tabswith no additional navigation.

115.1 Using the Framework for Your Application

The Screen Navigation Framework comprises two parts: Java classes for your screens and a tag
library for your front-end. First you’ll create the necessary Java classes and then add the front-end
support through JSPs.

Adding Screens to Your Application's Back-end

Youmust create at least one Navigation Category. To add screens to your application, first you must
add at least one Navigation Category for the top level navigation. Then you can add additional
Navigation Entries for each page that you need.

First, add a Navigation Category

1. Create a component that implements the ScreenNavigationCategory interface.

2. Implement the following methods in your component:

getCategoryKey(): returns the category’s primary key.

getLabel(Locale locale): returns the label of the key.

1301

Figure 115.1: A typical application using screen navigation has three categories and numerous entries.

getScreenNavigationKey(): returns the navigation key that the category belongs in, as defined
in your application.

Next, add a Navigation Entry.

1. Create a component which implements ScreenNavigationEntry.

2. Implement the following methods in your component:

getCategoryKey(): returns the category’s primary key.

getEntryKey(): returns the entry’s primary key.

getLabel(): returns the entries label.

getScreenNavigationKey(): returns the navigation key for the category of the current entry.

isVisible(User user, T screenModelBean): boolean for whether or not the entry should be
visible for the current user.

render(HttpServletRequest request, HttpServletResponse response): renders the entry.

1302

Figure 115.2: Secondary navigation is optional; youmay opt to have only tabs.

You can implement your render method any way that you want as long as it provides a way to
render HTML. Liferay developers typically use JSPs, shown below.

Adding Screens to Your Application's Front-end

To use JSPs to render your screens, you must invoke the JSPRenderer component in your render

method and create the JSP that renders the HTML.

1. Create a rendermethod which uses JSPRenderer like this:

@Override

public void render(HttpServletRequest request, HttpServletResponse response)

throws IOException {

_jspRenderer.renderJSP(request, response, "/my-category/view-category.jsp");

}

2. Add the following code at the bottom of your class to use the reference annotation to access
the JSPRenderer:

@Reference

private JSPRenderer _jspRenderer;

1303

3. Create a JSP that includes the liferay-frontend:screen-navigation taglib and the necessary
parameters like this:

<liferay-frontend:screen-navigation key=

"<%= AssetCategoriesConstants.CATEGORY_KEY_GENERAL %>"

modelBean="<%= category %>"

portletURL="<%= portletURL %>"

/>

The parameters it needs are key, modelBean, and portletURL.

• Key: a unique name for the navigation in this application.

• modelBean: the model that is being rendered

• portletURL: the portlet URL used to build the titles for each link.

In the next section, you’ll see how to extend an existing Liferay class with more screens.

115.2 Adding Custom Screens to Liferay Applications

You can extend certain Liferay Applications with custom screens. Custom screens can add configu-
ration for features you’ve developed, integrating them seamlessly with the original application.

Categories Administration

The Categories Administration application supports adding Custom Screens to provide additional
options for editing a category. To demonstrate adding a new Screen Navigation Entry and Category,
you’ll add one to Categories Administration.

1. Create anew Java class in the asset-categories-admin-webmodulenamed CategoryCustomScreenNavigationEntry

that implements ScreenNavigationCategory and ScreenNavigationEntry.

2. Add the following Component annotation above the class declaration:

@Component(

property = {

"screen.navigation.category.order:Integer=1",

"screen.navigation.entry.order:Integer=1"

},

service = {ScreenNavigationCategory.class, ScreenNavigationEntry.class}

)

The screen.navigation.category.order and screen.navigation.entry.order determine where
in the navigation the items appear. Higher is first in the navigation.

In the servicedeclaration, declare it as defining a ScreenNavigationCategory, ScreenNavigationEntry,
or both.

3. For the class body, insert this code:

1304

@Override

public String getCategoryKey() {

return "custom-screen";

}

@Override

public String getEntryKey() {

return "custom-screen";

}

@Override

public String getLabel(Locale locale) {

return LanguageUtil.get(locale, "custom-screen");

}

@Override

public String getScreenNavigationKey() {

return AssetCategoriesConstants.CATEGORY_KEY_GENERAL;

}

@Override

public void render(HttpServletRequest request, HttpServletResponse response)

throws IOException {

_jspRenderer.renderJSP(request, response, "/category/custom-screen.jsp");

}

@Reference

private JSPRenderer _jspRenderer;

4. Create a custom-screen.jsp in the /resources/META-INF/resources/category/ folder.

5. At the top of your JSP class, insert the following scriplet at the top to use the Screen Navigation
UI:

<%

String redirect = ParamUtil.getString(request, "redirect", assetCategoriesDisplayContext.getEditCategoryRedirect());

long categoryId = ParamUtil.getLong(request, "categoryId");

AssetCategory category = AssetCategoryLocalServiceUtil.fetchCategory(categoryId);

long parentCategoryId = BeanParamUtil.getLong(category, request, "parentCategoryId");

long vocabularyId = ParamUtil.getLong(request, "vocabularyId");

portletDisplay.setShowBackIcon(true);

portletDisplay.setURLBack(redirect);

renderResponse.setTitle(((category == null) ? LanguageUtil.get(request, "add-new-category") : category.getTitle(locale)));

%>

6. Below that insert the following tag:

<liferay-frontend:screen-navigation key=

"<%= AssetCategoriesConstants.CATEGORY_KEY_GENERAL %>"

modelBean="<%= category %>"

portletURL="<%= portletURL %>"

/>

7. For the rest of the JSP, create your custom screen.

Now you can use that pattern to create additional screens for whatever you need.

1305

CHAPTER 116

PRODUCT NAVIGATION

Liferay’s product navigation consists of the main menus you use to customize, configure, and navi-
gate the system. When you edit a page, switch to a different Site scope, access a User’s credentials,
etc., you’re using the default navigation menus. Providing a customization to a default menu can
help give your Liferay instance a unique touch. You can extend and customize the default product
navigation to fit your need.

There are four product navigation sections that you can extend: Product Menu, Control Menu,
Simulation Menu, and User Personal Menu.

Figure 116.1: The main product navigation menus include the Product Menu, Control Menu, and Simulation Menu.

The Product Menu is on the left, and displays the Control Panel, User account settings, and Site
Administration functionality. The Control Menu is on top, offering navigation to the Product Menu,
Simulation Menu (the right menu), and the Add button. When certain settings are enabled (e.g.,
Staging, Page Customization, etc.), more tools are offered. The Simulation Menu offers options to

1307

simulate your Site’s look for different scenarios (devices, user segments, etc.). Finally, the User
Personal Menu holds selectable items containing a user’s own account settings.

In this section of tutorials, you’ll learn about the various ways you can extend and customize
Liferay’s product navigation to fit your needs.

1308

CHAPTER 117

CUSTOMIZING THE PRODUCT MENU

By default, Liferay’s Product Menu consists of three main sections: Control Panel, User Menu, and
Site Administration. These sections are called panel categories. For instance, the Control Panel is
a single panel category, and when clicking on it, you see four child panel categories: Users, Sites,
Apps, and Configuration. Clicking a child panel category shows panel apps.

Note: The ProductMenu cannot be changed by applying a new theme. To change the layout/style
of the Product Menu, youmust create and deploy a theme contributor. See the Theme Contributors
tutorial for more details.

The Product Menu is intuitive and easy to use—but you can still change it any way you want.
You can reorganize the panel categories and apps, or add completely new categories and populate
them with custom panel apps. Here you’ll learn how to provide new or modified panel categories
and panel apps for the Product Menu.

117.1 Adding Custom Panel Categories

As you navigate the Product Menu, you can see that Panel Apps like Web Content and Site Settings
are organized into Panel Categories such as Content and Configuration. This tutorial explains how
to add new Panel Categories to the menu. Adding new Panel Apps is covered in the next section.

There are three steps to creating a new category:

1. Create the OSGi structure and metadata.

2. Implement Liferay’s Frameworks.

3. Define the Control Menu Category.

Creating the OSGi Module

First you must create the project.

1. Create an OSGi module using your favorite third party tool, or use Blade CLI. Blade CLI offers
a Panel App template, which is for creating a panel category and panel app.

1309

2. Create a unique package name in the module’s src directory and create a new Java class in
that package. To follow naming conventions, give your class a unique name followed by
PanelCategory (e.g., ControlPanelCategory).

Implementing Liferay's Frameworks

Next, you must connect your OSGi module to Liferay’s frameworks and use those to define infor-
mation about your entry. This takes only two steps:

1. Insert the @Component annotation declaring the panel category keys.

2. Implement the PanelCategory interface.

Both of these steps are described below.

Insert the @Component Annotation

Directly above the class’s declaration, insert the following annotation:

@Component(

immediate = true,

property = {

"panel.category.key=" + [Panel Category Key],

"panel.category.order:Integer=[int]"

},

service = PanelCategory.class

)

The property element designates two properties that should be assigned for your category. The
panel.category.key specifies the parent category for your custom category. You can find popular
parent categories to assign in the PanelCategoryKeys class. For instance, if you wanted to create a
child category in the Control Panel, you could assign PanelCategoryKeys.CONTROL_PANEL. Likewise,
if you wanted to create a root category, like the Control Panel or Site Administration, you could
assign PanelCategoryKeys.ROOT.

The panel.category.order:Integer property specifies the order in which your category is dis-
played. The higher the number (integer), the lower your category is listed among other sibling
categories assigned to a parent.

Finally, your service element should specify the PanelCategory.class service. You can view an
example of a similar @Component annotation for the UserPanelCategory class below.

@Component(

immediate = true,

property = {

"panel.category.key=" + PanelCategoryKeys.ROOT,

"panel.category.order:Integer=200"

},

service = PanelCategory.class

)

Note: To insert a panel category between existing categories in the default menu, you must
know the panel.category.order:Integer property for the existing categories. Default categories
with a given panel.category.key are numbered in increments of 100, starting with 100.

For example, the Product Menu’s three main sections—Control Panel, User Menu, and Site
Administration—have panel.category.order:Integer properties of 100, 200, and 300, respectively.

1310

https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/application/list/constants/PanelCategoryKeys.html

A new panel inserted between Control Panel and User Menu would need a panel.category.key of
ROOT and a panel.category.order:Integer of 150.

Implement the PanelCategory Interface

The PanelCategory interface requires you to implement the following methods:

• getNotificationCount: returns the number of notifications to be shown in the panel category.
• include: renders the body of the panel category.
• includeHeader: renders the panel category header.
• isActive: whether the panel is selected.
• isPersistState: whether to persist the panel category’s state to the database. This saves the
state of the panel category when navigating away from the menu.

You can reduce the number of methods you must implement if you extend a base class that
already implements the PanelCategory interface. The recommended way to do this is by extending
the BasePanelCategory or BaseJSPPanelCategory abstract classes. Typically, the BasePanelCategory is
extended for basic categories (e.g., the Control Panel category) that only display the category name.
To add more complex functionality, you can then provide a custom UI for your panel using any
front-end technology by implementing the include() or includeHeader() from the PanelCategory

interface.
If youplan touse JSPs as the front-end technology, extend abase class called BaseJSPPanelCategory

that already implements the methods include() and includeHeader() for you. This is covered in
more detail below.

Note: In this tutorial, example JSPs describe how to provide functionality to panel categories and
apps. JSPs, however, are not the only way to provide front-end functionality to your categories/apps.
You can create your own class implementing PanelCategory to use other technologies such as
FreeMarker.

Defining the Control Menu Category

After establishing the framework you’re using to create the category, you must add any other
methods that are necessary to create your custom panel category. As you learned earlier, you can
extend the BasePanelCategory and BaseJSPPanelCategory abstract classes to implement PanelCategory.

BasePanelCategory

If you need something simple for your panel category like a name, extending BasePanelCategory is
probably sufficient. For example, the ControlPanelCategory extends BasePanelCategory and specifies
a getLabelmethod to set and display the panel category name.

@Override

public String getLabel(Locale locale) {

return LanguageUtil.get(locale, "control-panel");

}

1311

https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/application/list/BasePanelCategory.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/application/list/BaseJSPPanelCategory.html
https://github.com/liferay/liferay-portal/blob/7.0.3-ga4/modules/apps/web-experience/product-navigation/product-navigation-control-panel/src/main/java/com/liferay/product/navigation/control/panel/internal/application/list/ControlPanelCategory.java

BaseJSPPanelCategory

If you need more complex functionality, extend BaseJSPPanelCategory and use JSPs to render the
panel category. For example, the SiteAdministrationPanelCategory specifies the getHeaderJspPath

and getJspPathmethods. You could create a JSP with the UI you want to render and specify its path
in methods like these:

@Override

public String getHeaderJspPath() {

return "/sites/site_administration_header.jsp";

}

@Override

public String getJspPath() {

return "/sites/site_administration_body.jsp";

}

One JSP renders the panel category’s header (displayed when panel is collapsed) and the other
its body (displayed when panel is expanded).

You must also specify the servlet context from where you are loading the JSP files. If this is
inside an OSGi module, make sure your bnd.bnd file has defined a web context path:

Bundle-SymbolicName: com.sample.my.module.web

Web-ContextPath: /my-module-web

Then reference the Servlet context using the symbolic name of your module like this:

@Override

@Reference(

target = "(osgi.web.symbolicname=com.sample.my.module.web)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

Excellent! You’ve successfully created a custom panel category to display in the Product Menu.
In many cases, a panel category holds panel apps for users to access. You’ll learn about how to add
a panel app to a panel category next.

117.2 Adding Custom Panel Apps

After you have created a Category, create a Panel app to go in it:

1. Create an OSGi module using your favorite third party tool, or use Blade CLI. Blade CLI offers
a Panel App template to help generate a basic panel category and panel app.

2. Create a unique package name in the module’s src directory, and create a new Java class
in that package. To follow naming conventions, give your class a unique name followed by
PanelApp (e.g., JournalPanelApp).

3. Directly above the class’s declaration, insert the following annotation:

1312

https://github.com/liferay/liferay-portal/blob/7.0.3-ga4/modules/apps/web-experience/product-navigation/product-navigation-site-administration/src/main/java/com/liferay/product/navigation/site/administration/internal/application/list/SiteAdministrationPanelCategory.java

@Component(

immediate = true,

property = {

"panel.app.order:Integer=INTEGER"

"panel.category.key=" + PANEL_CATEGORY_KEY,

},

service = PanelApp.class

)

These properties and attributes are similar to those discussed in the previous tutorial. The
panel.category.key assigns your panel app to a panel category. The panel.app.order:Integer

property specifies the order your panel app appears among other panel apps in the same
category. For example, if you want to add a panel app to Site Administration → Content, add
the following property:

"panel.category.key=" + PanelCategoryKeys.SITE_ADMINISTRATION_CONTENT

Visit the PanelCategoryKeys class for keys you can use to specify default panel categories in
Liferay.

Set the service attribute to PanelApp.class. You can view an example of a similar @Component
annotation for the JournalPanelApp class below.

@Component(

immediate = true,

property = {

"panel.app.order:Integer=100",

"panel.category.key=" + PanelCategoryKeys.SITE_ADMINISTRATION_CONTENT

},

service = PanelApp.class

)

4. Implement the PanelApp interface by extending the BasePanelApp abstract class. As you
learned in the previous tutorial on panel categories, if you must create a more complex UI to
render in the panel, you can.

If you want to use JSPs to render that UI, extend BaseJSPPanelApp. This provides additional
methods you can use to incorporate JSP functionality into your app’s listing in the Product
Menu.

JSPs are not the only way to provide front-end functionality to your panel apps. You can create
your own class implementing PanelCategory to use other technologies such as FreeMarker.

5. If you are implementing the PanelApp interface without extending a base class, you must
implement its methods. The BlogsPanelApp is a simple example of how to specify your portlet
as a panel app. This class extends BasePanelApp, overriding the getPortletId and setPortlet

methods. These methods specify and set the Blogs portlet as a panel app.

Each panel app must belong to a portlet and each portlet can have at most one panel app. If
more than one panel app is needed, another portlet must be created. By default, the panel
app only appears if the user has permission to view the associated portlet.

This is how those methods look for the Blogs portlet:

1313

https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/application/list/constants/PanelCategoryKeys.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/application/list/BasePanelApp.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/application/list/BaseJSPPanelApp.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/application/list/PanelApp.html

@Override

public String getPortletId() {

return BlogsPortletKeys.BLOGS_ADMIN;

}

@Override

@Reference(

target = "(javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN + ")",

unbind = "-"

)

public void setPortlet(Portlet portlet) {

super.setPortlet(portlet);

}

You can also customize your panel app’s appearance in the Product Menu. As you learned
before, the BaseJSPPanelApp abstract class can be extended to provide further functionality
with JSPs.

Now you know how to add or modify a panel app in the Product Menu. Not only does Liferay
provide a simple solution to add new panel categories and apps, it also gives you the flexibility to
add a more complex UI to the Product Menu using any technology.

1314

CHAPTER 118

CUSTOMIZING THE CONTROL MENU

The Control Menu is the most visible and accessible menu in Liferay. For example, on your home
page, the Control Menu offers default options for accessing the Product Menu, Simulation Menu,
and Add Menu. You can think of this menu as the gateway to configuring options in Liferay.

Figure 118.1: The Control Menu has three configurable areas: left, right, andmiddle. It also displays the title and type of page that you are currently viewing.

If you navigate away from the home page, the Control Menu adapts and provides helpful
functionality for whatever option you’re using. For example, if you navigate to Site Administration
→ Content → Web Content, you see a Control Menu with different functionality tailored for that
option.

Figure 118.2: When switching your context to web content, the Control Menu adapts to provide helpful options for that area.

The default Control Menu contains three categories representing the left, middle, and right
portions of the menu. You can create navigation entries for each category.

Note: You can add the Control Menu to a theme by adding the following snippet into your
portal_normal.ftl:

<@liferay.control_menu />

The other product navigation menus (e.g., Product Menu, Simulation Menu) are included in
this tag, so specifying the above snippet embeds all three menus into your theme. Embedding the
User Personal Bar is slightly different. Visit the Providing the User Personal Bar tutorial for more
information.

You can reference a sample Control Menu Entry by visiting the Control Menu Entry article.
Next you’ll learn how to customize the Control Menu.

1315

118.1 Creating Control Menu Entries

Now you’ll create entries to customize the Control Menu. Make sure to read Adding Custom Panel
Categories before beginning this tutorial. This tutorial assumes you know how to create a panel
category. Creating a Control Menu Entry follows the same pattern as creating a category:

1. Create the OSGi structure and metadata.

2. Implement Liferay’s Frameworks.

3. Define the Control Menu Entry.

Creating the OSGi Module

First you must create the project.

1. Create a generic OSGi module. Your module must contain a Java class, bnd.bnd file, and build
file (e.g., build.gradle or pom.xml). You’ll create your Java class next if your project does not
already define one.

2. Create a unique package name in the module’s src directory and create a new Java class in
that package. Give your class a unique name followed by ProductNavigationControlMenuEntry
(e.g.,StagingProductNavigationControlMenuEntry).

Implementing Liferay's Frameworks

Next, you need to connect your OSGi module to Liferay’s frameworks and use those to define
information about your entry.

1. Directly above the class’s declaration, insert this code:

@Component(

immediate = true,

property = {

"product.navigation.control.menu.category.key=" + [Control Menu Category],

"product.navigation.control.menu.category.order:Integer=[int]"

},

service = ProductNavigationControlMenuEntry.class

)

The product.navigation.control.menu.category.key property specifies your entry’s category.
The default Control Menu provides three categories: Sites (left portion), Tools (middle por-
tion), and User (right portion).

Figure 118.3: This image shows where your entry will reside depending on the category you select.

To specify the category, reference the appropriate key in the ProductNavigationControlMenu-
CategoryKeys class. For example, this property places your entry in the middle portion of the
Control Menu:

1316

https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/constants/ProductNavigationControlMenuCategoryKeys.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/constants/ProductNavigationControlMenuCategoryKeys.html

"product.navigation.control.menu.category.key=" + ProductNavigationControlMenuCategoryKeys.TOOLS

Like panel categories, you must specify an integer to place your entry in the category. En-
tries are ordered from left to right: an entry with order 1 appears to the left of an entry
with order 2. If the order is not specified, it’s chosen at random based on which service
was registered first in the OSGi container. Finally, your service element should specify the
ProductNavigationControlMenuEntry.class service.

2. Implement the ProductNavigationControlMenuEntry interface. You can also extend the
BaseProductNavigationControlMenuEntry or BaseJSPProductNavigationControlMenuEntry abstract
classes. Typically, the BaseProductNavigationControlMenuEntry is extended for basic entries
(e.g., IndexingProductNavigationControlMenuEntry) that only display a link with text or a simple
icon. If you want to provide a more complex UI with buttons or a sub-menu, you can override
the include() and includeBody() methods. If you use JSPs for generating the UI, you can
extend BaseJSPProductNavigationControlMenuEntry to save time. This is covered in more detail
below.

Defining the Control Menu Entry

Now you must define your Control Menu Entry. Here are some examples for defining your entry.

Control Menu Examples

The IndexingProductNavigationControlMenuEntry is a simple example for providing text and an icon.
It extends the BaseProductNavigationControlMenuEntry class and is used when Liferay is indexing.
The indexing entry is displayed in the Tools (middle) area of the Control Menu with a Refresh icon
and text stating The Portal is currently indexing.

The ProductMenuProductNavigationControlMenuEntry is more sophisticated. This entry appears
in the Sites (left) area of the Control Menu, but unlike the previous example, it extends the
BaseJSPProductNavigationControlMenuEntry class. This provides several more methods that use JSPs
to define your entry’s UI. There are two methods to notice:

@Override

public String getBodyJspPath() {

return "/portlet/control_menu/product_menu_control_menu_entry_body.jsp";

}

@Override

public String getIconJspPath() {

return "/portlet/control_menu/product_menu_control_menu_entry_icon.jsp";

}

The getIconJspPath() method provides the Product Menu icon (→), and the
getBodyJspPath() method adds the UI body for the entry outside of the Control Menu. The
latter method must be used when providing a UI outside the Control Menu. You can test this by
opening and closing the Product Menu on the home page.

Finally, if you provide functionality that is exclusively inside the Control Menu, the
StagingProductNavigationControlMenuEntry class calls its JSP like this:

@Override

public String getIconJspPath() {

return "/control_menu/entry.jsp";

}

1317

https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/ProductNavigationControlMenuEntry.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/BaseProductNavigationControlMenuEntry.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/BaseJSPProductNavigationControlMenuEntry.html
https://github.com/liferay/liferay-portal/blob/7.0.3-ga4/modules/apps/foundation/portal-search/portal-search-web/src/main/java/com/liferay/portal/search/web/internal/product/navigation/control/menu/IndexingProductNavigationControlMenuEntry.java
https://github.com/liferay/liferay-portal/blob/7.0.3-ga4/modules/apps/web-experience/product-navigation/product-navigation-product-menu-web/src/main/java/com/liferay/product/navigation/product/menu/web/internal/product/navigation/control/menu/ProductMenuProductNavigationControlMenuEntry.java

The entry.jsp is returned, which embeds the Staging Bar portlet into the Control Menu.
Youmust also specify the servlet context for the JSP files. If this is inside an OSGi module, make

sure your bnd.bnd file defines a web context path:

Bundle-SymbolicName: com.sample.my.module.web

Web-ContextPath: /my-module-web

And then reference the Servlet context using the symbolic name of your module:

@Override

@Reference(

target = "(osgi.web.symbolicname=com.sample.my.module.web)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

Displaying Your Control Menu Entry

Part of creating the entry is defining when it appears. The Control Menu shows different
entries depending on the displayed page. You can specify when your entry appears with the
isShow(HttpServletRequest)method.

For example, the IndexingProductNavigationControlMenuEntry class queries the number of index-
ing jobs when calling isShow. If the query count is 0, the indexing entry doesn’t appear in the
Control Menu:

@Override

public boolean isShow(HttpServletRequest request) throws PortalException {

int count = _indexWriterHelper.getReindexTaskCount(

CompanyConstants.SYSTEM, false);

if (count == 0) {

return false;

}

return super.isShow(request);

}

The StagingProductNavigationControlMenuEntry class selects the pages to appear. The staging
entry never appears if the page is an administration page (e.g., Site Administration, My Account,
etc.):

@Override

public boolean isShow(HttpServletRequest request) throws PortalException {

ThemeDisplay themeDisplay = (ThemeDisplay)request.getAttribute(

WebKeys.THEME_DISPLAY);

Layout layout = themeDisplay.getLayout();

// This controls if the page is an Administration Page

if (layout.isTypeControlPanel()) {

return false;

}

// This controls if Staging is enabled

if (!themeDisplay.isShowStagingIcon()) {

return false;

}

1318

return true;

}

Defining Dependencies

Define dependencies for your Control Menu Entry in your build file (e.g., build.grade or pom.xml).
For example, some popular dependencies (in Gradle format) are defined below:

dependencies {

compileOnly group: "com.liferay", name: "com.liferay.product.navigation.control.menu.api", version: "[VERSION]"

compile group: "com.liferay", name: "com.liferay.product.navigation.taglib", version: "[VERSION]"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "[VERSION]"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "[VERSION]"

compile group: "javax.servlet.jsp", name: "javax.servlet.jsp-api", version: "[VERSION]"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "[VERSION]"

}

Your project may require more dependencies, depending on your module’s functionality.
Excellent! You’ve created your entry in one of the three default panel categories in the Control

Menu. You learned a basic way and an advanced way of providing that entry, and learned how to
apply both.

118.2 Defining Icons and Tooltips

When creating a Control Menu entry, you can use an icon in addition to or in place of text. You can
also use tooltips to provide a more in depth explanation.

Control Menu Entry Icons

You can provide a Lexicon or CSS icon in your *ControlMenuEntry. To use a Lexicon icon, you should
override the methods in ProductMenuProductNavigationControlMenuEntry like this one:

public String getIconCssClass(HttpServletRequest request) {

return "";

}

public String getIcon(HttpServletRequest request) {

return "lexicon-icon";

}

public String getMarkupView(HttpServletRequest request) {

return "lexicon";

}

Likewise, you canuse aCSS iconbyoverriding the ProductMenuProductNavigationControlMenuEntry
methods like this one:

public String getIconCssClass(HttpServletRequest request) {

return "icon-css";

}

public String getIcon(HttpServletRequest request) {

return "";

}

public String getMarkupView(HttpServletRequest request) {

return "";

}

1319

You can find these icons in the icons-lexicon and icons-font-awesome components, respectively.

Control Menu Entry Tooltips

To provide a tooltip for the Control Menu entry, create a getLabelmethod like this:

@Override

public String getLabel(Locale locale) {

ResourceBundle resourceBundle = ResourceBundleUtil.getBundle(

"content.Language", locale, getClass());

return LanguageUtil.get(

resourceBundle, "the-portal-is-currently-reindexing");

}

You need to create a Language.properties to store your labels. You can learnmore about resource
bundles in the Internationalization tutorials.

118.3 Extending the Simulation Menu

When testing how pages and apps appear for users, it’s important to simulate their views in as
many ways as possible. The Simulation Menu on the right-side of the main page allows this, and
you can extend the menu if you need to simulate something that it does not provide.

First, you must get accustomed to using panel categories/apps. This is covered in detail in the
Customizing The Product Menu tutorial. Once you know how to create panel categories and panel
apps, continue with this tutorial.

There are few differences between the Simulation Menu and Product Menu, mostly because
they extend the same base classes. The Simulation Menu, by default, is made up of only one
panel category and one panel app. Liferay provides the SimulationPanelCategory class, a hidden
category needed to hold the DevicePreviewPanelApp. This is the app and functionality you see in the
Simulation Menu by default.

Figure 118.4: The Simulation Menu offers a device preview application.

To provide your own functionality in the Simulation Menu, you must create a panel app in
SimulationPanelCategory. If you want to add extensive functionality, you can even create additional
panel categories in the menu to divide up your panel apps. This tutorial covers the simpler case of
creating a panel app for the already present hidden category.

1320

https://liferay.github.io/clay/content/icons-lexicon/
https://liferay.github.io/clay/content/icons-font-awesome/
https://github.com/liferay/liferay-portal/blob/7.1.3-ga4/modules/apps/product-navigation/product-navigation-simulation-web/src/main/java/com/liferay/product/navigation/simulation/web/internal/application/list/SimulationPanelCategory.java

1. Follow the steps documented in Adding Custom Panel Apps for creating custom panel apps.
Once you’ve created the foundation of your panel app, move on to learn how to tweak it so it
customizes the Simulation Menu.
You can generate a Simulation Panel AppbyusingBladeCLI’s Simulation Panel Entry template.
You can also refer to the Simulation Panel App sample for a working example.

2. Since this tutorial assumes you’re providing more functionality to the existing simulation
category, set the simulation category in the panel.category.key of the @Component annotation:

"panel.category.key=" + SimulationPanelCategory.SIMULATION

In order to use this constant, youmust add adependencyon com.liferay.product.navigation.simulation.
Be sure to also specify the order to display your new panel app, which was explained in
Adding Custom Panel Apps.

3. This tutorial assumes you’re using JSPs. Therefore, you should extend the BaseJSPPanelApp

abstract class, which implements the PanelApp interface and also provides additional methods
necessary for specifying JSPs to render your panel app’s UI. Remember that you can also
implement your own include()method to use any front-end technology you want, if you want
to use a technology other than JSP (e.g., FreeMarker).

4. Define your simulation view. For instance, in DevicePreviewPanelApp, the getJspPathmethod
points to the simulation-device.jsp file in the resources/META-INF/resources folder, where the
device simulation interface is defined. Optionally, you can also add your own language keys,
CSS, or JavaScript resources in your simulation module.
The right servlet context is also provided by implementing this method:

@Override

@Reference(

target = "(osgi.web.symbolicname=com.liferay.product.navigation.simulation.device)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

As explained in Customizing The Product Menu, a panel app should be associated with a
portlet. This makes the panel app visible only when the user has permission to view the
portlet. This panel app is associated to the Simulation Device portlet using these methods:

@Override

public String getPortletId() {

return ProductNavigationSimulationPortletKeys.

PRODUCT_NAVIGATION_SIMULATION;

}

@Override

@Reference(

target = "(javax.portlet.name=" + ProductNavigationSimulationPortletKeys.PRODUCT_NAVIGATION_SIMULATION + ")",

unbind = "-"

)

public void setPortlet(Portlet portlet) {

super.setPortlet(portlet);

}

1321

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.product.navigation.simulation/
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/application/list/BaseJSPPanelApp.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/application/list/PanelApp.html

Audience Targeting also provides a good example of how to extend the Simulation Menu.
When the Audience Targeting app is deployed, the Simulation Menu is extended to offer
Audience Targeting User Segments and Campaigns. You can simulate particular scenarios
for campaigns and users directly from the Simulation Menu. Its panel app class is similar to
DevicePreviewPanelApp, except it points to a different portlet and JSP.

Figure 118.5: The Audience Targeting app extends the Simulation Menu to help simulate different users and campaign views.

5. You can combine your simulation options with the device simulation options by interacting
with the device preview iFrame. To retrieve the device preview frame in an aui:script block
of your custom simulation view’s JavaScript, you can use this code:

var iframe = A.one('#simulationDeviceIframe');

Then you can modify the device preview frame URL like this:

iframe.setAttribute('src', newUrlWithCustomParameters);

Now that you know how to extend the necessary panel categories and panel apps to modify the
Simulation Menu, create a module of your own and customize the Simulation Menu so it’s most
helpful for your needs.

118.4 Providing the User Personal Bar

The User Personal Bar displays options unique to the current user. By default, this menu appears
as an avatar button that expands the User Settings sub-menu in the Product Menu. In a custom
theme, the User Personal Bar could appear anywhere in the interface.

Although Liferay’s default User Personal Bar is bare-bones, you can add more functionality to
fit your needs. Unlike other product navigation menus (e.g., Product Menu), the User Personal Bar
does not require the extension/creation of panel categories and panel apps.

1322

Figure 118.6: By default, the User Personal Menu contains the signed-in user’s avatar, which navigates to the Product Menu when selected.

The User Personal Bar can be seen as a placeholder in every Liferay theme. By default, Liferay
provides one sample User Personal Bar portlet that fills that placeholder, but the portlet Liferay
provides can be replaced by other portlets.

Note: You can add the User Personal Bar to your theme by adding the following snippet into
your portal_normal.ftl:

<@liferay.user_personal_bar />

In this tutorial, you’ll learn how to customize the User Personal Bar. You’ll create a single Java
class where you’ll specify a portlet to replace the existing default portlet.

1. Create an OSGi module.

2. Create a unique package name in the module’s src directory and create a new Java class in
that package.

3. Above the class declaration, insert the following annotation:

@Component(

immediate = true,

property = {

"model.class.name=" + PortalUserPersonalBarApplicationType.UserPersonalBar.CLASS_NAME,

"service.ranking:Integer=10"

},

service = ViewPortletProvider.class

)

The model.class.name property must be set to the class name of the entity type you want the
portlet to handle. In this case, you want your portlet to be provided based on whether it can
be displayed in the User Personal Bar.

1323

You should also specify the service rank for your new portlet so it overrides the default. Make
sure to set the service.ranking:Integer property to a number that is ranked higher than the
portlet being used by default.
Since you only want the User Personal Bar to display your portlet, the service element should
be ViewPortletProvider.class.

4. Update the class’s declaration to extend the BasePortletProvider abstract class and implement
ViewPortletProvider:

public class ExampleViewPortletProvider extends BasePortletProvider implements ViewPortletProvider {

5. Specify the portlet you want in the User Personal Bar by declaring the following method in
your class:

@Override

public String getPortletName() {

return PORTLET_NAME;

}

Replace the PORTLET_NAME text with the portlet you want to provide Liferay when it
requests one to be viewed in the User Personal Bar. For example, Liferay declares
com_liferay_product_navigation_user_personal_bar_web_portlet_ProductNavigationPersonalBarPortlet

for its default User Personal Bar portlet.

You’ve successfully provided a portlet to be displayed in the User Personal Bar. If you want
to inspect the entire module used for Liferay’s default User Personal Bar, see product-navigation-
user-personal-bar-web. Besides the *ViewPortletProvider class, this module contains two classes
defining constants and a portlet class defining the default portlet to provide. Although these
additional classes are not required, your module should have access to the portlet you want to
provide.

1324

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BasePortletProvider.html
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/product-navigation/product-navigation-user-personal-bar-web
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/product-navigation/product-navigation-user-personal-bar-web

CHAPTER 119

COLLABORATION

The collaboration suite helps users interact and create content together. This can be as simple as
a quick conversation in the Message Boards app or as complex as joint file management via the
Documents and Media Library. Users can Blog their experiences and share knowledge with the
Wiki. Comments can be posted on all content. Integrated applications mean the whole is greater
than the sum of the parts: together, users create something of value that couldn’t exist if they were
working in isolation.

Underlying the collaboration suite is a set of powerful APIs so you can leverage these features
in your own apps. For example, if your app lets users create a custom content type, you can tie into
the collaboration suite’s social API to let users comment on and rate that content. You can also
customize how your app’s users select items from the Documents and Media Library, send custom
alerts and announcements, and much, much more. The tutorials in this section show you how.

1325

CHAPTER 120

ITEM SELECTOR

An Item Selector is a UI component for selecting entities in a user-friendly manner. Many Liferay
apps use Item Selectors to let users select items such as images, videos, audio files, documents,
and pages. For example, the Documents and Media Library lets users select files.

Figure 120.1: Item Selectors let users browse and select different kinds of entities.

The Item Selector API provides a framework for you to use, extend, and create Item Selectors
in your own apps. The tutorials in this section show you how to use this framework.

Here are some use cases for the Item Selector API:

1. Letting your app’s users select entities via an Item Selector.

2. Configuring an Item Selector to select your app’s custom entity.

1327

3. Customizing the selection experience by adding a new selection view for an entity.

You’ll learn what a selection view is, along with the Item Selector API’s other components, in
the next tutorial.

120.1 Understanding the Item Selector API's Components

Before working with the Item Selector API, you should learn about its components. You’ll work
with these components as you leverage the API in your apps:

• Selection views: These are the framework’s key components. They show entities of particular
types from different sources. For example, an Item Selector configured to show images might
show selection views from Documents and Media, a third-party image provider, or a drag-
and-drop UI.

• Markup: A markup file that renders the selection view. You have a great deal of flexibility in
the markup language you choose. For example, you can use a JSP, FreeMarker, or even pure
HTML and JavaScript.

• Return Type: A class that represents the type of information returned from the entities
selected by the users. For example, if users select images and you want to return the se-
lected image’s URL, then you need a URL return type class. Each return type class must
implement the ItemSelectorReturnType interface. Such classes are named after the data they
return and suffixed with ItemSelectorReturnType. For example, the URL return type class is
URLItemSelectorReturnType.

• Criterion: A class that represents the entity selected by the users. For example, if users
select images then you need an image criterion class. Each criterion class must implement
the ItemSelectorCriterion interface. Criterion classes are named for the entity they repre-
sent and suffixed with ItemSelectorCriterion. For example, the criterion class for images is
ImageItemSelectorCriterion.

• Criterion Handler: A class that gets the appropriate selection view. Each criterion requires
a criterion handler. Criterion handler classes extend the BaseItemSelectorCriterionHandler

class with the criterion’s entity as a type argument. Criterion handler classes are named
after the criterion’s entity and suffixed by ItemSelectorCriterionHandler. For exam-
ple, the image criterion handler class is ImageItemSelectorCriterionHandler. It extends
BaseItemSelectorCriterionHandler<ImageItemSelectorCriterion>.

This diagram shows how these components interact to form a working API.

Related Topics

Selecting Entities Using an Item Selector
Creating Custom Item Selector Entities
Creating Custom Item Selector Views

1328

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/BaseItemSelectorCriterionHandler.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/BaseItemSelectorCriterionHandler.html

Figure 120.2: Item Selector views (selection views) are determined by the return type and criterion, and rendered by the markup.

120.2 Selecting Entities Using an Item Selector

An Item Selector lets users select entities such as images, videos, documents, and sites. You can
use an Item Selector in your app to let users select such entities. This tutorial shows you how to do
this via these steps:

1. Determine the Criteria for an Item Selector: You must first define which entities an Item
Selector can let users select.

2. Get an Item Selector for Your Criteria: If your criteria is for images, for example, then in
this step you’ll get an Item Selector capable of selecting images.

3. Use an Item Selector Dialog: Display the Item Selector in your UI.

1329

Figure 120.3: An Item Selector makes selecting entities a breeze.

Determining Item Criteria

The first step is determining entity types to select from the Item Selector and the data you expect
from them. What kind of entity do you want to select? Do you want to select a user, an image, a
video, or something else?

Once you know the entities you want, you need criterion classes to represent them in the Item
Selector. Criterion classes must implement the ItemSelectorCriterion interface. The Item Selector
Criterion and Return Types reference lists criterion classes Liferay’s apps and app suites provide.

If there’s no criterion class for your entity, you can create your own ItemSelectorCriterion class.
Then determine the type of information (return type) you expect from the entities when users

select them. Do you expect a URL? A Universally Unique Identifier (UUID)? A primary key? Each
return type must be represented by an implementation of the ItemSelectorReturnType class. The
Item Selector Criterion and Return Types reference also lists return type classes Liferay DXP’s apps
and app suites provide.

If there’s no return type class that meets your needs, you can implement your own
ItemSelectorReturnType class.

Note: Each criterion must have at least one ItemSelectorReturnType (return type) associated
with it.

For example, if you want to allow users to select an image and want the image’s URL returned,
you could use the ImageItemSelectorCriterion criterion class and the URLItemSelectorReturnType

return type.
The criterion and return types are collectively referred to as the Item Selector’s criteria. The

Item Selector uses it to decide which selection views (tabs of items) to show.
Once you’ve defined your criteria, you can get an Item Selector to use with it.

1330

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html

Getting an Item Selector for the Criteria

To use an Item Selector with your criteria, youmust get that Item Selector’s URL. The URL is needed
to open the Item Selector dialog in your UI. To get this URL, you must get an ItemSelector reference
and call its getItemSelectorURLmethod with the following parameters:

• RequestBackedPortletURLFactory: A factory that creates portlet URLs.
• ItemSelectedEventName: A unique, arbitrary JavaScript event name that the Item Selector
triggers when the element is selected.

• ItemSelectorCriterion: The criterion (or an array of criterion objects) that specifies the type
of elements to make available in the Item Selector.

The following code demonstrates getting a URL to an Item Selector configured with criteria for
images:

1. Use Declarative Services to get an ItemSelector OSGi Service Component:

import com.liferay.item.selector.ItemSelector;

import org.osgi.service.component.annotations.Reference;

...

@Reference

private ItemSelector _itemSelector

The component annotations are available in the org.osgi.service.component.annotationsmod-
ule.

2. Create the factory you’ll use to create theURL.Todo this, invoke the RequestBackedPortletURLFactoryUtil.create
method with the current request object. The request can be an HttpServletRequest or
PortletRequest:

RequestBackedPortletURLFactory requestBackedPortletURLFactory =

RequestBackedPortletURLFactoryUtil.create(request);

3. Create a list of return types expected for the image entity. The return types list consists of a
URL return type URLItemSelectorReturnType:

List<ItemSelectorReturnType> desiredItemSelectorReturnTypes =

new ArrayList<>();

desiredItemSelectorReturnTypes.add(new URLItemSelectorReturnType());

4. Create a criterion object for images (ImageItemSelectorCriterion):

ImageItemSelectorCriterion imageItemSelectorCriterion =

new ImageItemSelectorCriterion();

5. Use the criterion’s setDesiredItemSelectorReturnTypesmethod to set the return types list from
step 3 to the criterion:

imageItemSelectorCriterion.setDesiredItemSelectorReturnTypes(

desiredItemSelectorReturnTypes);

1331

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelector.html#getItemSelectorURL-com.liferay.portal.kernel.portlet.RequestBackedPortletURLFactory-java.lang.String-com.liferay.item.selector.ItemSelectorCriterion...-
http://mvnrepository.com/artifact/org.osgi/org.osgi.service.component.annotations
http://mvnrepository.com/artifact/org.osgi/org.osgi.service.component.annotations

6. Call the Item Selector’s getItemSelectorURLmethod to get an Item Selector URL based on the
criterion. The method requires the URL factory, an arbitrary event name, and a series of
criterion (one, in this case):

PortletURL itemSelectorURL = _itemSelector.getItemSelectorURL(

requestBackedPortletURLFactory, "sampleTestSelectItem",

imageItemSelectorCriterion);

There are a few things to keep in mind when getting an Item Selector’s URL:

• You can invoke the URL object’s toStringmethod to get its value.

• You can configure an Item Selector to use any number of criterion. The criterion can use any
number of return types.

• The order of the Item Selector’s criteria determines the selection view order. For
example, if you pass the Item Selector an ImageItemSelectorCriterion followed by a
VideoItemSelectorCriterion, the Item Selector displays the image selection views first.

• The return type order is also significant. A view uses the first return type it supports from
each criterion’s return type list.

Now that you’ve got a URL to an Item Selector, you can start using that Item Selector in your UI.

Using the Item Selector Dialog

Toopen the ItemSelector in yourUI, youmust use the JavaScript component LiferayItemSelectorDialog
from AlloyUI’s liferay-item-selector-dialogmodule. The component listens for the item selected
event that you specified for the Item Selector URL. The event returns the selected element’s
information according to its return type.

Here are the steps for using the Item Selector dialog in a JSP:

1. Declare the AUI tag library:

<%@ taglib prefix="aui" uri="http://liferay.com/tld/aui" %>

2. Define the UI element that you’ll use to open the Item Selector dialog. For example, this
creates a Choose button with the ID chooseImage:

<aui:button name="chooseImage" value="Choose" />

3. Get the Item Selector’s URL:

<%

String itemSelectorURL = GetterUtil.getString(request.getAttribute("itemSelectorURL"));

%>

4. Add the <aui:script> tag and set it to use the liferay-item-selector-dialogmodule:

<aui:script use="liferay-item-selector-dialog">

</aui:script>

1332

http://alloyui.com/

5. Inside the <aui:script> tag, attach an event handler to the UI element you created in step 2.
For example, this attaches a click event and a function to the Choose button:

<aui:script use="liferay-item-selector-dialog">

$('#<portlet:namespace />chooseImage').on(

'click',

function(event) {

<!-- function logic goes here -->

}

);

</aui:script>

Inside the function, you must create a new instance of the LiferayItemSelectorDialog AlloyUI
component and configure it to use the Item Selector. The next steps walk you through this.

6. Now you must create the function logic. First, create a new instance of the Liferay Item
Selector dialog:

var itemSelectorDialog = new A.LiferayItemSelectorDialog(

{

...

}

);

7. Inside the braces of the LiferayItemSelectorDialog constructor, first set set the eventName

attribute. This makes the dialog listen for the item selected event. The event name is the the
Item Selector’s event name that you specified in your Java code (the code that gets the Item
Selector URL):

eventName: 'ItemSelectedEventName',

8. Immediately after the eventName setting, set the on attribute to implement a function that
operates on the selected item change. For example, this function sets its variables for the
newly selected item. The information available to parse depends on the return type(s) that
were set. As the comment indicates, you must add the logic for using the selected element:

on: {

selectedItemChange: function(event) {

var selectedItem = event.newVal;

if (selectedItem) {

var itemValue = JSON.parse(

selectedItem.value

);

itemSrc = itemValue.url;

<!-- use item as needed -->

}

}

},

9. Immediately after the on setting, set the title attribute to the dialog’s title:

title: '<liferay-ui:message key="select-image" />',

1333

10. Immediately after the title setting, set the url attribute to the previously retrieved Item
Selector URL. This concludes the attribute settings inside the LiferayItemSelectorDialog con-
structor:

url: '<%= itemSelectorURL.toString() %>'

11. To conclude the logic of the function from step 4, open the Item Selector dialog by calling its
openmethod:

itemSelectorDialog.open();

Here’s the complete example code for these steps:

<%@ taglib prefix="aui" uri="http://liferay.com/tld/aui" %>

<aui:button name="chooseImage" value="Choose" />

<%

String itemSelectorURL = GetterUtil.getString(request.getAttribute("itemSelectorURL"));

%>

<aui:script use="liferay-item-selector-dialog">

$('#<portlet:namespace />chooseImage').on(

'click',

function(event) {

var itemSelectorDialog = new A.LiferayItemSelectorDialog(

{

eventName: 'ItemSelectedEventName',

on: {

selectedItemChange: function(event) {

var selectedItem = event.newVal;

if (selectedItem) {

var itemValue = JSON.parse(

selectedItem.value

);

itemSrc = itemValue.url;

<!-- use item as needed -->

}

}

},

title: '<liferay-ui:message key="select-image" />',

url: '<%= itemSelectorURL.toString() %>'

}

);

itemSelectorDialog.open();

}

);

</aui:script>

When the user clicks the Choose button, a new dialog opens, rendering the Item Selector with
the views that support the criterion and return type(s) that were set.

Great! Now you know how to select entities using an Item Selector. Using the Item Selector API,
you can give your app’s users the power of choice!

1334

Related Articles

Understanding the Item Selector API’s Components
Creating Custom Item Selector Views
Creating Custom Item Selector Entities
Front-End Taglibs

120.3 Creating Custom Item Selector Entities

Does your app require users to select an item that the ItemSelector isn’t configured for? No problem.
You can create a new entity.

This tutorial explains how to create a new entity for the Item Selector.

Creating Item Selector Criterion

First, you must create a new criterion for your entity:

1. Create a class that extends the BaseItemSelectorCriterion class. This class specifies what
kind of entity the user is selecting and what information the Item Selector should return.
The methods inherited from BaseItemSelectorCriterion provide the logic for obtaining this
information.

Note that you can use this class to pass information to the view if needed. For example, the
JournalItemSelectorCriterion class passes information about the primary key so the view can
use it:

public class JournalItemSelectorCriterion extends BaseItemSelectorCriterion {

public JournalItemSelectorCriterion() {

}

public JournalItemSelectorCriterion(long resourcePrimKey) {

_resourcePrimKey = resourcePrimKey;

}

public long getResourcePrimKey() {

return _resourcePrimKey;

}

public void setResourcePrimKey(long resourcePrimKey) {

_resourcePrimKey = resourcePrimKey;

}

private long _resourcePrimKey;

}

Note: Criterion fields should be serializable and should expose a

public empty constructor (as shown above).

1335

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/BaseItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/journal/item/selector/criterion/JournalItemSelectorCriterion.html

2. Create an OSGi component class that implements the BaseItemSelectorCriterionHandler class.
Each criterion requires a criterion handler, which is responsible for obtaining the proper
selection view.
This example creates a criterion handler for the TaskItemSelectorCriterion class:

@Component(service = ItemSelectorCriterionHandler.class)

public class TaskItemSelectorCriterionHandler extends

BaseItemSelectorCriterionHandler<TaskItemSelectorCriterion> {

public Class <TaskItemSelectorCriterion> getItemSelectorCriterionClass() {

return TasksItemSelectorCriterionHandler.class;

}

@Activate

@Override

protected void activate(BundleContext bundleContext) {

super.activate(bundleContext);

}

}

The @Activate and @Override tokens are required to activate this OSGi component.

Depending on your app’s needs, you may not need to create a return type. If your entity returns
information that is already defined by an existing return type, you can use that return type instead.
You can view the default available criteria in the reference document Item Selector Criterion and
Return Types. If, however, your entity returns information that is not covered by an existing return
type, you’ll need to create a new return type next.

Creating Item Selector Return Types

To create a return type, you must create a class that implements the ItemSelectorReturnType inter-
face. You should name such classes after their entity, and suffix them with ItemSelectorReturnType.
For example, if you were to create a return type for a task item, its return type class would be
TaskItemSelectorReturnType. Such a *ItemSelectorReturnType class is used as an identifier by the
Item Selector and does not return any information itself. The return type class is an API that con-
nects the return type to the Item Selector views. Whenever the return type is used, the view must
ensure that the proper information is returned. It’s recommended that you specify the information
that the return type returns, as well as the format, as Javadoc. For example, here’s the example
return type class TaskItemSelectorReturnType:
/**

* This return type should return the task ID and the user who

* created the task as a string.

*

* @author Joe Bloggs

⁎/

public class TaskItemSelectorReturnType implements ItemSelectorReturnType{

}

Nice work! Your new entity’s criterion and return type classes can be used by your app to create
the Item Selector’s URL. To learn how to obtain the Item Selector URL’s, see the tutorial Selecting
Entities Using the Item Selector.

Once you have the Item Selector’s URL, a selection view is responsible for returning the proper
entity information specified by the return type. To create such a selection view for your entity, see
the tutorial Creating Custom Item Selector Views.

1336

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/BaseItemSelectorCriterionHandler.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html

Related Topics

Understanding the Item Selector API’s Components
Selecting Entities using the Item Selector
Creating Custom Item Selector Views

120.4 Creating Custom Item Selector Views

Item Selector’s default selection views may provide everything you need for your app. Custom
selection views are required, however, for certain situations. For example, if you want your users to
be able to select images from an external image provider, then you must create a custom selection
view. You can create a custom selection view by following the steps in this tutorial. Before getting
started, you’ll learn a bit more about selection views.

Note that the view the Item Selector presents is determined by the type of entity the user is
selecting. The Item Selector can also render multiple views for the same entity type. For example,
several selection views are available when a user selects an image. Each selection view is a tab in
the UI that corresponds to the image’s location.

Figure 120.4: An entity type can have multiple selection views.

Each selection view is represented by an *ItemSelectorCriterion class. The tabs in figure 1 are
represented by the following *ItemSelectorCriterion:

• BlogsItemSelectorCriterion class: Blog Images View
• ImageItemSelectorCriterion class: Documents and Media View
• URLItemSelectorCriterion class: URL View
• UploadItemSelectorCriterion class: Upload Image View

1337

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/blogs/item/selector/criterion/BlogsItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/image/criterion/ImageItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/url/criterion/URLItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/upload/criterion/UploadItemSelectorCriterion.html

You’ll create a custom selection view by following these steps:

1. Configure your selection view’s OSGi module.
2. Implement the selection view’s class.
3. Write your selection view’s markup.

Configuring Your Selection View's OSGi Module

Follow these steps to configure your selection view’s module:

1. Add these dependencies to your module’s build.gradle:

dependencies {

compileOnly group: "com.liferay", name: "com.liferay.item.selector.api", version: "2.0.0"

compileOnly group: "com.liferay", name: "com.liferay.item.selector.criteria.api", version: "2.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.impl", version: "2.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

2. Add your module’s information to the bnd.bnd file. For example, this configuration adds the
information for a module called My Custom View:

Bundle-Name: My Custom View

Bundle-SymbolicName: com.liferay.docs.my.custom.view

Bundle-Version: 1.0.0

3. Add a Web-ContextPath to your bnd.bnd to point to your module’s resources:

Include-Resource:\

META-INF/resources=src/main/resources/META-INF/resources

Web-ContextPath: /my-custom-view

If you don’t have a Web-ContextPath, your module won’t know where your resources are. The
Include-Resource header points to the relative path for the module’s resources.

Now that your module is configured, you can create the selection view’s class.

Implementing Your Selection View's Class

To create a new selection view, you must first know what kind of entities you want it to present
(images, videos, users, etc.). This determines the specific ItemSelectorCriterion you need to use.
For example, a selection view for images must use ImageItemSelectorCriterion.

You must also know the entity’s return type (the information type you expect from enti-
ties when users select them). For example, if a selected entity returns its URL, you would use
URLItemSelectorReturnType for the return type.

For a full list of the criterion and returns types available in Liferay DXP’s apps, see the reference
document Item Selector Criterion and Return Types.

Once you’ve determined these things, follow these steps to create your selection view’s class:

1338

1. Create an ItemSelectorView component class that implements the ItemSelectorView interface.
Use the criterion the view requires as a type argument to this interface. In the @Component

annotation, set the item.selector.view.order property to the order you want it to appear in
when displayed alongside other selector views of the same criterion. The lower this value is,
the higher the view’s priority is and the sooner it appears in the order.
For example, this example selector view class is for images, so it implements ItemSelectorView
with the ImageItemSelectorCriterion class as a type argument. The @Component annotation sets
the item.selector.view.order property to 200 and registers the class as an ItemSelectorView

service:

@Component(

property = {"item.selector.view.order:Integer=200"},

service = ItemSelectorView.class

)

public class SampleItemSelectorView

implements ItemSelectorView<ImageItemSelectorCriterion> {...

Note that the criteria order can also be specified in the app’s getItemSelectorURLmethod.

2. Create getter methods for the criterion class, servlet context, and return types. You’ll use
these in the steps that follow:

@Override

public Class<ImageItemSelectorCriterion> getItemSelectorCriterionClass()

{

return ImageItemSelectorCriterion.class;

}

@Override

public ServletContext getServletContext() {

return _servletContext;

}

@Override

public List<ItemSelectorReturnType> getSupportedItemSelectorReturnTypes() {

return _supportedItemSelectorReturnTypes;

}

Note that the getSupportedItemSelectorReturnTypesmethod returns a list of ItemSelectorReturnTypes.
You’ll populate this list in a later step to specify the return types that the selection view
supports.

3. Configure the title, search options, and visibility settings for the selection view. You’ll do this
via these methods:

• getTitle: returns the localized title of the tab to display in the Item Selector dialog.

• isShowSearch(): returns whether the Item Selector view should show the search field.

Note: To implement search, return `true` for this method. The

`renderHTML` method, covered in the next section, indicates whether a user

performed a search based on the value of the `search` parameter. Then the

keywords the user searched can be obtained as follows:

String keywords = ParamUtil.getString(request, "keywords");

1339

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/image/criterion/ImageItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelector.html#getItemSelectorURL-com.liferay.portal.kernel.portlet.RequestBackedPortletURLFactory-java.lang.String-com.liferay.item.selector.ItemSelectorCriterion...-
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html#getSupportedItemSelectorReturnTypes--
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html#getTitle-java.util.Locale-
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html#isShowSearch--

- [`isVisible()`](https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html#isVisible-

com.liferay.portal.kernel.theme.ThemeDisplay-):

returns whether the Item Selector view is visible. In most cases, you'll

want to set this to `true`. You can use this method to add conditional logic

to disable the view.

Here's an example configuration for the `Sample Selector` selection view:

@Override

public String getTitle(Locale locale) {

return "Sample Selector";

}

@Override

public boolean isShowSearch() {

return false;

}

@Override

public boolean isVisible(ThemeDisplay themeDisplay) {

return true;

}

4. Use the renderHTMLmethod to set the render settings for your view. In addition to the servlet
request and response, this method takes the following arguments:

• itemSelectorCriterion: the *ItemSelectorCriterion required to display the selection
view.

• portletURL: the portlet URL used to invoke the Item Selector.
• itemSelectedEventName: the event name that the caller listens for. When an element is
selected, the view fires a JavaScript event with this name.

• search: a search boolean that specifies when the selection view should render search
results. When the user performs a search, this boolean should be set to true.

Here’s an example implementation of a renderHTMLmethod that points to a JSP file (sample.jsp)
to render the view. Note that the itemSelectedEventName is passed as a request attribute so it
can be used in the view markup. The view markup is specified via the ServletContextmethod
getRequestDispatcher. Although this example uses JSPs, you can use another language such
as FreeMarker to render the markup:

@Override

public void renderHTML(

ServletRequest request, ServletResponse response,

ImageItemSelectorCriterion itemSelectorCriterion,

PortletURL portletURL, String itemSelectedEventName,

boolean search

)

throws IOException, ServletException {

request.setAttribute(_ITEM_SELECTED_EVENT_NAME,

itemSelectedEventName);

ServletContext servletContext = getServletContext();

RequestDispatcher requestDispatcher =

servletContext.getRequestDispatcher("/sample.jsp");

requestDispatcher.include(request, response);

}

1340

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html#renderHTML-javax.servlet.ServletRequest-javax.servlet.ServletResponse-T-javax.portlet.PortletURL-java.lang.String-boolean-

5. Use the @Reference annotation to reference your module’s class for the setServletContext

method. In the annotation, use the target parameter to specify the available services for
the servlet context. This example uses the osgi.web.symbolicname property to specify the
com.liferay.selector.sample.web class as the default value. You should also use the unbind =

_ parameter to specify that there’s no unbind method for this module. In the method body,
simply set the servlet context variable:

@Reference(

target =

"(osgi.web.symbolicname=com.liferay.item.selector.sample.web)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

_servletContext = servletContext;

}

6. Define the _supportedItemSelectorReturnTypes list that you referenced in step 2 with the return
types that this view supports. This example adds the URLItemSelectorReturnType class and
FileEntryItemSelectorReturnType class to the list of supported return types (you can use more
return types if needed). More return types means that the view is more reusable. Also note
that this example defines its servlet context variable at the bottom of the file:

private static final List<ItemSelectorReturnType>

_supportedItemSelectorReturnTypes =

Collections.unmodifiableList(

ListUtil.fromArray(

new ItemSelectorReturnType[] {

new FileEntryItemSelectorReturnType(),

new URLItemSelectorReturnType()

}));

private ServletContext _servletContext;

For a real-world example of a view class, see the SiteNavigationMenuItemItemSelectorView class.

Writing Your ViewMarkup

Now that you’ve implemented your selection view’s class, you must write the markup that renders
the view. The exact markup you write depends on your app’s needs. It also depends on your
personal preferences, as you can write it with taglibs, AUI components, or even pure HTML and
JavaScript. Therefore, there’s no standard or typical view markup, even for simple applications.
Regardless, the markup must do two key things:

• Render the entities for the user to select.
• When an entity is selected, pass the information specified by the Item Selector return type
via a JavaScript event.

For example, the example view class in the previous section passes the JavaScript event name as
a request attribute in the renderHTMLmethod. You can therefore use this event name in the markup:

Liferay.fire(

`<%= {ITEM_SELECTED_EVENT_NAME} %>',

{

data:{

1341

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/URLItemSelectorReturnType.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/FileEntryItemSelectorReturnType.html
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/site-navigation/site-navigation-item-selector-web/src/main/java/com/liferay/site/navigation/item/selector/web/internal/SiteNavigationMenuItemItemSelectorView.java

the-data-your-client-needs-according-to-the-return-type

}

}

);

For a complete, real-world example, see the layouts.jsp viewmarkup for the com.liferay.layout.item.selector.web
module. Even though this example is for the previous version of Liferay DXP, it still applies to 7.0.
Here’s a walkthrough of this layouts.jsp file:

1. This layouts.jspfilefirst defines somevariables. Note that LayoutItemSelectorViewDisplayContext
is an optional class that contains additional information about the criteria and view:

<%

LayoutItemSelectorViewDisplayContext layoutItemSelectorViewDisplayContext =

(LayoutItemSelectorViewDisplayContext)request.getAttribute(

BaseLayoutsItemSelectorView.LAYOUT_ITEM_SELECTOR_VIEW_DISPLAY_CONTEXT);

LayoutItemSelectorCriterion layoutItemSelectorCriterion =

layoutItemSelectorViewDisplayContext.getLayoutItemSelectorCriterion();

Portlet portlet = PortletLocalServiceUtil.getPortletById(company.getCompanyId(),

portletDisplay.getId());

%>

2. This snippet imports a CSS file for styling and places it in the <head> of the page:

<liferay-util:html-top>

<link href="<%= PortalUtil.getStaticResourceURL(

request, application.getContextPath() + "/css/main.css",

portlet.getTimestamp())

%>" rel="stylesheet" type="text/css" />

</liferay-util:html-top>

You can learn more about using the liferay-util taglibs in the tutorial Using the Liferay Util
Taglib.

3. This snippet creates the UI to display the layout entities. It uses the liferay-layout:layouts-

tree taglib along with the Lexicon design language to create cards:

<div class="container-fluid-1280 layouts-selector">

<div class="card-horizontal main-content-card">

<div class="card-row card-row-padded">

<liferay-layout:layouts-tree

checkContentDisplayPage="<%= layoutItemSelectorCriterion.isCheckDisplayPage() %>"

draggableTree="<%= false %>"

expandFirstNode="<%= true %>"

groupId="<%= scopeGroupId %>"

portletURL="<%= layoutItemSelectorViewDisplayContext.getEditLayoutURL() %>"

privateLayout="<%= layoutItemSelectorViewDisplayContext.isPrivateLayout() %>"

rootNodeName="<%= layoutItemSelectorViewDisplayContext.getRootNodeName() %>"

saveState="<%= false %>"

selectedLayoutIds="<%= layoutItemSelectorViewDisplayContext.getSelectedLayoutIds() %>"

selPlid="<%= layoutItemSelectorViewDisplayContext.getSelPlid() %>"

treeId="treeContainer"

/>

</div>

</div>

</div>

This renders the following UI:

1342

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/web-experience/layout/layout-item-selector-web/src/main/resources/META-INF/resources/layouts.jsp
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/web-experience/layout/layout-item-selector-web
https://docs.liferay.com/dxp/portal/7.0-latest/taglibs/modules/apps/web-experience/layout/com.liferay.layout.taglib/liferay-layout/layouts-tree.html
https://docs.liferay.com/dxp/portal/7.0-latest/taglibs/modules/apps/web-experience/layout/com.liferay.layout.taglib/liferay-layout/layouts-tree.html
https://liferay.github.io/clay/
https://liferay.github.io/clay/content/cards/

Figure 120.5: The Layouts Item Selector view uses Lexicon and Liferay Layout taglibs to create the UI.

4. This portion of the aui:script returns the path for the page:

<aui:script use="aui-base">

var LString = A.Lang.String;

var getChosenPagePath = function(node) {

var buffer = [];

if (A.instanceOf(node, A.TreeNode)) {

var labelText = LString.escapeHTML(node.get('labelEl').text());

buffer.push(labelText);

node.eachParent(

function(treeNode) {

var labelEl = treeNode.get('labelEl');

if (labelEl) {

labelText = LString.escapeHTML(labelEl.text());

buffer.unshift(labelText);

}

}

);

}

return buffer.join(' > ');

};

5. The following snippet passes the return type data when the layout (entity) is selected. Note
the url and uuid variables retrieve the URL or UUID for the layout:

var setSelectedPage = function(event) {

var disabled = true;

var messageText = '<%= UnicodeLanguageUtil.get(request, "there-is-no-selected-page") %>';

var lastSelectedNode = event.newVal;

var labelEl = lastSelectedNode.get('labelEl');

var link = labelEl.one('a');

var url = link.attr('data-url');

1343

var uuid = link.attr('data-uuid');

var data = {};

if (link && url) {

disabled = false;

data.layoutpath = getChosenPagePath(lastSelectedNode);

6. This checks if the return type information is a URL or a UUID. It then sets the value for the
JSON object’s data attribute accordingly. The last line adds the CKEditorFuncNum for the editor
to the JSON object’s data attribute:

<c:choose>

<c:when test="<%= Objects.equals(layoutItemSelectorViewDisplayContext.getItemSelectorReturnTypeName(), URLItemSelectorReturnType.class.getName()) %>">

data.value = url;

</c:when>

<c:when test="<%= Objects.equals(layoutItemSelectorViewDisplayContext.getItemSelectorReturnTypeName(), UUIDItemSelectorReturnType.class.getName()) %>">

data.value = uuid;

</c:when>

</c:choose>

}

<c:if test="<%= Validator.isNotNull(layoutItemSelectorViewDisplayContext.getCkEditorFuncNum()) %>">

data.ckeditorfuncnum: <%= layoutItemSelectorViewDisplayContext.getCkEditorFuncNum() %>;

</c:if>

The data-url and data-uuid attributes are in the HTMLmarkup for the Layouts Item Selector.
The HTMLmarkup for an instance of the Layouts Item Selector is shown here:

Figure 120.6: The URL and UUID can be seen in the data-url and data-uuid attributes of the Layout Item Selector’s HTMLmarkup.

7. The JavaScript trigger event specified in the Item Selector return type is fired, passing the
data JSON object with the required return type information:

Liferay.Util.getOpener().Liferay.fire(

'<%= layoutItemSelectorViewDisplayContext.getItemSelectedEventName() %>',

{

data: data

}

);

};

8. Finally, the layout is set to the selected page:

1344

var container = A.one('#<portlet:namespace />treeContainerOutput');

if (container) {

container.swallowEvent('click', true);

var tree = container.getData('tree-view');

tree.after('lastSelectedChange', setSelectedPage);

}

</aui:script>

Your new selection view is automatically rendered by the Item Selector in every portlet that
uses the criterion and return types you defined, without modifying anything in those portlets.

Great! Now you know how to create custom views for the Item Selector.

Related Topics

Understanding the Item Selector API’s Components
Selecting Entities Using the Item Selector
Creating Custom Item Selector Entities

1345

CHAPTER 121

DOCUMENTS AND MEDIA API

Liferay DXP’s Documents and Media library stores uploaded files so users can use, manage, and
share them. For example, users can embed files in content, organize them in folders, edit and
collaborate on them with other users, and more. See the user guide for more information on the
Documents and Media library’s features.

A powerful API underlies the Documents and Media library’s functionality. You can leverage
this API in your own apps. For example, you could create an app that lets users upload files to the
Documents and Media library. Your app could even let users update, delete, and copy files.

The tutorials in this section show you how to use the Documents and Media library’s API. Note
that this is a large API and it may seem daunting at first. To keep backwards compatibility, the API
has different entry points and multiple methods or classes with similar functionality. Fortunately,
you don’t need to learn all of them. These tutorials therefore focus on the API’s most useful classes
and methods.

Also note that the Documents and Media app is itself a consumer of this API—Liferay’s develop-
ers used the API to implement the app’s functionality. Therefore, these tutorials use code from this
app as an example of how to use the API.

121.1 Getting Started with the Documents and Media API

Before you start using the Documents and Media API, you must learn these things:

• Key Interfaces: The interfaces you’ll use most while using the API.
• Getting a Service Reference: How to get a service reference that lets you call the API’s
services.

• Specifying Repositories: How to specify which Documents and Media repository you want.
• Specifying Folders: How to specify which folder you want.

Key Interfaces

The Documents and Media API contains several key interfaces:

• Documents andMedia Services: These interfaces expose all the available Documents and
Media functionality:

1347

– DLAppLocalService: The local service.
– DLAppService: The remote service. This service wraps the local service methods in

permission checks.

Note that Liferay used Service Builder to create these services. Because the remote service
contains permission checks, it’s a best practice to call it instead of the local service. See the
section below for instructions on getting a service reference.

• Entity Interfaces: These interfaces represent entities in the Documents and Media library.
Here are the primary ones you’ll use:

– FileEntry: Represents a file.
– Folder: Represents a folder.
– FileShortcut: Represents a shortcut to a file.

Getting a Service Reference

Before you can do anything with the Documents and Media API, you must get a service reference.
If you’re using OSGi modules, use the @Reference annotation to get a service reference in an OSGi
component via Declarative Services. For example, this code gets a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

If you’re using a standard web module (WAR file), use a Service Tracker to get a reference to the
service instead.

Getting the reference this way ensures that you leverage OSGi’s dependency management
features. If you must use the Documents and Media services outside of an OSGi component (e.g.,
in a JSP), then you can use the services’ static *Util classes:

• DLAppServiceUtil

• DLAppLocalServiceUtil

Specifying Repositories

Many methods in the Documents and Media API contain a repositoryId parameter that identifies
the Documents and Media repository where the operation is performed. A Site (group) can have
multiple repositories, but only one can be accessed via the portal UI. This is called the Site (group)
repository, which is effectively a Site’s default repository. To access this repository via the API,
provide the group ID as the repositoryId.

You can also get the repositoryId via file (FileEntry), folder (Folder), and file shortcut
(FileShortcut) entities. Each of these entities has a getRepositoryIdmethod that gets the ID of its
repository. For example, this code gets the repository ID of the FileEntry object fileEntry:

long repositoryId = fileEntry.getRepositoryId();

There may also be cases that require a Repository object. You can get one by creating a
RepositoryProvider reference and passing the repository ID to its getRepositorymethod:

1348

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppLocalService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppServiceUtil.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppLocalServiceUtil.html

@Reference

private RepositoryProvider repositoryProvider;

Repository repository = repositoryProvider.getRepository(repositoryId);

Even if you only have an entity ID (e.g., a file ID or folder ID), you can still use RepositoryProvider
to get a Repository object. To do so, call the RepositoryProvider method for the entity type with
the entity ID as its argument. For example, this code gets a folder’s Repository by calling the
RepositoryProvidermethod getFolderRepository with the folder’s ID:

Repository repository = repositoryProvider.getFolderRepository(folderId);

See the RepositoryProvider Javadoc for a list of the methods for other entity types.
Note that there are ways to create repositories programmatically, including repositories private

to specific apps. For simplicity, however, the tutorials here access the default site repository.

Specifying Folders

Many API methods require the ID of a folder that they perform operations in or on. For example,
such methods may contain parameters like folderId or parentFolderId. Also note that you can use
the constant DLFolderConstants.DEFAULT_PARENT_FOLDER_ID to specify the root folder of your current
repository.

Related Topics

Service Builder
OSGi Services and Dependency Injection with Declarative Services
Leveraging Dependencies
Service Trackers

1349

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/repository/RepositoryProvider.html

CHAPTER 122

CREATING FILES, FOLDERS, AND SHORTCUTS

The primary use case for the API is to create files, folders, and file shortcuts in the Documents and
Media library.

If you’ve used other Liferay APIs, the Docs & Media API follows the same conventions. In
general, methods that do similar things tend to have similar names. When you must create an
entity (whatever it is), look for methods that follow the pattern add[ModelName], where [ModelName]

is the name of the entity’s data model object. As the getting started tutorial explains, you’ll use
DLAppService to access the API. This service object contains the following methods for adding
entities:

• addFileEntry: Adds a file.
• addFolder: Adds a folder.
• addFileShortcut: Adds a shortcut to a file.

The tutorials that follow show you how to use these methods.

122.1 Creating Files

To createfiles (FileEntry entities) in theDocuments andMedia library, youmust use the DLAppService
interface’s addFileEntrymethods. There are three such methods, and they differ by the data type
used to create the file. Click eachmethod to see a full description of the method and its parameters:

• addFileEntry(..., byte[] bytes, ...)

• addFileEntry(..., File file, ...)

• addFileEntry(..., InputStream is, long size, ...)

Note that the following arguments are optional:

• sourceFileName: This keeps track of the uploaded file. It infers the content type if that file has
an extension.

1351

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#addFileEntry-long-long-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.lang.String-byte:A-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#addFileEntry-long-long-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.io.File-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#addFileEntry-long-long-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.io.InputStream-long-com.liferay.portal.kernel.service.ServiceContext-

• mimeType: Defaults to a binary stream. If omitted, Documents and Media tries to infer the
type from the file extension.

• description: The file’s description to display in the portal.
• changeLog: Descriptions for file versions.
• is and size: In the method that takes an InputStream, you can use null for the is parameter.
If you do this, however, you must use 0 for the size parameter.

Follow these steps to create a file via the DLAppService method addFileEntry. Note that these
steps use the method that contains InputStream:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the addFileEntrymethod’s arguments. Since it’s common to
create a file with data submitted by the end user, you can extract the data from the request.
This example does so via UploadPortletRequest and ParamUtil, but you can get the data any
way you wish:

long repositoryId = ParamUtil.getLong(uploadPortletRequest, "repositoryId");

long folderId = ParamUtil.getLong(uploadPortletRequest, "folderId");

String sourceFileName = uploadPortletRequest.getFileName("file");

String title = ParamUtil.getString(uploadPortletRequest, "title");

String description = ParamUtil.getString(uploadPortletRequest, "description");

String changeLog = ParamUtil.getString(uploadPortletRequest, "changeLog");

boolean majorVersion = ParamUtil.getBoolean(uploadPortletRequest, "majorVersion");

try (InputStream inputStream = uploadPortletRequest.getFileAsStream("file")) {

String contentType = uploadPortletRequest.getContentType("file");

long size = uploadPortletRequest.getSize("file");

ServiceContext serviceContext = ServiceContextFactory.getInstance(

DLFileEntry.class.getName(), uploadPortletRequest);

}

For more information on getting repository and folder IDs, see the getting started tutorial’s
sections on specifying repositories and folders. For more information on ServiceContext, see
the tutorial Understanding ServiceContext.

3. Call the service reference’s addFileEntrymethod with the data from the previous step. Note
that this example does so inside the previous step’s try-with-resources statement:

try (InputStream inputStream = uploadPortletRequest.getFileAsStream("file")) {

...

FileEntry fileEntry = _dlAppService.addFileEntry(

repositoryId, folderId, sourceFileName, contentType, title,

description, changeLog, inputStream, size, serviceContext);

}

1352

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upload/UploadPortletRequest.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html

The method returns a FileEntry object, which this example sets to a variable for later use.
Note, however, that you don’t have to do this.

You can find the full code for this example in the updateFileEntry method of Liferay DXP’s
EditFileEntryMVCActionCommand class. This class uses the Documents and Media API to implement
almost all the FileEntry actions that the Documents and Media app supports. Also note that this
updateFileEntrymethod, as well as the rest of EditFileEntryMVCActionCommand, contains additional
logic to suit the specific needs of the Documents and Media app.

Related Topics

Updating Files
Deleting Files
Moving Folders and Files
Creating Folders
Creating File Shortcuts

122.2 Creating Folders

To create folders (Folder entities) in theDocuments andMedia library, youmust use the DLAppService
interface’s addFoldermethod:

addFolder(long repositoryId,

long parentFolderId,

String name,

String description,

ServiceContext serviceContext)

See this method’s Javadoc for a description of the parameters. Note that the description param-
eter is optional.

Follow these steps to create a folder with the DLAppServicemethod addFolder:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the addFolder method’s arguments. Since it’s common to
create a folder with data submitted by the end user, you can extract the data from the request.
This example does so via javax.portlet.ActionRequest and ParamUtil:

long repositoryId = ParamUtil.getLong(actionRequest, "repositoryId");

long parentFolderId = ParamUtil.getLong(actionRequest, "parentFolderId");

String name = ParamUtil.getString(actionRequest, "name");

String description = ParamUtil.getString(actionRequest, "description");

ServiceContext serviceContext = ServiceContextFactory.getInstance(

DLFolder.class.getName(), actionRequest);

1353

https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFileEntryMVCActionCommand.java
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#addFolder-long-long-java.lang.String-java.lang.String-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html

For more information on getting repository and folder IDs, see the getting started tutorial’s
sections on specifying repositories and folders. For more information on ServiceContext, see
the tutorial Understanding ServiceContext.

3. Call the service reference’s addFoldermethod with the data from the previous step:

Folder folder = _dlAppService.addFolder(

repositoryId, parentFolderId, name, description,

serviceContext);

The method returns a Folder object, which this example sets to a variable for later use. Note,
however, that you don’t have to do this.

You can find the full code for this example in the updateFolder method of Liferay DXP’s
EditFolderMVCActionCommand class. This class uses the Documents and Media API to implement
almost all the Folder actions that the Documents and Media app supports. Also note that this
updateFoldermethod, as well as the rest of EditFolderMVCActionCommand, contains additional logic to
suit the specific needs of the Documents and Media app.

Folders and External Repositories

By creating a folder that acts as a proxy for an external repository (e.g., SharePoint), you can
effectively mount that repository inside a Site’s default repository. When users enter this special
folder, they see the external repository. These folders are called mount points. You can create one
via the API by setting the Service Context’s mountPoint attribute to true, and then using that Service
Context in the addFoldermethod:

serviceContext.setAttribute("mountPoint", true);

Note that the repositoryId of such a folder indicates the external repository the folder points
to—not the repository the folder exists. Also, mount point folders can only exist in the default Site
repository.

Related Topics

Updating Folders
Deleting Folders
Copying Folders
Moving Folders and Files

122.3 Creating File Shortcuts

To create file shortcuts (FileShortcut entities) in the Documents and Media library, you must use
the DLAppService interface’s addFileShortcutmethod:

addFileShortcut(long repositoryId,

long folderId,

long toFileEntryId,

ServiceContext serviceContext)

1354

https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFolderMVCActionCommand.java
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html

See this method’s Javadoc for a description of the parameters. Note that all this method’s
parameters are mandatory.

Keep these things in mind when creating shortcuts:

• You can create a shortcut to a file in a different Site, if that file and its resulting shortcut are
in the same portal instance.

• You can’t create folder shortcuts.
• Shortcuts can only exist in the default Site repository. If you try to invoke addFileShortcut

with an external repository’s ID (e.g., a SharePoint repository), the operation fails. Because
not all repositories have the same features, the Documents and Media API only supports the
common denominators for all repositories: files and folders.

Follow these steps to create a file shortcut with the DLAppServicemethod addFileShortcut:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the addFileShortcutmethod’s arguments. Since it’s common
to create a file shortcut with data submitted by the end user, you can extract the data from
the request. This example does so via javax.portlet.ActionRequest and ParamUtil, but you can
get the data any way you wish:

long repositoryId = ParamUtil.getLong(actionRequest, "repositoryId");

long folderId = ParamUtil.getLong(actionRequest, "folderId");

long toFileEntryId = ParamUtil.getLong(actionRequest, "toFileEntryId");

ServiceContext serviceContext = ServiceContextFactory.getInstance(

DLFileShortcutConstants.getClassName(), actionRequest);

For more information on getting repository and folder IDs, see the getting started tutorial’s
sections on specifying repositories and folders. For more information on ServiceContext, see
the tutorial Understanding ServiceContext.

3. Call the service reference’s addFileShortcutmethod with the data from the previous step:

FileShortcut fileShortcut = _dlAppService.addFileShortcut(

repositoryId, folderId, toFileEntryId,

serviceContext);

The method returns a FileShortcut object, which this example sets to a variable for later use.
Note, however, that you don’t have to do this.

You can find the full code for this example in the updateFileShortcutmethod of Liferay DXP’s
EditFileShortcutMVCActionCommand class. This class uses theDocuments andMedia API to implement
almost all the FileShortcut actions that the Documents and Media app supports. Also note that
this updateFileShortcut method, as well as the rest of EditFileShortcutMVCActionCommand, contains
additional logic to suit the specific needs of the Documents and Media app.

1355

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#addFileShortcut-long-long-long-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFileShortcutMVCActionCommand.java

Related Topics

Deleting File Shortcuts
Updating File Shortcuts

1356

CHAPTER 123

DELETING ENTITIES

Now that you know how to create Documents and Media entities, you should learn how to delete
them. Note that the exact meaning of delete depends on the portal configuration and the delete
operation you choose. This is because the Recycle Bin, which is enabled by default, can be used to
recover deleted items. Deletions via DLAppService, however, are permanent. To send items to the
Recycle Bin, you must use the Capabilities API.

This section of tutorials shows youhow touse DLAppService to delete entities from theDocuments
and Media library. The last tutorial in this section shows you how to move entities to the Recycle
Bin via the Capabilities API.

123.1 Deleting Files

There are two methods you can use to delete files:

• deleteFileEntry(long fileEntryId)

• deleteFileEntryByTitle(long repositoryId, long folderId, String title)

These methods differ only in how they identify a file for deletion. The combination of the
folderId and title parameters in deleteFileEntryByTitle uniquely identify a file because it’s impos-
sible for two files in the same folder to share a name.

Follow these steps to delete a file:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the arguments of the deleteFileEntry*method you wish to
use. Since it’s common to delete a file specified by the end user, you can extract the data you

1357

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#deleteFileEntry-long-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#deleteFileEntryByTitle-long-long-java.lang.String-

need from the request. This example does so via javax.portlet.ActionRequest and ParamUtil,
but you can get the data any way you wish. Also note that this example gets only the file entry
ID because it uses deleteFileEntry:

long fileEntryId = ParamUtil.getLong(actionRequest, "fileEntryId");

If you want to use deleteFileEntryByTitle instead, you can also get the repository ID, folder
ID, and title from the request. For more information on getting repository and folder IDs,
see the getting started tutorial’s sections on specifying repositories and folders.

3. Call the service reference’s deleteFileEntry*method you wish to use with the data from the
previous step. This example calls deleteFileEntry with the file entry’s ID:

_dlAppService.deleteFileEntry(fileEntryId);

You can find the full code for this example in the deleteFileEntry method of Liferay DXP’s
EditFileEntryMVCActionCommand class. This class uses the Documents and Media API to implement
almost all the FileEntry actions that the Documents and Media app supports. Also note that this
deleteFileEntrymethod, as well as the rest of EditFileEntryMVCActionCommand, contains additional
logic to suit the specific needs of the Documents and Media app.

Related Topics

Moving Entities to the Recycle Bin
Creating Files
Updating Files
Moving Folders and Files

123.2 Deleting File Versions

When a file is modified, Documents and Media creates a new file version and leaves the previous
version intact. Over time, old file versions can accumulate and consume precious storage space.
Fortunately, you can use the Documents and Media API to delete them. Note, however, that there’s
no way to send file versions to the Recycle Bin—once you delete them, they’re gone forever.

You can delete file versions with the DLAppServicemethod deleteFileVersion:

deleteFileVersion(long fileEntryId, String version)

See this method’s Javadoc for a description of the parameters.
Follow these steps to use deleteFileVersion to delete a file version:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

1358

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFileEntryMVCActionCommand.java
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#deleteFileVersion-long-java.lang.String-

2. Get the file entry ID and version for the file you want to delete. Since it’s common to delete
a file version specified by the end user, you can extract these parameters from the request.
This example does so via javax.portlet.ActionRequest and ParamUtil, but you can do this any
way you wish:

long fileEntryId = ParamUtil.getLong(actionRequest, "fileEntryId");

String version = ParamUtil.getString(actionRequest, "version");

3. Use the service reference to call the deleteFileVersion method with the file entry ID and
version from the previous step:

_dlAppService.deleteFileVersion(fileEntryId, version);

You can find the full code for this example in the deleteFileEntry method of Liferay DXP’s
EditFileEntryMVCActionCommand class. This class uses the Documents and Media API to implement
almost all the FileEntry actions that the Documents and Media app supports. Also note that this
deleteFileEntrymethod, as well as the rest of EditFileEntryMVCActionCommand, contains additional
logic to suit the specific needs of the Documents and Media app.

Identifying File Versions

Since there may be many versions of a file, it’s useful to identify programmatically old versions for
deletion. You can do this with FileVersionVersionComparator.

The following example creates such a comparator and uses its comparemethod to identify old ver-
sions of a file. The code does so by iterating through each approved version of the file (fileVersion).
Each iteration uses the comparemethod to test that file version (fileVersion.getVersion()) against
the same file’s current version (fileEntry.getVersion()). If this comparison is greater than 0, then
the iteration’s file version (fileVersion) is old and is deleted by deleteFileVersion:

FileVersionVersionComparator comparator = new FileVersionVersionComparator();

for (FileVersion fileVersion: fileEntry.getVersions(WorkflowConstants.STATUS_APPROVED)) {

if (comparator.compare(fileEntry.getVersion(), fileVersion.getVersion()) > 0) {

dlAppService.deleteFileVersion(fileVersion.getFileEntryId(), fileVersion.getVersion());

}

}

Related Topics

Deleting Files
Deleting File Shortcuts
Deleting Folders
Moving Entities to the Recycle Bin

123.3 Deleting File Shortcuts

The Documents and Media API also lets you delete file shortcuts. To do so, use the DLAppService

method deleteFileShortcut with the ID of the shortcut you want to delete:

1359

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFileEntryMVCActionCommand.java
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/util/comparator/FileVersionVersionComparator.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#deleteFileShortcut-long-

deleteFileShortcut(long fileShortcutId)

Follow these steps to use this method to delete a file shortcut:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the file shortcut’s ID. Since it’s common to delete a file shortcut specified by the end user,
you can extract its ID from the request. This example does so via javax.portlet.ActionRequest

and ParamUtil, but you can do this any way you wish:

long fileShortcutId = ParamUtil.getLong(actionRequest, "fileShortcutId");

3. Use the service reference to call the deleteFileShortcutmethod with the file shortcut ID from
the previous step:

_dlAppService.deleteFileShortcut(fileShortcutId);

You can find the full code for this example in the deleteFileShortcutmethod of Liferay DXP’s
EditFileShortcutMVCActionCommand class. This class uses theDocuments andMedia API to implement
almost all the FileShortcut actions that the Documents and Media app supports. Also note that
this deleteFileShortcut method, as well as the rest of EditFileShortcutMVCActionCommand, contains
additional logic to suit the specific needs of the Documents and Media app.

Related Topics

Moving Entities to the Recycle Bin
Creating File Shortcuts
Updating File Shortcuts

123.4 Deleting Folders

Deleting folders is similar to deleting files. There are two methods you can use to delete a folder.
Click each method to see its Javadoc:

• deleteFolder(long folderId)

• deleteFolder(long repositoryId, long parentFolderId, String name)

Which method you use is up to you—they both delete a folder. Follow these steps to use one of
these methods to delete a folder:

1. Get a reference to DLAppService:

1360

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFileShortcutMVCActionCommand.java
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#deleteFolder-long-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#deleteFolder-long-long-java.lang.String-

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the arguments of the deleteFolder*method you wish to use.
Since it’s common to delete a folder specified by the end user, you can extract the data you
need from the request. This example does so via javax.portlet.ActionRequest and ParamUtil,
but you can get the data any way you wish. Also note that this example gets only the folder ID
because the next step deletes the folder with deleteFolder(folderId):

long folderId = ParamUtil.getLong(actionRequest, "folderId");

If you want to use the other deleteFoldermethod, you can also get the repository ID, parent
folder ID, and folder name from the request. For more information on getting repository and
folder IDs, see the getting started tutorial’s sections on specifying repositories and folders.

3. Call the service reference’s deleteFolder* method you wish to use with the data from the
previous step. This example calls deleteFolder with the folder’s ID:

_dlAppService.deleteFolder(folderId);

You can find the full code for this example in the deleteFolders method of Liferay DXP’s
EditFolderMVCActionCommand class. This class uses the Documents and Media API to implement
almost all the Folder actions that the Documents and Media app supports. Also note that this
deleteFoldersmethod, as well as the rest of EditFolderMVCActionCommand, contains additional logic
to suit the specific needs of the Documents and Media app.

Related Topics

Moving Entities to the Recycle Bin
Creating Folders
Updating Folders
Copying Folders
Moving Folders and Files
Deleting Files

123.5 Moving Entities to the Recycle Bin

Instead of deleting entities, you can move them to the Recycle Bin. Note that the Recycle Bin
isn’t part of the Documents and Media API. Although you can use the Recycle Bin API directly,
in the case of Documents and Media it’s better to use the Capabilities API. This is because some
third-party repositories (e.g., SharePoint) don’t support Recycle Bin functionality. The Capabilities
API lets you verify that the repository you’re working in supports the Recycle Bin. It’s therefore a
best practice to always use the Capabilities API when moving entities to the Recycle Bin.

Follow these steps to use the Capabilities API to move an entity to the Recycle Bin:

1361

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFolderMVCActionCommand.java

1. Verify that the repository supports the Recycle Bin. Do this by calling the repository object’s
isCapabilityProvidedmethod with TrashCapability.class as its argument. This example does
so in if statement’s condition:

if (repository.isCapabilityProvided(TrashCapability.class)) {

// The code to move the entity to the Recycle Bin

// You'll write this in the next step

}

2. Move the entity to the Recycle Bin if the repository supports it. To do this, first get a
TrashCapability reference by calling the repository object’s getCapability method with
TrashCapability.class as its argument. Then call the TrashCapabilitymethod that moves the
entity to the Recycle Bin. For example, this code calls moveFileEntryToTrash to move a file to
the Recycle Bin:

if (repository.isCapabilityProvided(TrashCapability.class)) {

TrashCapability trashCapability = repository.getCapability(TrashCapability.class);

trashCapability.moveFileEntryToTrash(user.getUserId(), fileEntry);

}

See the TrashCapability Javadoc for information on the methods you can use to move other
types of entities to the Recycle Bin.

Related Topics

Deleting Files
Deleting Folders
Deleting File Shortcuts
Moving Folders and Files

1362

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/repository/capabilities/TrashCapability.html

CHAPTER 124

UPDATING ENTITIES

Like creating and deleting entities, updating entities is a key task when working with Documents
and Media. The methods in the Documents and Media API for creating and updating entities are
similar. There are, however, a few important differences. The tutorials in this section show you
how to update entities and highlight these differences.

124.1 Updating Files

Updating a file is a bit more complicated than creating one. This is due to the way the update
operation handles a file’s metadata and content. To update only a file’s content, you must also
supply the file’s existing metadata. Otherwise, the update operation could lose the metadata. The
opposite, however, isn’t true. You can modify a file’s metadata without re-supplying the content. In
such an update, the file’s content is automatically copied to the new version of the file. To make
this easier to remember, follow these rules when updating files:

• Always provide all metadata.
• Only provide the file’s content when you want to change it.

DLAppService has three updateFileEntrymethods that you can use to update a file. Thesemethods
differ only in the file content’s type. Click each method to see its Javadoc, which contains a full
description of its parameters:

• updateFileEntry(..., byte[] bytes, ...)

• updateFileEntry(..., File file, ...)

• updateFileEntry(..., InputStream is, long size, ...)

Keep these things in mind when using these methods:

• To retain the original file’s title and description, you must provide those parameters to
updateFileEntry. Omitting them deletes any existing title and description.

1363

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#updateFileEntry-long-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.lang.String-boolean-byte:A-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#updateFileEntry-long-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.lang.String-boolean-java.io.File-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#updateFileEntry-long-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.lang.String-boolean-java.io.InputStream-long-com.liferay.portal.kernel.service.ServiceContext-

• If you supply null in place of the file’s content (e.g., bytes, file, or is), the update automatically
uses the file’s existing content. Do this only if you want to update the file’s metadata.

• If you use false for the majorVersion parameter, the update increments the file version by
0.1 (e.g., from 1.0 to 1.1). If you use true for this parameter, the update increments the file
version to the next .0 value (e.g., from 1.0 to 2.0, 1.1 to 2.0, etc.).

Follow these steps to update a file. Note that the example in these steps uses the updateFileEntry

method that contains InputStream, but you can adapt the example to the other methods if you wish:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the updateFileEntrymethod’s arguments. Since it’s common
to update a file with data submitted by the end user, you can extract the data from the request.
This example does so via UploadPortletRequest and ParamUtil, but you can get the data any
way you wish:

long repositoryId = ParamUtil.getLong(uploadPortletRequest, "repositoryId");

long folderId = ParamUtil.getLong(uploadPortletRequest, "folderId");

String sourceFileName = uploadPortletRequest.getFileName("file");

String title = ParamUtil.getString(uploadPortletRequest, "title");

String description = ParamUtil.getString(uploadPortletRequest, "description");

String changeLog = ParamUtil.getString(uploadPortletRequest, "changeLog");

boolean majorVersion = ParamUtil.getBoolean(uploadPortletRequest, "majorVersion");

try (InputStream inputStream = uploadPortletRequest.getFileAsStream("file")) {

String contentType = uploadPortletRequest.getContentType("file");

long size = uploadPortletRequest.getSize("file");

ServiceContext serviceContext = ServiceContextFactory.getInstance(

DLFileEntry.class.getName(), uploadPortletRequest);

}

For more information on getting repository and folder IDs, see the getting started tutorial’s
sections on specifying repositories and folders. For more information on ServiceContext, see
the tutorial Understanding ServiceContext.

3. Call the service reference’s updateFileEntry method with the data from the previous step.
Note that this example does so inside the previous step’s try-with-resources statement:

try (InputStream inputStream = uploadPortletRequest.getFileAsStream("file")) {

...

FileEntry fileEntry = _dlAppService.updateFileEntry(

fileEntryId, sourceFileName, contentType, title,

description, changeLog, majorVersion, inputStream, size,

serviceContext);

}

1364

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upload/UploadPortletRequest.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html

The method returns a FileEntry object, which this example sets to a variable for later use.
Note, however, that you don’t have to do this.

You can find the full code for this example in the updateFileEntry method of Liferay DXP’s
EditFileEntryMVCActionCommand class. This class uses the Documents and Media API to implement
almost all the FileEntry actions that the Documents and Media app supports. Also note that this
updateFileEntrymethod, as well as the rest of EditFileEntryMVCActionCommand, contains additional
logic to suit the specific needs of the Documents and Media app.

Related Topics

Creating Files
Deleting Files
Moving Folders and Files

124.2 Updating Folders

The Documents and Media API lets you copy or move folders to a different location. Options for
in-place folder updates, however, are limited. You can only update a folder’s name and description.
You can do this with the DLAppServicemethod updateFolder:

updateFolder(long folderId, String name, String description, ServiceContext serviceContext)

All parameters except the description are mandatory. For a full description of this method and
its parameters, see its Javadoc.

Follow these steps to use this method to update a folder:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the updateFolder method’s arguments. Since it’s common
to update a folder with data submitted by the end user, you can extract the data from the
request. This example does so via javax.portlet.ActionRequest and ParamUtil, but you can get
the data any way you wish:

long folderId = ParamUtil.getLong(actionRequest, "folderId");

String name = ParamUtil.getString(actionRequest, "name");

String description = ParamUtil.getString(actionRequest, "description");

ServiceContext serviceContext = ServiceContextFactory.getInstance(

DLFolder.class.getName(), actionRequest);

For more information on getting folder IDs, see the getting started tutorial’s section on
specifying folders. For more information on ServiceContext, see the tutorial Understanding
ServiceContext.

1365

https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFileEntryMVCActionCommand.java
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#updateFolder-long-java.lang.String-java.lang.String-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html

3. Call the service reference’s updateFoldermethod with the data from the previous step:

_dlAppService.updateFolder(folderId, name, description, serviceContext);

You can find the full code for this example in the updateFolder method of Liferay DXP’s
EditFolderMVCActionCommand class. This class uses the Documents and Media API to implement
almost all the Folder actions that the Documents and Media app supports. Also note that this
updateFoldermethod, as well as the rest of EditFolderMVCActionCommand, contains additional logic to
suit the specific needs of the Documents and Media app.

Related Topics

Creating Folders
Deleting Folders
Copying Folders
Moving Folders and Files

124.3 Updating File Shortcuts

The Documents andMedia API lets you update file shortcuts (FileShortcut entities). You can update
a shortcut to change the file it points to or the folder it resides in. You can do this via the DLAppService
method updateFileShortcut:

updateFileShortcut(long fileShortcutId, long folderId, long toFileEntryId, ServiceContext serviceContext)

All of this method’s parameters are mandatory. To retain any of the shortcut’s original values,
you must provide them to this method. For a full description of the parameters, see the method’s
Javadoc.

Follow these steps to use this method to update a file shortcut:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the updateFileShortcutmethod’s arguments. Since it’s com-
mon to update a file shortcut with data submitted by the end user, you can extract the data
from the request. This example does so via javax.portlet.ActionRequest and ParamUtil, but
you can get the data any way you wish:

long fileShortcutId = ParamUtil.getLong(actionRequest, "fileShortcutId");

long folderId = ParamUtil.getLong(actionRequest, "folderId");

long toFileEntryId = ParamUtil.getLong(actionRequest, "toFileEntryId");

ServiceContext serviceContext = ServiceContextFactory.getInstance(

DLFileShortcutConstants.getClassName(), actionRequest);

1366

https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFolderMVCActionCommand.java
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#updateFileShortcut-long-long-long-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html

For more information on getting folder IDs, see the getting started tutorial’s section on
specifying folders. For more information on ServiceContext, see the tutorial Understanding
ServiceContext.

3. Call the service reference’s updateFileShortcutmethod with the data from the previous step:

_dlAppService.updateFileShortcut(

fileShortcutId, folderId, toFileEntryId, serviceContext);

You can find the full code for this example in the updateFileShortcutmethod of Liferay DXP’s
EditFileShortcutMVCActionCommand class. This class uses theDocuments andMedia API to implement
almost all the FileShortcut actions that the Documents and Media app supports. Also note that
this updateFileShortcut method, as well as the rest of EditFileShortcutMVCActionCommand, contains
additional logic to suit the specific needs of the Documents and Media app.

Related Topics

Creating File Shortcuts
Deleting File Shortcuts

1367

https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFileShortcutMVCActionCommand.java

CHAPTER 125

FILE CHECK-OUT AND CHECK-IN

The Document Library lets users check out files for editing. Only the user who checked out the file
can edit it. This prevents conflicting edits on the same file frommultiple users. The Documents
and Media API allows these check-in/check-out operations:

• File Check-out
• File Check-in
• Cancelling a Check-out

The tutorials in this section show you how to do these operations.

125.1 File Check-out

Here’s what happens when you check out a file:

• A private working copy of the file is created that only you and administrators can access.
Until you check the file back in or cancel your changes, any edits you make are stored in the
private working copy.

• Other users can’t change or edit any version of the file. This state remains until you cancel or
check in your changes.

The main DLAppServicemethod for checking out a file is this checkOutFileEntrymethod:

checkOutFileEntry(long fileEntryId, ServiceContext serviceContext)

If this method throws an exception, then you should assume the checkout failed and repeat the
operation. For a full description of the method and its parameters, see its Javadoc.

Follow these steps to use this method to check out a file:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

1369

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#checkOutFileEntry-long-com.liferay.portal.kernel.service.ServiceContext-

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the checkOutFileEntrymethod’s arguments. Since it’s common
to check out a file in response to an action by the end user, you can extract the data from the
request. This example does so via javax.portlet.ActionRequest and ParamUtil, but you can get
the data any way you wish:

long fileEntryId = ParamUtil.getLong(actionRequest, "fileEntryId");

ServiceContext serviceContext = ServiceContextFactory.getInstance(actionRequest);

For more information on ServiceContext, see the tutorial Understanding ServiceContext.

3. Call the service reference’s checkOutFileEntrymethod with the data from the previous step:

_dlAppService.checkOutFileEntry(fileEntryId, serviceContext);

You can find the full code for this example in the checkOutFileEntriesmethod of Liferay DXP’s
EditFileEntryMVCActionCommand class. This class uses the Documents and Media API to implement
almost all the FileEntry actions that the Documents and Media app supports. Also note that
this checkOutFileEntries method, as well as the rest of EditFileEntryMVCActionCommand, contains
additional logic to suit the specific needs of the Documents and Media app.

Fine-tuning Checkout

You can control how the checkout is performed by setting the following attributes in the
ServiceContext parameter:

• manualCheckInRequired: By default, the system automatically checks out/in a file when a user
edits it. Setting this attribute to true prevents this, therefore requiring manual check-out and
check-in.

• existingDLFileVersionId: The system typically reuses the private working copy across differ-
ent check-out/check-in sequences. There’s little chance for conflicting edits because only
one user at a time can access the private working copy. To force the system to create a new
private working copy each time, omit this attribute or set it to 0.

• fileVersionUuid: This is used by staging, but can be ignored for normal use. Setting this
attribute causes the system to create the new private working copy version with the given
UUID.

To set these attributes, use the ServiceContextmethod setAttribute(String name, Serializable

value). Here’s an example of setting the manualCheckInRequired attribute to true:

serviceContext.setAttribute("manualCheckInRequired", Boolean.TRUE)

Related Topics

File Check-in
Cancelling a Check-out
Updating Files

1370

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFileEntryMVCActionCommand.java
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/service/ServiceContext.html#setAttribute-java.lang.String-java.io.Serializable-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/service/ServiceContext.html#setAttribute-java.lang.String-java.io.Serializable-

125.2 File Check-in

After checking out and editing a file, youmust check it back in for other users to see the new version.
Once you do so, you can’t access the private working copy. The next time the file is checked out,
the private working copy’s contents are overwritten.

The DLAppServicemethod for checking in a file is checkInFileEntry:

checkInFileEntry(long fileEntryId, boolean majorVersion, String changeLog,

ServiceContext serviceContext)

For a full description of the method and its parameters, see its Javadoc. This method uses the
private working copy to create a new version of the file. As the Updating Files tutorial explains, the
majorVersion parameter’s setting determines how the file’s version number is incremented.

Follow these steps to use checkInFileEntry to check in a file:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the checkInFileEntrymethod’s arguments. Since it’s common
to check in a file in response to an action by the end user, you can extract the data from the
request. This example does so via javax.portlet.ActionRequest and ParamUtil, but you can get
the data any way you wish:

long fileEntryId = ParamUtil.getLong(actionRequest, "fileEntryId");

boolean majorVersion = ParamUtil.getBoolean(actionRequest, "majorVersion");

String changeLog = ParamUtil.getString(actionRequest, "changeLog");

ServiceContext serviceContext = ServiceContextFactory.getInstance(actionRequest);

For more information on ServiceContext, see the tutorial Understanding ServiceContext.

3. Call the service reference’s checkInFileEntrymethod with the data from the previous step:

_dlAppService.checkInFileEntry(

fileEntryId, majorVersion, changeLog, serviceContext);

You can find the full code for this example in the checkInFileEntriesmethod of Liferay DXP’s
EditFileEntryMVCActionCommand class. This class uses the Documents and Media API to implement
almost all the FileEntry actions that the Documents and Media app supports. Also note that this
checkInFileEntriesmethod, aswell as the rest of EditFileEntryMVCActionCommand, contains additional
logic to suit the specific needs of the Documents and Media app.

Related Topics

File Check-out
Cancelling a Check-out
Updating Files

1371

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#checkInFileEntry-long-boolean-java.lang.String-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFileEntryMVCActionCommand.java

125.3 Canceling a Check-out

The Documents and Media API also lets you cancel a check-out. Use caution with this operation—it
discards any edits made since check-out. If you’re sure you want to cancel a check-out, do so with
the DLAppServicemethod cancelCheckOut:

cancelCheckOut(long fileEntryId)

For a full description of thismethod and its parameter, see its Javadoc. If you invoke thismethod
without error, you can safely assume that it discarded the private working copy and unlocked the
file. Other users should now be able to check out and edit the file.

Follow these steps to cancel a check-out:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the ID of the file whose check-out you want to cancel. Since it’s common to cancel a
check-out in response to a user action, you can extract the file ID from the request. This
example does so via javax.portlet.ActionRequest and ParamUtil, but you can get it any way
you wish:

long fileEntryId = ParamUtil.getLong(actionRequest, "fileEntryId");

3. Call the service reference’s cancelCheckOutmethod with the file’s ID:

_dlAppService.cancelCheckOut(fileEntryId);

You can find the full code for this example in the cancelFileEntriesCheckOutmethod of Liferay
DXP’s EditFileEntryMVCActionCommand class. This class uses the Documents and Media API to im-
plement almost all the FileEntry actions that the Documents and Media app supports. Also note
that this cancelFileEntriesCheckOut method, as well as the rest of EditFileEntryMVCActionCommand,
contains additional logic to suit the specific needs of the Documents and Media app.

Related Topics

File Check-out
File Check-in
Updating Files

1372

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#cancelCheckOut-long-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/document-library/document-library-web/src/main/java/com/liferay/document/library/web/internal/portlet/action/EditFileEntryMVCActionCommand.java

CHAPTER 126

COPYING AND MOVING ENTITIES

Although the Documents and Media API lets you copy and move entities, these operations have
some important caveats and limitations. Keep these things in mind when copying entities:

• There’s no way to copy files—you can only copy folders. However, copying a folder also copies
its contents, which can include files.

• Folders can only be copied within their current repository.

The move operation doesn’t have these restrictions. It’s possible to move files and folders
between different repositories. In general, however, the move operation is a bit more complicated
than the copy operation. For example, the API’s behavior changes depending on whether youmove
entities to a different repository or within the same one.

The tutorials in this section cover these differences, and more.

126.1 Copying Folders

The Documents and Media API lets you copy folders within a repository. You can’t, however, copy
a folder between different repositories. Also note that copying a folder also copies its contents.

To copy a folder, use the DLAppServicemethod copyFolder:

copyFolder(long repositoryId, long sourceFolderId, long parentFolderId, String name,

String description, ServiceContext serviceContext)

For a full description of the method and its parameters, see its Javadoc.
Follow these steps to use this method to copy a folder:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

1373

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#copyFolder-long-long-long-java.lang.String-java.lang.String-com.liferay.portal.kernel.service.ServiceContext-

2. Get the data needed to populate the copyFoldermethod’s arguments. How you do this depends
on your use case. The copy operation in this example takes place in the default Site repository
and retains the folder’s existing name and description. It therefore needs the folder’s group
ID (to specify the default site repository), name, and description. Also note that because the
destination folder in this example is the repository’s root folder, the parent folder ID isn’t
needed—Liferay DXP supplies a constant for specifying a repository’s root folder.

In the following code, ParamUtil gets the folder’s ID from the request (javax.portlet.ActionRequest),
and the service reference’s getFolder method gets the corresponding folder object. The
folder’s getGroupId(), getName(), and getDescription()methods then get the folder’s group ID,
name, and description, respectively:

long folderId = ParamUtil.getLong(actionRequest, "folderId");

Folder folder = _dlAppService.getFolder(folderId);

long groupId = folder.getGroupId();

String folderName = folder.getName();

String folderDescription = folder.getDescription();

ServiceContext serviceContext = ServiceContextFactory.getInstance(

DLFolder.class.getName(), actionRequest);

For more information on getting repository and folder IDs, see the getting started tutorial’s
sections on specifying repositories and folders. For more information on ServiceContext, see
the tutorial Understanding ServiceContext.

3. Call the service reference’s copyFolder method with the data from the previous step. Note
that this example uses the DLFolderConstants constant DEFAULT_PARENT_FOLDER_ID to specify the
repository’s root folder as the destination folder:

_dlAppService.copyFolder(

groupId, folderId, DLFolderConstants.DEFAULT_PARENT_FOLDER_ID,

folderName, folderDescription, serviceContext);

Keep in mind that you can change any of these values to suit your copy operation. For example,
if your copy takes place in a repository other than the default Site repository, you would specify
that repository’s ID in place of the group ID. You could also specify a different destination folder,
and/or change the new folder’s name and/or description.

Related Topics

Getting Started with the Documents and Media API
Understanding Service Context
Creating Folders
Updating Folders
Deleting Folders
Moving Folders and Files

1374

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#getFolder-long-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFolderConstants.html

126.2 Moving Folders and Files

Themove operation is more flexible than the copy operation. Copying only works with folders, and
you can’t copy between repositories. The move operation, however, works with files and folders
within or between repositories.

Note: Depending on the repository implementation, you may get unexpected behavior when
moving folders between repositories. Moving a folder also moves its contents via separate move
operations for each item in the folder. In some repository implementations, if any move sub-
operation fails, the parent move operation also fails. In other repository implementations, the
results of successful sub-operations remain even if others fail, which leaves a partially complete
move of the whole folder.

To move a folder, use the DLAppServicemethod moveFolder:

moveFolder(long folderId, long parentFolderId, ServiceContext serviceContext)

For a full description of this method and its parameters, see its Javadoc. This method is similar
to copyFolder, but it doesn’t let you change the folder’s name or description, and it canmove folders
between repositories. Folder contents are moved with the folder.

The operation for moving a file is almost identical to moving a folder. To move a file, use the
DLAppServicemethod moveFileEntry:

moveFileEntry(long fileEntryId, long newFolderId, ServiceContext serviceContext)

For a full description of this method and its parameters, see its Javadoc.
Follow these steps to use moveFolder and moveFileEntry to move a folder and a file, respectively.

Although this example does both just to demonstrate the procedure:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the method arguments. Since moving folders and files is
typically done in response to a user action, you can get the data from the request. This
example does so via javax.portlet.ActionRequest and ParamUtil, but you can get the data any
way you wish:

// Get the folder IDs

long folderId = ParamUtil.getLong(actionRequest, "folderId");

long newFolderId = ParamUtil.getLong(actionRequest, "newFolderId");

// Get the file ID

long fileEntryId = ParamUtil.getLong(actionRequest, "fileEntryId");

ServiceContext serviceContext = ServiceContextFactory.getInstance(

DLFileEntry.class.getName(), actionRequest);

1375

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#moveFolder-long-long-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#moveFileEntry-long-long-com.liferay.portal.kernel.service.ServiceContext-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html

For more information on getting folder IDs, see the getting started tutorial’s section on
specifying folders. For more information on ServiceContext, see the tutorial Understanding
ServiceContext.

3. Call the service reference’s method(s). This example calls moveFolder to move a folder
(folderId) to a different folder (newFolderId). It then calls moveFileEntry to move a file
(fileEntryId) to the same destination folder:

_dlAppService.moveFolder(folderId, newFolderId, serviceContext);

_dlAppService.moveFileEntry(fileEntryId, newFolderId, serviceContext);

Related Topics

Copying Folders

1376

CHAPTER 127

GETTING ENTITIES

The Documents and Media API contains many methods for getting entities from a repository. Most
methods in DLAppService are for getting single entities (e.g., a file or folder), a collection of entities
that match certain characteristics, or the number of such entities. Because there are so many
similar methods for getting entities, these tutorials don’t describe them all in detail. All of them
are covered in the reference documentation.

127.1 Getting Files

Getting files is one of the most common tasks you’ll perform with the Documents and Media API.
There are two main method families for getting files:

• getFileEntries: Gets files from a specific repository.
• getGroupFileEntries: Gets files from a Site (group), regardless of repository.

Since these method families are common, their methods share many parameters:

• repositoryId: The ID of the repository to get files from. To specify the default Site repository,
use the groupId (Site ID).

• folderId: The ID of the folder to get files from. Note that these methods don’t traverse
the folder structure—they only get files directly from the specified folder. To specify the
repository’s root folder, use the constant DLFolderConstants.DEFAULT_PARENT_FOLDER_ID.

• start and end: Integers that specify the lower and upper bounds, respectively, of collection
items to include in a page of results. If you don’t want to use pagination, use QueryUtil.ALL_POS
for these parameters.

• obc: The comparator to use to order collection items. Comparators are OrderByComparator

implementations that sort collection items.
• fileEntryTypeId: The ID of the file type to retrieve. Use this to retrieve files of a specific type.
• mimeTypes: The MIME types of the files to retrieve. Use this to retrieve files of the specified
MIME types. You can specify MIME types via the constants in ContentTypes.

Note that the obc parameter must be an implementation of OrderByComparator. Although you
can implement your own comparators, Liferay DXP already contains a few useful implementations
in the package com.liferay.document.library.kernel.util.comparator:

1377

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/OrderByComparator.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ContentTypes.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/util/comparator/package-summary.html

• RepositoryModelCreateDateComparator: Sorts by creation date.
• RepositoryModelModifiedDateComparator: Sorts by modification date.
• RepositoryModelReadCountComparator: Sorts by number of views.
• RepositoryModelSizeComparator: Sorts by file size.
• RepositoryModelTitleComparator: Sorts by title.

As an example, this getFileEntries method contains all the above parameters except
fileEntryTypeId (it contains mimeTypes instead):

List<FileEntry> getFileEntries(

long repositoryId,

long folderId,

String[] mimeTypes,

int start,

int end,

OrderByComparator<FileEntry> obc

)

Follow these steps to use this method to get a list of files. Note that the example in these steps
gets all the PNG images from the root folder of a Site’s default repository, sorted by title:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the method’s arguments. You can do this any way you wish.
As the next step describes, Liferay DXP provides constants and a comparator for all the
arguments this example needs besides the group ID. This example gets the group ID by using
ParamUtil with the request (javax.portlet.ActionRequest):

long groupId = ParamUtil.getLong(actionRequest, "groupId");

It’s also possible to get the group ID via the ThemeDisplay. Calling the ThemeDisplay method
getScopeGroupId() gets the ID of your app’s current site (group):

ThemeDisplay themeDisplay = (ThemeDisplay) request.getAttribute(WebKeys.THEME_DISPLAY);

long groupId = themeDisplay.getScopeGroupId();

For more information, see the Data Scopes tutorial.

3. Use the data from the previous step to call the service reference method you want to use to
get the files. This example calls the above getFileEntriesmethod with the group ID from the
previous step, and constants and a comparator for the remaining arguments:

List<FileEntry> fileEntries =

_dlAppService.getFileEntries(

groupId,

DLFolderConstants.DEFAULT_PARENT_FOLDER_ID,

new String[] {ContentTypes.IMAGE_PNG},

QueryUtil.ALL_POS,

QueryUtil.ALL_POS,

new RepositoryModelTitleComparator<>()

);

1378

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#getFileEntries-long-long-java.lang.String:A-int-int-com.liferay.portal.kernel.util.OrderByComparator-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/theme/ThemeDisplay.html

Here’s a description of the arguments used in this example:

• groupId: Using the group ID as the repository ID specifies that the operation takes place
in the default site repository.

• DLFolderConstants.DEFAULT_PARENT_FOLDER_ID: Uses the DLFolderConstants constant
DEFAULT_PARENT_FOLDER_ID to specify the repository’s root folder.

• new String[] {ContentTypes.IMAGE_PNG}: Uses the ContentTypes constant IMAGE_PNG to
specify PNG images.

• QueryUtil.ALL_POS: Uses the QueryUtil constant ALL_POS for the start and end positions
in the results. This specifies all results, bypassing pagination.

• new RepositoryModelTitleComparator<>(): Creates a new RepositoryModelTitleComparator,
which sorts the results by title.

Remember, this is just one of many getFileEntries and getGroupFileEntriesmethods. To see all
such methods, see the DLAppService Javadoc.

Related Topics

Getting Started with the Documents and Media API
Getting Folders
Getting Multiple Entity Types

127.2 Getting Folders

The Documents and Media API can get folders in a similar way to getting files. The main difference
is that folder retrieval methods may have an additional argument to tell the system whether to
includemount folders. Mount folders are mount points for external repositories (e.g. Alfresco or
SharePoint) that appear as regular folders in a Site’s default repository. They let users navigate
seamlessly between repositories. To account for this, some folder retrieval methods include the
boolean parameter includeMountFolders. Setting this parameter to true includes mount folders in
the results, while omitting it or setting it to false excludes them.

For example, to get a list of a parent folder’s subfolders from a repository, including any mount
folders, use the getFoldersmethod:

getFolders(long repositoryId, long parentFolderId, boolean includeMountFolders)

Follow these steps to use this method to get the folders from a parent folder. Note that the
example in these steps gets the folders in the default Site repository’s root folder:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

1379

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFolderConstants.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ContentTypes.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/QueryUtil.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/util/comparator/RepositoryModelTitleComparator.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#getFolders-long-long-boolean-

2. Get the data needed to populate the method’s arguments any way you wish. This getFolders
method needs a repository ID, a parent folder ID, and a boolean value that indicates whether
to include mount folders in the results. To specify the default site repository, you can
use the group ID as the repository ID. This example gets the group ID from the request
(javax.portlet.ActionRequest) via ParamUtil:

long groupId = ParamUtil.getLong(actionRequest, "groupId");

It’s also possible to get the group ID via the ThemeDisplay. Calling the ThemeDisplay method
getScopeGroupId() gets the ID of your app’s current site (group). For more information, see
the Data Scopes tutorial.

ThemeDisplay themeDisplay = (ThemeDisplay) request.getAttribute(WebKeys.THEME_DISPLAY);

long groupId = themeDisplay.getScopeGroupId();

Note that getting the parent folder ID isn’t necessary because this example uses the root
folder, for which Liferay DXP provides a constant. Also, the boolean value can be provided
directly—it doesn’t need to be retrieved from somewhere. For more information on getting
repository and folder IDs, see the getting started tutorial’s sections on specifying repositories
and folders.

3. Call the service reference’s getFoldersmethod with the data from the previous step and any
other values youwant toprovide. Note that this exampleuses DLFolderConstants.DEFAULT_PARENT_FOLDER_ID
to specify the repository’s root folder as the parent folder. It also uses true to include any
mount folders in the results:

_dlAppService.getFolders(groupId, DLFolderConstants.DEFAULT_PARENT_FOLDER_ID, true)

Note that this is one of many methods you can use to get folders. The rest are listed in the
DLAppService Javadoc.

Related Topics

Getting Started with the Documents and Media API
Getting Files
Getting Multiple Entity Types

127.3 Getting Multiple Entity Types

There are alsomethods in the Documents andMedia API that retrieve lists containing several entity
types. These methods use many of the same parameters as those already described for retrieving
files and folders. For example, this method gets files and shortcuts from a given repository and
folder. The status parameter specifies a workflow status. As before, the start and end parameters
control pagination of the entities:

getFileEntriesAndFileShortcuts(long repositoryId, long folderId, int status, int start, int end)

1380

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/theme/ThemeDisplay.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html#getFileEntriesAndFileShortcuts-long-long-int-int-int-

To see all such methods, see the DLAppService Javadoc.
Follow these steps to use the above getFileEntriesAndFileShortcuts method. Note that the

example in these steps gets all the files and shortcuts in the default Site repository’s root folder:

1. Get a reference to DLAppService:

@Reference

private DLAppService _dlAppService;

For more information on this, see the section on getting a service reference in the getting
started tutorial.

2. Get the data needed to populate the method’s arguments any way you wish. To specify the
default Site repository, you can use the group ID as the repository ID. This example gets the
group ID from the request (javax.portlet.ActionRequest) via ParamUtil:

long groupId = ParamUtil.getLong(actionRequest, "groupId");

Getting the parent folder ID, workflow status, and start and end parameters isn’t necessary
because Liferay DXP provides constants for them. The next step shows this in detail.

3. Call the service reference method with the data from the previous step and any other values
you want to provide. This example calls getFileEntriesAndFileShortcuts with the group ID
from the previous step and constants for the remaining arguments:

_dlAppService.getFileEntriesAndFileShortcuts(

groupId,

DLFolderConstants.DEFAULT_PARENT_FOLDER_ID,

WorkflowConstants.STATUS_APPROVED,

QueryUtil.ALL_POS,

QueryUtil.ALL_POS

)

Here’s a description of the arguments used in this example:

• groupId: Using the group ID as the repository ID specifies that the operation takes place
in the default site repository.

• DLFolderConstants.DEFAULT_PARENT_FOLDER_ID: Uses the DLFolderConstants constant
DEFAULT_PARENT_FOLDER_ID to specify the repository’s root folder.

• WorkflowConstants.STATUS_APPROVED: Uses the WorkflowConstants constant STATUS_APPROVED
to specify only files/folders that have been approved via workflow.

• QueryUtil.ALL_POS: Uses the QueryUtil constant ALL_POS for the start and end positions
in the results. This specifies all results, bypassing pagination.

Related Topics

Getting Started with the Documents and Media API
Getting Files
Getting Folders

1381

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/service/DLAppService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFolderConstants.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/workflow/WorkflowConstants.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/QueryUtil.html

CHAPTER 128

ADAPTIVE MEDIA

The Adaptive Media app lets administrators tailor the quality of images to the device viewing those
images. For information on using this app, see the Adaptive Media user guide.

If you want to leverage Adaptive Media in your own app, you’re in the right place! The tutorials
here explain how to use adapted images in your app. You’ll also learn how to change Adaptive
Media’s image processing.

Onwards!

128.1 Displaying Adapted Images in Your App

To display adapted images in your apps, Adaptive Media offers a convenient tag library in the
module com.liferay.adaptive.media.image.taglib. This taglib only has one mandatory attribute:
fileVersion. This attribute indicates the file version of the adapted image that you want to display.
You can also add as many attributes as needed, such as class, style, data-sample, and so on. Any
attributes you add are then added to the adapted images in the markup the taglib renders.

This tutorial uses the Adaptive Media Samples app to show you how to use this taglib. When
added to a page, this app displays all the adapted images from the current site’s Documents and
Media app, provided that Adaptive Media image resolutions and Documents and Media images
exist.

Follow these steps to use the taglib:

1. Include the module taglib dependency in your project. If you’re using Gradle, for example,
you must add the following line in your project’s build.gradle file:

provided group: "com.liferay", name: "com.liferay.adaptive.media.image.taglib", version: "1.0.0"

For example, the Adaptive Media Samples app’s build.gradle file contains this taglib.

2. Declare the taglib in your JSP:

<%@ taglib uri="http://liferay.com/tld/adaptive-media-image" prefix="liferay-adaptive-media" %>

For example, the AdaptiveMedia Samples app’s init.jsp declares all the taglibs the app needs.

1383

https://github.com/liferay/com-liferay-adaptive-media/tree/master/adaptive-media-image-taglib
https://github.com/liferay/com-liferay-adaptive-media/tree/master/adaptive-media-image-taglib
https://github.com/sergiogonzalez/adaptive-media-samples
https://github.com/sergiogonzalez/adaptive-media-samples/blob/master/adaptive-media-sample-web/build.gradle
https://github.com/sergiogonzalez/adaptive-media-samples/blob/master/adaptive-media-sample-web/src/main/resources/META-INF/resources/init.jsp

3. Use the taglib wherever you want the adapted image to appear in your app’s JSP files:

<liferay-adaptive-media:img class="img-fluid" fileVersion="<%= fileEntry.getFileVersion() %>" />

For example, the Adaptive Media Samples app’s view.jsp uses the taglib to display the adapted
images in a grid with the col-md-6 column container class. Looking at the markup the app
generates, you can see that it uses the <picture> tag as described in the article Creating Content
with Adapted Images.

Figure 128.1: The Adaptive Media Samples app shows all the site’s adapted images.

Well done! Now you know how to display adapted images in your app.

Related Topics

Finding Adapted Images
Changing Adaptive Media’s Image Scaling
Adapting Your Media Across Multiple Devices

128.2 Finding Adapted Images

1384

https://github.com/sergiogonzalez/adaptive-media-samples/blob/master/adaptive-media-sample-web/src/main/resources/META-INF/resources/view.jsp

In most cases, you can rely on the Adaptive Media taglib to display adapted images in your app.
This taglib uses the file version you give it to query Adaptive Media’s finder API and display the
adapted image appropriate for the device making the request. If you need more control, however,
you can write your own query with the API instead of using the taglib. For example, if you have an
app that needs a specific image in a specific dimension, it’s best to query Adaptive Media’s finder
API directly. You can then display the image however you like (e.g., with an HTML tag).

Adaptive Media’s finder API lets you write queries that get adapted images based on certain
search criteria and filters. For example, you can get adapted images that match a file version or
resolution or are ordered by an attribute like image width. You can even get adapted images that
match approximate attribute values (fuzzy attributes).

This tutorial shows you how to call Adaptive Media’s API to get adapted images in your app.
First, you’ll learn how to construct such API calls.

Calling Adaptive Media's API

The entry point to Adaptive Media’s API is the AMImageFinder interface. To use it, you must first
inject the OSGi component in your class, which must also be an OSGi component, as follows:

@Reference

private AMImageFinder _amImageFinder;

This makes an AMImageFinder instance available. It has one method, getAdaptiveMediaStream,
that returns a stream of AdaptiveMedia objects. This method takes a Function that creates an AMQuery

(the query for adapted images) via AMImageQueryBuilder, which can search adapted images based
on different attributes (e.g., width, height, order, etc.). The AMImageQueryBuildermethods you call
depend on the exact query you want to construct.

For example, here’s a general getAdaptiveMediaStream call:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.methodToCall(arg).done());

The argument to getAdaptiveMediaStream is a lambda expression that returns an AMQuery

constructed via AMImageQueryBuilder. Note that methodToCall(arg) is a placeholder for the
AMImageQueryBuilder method you want to call and its argument. The exact call depends on the
criteria you want to use to select adapted images. The done() call that follows this, however, isn’t a
placeholder–it creates and returns the AMQuery regardless of which AMImageQueryBuildermethods
you call.

For more information on creating AMQuery instances, see the Javadoc for AMImageQueryBuilder.
Next, you’ll see specific examples of constructing calls that get adapted images.

Getting Adapted Images for a Specific File Version

To get adapted images for a specific file version, you must call the AMImageQueryBuilder method
forFileVersion with a FileVersion object as an argument:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(fileVersion).done());

1385

https://github.com/liferay/com-liferay-adaptive-media/blob/master/adaptive-media-image-api/src/main/java/com/liferay/adaptive/media/image/finder/AMImageFinder.java
https://github.com/liferay/com-liferay-adaptive-media/blob/master/adaptive-media-image-api/src/main/java/com/liferay/adaptive/media/image/finder/AMImageQueryBuilder.java
https://docs.liferay.com/portal/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/repository/model/FileVersion.html

To get the adapted images for the latest approved file version, use the forFileEntrymethod with
a FileEntry object:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileEntry(fileEntry).done());

Note that these calls only return the adapted images for enabled image resolutions. Adapted
images for disabled resolutions aren’t included in the stream. To retrieve all adapted images
regardless of any image resolution’s status, you must also call the withConfigurationStatusmethod
with the constant AMImageQueryBuilder.ConfigurationStatus.ANY:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(fileVersion)

.withConfigurationStatus(AMImageQueryBuilder.ConfigurationStatus.ANY).done());

To get adapted images for a specific file version when the image resolution is disabled, make
the same call but instead use the constant AMImageQueryBuilder.ConfigurationStatus.DISABLED:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(fileVersion)

.withConfigurationStatus(AMImageQueryBuilder.ConfigurationStatus.DISABLED).done());

Next, you’ll learn how to get adapted images for a specific image resolution.

Getting the Adapted Images for a Specific Image Resolution

By providing an image resolution’s UUID to AMImageFinder, you can get that resolution’s adapted
images. This UUID is defined when adding the resolution in the Adaptive Media app. To get a
resolution’s adapted images, you must pass that resolution’s UUID to the forConfigurationmethod.

For example, this code gets the adapted images that match a file version, and belong to an
image resolution with the UUID hd-resolution. It returns the adapted images regardless of whether
the resolution is enabled or disabled:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(fileVersion)

.forConfiguration("hd-resolution").done());

Next, you’ll learn how to return adapted images in a specific order.

Getting Adapted Images in a Specific Order

It’s also possible to define the order in which getAdaptiveMediaStream returns adapted images. To
do this, call the orderBy method with your sort criteria just before calling the done() method.
The orderBy method takes two arguments: the first specifies the image attribute to sort by (e.g.,
width/height), while the second specifies the sort order (e.g., ascending/descending).

For example, this code gets all the adapted images regardless of whether the image resolution
is enabled, and puts them in ascending order by the image width:

1386

https://docs.liferay.com/portal/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/repository/model/FileVersion.html

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinderImpl.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(_fileVersion)

.withConfigurationStatus(AMImageQueryBuilder.ConfigurationStatus.ANY)

.orderBy(AMImageAttribute.AM_IMAGE_ATTRIBUTE_WIDTH, AMImageQueryBuilder.SortOrder.ASC)

.done());

The orderBy arguments AMImageAttribute.AM_IMAGE_ATTRIBUTE_WIDTH and AMImageQueryBuilder.SortOrder.ASC

specify the image width and ascending sort, respectively. You can alternatively use
AMImageAttribute.AM_IMAGE_ATTRIBUTE_HEIGHT to sort by imageheight, and AMImageQueryBuilder.SortOrder.DESC

to perform a descending sort.
Next, you’ll learn how to specify approximate attribute values when getting adapted images.

Getting Adapted Images with Fuzzy Attributes

Adaptive Media also lets you get adapted images that match fuzzy attributes (approximate attribute
values). For example, fuzzy attributes let you ask for adapted images whose height is around 200px,
or whose size is around 100kb. The API returns a stream with elements ordered by how close they
are to the specified attribute. For example, imagine that there are four image resolutions that have
adapted images with the heights 150px, 350px, 600px, and 900px. Searching for adapted images
whose height is approximately 400px returns this order in the stream: 350px, 600px, 150px, 900px.

So how close, exactly, is close? It depends on the attribute. In the case of width, height, and
length, a numeric comparison orders the images. In the case of content type, file name, or UUID,
the comparison is more tricky because these attributes are strings and thus delegated to the Java
String.compareTomethod.

To specify a fuzzy attribute, call the with method with your search criteria just before
calling the done() method. The with method takes two arguments: the image attribute, and
that attribute’s approximate value. For example, this code gets adapted images whose height
(AMImageAttribute.AM_IMAGE_ATTRIBUTE_HEIGHT) is approximately 400px:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinderImpl.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(_fileVersion)

.with(AMImageAttribute.AM_IMAGE_ATTRIBUTE_HEIGHT, 400).done());

To search for image width instead, use AMImageAttribute.AM_IMAGE_ATTRIBUTE_WIDTH as the first
argument to the widthmethod.

Using the Adaptive Media Stream

Once you have the AdaptiveMedia stream, you can get the information you need from it. For example,
this code prints the URI for each adapted image:

adaptiveMediaStream.forEach(

adaptiveMedia -> {

System.out.println(adaptiveMedia.getURI());

}

);

You can also get other values and attributes from the AdaptiveMedia stream. Here are a few
examples:

1387

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-

// Get the InputStream

adaptiveMedia.getInputStream()

// Get the content length

adaptiveMedia.getValueOptional(AMAttribute.getContentLengthAMAttribute())

// Get the image height

adaptiveMedia.getValueOptional(AMImageAttribute.AM_IMAGE_ATTRIBUTE_HEIGHT)

Awesome! Now you know how to find and use adapted images.

Related Topics

Displaying Adapted Images in Your App
Changing Adaptive Media’s Image Scaling
Adapting Your Media Across Multiple Devices

128.3 Changing Adaptive Media's Image Scaling

As described in the Adaptive Media user guide, Adaptive Media scales images to match the image
resolutions defined by the Liferay DXP administrator. The default scaling is usually suitable, but
you can also customize it to your needs. Before doing so, however, you should understand how this
scaling works.

Understanding Image Scaling in Adaptive Media

Adaptive Media contains an extension point that lets you replace the way it scales images. The
AMImageScaler interface defines Adaptive Media’s image scaling logic. Out of the box, Adaptive
Media provides two implementations of this interface:

• AMDefaultImageScaler: The default image scaler. It’s always enabled and uses java.awt for its
image processing and scaling.

• AMGIFImageScaler: A scaler that works only with GIF images. It depends on the installation of
the external tool gifsicle in the Liferay DXP instance. This scaler must be enabled in Control
Panel → System Settings.

You must register image scalers in Liferay DXP’s OSGi container using the AMImageScaler inter-
face. Each scaler must also set the mime.type property to the MIME type it handles. For example,
if you set a scaler’s MIME type to image/jpeg, then that scaler can only handle image/jpeg im-
ages. If you specify the special MIME type *, the scaler can process any image. Note that the
AMDefaultImageScaler is registered using mime.type=*, while the AMGIFImageScaler is registered using
mime.type=image/gif. Both scalers, like all scalers, implement AMImageScaler.

You can add asmany image scalers as you need, even for the sameMIME type. Even so, Adaptive
Media uses only one scaler per image, using this process to determine the best one:

1. Select only the image scalers registered with the same MIME type as the image.

2. Select the enabled scalers from those selected in the first step (the AMImageScaler method
isEnabled() returns true for enabled scalers).

1388

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/adaptive-media/adaptive-media-image-api/src/main/java/com/liferay/adaptive/media/image/scaler/AMImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/adaptive-media/adaptive-media-image-api/src/main/java/com/liferay/adaptive/media/image/scaler/AMImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/adaptive-media/adaptive-media-image-impl/src/main/java/com/liferay/adaptive/media/image/internal/scaler/AMDefaultImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/adaptive-media/adaptive-media-image-impl/src/main/java/com/liferay/adaptive/media/image/internal/scaler/AMGIFImageScaler.java
https://www.lcdf.org/gifsicle/
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/adaptive-media/adaptive-media-image-impl/src/main/java/com/liferay/adaptive/media/image/internal/scaler/AMDefaultImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/adaptive-media/adaptive-media-image-impl/src/main/java/com/liferay/adaptive/media/image/internal/scaler/AMDefaultImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/adaptive-media/adaptive-media-image-impl/src/main/java/com/liferay/adaptive/media/image/internal/scaler/AMGIFImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/adaptive-media/adaptive-media-image-api/src/main/java/com/liferay/adaptive/media/image/scaler/AMImageScaler.java

3. Of the scalers selected in the second step, select the scaler with the highest service.ranking.

If these steps return no results, they’re repeated, but the first step uses the special MIME
type *. Also note that if an image scaler is registered for specific MIME types and has a higher
service.ranking, it’s more likely to be chosen than if it’s registered for the special MIME type * or
has a lower service.ranking.

Creating an Image Scaler

Now that you know how Adaptive Media scales images, you’ll learn how to customize this scaling.
As an example, you’ll see a sample image scaler that customizes the scaling of PNG images.

Follow these steps to create a custom image scaler:

1. Create your scaler class to implement AMImageScaler. You must also annotate your scaler
class with @Component, setting mime.type properties for each of the scaler’s MIME types, and
registering an AMImageScaler service. If there’s more than one scaler for the same MIME type,
you must also set the @Component annotation’s service.ranking property. For your scaler to
take precedence over other scalers of the same MIME type, its service ranking property must
be higher than that of the other scalers. If service.ranking isn’t set, it defaults to 0.

Note: The `service.ranking` property isn't set for the image scalers

included with Adaptive Media (`AMDefaultImageScaler` and

`AMGIFImageScaler`). Their service ranking therefore defaults to `0`. To

replace either scaler, you must set your scaler to the same MIME type and

give it a service ranking higher than `0`.

For example, this sample image scaler scales PNG and x-PNG images, and has a

service ranking of `100`:

@Component(

immediate = true,

property = {"mime.type=image/png", "mime.type=image/x-png", "service.ranking:Integer=100"},

service = {AMImageScaler.class}

)

public class SampleAMPNGImageScaler implements AMImageScaler {...

This requires these imports:

import com.liferay.adaptive.media.image.scaler.AMImageScaler;

import org.osgi.service.component.annotations.Component;

2. Implement the isEnabled() method to return true when you want to enable the scaler. In
many cases, you always want the scaler enabled, so you can simply return true in this method.
This is the case with the example SampleAMPNGImageScaler:

@Override

public boolean isEnabled() {

return true;

}

This method gets more interesting when the scaler depends on other tools or features. For
example, the isEnabled()method in AMGIFImageScaler determines whether gifsicle is enabled.
This scaler must only be enabled when the tool it depends on, gifsicle, is also enabled:

1389

@Override

public boolean isEnabled() {

return _amImageConfiguration.gifsicleEnabled();

}

3. Implement the scaleImagemethod. Thismethod contains the scaler’s business logic, andmust
return an AMImageScaledImage instance. For example, the example scaleImage implementation
in SampleAMPNGImageScaler uses AMImageConfigurationEntry to get the maximum height and
width values for the scaled image, and FileVersion to get the image to scale. The scaling is done
with thehelp of a private inner class, assuming that themethods _scalePNG, _getScalePNGHeight,
_getScalePNGWidth, and _getScalePNGSize implement the actual scaling:

@Override

public AMImageScaledImage scaleImage(FileVersion fileVersion,

AMImageConfigurationEntry amImageConfigurationEntry) {

Map<String, String> properties = amImageConfigurationEntry.getProperties();

int maxHeight = GetterUtil.getInteger(properties.get("max-height"));

int maxWidth = GetterUtil.getInteger(properties.get("max-width"));

try {

InputStream inputStream =

_scalePNG(fileVersion.getContentStream(false), maxHeight, maxWidth);

int height = _getScalePNGHeight();

int width = _getScalePNGWidth();

long size = _getScalePNGSize();

return new AMImageScaledImageImpl(inputStream, height, width, size);

}

catch (PortalException pe) {

throw new AMRuntimeException.IOException(pe);

}

}

private class AMImageScaledImageImpl implements AMImageScaledImage {

@Override

public int getHeight() {

return _height;

}

@Override

public InputStream getInputStream() {

return _inputStream;

}

@Override

public long getSize() {

return _size;

}

@Override

public int getWidth() {

return _width;

}

private AMImageScaledImageImpl(InputStream inputStream, int height,

int width, long size) {

_inputStream = inputStream;

_height = height;

_width = width;

1390

_size = size;

}

private final int _height;

private final InputStream _inputStream;

private final long _size;

private final int _width;

}

This requires these imports:

import com.liferay.adaptive.media.exception.AMRuntimeException;

import com.liferay.adaptive.media.image.configuration.AMImageConfigurationEntry;

import com.liferay.adaptive.media.image.scaler.AMImageScaledImage;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.repository.model.FileVersion;

import com.liferay.portal.kernel.util.GetterUtil;

import java.io.InputStream;

import java.util.Map;

Great! Now you know how to write your own image scalers.

Related Topics

Displaying Adapted Images in Your App
Finding Adapted Images
Adapting Your Media Across Multiple Devices

1391

CHAPTER 129

SOCIAL API

The social API lets users interact with content throughout the portal, including content in your
applications. For example, users can provide feedback on content, share that content with others,
subscribe to receive notifications, and more. These features let users stay up to date on the latest
and greatest that you have to share.

The tutorials that follow show you how to take advantage of this social API to enable these
features in your own app.

129.1 Applying Social Bookmarks

When you enable social bookmarks, icons for sharing on Twitter, Facebook, and Google Plus appear
below your application’s content. Taglibs provide the markup you need to add this feature to your
app.

Figure 129.1: Social bookmarks are enabled in the built-in Blogs portlet

Follow these steps to add social bookmarks to your app:

1. Make sure your entity is asset enabled.

2. In yourproject’s build.gradlefile, add adependency to themodule com.liferay.social.bookmarks.taglib:

compileOnly group: "com.liferay", name: "com.liferay.social.bookmarks.taglib", version: "1.0.0"

3. Choose a view in which to show the social bookmarks. For example, you can display them in
one of your portlet’s views.

1393

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.social.bookmarks.taglib/

Note: You don't need to implement social bookmarks in your portlet's

[asset renderers](/docs/7-1/tutorials/-/knowledge_base/t/rendering-an-asset).

The Asset Publisher displays social bookmarks in asset renderers by default.

4. In your view’s JSP, include the liferay-social-bookmarks taglib declaration:

<%@ taglib uri="http://liferay.com/tld/social-bookmarks" prefix="liferay-social-bookmarks" %>

5. Get an instance of your entity. You can do this however you wish. This example uses ParamUtil
to get the entity’s ID from the render request, then uses the entity’s -LocalServiceUtil class to
create an entity object:

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

entry = EntryLocalServiceUtil.getEntry(entryId);

%>

6. Use the liferay-social-bookmarks:bookmarks tag to add the social bookmarks component. Its
attributes are described below:

className: The entity’s class name.
classPK: The Java class primary key of the entity.
displayStyle: The display style of the social bookmarks. Possible values are inline, which

displays them in a row, and menu, which hides them in a menu.
title: A title for the content being shared.
types: A comma-delimited list of the social media services to use (e.g., facebook,twitter). To

use every social media service available in the portal, omit this attribute or use <%= null %> for its
value.

url: A URL to the portal content being shared.
Here’s an example of using the liferay-social-bookmarks:bookmarks tag to add social bookmarks

for a blog entry in the Blogs app:

<liferay-social-bookmarks:bookmarks

className="<%= BlogsEntry.class.getName() %>"

classPK="<%= entry.getEntryId() %>"

displayStyle="inline"

title="<%= entry.getTitle() %>"

types="facebook,twitter"

url="<%= PortalUtil.getCanonicalURL(bookmarkURL.toString(), themeDisplay, layout) %>"

/>

The displayStyle in this example is set to inline. The screenshot at the beginning of this tutorial
shows what this looks like. The first three social bookmarks appear in a row, and the rest appear in
the Share menu. If you use menu instead, all the social bookmarks appear in the menu.

The title is retrieved by the entry’s getTitle()method. Keep in mind that you should retrieve
your entity’s title with the appropriate method for that entity.

Note that the PortalUtilmethod getCanonicalURL is called for the url. This method constructs
an SEO-friendly URL from the page’s full URL. For more information, see the method’s Javadoc.

Related Topics

Asset Framework

1394

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/PortalUtil.html#getCanonicalURL-java.lang.String-com.liferay.portal.kernel.theme.ThemeDisplay-com.liferay.portal.kernel.model.Layout-

Figure 129.2: With displayStyle set to menu, the social bookmarks all appear in the Sharemenu.

129.2 Creating Social Bookmarks

Applying social bookmarks lets you link your app’s content to the social networks of your choice. By
default, Liferay DXP supports social bookmarks for Twitter, Facebook, LinkedIn, and Google Plus.
You can also create your own social bookmark by registering a component that implements the
SocialBookmark interface from the module com.liferay.social.bookmarks.api. This tutorial shows
you how to do this.

Implementing the SocialBookmark Interface

Follow these steps to implement the SocialBookmark interface:

1. Create your *SocialBookmark class and register a component that defines the social.bookmarks.type
property. This property’s value is what you enter for the liferay-social-bookmarks:bookmarks

tag’s type attribute when you use your social bookmark.

For example, here’s the definition for a Twitter social bookmark class:

@Component(immediate = true, property = "social.bookmarks.type=twitter")

public class TwitterSocialBookmark implements SocialBookmark {...

2. Create a ResourceBundleLoader reference to help localize the social bookmark’s name.

@Reference(

target = "(bundle.symbolic.name=com.liferay.social.bookmark.twitter)"

)

private ResourceBundleLoader _resourceBundleLoader;

3. Implement the getNamemethod to return the social bookmark’s name as a String. Thismethod
takes a Locale object that you can use for localization via LanguageUtil and ResourceBundle:

@Override

public String getName(Locale locale) {

ResourceBundle resourceBundle = _resourceBundleLoader.loadResourceBundle(locale);

return LanguageUtil.get(resourceBundle, "twitter");

}

1395

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ResourceBundleLoader.html
https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/language/LanguageUtil.html
https://docs.oracle.com/javase/8/docs/api/java/util/ResourceBundle.html

4. Implement the getPostURLmethod to return the share URL. This method constructs the share
URL from a title and URL, and uses URLCodec to encode the title in the URL:

@Override

public String getPostURL(String title, String url) {

return String.format(

"https://twitter.com/intent/tweet?text=%s&tw_p=tweetbutton&url=%s",

URLCodec.encodeURL(title), url);

}

5. Create a ServletContext reference:

@Reference(

target = "(osgi.web.symbolicname=com.liferay.social.bookmark.twitter)"

)

private ServletContext _servletContext;

6. Implement the render method, which is called when the inline display style is selected.
Typically, this method renders a link to the share URL (e.g., a share button), but you can use it
for whatever you need. To keep a consistent look and feel with the default social bookmarks,
you can use a Clay icon.

This example gets a RequestDispatcher for the JSP that contains a Clay icon (page.jsp), and
then includes that JSP in the response:

@Override

public void render(

String target, String title, String url, HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

RequestDispatcher requestDispatcher =

_servletContext.getRequestDispatcher("/page.jsp");

requestDispatcher.include(request, response);

}

Next, you’ll see an example of how to create a page.jsp file.

Creating Your JSP

The page.jsp file referenced in the above SocialBookmark implementation uses a Clay link (clay:link)
to specify and style the Twitter icon included with Clay. Follow these steps to create a JSP for your
own social bookmark:

1. Add the clay and liferay-theme taglib declarations:

<%@ taglib uri="http://liferay.com/tld/clay" prefix="clay" %>

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme" %>

2. Import GetterUtil and SocialBookmark:

<%@ page import="com.liferay.portal.kernel.util.GetterUtil" %>

<%@ page import="com.liferay.social.bookmarks.SocialBookmark" %>

1396

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/URLCodec.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/GetterUtil.html

3. From the request, get a SocialBookmark instance and the social bookmark’s title and URL:

<%

SocialBookmark socialBookmark = (SocialBookmark)request.getAttribute("liferay-social-bookmarks:bookmark:socialBookmark");

String title = GetterUtil.getString((String)request.getAttribute("liferay-social-bookmarks:bookmark:title"));

String url = GetterUtil.getString((String)request.getAttribute("liferay-social-bookmarks:bookmark:url"));

%>

The title and URL are set via the liferay-social-bookmarks tag library when applying the social
bookmark.

4. Add the Clay link. This example sets the following clay:link attributes:

• buttonStyle: This example renders The button’s type as a secondary button.

• elementClasses: The custom CSS to use for styling the button (optional).

• href: The button’s URL.You should specify this by calling your SocialBookmark instance’s
getPostURLmethod.

• icon: The button’s icon. This example specifies the Twitter icon included in Clay
(twitter).

• title: The button’s title. This example uses the SocialBookmark instance’s getName

method.

<clay:link

buttonStyle="secondary"

elementClasses="btn-outline-borderless btn-sm lfr-portal-tooltip"

href="<%= socialBookmark.getPostURL(title, url) %>"

icon="twitter"

title="<%= socialBookmark.getName(locale) %>"

/>

To see a complete, real-world example of a social bookmark implementation, see Liferay’s
Twitter social bookmark code.

Related Topics

Applying Social Bookmarks
Using the Clay Taglib in Your Portlets

129.3 Adding Comments to Your App

Letting users comment on content makes your app come alive. Taglibs provide the markup you
need to add this feature. This tutorial shows you how to use these taglibs to enable comments.

These steps use a sample Guestbook app as an example:

1. Make sure your entity is asset enabled.

2. Choose a read-only view of the entity you want to enable comments on. You can display the
comments component in your app’s view, or if you’ve implemented asset rendering you can
display it in the full content view in the Asset Publisher app.

1397

https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/social/social-bookmark-twitter
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/social/social-bookmark-twitter

3. Include the liferay-ui, liferay-comment, and portlet taglib declarations in your JSP:

<%@ taglib prefix="liferay-ui" uri="http://liferay.com/tld/ui" %>

<%@ taglib prefix="liferay-comment" uri="http://liferay.com/tld/comment" %>

<%@ taglib prefix="portlet" uri="http://java.sun.com/portlet_2_0" %>

4. Use ParamUtil to get the entity’s ID from the render request. Then create an entity object
using the -LocalServiceUtil class. Here’s an example that does this for a guestbook entry in
the example Guestbook app:

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

entry = EntryLocalServiceUtil.getEntry(entryId);

%>

5. Create a collapsible panel for the comments using the liferay-ui:panel-container and
liferay-ui:panel tags. This lets users hide the discussion area:

<liferay-ui:panel-container extended="<%=false%>"

id="guestbookCollaborationPanelContainer" persistState="<%=true%>">

<liferay-ui:panel collapsible="<%=true%>" extended="<%=true%>"

id="guestbookCollaborationPanel" persistState="<%=true%>"

title="Collaboration">

6. Create a URL for the discussion using the portlet:actionURL tag:

<portlet:actionURL name="invokeTaglibDiscussion" var="discussionURL" />

7. Use the liferay-comment:discussion tag to add the discussion. To let the user return to the
JSP after making a comment, set the tag’s redirect attribute to the current URL. You can use
PortalUtil.getCurrentURL((renderRequest)) to get the current URL from the request object. In
this example, the current URL was earlier set to the currentURL variable:

<liferay-comment:discussion className="<%=Entry.class.getName()%>"

classPK="<%=entry.getEntryId()%>"

formAction="<%=discussionURL%>" formName="fm2"

ratingsEnabled="<%=true%>" redirect="<%=currentURL%>"

userId="<%=entry.getUserId()%>" />

</liferay-ui:panel>

</liferay-ui:panel-container>

If you haven’t already connected your portlet’s view to the JSP for your entity, see the tutorial
on Configuring JSP Templates.

Great! Now you know how to let users comment on content in your asset enabled portlets.

Related Topics

Asset Framework
Rating Assets

1398

129.4 Rating Assets

The asset framework supports a system that lets users rate content in apps. This feature appears in
many of Liferay DXP’s built-in apps. For example, users can rate articles published in the Blogs
app. Using taglibs, you can enable ratings for your app’s content in only a few lines of code. This
tutorial shows you how.

Figure 129.3: Ratings let users quickly provide feedback on content.

Follow these steps to enable ratings in your app. Note that these steps use the Guestbook app as
an example. As its name implies, this app lets users leave simple messages in a guestbook.

1. Make sure your entity is asset enabled.

2. Choose a read-only view of the entity for which you want to enable ratings. You can display
ratings in one of your portlet’s views, or if you’ve implemented asset rendering you can
display them in the full content view in the Asset Publisher app.

3. In the JSP, include the liferay-ui taglib declaration:

<%@ taglib prefix="liferay-ui" uri="http://liferay.com/tld/ui" %>

4. Use ParamUtil to get the entity’s ID from the render request. Then create an entity object
using the -LocalServiceUtil class. Here’s an example that does this for a guestbook entry in
the example Guestbook app:

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

entry = EntryLocalServiceUtil.getEntry(entryId);

%>

5. Use the liferay-ui:ratings tag to add the ratings component for the entity:

<liferay-ui:ratings className="<%=Entry.class.getName()%>"

classPK="<%=entry.getEntryId()%>" type="stars" />

The type attribute specifies the rating system to use:

• like: Likes
• stars: Stars (five, by default)
• thumbs: Thumbs up/down (as shown in the above screenshot)

1399

You can also make the rating type configurable by administrators. To do this, see the tutorial
Implementing Ratings Type Selection and Value Type Transformation.

Great! Now you know how to let users rate content in your asset-enabled apps.

Related Topics

Asset Framework
Implementing Ratings Type Selection and Value Transformation

129.5 Implementing Ratings Type Selection and Value Transformation

Liferay DXP has three different mechanisms for rating content:

• Likes
• Stars
• Thumbs (up/down)

Prior to 7.0, there was no way for portal or site administrators to select a rating type–it was
hard-coded in each app. In 7.0 and later, admins can select the rating type for an app’s entities via
the Control Panel and Site Administration:

• Portal admins: can set the default rating type for the portal
• Site admins: can override the default rating type for their site

All Liferay apps leverage this feature. Your apps can too: this tutorial shows you how.

Specifying an Entity's Rating Type

Acustomapp that uses ratingsmust define its rating type in anOSGi component that implements the
PortletRatingsDefinition interface. This class declares the usage of ratings (specifying the portlet
and the entity) and the default rating type (that can be overridden by portal and site admins).

Follow these steps to implement PortletRatingsDefinition to define your app’s rating type:

1. Register the class as an OSGi component and set the model.class.name property to the fully
qualified class name of the class that will use this rating definition. For example, this
example rating definition is for a blog entry, so the model.class.name property is set to
com.liferay.portlet.blogs.model.BlogsEntry:

@Component(

property = {

"model.class.name=com.liferay.portlet.blogs.model.BlogsEntry"

}

)

public class BlogsPortletRatingsDefinition implements PortletRatingsDefinition {...

2. The PortletRatingsDefinition interface has two methods that you must implement:

1400

• getDefaultRatingsType: returns the entity’s default rating type, which portal and site
admins can override. You can do this via the RatingsType enum, which lets you use LIKE,
STARS, or THUMBS to set the rating type:

@Override

public RatingsType getDefaultRatingsType() {

return RatingsType.THUMBS;

}

• getPortletId: returns the portlet ID of the main portlet that uses the entity. You can do
this via the PortletKeys enum, which defines many constants that correspond to the
portlet IDs of the built-in portlets. This example specifies the Blogs portlet:

@Override

public String getPortletId() {

return PortletKeys.BLOGS;

}

Next, you’ll learn how to transform values between rating types.

Transforming Ratings Values Between Rating Types

The rating values are stored in the database as normalized values. This permits switching among
different rating types without modifying the underlying data. When administrators change an
entity’s rating type, its best match is computed. Here’s a list of the default transformations between
rating types:

1. When changing from stars to:

• Like: A value of 3, 4, or 5 stars is considered a like; a value of 1 or 2 stars is omitted.
• Thumbs up/down: A value of 3, 4, or 5 stars is considered a thumbs up; a value of 1 or
2 stars is considered a thumbs down.

2. When changing from thumbs up/down to:

• Like: A like is considered a thumbs up.
• Stars: A thumbs down is considered 1 star; a thumbs up is considered 5 stars.

3. When changing from like to:

• Stars: A like is considered 5 stars.
• Thumbs up/down: A like is considered a thumbs up.

There may be some cases, however, where you want to apply different criteria to determine
the new rating values. A mechanism exists to let you do this, but it modifies the stored rat-
ing values. To define such transformations, create an OSGi component that implements the
RatingsDataTransformer interface.

1401

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/ratings/kernel/RatingsType.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/PortletKeys.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/ratings/kernel/transformer/RatingsDataTransformer.html

Note: The portal doesn’t provide a default RatingsDataTransformer implementation. Unless you
provide such an implementation, the stored rating values always remain the same while the portal
interprets existing values for the selected rating type.

When implementing RatingsDataTransformer, implement the transformRatingsData method to
transform the data. This method’s arguments include the RatingsType variables fromRatingsType

and toRatingsType, which contain the rating type to transform from and to, respectively. These
values let you write your custom transformation’s logic. You can write this logic by implement-
ing the interface ActionableDynamicQuery.PerformActionMethod as an anonymous inner class in the
transformRatingsDatamethod, implementing the performActionmethod with your transformation’s
logic.

For example, follow these steps to implement a RatingsDataTransformer:

1. Create an OSGi component class that implements RatingsDataTransformer:

@Component

public class DummyRatingsDataTransformer implements RatingsDataTransformer {...

2. In this class, implement the transformRatingsData method. Note that it contains the
RatingsType variables fromRatingsType and toRatingsType:

@Override

public ActionableDynamicQuery.PerformActionMethod transformRatingsData(

final RatingsType fromRatingsType, final RatingsType toRatingsType)

throws PortalException {

}

3. In the transformRatingsDatamethod, implement the interface ActionableDynamicQuery.PerformActionMethod
as an anonymous inner class:

return new ActionableDynamicQuery.PerformActionMethod() {

};

4. In the anonymous ActionableDynamicQuery.PerformActionMethod implementation, implement
the performActionmethod to perform your transformation. This example irreversibly trans-
forms the rating type from like to stars, resetting the value to 0. The if statement uses
the fromRatingsType and toRatingsType values to specify that the transformation only occurs
when going from likes to stars. The transformation is performed via RatingsEntry and its
-LocalServiceUtil. After getting a RatingsEntry object, its setScore method sets the rating
score to 0. The RatingsEntryLocalServiceUtil method updateRatingsEntry then updates the
RatingsEntry in the database:

@Override

public void performAction(Object object)

throws PortalException {

if (fromRatingsType.getValue().equals(RatingsType.LIKE) &&

toRatingsType.getValue().equals(RatingsType.STARS)) {

RatingsEntry ratingsEntry = (RatingsEntry) object;

1402

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/ratings/kernel/model/RatingsEntry.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/ratings/kernel/service/RatingsEntryLocalServiceUtil.html

ratingsEntry.setScore(0);

RatingsEntryLocalServiceUtil.updateRatingsEntry(

ratingsEntry);

}

}

Here’s the complete class for this example:

@Component

public class DummyRatingsDataTransformer implements RatingsDataTransformer {

@Override

public ActionableDynamicQuery.PerformActionMethod transformRatingsData(

final RatingsType fromRatingsType, final RatingsType toRatingsType)

throws PortalException {

return new ActionableDynamicQuery.PerformActionMethod() {

@Override

public void performAction(Object object)

throws PortalException {

if (fromRatingsType.getValue().equals(RatingsType.LIKE) &&

toRatingsType.getValue().equals(RatingsType.STARS)) {

RatingsEntry ratingsEntry = (RatingsEntry) object;

ratingsEntry.setScore(0);

RatingsEntryLocalServiceUtil.updateRatingsEntry(

ratingsEntry);

}

}

};

}

}

Once you’ve implemented ratings type selection and value type transformation for your app’s
entities, you can configure the default ratings type values through the Control Panel by going to
Configuration → Instance Settings, and selecting the Social tab. To override the default values for a
site, go to Site Administration → Configuration → Site Settings, and select the Social tab.

Nice work! Now you know how to set an entity’s rating type. You also know how to implement
a rating data transformer. We salute you with a thumbs up!

Related Topics

Asset Framework
Rating Assets

129.6 Flagging Inappropriate Asset Content

In a perfectworld, peoplewould post nice, kind, and decent content. Theywould reply to comments
with constructive feedback and never lash out at each other. Unfortunately, sometimes people have
a bad day and decide to take their frustrations out in inappropriate posts. No worries though, the
asset framework supports a system for flagging content in apps. Letting users flag inappropriate
content takes much of the work off site administrators.

1403

Figure 129.4: Flags for letting users mark objectionable content are enabled in the Message Boards portlet.

This tutorial shows you how to enable content flagging in a portlet.
Follow these steps to enable content flagging in your app:

1. Make sure your entity is asset enabled.

2. Choose a read-only view of the entity you want to enable flags on. You can display flags in
one of your app’s views, or if you’ve implemented asset rendering you can display it in the
full content view in the Asset Publisher app.

3. In your JSP, include the liferay-flags taglib declaration:

<%@ taglib prefix="liferay-flags" uri="http://liferay.com/tld/flags" %>

4. Use ParamUtil to get the entity’s ID from the render request. Then use your -LocalServiceUtil
class to create an entity object:

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

entry = EntryLocalServiceUtil.getEntry(entryId);

%>

5. Use the tag liferay-flags:flags to add the flags component:

<liferay-flags:flags

className="<%= Entry.class.getName() %>"

classPK="<%= entry.getEntryId() %>"

contentTitle="<%= title %>"

message="flag-this-content"

reportedUserId="<%= reportedUserId %>"

/>

The reportedUserId attribute specifies the user who flagged the asset.

Great! Now you know how to let users flag content in your asset-enabled apps.

1404

https://docs.liferay.com/dxp/apps/collaboration/latest/taglibdocs/liferay-flags/flags.html

Related Topics

Asset Framework
Rating Assets

1405

CHAPTER 130

EXPORT/IMPORT AND STAGING

The Export/Import and Staging features give users the power to plan page publication and manage
content. The Export/Import feature lets users export content from the portal and import external
content into the portal. Providing the export feature in your application gives users the flexibility
of exporting content they’ve created in your application to other places, such as another portal
instance, or to save the content for a later use. Import does the opposite: it brings the data from a
LAR file into your portal.

For instance, suppose you’re managing an online education course. Because of the nature of
an online course, the site’s data (grades, assignments, etc.) is purged every semester to make way
for new incoming students. In a scenario like this, there is a need to frequently store a complete
record of all data given during a course. The institution offering the course must keep records
of the course’s data for a minimum number of years. To abide by these requirements, having a
gradebook application with an export/import feature would let you clear the application’s data for
a new semester, but save the previous class’s work. You could export the students’ grades as a LAR
file and save it outside the course’s site. If the grades ever needed to be accessed again, you could
import the LAR and view the student records.

The Export/Import feature adds another dimension to your application by letting you pro-
duce reusable content and import content from other places. To learn more about using the
Export/Import feature, visit the Exporting/Importing App Data User Guide section.

Staging lets you change your Site behind the scenes without affecting the live Site, and then you
can publish all the changes in one fell swoop. Keep inmind that Staging leverages the Export/Import
framework. When publishing your staged content to the live Site, you’re essentially importing
content from the staged Site and exporting it to the live Site. If you include staging support in your
application, your users can stage its content until it’s ready.

For example, if youhave an application that provides information intendedonly during a specific
holiday, supporting the Staging environment lets users save your application’s assets specific for
that holiday. They’ll reside in the Staging environment until they’re ready for publishing. To learn
more about Staging, visit the Staging Content for Publication section.

Besides configuring these features for your application, you can also access APIs that let you
write custom code, extending Liferay’s default functionality.

In this section of tutorials, you’ll learn how to implement Staging and the Export/Import
framework. The main areas of Staging code to focus on are outlined below:

1407

1. StagedModel: The StagedModel is the cornerstone of Staging. All content that must be handled
in Staging should implement this interface; it provides the behavior contract for the entities
Staging uses during the Staging process.

2. StagedModelDataHandler: These data handlers are responsible for handling one specific en-
tity class. For example, the BookmarksEntryStagedModelDataHandler handles the BookmarksEntry

during Staging: exporting data, serializing content, finding existing entries, etc.

3. PortletDataHandler: These data handlers are responsible for handling aspects of the portlet’s
configuration and publication during Staging.

4. ExportActionableDynamicQuery: This framework is useful when developing Staging sup-
port. Its purpose is to query data from the database and process it during publication. It’s
automatically generated if your entity contains the right fields so there’s no need to worry
about configuring it.

5. ExportImportContentProcessor and ExportImportPortletPreferencesProcessor: Advanced
frameworks only needed in special cases. The ExportImportContentProcessor lets you pro-
cess your content during a publication process. The ExportImportPortletPreferencesProcessor

lets you process your portlet preferences (application’s configuration) during a publication
process.

130.1 Decision to Implement Staging

Staging is an advanced publication tool that lets you create or modify your site before releasing
it to the public. Most of Liferay DXP’s included applications (e.g., Web Content, Bookmarks, etc.)
support Staging. Implementing Staging in your own application can be beneficial, but how do you
know if it’s the right move?

Not every application needs to support Staging andExport/Import. Themost important question
to consider during the decision process is

What part of your application are you primarily focused on using Staging for?
When Staging is enabled, all pages and applications are staged automatically. Liferay DXP’s

architecture separates the application and its configuration from the actual content, meaning that
content can exist without any application to display it and vice versa. Although Staging supports
all applications and their configurations by default, not all applications’ content is supported by
Staging.

Implementing Staging for your application means you’re defining the logic for how the Staging
framework should process, serialize, and de-serialize your app’s content, and how to insert it into
a database.

Therefore, if you want to track your application’s content, you should implement Staging in
your application. Here are a few other scenarios where you should implement Staging in your
application:

• You’re using remote staging. When publishing to a remote live site, your content must
be transferred to a different Liferay DXP installation. Therefore, Staging must be able to
recognize the content to facilitate the transfer.

• You want a space where you can freely edit and test your content before publishing it to a live
audience.

1408

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedModel.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/StagedModelDataHandler.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataHandler.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/ExportActionableDynamicQuery.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/exportimport/content/processor/ExportImportContentProcessor.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/exportimport/portlet/preferences/processor/ExportImportPortletPreferencesProcessor.html

• Your content is being referenced from another content type that supports Staging.
• You want to process your portlet’s preferences during publication (i.e., you might want to
publish some content with it or complete extra steps).

• You want to process the content during publication (e.g., writing validation for your content
during the import process).

If none of these options are beneficial for you, implementing Staging in your application is
unnecessary.

When content supports Staging and Staging is enabled, it is created in a Staging group and is
only published to a live site when that site is published. When content is not supported by Staging,
it is never added to a Staging group and is not reviewable during the Staging publication process;
it’s added and removed from the live site only.

From a technical standpoint, publishing an entity or content follows the process below:

1. The entity’s possible references are discovered and processed.
2. The entity’s fields are processed.
3. The entity is serialized into a LAR file.
4. The LAR is transferred to the live site (local or remote live).
5. After de-serialization, the entity’s fields are processed.
6. The entity is added to the database.

Awesome! You should now have a good idea about whether you should implement Staging for
your application.

130.2 Understanding Staged Models

To track an entity of an application with the Staging framework, you must implement the Staged-
Model interface in the app’s model classes. It provides the behavior contract for entities during
the Staging process. For example, the Bookmarks application manages BookmarksEntrys and
BookmarksFolders, and both implement the StagedModel interface. Once you’ve configured your
stagedmodels, you can create stagedmodel data handlers, which supply information about a staged
model (entity) and its referenced content to the Export/Import and Staging frameworks. See the
Understanding Data Handlers tutorial for more information.

There are two ways to create staged models for your application’s entities:

• Using Service Builder to generate the required Staging implementations (tutorial).
• Implementing the required Staging interfaces manually (tutorial).

You can follow step-by-step procedures for creating staged models for your entities by visiting
their respective tutorials.

Using Service Builder to generate your staged models is the easiest way to create staged models
for your app. You define the necessary columns in your service.xml file and set the uuid attribute to
true. Then you run Service Builder, which generates the required code for your new staged models.

Implementing the necessary staged model logic manually should be done if you don’t want to
extend your model with special attributes only required to generate Staging logic (i.e., not needed
by your business logic). In this case, you should adapt your business logic to meet the Staging
framework’s needs. You’ll learn more about this later.

You’ll explore the provided staged model interfaces next.

1409

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedModel.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedModel.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/bookmarks/model/BookmarksEntry.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/bookmarks/model/BookmarksFolder.html

Staged Model Interfaces

The StagedModel interface must be implemented by your app’s model classes, but this is typically
done through inheritance by implementing one of the interfaces that extend the base interface:

• StagedAuditedModel
• StagedGroupedModel

You must implement these when you want to use certain features of the Staging framework like
automatic group mapping or entity level Last Publish Date handling. So how do you choose which
is right for you?

The StagedAuditedModel interface provides all the audit fields to the model that implements
it. You can check the AuditedModel interface for the specific audit fields provided. The
StagedAuditedModel interface is intended for models that function independent from the group
concept (sometimes referred to as company models). If your model is a group model, you should
not implement the StagedAuditedModel interface.

The StagedGroupedModel interface must be implemented for group models. For example, if
your application requires the groupId column, your model is a group model. If your model
satisfies both the StagedGroupModel and StagedAuditedModel requirements, it should implement
StagedGroupedModel. Your model should only implement the StagedAuditedModel if it doesn’t fulfill
the grouped model needs, but does fulfill the audited model needs. If your model does not fulfill
either the StagedAuditedModel or StagedGroupedModel requirements, you should implement the base
StagedModel interface.

As an example for extending your model class, you can visit the BookmarksEntryModel class,
which extends the StagedGroupedModel interface; this is done because bookmark entries are group
models.

public interface BookmarksEntryModel extends BaseModel<BookmarksEntry>,

ShardedModel, StagedGroupedModel, TrashedModel, WorkflowedModel {

Now that you have a better understanding about staged model interfaces, you’ll dive into the
attributes used in Staging and why they’re important.

Important Attributes in Staging

If you’d like to generate your staged models using Service Builder, you must define the proper
attributes in your project’s service.xml file. If you’d like more detail on how this is done, see the
Generating Staged Models using Service Builder tutorial. You’ll learn some general information
about this process next.

One of the most important attributes used by the Staging framework is the UUID (Universally
Unique Identifier). This attribute must be set to true in your service.xml file for Service Builder
to recognize your model as an eligible staged model. The UUID is used to differentiate entities
between environments. Because the UUID always remains the same, it’s unique across multiple
systems. Why is this so important?

Suppose you’re using remote staging and you create a new entity on your local staging site
and publish it to your remote live site. What happens when you go back to modify the entity on
your local site and want to publish those changes? Without a UUID, the Staging framework has no
way to know the local and remote entities are the same. To publish entities properly, the Staging
framework needs entities uniquely identified across systems to recognize the original entity on the
remote site and update it. The UUID provides that.

1410

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedModel.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedAuditedModel.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedGroupedModel.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/AuditedModel.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/bookmarks/model/BookmarksEntryModel.html

In addition to the UUID, there are several columns that must be defined in your service.xml file
for Service Builder to define your model as a staged model:

• companyId

• createDate

• modifiedDate

If you want a staged grouped model, also include the groupId and lastPublishDate columns. If
you want a staged audited model, include the userId and userName columns.

Next, you’ll learn how to build staged models from scratch.

Adapting Your Business Logic to Build Staged Models

What if you don’t want to extend your model with special attributes that may not be needed in your
business logic? In this case, you should adapt your business logic to meet the Staging framework’s
needs. Liferay provides the ModelAdapterBuilder framework, which lets you adapt your model
classes to staged models.

As an example, assume you have an app that is fully developed and you want to configure
it to work with Staging. Your app, however, does not require a UUID for any of its entities, and
therefore, does not provide them. Instead of configuring your app to handle UUIDs just for the
sake of generating staged models, you can leverage the Model Adapter Builder to build your staged
models.

Another example for building staged models from scratch is for applications that use REST
services to access their attributes instead of the database. Since this kind of app is developed to
pull its attributes from a remote system, it would be more convenient to build your staged models
yourself instead of relying on Service Builder, which is database driven.

To adapt your model classes to staged models, follow the steps outlined below:

1. Create a Staged[Entity] interface, which extends the model specific interface (e.g., [Entity])
and the appropriate staged model interface (e.g., StagedModel). This class serves as the Staged
Model Adapter.

2. Create a Staged[Entity]Impl class that implements the Staged[Entity] interface and provides
necessary logic for your entity model to be recognized as a staged model.

3. Create a Staged[Entity]ModelAdapterBuilder class that implements ModelAdapterBuilder<[Entity],
Staged[Entity]>. This class adapts the original model to the newly created Staged Model
Adapter.

4. Adapt your existing model and call one of the provided APIs to export or import the entity
automatically.

To step through the process for leveraging the Model Adapter Builder for an existing app, visit
the Creating Staged Models Manually tutorial.

130.3 Generating Staged Models Using Service Builder

This document has been updated and ported to Liferay Learn and is no longer maintained here.

1411

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/adapter/builder/ModelAdapterBuilder.html

Figure 130.1: The Staged Model Adapter class extends your entity and stagedmodel interfaces.

Figure 130.2: The Model Adapter Builder gets an instance of the model and outputs a stagedmodel.

1412

A Staged model is an essential building block to implementing the Staging and Export/Import
frameworks in your application. Instead of having to create staged models for your app manually,
you can leverage Service Builder to generate the necessary stagedmodel logic for you. Before diving
into this tutorial, make sure you’ve read the Understanding Staged Models tutorial for information
on how staged models work. Also, if your app doesn’t use Liferay’s Service Builder, you must
configure it in your project. If you need help doing this, follow the Defining an Object-Relational
Map with Service Builder tutorial.

This tutorial assumes you have a Service Builder project with *api and *servicemodules. If you
want to follow along with this tutorial, download the staged-model-example Service Builder project.
This is a bare-bones project that you can test to observe the Staging-related changes generated
by running Service Builder. This tutorial assumes your project is built with Gradle. The example
project’s service.xml file contains the following configuration:

<service-builder package-path="com.liferay.docs">

<namespace>FOO</namespace>

<entity local-service="true" name="Foo" remote-service="true" uuid="true">

<!-- PK fields -->

<column name="fooId" primary="true" type="long" />

<!-- Group instance -->

<column name="groupId" type="long" />

<!-- Audit fields -->

<column name="companyId" type="long" />

<column name="createDate" type="Date" />

<column name="modifiedDate" type="Date" />

...

...

</entity>

</service-builder>

For simplicity, you’ll track the Service Builder-generated changes applied to an entity model
file to observe how staged models are assigned to your entity. Keep in mind the specific staged
attributes necessary for each stagedmodel. Depending on the attributes defined in your service.xml
file, Service Builder assigns your entity model to a specific staged model type.

1. Navigate to your project’s *servicemodule at the command line. Run Service Builder (e.g.,
gradlew buildService) to generate your project’s models based on the current service.xml
configuration.

2. Open your project’s [Entity]Model.java interface and observe the inherited interfaces.

public interface FooModel extends BaseModel<Foo>, ShardedModel, StagedModel {

Your model was generated as a staged model! This is because the UUID is set to true and
the companyId, createDate, and modifiedDate columns are defined. There is much more logic
generated for your app behind the scenes, but this shows that Service Builder deemed your
entity eligible for the Staging and Export/Import frameworks.

3. Add the userId and userName columns to your service.xml file:

1413

<column name="userId" type="long" />

<column name="userName" type="String" />

4. Rerun Service Builder and observe your [Entity]Model.java interface again:

public interface FooModel extends BaseModel<Foo>, GroupedModel, ShardedModel,

StagedAuditedModel {

Your model is now a staged audited model!

5. Add the lastPublishDate column to your service.xml file:

<column name="lastPublishDate" type="Date" />

6. Rerun Service Builder and observe your [Entity]Model.java interface again:

public interface FooModel extends BaseModel<Foo>, ShardedModel,

StagedGroupedModel {

Your model is now a staged grouped model! The groupId column is also required to extend
the StagedGroupedModel interface, but it was already defined in the original service.xml file.

Fantastic! You’ve witnessed firsthand how easy it is to generate staged models using Service
Builder.

130.4 Creating Staged Models Manually

There are times when using Service Builder to generate your staged models is not practical. In
these cases, you should create your staged models manually. Make sure to read the Adapting Your
Business Logic to Build Staged Models section to determine if creating staged models manually is
beneficial for your use case.

In this tutorial, you’ll explore how the Asset Link framework (a Liferay DXP framework used
for relating assets) manually creates staged models. This framework is separate from Staging and
is referenced solely as an example for how to leverage the ModelAdapterBuilder framework, which
lets you adapt your model classes to staged models.

Asset links do not provide UUIDs by default; however, they still need to be tracked in the Staging
and Export/Import frameworks. Therefore, they require staged models. Since they don’t provide a
UUID, Service Builder cannot generate staged models for asset links. The Asset Link framework
has to create staged models differently using the Model Adapter Builder. The naming convention
for this interface typically follows the Staged[Entity] syntax. The Asset Link framework uses a
generic entity called AssetLink.

Follow the steps below to leverage the Model Adapter Builder in your app.

1. Create a new interface that extends one of the stagedmodel interfaces and yourmodel specific
interface. For example,

public interface StagedAssetLink extends AssetLink, StagedModel {

}

1414

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/adapter/builder/ModelAdapterBuilder.html

This interface should define methods required for your model to qualify as a staged model.
For asset links, methods for retrieving entry UUIDs (among others) are defined:

public String getEntry1Uuid();

public String getEntry2Uuid();

These will be implemented by a new implementation class later.

2. Create an implementation class that implements your new Staged[Entity]. For example, the
Asset Link framework does this:

public class StagedAssetLinkImpl implements StagedAssetLink {

}

This class provides necessary logic for your entity model to be recognized as a staged model.
Below is a subset of logic in the example StagedAssetLinkImpl class used to populate UUIDs
for asset link entries:

public StagedAssetLinkImpl(AssetLink assetLink) {

_assetLink = assetLink;

...

populateUuid();

}

@Override

public String getEntry1Uuid() {

if (Validator.isNotNull(_entry1Uuid)) {

return _entry1Uuid;

}

populateEntry1Attributes();

return _entry1Uuid;

}

@Override

public String getEntry2Uuid() {

if (Validator.isNotNull(_entry2Uuid)) {

return _entry2Uuid;

}

populateEntry2Attributes();

return _entry2Uuid;

}

protected void populateEntry1Attributes() {

...

AssetEntry entry1 = AssetEntryLocalServiceUtil.fetchAssetEntry(

_assetLink.getEntryId1());

...

_entry1Uuid = entry1.getClassUuid();

}

1415

protected void populateEntry2Attributes() {

...

AssetEntry entry2 = AssetEntryLocalServiceUtil.fetchAssetEntry(

_assetLink.getEntryId2());

...

_entry2Uuid = entry2.getClassUuid();

}

protected void populateUuid() {

...

String entry1Uuid = getEntry1Uuid();

String entry2Uuid = getEntry2Uuid();

...

_uuid = entry1Uuid + StringPool.POUND + entry2Uuid;

}

}

private AssetLink _assetLink;

private String _entry1Uuid;

private String _entry2Uuid;

private String _uuid;

This logic retrieves asset link entries and populates UUIDs for them usable by the Staging
and Export/Import frameworks. With the newly generated UUIDs, asset link model classes
can be converted to staged models.

3. Create a Model Adapter Builder class and implement the ModelAdapterBuilder interface. You
should define the entity type and your Staged Model Adapter class when implementing the
interface:

public class StagedAssetLinkModelAdapterBuilder

implements ModelAdapterBuilder<AssetLink, StagedAssetLink> {

@Override

public StagedAssetLink build(AssetLink assetLink) {

return new StagedAssetLinkImpl(assetLink);

}

}

For the StagedAssetLinkModelAdapterBuilder, the entity type is AssetLink and the Staged Model
Adapter is StagedAssetLink. Your app should follow a similar design. The Model Adapter
Builder outputs a new instance of the Staged[Entity]Impl object.

4. Now you need to adapt your existing business logic to call the provided APIs. You can call
the ModelAdapterUtil class to create an instance of your Staged Model Adapter. See how the
Asset Link framework does this below:

StagedAssetLink stagedAssetLink = ModelAdapterUtil.adapt(

assetLink, AssetLink.class, StagedAssetLink.class);

1416

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/adapter/builder/ModelAdapterBuilder.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/adapter/ModelAdapterUtil.html

Once you’ve created Staged Model Data Handlers, you can begin exporting/importing your
now Staging-compatible entities:

StagedModelDataHandlerUtil.exportStagedModel(

portletDataContext, stagedAssetLink);

Visit the Understanding Data Handlers tutorial if you’re unfamiliar with how data handlers
work.

Awesome! You’ve successfully adapted your business logic to build staged models!

130.5 Understanding Data Handlers

A common requirement for many data driven applications is to import and export data. This could
be accomplished by accessing your database directly and running SQL queries to export/import
data; however, this has several drawbacks:

• Working with different database vendors might require customized SQL scripts.
• Access to the database may be tightly controlled, restricting the ability to export/import on
demand.

• You’d have to come up with your own means of storing and parsing the data.

Liferay provides a more convenient and reliable way to export/import your data without access-
ing the database.

Liferay Archive (LAR) File

An easier way to export/import your application’s data is to use a Liferay ARchive (LAR) file. Liferay
provides the LAR feature to address the need to export/import data in a database agnostic manner.
So what exactly is a LAR file?

A LAR file is a compressed file (ZIP archive) Liferay DXP uses to export/import data. LAR files
can be created for single portlets, pages, or sets of pages. Portlets that are LAR-capable provide an
interface to let you control how their data is imported/exported. There are several Liferay DXP use
cases that require the use of LAR files:

• Backing up and restoring portlet-specific data without requiring a full database backup.
• Cloning sites.
• Specifying a template to be used for users’ public or private pages.
• Using Local Live or Remote Live staging.

The data handler framework is available so developers don’t have to create/modify a LAR file
manually. It is strongly recommended never tomodify a LAR file. You should always use Liferay’s
provided data handler APIs to construct it.

Knowing how a LAR file is constructed, however, is beneficial to understand the overall purpose
of your application’s data handlers. Next, you’ll explore a LAR file’s anatomy.

1417

LAR File Anatomy

What is a LAR file? You know the general concept for why it’s used, but you may want to know what
lives inside to make your export/import processes work. With a fundamental understanding for
how a LAR file is constructed, you can better understand what your data handlers generate behind
the scenes.

Below is the structure of a simple LAR file. It illustrates the exportation of a single Bookmarks
entry and the portlet’s configuration:

• Bookmarks_Admin-201701091904.portlet.lar

– group

* 20143

· com.liferay.bookmarks.model.BookmarksEntry

· 35005.xml

· portlet

· com_liferay_bookmarks_web_portlet_BookmarksAdminPortlet

· 20137

· portlet.xml

· 20143

· portlet-data.xml

– manifest.xml

You can tell from the LAR’s generated name what information is contained in the LAR: the
Bookmarks Admin app’s data. The manifest.xml file sits at the root of the LAR file. It provides
essential information about the export process. The manifest.xml for the sample Bookmarks LAR
is pretty bare since it’s not exporting much content, but this file can become large when exporting
pages of content. There are four main parts (tags) to a manifest.xml file.

• header: contains information about the LAR file, current process, and site you’re exporting
(if necessary). For example, it can include locales, build information, export date, company
ID, group ID, layouts, themes, etc.

• missing-references: lists entities that must be validated during import. For example, suppose
you’re exporting a web content article that references an image (e.g., an embedded image
residing in the document library). If the image was not selected for export, the image must
already exist in the site where the article is imported. Therefore, the image would be flagged
as a missing reference in the LAR file. If the missing reference does not exist in the site when
the LAR is imported, the import process fails. If your import fails, the Import UI shows you
the missing references that weren’t validated.

• portlets: defines the portlets (i.e., portlet data) exported in the LAR. Each portlet definition
has basic information on the exported portlet and points to the generated portlet.xml for
more specialized portlet information.

1418

• manifest-summary: contains information on what has been exported. The Staging and Export
frameworks export or publish some entities even though they weren’t marked for it, because
the process respects data integrity. This section holds information for all the entities that
have been processed. The entities defining a non-zero addition-count attribute are displayed
in the Export/Import UI.

The manifest.xml file also defines layout information if you’ve exported pages in your LAR. For
example, your manifest could have LayoutSet, Layout, and LayoutFriendlyURL tags specifying staged
models and their various references in an exported page.

Now that you’ve learned about the LAR’s manifest.xml and how it’s used to store high-level data
about your export process, you can dive deeper into the LAR file’s group folder. The group folder
has two main parts:

• Entities
• Portlets

If you look at the anatomyof the sampleBookmarksLAR, you’ll notice that group/[groupId] folder
holds a foldernamedafter the entity you’re exporting (e.g., com.liferay.bookmarks.model.BookmarksEntry)
and a portlet folder holding a folder named after the portlet from which you’re exporting (e.g.,
com_liferay_bookmarks_web_portlet_BookmarksAdminPortlet). For each entity/portlet you export,
there are subsequent folders holding data about them. Entities and portlets can also be stored in a
company folder. Although the majority of entities belong to a group, some exist outside of a group
scope (e.g., users).

If you open the /group/20143/com.liferay.bookmarks.model.BookmarksEntry/35005.xml file, you’ll
find serialized data about the entity, which is similar to what is stored in the database.

The portlet folder holds all the portlets you exported. Each portlet has its own folder that holds
various XML files with data describing the exported content. There are three main XML files that
can be generated for a single portlet:

• portlet.xml: provides essential information about the portlet, similar to a manifest file. For
example, this can include the portlet ID, high-level entity information stored in the portlet
(e.g., web content articles in a web content portlet), permissioning, etc.

• portlet-data.xml: describes specific entity data stored in the portlet. For example, for the
web content portlet, articles stored in the portlet are defined in staged-model tags and are
linked to their serialized entity XML files.

• portlet-preferences.xml: defines the settings of the portlet. For example, this can include
portlet preferences like the portlet owner, default user, article IDs, etc.

Note that when you import a LAR, it only includes the portlet data. You have to deploy the
portlet to be able to use it.

You now know how exported entities, portlets, and pages are defined in a LAR file. For a
summarized outline of what you’ve learned about LAR file construction, see the diagram below.

Excellent! You now have a fundamental understanding for how a LAR file is generated and how
it’s structured.

Next, you’ll learn about data handler fundamentals and the prerequisites required to implement
them.

1419

Figure 130.3: Entities, Portlets, and Pages are defined in a LAR in different places.

Data Handler Fundamentals

To leverage the Export/Import framework’s ability to export/import a LAR file, you can implement
Data Handlers in your application. There are two types of data handlers: Portlet Data Handlers and
Staged Model Data Handlers.

A Portlet Data Handler imports/exports portlet specific data to a LAR file. These classes only
have the role of querying and coordinating between staged model data handlers. For example,
the Bookmarks application’s portlet data handler tracks system events dealing with Bookmarks
entities. It also configures the Export/Import UI options for the Bookmarks application.

To track each entity of an application for staging, you should create staged models by imple-
menting the StagedModel interface. Staged models are the parent interface of an entity in the
Staging framework. For more information on staged models, see the Understanding Staged Models
tutorial.

A Staged Model Data Handler supplies information about a staged model (entity) to the Ex-
port/Import framework, defining a display name for the UI, deleting an entity, etc. It’s also respon-
sible for exporting referenced content. For example, if a Bookmarks entry resides in a Bookmarks
folder, the BookmarksEntry staged model data handler invokes the export of the BookmarksFolder.

You’re not required to implement a staged model data handler for every entity in your applica-
tion, but they’re necessary for any entity you want to export/import or have the staging framework
track.

Before implementing data handlers, make sure your application is ready for the Export/Import
and Staging frameworks by running Service Builder in your application. Using Service Builder to
create staged models is not required, but is recommended since it generates many requirements

1420

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedModel.html

Figure 130.4: The Data Handler framework uses portlet data handlers and stagedmodel data handlers to track and export/import portlet and stagedmodel information,
respectively.

for you. To ensure Service Builder recognizes your entity as a staged model, you must set the uuid

attribute to true in your service.xml file and have the following columns declared:

• companyId

• groupId

• userId

• userName

• createDate

• modifiedDate

You can learn how to create a service.xml file for your application by visiting the Defining an
Object-Relational Map with Service Builder tutorial.

To learn how to develop data handlers for your app, visit the Developing Portlet Data Handlers
and Developing Staged Model Data Handlers tutorials.

130.6 Developing Portlet Data Handlers

There are two types of data handlers you can implement: Portlet Data Handlers and Staged Model
Data Handlers. For more information on the fundamentals behind Liferay’s data handlers and how
a LAR file is constructed, see the Understanding Data Handlers tutorial. In this tutorial, you’ll
create a Portlet Data Handler for a Bookmarks application.

1421

Note: You must ensure your application is properly configured to use data handlers. For more
information on how to do this, see the Data Handler Fundamentals section.

A Portlet Data Handler imports/exports portlet specific data to a LAR file. These classes only
have the role of querying and coordinating between staged model data handlers. For example,
the Bookmarks application’s portlet data handler tracks system events dealing with Bookmarks
entities. It also configures the Export/Import UI options for the Bookmarks application.

The following steps create the BookmarksPortletDataHandler class used for the Bookmarks appli-
cation.

1. Create a new package in your existing Service Builder project for your data handler classes.
For instance, the Bookmarks application’s data handler classes reside in the bookmarks-service
module’s com.liferay.bookmarks.internal.exportimport.data.handler package.

2. Create your -PortletDataHandler class for your application in thenew -exportimport.data.handler

package and have it implement the PortletDataHandler interface by extending the Base-
PortletDataHandler class. For example,

public class BookmarksPortletDataHandler extends BasePortletDataHandler {

3. Create an @Component annotation section above the class declaration. This annotation registers
this class as a portlet data handler in the OSGi service registry.

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BookmarksPortletKeys.BOOKMARKS,

"javax.portlet.name=" + BookmarksPortletKeys.BOOKMARKS_ADMIN

},

service = PortletDataHandler.class

)

There are a few annotation attributes you should set:

• The immediate element directs the container to activate the component immediately
once its provided module has started.

• The property element sets various properties for the component service. You must
associate the portlets you wish to handle with this service so they function properly
in the export/import environment. For example, since the Bookmarks data handler is
used for two portlets, they’re both configured using the javax.portlet.name property.

• The service element should point to the PortletDataHandler.class interface.

Note: In previous versions of Liferay DXP, you had to register the portlet

data handler in a portlet's `liferay-portlet.xml` file. The registration

process is now completed automatically by OSGi using the `@Component`

annotation.

1422

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataHandler.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/BasePortletDataHandler.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/BasePortletDataHandler.html

4. Set what the portlet data handler controls and the portlet’s Export/Import UI by adding an
activatemethod:

@Activate

protected void activate() {

setDataPortletPreferences("rootFolderId");

setDeletionSystemEventStagedModelTypes(

new StagedModelType(BookmarksEntry.class),

new StagedModelType(BookmarksFolder.class));

setExportControls(

new PortletDataHandlerBoolean(

NAMESPACE, "entries", true, false, null,

BookmarksEntry.class.getName()));

setImportControls(getExportControls());

}

This method is called during initialization of the component by using the @Activate annota-
tion. This method is invoked after dependencies are set and before services are registered.

The four set methods called in the BookmarksPortletDataHandler’s activate method are de-
scribed below:

• setDataPortletPreferences: sets portlet preferences the Bookmarks application should
handle.

• setDeletionSystemEventStagedModelTypes: sets the stagedmodel deletions that the portlet
data handler should track. For the Bookmarks application, Bookmark entries and
folders are tracked.

• setExportControls: adds fine grained controls over export behavior that are rendered in
the Export UI. For the Bookmarks application, a checkbox is added to select Bookmarks
content (entries) to export.

• setImportControls: adds fine grained controls over import behavior that are rendered in
the Import UI. For the Bookmarks application, a checkbox is added to select Bookmarks
content (entries) to import.

For more information on these methods, visit the PortletDataHandler API.

5. For the Bookmarks portlet data handler to reference its entry and folder staged models
successfully, you must set them in your class:

@Reference(unbind = "-")

protected void setBookmarksEntryLocalService(

BookmarksEntryLocalService bookmarksEntryLocalService) {

_bookmarksEntryLocalService = bookmarksEntryLocalService;

}

@Reference(unbind = "-")

protected void setBookmarksFolderLocalService(

BookmarksFolderLocalService bookmarksFolderLocalService) {

_bookmarksFolderLocalService = bookmarksFolderLocalService;

}

private BookmarksEntryLocalService _bookmarksEntryLocalService;

private BookmarksFolderLocalService _bookmarksFolderLocalService;

1423

https://osgi.org/javadoc/r6/residential/org/osgi/service/component/annotations/Activate.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataHandler.html

Figure 130.5: You can select the content types you’d like to export/import in the UI.

The setmethodsmust be annotated with the@Reference annotation. Visit the Invoking Local
Services tutorial for more information on using the @Reference annotation in Liferay DXP.

Important: Liferay DXP’s official Bookmarks app does not use local services in its portlet data
handler; instead, it uses the StagedModelRepository framework. This is a new framework,
but is a viable option when setting up your portlet data handlers. For more information on
this, see the Providing Entity-Specific Local Services for Staging tutorial section. Since local
services are more widely used in custom apps, this tutorial covers those instead.

6. You must create a namespace for your entities so the Export/Import framework can identify
your application’s entities from other entities in Liferay DXP. The Bookmarks application’s
namespace declaration looks like this:

public static final String NAMESPACE = "bookmarks";

You’ll see how this namespace is used later.

7. Your portlet data handler should retrieve the data related to its staged model entities so it can
properly export/import it. Add this functionality by inserting the following methods:

@Override

protected String doExportData(

final PortletDataContext portletDataContext, String portletId,

PortletPreferences portletPreferences)

1424

https://osgi.org/javadoc/r6/residential/org/osgi/service/component/annotations/Reference.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/exportimport/staged/model/repository/StagedModelRepository.html

throws Exception {

Element rootElement = addExportDataRootElement(portletDataContext);

if (!portletDataContext.getBooleanParameter(NAMESPACE, "entries")) {

return getExportDataRootElementString(rootElement);

}

portletDataContext.addPortletPermissions(

BookmarksConstants.RESOURCE_NAME);

rootElement.addAttribute(

"group-id", String.valueOf(portletDataContext.getScopeGroupId()));

ExportActionableDynamicQuery folderActionableDynamicQuery =

_bookmarksFolderLocalService.

getExportActionableDynamicQuery(portletDataContext);

folderActionableDynamicQuery.performActions();

ActionableDynamicQuery entryActionableDynamicQuery =

_bookmarksEntryLocalService.

getExportActionableDynamicQuery(portletDataContext);

entryActionableDynamicQuery.performActions();

return getExportDataRootElementString(rootElement);

}

@Override

protected PortletPreferences doImportData(

PortletDataContext portletDataContext, String portletId,

PortletPreferences portletPreferences, String data)

throws Exception {

if (!portletDataContext.getBooleanParameter(NAMESPACE, "entries")) {

return null;

}

portletDataContext.importPortletPermissions(

BookmarksConstants.RESOURCE_NAME);

Element foldersElement = portletDataContext.getImportDataGroupElement(

BookmarksFolder.class);

List<Element> folderElements = foldersElement.elements();

for (Element folderElement : folderElements) {

StagedModelDataHandlerUtil.importStagedModel(

portletDataContext, folderElement);

}

Element entriesElement = portletDataContext.getImportDataGroupElement(

BookmarksEntry.class);

List<Element> entryElements = entriesElement.elements();

for (Element entryElement : entryElements) {

StagedModelDataHandlerUtil.importStagedModel(

portletDataContext, entryElement);

}

return null;

}

The doExportDatamethodfirst checks if anything shouldbe exported. The portletDataContext.getBooleanParameter(...)
method checks if theuser selectedBookmarks entries for export. Later, the ExportImportActionableDynamicQuery

1425

framework runs a query against bookmarks folders and entries to find ones which should be
exported to the LAR file.

The -ActionableDynamicQuery classes are automatically generated by Service Builder and are
available in your application’s local service. It queries the database searching for certain
Staging-specific parameters (e.g., createDate and modifiedDate), and based on those parame-
ters, finds a list of exportable records from the staged model data handler.

The doImportData queries for Bookmark entry and folder data in the imported LAR file that
should be added to the database. This is done by extracting XML elements from the LAR file
by using utility methods from the StagedModelDataHandlerUtil class. The extracted elements
tell Liferay DXP what data to import from the LAR file.

8. Add a method that deletes the portlet’s data. The Staging framework has an option called
Delete Portlet Data Before Importing that lets the user delete portlet data before importing any
new data. The doDeleteData(...) method is called to execute this deletion operation.

@Override

protected PortletPreferences doDeleteData(

PortletDataContext portletDataContext, String portletId,

PortletPreferences portletPreferences)

throws Exception {

if (portletDataContext.addPrimaryKey(

BookmarksPortletDataHandler.class, "deleteData")) {

return portletPreferences;

}

_bookmarksEntryLocalService.deleteEntries(

portletDataContext.getScopeGroupId(),

BookmarksFolderConstants.DEFAULT_PARENT_FOLDER_ID);

_bookmarksFolderLocalService.deleteFolders(

portletDataContext.getScopeGroupId());

return portletPreferences;

}

This method can also return a modified version of the portlet preferences if it contains
references to data that no longer exists.

Note: This is a legacy feature that was useful when deletions were not

propagated between Sites. This cleaned the portlet's data, allowing you to

see everything associated with the portlet during every publication. It's

unnecessary now that Staging can recognize deletions across all Sites. It's,

however, still offered as a feature of Staging and is implemented in

Liferay's Bookmarks app, so it's included here.

9. Add a method that counts the number of affected entities based on the current export or
staging process:

1426

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/StagedModelDataHandlerUtil.html

@Override

protected void doPrepareManifestSummary(

PortletDataContext portletDataContext,

PortletPreferences portletPreferences)

throws Exception {

ActionableDynamicQuery entryExportActionableDynamicQuery =

_bookmarksEntryLocalService.

getExportActionableDynamicQuery(portletDataContext);

entryExportActionableDynamicQuery.performCount();

ActionableDynamicQuery folderExportActionableDynamicQuery =

_bookmarksFolderLocalService.

getExportActionableDynamicQuery(portletDataContext);

folderExportActionableDynamicQuery.performCount();

}

This number is displayed in the Export and Staging UI. Note that since the Staging framework
traverses the entity graph during export, the built-in components provide an approximate
value in some cases.

Figure 130.6: The number of modified Bookmarks entities are displayed in the Export UI.

10. Set the XML schema version for the XML files included in your exported LAR file:

1427

public static final String SCHEMA_VERSION = "1.0.0";

@Override

public String getSchemaVersion() {

return SCHEMA_VERSION;

}

@Override

public boolean validateSchemaVersion(String schemaVersion) {

return _portletDataHandlerHelper.validateSchemaVersion(

schemaVersion, getSchemaVersion());

}

The schema version is used to perform component related validation before importing data.
It’s added to the LAR file for each application being processed. During import, the environ-
ment’s schema version is compared to the LAR file’s schema version. Validating the schema
version avoids broken data when importing. See the PortletDataHandler.getVersionScheme()
method’s Javadoc for more information.

Awesome! You’ve set up your portlet data handler and your application can now support the
Export/Import framework and display a UI for it. Be sure to also implement staged model data
handlers for your staged models. See the Developing Staged Model Data Handlers to do this for the
Bookmarks app.

130.7 Developing Staged Model Data Handlers

There are two types of data handlers you can implement: Portlet Data Handlers and Staged Model
Data Handlers. For more information on the fundamentals behind Liferay’s data handlers and how
a LAR file is constructed, see the Understanding Data Handlers tutorial. In this tutorial, you’ll learn
how to create a Staged Model Data Handler for a Bookmarks application.

Note: You must ensure your application is properly configured to use data handlers. For more
information on how to do this, see the Data Handler Fundamentals section.

A Staged Model Data Handler supplies information about a staged model (entity) to the Ex-
port/Import framework, defining a display name for the UI, deleting an entity, etc. It’s also respon-
sible for exporting referenced content. For example, if a Bookmarks entry resides in a Bookmarks
folder, the BookmarksEntry staged model data handler invokes the export of the BookmarksFolder.

This tutorial assumes you’ve already created staged models. The Bookmarks application has
two staged models: entries and folders. Creating data handlers for these two entities is similar, so
you’ll examine how this is done for Bookmark entries.

1. Create a new package in your existing Service Builder project for your data handler classes.
For instance, the Bookmarks application’s data handler classes reside in the bookmarks-service
module’s com.liferay.bookmarks.internal.exportimport.data.handler package.

2. Create a -StagedModelDataHandler class in the -exportimport.data.handler package. The staged
model data handler class should extend the BaseStagedModelDataHandler class and the
entity type should be specified as its parameter. You can see how this was done for the
BookmarksEntryStagedModelDataHandler class below:

1428

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataHandler.html#getSchemaVersion--
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/BaseStagedModelDataHandler.html

public class BookmarksEntryStagedModelDataHandler

extends BaseStagedModelDataHandler<BookmarksEntry> {

3. Create an @Component annotation section above the class declaration. This annotation is
responsible for registering the class as a staged model data handler similar to the portlet data
handler.

@Component(immediate = true, service = StagedModelDataHandler.class)

The immediate element directs the container to activate the component immediately
once its provided module has started. The service element should point to the
StagedModelDataHandler.class interface.

Note: In previous versions of Liferay DXP, you had to register the staged

model data handler in a portlet's `liferay-portlet.xml` file. The

registration process is now completed automatically by OSGi using the

`@Component` annotation.

4. Create a getter and setter method for the local service of the staged model for which you want
to provide a data handler:

@Override

protected BookmarksEntryLocalService getBookmarksEntryLocalService() {

return _bookmarksEntryLocalService;

}

@Reference(unbind = "-")

protected void setBookmarksEntryLocalService(

BookmarksEntryLocalService bookmarksEntryLocalService) {

_bookmarksEntryLocalService = bookmarksEntryLocalService;

}

private BookmarksEntryLocalService _bookmarksEntryLocalService;

These methods are used to link this data handler with the staged model for bookmark entries.
Important: Liferay DXP’s official Bookmarks app does not use local services in its staged
model data handlers; instead, it uses the StagedModelRepository framework. This is a new
framework, but is a viable option when setting up your staged model data handlers. For
more information on this, see the Providing Entity-Specific Local Services for Staging tutorial
section. Since local services are more widely used in custom apps, this tutorial covers those
instead.

5. You must provide the class names of the models the data handler tracks. You can do this by
overriding the StagedModelDataHandler’s getClassnames()method:

public static final String[] CLASS_NAMES = {BookmarksEntry.class.getName()};

@Override

public String[] getClassNames() {

return CLASS_NAMES;

}

1429

https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/exportimport/staged/model/repository/StagedModelRepository.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/StagedModelDataHandler.html

As a best practice, you should have one staged model data handler per staged model. It’s
possible to use multiple class types, but this is not recommended.

6. Add a method that retrieves the staged model’s display name:

@Override

public String getDisplayName(BookmarksEntry entry) {

return entry.getName();

}

The display name is presented with the progress bar during the export/import process.

Figure 130.7: Your stagedmodel data handler provides the display name in the Export/Import UI.

7. A staged model data handler should ensure everything required for its operation is also
exported. For example, in the Bookmarks application, an entry requires its folder to keep the
folder structure intact. Therefore, the folder should be exported first followed by the entry.
Add methods that import and export your staged model and its references.

@Override

protected void doExportStagedModel(

PortletDataContext portletDataContext, BookmarksEntry entry)

throws Exception {

if (entry.getFolderId() !=

BookmarksFolderConstants.DEFAULT_PARENT_FOLDER_ID) {

StagedModelDataHandlerUtil.exportReferenceStagedModel(

portletDataContext, entry, entry.getFolder(),

PortletDataContext.REFERENCE_TYPE_PARENT);

}

Element entryElement = portletDataContext.getExportDataElement(entry);

portletDataContext.addClassedModel(

entryElement, ExportImportPathUtil.getModelPath(entry), entry);

}

@Override

protected void doImportStagedModel(

PortletDataContext portletDataContext, BookmarksEntry entry)

throws Exception {

Map<Long, Long> folderIds =

(Map<Long, Long>)portletDataContext.getNewPrimaryKeysMap(

BookmarksFolder.class);

long folderId = MapUtil.getLong(

1430

folderIds, entry.getFolderId(), entry.getFolderId());

ServiceContext serviceContext =

portletDataContext.createServiceContext(entry);

BookmarksEntry importedEntry = null;

if (portletDataContext.isDataStrategyMirror()) {

BookmarksEntry existingEntry =

_bookmarksEntryLocalService. fetchBookmarksEntryByUuidAndGroupId(

entry.getUuid(), portletDataContext.getScopeGroupId());

if (existingEntry == null) {

serviceContext.setUuid(entry.getUuid());

importedEntry = _bookmarksEntryLocalService.addEntry(

userId, portletDataContext.getScopeGroupId(), folderId, entry.getName(), entry.getUrl(), entry.getDescription(), serviceContext);

}

else {

importedEntry = _bookmarksEntryLocalService.updateEntry(

userId, existingEntry.getEntryId(), portletDataContext.getScopeGroupId(), folderId, entry.getName(), entry.getUrl(), entry.getDescription(), serviceContext);

}

}

else {

importedEntry = _bookmarksEntryLocalService.addEntry(userId, portletDataContext.getScopeGroupId(), folderId,entry.getName(), entry.getUrl(), entry.getDescription(), serviceContext);

}

portletDataContext.importClassedModel(entry, importedEntry);

}

The doExportStagedModel method retrieves the Bookmark entry’s data element from the
PortletDataContext and then adds the class model characterized by that data element to
the PortletDataContext. The PortletDataContext is used to populate the LAR file with your
application’s data during the export process. Note that once an entity has been exported,
subsequent calls to the export method won’t actually repeat the export process multiple
times, ensuring optimal performance.

An important feature of the import process is that all exported reference elements in the
Bookmarks example are automatically imported when needed. The doImportStagedModel

method does not need to import the reference elements manually; it must only find the new
assigned ID for the folder before importing the entry.

The PortletDataContext keeps this information and a slew of other data up-to-date dur-
ing the import process. The old ID and new ID mapping can be reached by using the
portletDataContext.getNewPrimaryKeysMap() method as shown in the example. The method
proceeds with checking the import mode (e.g., Copy As New or Mirror) and, depending on
the process configuration and existing environment, the entry is either added or updated.

8. When importing a LAR (i.e., publishing to the live Site), the import process expects all of an
entity’s references to be available and validates their existence.

For example, if you republish an updated bookmarks folder to the live Site and did not include
some of its existing entries in the publication, these entries are consideredmissing references.
A more practical example of this would be an image included in a web content article. If the
image included in the web content lives on a different Site (i.e., the image is contained in
a different group) or was not included in the publication process, it’s considered a missing
reference of the web content article.

1431

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataContext.html

Since you have references from two separate Sites with differing IDs, the system can’t match
them during publication. For example, suppose you export a bookmark entry as a missing
reference with a primary key (ID) of 1. When importing that information, the LAR only
provides the ID but not the entry itself. Therefore, during the import process, the Data
Handler framework searches for the entry to replace by its UUID, but the entry to replace has
a different ID (primary key) of 2. You must provide a way to handle these missing references.
To do this, you must add a method that maps the missing reference’s primary key from the
export to the existing primary key during import. Since the reference’s UUID is constant
across systems, it’s used to complete the mapping of differing primary keys. Note that a
reference can only be missing on the live Site if it has already been published previously.
Therefore, when publishing a bookmarks folder for the first time, the system doesn’t check
for missing references.
Add this method to your class:

@Override

protected void doImportMissingReference(

PortletDataContext portletDataContext, String uuid, long groupId,

long entryId)

throws Exception {

BookmarksEntry existingEntry = fetchMissingReference(uuid, groupId);

if (existingEntry == null) {

return;

}

Map<Long, Long> entryIds =

(Map<Long, Long>)portletDataContext.getNewPrimaryKeysMap(

BookmarksEntry.class);

entryIds.put(entryId, existingEntry.getEntryId());

}

This method maps the existing staged model to the old ID in the reference element. When a
reference is exported as missing, the Data Handler framework calls this method during the
import process and updates the new primary key map in the portlet data context.

Fantastic! You’ve created a data handler for your staged model. The Export/Import framework
can now track your entity’s behavior and data. Be sure to also implement a portlet data handler
to manage portlet specific data. See the Developing Portlet Data Handlers. to do this for the
Bookmarks app.

1432

CHAPTER 131

PROVIDING ENTITY-SPECIFIC LOCAL SERVICES FOR
STAGING

When creating your data handlers, you must leverage your app’s local services to perform Staging-
related tasks for its entities. When the Staging framework operates on entities (i.e., staged models),
it often cannotmanage important information from the entity’s local services alone; instead, you’re
forced to reinvent basic functionality so the Staging framework can access it. This is caused by
services not sharing a common ancestor (i.e., interface or base class).

The Staged Model Repository framework removes this barrier by linking an app’s stagedmodel to
a local service. This lets the Staging framework call a staged model repository independently based
on the entity being processed. This gives you access to entity-specific methods tailored specifically
for the staged model data you’re handling.

What kind of entity-specific methods are we talking about here? Your data handlers only expose
a specific set of actions, like export and import methods. The Staged Model Repository framework
provides CRUD operations for a specific staged model that are not exposed using local services.

The staged model repository does not avoid using your app’s local services. It only provides an
additional layer that provides Staging-specific functionality. So how does this work? A brief Staging
process is outlined below:

• *StagedModelDataHandler de-serializes the provided LAR file’s XML into a model.
• *StagedModelRepository updates the model based on the environment and business logic,
providing entity-specific CRUD operations for Staging purposes (e.g., UUID manipulation).

• Local services are called from the *StagedModelRepository and handles the remainder of the
process.

Pretty cool, right? Read on to learn how to implement and use the Staged Model Repository
framework in your app.

131.1 Implementing the Staged Model Repository Framework

Providing specialized local services for your app’s staging functionality lets you abstract the addi-
tional staging-specific information away from your data handlers. Before you can begin using the
Staged Model Repository framework in your app, you must implement it.

1433

Figure 131.1: Staged Model Repositories provide a Staging-specific layer of functionality for your local services.

1434

Below is a quick example that demonstrates implementing the StagedModelRepository interface
to use for a staged model. This example references Liferay’s Bookmarks app and Bookmarks Entry
entities.

1. In your app’s -service bundle, create a package that holds your Staged Model Repository
classes (e.g., com.liferay.bookmarks.exportimport.staged.model.repository). If you donot have
a -service bundle, visit the Service Builder tutorials for info on generating an app’s services.
You must have them to leverage most Staging features.

2. Create your -StagedModelRepository class in the new package and implement the
StagedModelRepository interface in the class’ declaration. For example,

public class BookmarksEntryStagedModelRepository

implements StagedModelRepository<BookmarksEntry> {

Be sure also to include the staged model type parameter for this repository (e.g.,
BookmarksEntry).

3. Add an @Component annotation for your staged model repository class that looks like this:

@Component(

immediate = true,

property = "model.class.name=FULLY_QUALIFIED_MODEL_CLASS",

service = StagedModelRepository.class

)

There are a few annotation attributes you should set:

• The immediate element directs the container to activate the component immediately
once its provided module has started.

• The property element sets various properties for the component service. You must
associate the model class you wish to handle with this service so it’s recognized by the
data handlers leveraging it. You’ll learn more about this later.

• The service element should point to the StagedModelRepository.class interface.

The BookmarksEntryStagedModelRepository’s @Component annotation looks like this:

@Component(

immediate = true,

property = "model.class.name=com.liferay.bookmarks.model.BookmarksEntry",

service = StagedModelRepository.class

)

4. Implement the StagedModelRepository interface’s methods in your staged model repository.
You can reference the Javadoc for this interface to learn what each method is intended for.

As an example, you’ll step through a couple method implementations to get a taste for how it
works.

Implementing the addStagedModel(...) method for a Bookmarks entry looks like this:

1435

https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/exportimport/staged/model/repository/StagedModelRepository.html

@Override

public BookmarksEntry addStagedModel(

PortletDataContext portletDataContext,

BookmarksEntry bookmarksEntry)

throws PortalException {

long userId = portletDataContext.getUserId(

bookmarksEntry.getUserUuid());

ServiceContext serviceContext = portletDataContext.createServiceContext(

bookmarksEntry);

if (portletDataContext.isDataStrategyMirror()) {

serviceContext.setUuid(bookmarksEntry.getUuid());

}

return _bookmarksEntryLocalService.addEntry(

userId, bookmarksEntry.getGroupId(), bookmarksEntry.getFolderId(),

bookmarksEntry.getName(), bookmarksEntry.getUrl(),

bookmarksEntry.getDescription(), serviceContext);

}

This method sets the user ID and service context based on the portlet data context. The
PortletDataContext is used to populate the LAR file with your application’s data during the
export process. Next it sets the UUID, which is required to differentiate staged content
between Sites. Lastly, the entity’s local service is called.
Just calling the BookmarksEntryLocalService.addEntry(...) method would not have been
enough to satisfy the staged model data handler’s needs (i.e., the UUID requirement). With
the staged model repository layer, however, you can add staging specific requirements on top
of the present local services to serve your data handlers’ needs.
Not every method implementation requires additional staging information. For example,
deleting Bookmarks Entries and deleting Bookmarks Entry staged models are functionally
the same, so your staged model repository’s method would look like this:

@Override

public void deleteStagedModels(PortletDataContext portletDataContext)

throws PortalException {

_bookmarksEntryLocalService.deleteEntries(

portletDataContext.getScopeGroupId(),

BookmarksFolderConstants.DEFAULT_PARENT_FOLDER_ID);

}

Since nothing additional is required for deleting staged models, the staged model repository
calls the local service’s deleteEntries(...) method with no additional changes.
Finish implementing the StagedModelRepository so it’s usable in your data handlers.

Awesome! You’ve implemented the Staged Model Repository framework for your app! If you’re
interested in leveraging this framework after the implementation process, see the Using the Staged
Model Repository Framework tutorial.

131.2 Using the Staged Model Repository Framework

Leveraging the Staged Model Repository framework in your app is easy once you’ve created staged
model repository implementation classes.

1436

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataContext.html

You’ll step through a quick example to demonstrate leveraging the StagedModelRepository inter-
face in a staged model data handler. The code snippets originate from Liferay’s Bookmarks app
and Bookmarks Entries.

1. Create a getter and setter method to make a StagedModelRepository object available for the
BookmarksEntry entity:

@Override

protected StagedModelRepository<BookmarksEntry> getStagedModelRepository() {

return _stagedModelRepository;

}

@Reference(

target = "(model.class.name=com.liferay.bookmarks.model.BookmarksEntry)",

unbind = "-"

)

protected void setStagedModelRepository(

StagedModelRepository<BookmarksEntry> stagedModelRepository) {

_stagedModelRepository = stagedModelRepository;

}

private StagedModelRepository<BookmarksEntry> _stagedModelRepository;

This instantiates a _stagedModelRepository object that the staged model data handler can use
to access BookmarksEntry CRUD operations. Notice the setter method’s @Reference annota-
tion. This injects the component service of the BookmarksEntryStagedModelRepository into the
_stagedModelRepository object. The component service was created in the Implementing the
Staged Model Repository Framework tutorial when setting the @Component annotation for the
staged model repository.

2. Call your _stagedModelRepository object to leverage its specialized staging logic. Now that
you have access to CRUD operations via the _stagedModelRepository object, you can skip the
headache of providing a slew of parameters and additional functionality in the local service
to do simple things like add a Bookmarks entry. For example, here’s the old way:

serviceContext.setUuid(entry.getUuid());

newEntry = _bookmarksEntryLocalService.addEntry(

userId, portletDataContext.getScopeGroupId(), folderId, entry.getName(), entry.getUrl(), entry.getDescription(), serviceContext);

Now with access to the entry’s staged model repository, updating an entry the data handler
can use looks like this:

newEntry = _stagedModelRepository.updateStagedModel(portletDataContext, importedEntry);

The large number of parameters and UUID setter the local service method re-
quires aren’t needed when leveraging the staged model repository, because the
staged model repository abstracts these requirements away from the data han-
dler. The _bookmarksEntryLocalService.addEntry(...) method is called from the
BookmarksEntryStagedModelRepository class.

Great! You’ve successfully leveraged your staged model repository from a data handler!

1437

131.3 Using the Export/Import Lifecycle Listener Framework

The ExportImportLifecycleListener framework lets developers write code that listens for certain
staging or export/import events during the publication process. The staging and export/import
processes have many behind-the-scenes events that you cannot listen to by default. Some of these,
like export successes and import failures, may be events on which you’d want to take some action.
You also have the ability to listen for processes comprised of many events and implement custom
code when these processes are initiated. Here is a short list of events you could listen for:

• Staging has started
• A portlet export has failed
• An entity export has succeeded

The concept of listening for export/import and staging events sounds cool, but you may be
curious as to why listening for certain events is useful. Listening for events can help you know
more about your application’s state. Suppose you’d like a detailed log of when certain events occur
during an import process. You could configure a listener to listen for certain import events you’re
interested in and print information about those events to your console when they occur.

Liferay DXP uses this framework by default in several cases. For instance, the cache is cleared
when a web content import process finishes. To accomplish this, the lifecycle listener framework
listens for an event that specifies that a web content import process has completed. Once that event
occurs, there is an event listener that automatically clears the cache. You could implement this
sort of functionality yourself for any event. You can listen for a specific event and then complete an
action based on when that event occurs. For a list of events you can listen for during Export/Import
and Staging processes, see ExportImportLifecycleConstants.

Some definitions are in order:
Events are particular actions that occur during processing.
Processes are longer running groups of events.
In this tutorial, you’ll learn how to use the ExportImportLifecycleListener framework to listen

for processes/events during the staging and export/import lifecycles.

Listening to Lifecycle Events

To begin creating your lifecycle listener, you must create a module. Follow the steps below:

1. Create an OSGi module.

2. Create a unique package name in the module’s src directory and create a new Java
class in that package. To follow naming conventions, begin the class name with the
entity or action name you’re processing, followed by ExportImportLifecycleListener (e.g.,
LoggerExportImportLifecycleListener).

3. You must extend one of the two Base classes provided with the Export/Import Lifecycle
Listener framework: BaseExportImportLifecycleListener or BaseProcessExportImportLife-
cycleListener. To choose, you’ll need to consider what parts of a lifecycle you want to listen
for.
Extend the BaseExportImportLifecycleListener class if you want to listen for specific events
during a lifecycle. For example, you may want to write custom code if a layout export fails.

1438

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lifecycle/ExportImportLifecycleConstants.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lifecycle/BaseExportImportLifecycleListener.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lifecycle/BaseProcessExportImportLifecycleListener.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lifecycle/BaseProcessExportImportLifecycleListener.html

Extend the BaseProcessExportImportLifecycleListener class if you want to listen for processes
during a lifecycle. For example, you may want to write custom code if a site publication fails.
Keep in mind that a process usually consists of many individual events. Methods provided by
this base class are only run once when the desired process action occurs.

4. Directly above the class’s declaration, insert the following annotation:

@Component(immediate = true,

service = ExportImportLifecycleListener.class)

This annotation declares the implementation class of the component and specifies that the
portal should start the module immediately.

5. Specify the methods you want to implement in your class.

Once you’ve successfully created your export/import lifecycle listener module, generate the
module’s JAR file and copy it to Liferay DXP’s osgi/modules folder. Once your module is installed
and activated in your instance’s service registry, your lifecycle listener is ready for use in your
Portal instance.

If you’re still thirsting for more information on this framework, you’re in luck! Here’s
an example, using the LoggerExportImportLifecycleListener. This listener extends the
BaseExportImportLifecycleListener, so you immediately know that it deals with lifecycle events.

The first method getStagedModelLogFragment retrieves the staged model’s log fragment, which is
the lifecycle listener’s logging information on events. The next method isParallel() determines
whether your listener should run in parallel with the import/export process, or if the callingmethod
should stop, execute the listener, and return to where the event was fired after the listener has
finished. The followingmethod is the onExportImportLifecycleEvent(...) method, which consumes
the lifecycle event and passes it through the base class’s method (as long as Debug mode is not
enabled).

Each remainingmethod is called to print logging information for the user. For example, when a
layout export starts, succeeds, or fails, logging information directly related to that event is printed.
In summary, the LoggerExportImportLifecycleListener uses the lifecycle listener framework to print
messages to the log when an export/import event occurs. Anther good example of an event lifecycle
listener is the CacheExportImportLifecycleListener.

For an example of a lifecycle listener extending the BaseProcessExportImportLifecycleListener

class, inspect the ExportImportProcessCallbackLifecycleListener class. Instead of listening for
lifecycle events, this class only listens for process actions.

Terrific! You learned about the Export/Import Lifecycle Listener framework, and you’ve learned
how to create your own listener for events/processes that occur during export/import of your
portal’s content.

131.4 Initiating New Export/Import Processes

The Staging and Export/Import features are the building blocks for creating, managing, and
publishing a site. These features can be accessed in the Publishing Tools menu. You can also,
however, start these processes programmatically. This lets you provide new interfaces or mimic
the functionality of these features in your own application.

1439

https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/exportimport/lifecycle/LoggerExportImportLifecycleListener.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/exportimport/lifecycle/CacheExportImportLifecycleListener.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/exportimport/lifecycle/ExportImportProcessCallbackLifecycleListener.html

Providing the ability to stage your application’s assets makes using your application muchmore
site administrator-friendly. Your new assets no longer have to be saved somewhere off-site until
they’re ready to be published. You can publish them to a staging environment, test their usability,
and save them to a page. Once the time is right for publishing, you can publish your application’s
assets to the live site with one mouse click. The export/import feature offers similar conveniences:
if you want to export your application’s assets to use in another place or you need to clear its data
but save a copy you can implement the export feature. Implementing the import feature lets you
bring your assets/data back into your application.

To initiate a export/import or staging process, you must pass in an ExportImportConfigura-
tion object. This object encapsulates many parameters and settings that are required while the
export/import is running. Having one single object with all your necessary data makes executing
these frameworks quick and easy.

For example, when you want to implement the export feature, you must call services
offered by the ExportImportService interface. All the methods in this interface require an
ExportImportConfiguration object. Liferay DXP provides a way to generate these configuration
objects, so you can easily pass them in your service methods.

It’s also important to know that ExportImportConfiguration is an Liferay DXP entity, similar to
User or Group. This means that the ExportImportConfiguration framework offers local and remote
services, models, persistence classes, and more.

In this tutorial, you’ll learn about the ExportImportConfiguration framework and how you can
take advantage of provided services and factories to create these controller objects. Once they’re
created, you can easily implement whatever import/export functionality you need.

Your first step is to create an ExportImportConfiguration object and use it to initiate your custom
export/import or staging process.

1. Use the Export/Import Configuration factory classes to build your ExportImportConfiguration
object. Below is a common way to do it:

Map<String, Serializable> exportLayoutSettingsMap =

ExportImportConfigurationSettingsMapFactory.

buildExportLayoutSettingsMap(...);

ExportImportConfiguration exportImportConfiguration =

exportImportConfigurationLocalService.

addDraftExportImportConfiguration(

user.getUserId(),

ExportImportConfigurationConstants.TYPE_EXPORT_LAYOUT,

exportLayoutSettingsMap);

This example uses the ExportImportConfigurationSettingsMapFactory to create a
layout export settings map. Then this map is used as a parameter to create an
ExportImportConfiguration by calling an add method in the entity’s local service inter-
face. The ExportImportConfigurationLocalService provides several useful methods to create
and modify your custom ExportImportConfiguration.
The ExportImportConfigurationSettingsMapFactory provides many buildmethods to create set-
tings maps for various scenarios, like importing, exporting, and publishing layouts and
portlets. For examples of this particular scenario, you can reference UserGroupLocalSer-
viceImpl.exportLayouts(…) and GroupLocalServiceImpl.addDefaultGuestPublicLayoutsBy-
LAR(…).
There are two other important factories provided by this framework that are useful during
the creation of ExportImportConfiguration objects:

1440

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/model/ExportImportConfiguration.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/model/ExportImportConfiguration.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/service/ExportImportService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/configuration/ExportImportConfigurationSettingsMapFactory.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/service/ExportImportConfigurationLocalService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/service/impl/UserGroupLocalServiceImpl.html#exportLayouts-long-java.util.Map-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/service/impl/UserGroupLocalServiceImpl.html#exportLayouts-long-java.util.Map-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/service/impl/GroupLocalServiceImpl.html#addDefaultGuestPublicLayoutsByLAR-com.liferay.portal.kernel.model.Group-java.io.File-
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/service/impl/GroupLocalServiceImpl.html#addDefaultGuestPublicLayoutsByLAR-com.liferay.portal.kernel.model.Group-java.io.File-

• ExportImportConfigurationFactory: This factory builds ExportImportConfiguration ob-
jects used for default local/remote publishing.

• ExportImportConfigurationParameterMapFactory: This factory builds parametermaps,
which are required during export/import and publishing.

2. Call the appropriate service to initiate the export/import or staging process. There are two
important service interfaces that you can use in the cases of exporting, importing, and
staging: ExportImportLocalService and StagingLocalService. In the previous step’s example
code snippet, you created an ExportImportConfiguration object intended for exporting layouts.
Here’s how to initiate that process:

files[0] = exportImportLocalService.exportLayoutsAsFile(

exportImportConfiguration);

By calling this interface’s method, you’re exporting layouts from Liferay DXP into a
java.io.File array. Notice that your ExportImportConfiguration object is the only needed
parameter in the method. Your configuration object holds all the required parameters and
settings necessary to export your layouts from Liferay DXP. Although this example code
resides in Liferay DXP, you could easily use this framework from your own project.

Note: If you're not calling the export/import or staging service methods

from an OSGi module, you should not use the interface. The Liferay

OSGi container automatically handles interface referencing, which is why

using the interface is permitted for modules. If you're calling

export/import or staging service methods outside of a module, you should use

their service Util classes (e.g., `ExportImportLocalServiceUtil`).

It’s that easy! To start your own export/import or staging process, you must create an
ExportImportConfigurationobject using a combinationof the threeprovided ExportImportConfiguration

factories. Once you have your configuration object, provide it as a parameter in one of the many
service methods available to you by the Export/Import or Staging interfaces to begin your desired
process.

1441

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/configuration/ExportImportConfigurationFactory.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/configuration/ExportImportConfigurationParameterMapFactory.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/service/ExportImportLocalService.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/service/StagingLocalService.html

CHAPTER 132

LIFERAY FORMS

The Liferay Forms application is a full-featured form building tool for collecting data. There’s lots
of built-in functionality, and for the pieces you’re missing, there’s lots of extensibility.

This section of tutorials shows developers how to

1. Store form entry data in an alternative format. The default storage type is JSON.

2. Create new form field types.

This list will continue to grow as new tutorials on customizing and extending Liferay Forms are
written.

1443

CHAPTER 133

FORM FIELD TYPES

The Forms application contains many highly configurable field types out-of-the-box. Most use
cases are met with one of the existing field types.

If you’re reading this, however, your use case probably wasn’t met with the default field types.
For example, perhaps you need a color picker field. You could create a select field that lists color
names. Some users don’t, however, know that Gamboge is the color of spicy mustard (maybe a little
darker), and anyway, seeing colors is better than reading their names, so you can create a field that
shows colors.

Another example is a dedicated time field. Even with a text field and a tooltip that tells people
to enter the time in the format hour:minute, some users still enter something indecipherable. You can
fix this by adding a time field to Liferay DXP’s Forms application. If you have your own ideas for
create your own field types, keep reading to find out how.

These tutorials show you how to

• create a module that adds a Time form field type with a timepicker

• add custom configuration options to your field types

Example project: The source code for the example time project developed in these tutorials
can be downloaded for your convenience. Click here to begin downloading the source code zip file.

Before getting started, learn the structure of a form field type.

133.1 Anatomy of a Field Type Module

All form field type modules have a similar structure. Here’s the directory structure of the dynamic-

data-mapping-type-timemodule developed in these tutorials:

.babelrc

.npmbundlerrc

bnd.bnd

build.gradle

package-lock.json

package.json

1445

https://portal.liferay.dev/documents/113763090/114000653/dynamic-data-mapping-type-time.zip

Figure 133.1: The Forms application has useful out-of-the-box field types, but you can add your own if you need to.

1446

src

└── main

├── java

│ └── com

│ └── liferay

│ └── dynamic

│ └── data

│ └── mapping

│ └── type

│ └── time

│ ├── TimeDDMFormFieldRenderer.java

│ ├── TimeDDMFormFieldTemplateContextContributor.java

│ ├── TimeDDMFormFieldType.java

│ └── TimeDDMFormFieldTypeSettings.java

└── resources

├── content

│ └── Language.properties

└── META-INF

└── resources

├── config.js

├── time.es.js

├── time_field.js

└── time.soy

You don’t need *TemplateContextContributor.java or *TypeSettings.java in the initial module
(see Rendering Form Field Settings to learn more about these classes). The initial module consists
of these Java classes and resources:

*DDMFormFieldRenderer.java: Controls the template’s rendering. Sets the language, declares the
namespace, and loads the template resources on activation of the Component. Extending the
abstract class that implements the DDMFormFieldRenderermakes your work here easier.

*DDMFormFieldType.java: Defines the form field type in the back-end. If you extend the ab-
stract class that implements the interface, you automatically include the default form configura-
tion options for your form field type. In that case, override the interface’s getName method and
you’re done. To see the default configuration options your form field type inherits, look at the
DefaultDDMFormFieldTypeSettings class in the dynamic-data-mapping-apimodule.

config.js: Auto-generated if you use Blade CLI, config.js defines the dependencies of all
declared JavaScript components.

[name-of-field-type]_field.js: The JavaScript file modeling your field.
[name-of-field-type].es.js: The JavaScript file that configures the template rendering (the

[name-of-field-type].soy rendering).
[name-of-field-type].soy: The template that defines the appearance of the field.
Language_xx_XX.properties: Define any terms that must be translated into different languages.
In addition to the Java classes, Soy templates, and JavaScript files, a form field type contains the

following files:
.babelrc: The Babel configuration file.
.npmbundlerrc: The liferay-npm-bundler configuration file.
bnd.bnd: The module’s metadata.
build.gradle: The module’s dependencies and build properties.
package.json: The npmmodule manager.
package-lock.json: Automatically generated to track the npmmodules dependencies.
Get started creating the time field in the next tutorial.

133.2 Creating Form Field Types

1447

https://babeljs.io/

Liferay’s Forms application does not contain a dedicated time field out-of-the-box. For ease of use
and to ensure proper time data is collected, you’ll develop a time field and learn how Liferay DXP’s
field types work at the same time.

There are several steps involved in creating a form field type:

1. Creating the Form Field Type’s Java class.

2. Creating the Form Field Type Renderer Java class.

3. Defining the field’s behavior in JavaScript and Soy templates.

Blade Template: To jump-start your project, use Blade CLI or Liferay Dev Studio. There’s a
Blade template for creating form fields. Using the CLI, enter

blade create -t form-field -v 7.1 -p com.liferay.docs.formfieldtype -c Time DDMTypeTime

This gives you a DDMTypeTimemodule with a similar structure to what’s above. The Java classes
are in the package com.liferay.docs.formfield under src/main/java/ and the frontend resources
(JavaScript and Soy files) are in sr/main/resources/META-INF/resources.

A known limitation in the form-field template requires the use of camel case in the project
name (DDMTypeTime). Trying to use kebab case instead (ddm-type-time) generates a non-functioning
module. This is fixed with the release of Blade 3.3. Run blade version from the command line to
see the version of Blade you’re running.

Using Blade CLI or Liferay Dev Studio, you get a project skeleton with much of the boilerplate
filled in, so you can focus immediately on coding.

Start by setting up the project’s metadata.

Specifying OSGi Metadata

First specify the necessary OSGi metadata in a bnd.bnd file (see here for more information). Here’s
what it would look like for a module in a folder called dynamic-data-mapping-type-time:

Bundle-Name: Liferay Dynamic Data Mapping Type Time

Bundle-SymbolicName: com.liferay.dynamic.data.mapping.type.time

Bundle-Version: 1.0.0

Liferay-JS-Config: /META-INF/resources/config.js

Web-ContextPath: /dynamic-data-mapping-type-time

Point to the JavaScript configuration file (config.js) that defines JavaScript modules added by
your module (you’ll get to that later) and set theWeb Context Path to the modules root folder, so
your module’s resources are made available upon module activation.

Next craft the OSGi Component that marks your class as an implementation of DDMFormFieldType.

1448

http://bnd.bndtools.org/chapters/800-headers.html

Creating a DDMFormFieldType Component

If you’re creating a Time field type, define the Component at the top of your *DDMFormFieldType class
like this:

@Component(

immediate = true,

property = {

"ddm.form.field.type.description=time-field-type-description",

"ddm.form.field.type.display.order:Integer=10",

"ddm.form.field.type.icon=time",

"ddm.form.field.type.js.class.name=Liferay.DDM.Field.Time",

"ddm.form.field.type.js.module=liferay-ddm-form-field-time",

"ddm.form.field.type.label=time-field-type-label",

"ddm.form.field.type.name=time"

},

service = DDMFormFieldType.class

)

Define the field type’s properties (property=...) and declare that you’re implementing the
DDMFormFieldType service (service=...).

DDMFormFieldType Components can have several properties:

ddm.form.field.type.description An optional property describing the field type. Its localized value
appears in the form builder’s sidebar, just below the field’s label.

ddm.form.field.type.display.order An Integer defining the field type’s position in the sidebar.
ddm.form.field.type.icon The icon for the field type. Choosing one of the Lexicon icons makes

your form field blend in with the existing form field types.
ddm.form.field.type.js.class.name The field type’s JavaScript class name—the JavaScript file de-

fines the field type’s behavior.
ddm.form.field.type.js.module The name of the JavaScript module provided to the Form engine so

the module can be loaded when needed.
ddm.form.field.type.label The field type’s label. Its localized value appears in the form builder’s

sidebar.
ddm.form.field.type.name The field type’s name must be unique. Each Component in a field type

module references the field type name, and it’s used by OSGi service trackers to filter the
field’s capabilities (for example, rendering and validation).

Next code the *DDMFormFieldType class.

Implementing DDMFormFieldType

Implementing the field type in Java is made easier because of BaseDDMFormFieldType, an abstract
class you can leverage in your code.

After extending BaseDDMFormFieldType, override the getNamemethod by specifying the name of
your new field type:

public class TimeDDMFormFieldType extends BaseDDMFormFieldType {

@Override

public String getName() {

return "time";

}

}

That’s all there is to defining the field type. Next determine how your field type is rendered.

1449

https://lexicondesign.io/docs/patterns/icons.html

133.3 Rendering Field Types

Before you get to the front-end coding necessary to render your field type, there’s another Compo-
nent to define and a Java class to code.

Implementing a DDMFormFieldRenderer

The Component only has one property, ddm.form.field.type.name, and then you declare that you’re
adding a DDMFormFieldRenderer implementation to the OSGi framework:

@Component(

immediate = true,

property = "ddm.form.field.type.name=time",

service = DDMFormFieldRenderer.class

)

Extend BaseDDMFormFieldRenderer, an abstract class implementing the API’s only required
method, render. The Form engine calls the render method for every form field type present in a
form, and returns the plain HTML of the rendered field type. The abstract implementation also
includes some utility methods. Here’s what the time field’s DDMFormFieldRenderer looks like:

public class TimeDDMFormFieldRenderer extends BaseDDMFormFieldRenderer {

@Override

public String getTemplateLanguage() {

return TemplateConstants.LANG_TYPE_SOY;

}

@Override

public String getTemplateNamespace() {

return "DDMTime.render";

}

@Override

public TemplateResource getTemplateResource() {

return _templateResource;

}

@Activate

protected void activate(Map<String, Object> properties) {

_templateResource = getTemplateResource("/META-INF/resources/time.soy");

}

private TemplateResource _templateResource;

}

Set the templating language (Soy closure templates), the template namespace (DDMTime)
and name (render), and point to the location of the templates within your module (/META-
INF/resources/time.soy).

Writing the Soy Template

Now it’s time to write the template you referenced in the renderer class: time.soy in the case of the
time field type.

1450

Note: Closure templates are a templating system for building UI elements. Liferay DXP develop-
ers chose to build the Forms UI with closure templates because they enable a smooth, responsive
repainting of the UI as a user enters data. With closure templates there’s no need to reload the
entire page from the server when the UI is updated by the user: only the relevant portion of the
page is updated from the server. This makes for a smooth user experience.

Create

src/main/resources/META-INF/resources/time.soy

and populate it with this:

{namespace DDMTime}

/**

* Defines the delegated template for the time field.

⁎/

{deltemplate ddm.field variant="'time'"}

{call .render data="all" /}

{/deltemplate}

/**

* Prints the time field.

⁎/

{template .render}

{@param name: string}

{@param pathThemeImages: string}

{@param value: ?}

{@param visible: bool}

{@param? dir: string}

{@param? label: string}

{@param? predefinedValue: string}

{@param? readOnly: bool}

{@param? required: bool}

{@param? showLabel: bool}

{@param? tip: string}

{let $displayValue: $value ? $value : $predefinedValue ? $predefinedValue : '' /}

<div class="form-group {$visible ? '' : 'hide'} liferay-ddm-form-field-time"

data-fieldname="{$name}">

{if $showLabel or $required}

<label for="{$name}">

{if $showLabel}

{$label}{sp}

{/if}

{if $required}

<svg aria-hidden="true" class="lexicon-icon lexicon-icon-asterisk reference-mark">

<use xlink:href="{$pathThemeImages}/lexicon/icons.svg#asterisk" />

</svg>

{/if}

</label>

{/if}

{if $showLabel}

{if $tip}

{$tip}

{/if}

{/if}

<div class="input-group">

<div class="input-group-item">

<input class="field form-control"

1451

https://developers.google.com/closure/templates/

{if $dir}dir="{$dir}"{/if}

{if $readOnly}disabled{/if}

id="{$name}"

name="{$name}"

type="text"

value="{$displayValue}">

</div>

</div>

</div>

{/template}

There are four important things to do in the template:

1. Define the template namespace. The template namespace can define multiple templates for
your field type by adding the namespace as a prefix.

{namespace DDMTime}

2. Set the template that’s called to render the time field. The variant="'time'" identifies the time
field, and the .render names the template that renders it. The template itself follows and is
defined through the block {template .render}...{/template}.

/**

* Defines the delegated template for the time field.

⁎/

{deltemplate ddm.field variant="'time'"}

{call .render data="all" /}

{/deltemplate}

3. Describe the template parameters. The template above uses some of the parameters as flags
to display or hide some parts of the HTML (for example, the $required parameter). All listed
parameters are available by default.

{@param name: string}

{@param pathThemeImages: string}

{@param value: ?}

{@param visible: bool}

{@param? dir: string}

{@param? label: string}

{@param? predefinedValue: string}

{@param? readOnly: bool}

{@param? required: bool}

{@param? showLabel: bool}

{@param? tip: string}

4. Write the template logic (everything encapsulated by the {template .render}...{/template}

block). In the above example the template does these things:

• Checks whether to show the label of the field and if so, adds it.

• Checks if the field is required and adds asterisk if it is.

• Checks if a tip is provided and displays it.

• Provides the markup for the time field in the <input> tag. In this case a text input field
is defined.

Once the template is defined, write the JavaScript file modeling your field.

1452

Writing the JavaScript Files

Create a time_field.js file and give it these contents:

AUI.add(

'liferay-ddm-form-field-time',

function(A) {

var TimeField = A.Component.create(

{

ATTRS: {

type: {

value: 'time'

}

},

EXTENDS: Liferay.DDM.Renderer.Field,

NAME: 'liferay-ddm-form-field-time',

prototype: {

}

}

);

Liferay.namespace('DDM.Field').Time = TimeField;

},

'',

{

requires: ['liferay-ddm-form-renderer-field']

}

);

The JavaScript above creates a component called TimeField. The component extends
Liferay.DDM.Renderer.Field, which gives you automatic injection of the default field parameters.

Next write the *.es.js file to configure the Soy template’s rendering. Create a file called
time.es.js and populate it:

import Component from 'metal-component';

import Soy from 'metal-soy';

import templates from './time.soy';

/**

* Time Component

⁎/

class Time extends Component {}

// Register component

Soy.register(Time, templates, 'render');

if (!window.DDMTime) {

window.DDMTime = {

};

}

window.DDMTime.render = Time;

export default Time;

This dictates that the Soy template is called to render the Time component. Then create the
config.js file:

;(function() {

AUI().applyConfig(

{

groups: {

'field-time': {

base: MODULE_PATH + '/',

combine: Liferay.AUI.getCombine(),

filter: Liferay.AUI.getFilterConfig(),

1453

modules: {

'liferay-ddm-form-field-time': {

condition: {

trigger: 'liferay-ddm-form-renderer'

},

path: 'time_field.js',

requires: [

'liferay-ddm-form-renderer-field'

]

}

},

root: MODULE_PATH + '/'

}

}

}

);

})();

This file is entirely boilerplate. In fact, if you use Blade CLI to generate a field type module, you
won’t need to touch this file. Functionally, it’s a JavaScript file that defines the dependencies of the
declared JavaScript components (requires...), and where the files are located (path...). The Alloy
loader uses config.js when it satisfies dependencies for each JavaScript component. For more
information about the Alloy loader see its tutorial.

If you build and deploy your new field type module, you get exactly what you described in the
time.soy file: a single text input field. Of course, that’s not what you want! You need a time picker.

Adding Behavior to the Field

To do more than provide a text input field, define additional behavior in the time_field.js file.
To add an AlloyUI timepicker, first specify that your component requires the aui-timepicker in

the requires... block of the time_field.js and config.js:

{

requires: ['aui-timepicker','liferay-ddm-form-renderer-field']

}

Change the default rendering of the field by overwriting the base render logic, instantiating the
time picker, and adding the chosen time to the field. This occurs in the prototype block:

prototype: {

render: function() {

var instance = this;

TimeField.superclass.render.apply(instance, arguments);

instance.timePicker = new A.TimePicker(

{

trigger: instance.getInputSelector(),

popover: {

zIndex: 1

},

after: {

selectionChange: A.bind('afterSelectionChange', instance)

}

}

);

},

afterSelectionChange: function(event) {

var instance = this;

1454

Figure 133.2: Add your own form field types to the Forms application.

1455

var time = event.newSelection;

instance.set('value', time);

}

}

Invoke the original render method—it prints markup required by the Alloy time picker. Then
instantiate the time picker, passing the field type input as a trigger. In addition, add a callback
method (afterSelectionChange) to be executed after the time is chosen in the time picker. This
method updates the field’s value. See the Alloy documentation for more information.

Now when the field is rendered, there’s a real time picker.

Figure 133.3: The Alloy UI Timepicker in action.

Now you know how to create a new field type and define its behavior. Currently, the field type
only contains the default settings it inherits from its superclasses. If that’s not sufficient, create
additional settings for your field type. See the next tutorial to learn how.

133.4 Adding Settings to Form Field Types

Once you develop a Form Field Type, you might need to add settings to it. For example, a Time
field might accept different time formats. Here you’ll learn how to add settings to form field types
by adding a mask and a placeholder to the Time field type created in the previous tutorial.

Note: To learn more about using masks with the AUI Timepicker, go here. The mask just sets
the format used to display the time choices. Use the strftime format to pick the mask you want.

To add settings to form field types, take these steps:

• Write an interface that extends thedefault field type configuration, DefaultDDMFormFieldTypeSettings.

1456

http://alloyui.com/tutorials/timepicker/
http://alloyui.com/tutorials/timepicker/
http://pubs.opengroup.org/onlinepubs/007908799/xsh/strftime.html

• Update the *FormFieldType to refer the new interface created on the previous step.

• Update the *FormFieldRenderer so it makes the new configuration options available to the
JavaScript component and/or the Soy template for rendering.

• Update the JavaScript component (defined in time_field.js in our example) to configure the
new settings and their default values.

• Update the Soy template to include settings that must be rendered in a form (the placeholder,
in our example).

First craft the interface that controls your field’s settings.

Extending the Default Type Settings

To add type settings, you need a *TypeSettings class that extends DefaultDDMFormFieldTypeSettings.
Since this example works with a Time field type, call it TimeDDMFormFieldTypeSettings.

This class sets up the Field Type configuration form.
Here’s what it looks like:

package com.liferay.dynamic.data.mapping.type.time;

import com.liferay.dynamic.data.mapping.annotations.DDMForm;

import com.liferay.dynamic.data.mapping.annotations.DDMFormField;

import com.liferay.dynamic.data.mapping.annotations.DDMFormLayout;

import com.liferay.dynamic.data.mapping.annotations.DDMFormLayoutColumn;

import com.liferay.dynamic.data.mapping.annotations.DDMFormLayoutPage;

import com.liferay.dynamic.data.mapping.annotations.DDMFormLayoutRow;

import com.liferay.dynamic.data.mapping.form.field.type.DefaultDDMFormFieldTypeSettings;

@DDMForm

@DDMFormLayout(

paginationMode = com.liferay.dynamic.data.mapping.model.DDMFormLayout.TABBED_MODE,

value = {

@DDMFormLayoutPage(

title = "%basic",

value = {

@DDMFormLayoutRow(

{

@DDMFormLayoutColumn(

size = 12,

value = {

"label", "required", "tip", "mask",

"placeholder"

}

)

}

)

}

),

@DDMFormLayoutPage(

title = "%properties",

value = {

@DDMFormLayoutRow(

{

@DDMFormLayoutColumn(

size = 12,

value = {

"dataType", "name", "showLabel", "repeatable",

"type", "validation", "visibilityExpression"

}

)

1457

Figure 133.4: Like your custom field types, the text field type’s settings are configured in a Java interface.

1458

}

)

}

)

}

)

public interface TimeDDMFormFieldTypeSettings

extends DefaultDDMFormFieldTypeSettings {

@DDMFormField(label = "%mask", predefinedValue="%I:%M %p")

public String mask();

@DDMFormField(label = "%placeholder-text")

public String placeholder();

}

Most of the work you need to do is in the class’s annotations.
This class sets up a dynamic form with all the settings the form field type needs. The form

layout presented here gives your form the look and feel of a native form field type. See the note
below for more information on the DDM annotations used in this form.

One thing to note is that all the default settings must be present in your settings form. Note the
list of settings present for each tab (each @DDMFormLayoutPage) above. If you must make one of the
default settings unusable in the settings form for your field type, configure a hide rule for the field.
Form field rules are configured using the @DDMFormRule annotation.

The interface extends DefaultDDMFormFieldTypeSettings. That’s why the default settings can be
used in the class annotation without setting them up in the class, as was necessary for the mask
and placeholder.

DDMAnnotations: The @DDMForm annotation on this class allows the form engine to convert the
interface definition into a dynamic form. This makes it really intuitive to lay out your settings form.

For now, here are brief explanations for the annotations used in the above example:

@DDMForm Instantiates a new DDMForm. Creates a dynamic form from the annotation.
@DDMFormLayout Takes two variables: paginationMode and value. The pagination mode is a String

that controls how the layout pages are displayed. The paginationMode can be TABBED_MODE,
SINGLE_PAGE_MODE, SETTINGS_MODE, or WIZARD_MODE. Under value, specify any @DDMFormLayoutPages
that you want to use.

@DDMFormLayoutPage The sections of the type settings form. It takes two variables: title and value,
where title is a String value that names the section of the form and value is one or more
@DDMFormLayoutRows.

The layout page titles %basic and %properties are common to all of Liferay DXP’s field types,
but you can use whatever titles you want. To change the title of a layout page, specify the title in
the annotation properties (title = "%advanced", for example), and then create a new key in the
language resources files. For example, use advanced=Advanced in the Language.properties.

@DDMFormLayoutRow Lay out the number of columns you want in the row. Most settings forms have
just one row and one column.

@DDMFormLayoutColumn Lay out the columns your settings form needs. Most settings forms have one
row and one column. Each column accepts two argument, size and value.

@DDMFormField Addnewfields to the settings form. In this example, the mask and placeholder settings
are configured with this annotation. Don’t forget to add the settings language keys (mask and
placeholder-text) to the language resources files.

1459

Once your *TypeSettings class is finished, update the *Type class for your form field type.

Updating the Type Class

The class TimeDDMFormFieldType currently has one method, getName, returning the name of the cur-
rent formfield. Add a newmethod to reference TimeDDMFormFieldTypeSettings that holds the specific
settings of the Time field. This method already exists in the base class (BaseDDMFormFieldType), so
override it:

@Override

public Class<? extends DDMFormFieldTypeSettings>

getDDMFormFieldTypeSettings() {

return TimeDDMFormFieldTypeSettings.class;

}

Next, render new Time field settings.

133.5 Rendering Form Field Settings

Once the settings are added to the class backing the field’s settings, make sure the *Renderer can
get the settings and update the front-end code.

Passing Settings to the Renderer Class

Send the new configuration settings to the Soy template so they can be displayed to the end user.
Create a new Java class implementing the interface DDMFormFieldTemplateContextContributor and
modify the existing class *DDMFormFieldRenderer.

The DDMFormFieldTemplateContextContributor interface has a singlemethodnamed getParameters.
It gets the new configuration settings, specific for a form field type, and sends for the re-
sources that need them, like the Soy template. To get these settings, create a new class,
TimeDDMFormFieldTemplateContextContributor. First create its OSGI component annotation and the
class declaration:

@Component(

immediate = true,

property = "ddm.form.field.type.name=time",

service = {

DDMFormFieldTemplateContextContributor.class,

TimeDDMFormFieldTemplateContextContributor.class

}

)

public class TimeDDMFormFieldTemplateContextContributor

implements DDMFormFieldTemplateContextContributor {

Then override getParameters to get the new configurations settings, placeholder and mask:

@Override

public Map<String, Object> getParameters(

DDMFormField ddmFormField,

DDMFormFieldRenderingContext ddmFormFieldRenderingContext) {

Map<String, Object> parameters = new HashMap<>();

1460

parameters.put(

"placeholder", (String)ddmFormField.getProperty("placeholder"));

parameters.put("mask", (String)ddmFormField.getProperty("mask"));

return parameters;

}

}

Nowpass the configuration settings to the templatewith a newmethod, populateOptionalContext,
in TimeDDMFormFieldRenderer:

@Override

protected void populateOptionalContext(

Template template, DDMFormField ddmFormField,

DDMFormFieldRenderingContext ddmFormFieldRenderingContext) {

Map<String, Object> parameters =

timeDDMFormFieldTemplateContextContributor.getParameters(

ddmFormField, ddmFormFieldRenderingContext);

template.putAll(parameters);

}

@Reference

protected TimeDDMFormFieldTemplateContextContributor

timeDDMFormFieldTemplateContextContributor;

The populateOptionalContext method takes three parameters: The template object, the
DDMFormField, and the DDMFormFieldRenderingContext. The DDMFormField represents the definition of
the field type instance: you can use this object to access the configurations set for the field type
(the mask and placeholder settings in our case). The DDMFormFieldRenderingContext object contains
extra information about the form like the user’s locale, the HTTP request and response objects, the
portlet namespace, and more (all of its included properties can be found here).

TheOSGI reference (@Reference) provides access to the TimeDDMFormFieldTemplateContextContributor
service.

Now the JavaScript component and the Soy template can access the new settings. Next, update
the JavaScript Component so it handles these properties and can use them, whether passing them
to the template context (similar to the *Renderer, only this time for client-side rendering), or using
them to configure the behavior of the JavaScript component itself.

Note: Remember that the Soy template is used for server side and client side rendering. By
defining the settings you’re adding in both the Java Renderer and the JavaScript Renderer, you’re
allowing for the best possible user experience. For example, if a form builder is in the form builder
configuring a form field type, the configuration entered can be directly passed to the template and
become visible in the UI almost instantly. However, when the user clicks into a form field initially
to begin editing, the rendering occurs from the server side.

Next configure the JavaScript component to include the new settings.

Adding Settings to the JavaScript Component

The JavaScript component must know about the new settings. First configure them as attributes of
the component:

1461

https://docs.liferay.com/ce/apps/forms-and-workflow/latest/javadocs/com/liferay/dynamic/data/mapping/render/DDMFormFieldRenderingContext.html

ATTRS: {

mask: {

value: '%I:%M %p'

},

placeholder: {

value: ''

},

type: {

value: 'time'

}

},

The mask setting has a default value of %I:%M %p, and the placeholder is blank. Now that
the new settings are declared as attributes of the component, make the JavaScript component
pass the placeholder configuration to the Soy template on the client side. Just like in the Java
renderer, pass the placeholder configuration to the template context. In this case, override the
getTemplateContext() method to pass in the placeholder configuration. Add this to the prototype

section of the JavaScript component definition:

getTemplateContext: function() {

var instance = this;

return A.merge(

TimeField.superclass.getTemplateContext.apply(instance, arguments),

{

placeholder: instance.get('placeholder')

}

);

},

Then in the component’s render method, add the mask as an attribute of the AUI Timepicker
using mask: instance.get('mask').

render: function() {

var instance = this;

TimeField.superclass.render.apply(instance, arguments);

instance.timePicker = new A.TimePicker(

{

trigger: instance.getInputSelector(),

mask: instance.get('mask'),

popover: {

zIndex: 1

},

after: {

selectionChange: A.bind('afterSelectionChange', instance)

}

}

);

},

Now the field type JavaScript component is configured to include the settings. All you have left
to do is to update the Soy template so the placeholder can be rendered in the form with the time
field.

Updating the Soy Template

Add the placeholder setting to your Soy template’s logic.
The whole template is included below, but the only additions are in the list of parameters (adds

the placeholder to the list of parameters—the ? indicates that the placeholder is not required), and

1462

http://alloyui.com/api/classes/A.TimePicker.html#attr_mask

then in the <input> tag, where you use the parameter value to configure the placeholder HTML
property with the proper value.

{namespace DDMTime}

/**

* Defines the delegated template for the time field.

⁎/

{deltemplate ddm.field variant="'time'"}

{call .render data="all" /}

{/deltemplate}

/**

* Prints the time field.

⁎/

{template .render}

{@param name: string}

{@param pathThemeImages: string}

{@param value: ?}

{@param visible: bool}

{@param? placeholder: string}

{@param? dir: string}

{@param? label: string}

{@param? predefinedValue: string}

{@param? readOnly: bool}

{@param? required: bool}

{@param? showLabel: bool}

{@param? tip: string}

{let $displayValue: $value ? $value : $predefinedValue ? $predefinedValue : '' /}

<div class="form-group {$visible ? '' : 'hide'} liferay-ddm-form-field-time"

data-fieldname="{$name}">

{if $showLabel or $required}

<label for="{$name}">

{if $showLabel}

{$label}{sp}

{/if}

{if $required}

<svg aria-hidden="true" class="lexicon-icon lexicon-icon-asterisk reference-mark">

<use xlink:href="{$pathThemeImages}/lexicon/icons.svg#asterisk" />

</svg>

{/if}

</label>

{/if}

{if $showLabel}

{if $tip}

{$tip}

{/if}

{/if}

<div class="input-group">

<div class="input-group-item">

<input class="field form-control"

{if $dir}dir="{$dir}"{/if}

{if $readOnly}disabled{/if}

id="{$name}"

name="{$name}"

placeholder="{$placeholder}"

type="text"

value="{$displayValue}">

</div>

</div>

</div>

{/template}

1463

The mask is not needed in the Soy template because it’s only used in the JavaScript for configur-
ing the behavior of the timepicker. You don’t need the dynamic rendering of the Soy template to
take the mask setting and configure it in the form. The mask set by the form builder is captured in
the rendering of the timepicker itself.

Now when you build the project and deploy your time field, you have a fully developed time
form field type, complete with the proper JavaScript behavior and with additional settings.

133.6 Forms Storage Adapters

When a User adds a form record, the Forms API routes the processing of the request through the
storage adapter API. The same is true for the other CRUD operations performed on form entries
(read, update, and delete operations). The default implementation of the storage service is called
JSONStorageAdapter, and as its name implies, it implements the StorageAdapter interface to provide
JSON storage of form entry data.

The DDM backend can adapt to other data storage formats for form records. Want to store your
data in XML? YAML? No problem. Because the storage API is separated from the regular service
calls used to populate the database table for form entries, a developer can even choose to store
form data outside the Liferay database.

Define your own format to save form entries by writing an OSGi component that implements the
StorageAdapter interface. The interface follows the CRUD approach, so implementing it requires
that you write methods to create, read, update and delete form values.

Note: When you add a new storage adapter, it can only be used with new Forms. All existing
Forms continue to use the adapter selected (JSON by default) at the time of their creation, and a
different storage adapter cannot be selected.

The example storage adapter in this tutorial serializes form data to be stored in a simple file,
stored on the file system.

Note that these code snippets include the references to the services they’re calling directly
beneath the first method that uses the service. It’s a Liferay code convention to place these at the
very end of the class.

Implementing a Storage Adapter

First declare the class a Component that provides a StorageAdapter implementation. To implement a
storage adapter, extend the abstract BaseStorageAdapter class.

@Component(service = StorageAdapter.class)

public class FileSystemStorageAdapter extends BaseStorageAdapter {

Step 1: Name the Storage Type

The only method without a base implementation in the abstract class is getStorageType. For the file
system storage example, just make it return "File System".

@Override

public String getStorageType() {

return "File System";

}

1464

Figure 133.5: Choose a Storage Type for your form records.

Return a human readable String, as getStorageType determines what appears in the UI when the
form creator is selecting a storage type for their form. The String value you return here is added to
the StorageAdapterRegistry’s Map of storage adapters.

Step 2: Override the CRUD Methods

Next override the doCreateMethod to return a long that identifies each form record with a unique file
ID:

@Override

protected long doCreate(

long companyId, long ddmStructureId, DDMFormValues ddmFormValues,

ServiceContext serviceContext)

throws Exception {

validate(ddmFormValues, serviceContext);

long fileId = _counterLocalService.increment();

1465

DDMStructureVersion ddmStructureVersion =

_ddmStructureVersionLocalService.getLatestStructureVersion(

ddmStructureId);

long classNameId = PortalUtil.getClassNameId(

FileSystemStorageAdapter.class.getName());

_ddmStorageLinkLocalService.addStorageLink(

classNameId, fileId, ddmStructureVersion.getStructureVersionId(),

serviceContext);

saveFile(

ddmStructureVersion.getStructureVersionId(), fileId, ddmFormValues);

return fileId;

}

@Reference

private CounterLocalService _counterLocalService;

@Reference

private DDMStorageLinkLocalService _ddmStorageLinkLocalService;

@Reference

private DDMStructureVersionLocalService _ddmStructureVersionLocalService;

The first line in this method (and the subsequent doUpdate method) calls a validate method
that’s not yet written, so don’t save the class until you’ve written that method.

In addition to returning the file ID, add a storage link via the DDMStorageLinkLocalService. The
DDM Storage Link associates each form record with the DDM Structure backing the form.

The addStorageLinkmethod takes class name ID as retrieved by PortalUtil.getClassNameId, the
fileId (used as the primary key for the file storage type), the structure version ID, and the service
context. There’s also a call to a saveFilemethod, which serializes the forms record’s values and
uses two additional utility methods (getStructureFolder and getFile) to write a java.io.File object.
There are some other utility methods invoked as well:

private File getFile(long structureId, long fileId) {

return new File(

getStructureFolder(structureId), String.valueOf(fileId));

}

private File getStructureFolder(long structureId) {

return new File(String.valueOf(structureId));

}

private void saveFile(

long structureVersionId, long fileId, DDMFormValues formValues)

throws IOException {

String serializedDDMFormValues = _ddmFormValuesJSONSerializer.serialize(

formValues);

File formEntryFile = getFile(structureVersionId, fileId);

FileUtil.write(formEntryFile, serializedDDMFormValues);

}

@Reference

private DDMFormValuesJSONSerializer _ddmFormValuesJSONSerializer;

Note the call to the writemethod.FileUtil is a Liferay utility class for manipulating java.io.File

objects. By default, the writemethod writes the data into the user home folder of your system.
Override the doDeleteByClassmethod to delete the File using the classPK:

1466

@Override

protected void doDeleteByClass(long classPK) throws Exception {

DDMStorageLink storageLink =

_ddmStorageLinkLocalService.getClassStorageLink(classPK);

FileUtil.delete(getFile(storageLink.getStructureId(), classPK));

_ddmStorageLinkLocalService.deleteClassStorageLink(classPK);

}

Once the file is deleted, its storage links should also be deleted. Use doDeleteByDDMStructure for
this logic:

@Override

protected void doDeleteByDDMStructure(long ddmStructureId)

throws Exception {

FileUtil.deltree(getStructureFolder(ddmStructureId));

_ddmStorageLinkLocalService.deleteStructureStorageLinks(ddmStructureId);

}

To retrieve the form record’s values from the File object where they were written, override
doGetDDMFormValues:

@Override

protected DDMFormValues doGetDDMFormValues(long classPK) throws Exception {

DDMStorageLink storageLink =

_ddmStorageLinkLocalService.getClassStorageLink(classPK);

DDMStructureVersion structureVersion =

_ddmStructureVersionLocalService.getStructureVersion(

storageLink.getStructureVersionId());

String serializedDDMFormValues = FileUtil.read(

getFile(structureVersion.getStructureVersionId(), classPK));

return _ddmFormValuesJSONDeserializer.deserialize(

structureVersion.getDDMForm(), serializedDDMFormValues);

}

@Reference

private DDMFormValuesJSONDeserializer _ddmFormValuesJSONDeserializer;

Override the doUpdatemethod so the record’s values can be overwritten. This example calls the
saveFile utility method provided earlier:

@Override

protected void doUpdate(

long classPK, DDMFormValues ddmFormValues,

ServiceContext serviceContext)

throws Exception {

validate(ddmFormValues, serviceContext);

DDMStorageLink storageLink =

_ddmStorageLinkLocalService.getClassStorageLink(classPK);

saveFile(

storageLink.getStructureVersionId(), storageLink.getClassPK(),

ddmFormValues);

}

Once the CRUD logic is defined, deploy and test the storage adapter.

1467

Step 3: Validating Form Entries

The doCreate and doUpdatemethods above both include this line:

validate(ddmFormValues, serviceContext);

Because the Storage Adapter handles User entered data, it’s important to validate that the entries
include only appropriate data. Add a validatemethod to the StorageAdapter:

protected void validate(

DDMFormValues ddmFormValues, ServiceContext serviceContext)

throws Exception {

boolean validateDDMFormValues = GetterUtil.getBoolean(

serviceContext.getAttribute("validateDDMFormValues"), true);

if (!validateDDMFormValues) {

return;

}

_ddmFormValuesValidator.validate(ddmFormValues);

}

Make sure to do three things:

1. Retrieve the value of the validateDDMFormValues attribute.

2. If validateDDMFormValues is false, exit the validation without doing anything.
When a User accesses a form at its dedicated link, there’s a periodic auto-save process of
in-progress form values. There’s no need to validate this data until the User hits the Submit
button on the form, so the auto-save process sets the validateDDMFormValues attribute to false.

3. Otherwise, call the validate method from the DDMFormValuesValidator service.

Once the necessary logic is in place, deploy and test the Storage Adapter.

Enabling the Storage Adapter

The storage adapter is enabled at the individual form level. Create a new form, and select the
Storage Adapter before saving or publishing the form. If you wait until first Saving the Form, the
default Storage Adapter is already assigned to the Form, and this setting is no longer editable.

1. Go to the Site Menu → Content → Forms, and click the Add button ().

2. In the Form Builder view, click the Options button () and open the Settings window.

3. From the select list field called Select a Storage Type, choose the desired type and click Done.

Now all the form’s entries are stored in the desired format.

1468

CHAPTER 134

WORKFLOW

Use the workflow framework to run assets through a business process that suit your organization’s
needs. Workflow processes are created using XML or via the handy Kaleo Designer tool that comes
with DE subscriptions.

Figure 134.1: If you don’t like XML, the visual Kaleo Designer makes designing workflows easy and intuitive.

This set of tutorials delves into the following workflow framework topics:

• CreatingWorkflow Definitions (using XML)
• Enabling Assets forWorkflow
• CreatingWorkflow Engine Adapters

To manage workflow definitions and define their assignment schemes, check out the workflow
section of the administrator documentation(not yet written).

1469

https://help.liferay.com/hc/en-us/articles/360017894912-Kaleo-Designer

CHAPTER 135

CRAFTING XMLWORKFLOW DEFINITIONS

You don’t need a fancy visual designer to build workflows. To be clear, Kaleo Designer may make
you a faster workflow designer through its graphical interface. If you plan to build lots of workflow
processes, a Digital Enterprise subscription gets you access to Kaleo Designer. But with a little
copy and paste from existing workflows and a little handcrafted XML, you can build any workflow
and attain workflow wizard-hood in the process. Follow this set of tutorials to learn what elements
you can put into your definitions.

135.1 Existing Workflow Definitions

Only one workflow definition is installed by default: Single Approver. Several more, however, are
embedded in the source code of your Liferay DXP installation. If you’re comfortable extracting the
XML files from a JAR file embedded in an LPKG file, you’re welcome to follow the steps below to
obtain the workflow definitions. To obtain the files more conveniently, download a ZIP file here.

To extract the definitions for yourself, navigate to

[Liferay Home]/osgi/marketplace

and open (using an archive manager) Liferay CE Forms and Workflow.lpkg. Open the JAR file
named

com.liferay.portal.workflow.kaleo.runtime.impl-[version].jar

In the JAR file, navigate to

META-INF/definitions/

and extract the four XML workflow definition files. These definitions provide good reference
material for many of the workflow features and elements described in these articles. In fact, most
of the XML snippets you see here are lifted directly from these definitions.

1471

https://portal.liferay.dev/documents/113763090/114000653/Workflow+Definitions+Zip.zip

135.2 Schema

The XML structure of a workflow definition is defined in an XSD file:

liferay-worklow-definition-7_0_0.xsd

Declare the schema at the top of the workflow definition file:

<?xml version="1.0"?>

<workflow-definition

xmlns="urn:liferay.com:liferay-workflow_7.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:liferay.com:liferay-workflow_7.0.0

http://www.liferay.com/dtd/liferay-workflow-definition_7_0_0.xsd">

To read 464 lines of beautifully formatted XML that defines how to write more XML (it’s practi-
cally poetic), check out the XSD here. Otherwise, move on to entering the definition’s metadata.

135.3 Metadata

Give the definition a name, description, and version:

<name>Category Specific Approval</name>

<description>A single approver can approve a workflow content.</description>

<version>1</version>

All these tags are optional. If present the first time a definition is saved, the <name> tag serves as
a unique identifier for the definition. If not specified (or added sometime after the first save), a
random unique name is generated and used to identify the workflow.

Once the schema and metadata are in place, it’s time to turn up the funky beats and get into the
flow (the workflow). Learn about workflow nodes in the next article.

135.4 Workflow Definition Nodes

After your definition’s schema andmetadata are in place, begin defining the process. Node elements,
with their sub-elements, are fundamental building blocks making up workflow definitions.

State Nodes don’t require user input. The workflow does whatever is specified in the state
node’s actions tag (a notification and/or a custom script), and thenmoves to the provided transition.
Workflows start and end with a state. The initial state node often only contains a transition:

<state>

<name>created</name>

<initial>true</initial>

<transitions>

<transition>

<name>Determine Branch</name>

<target>determine-branch</target>

<default>true</default>

</transition>

</transitions>

</state>

1472

https://www.liferay.com/dtd/liferay-workflow-definition_7_0_0.xsd

If a notification or script is required in your state node, use an actions tag. Here’s an action

element containing a Groovy script. This is found in many terminal state nodes and marks the
asset as approved in the workflow.

<actions>

<action>

<name>Approve</name>

<description>Approve</description>

<script>

<![CDATA[

com.liferay.portal.kernel.workflow.WorkflowStatusManagerUtil.

updateStatus(com.liferay.portal.kernel.workflow.WorkflowConstants.

getLabelStatus("approved"), workflowContext);]]>

</script>

<script-language>groovy</script-language>

<execution-type>onEntry</execution-type>

</action>

</actions>

Conditions let you inspect the asset (or its execution context) and do something, like send it to
a particular transition.

Here’s the determine-branch condition from the Category Specific Approval workflow definition:

<condition>

<name>determine-branch</name>

<script>

<![CDATA[

import com.liferay.asset.kernel.model.AssetCategory;

import com.liferay.asset.kernel.model.AssetEntry;

import com.liferay.asset.kernel.model.AssetRenderer;

import com.liferay.asset.kernel.model.AssetRendererFactory;

import com.liferay.asset.kernel.service.AssetEntryLocalServiceUtil;

import com.liferay.portal.kernel.util.GetterUtil;

import com.liferay.portal.kernel.workflow.WorkflowConstants;

import com.liferay.portal.kernel.workflow.WorkflowHandler;

import com.liferay.portal.kernel.workflow.WorkflowHandlerRegistryUtil;

import java.util.List;

String className = (String)workflowContext.get(WorkflowConstants.CONTEXT_ENTRY_CLASS_NAME);

WorkflowHandler workflowHandler = WorkflowHandlerRegistryUtil.getWorkflowHandler(className);

AssetRendererFactory assetRendererFactory = workflowHandler.getAssetRendererFactory();

long classPK = GetterUtil.getLong((String)workflowContext.get(WorkflowConstants.CONTEXT_ENTRY_CLASS_PK));

AssetRenderer assetRenderer = workflowHandler.getAssetRenderer(classPK);

AssetEntry assetEntry = assetRendererFactory.getAssetEntry(assetRendererFactory.getClassName(), assetRenderer.getClassPK());

List<AssetCategory> assetCategories = assetEntry.getCategories();

returnValue = "Content Review";

for (AssetCategory assetCategory : assetCategories) {

String categoryName = assetCategory.getName();

if (categoryName.equals("legal")) {

returnValue = "Legal Review";

return;

}

}

]]>

1473

</script>

<script-language>groovy</script-language>

<transitions>

<transition>

<name>Legal Review</name>

<target>legal-review</target>

<default>false</default>

</transition>

<transition>

<name>Content Review</name>

<target>content-review</target>

<default>false</default>

</transition>

</transitions>

</condition>

This example checks the asset category to choose the processing path, whether to transition to
the Legal Review task or the Content Review task.

The returnValue variable points from the condition to a transition, and its value must match a
valid transition name. This script looks up the asset in question, retrieves its asset category, and
sets an initial returnValue. Then it checks to see if the asset has beenmarked with the legal category.
If not it goes through Content Review (to the content-review task in the workflow), and if it does it
goes through Legal Review (to the legal-review task in the workflow).

Forks and Joins: Forks split the workflow process, and joins bring the process back to a unified
branch. Processing must always be brought back using a Join (or a Join XOR), and the number of
forks and joins in a workflow definition must be equal.

<fork>

<name>fork-1</name>

<transitions>

<transition>

<name>transition-1</name>

<target>task-1</target>

<default>true</default>

</transition>

<transition>

<name>transition-2</name>

<target>task-2</target>

<default>false</default>

</transition>

</transitions>

</fork>

<join>

<name>join-1</name>

<transitions>

<transition>

<name>transition-4</name>

<target>EndNode</target>

<default>true</default>

</transition>

</transitions>

</join>

The workflow doesn’t move past the join until the asset transitions to it from both of the forks.
To fork the workflow process, but then allow the processing to continue when only one fork is
completed, use a Join XOR.

A Join XOR differs from a join in one important way: it removes the constraint that both forks
must be completed before processing can continue. The asset must complete just one of the forks
before processing continues.

1474

<join-xor>

<name>join-xor</name>

<transitions>

<transition>

<name>transition3</name>

<target>EndNode</target>

<default>true</default>

</transition>

</transitions>

</join-xor>

Task nodes are at the core of the workflow definition. They’re the part where a user interacts
with the asset in some way. Tasks can also have sub-elements, including notifications, assignments,
and task timers.

Here’s the content-review task from the Category Specific Approval workflow, with some of the
role assignment tags cut out for brevity:

<task>

<name>content-review</name>

<actions>

<notification>

<name>Review Notification</name>

<template>You have a new submission waiting for your review in the workflow.</template>

<template-language>text</template-language>

<notification-type>email</notification-type>

<notification-type>user-notification</notification-type>

<execution-type>onAssignment</execution-type>

</notification>

</actions>

<assignments>

<roles>

<role>

<role-type>organization</role-type>

<name>Organization Administrator</name>

</role>

...

</roles>

</assignments>

<task-timers>

<task-timer>

<name></name>

<delay>

<duration>1</duration>

<scale>hour</scale>

</delay>

<blocking>false</blocking>

<timer-actions>

<timer-notification>

<name></name>

<template></template>

<template-language>text</template-language>

<notification-type>user-notification</notification-type>

</timer-notification>

</timer-actions>

</task-timer>

</task-timers>

<transitions>

<transition>

<name>approve</name>

<target>approved</target>

<default>true</default>

</transition>

<transition>

<name>reject</name>

<target>update</target>

<default>false</default>

1475

</transition>

</transitions>

</task>

Learn more about workflow tasks in the next article.

135.5 Workflow Task Nodes

Task nodes are fundamental parts of a workflow definition. When you define your organization’s
business processes and design corresponding workflows, you likely first envision the tasks. As the
name implies, tasks are the part of the workflow where work is done. A user enters the picture and
must interact with the submitted asset. Users often take the role of reviewer, deciding if an asset
from the workflow is acceptable for publication or needs more work.

Unlike other workflow nodes, task nodes have Assignments, because a user is expected to do
something (often approve or reject the submitted asset) when a workflow process enters the task
node.

Commonly, task nodes contain task timers, assignments, actions (which can include notifica-
tions and scripts), and transitions. Notifications and actions aren’t limited to task nodes, but task
nodes and their assignments deserve their own article (this one).

Check out the Review task in the Single Approver definition, noting that several <role> tags are
excluded from this snippet for brevity:

<task>

<name>review</name>

<actions>

<notification>

<name>Review Notification</name>

<template>${userName} sent you a ${entryType} for review in the workflow.</template>

<template-language>freemarker</template-language>

<notification-type>email</notification-type>

<notification-type>user-notification</notification-type>

<execution-type>onAssignment</execution-type>

</notification>

<notification>

<name>Review Completion Notification</name>

<template><![CDATA[Your submission was reviewed<#if taskComments?has_content> and the reviewer applied the following ${taskComments}</#if>.]]></template>

<template-language>freemarker</template-language>

<notification-type>email</notification-type>

<recipients>

<user />

</recipients>

<execution-type>onExit</execution-type>

</notification>

</actions>

<assignments>

<roles>

<role>

<role-type>organization</role-type>

<name>Organization Administrator</name>

</role>

...

</roles>

</assignments>

<transitions>

<transition>

<name>approve</name>

<target>approved</target>

</transition>

<transition>

1476

<name>reject</name>

<target>update</target>

<default>false</default>

</transition>

</transitions>

</task>

There are two actions in the review task, both <notification>s. Each notification may contain a
name, template, notification-type, execution-type, and recipients. Besides notifications, You can
also use the <action> tag. These have a name and a script and are more often used in state nodes
than tasks.

Assignments

Workflow tasks are completed by a user. Assignments make sure the right users can access the
tasks. You can choose how you want to configure your assignments.

You can choose to add assignments to specific roles, tomultiple roles of a role type (organization,
site, or regular role types), to the asset creator, to resource actions, or to specific users. Additionally,
you canwrite a script to define the assignment. For an example, see the single-approver-definition-
scripted-assignment.xml.

<assignments>

<roles>

<role>

<role-type>organization</role-type>

<name>Organization Administrator</name>

</role>

</roles>

</assignments>

The above assignment specifies that an Organization Administrator must complete the task.

<assignments>

<user>

<user-id>20156</user-id>

</user>

</assignments>

The above assignment specifies that only the user with the user ID of 20156 may complete the
task. Alternatively, specify the <screen-name> or <email-address> of the user.

<assignments>

<scripted-assignment>

<script>

<![CDATA[

import com.liferay.portal.kernel.model.Group;

import com.liferay.portal.kernel.model.Role;

import com.liferay.portal.kernel.service.GroupLocalServiceUtil;

import com.liferay.portal.kernel.service.RoleLocalServiceUtil;

import com.liferay.portal.kernel.util.GetterUtil;

import com.liferay.portal.kernel.workflow.WorkflowConstants;

long companyId = GetterUtil.getLong((String)workflowContext.get(WorkflowConstants.CONTEXT_COMPANY_ID));

long groupId = GetterUtil.getLong((String)workflowContext.get(WorkflowConstants.CONTEXT_GROUP_ID));

Group group = GroupLocalServiceUtil.getGroup(groupId);

roles = new ArrayList<Role>();

1477

Role adminRole = RoleLocalServiceUtil.getRole(companyId, "Administrator");

roles.add(adminRole);

if (group.isOrganization()) {

Role role = RoleLocalServiceUtil.getRole(companyId, "Organization Content Reviewer");

roles.add(role);

}

else {

Role role = RoleLocalServiceUtil.getRole(companyId, "Site Content Reviewer");

roles.add(role);

}

user = null;

]]>

</script>

<script-language>groovy</script-language>

</scripted-assignment>

</assignments>

The above assignment assigns the task to the Administrator role, then checks whether the group
of the asset is an Organization. If it is, the Organization Content Reviewer role is assigned to it. If it’s
not, the task is assigned to the Site Content Reviewer role.

Note the roles = new ArrayList<Role>(); line above. In a scripted assignment, the roles variable
is where you specify any roles the task is assigned to. For example, when roles.add(adminRole); is
called, the Administrator role is added to the assignment.

Assigning tasks to Roles, Organizations, or Asset Creators is a straightforward concept, but
what does it mean to assign a workflow task to a Resource Action? Imagine an UPDATE resource
action. If your workflow definition specifies the UPDATE action in an assignment, then anyone
who has permission to update the type of asset being processed in the workflow is assigned to the
task. You can configure multiple assignments for a task.

Resource Action Assignments

Resource actions are operations performed by users on an application or entity. For example, a user
might have permission to update Message Boards Messages. This is called an UPDATE resource
action, because the user can update the resource. If you’re uncertain about what resource actions
are, refer to the developer tutorial on the permission system for a more detailed explanation.

To find all the resource actions that have been created, you need access to the Roles Admin
application in the Control Panel (in other words, you need permission for the VIEW action on the
roles resource).

• Navigate to Control Panel → Users → Roles.
• Add a new Regular Role. See the article on managing roles for more information.
• Once the role is added, navigate to the Define Permissions interface for the role.
• Find the resource whose action should define your workflow assignment.

Here’s what the assignment’s XML looks like:

<assignments>

<resource-actions>

<resource-action>UPDATE</resource-action>

</resource-actions>

</assignments>

1478

Now when the workflow proceeds to the task with the resource action assignment, users with
UPDATE permission on the resource (for example, Message Boards Messages) are notified of the task
and can assign it to themselves (if the notification is set to Task Assignees). Specifically, users see
the tasks in their My Workflow Tasks application under the tab Assigned to My Roles.

Use all upper case letters for resource action names. Here are some common resource actions:

UPDATE

ADD

DELETE

VIEW

PERMISSIONS

SUBSCRIBE

ADD_DISCUSSION

Determine the probable resource action name from the permissions screen for a resource. For
example, in Message Boards, one of the permissions displayed on that screen is Add Discussion.
Convert that to all uppercase and replace the space with an underscore, and you have the action
name.

Task Timers

Task timers trigger an action after a specified time period passes. Timers are useful for ensuring a
task does not go unattended for a long time. Available timer actions include sending an additional
notification, reassigning the asset, or creating a timer action.

<task-timers>

<task-timer>

<name></name>

<delay>

<duration>1</duration>

<scale>hour</scale>

</delay>

<blocking>false</blocking>

<recurrence>

<duration>10</duration>

<scale>minute</scale>

</recurrence>

<timer-actions>

<timer-notification>

<name></name>

<template></template>

<template-language>text</template-language>

<notification-type>user-notification</notification-type>

</timer-notification>

</timer-actions>

</task-timer>

</task-timers>

The above task timer creates a notification. Specify a time period in the <delay> tag, and specify
what action to take when the time expires in the <timer-actions> block. The <blocking> element
specifieswhether the timer actionsmay recur. If blocking is set to false, timer actionsmay recur. In
a recurrence element, specify the recurrence interval using a duration and a scale, as demonstrated
above. The above recurrence element specifies that the timer actions run again every ten minutes
after the initial occurrence. Setting blocking to true prevents timer actions from recurring.

<timer-actions>

<reassignments>

<assignments>

<roles>

1479

<role>

<role-type></role-type>

<name></name>

</role>

...

</roles>

</assignments>

</reassignments>

</timer-actions>

The above snippet demonstrates how to set up a reassignment action.
Like <action> elements, <timer-action> elements can contain scripts.

<timer-actions>

<timer-action>

<name>doSomething</name>

<description>Do something cool when time runs out.</description>

<script>

...

</script>

<script-language>groovy</script-language>

</timer-action>

</timer-actions>

The above example isn’t functional but it demonstrates setting up a <script> in your task timer.
Read the Scripting inWorkflow article for more information.

Note: A timer-action can contain all the same tags as an action, with one exception: execution-
type. Timer actions are always triggered once the time is up, so specifying and execution type of
onEntry, for example, isn’t meaningful inside a timer.

Tasks are at the core of the workflow definition. Once you understand how to create tasks and
the other workflow nodes and add transitions between the nodes, you’re on the cusp of workflow
wizard-hood.

135.6 Workflow Notifications

While an asset is in a workflow, relevant Users should be notified about certain events, like when a
review task is completed. Any workflow node with an <actions> element can have notifications.
<actions>

<action>

<notification>

<name>Creator Modification Notification</name>

<template>Your submission was rejected by ${userName}, please modify and resubmit.</template>

<template-language>freemarker</template-language>

<notification-type>email</notification-type>

<notification-type>user-notification</notification-type>

<execution-type>onAssignment</execution-type>

</notification>

</actions>

</actions>

The above CreatorModification Notification sends a notificationmessage in twoways: via email
and via user notification (this goes to the Notifications widget in the User’s Site). The message is
defined in a FreeMarker template and sent once a task assignment is created. But who receives the
notification? If no recipients are explicitly specified via a recipients tag, the asset’s creator receives
the notification.

1480

Notification Options

There are several elements that can be specified in a <notification>:

Name Set the name of the notification in the <name> element. This information is used to display
the notification in the My Workflow Tasks widget of a User’s personal Site.

Template The <template> element contains the message of the notification. The syntax is deter-
mined by the template language you’re using.

Template Language Choose from freemarker, velocity, or plain text in the <template-language>

tag.

Notification Type Choosewhether to send an email, user-notification (via theNotificationwidget),
im (instant message), or private-message in the <notification-type> tag.

<notification-type>email</notification-type>

Execution Type Choose to link the sending of the notification to entry into the node (onEntry),
when a task is assigned (onAssignment), or when the workflow processing is leaving a node
(onExit). If you specify a notification to be sent on assignment, the assignee is notified
automatically.

Recipients Decide who should receive the notification in the <recipients> tag:

<recipients>

[SEE BELOW FOR THE AVAILABLE RECIPIENT TAGS]

</recipients>

Available recipient tags are

• <user>: notify the User that sent the asset through the workflow. Specify the tag as <user />.
To notify a specific user, enter the userId:

<recipients>

<user />

</recipients>

<recipients>

<user>

<user-id>20139</user-id>

</user

</recipients>

• <roles>: notify specific Roles, either by ID or by their type and name.

<recipients>

<roles>

<role>

<role-id>33621</role-id>

</role>

</roles>

</recipients>

<recipients>

<roles>

<role>

<role-type>regular</role-type>

1481

<name>Power User</name>

<auto-create>false</auto-create>

</role>

</roles>

</recipients>

• <assignees />: notify the task assignees.

• <scripted-recipient>: use a script to identify notification recipients.

<recipients>

<scripted-recipient>

<script>

<![CDATA[Script logic goes here]]>

</script>

<script-language>groovy</script-language>

</scripted-recipient>

</recipients>

If the notification type is email, you can specify the recipientType attribute of the <recipients>

tag as To, CC, or BCC.

<recipients receptionType="cc">

<roles>

<role>

<role-type>regular</role-type>

<name>Manager</name>

</role>

</roles>

</recipients>

By default, recipientType is to.
As always, read the schema for all the details.

135.7 Liferay's Workflow Framework

Enabling your application’s entities to support workflow is so easy, you could do it in your sleep
(but don’t try). Workflow-enabled entities require two things:

• A workflow handler class to interact with Liferay’s workflow back-end and the entity’s service
layer.

• Some extra fields in their database table that help keep track of their status, along with
methods in the service layer that update them.

You have, therefore, two tasks to enable workflow:

1. Create a WorkflowHandler class for your application.

2. Update your service layer to integrate it with workflow.

Time to get started.

1482

https://www.liferay.com/dtd/liferay-workflow-definition_7_1_0.xsd

Creating a Workflow Handler

The workflow handler should go in the module containing service implementations. It’s nice to
keep your back-end code separate from your view layer and controller (in the MVC pattern).

1. Create a Component class. It should extend BaseWorkflowHandler<T>, an abstract class that
provides a default implementation of the WorkflowHandler<T> service. Pass the interface for
your model as the type parameter for the class.

public class FooEntityWorkflowHandler extends BaseWorkflowHandler<FooEntity>

2. Since you’re publishing a service to be consumed in the OSGi runtime, your workflow handler
class must be registered. If you’re using Declarative Services, make it a Component class,
using the @Component annotation.

@Component(

property = {"model.class.name=com.my.app.package.model.FooEntity"},

service = WorkflowHandler.class

)

It needs one property, to set model.class.name to the fully qualified class name of the class you
passed as the type parameter. It must also declare the type of service being implemented
(WorkflowHandler.class).

3. There are three methods to override in the workflow handler, and the first two are boilerplate
methods:

@Override

public String getClassName() {

return FooEntity.class.getName();

}

getClassName returns themodel class’s fully qualified class name (com.my.app.package.model.FooEntity,
for example).

@Override

public String getType(Locale locale) {

return ResourceActionsUtil.getModelResource(locale, getClassName());

}

getType returns themodel resourcename (model.resource.com.my.app.package.model.FooEntity,
for example).

@Override

public FooEntity updateStatus(int status, Map<String, Serializable> workflowContext) {

Most of the heavy lifting is in the updateStatus method. It returns a call to a local service
method of the same name (for example, FooEntityLocalService.updateStatus), so the status
returned from the workflow back-end can be persisted to the entity table in the database.

1483

4. The updateStatus method needs a user ID, the primary key for the class (for example,
fooEntityId), the workflow status, the service context, and the workflow context. The
status and the workflow context can be obtained from the workflow back-end. The other
parameters can be obtained from the workflow context.

@Override

public FooEntity updateStatus(

int status, Map<String, Serializable> workflowContext)

throws PortalException {

long userId = GetterUtil.getLong(

(String)workflowContext.get(WorkflowConstants.CONTEXT_USER_ID));

long classPK = GetterUtil.getLong(

(String)workflowContext.get(

WorkflowConstants.CONTEXT_ENTRY_CLASS_PK));

ServiceContext serviceContext = (ServiceContext)workflowContext.get(

"serviceContext");

return _fooEntityLocalService.updateStatus(

userId, classPK, status, serviceContext, workflowContext);

}

Now your entity can be handled by Liferay’s workflow framework. Next, update the service
methods to account for workflow status and add a new method to update the status of an entity in
the database.

Updating the Service Layer

In most Liferay applications, Service Builder is used to create database fields. First, you must
update the service layer:

• The service layer must populate the new fields when entities are added to the database.

• The service layer must send the entity through Liferay’s workflow, and it needs to handle the
workflow status of the entity when it’s returned by the workflow.

• The service layer needs getters that return entities by workflow status (usually approved).

After this is done, the View layer should account for the workflow status of displayed entities.

1. Make sure your entity database table has status, statusByUserId, statusByUserName, and
statusDate fields. If you’re using service builder, add this to your service.xml if you haven’t
already:

<column name="status" type="int" />

<column name="statusByUserId" type="long" />

<column name="statusByUserName" type="String" />

<column name="statusDate" type="Date" />

2. Wherever you’re setting the other database fields in your persistence code, set the workflow
status as a draft and set the other fields.

fooEntity.setStatus(WorkflowConstants.STATUS_DRAFT);

fooEntity.setStatusByUserId(userId);

fooEntity.setStatusByUserName(user.getFullName());

fooEntity.setStatusDate(serviceContext.getModifiedDate(null));

1484

With Service Builder driven Liferay applications, this is in the local service implementation
class (-LocalServiceImpl).

When an entity is added to the database, the application must detect whether workflow is
enabled. If not, it automatically marks the entity as approved so it appears in the UI. Otherwise, it’s
left in draft status and the workflow back-end handles it. Thankfully, this whole process is easily
done with a single call to WorkflowHandlerRegistryUtil.startWorkflowInstance.

1. At the end of any method that adds a new entity to your database, call the workflow service:

WorkflowHandlerRegistryUtil.startWorkflowInstance(fooEntity.getCompanyId(),

fooEntity.getGroupId(), fooEntity.getUserId(), FooEntity.class.getName(),

fooEntity.getPrimaryKey(), fooEntity, serviceContext);

2. Once you’ve set the database fields for workflow status and started the workflow instance,
implement the updateStatusmethod that must be called in the workflow handler. The work-
flow handler gets the entity’s status from the workflow back-end and passes it to your service
layer, which persists the updated entity to the database.

fooEntity.setStatus(status);

fooEntity.setStatusByUserId(user.getUserId());

fooEntity.setStatusByUserName(user.getFullName());

fooEntity.setStatusDate(serviceContext.getModifiedDate(now));

fooEntityPersistence.update(fooEntity);

3. After setting the workflow fields for the entity, think about the specifics of your situation and
whether any additional logic should be added to this method. For instance, if your entities are
Liferay Assets already, you must change the visibility of the asset depending on its workflow
status, so the Asset Publisher doesn’t show entities that haven’t yet been approved in the
workflow process.

if (status == WorkflowConstants.STATUS_APPROVED) {

assetEntryLocalService.updateEntry(

FooEntity.class.getName(), fooEntityId, fooEntity.getDisplayDate(),

null, true, true);

}

else {

assetEntryLocalService.updateVisible(

fooEntity.class.getName(), entryId, false);

}

If approved,Workflow updates the asset with the publication date, a listable boolean, and a
visible boolean being updated to reflect the current state of the asset. If the workflow status
is anything other than approved, its visibility is set to false.

4. Before leaving the service layer, add a call to deleteWorkflowInstanceLinks in the deleteEntity

method. Here’s what it looks like:

workflowInstanceLinkLocalService.deleteWorkflowInstanceLinks(

fooEntity.getCompanyId(), fooEntity.getGroupId(),

FooEntity.class.getName(), fooEntity.getFooEntityId());

1485

When you send an entity to the workflow framework via the startWorkflowInstance call, it
creates an entry in the workflowinstancelink database table. This delete call ensures there
are no orphaned entries in the workflowinstancelinks table.

5. To get the WorkflowInstanceLocalService injected into your *LocalServiceBaseImpl so you can
call its methods in the LocalServiceImpl, add this to your entity declaration in service.xml:

<reference entity="WorkflowInstanceLink" package-path="com.liferay.portal" />

For anexample of a fully implemented updateStatusmethod, see the com.liferay.portlet.blogs.service.impl.BlogsEntryLocalServiceImpl
class in portal-impl.

Save your work and run Service Builder. Once you’ve accounted for workflow status in your
service layer, there’s only one thing left to do: update the user interface.

Workflow Status and the View Layer

If you have an application with database entities, you’re likely displaying them. Once you enable
workflow, you should only display approved entities to your end users.

This involves the following steps:

• Create a finder for your entities that accounts for the status field in your database table.

• Expose the finder in a getter method of your service layer.

• Update the view layer to use the new getter for displaying entities (e.g., in a Search Container).

1. If you’re using Service Builder, define your finder in your application’s service.xml and let
Service Builder generate it for you.

<finder name="G_S" return-type="Collection">

<finder-column name="groupId"></finder-column>

<finder-column name="status"></finder-column>

</finder>

2. Make sure you have a getter in your service layer that uses the new finder.

public List<FooEntity> getFooEntities(long groupId, int status)

throws SystemException {

return fooEntityPersistence.findByG_S(groupId,

WorkflowConstants.STATUS_APPROVED);

}

3. Finally, update your JSP to use the appropriate getter.

<liferay-ui:search-container-results

results="<%=FooEntityLocalServiceUtil.getFooEntities(scopeGroupId,

fooEntityId(), Workflowconstants.STATUS_APPROVED, searchContainer.getStart(),

searchContainer.getEnd())%>"

...

In an administrative-type application (in other words, one that’s displayed in the Site Menu’s
Content section) you might want to display all the entities with their current workflow status
(for example, include workflow status as a column in the search container). To do so, use the
<aui:worklfow-status> tag.

1486

<aui:workflow-status markupView="lexicon" showIcon="<%= false %>" showLabel="<%= false %>" status="<%= fooEntity.getStatus() %>" />

Great! You created one new class, updated your addmethods, added one new method in the
service layer, and updated your view. Workflow is fully implemented and ready to use in your
Liferay application.

1487

CHAPTER 136

MANAGING USER-ASSOCIATED DATA STORED BY
CUSTOM APPLICATIONS

7.0 makes it possible for administrators to delete or anonymize User Associated Data (UAD), pro-
viding a useful tool for compliance with the EU’s General Data Protection Regulation (GDPR). Out
of the box, this tool only supports Liferay applications (blogs, web content, etc.), but you can also
anonymize data stored by your custom apps.

If your app was created using Service Builder, anonymization is easy. Follow these steps:

1. Include dependencies on com.liferay.petra.string and com.liferay.portal.kernel in your
service module’s build script.

2. Identify the fields that must be anonymized in the service module’s service.xml file.

3. Run Service Builder. Provide a build script for the -uadmodule that is generated.

4. Provide your application’s name to the anonymization UI. If you skip this step, your app is
labeled using the Bundle-SymbolicName from the -uadmodule’s bnd.bnd file.

Anonymization of apps not created using Service Builder will be covered separately.

136.1 Include Dependencies

To compile the code that Service Builder generates, you need dependencies on Petra and 3.23.0 or
later of Liferay kernel in your service module’s build.gradle:

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "3.23.0"

compileOnly group: "com.liferay", name: "com.liferay.petra.string", version: "2.0.0"

...

}

1489

136.2 Choose Fields to Anonymize

Next you must identify fields to anonymize by attaching anonymization attributes to elements in
the -servicemodule’s service.xml file. There are two ways to do this.

• The uad-anonymize-field-name attribute indicates a field whose value is replaced by that of the
anonymous user in the UAD deletion process.

• The uad-nonanonymizable attribute indicates data that cannot be anonymized automatically
and must be reviewed by an administrator.

For example, in the blogs application, uad-anonymize-field-name="fullName" is appended to the
userName column in service.xml:

<column name="userName" type="String" uad-anonymize-field-name="fullName" />

This indicates that the user name of a blog entry’s author should be replaced by the anonymous
user’s fullName.

The content of a blog post, in contrast, cannot be anonymized automatically:

<column name="content" type="String" uad-nonanonymizable="true" />

The uad-nonanonymizable value of true indicates that the content field must be reviewed by an
administrator to remove a blog author’s UAD.

136.3 Run Service Builder!

At this point, you’re ready to run Service Builder. This generates a new -uadmodule based on the
values you added to service.xml. The new module is generated without a build script, so you must
provide one. It should include dependencies on osgi.service.component.annotations, kernel, Petra,
the -apimodule of the UAD application, as well as your own application’s -apimodule. The build
script should look like this:

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "3.23.0"

compileOnly group: "com.liferay", name: "com.liferay.user.associated.data.api", version: "3.0.2"

compileOnly group: "com.liferay", name: "com.liferay.petra.string", version: "1.0.0"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

compileOnly project(":modules:custom:custom-api")

...

}

At this point you can compile your application. Before you deploy it, however, you should to
make sure the UAD application recognizes it in a way that makes sense to administrators.

Note: Depending on how you created your project—for instance, if you used Blade’s Service
Builder template rather than Liferay Dev Studio’s—you may have to include the new -uadmodule
in your settings.gradle file before you can compile:

include "myapp-api", "myapp-service", "myapp-uad"

1490

136.4 Provide Your App's Name to the UI

The simplest way to provide your app’s name to the anonymization UI is to include a lan-
guage key in your Language.properties file: application.name.[Bundle-SymbolicName]= where the
bracketed text is the Bundle-SymbolicName from your -uad module’s bnd.bnd file. For example:
application.name.com.liferay.docs.custom.portlet=Custom App.

That’s the recommended approach for custom apps, but if you look at the source code for
Liferay DXP itself, you see that it isn’t used. Why not? Because it has the downside of creating
multiple language keys to label a single application, which can be confusing. To avoid multiplying
language keys, Liferay applications use the com.liferay.lang.merger. plugin. Here’s what it looks
like:

apply plugin: "com.liferay.lang.merger"

dependencies {

...

}

mergeLang {

setting("../blogs-web/src/main/resources/content") {

transformKey "javax.portlet.title.com_liferay_blogs_web_portlet_BlogsPortlet", "application.name.com.liferay.blogs.uad"

}

sourceDirs = ["../blogs-web/src/main/resources/content"]

}

This is from the -uadmodule’s build.gradle file in Liferay DXP’s Blogs application. The setting

property identifies the location of the Language.properties file (by Gradle convention, the sourceDirs
property must match setting). transformKey passes in first the language key for the application’s
name, and then the Bundle-SymbolicName from the -uadmodule’s bnd.bnd file. The plugin takes the
value of the first parameter and assigns it to the second parameter. The end result is that a key
from Language.properties provides the name of the application to the anonymization UI—but no
additional language keys need to be created or maintained.

That’s it! You can now delete or anonymize User Associated Data stored by your app.

1491

CHAPTER 137

CONFIGURABLE APPLICATIONS

Many applications must be configurable, whether by end users or administrators. A viable config-
uration solution must support use cases ranging from setting a location for a weather display to
more complex cases like settings for a mail or time sheet application.

The Portlet standard’s portlet preferences API can be used for portlet configuration, but it’s
intended for storing user preferences. This limits its usefulness for enabling administrator config-
uration; plus it can only be used with portlets. Instead, application developers tend to create ad
hoc configuration methods. But this isn’t necessary.

There’s a full-featured configuration API that’s easy to use, and it’s not limited to portlets. Any
class can use the configuration API to set configuration values in the UI. It’s used throughout Liferay
DXP’s applications. We like it, and we think you’ll like it too.

The following tutorials show you how to use it.

1493

CHAPTER 138

MAKING APPLICATIONS CONFIGURABLE

A configurable application allows a user with appropriate permissions to change certain aspects of
the application, within bounds set by the developer. Liferay’s configuration framework simplifies
the task by auto-generating a UI if you define the configuration options in a Java interface. This
way, you don’t have to create your own application configuration framework.

Complete these three high level tasks to integrate your application with the configuration
framework:

1. Provide a way to set configurations in the user interface.

2. Set the scope at which the application can be configured.

3. Read configuration values in your business logic.

This tutorial demonstrates both adding your application’s configuration form to the System
Settings application in the Control Panel and categorizing the configuration. Subsequent tutorials
show you how to

1. Set the scope of the configuration. Read more about configuration scope here.

2. Read configuration values from various contexts.

Note: To see a working application configuration, deploy the configuration-action Blade sample
and navigate to System Settings (Control Panel → Configuration → System Settings). Go to Platform →
Third Party. In the System Scope, open the Message display configuration entry and edit the fields as
you wish.

Add the Blade Message Portlet to a page to test your configuration choices.

You don’t need much prior knowledge to use the configuration API, but understanding a few
key concepts is useful before diving into the code.

Typed Configuration The method described here uses typed configuration. The application con-
figuration isn’t just a list of key-value pairs. Values can have types, like Integer, a list of
Strings, a URL, etc. You can even use your own types, although that’s beyond the scope

1495

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/configuration-action

of this tutorial. Typed configurations are easier to use than untyped configurations, and
they prevent many programmatic errors. Configuration options should be programmatically
explicit, so developers can use autocomplete in modern IDEs to find out all configuration
options of a given application or one of its components.

Modularity Modern applications are modular and built as a collection of lightweight components.
Configuration Scope If your application must support different configurations at different scopes,

the APIs described below handle most of the burden for you. You should still understand the
term configuration scope even if you don’t plan to scope the application’s configuration. Here
are the most common configuration scopes:

• System configurations are unique for the complete installation of the application.

• Virtual Instance configurations can vary per virtual instance.

• Site configuration can vary per site.

• Portlet Instance configurations apply to a single application placed on a page (i.e., portlets).
Each placement (instance) of the application on the page can have a different configuration.

Enough with the conceptual stuff. You’re ready to get started with some code. If you already had
a portlet or service that was configurable using the traditional mechanisms of Liferay Portal 6.2
and before, refer to the Transitioning from Portlet Preferences to the Configuration API tutorial.

138.1 Creating A Configuration Interface

First, you’ll learn how to create a configuration at the system scope.

1. Create a Java interface to represent the configuration and its default values. Using a Java
interface allows for an advanced type system for each configuration option. Here is the
configuration interface for the Liferay Forms application:

@Meta.OCD(

id = "com.liferay.dynamic.data.mapping.form.web.configuration.DDMFormWebConfiguration",

localization = "content/Language", name = "ddm-form-web-configuration-name"

)

public interface DDMFormWebConfiguration {

@Meta.AD(

deflt = "1", description = "autosave-interval-description",

name = "autosave-interval-name", required = false

)

public int autosaveInterval();

@Meta.AD(

deflt = "descriptive", name = "default-display-view",

optionLabels = {"Descriptive", "List"},

optionValues = {"descriptive", "list"}, required = false

)

public String defaultDisplayView();

}

It defines two configuration options, the autosave interval (with a default of one minute) and
the default display view, which can be descriptive or list, but defaults to descriptive. Here’s
what the two Java annotations in the above snippet do:

1496

1. Meta.OCD: Registers this class as a configuration with a specific id. The IDmust be the
fully qualified configuration class name.

2. Meta.AD: Specifies optional metadata about the field, such as whether it’s a required
field or if it has a default value. Note that if you set a field as required and don’t specify a
default value, the systemadministratormust specify a value in order for your application
to work properly. Use the deflt property to specify a default value.

The fully-qualified name of the Meta class above is aQute.bnd.annotation.metatype.Meta. For
more information about this class and the Meta.OCD and Meta.AD annotations, please refer to
the bndtools documentation.

The cool thing about configuration interfaces is that once you have one, you also have an
auto-generated UI!

2. To use the Meta.OCD and Meta.AD annotations in your modules, you must specify a dependency
on the bnd library. We recommend using bnd version 3. Here’s an example of how to include
this dependency in a Gradle project:

dependencies {

compile group: "biz.aQute.bnd", name: "biz.aQute.bndlib", version: "3.1.0"

}

Note: The annotations `@Meta.OCD` and `@Meta.AD` are part of the bnd

library, but as of OSGi standard version R6, they're included in the OSGi core

under the names `@ObjectClassDefinition` and `@AttributeDefinition`. The OSGi

annotations can be used for simple cases like the one described in this

tutorial. However, a key difference between the two libraries is that the bnd

annotations are available at runtime, while the OSGi annotations are not.

Because runtime availability is necessary for some of the Liferay-specific features

described below, we recommend defaulting to the bnd annotations.

3. Add the following line to your project’s bnd.bnd file:

-metatype: *

This line lets bnd use your configuration interface to generate an XML configuration file.
This provides a lot of information about your application’s configuration options. Enough, in
fact, to generate a System Settings user interface automatically.

Just by registering a configuration interface, you get a fully capable UI form auto-generated in
the System Settings application. By default, configurations are placed in Platform → Third Party.
Make it easier to find for your application’s users by categorizing the configuration somewhere
logical. The next tutorial show you how to do that.

1497

http://bnd.bndtools.org/chapters/210-metatype.html
http://bnd.bndtools.org/chapters/210-metatype.html

138.2 Categorizing the Configuration

Because it’s easy to make any application or service configurable, there are already lots of config-
uration options in Liferay DXP by default. If you’ve deployed custom applications and services,
there are even more. To make it easier for portal administrators to find the right configuration
options, specify a category for the configuration in the auto-generated System Settings UI.

By default, the following System Settings sections are defined. All available categories are
nested beneath these sections:

1. Content Management

2. Social

3. Platform

4. Security

5. Commerce

6. Other

Note: Sections appear if they contain at least one configuration category. Categories appear if
they contain at least one configuration. The visible sections and categories depend on the deployed
modules.

If you don’t specify a category, your application’s configuration resides in Platform → Third
Party. Usually, you’ll want to place your configurations in an existing category or create your own.

.

Specifying a Configuration Category

If you looked in the source code at the Liferay Forms configuration interface (it’s in the Forms &
Workflow suite’s Liferay Dynamic Data Mapping FormWeb module), you’ll notice something was
left out of the code snippet above. The @Meta.OCD annotation is directly preceded by

@ExtendedObjectClassDefinition(

category = "dynamic-data-mapping",

scope = ExtendedObjectClassDefinition.Scope.GROUP

)

This annotation does two things:

1. Specifies the dynamic-data-mapping category.

2. Sets the scope of the configuration.

The fully qualified class nameof the @ExtendedObjectClassDefinition class is com.liferay.portal.configuration.metatype.annotations.ExtendedObjectClassDefinition.
Note: The infrastructure used by System Settings assumes the configurationPid is the same as

the fully qualified class name of the interface. If they don’t match, it can’t provide any information
through ExtendedObjectClassConfiguration.

The @ExtendedObjectClassDefinition annotation is distributed through the com.liferay.portal.configuration.metatype
module, which you can configure as a dependency.

1498

Creating New Sections and Categories

Configurations should be in the most intuitive location (section and category) so administrators
find them. If your configurations don’t fit into the existing categories or category sections, create
your own by implementing the ConfigurationCategory interface.

Here’s code that creates the Content Management section and the Dynamic Data Mapping cate-
gory:

@Component

public class DynamicDataMappingConfigurationCategory

implements ConfigurationCategory {

@Override

public String getCategoryIcon() {

return "dynamic-data-list";

}

@Override

public String getCategoryKey() {

return _KEY;

}

@Override

public String getCategorySection() {

return _CATEGORY_SET_KEY;

}

private static final String _CATEGORY_SET_KEY = "content-management";

private static final String _KEY = "dynamic-data-mapping";

}

The getCategorySection method returns the String with the new section’s key. Similarly,
getCategoryKey returns the key for the new category. Provide localized values for these keys in your
module’s src/main/resources/content/Language.properties file.

Next you’ll specify the scope of your application’s configuration.

138.3 Scoping Configurations

Applications can have different configurations depending on the scope: per virtual instance (a.k.a.
Company), site (a.k.a. Group), or portlet instance. The Configuration Provider API (based on the
standard OSGi Configuration Admin API shown in the previous section) handles this for you.

Scoping the configuration is specifying the scope where the configuration values are set or
overridden. Anything set at a less granular scope is just a default for the configuration. It can
always be overridden at the configuration’s current scope. For example, a site scoped configuration
can have its defaults set at the system scope (via System Settings). However, once the configuration
is changed at the site scope, it ignores the higher level scope forever. It can also be configured
in other places at the same scope. From the database level, this means there could be multiple
configuration values for the application, all scoped to the site level, because the values set in one
site don’t matter if the context in which you need the value is a different site. This is covered in
more detail here.

Here’s how to scope a configuration:

1. Set the scope in the configuration interface.

1499

2. Enable the configuration for scoped retrieval by creating a configuration bean declaration.

3. Retrieve scoped configurations with a configuration provider.

The third step is covered in the configuration provider tutorial. This article covers the first two
steps. Start by setting the scope in the configuration interface.

Step 1: Setting the Configuration Scope

Use the @ExtendedObjectClassDefinition annotation to specify the configuration’s scope. The scope
you choosemustmatchhow the configuration object is retrieved through the configuration provider
configuration provider. Pass one of these valid scope options to @ExtendedObjectClassDefinition:

Scope.GROUP: for site scope Scope.COMPANY: for virtual instance scope Scope.SYSTEM: for system
scope Scope.PORTLET_INSTANCE: for the portlet instance scope

Here is an example:

@ExtendedObjectClassDefinition(

category = "dynamic-data-mapping",

scope = ExtendedObjectClassDefinition.Scope.GROUP

)

@Meta.OCD(

id = "com.liferay.dynamic.data.mapping.form.web.configuration.

DDMFormWebConfiguration",

localization = "content/Language",

name = "ddm-form-web-configuration-name"

)

public interface DDMFormWebConfiguration {

The scope property makes it appear in System Settings so an administrator can change its value.
In future releases it may serve additional purposes.

Step 2: Enabling the Configuration for Scoped Retrieval

If you set the configuration scope, you must retrieve the configuration values from the same scope.
To retrieve a scoped configuration, use a Configuration Provider:

JournalGroupServiceConfiguration configuration =

configurationProvider.getGroupConfiguration(

JournalGroupServiceConfiguration.class, groupId);

This is an example from the Journal module that gets a site-scoped configuration from the con-
figuration provider. To enable scoped retrieval of a configuration, the application’s configuration
must be registered with a ConfigurationBeanDeclaration.

Note: ConfigurationProvider is part of Liferay’s kernel API so you don’t need a new dependency
to use it. However, its implementation is distributed as a module called portal-configuration-

module-configuration, so make sure it is installed.

To create a configuration bean declaration:

1. Register the configuration class by implementing ConfigurationBeanDeclaration.

@Component

public class JournalGroupServiceConfigurationBeanDeclaration

implements ConfigurationBeanDeclaration {

1500

2. This class has one method that returns the class of the interface you created in the previous
section. It enables the system to keep track of configuration changes as they happen, making
requests for the configuration very fast.

@Override

public Class<?> getConfigurationBeanClass() {

return JournalGroupServiceConfiguration.class;

}

Step 3: Retrieving Scoped Configurations

If you set the configuration scope, then you must retrieve the configuration values from the same
scope. To retrieve a scoped configuration, use a Configuration Provider:

JournalGroupServiceConfiguration configuration =

configurationProvider.getGroupConfiguration(

JournalGroupServiceConfiguration.class, groupId);

This is an example from the Journal module that gets a site-scoped configuration from the con-
figuration provider. The groupId variable is important since it identifies which site the configuration
value should be read from.

That’s all there is to it. Now the configuration is scoped and supports scoped retrieval.

138.4 Reading Configuration Values from a Component

Once you have the application configured so that administrators can configure it in System Settings,
you might be wondering how to read the configuration from your application’s Java code.

The answer is that there are several ways. Which one you use depends on the context from
which the configuration must be read:

1. From any Component class

2. From an MVC portlet’s JSP

3. From an MVC portlet’s Portlet class

4. From a non-Component class

This tutorial shows the first usage, reading the configuration from a Component class.

Reading Configurations from a Component Class

1. First set the configurationPid Component property as the fully qualified class name of the
configuration class:

@Component(configurationPid = "com.liferay.dynamic.data.mapping.form.web.configuration.DDMFormWebConfiguration")

2. Then provide an activatemethod, annotated with @Activate to ensure the method is invoked
as soon as the Component is started, and @Modified so it’s invoked whenever the configuration
is modified.

1501

@Activate

@Modified

protected void activate(Map<String, Object> properties) {

_formWebConfiguration = ConfigurableUtil.createConfigurable(

DDMFormWebConfiguration.class, properties);

}

private volatile DDMFormWebConfiguration _formWebConfiguration;

The activate() method calls the method ConfigurableUtil.createConfigurable() to convert
a map of the configuration’s properties to a typed class, which is easier to handle. The
configuration is stored in a volatile field. Don’t forget to make it volatile to prevent thread
safety problems.

3. Once the activate method is set up, retrieve particular properties from the configuration
wherever they’re needed:

public void orderCar(String model) {

order("car", model, _configuration.favoriteColor);

}

This is dummy code: don’t try to find it in the Liferay source code. The String configuration
value of favoriteColor is passed to the ordermethod call, presumably so that whatever model
car is ordered will be ordered in the configured favorite color.

Note: The bnd library also provides a class called aQute.bnd.annotation.metatype.Configurable

with a createConfigurable()method. You canuse that insteadof Liferay’s com.liferay.portal.configuration.metatype.bnd.util.ConfigurableUtil
without any problems. Liferay’s developers created the ConfigurableUtil class to improve the
performance of bnd’s implementation, and it’s used in internal code. Feel free to use whichever
method you prefer.

With very few lines of code, you have a configurable application that dynamically changes its
configuration, has an auto-generated UI, and uses a simple API to access the configuration.

138.5 Reading Configuration Values from aMVC Portlet

It’s very common to read configuration values from a portlet class or its JSPs. This tutorial shows
how to add a configuration to the request and read it from the view layer, and how to read it
directly in the portlet class. This tutorial uses dummy code from a portlet we’ll call the Example
Configuration Portlet. The import statements are included in the code snippets so that you can see
the fully qualified class names (FQCNs) of all the classes that are used.

Accessing the Configuration Object in the Portlet Class

Whether you need the configuration values in the portlet class or the JSPs, the first step is to get
access to the configuration object in the *Portlet class.

1. Imports first:

1502

package com.liferay.docs.exampleconfig;

import java.io.IOException;

import java.util.Map;

import javax.portlet.Portlet;

import javax.portlet.PortletException;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

import org.osgi.service.component.annotations.Activate;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Modified;

import com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet;

import com.liferay.portal.configuration.metatype.bnd.util.ConfigurableUtil;

2. Portlet classes are Component classes. To mate the configuration with the Component,
provide the configurationPid property with the FQCN of the configuration class.

@Component(

configurationPid = "com.liferay.docs.exampleconfig.ExampleConfiguration",

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.security-role-ref=power-user,user",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.resource-bundle=content.Language"

},

service = Portlet.class

)

public class ExampleConfigPortlet extends MVCPortlet {

Note that you can specify more than one configuration PID here, by enclosing the values in
curly braces ({}) and placing commas between each PID.

3. Write an activatemethod annotated with @Activate and @Modified. See the Making Applica-
tions Configurable tutorial if you’re unsure why these annotations are necessary:

@Activate

@Modified

protected void activate(Map<String, Object> properties) {

_configuration = ConfigurableUtil.createConfigurable(

ExampleConfiguration.class, properties);

}

private volatile ExampleConfiguration _configuration;

A volatile field _configuration is created by the createConfigurablemethod. Now the field can
be used to retrieve configuration values or to set the values in the request, so they can be
retrieved in the application’s JSPs.

1503

Accessing the Configuration from a JSP

In the case of reading from a JSP, add the configuration object to the request object so its values
can be read from the JSPs that comprise the application’s view layer.

Note: There’s a shortcut method for obtaining a portlet instance configuration. The method
described in this section takes a straightforward approach that does not use this shortcut. See the
Accessing the Portlet Instance Configuration Through the PortletDisplay article to learn about the
shorter method.

1. Add the configuration object to the request. Here’s what it looks like in a simple portlet’s
doViewmethod:

@Override

public void doView(RenderRequest renderRequest,

RenderResponse renderResponse) throws IOException, PortletException {

renderRequest.setAttribute(

ExampleConfiguration.class.getName(), _configuration);

super.doView(renderRequest, renderResponse);

}

The main difference between this example and the component class covered in the previous
tutorial is that this class is a portlet class and it sets the configuration object as a request
attribute in its doView()method.

2. Read configuration values from a JSP. First add these imports to the top of your view.jsp file:

<%@ page import="com.liferay.docs.exampleconfig.ExampleConfiguration" %>

<%@ page import="com.liferay.portal.kernel.util.GetterUtil" %>

3. In the JSP, obtain the configuration object from the request object and read the desired
configuration value from it. Here’s a view.jsp file that does this:

<%@ include file="/init.jsp" %>

<p>

Hello from the Example Configuration portlet!

</p>

<%

ExampleConfiguration configuration = (ExampleConfiguration) GetterUtil.getObject(

renderRequest.getAttribute(ExampleConfiguration.class.getName()));

String favoriteColor = configuration.favoriteColor();

%>

<p>Favorite color: <span style="color: <%= favoriteColor %>;"><%= favoriteColor %></p

The example code here would make the application display a message like this:

Favorite color: blue

1504

The word blue is written in blue text. Note that blue is displayed by default since you specified it
as the default in your ExampleConfiguration interface. If you go to Control Panel → Configuration →
System Settings → Platform → Third Party and click on the Example configuration link, you can find the
Favorite color setting and change its value. The JSP reads the configuration, and refreshing the UI
reflects this update.

Accessing the Configuration from the Portlet Class

Now that you’ve seen a detailed example of accessing the configuration values in a JSP, there’s not
much more to cover when accessing the configuration directly in the -Portlet class. Wherever you
require the value of a configuration property, call _configuration.propertyName and you have access
to the currently configured value. For example, this code compares the favoriteColor configuration
value with a userFavoriteColor that’s fetched from the request object:

public boolean isFavoriteColorMatched {

String userFavoriteColor = ParamUtil.getString(request, "userFavoriteColor");

if (_configuration.favoriteColor == userFavoriteColor) {

SessionMessages.add(request, "congratulateUser");

return true;

}

return false;

}

It returns true and adds a success message if the two Strings match each other, but you can do
anything that makes sense for your application’s controller logic.

That’s all there is to reading configuration values in an MVC Portlet. The next tutorial covers
categorizing the configuration and accessing it through a Configuration Provider.

138.6 Reading Configuration Values from a Configuration Provider

When an application is deployed, it’s common to need different configurations depending on the
scope. That means having different configurations for a given application per virtual instance
(a.k.a. Company), site (a.k.a. Group), or portlet instance. Achieve this with little effort using the
Configuration Provider API that is based on the standard OSGi Configuration Admin API.

Using the Configuration Provider

When using the Configuration Provider, instead of receiving the configuration directly, the class
that wants to access it must

1. Receive a ConfigurationProvider to obtain the configuration

2. Be registered with a ConfigurationBeanDeclaration.

The tutorial on scoping configurations demonstrates how to register the configuration with a
ConfigurationBeanDeclaration.

After registeringwith a ConfigurationBeanDeclaration, you’re ready touse a ConfigurationProvider
to retrieve the scoped configuration. Here’s how you obtain a reference to it:

1505

1. Here’s the approach for components:

@Reference

protected void setConfigurationProvider(ConfigurationProvider configurationProvider) {

_configurationProvider = configurationProvider;

}

2. Here’s the approach for Service Builder services:

@ServiceReference(type = ConfigurationProvider.class)

protected ConfigurationProvider configurationProvider;

3. For Spring beans, it is possible to use the same mechanism as for Service Builder services
(@ServiceReference). Check the documentation on how to integrate Spring beans with OSGi
services for more details.

4. For anything else, call the samemethods from the utility class, ConfigurationProviderUtil. Be
sure you call the utility methods in contexts where the portal is guaranteed to be initialized
prior to the method call. This class is useful in the scripting console, for example. Here’s an
example method that uses the utility class. It comes from the export-import service, which is
only called during the import and export of content from a running portal:

protected boolean isValidateLayoutReferences() throws PortalException { long companyId =
CompanyThreadLocal.getCompanyId();

ExportImportServiceConfiguration exportImportServiceConfiguration =

ConfigurationProviderUtil.getCompanyConfiguration(

ExportImportServiceConfiguration.class, companyId);

return exportImportServiceConfiguration.validateLayoutReferences();

}

To retrieve the configuration, use one of the following methods of the provider:

getCompanyConfiguration() Used when you want to support different configurations per virtual
instance. In this case, the configuration is usually entered by an admin through Control Panel
→ Configuration → Instance Settings. Since this UI is not automatically generated (yet) you
must extend the UI with your own form.

getGroupConfiguration() Used when you want to support different configurations per site (or, if
desired, per page scope). Usually this configuration is specified by an admin through the
Configuration menu option in an app accessing through the site administration menu. That
UI is developed as a portlet configuration view.

getPortletInstanceConfiguration() Used to obtain the configuration for a specific portlet instance.
Most often you should not be using this directly and use the convenience method in
PortletDisplay instead as shown below.

getSystemConfiguration Used to obtain the configuration for the system scope. These settings are
specified by an admin via the System Settings application or with an OSGi configuration file.

Here are a couple real world examples from Liferay’s source code:

1506

JournalGroupServiceConfiguration configuration =

configurationProvider.getGroupConfiguration(

JournalGroupServiceConfiguration.class, groupId);

MentionsGroupServiceConfiguration configuration =

_configurationProvider.getCompanyConfiguration(

MentionsGroupServiceConfiguration.class, entry.getCompanyId());

Next, you’ll learn a nifty way to to access a portlet instance configuration from a JSP.

Accessing the Portlet Instance Configuration Through the PortletDisplay

Often you must access portlet instance settings from a JSP or from a Java class that isn’t an OSGi
component. To read the settings in these cases, a method was added to PortletDisplay, which is
available as a request object. Here is an example of how to use it:

RSSPortletInstanceConfiguration rssPortletInstanceConfiguration =

portletDisplay.getPortletInstanceConfiguration(

RSSPortletInstanceConfiguration.class);

As you can see, it knows how to find the values and returns a typed bean containing them just
by passing the configuration class.

138.7 Customizing the System Settings User Interface

Liferay DXP applications use the Apache Felix Configuration Admin Service to provide application
configuration. By specifying a single Configuration Interface class, the configuration data is typed
and scoped, and the application gains an auto-generated configuration user interface, available in
Control Panel → Configuration → System Settings once the configuration is registered. If this is new
information for you, consider first reading the set of tutorials onMaking Applications Configurable.

This tutorial describes how to customize the System Settings entry’s user interface in the
following ways:

• Provide a custom form for a configuration object.

• Write a completely custom configuration UI. This is useful especially if you aren’t using the
Configuration Admin service or any of Liferay’s Configuration APIs.

• Exclude a configuration object from System Settings. If you’re providing a completely cus-
tom configuration UI but are still using Configuration Admin, you’ll want to hide the auto-
generated UI. If your configuration is not meant to be accessible to administrative Users
(perhaps because it’s too low level), you might want to exclude it from the System Settings UI.

Providing Custom Configuration Forms

This method relies on an existing Config Admin configuration class, as described here. Here’s an
example configuration class, from Liferay’s own Currency Converter application:

@ExtendedObjectClassDefinition(category = "localization")

@Meta.OCD(

id = "com.liferay.currency.converter.web.configuration.CurrencyConverterConfiguration",

localization = "content/Language",

name = "currency-converter-configuration-name"

1507

)

public interface CurrencyConverterConfiguration {

@Meta.AD(deflt = "GBP|CNY|EUR|JPY|USD", name = "symbols", required = false)

public String[] symbols();

}

There’s one configuration option, symbols, that takes an array of values.
All that’s necessary to customize an auto-generated form is one additional class, an implemen-

tation of the ConfigurationFormRenderer interface.
Implement its three methods:

1. getPid: Return the configuration object’s ID. This is defined in the id property in the
*Configuration class’s @Meta.OCD annotation.

2. getRequestParameters: Read the parameters sent by the custom form and put them in a Map
whose keys should be the names of the fields of the Configuration interface.

3. render: Render the custom form’s fields, using your desired method (for example, JSPs or
another template mechanism). The <form> tag itself is provided automatically and shouldn’t
be included in the ConfigurationFormRenderer.

Here’s a complete ConfigurationFormRenderer implementation:

@Component(immediate = true, service = ConfigurationFormRenderer.class)

public class CurrencyConverterConfigurationFormRenderer

implements ConfigurationFormRenderer {

@Override

public String getPid() {

return "com.liferay.currency.converter.web.configuration.CurrencyConverterConfiguration";

}

@Override

public void render(HttpServletRequest request, HttpServletResponse response)

throws IOException {

String formHtml = "<input name=\"mysymbols\" />";

PrintWriter writer = response.getWriter();

writer.print(formHtml);

}

@Override

public Map<String, Object> getRequestParameters(

HttpServletRequest request) {

Map<String, Object> params = new HashMap<>();

String[] mysymbols = ParamUtil.getParameterValues(request, "mysymbols");

params.put("symbols", mysymbols);

return params;

}

}

The above example generates a custom rendering (HTML) for the form in the render()method
and reads the information entered in the custom form in the getRequestParameters()method.

1508

To see a complete demonstration, including JSPmarkup, read the dedicated tutorial on creating
a configuration form renderer.

Creating a Completely Custom Configuration UI

In some cases, you want a completely custom UI for your configuration. For example:

• Your application doesn’t use Config Admin to provide its configuration. You have a completely
different configuration backend, and you’ll write a completely independent frontend.

• Your application needs more flexibility in its UI, such as multiple configuration screens.

To accomplish this, write a ConfigurationScreen implementation.
At a high level you must

1. Write a Component that declares itself an implementation of the ConfigurationScreen inter-
face.

2. Implement Configurationscreen’s methods.

3. Create the UI by hand.

Here’s an example implementation:

@Component(immediate = true, service = ConfigurationScreen.class)

public class SampleConfigurationScreen implements ConfigurationScreen {

First declare the class an implementation of ConfigurationScreen.

@Override

public String getCategoryKey() {

return "third-party";

}

@Override

public String getKey() {

return "sample-configuration-screen";

}

@Override

public String getName(Locale locale) {

return "Sample Configuration Screen";

}

Second, set the category key, the configuration entry’s key, and its localized name. This exam-
ple puts the configuration entry, keyed sample-cofniguration-screen, into the third-party System
Settings section. The String that appears in System Settings is Sample Configuration Screen.

@Override

public String getScope() {

return "system";

}

1509

Third, set the configuration scope.

@Override

public void render(HttpServletRequest request, HttpServletResponse response)

throws IOException {

_jspRenderer.renderJSP(_servletContext, request, response,

"/sample_configuration_screen.jsp");

}

@Reference private JSPRenderer _jspRenderer;

@Reference(

target ="(osgi.web.symbolicname=com.liferay.currency.converter.web)",

unbind = "-")

private ServletContext _servletContext;

The most important step is to write the rendermethod.This example relies on the JSPRenderer

service to delegate rendering to a JSP.
It’s beyond the scope of this tutorial to write the JSP markup. A separate tutorial will provide a

complete demonstration of the ConfigurationScreen and implementation and the JSP markup to
demonstrate its usage.

Excluding a Configuration UI from System Settings

Providing a custom UI in System Settings is well and good, but what if you instead must exclude
your configuration from the System Settings UI? For instance, if you’re using Config Admin but also
providing a ConfigurationScreen implementation and a custom JSP, you’ll get two System Settings
entries: the custom one you wrote and the auto-generated UI from Config Admin. Other times, a
configuration is required to be present for back-end developers but isn’t intended to be changed in
the UI.

To exclude the UI entry, use the ExtendedObjectClassDefinition annotation property called
generateUI. It defaults to true, so set it to false to suppress the auto-generated UI. Here is an
example:

@ExtendedObjectClassDefinition(generateUI=false)

@Meta.OCD(

id = "com.foo.bar.LowLevelConfiguration",

)

public interface LowLevelConfiguration {

public String[] foo();

public String bar();

}

Now the configuration is available to be managed programmatically or via .config file, but not
via the System Settings UI.

138.8 Configuration Form Renderer

There are various approaches to customizing the auto-generated System Settings UI for your
configurable application. To replace an application’s auto-generated configuration screen with a
form built from scratch, you follow these steps:

1510

1. Use a DisplayContext class to transfer data between back-end code and the desired JSPmarkup.
2. Implement the ConfigurationFormRenderer interface.
3. Render the configuration form. This tutorial demonstrates the use of a JSP and the previously

created DisplayContext class.

A generalized discussion on System Settings UI customization is found in a separate tutorial.
This tutorial demonstrates replacing the configuration UI for the Language Template System

Settings entry, found in Control Panel → Configuration → System Settings → Localization → Language
Template. The same steps apply when replacing your custom application’s auto-generated UI.

Figure 138.1: The auto-generated UI for the Language Template configuration screen is sub-optimal. A select list with more human readable options is preferable.

Specifically, the text input field labeled DDM Template Key in the auto-generated UI is replaced
with a select list field type called Language Selection Style, populated with all possible DDMTemplate
Keys.

Creating a DisplayContext

A DisplayContext class is a POJO that simplifies and minimizes the use of Java logic in JSPs. Display
context usage isn’t required, but it’s a nice convention to follow. It’s a kind of data transfer object,
where the DisplayContext’s setters are called from the Java class providing the render logic (in
this case the ConfigurationFormRenderer’s rendermethod), and the getters are called from the JSP,
removing the need for Java logic to be written inside the JSP itself.

For this example, create a LanguageTemplateConfigurationDisplayContext class with these con-
tents:

public class LanguageTemplateConfigurationDisplayContext {

public void addTemplateValue(

String templateKey, String templateDisplayName) {

1511

_templateValues.add(new String[] {templateKey, templateDisplayName});

}

public String getCurrentTemplateName() {

return _currentTemplateName;

}

public String getFieldLabel() {

return _fieldLabel;

}

public List<String[]> getTemplateValues() {

return _templateValues;

}

public void setCurrentTemplateName(String currentTemplateName) {

_currentTemplateName = currentTemplateName;

}

public void setFieldLabel(String fieldLabel) {

_fieldLabel = fieldLabel;

}

private String _currentTemplateName;

private String _fieldLabel;

private final List<String[]> _templateValues = new ArrayList<>();

}

Next implement the ConfigurationFormRenderer.

Implementing a ConfigurationFormRenderer

First create the component and class declarations. Set the serviceproperty to ConfigurationFormRenderer.class:

@Component(

configurationPid = "com.liferay.site.navigation.language.web.configuration.SiteNavigationLanguageWebTemplateConfiguration",

immediate = true, service = ConfigurationFormRenderer.class

)

public class LanguageTemplateConfigurationFormRenderer

implements ConfigurationFormRenderer {

Next, write an activatemethod (decorated with @Activate and @Modified) to to convert a map of
the configuration’s properties to a typed class. The configuration is stored in a volatile field. Don’t
forget tomake it volatile to prevent thread safety problems. See the article on reading configuration
values from a component class for more information.

@Activate

@Modified

public void activate(Map<String, Object> properties) {

_siteNavigationLanguageWebTemplateConfiguration =

ConfigurableUtil.createConfigurable(

SiteNavigationLanguageWebTemplateConfiguration.class,

properties);

}

private volatile SiteNavigationLanguageWebTemplateConfiguration

_siteNavigationLanguageWebTemplateConfiguration;

Next override the getPid and getRequestParametersmethods:

1512

@Override

public String getPid() {

return "com.liferay.site.navigation.language.web.configuration." +

"SiteNavigationLanguageWebTemplateConfiguration";

}

Return the full configuration ID, as specified in the *Configuration class’s @Meta.OCD annotation.

@Override

public Map<String, Object> getRequestParameters(

HttpServletRequest request) {

Map<String, Object> params = new HashMap<>();

String ddmTemplateKey = ParamUtil.getString(request, "ddmTemplateKey");

params.put("ddmTemplateKey", ddmTemplateKey);

return params;

}

In the getRequestParametersmethod, map the parameters sent by the custom form (obtained
from the request) to the keys of the fields in the Configuration interface.

Provide the render logic via the overridden rendermethod. The rendering approach demon-
strated here uses a JSP. Recall that it’s backed by a DisplayContext class set into the request object.
The values set from this render method are available in the JSP via the DisplayContext object’s
getters.

Loop through the DDMTemplate Keys for the given groupId and set them into the display context
with the addTemplateKey method. Then set the other necessary values that the JSP needs. In this
case, set the title, the field label, and the redirect URL. Finally, call renderJSP and pass in the
servletContext, request, response, and the path to the JSP:

@Override

public void render(HttpServletRequest request, HttpServletResponse response)

throws IOException {

Locale locale = LocaleThreadLocal.getThemeDisplayLocale();

LanguageTemplateConfigurationDisplayContext

languageTemplateConfigurationDisplayContext =

new LanguageTemplateConfigurationDisplayContext();

languageTemplateConfigurationDisplayContext.setCurrentTemplateName(

_siteNavigationLanguageWebTemplateConfiguration.ddmTemplateKey());

long groupId = 0;

Group group = _groupLocalService.fetchCompanyGroup(

CompanyThreadLocal.getCompanyId());

if (group != null) {

groupId = group.getGroupId();

}

List<DDMTemplate> ddmTemplates = _ddmTemplateLocalService.getTemplates(

groupId, _portal.getClassNameId(LanguageEntry.class));

for (DDMTemplate ddmTemplate : ddmTemplates) {

languageTemplateConfigurationDisplayContext.addTemplateValue(

ddmTemplate.getTemplateKey(), ddmTemplate.getName(locale));

}

languageTemplateConfigurationDisplayContext.setFieldLabel(

1513

LanguageUtil.get(

ResourceBundleUtil.getBundle(

locale, LanguageTemplateConfigurationFormRenderer.class),

"language-selection-style"));

request.setAttribute(

LanguageTemplateConfigurationDisplayContext.class.getName(),

languageTemplateConfigurationDisplayContext);

_jspRenderer.renderJSP(

_servletContext, request, response,

"/configuration/site_navigation_language_web_template.jsp");

}

Specify the required service references at the bottom of the class. Be careful to target the proper
servlet context, passing the bundle-SymbolicName of the module (found in its bnd.bnd file) into the
osgi.web.symbolicname property of the reference target:

@Reference

private DDMTemplateLocalService _ddmTemplateLocalService;

@Reference

private GroupLocalService _groupLocalService;

@Reference

private JSPRenderer _jspRenderer;

@Reference

private Portal _portal;

@Reference(

target = "(osgi.web.symbolicname=com.liferay.site.navigation.language.web)",

unbind = "-"

)

private ServletContext _servletContext;

Once the configuration form renderer is implemented, you can write the JSP markup for the
form.

Writing the JSPMarkup

Now write the JSP:

<%@ include file="/init.jsp" %>

<%

LanguageTemplateConfigurationDisplayContext

languageTemplateConfigurationDisplayContext = (LanguageTemplateConfigurationDisplayContext)request.getAttribute(LanguageTemplateConfigurationDisplayContext.class.getName());

String currentTemplateName = languageTemplateConfigurationDisplayContext.getCurrentTemplateName();

%>

<aui:select label="<%= HtmlUtil.escape(languageTemplateConfigurationDisplayContext.getFieldLabel()) %>" name="ddmTemplateKey" value="<%= currentTemplateName %>">

<%

for (String[] templateValue : languageTemplateConfigurationDisplayContext.getTemplateValues()) {

%>

<aui:option label="<%= templateValue[1] %>" selected="<%= currentTemplateName.equals(templateValue[0]) %>" value="<%= templateValue[0] %>" />

<%

}

%>

</aui:select>

1514

The opening scriptlet gets the display context object from the request so that all its getters are in-
vokedwhenever information from the back-end is required. Right away, the getCurrentTemplateName
method is called, since the current template name is needed for the first option’s ddmTemplateKey
display value as soon as the form is rendered. This happens in the <aui:select> tag. There’s just a
bit of logic used to create an option for each of the available DDM templates that can be chosen.

So what does this example look like when all is said and done?

Figure 138.2: A select list provides a more user friendly configuration experience than a text field.

Some configuration UIs require tweaking with a ConfigurationFormRenderer. This tutorial shows
a particularly good example. Administrators encountering the Language Template entry in System
Settings won’t know the DDM Template Keys they can use offhand. Providing the available values
in a select field wildly enhances the user experience.

1515

CHAPTER 139

INTERNATIONALIZATION

Localizing content and designing apps for different locales is a straightforward process. You can
centralize messages (language keys) and translate themmanually or automatically, including form
localization and setting text in either direction (left-to-right or right-to-left). Customizing messages
in apps is easy too. Read on to learn how to internationalize your applications.

139.1 Localizing Your Application

If you’re writing a Liferay Application, you’re probably a genius who is also really cool, which
means your application will be used throughout the entire world. At least, if its messages can be
translated into their language, it will. Thankfully, Liferay makes it easy to support translation of
your application’s language keys.

Note: Even if you don’t plan to translate your application into multiple languages, use the
localization pattern presented here for any messages displayed in your user interface. It’s much
easier to change the messages by updating a language properties file than by finding every instance
of a message and replacing it in your JSPs and Java classes.

You just need to create a default language properties file (Language.properties) and one for each
translation you’d like to support (for example, Language_fr.properties for your French translation),
and put them in the correct location in your application. Use the two letter locale that corresponds
to the language you want to translate in your file names (for example, Language_es.properties
provides a Spanish translation for each key).

Application localization topics:

• What are Language Keys?
• What Locales are Available By Default?
• Where do I Put Language Files?
• Creating a Language Module
• Using a Language Module
• Using Liferay DXP’s Language Properties

1517

What are Language Keys?

Each language property file holds key/value pairs. The key is the same in all the language property
files, while the value is translated in each file. You specify the key in your user interface code, and
the appropriately translated message is returned automatically for your users, depending on the
locale being used in Liferay. If you have Liferay running locally, append the URL with a supported
locale to see the translations (for example, enter localhost:8080/es).

Figure 139.1: Append the locale to your running Liferay’s URL and see Liferay’s translation power in action.

Language keys are just keys to use in place of a hard coded, fully translated String value in your
user interface code. You use a language key in your JSP with a <liferay-ui:message /> tag.

If you wanted to hard code a message, you’d use the tag like this:

<liferay-ui:message key="Howdy, Partner!" />

In that case you’ll get a properly capitalized and punctuated message in your application.
Instead, specify a simple key instead of the final value:

<liferay-ui:message key="howdy-partner" />

That way you can provide a translation of the key in a default language properties file
(Language.properties):

howdy-partner=Howdy, Partner!

Either way, you get the same output. The properties file lets you put all your messages in one
place, and you can add additional language properties files with translations later. You just need to
make sure there’s a locale that corresponds to your translation.

The values from your default Language.properties file appear if no locale is specified. If a locale
is specified, a key from a file corresponding to that local is retrieved. For example, if a Spanish
translation is sought, a Language_es.properties file must be present to provide the proper values. If
it isn’t, the default language properties (from the Language.properties file) are used.

What Locales are Available By Default?

There are a bunch of locales available by default in Liferay. Look in the portal.properties file to
find them.

locales=ar_SA,eu_ES,bg_BG,ca_AD,ca_ES,zh_CN,zh_TW,hr_HR,cs_CZ,da_DK,nl_NL,

nl_BE,en_US,en_GB,en_AU,et_EE,fi_FI,fr_FR,fr_CA,gl_ES,de_DE,el_GR,

iw_IL,hi_IN,hu_HU,in_ID,it_IT,ja_JP,ko_KR,lo_LA,lt_LT,nb_NO,fa_IR,

pl_PL,pt_BR,pt_PT,ro_RO,ru_RU,sr_RS,sr_RS_latin,sl_SI,sk_SK,es_ES,

sv_SE,tr_TR,uk_UA,vi_VN

To provide a translation for one of these locales, specify the locale in the file name containing
the translated keys (for example, Language_es.properties holds the Spanish translation).

1518

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Languages%20and%20Time%20Zones

Where do I Put Language Files?

In an application with only one module that holds all your application’s views (for example, all
its JSPs) and portlet components, create a src/main/resources/content folder in that module, and
place your Language.properties and Language_xx.properties files there.

After that, make sure any portlet components (the @Component annotation in your -Portlet

classes) in the module include this property:

"javax.portlet.resource-bundle=content.Language"

Providing translated language properties files and specifying the javax.portlet.resource-bundle

property in your portlet component is all you must do to point Liferay DXP at your translations.
Users see the translations for the locales they select.

In a more complicated, well-modularized application, you might have language keys spread
over multiple modules providing portlet components and JSP files. Moreover, there might be a fair
number of duplicated language keys between the modules. Thankfully you don’t need to maintain
language properties files in each module.

Creating a Language Module

If you’re crazy about modularity (and you should be), you might have an application with multiple
modules that provide the view layer. These modules are often called web modules.

my-application/

my-application-web/

my-admin-application-web/

my-application-content-web/

my-application-api/

my-application-service/

Each of these modules can have language keys and translations to maintain, and there will
probably be duplicate keys. You don’t want to end up with different values for the same key, and
you don’t want to maintain language keys in multiple places. In this case, you need to go even
crazier with modularity and create a new module, which we’ll call a language module.

In the root project folder (the one that holds your service, API, and web modules), create a new
module to hold your app’s language keys. For example, here’s the folder structure of a language
module called my-application-lang.

my-application-lang/

bnd.bnd

src/

main/

resources/

content/

Language.properties

Language_ar.properties

Language_bg.properties

...

In the language module, create a src/main/resources/content folder. Put your language proper-
ties files here. A Language.properties file might look like this:

application=My Application

add-entity=Add Entity

1519

Create any translations you want, adding the translation locale ID to the language file name.
File Language_es.propertiesmight look like this:

my-app-title=Mi Aplicación

add-entity=Añadir Entity

On building the languagemodule, Liferay DXP’s ResourceBundleLoaderAnalyzerPlugin detects the
content/Language.properties file and adds a resource bundle capability to the module. A capability
is a contract a module declares to Liferay DXP’s OSGi framework. Capabilities let you associate ser-
vices with modules that provide them. In this case, Liferay DXP registers a ResourceBundleLoader
service for the resource bundle capability.

Next, you’ll configure a web module to use the language module resource bundle.

Using a Language Module

A module or traditional Liferay plugin can use a resource bundle from another module and op-
tionally include its own resource bundle. OSGi manifest headers Require-Capability and Provide-

Capabilitymake this possible, and it’s especially easy in modules generated from Liferay project
templates. Instructions for using a language module are divided into these environments:

• Using a Language Module from a Module
• Using a Language Module from a Traditional Plugin

If you’re using bnd with Maven or Gradle, you need only specify Liferay’s -liferay-aggregate-
resource-bundle: bnd instruction–at build time, Liferay’s bnd plugin converts the instruction to
Require-Capability and Provide-Capability parameters automatically. Both approaches are demon-
strated.

Using a Language Module from a Module

Modules generated from Liferay project templates have a Liferay bnd build time instruction called
-liferay-aggregate-resource-bundles. It lets you use other resource bundles (e.g., including their
language keys) along with your own. Here’s how to do it:

1. Open your module’s bnd.bnd file.

2. Add the -liferay-aggregate-resource-bundles: bnd instruction and assign it the bundle sym-
bolic names of modules whose resource bundles to aggregate with the current module’s
resource bundle.

-liferay-aggregate-resource-bundles: \

[bundle.symbolic.name1],\

[bundle.symbolic.name2]

For example, amodule that uses resourcebundles frommodules com.liferay.docs.l10n.myapp1.lang
and com.liferay.docs.l10n.myapp2.lang would set this in its bnd.bnd file:

-liferay-aggregate-resource-bundles: \

com.liferay.docs.l10n.myapp1.lang,\

com.liferay.docs.l10n.myapp2.lang

1520

http://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ResourceBundleLoader.html

The current module’s resource bundle is prioritized over those of the listed modules.

The Shared Language Key sample project is a working example that demonstrates aggregating
resource bundles. You can deploy it in Gradle, Maven, and LiferayWorkspace build environments.

At build time, Liferay’s bnd plugin converts the bnd instruction to Require-Capability and
Provide-Capability parameters automatically. In traditional Liferay plugins, you must specify the
parameters manually.

Note: You can always specify the Require-Capability and Provide- Capability OSGi manifest
headers manually, as the next section demonstrates.

Using a Language Module from a Traditional Plugin

To use a language module, from a traditional Liferay plugin you must specify the language module
using Require-Capability and Provide-Capability OSGi manifest headers in the plugin’s liferay-

plugin-package.properties file.
Follow these steps to configure your traditional plugin to use a language module:

1. Open the plugin’s liferay-plugin-package.properties file and add a Require-Capability header
that filters on the language module’s resource bundle capability. For example, if the language
module’s symbolic name is myapp.lang, you’d specify the requirement like this:

Require-Capability: liferay.resource.bundle;filter:="(bundle.symbolic.name=myapp.lang)"

2. In the same liferay-plugin-package.properties file, add a Provide-Capability header that adds
the language module’s resource bundle as this plugin’s (the myapp.web plugin) own resource
bundle:

Provide-Capability:\

liferay.resource.bundle;resource.bundle.base.name="content.Language",\

liferay.resource.bundle;resource.bundle.aggregate:String="(bundle.symbolic.name=myapp.lang)";bundle.symbolic.name=myapp.web;resource.bundle.base.name="content.Language";service.ranking:Long="4";\

servlet.context.name=myapp-web

In this case, the myapp.web plugin solely uses the language module’s resource bundle—the
resource bundle aggregate only includes language module myapp.lang.

Aggregating resource bundles comes into play when you want to use a language module’s
resource bundle in addition to your plugin’s resource bundle. These instructions show you how to
do this, while prioritizing your current plugin’s resource bundle over the languagemodule resource
bundle. In this way, the language module’s language keys compliment your plugin’s language keys.

For example, a portlet whose bundle symbolic name is myapp.web uses keys from language
module myapp.lang, in addition to its own. The portlet’s Provide-Capability and Web-ContextPath

OSGi headers accomplish this.

Provide-Capability:\

liferay.resource.bundle;resource.bundle.base.name="content.Language",\

liferay.resource.bundle;resource.bundle.aggregate:String="(bundle.symbolic.name=myapp.web),(bundle.symbolic.name=myapp.lang)";bundle.symbolic.name=myapp.web;resource.bundle.base.name="content.Language";service.ranking:Long="4";\

servlet.context.name=myapp-web

The example Provide-Capability header has two parts:

1521

1. liferay.resource.bundle;resource.bundle.base.name="content.Language" declares that the
module provides a resource bundle whose base name is content.language.

2. The liferay.resource.bundle;resource.bundle.aggregate:String=... directive specifies the list
of bundles whose resource bundles are aggregated, the target bundle, the target bundle’s
resource bundle name, and this service’s ranking:

• "(bundle.symbolic.name=myapp.web),(bundle.symbolic.name=myapp.lang)": The service ag-
gregates resource bundles from bundles bundle.symbolic.name=myapp.web (the current
module) and bundle.symbolic.name=myapp.lang. Aggregate as many bundles as desired.
Listed bundles are prioritized in descending order.

• bundle.symbolic.name=myapp.web;resource.bundle.base.name="content.Language": Over-
ride the myapp.web bundle’s resource bundle named content.Language.

• service.ranking:Long="4": The resource bundle’s service ranking is 4. The OSGi frame-
work applies this service if it outranks all other resource bundle services that target
myapp.web’s content.Language resource bundle.

• servlet.context.name=myapp-web: The target resource bundle is in servlet context myapp-
web.

Now the language keys from the aggregated resource bundles compliment your plugin’s lan-
guage keys.

Did you know that Liferay DXP’s core language keys are also available to your module? They’re
up next.

Using Liferay's Language Properties

If you have Liferay DXP’s source code, you can check out Liferay DXP’s core language properties by
looking in the portal-impl/src/main/content folder. Otherwise, you can look in the portal-impl.jar

that’s in your Liferay bundle.

liferay-portal/portal-impl/src/content/Language_xx.properties

[Liferay Home]/tomcat-[version]/webapps/ROOT/WEB-INF/lib/portal-impl.jar

These keys are available at runtime, so when you use any of Liferay DXP’s default keys in your
user interface code, they’re automagically swapped out for the appropriately translated value.
Using Liferay DXP’s keys where possible saves you time and ensures that your application follows
Liferay’s UI conventions.

If you want to generate language files for each supported locale automatically, or to configure
your application to generate translations automatically using the Microsoft Translator API, check
out the tutorial Automatically Generating Language Files.

139.2 Automatically Generating Language Files

If you already have a Language.properties file that holds language keys for your user interface
messages, or even a language module that holds these keys, you’re in the right place. In this
tutorial, you’ll explore the following capabilities:

1522

• Generating language properties files for each supported locale with a single command. This
prevents you from having to create a language properties file for each locale manually. The
same command also propagates the keys from the default language file to all translation files.

• Generating automatic translations using Microsoft’s Translator Text API. This prevents you
from translating each message manually.

Generating Language Files for Supported Locales

If you want to generate files automatically for all supported locales, you must make a small modifi-
cation to your application’s build file.

1. Make sure your module’s build includes the com.liferay.lang.builder plugin by putting it in
your build script’s classpath. If you’re using LiferayWorkspace, the Lang Builder is already
available to your modules.

Here’s what a configuration of the com.liferay.lang.builder plugin looks in a build.gradle

file:

buildscript {

dependencies {

classpath 'com.liferay:com.liferay.gradle.plugins.lang.builder:latest.release'

}

repositories {

maven {

url "http://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.lang.builder"

repositories {

maven {

url "http://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

2. Create (if necessary) a default Language.properties file in the src/main/resources/content

folder.

3. Run the gradlew buildLang task from your project’s root folder to generate default translation
files.

The generatedfiles contain copies of all the keys andvalues in yourdefault Language.properties
files. Run the buildLang task each time you change the default language file.

When the task completes, it prints BUILD SUCCESSFUL with this log output:

Translation is disabled because credentials are not specified

See the next section to learn how to provide credentials to enable translation services.

Now you can begin translating your application’s messages. If you want to configure your app
to generate automatic translations using the Microsoft Translator Text API, keep reading.

1523

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Languages%20and%20Time%20Zones
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-lang-builder

Translating Language Keys Automatically

If you’ve configured the com.liferay.lang.builder plugin in your app, you’re almost there. Now you
have to configure Microsoft’s Translator Text API so you can generate automatic translations of
your language keys. You cannot, however, use Liferay’s Lang Builder to automatically translate
language keys containing HTML (e.g., , , <code>, etc.). Language keys containing HTML are
automatically copied to all supported language files.

Note: These translations are best used as a starting point. A machine translation can’t match
the accuracy of a real person who is fluent in the language. Then again, if you only speak English
and you need a Hungarian translation, this is better and faster than your attempts at a manual
translation.

1. Generate a translation subscription key for the Microsoft Translator Text API. Follow the
instructions here.

2. Make sure the buildLang task knows to use your subscription key for translation by setting
the translateSubscriptionKey property:

buildLang {

translateSubscriptionKey = "my-key"

}

For security reasons, you probably don’t want to pass them directly in your application’s
build script. Instead, pass the credentials to a property that’s stored in your local build
environment, and pass the property into your application’s build script.

buildLang {

translateSubscriptionKey = langTranslateSubscriptionKey

}

Sowhat would the complete buildLang configuration look like if you followed all the steps above?

buildscript {

dependencies {

classpath 'com.liferay:com.liferay.gradle.plugins.lang.builder:latest.release'

}

repositories {

maven {

url "http://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.lang.builder"

buildLang {

translateSubscriptionKey = langTranslateSubscriptionKey

}

repositories {

maven {

url "http://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

1524

https://azure.microsoft.com/en-us/services/cognitive-services/translator-text-api/
http://docs.microsofttranslator.com/text-translate.html
https://docs.gradle.org/current/userguide/build_environment.html
https://docs.gradle.org/current/userguide/build_environment.html

Great! You can now generate language files and provide automatic translations of your language
keys.

139.3 Using Liferay's Language Settings

For a given locale, you can override Liferay DXP’s core UImessages. Modifying language key values
provides a lot of localization flexibility in itself, but we’re always looking for new ways to give you
more control. There are language settings in Language_xx.properties files that give you even more
localization options.

• In the add and edit user forms, configure the name fields that are displayed and the field
values available in select fields. For example, leave out the middle name field if you want, or
alter the prefix selections.

• Control the directionality of content and messages (left to right or right to left).

To see how these settings are configured, open Liferay DXP’s core Language.properties file in
one of two ways:

1. From Liferay Portal’s source code. Navigate to

liferay-portal/portal-impl/src/content/Language.properties

2. From a bundle’s portal-impl.jar.

[Liferay Home]/tomcat-[version]/webapps/ROOT/WEB-INF/lib/portal-impl.jar

Just open the content folder in the JAR to find the language files.

The first section in the Language.properties file is labeled Language Settings:

##

Language Settings

##

lang.dir=ltr

lang.line.begin=left

lang.line.end=right

lang.user.default.portrait=initials

lang.user.initials.field.names=first-name,last-name

lang.user.name.field.names=prefix,first-name,middle-name,last-name,suffix

lang.user.name.prefix.values=Dr,Mr,Ms,Mrs

lang.user.name.required.field.names=last-name

lang.user.name.suffix.values=II,III,IV,Jr,Phd,Sr

Note: To use the language settings mentioned here, you need a module, which is like a magic
carpet on which your code and resources ride triumphantly into Liferay DXP’s OSGi runtime. Refer
to the tutorial on overriding language keys to set up a module with the following characteristics:

• Contains an implementation of ResourceBundle that is registered in the OSGi runtime.

1525

• Contains a Language.properties file for the locale whose properties you want to override.

The user name properties are used to customize certain fields of the Add and Edit user forms
based on a user’s locale.

Localizing User Names

Customers come from all over the world, so naming conventions are different between locales.
Because of this, user name fields are configurable in the following ways:

• Remove certain name fields and make others appear more than once. Some locales need
more than one last name, for example.

lang.user.name.field.names=prefix,first-name,middle-name,last-name,suffix

• Change the prefix and suffix values for a locale.

lang.user.name.prefix.values=Dr,Mr,Ms,Mrs

lang.user.name.suffix.values=II,III,IV,Jr,Phd,Sr

• Specify which fields are required.

lang.user.name.required.field.names=last-name

Note: A user’s first name is mandatory. Because of this, take these two points into consideration
when configuring a locale’s user name settings:

• The first-name field can’t be removed from the field names list.

lang.user.name.field.names=prefix,first-name,middle-name,last-name,suffix

• Because a first name is required, it’s always implicitly included in the required field names
property:

lang.user.name.required.field.names=last-name

Therefore, any fields you enter here are in addition to the first name field. Last name is
required by default, but you can disable it by deleting its value from the property:

lang.user.name.required.field.names=

In that case, only a first name would be required.

The properties for changing user name settings are those that begin with lang.user.name in the
language settings section of a locale’s language properties file.

For most of the locales enabled by default, the user name properties are specifically tailored to
that location.

1526

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Languages%20and%20Time%20Zones

locales.enabled=ca_ES,zh_CN,nl_NL,en_US,fi_FI,fr_FR,de_DE,iw_IL,hu_HU,ja_JP,pt_BR,es_ES

For example, these are the English (i.e., Language_en.properties) properties for setting user
name fields:

lang.user.name.field.names=prefix,first-name,middle-name,last-name,suffix

lang.user.name.prefix.values=Dr,Mr,Ms,Mrs

lang.user.name.required.field.names=last-name

lang.user.name.suffix.values=II,III,IV,Jr,Phd,Sr

Figure 139.2: The user name settings impact the way user information and forms appear in Liferay.

Compare those to the Spanish (Language_es.properties) settings:

lang.user.name.field.names=prefix,first-name,last-name

lang.user.name.prefix.values=Sr,Sra,Sta,Dr,Dra

lang.user.name.required.field.names=last-name

Figure 139.3: The Spanish user name settings omit the suffix andmiddle name fields entirely.

The biggest difference between the English and Spanish form fields is that the middle name
and suffix fields are omitted in the Spanish configuration. Other differences include the specific
prefix values.

1527

¡Muy excelente! Localizing the forms for adding and editing users is accomplished using
the same method by which Liferay DXP’s UI messages are localized: overriding one of its
Lanuguage_xx.properties files.

Identifying User Initials

The default avatar displays a user’s initials. Some cultures use initials differently, so there’s a way
to configure them in the Language.properties file.

lang.user.default.portrait=initials

lang.user.initials.field.names=first-name,last-name

The lang.user.default.portrait property sets the type of portrait to use for users.
This can be set to initials or image. If set to image, the default images defined by the
image.default.user.female.portrait or image.default.user.male.portrait properties residing
in the portal.properties file are used. Therefore, the lang.user.initials.field.names property is
ignored.

Figure 139.4: The user’s initials are displayed for their avatar by default.

If you’re leveraging the user’s initials for the default avatar, the lang.user.initials.field.names

property is used to organize how the initials are displayed. Valid values for this property include
first-name, middle-name, and last-name, in any order.

Now you can manage how a user’s initials are displayed!

Right to Left or Left to Right?

The first three properties in the Language.properties’s Language Settings section change the direc-
tion in which the language’s characters are displayed. Most languages are read from left to right,
but some languages are read from right to left (e.g., Arabic, Hebrew, and Persian). You can also
change it for languages that have been traditionally displayed left to right (like English) as a funny
practical joke. Just don’t tell anyone that you got the idea here.

Here’s what the relevant language properties look like for a language that should be displayed
from right to left:

lang.dir=rtl

lang.line.begin=right

lang.line.end=left

With these customizations, you can transform your UI into a user-friendly environment no
matter where your users are from.

Note: You can prevent specific CSS rules from transforming (flipping) with the /* @noflip ⁎/

decoration. Place the decoration to the left of the CSS rule to apply it. For example, this rule gives a
left margin of 20em to the body no matter if the selected language is LTR or RTL:

1528

/* @noflip ⁎/ body {

margin-left: 20em;

}

You can also use the .rtl CSS selector for rules that exclusively apply to RTL languages.

1529

CHAPTER 140

APPLICATION DISPLAY TEMPLATES

In the past, when you needed tomodify theUI of awidget, you had to use a hook (e.g., HTML-related
change) or a theme (e.g., CSS-related change). It would be nice to apply particular display changes
to specific widget instances without having to redeploy any plugins. Ideally, you should be able to
provide authorized portal users the ability to apply custom display interfaces to widgets.

Be of good cheer! That’s precisely what Application Display Templates (ADTs) provide–the
ability to customize the way widgets appear on a page, removing limitations to the way your
site’s content is displayed. With ADTs, you can define custom display templates used to render
asset-centric widgets. This isn’t actually a new concept in Liferay DXP; some widgets already had
templating capabilities (e.g., Web Content and Dynamic Data Lists), in which you can already add as
many display options (or templates) as you want. Now you can add them to your custom portlets,
too.

Some portlets that already support Application Display Templates in 7.1 are

• Asset Publisher
• Blogs
• Breadcrumb
• Categories Navigation
• Language Selector
• Media Gallery
• Navigation Menu
• RSS Publisher
• Site Map
• Tags Navigation
• Wiki

Continue on to add support for ADTs in your custom portlet.

140.1 Implementing Application Display Templates

Application Display Templates (ADTs) let you add custom display templates to your widgets from
the portal. The figure below shows what the Display Template option looks like in a widget’s
Configuration menu.

1531

Figure 140.1: By using a custom display template, your portlet’s display can be customized.

In this tutorial, you’ll learn how to use the Application Display Templates API to add an ADT to
a portlet.

Using the Application Display Templates API

To leverage the ADT API, there are several steps you must follow. These steps involve

• registering your portlet to use ADTs
• defining permissions
• exposing the ADT functionality to users

You’ll walk through these steps next.

1. Create and register a custom *PortletDisplayTemplateHandler component. Liferay provides
the BasePortletDisplayTemplateHandler as a base implementation for you to extend. You can
check the TemplateHandler interface Javadoc to learn about each template handler method.
The @Component annotation ties your handler to a specific portlet by setting the property
javax.portlet.name to your portlet’s name. The same property should be found in your portlet
class. For example,

@Component(

immediate = true,

property = {

"javax.portlet.name="+ AssetCategoriesNavigationPortletKeys.ASSET_CATEGORIES_NAVIGATION

1532

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portletdisplaytemplate/BasePortletDisplayTemplateHandler.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/template/TemplateHandler.html

},

service = TemplateHandler.class

)

Each of the methods in this class have a significant role in defining and implementing ADTs
for your custom portlet. The list below highlights some of the methods defined specifically
for ADTs:
getClassName(): Defines the type of entry your portlet is rendering.
getName(): Declares the name of your ADT type (typically, the name of the portlet).
getResourceName(): Specifies which resource is using the ADT (e.g., a portlet) for per-
mission checking. This method must return the portlet’s fully qualified portlet ID (e.g.,
com_liferay_wiki_web_portlet_WikiPortlet).
getTemplateVariableGroups(): Defines the variables exposed in the template editor.
As an example *PortletDisplayTemplateHandler implementation, you can look at the
WikiPortletDisplayTemplateHandler class.

2. Since the ability to add ADTs is new to your portlet, you must configure permissions so that
administrative users can grant permissions to the roles that will be allowed to create and
manage display templates. Add the action key ADD_PORTLET_DISPLAY_TEMPLATE to your portlet’s
/src/main/resources/resource-actions/default.xml file:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action Mapping 7.1.0//EN" "http://www.liferay.com/dtd/liferay-

resource-action-mapping_7_1_0.dtd">

<resource-action-mapping>

...

<portlet-resource>

<portlet-name>yourportlet</portlet-name>

<permissions>

<supports>

<action-key>ADD_PORTLET_DISPLAY_TEMPLATE</action-key>

<action-key>ADD_TO_PAGE</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

...

</permissions>

</portlet-resource>

...

</resource-action-mapping>

3. Next, you must ensure that Liferay DXP can find the updated default.xml with the new re-
source action when you deploy the module. Create a file named portlet.properties in the
/resources folder and add the following contents providing the path to your default.xml:

include-and-override=portlet-ext.properties

resource.actions.configs=resource-actions/default.xml

4. Now that your portlet officially supports ADTs, you should expose the ADToption to your users.
Include the <liferay-ui:ddm-template-selector> tag in the JSP file you’re using to control your
portlet’s configuration.
For example, it may be helpful for you to insert an <aui:fieldset> in your configuration JSP
file like this:

1533

https://github.com/liferay/liferay-portal/blob/7.1.3-ga4/modules/apps/wiki/wiki-web/src/main/java/com/liferay/wiki/web/internal/portlet/template/WikiPortletDisplayTemplateHandler.java

<aui:fieldset>

<div class="display-template">

<liferay-ddm:template-selector

classNameId="<%= YourEntity.class.getName() %>"

displayStyle="<%= displayStyle %>"

displayStyleGroupId="<%= displayStyleGroupId %>"

refreshURL="<%= PortalUtil.getCurrentURL(request) %>"

showEmptyOption="<%= true %>"

/>

</div>

</aui:fieldset>

In this JSP, the <liferay-ddm:template-selector> tag specifies the Display Template drop-
down menu to be used in the widget’s Configuration menu. The variables displayStyle

and displayStyleGroupId are preferences that your portlet stores when you use this taglib and
your portlet uses the BaseJSPSettingsConfigurationAction or DefaultConfigurationAction.
Otherwise, you must obtain the value of those parameters and store themmanually in your
configuration class.
As an example JSP, see theWiki widget’s configuration.jsp.

5. You must now extend your view code to render your portlet with the selected ADT. This
lets you decide which part of your view is rendered by the ADT and what is available in the
template context.
First, initialize the Java variables needed for the ADT:

<%

String displayStyle = GetterUtil.getString(portletPreferences.getValue("displayStyle", StringPool.BLANK));

long displayStyleGroupId = GetterUtil.getLong(portletPreferences.getValue("displayStyleGroupId", null), scopeGroupId);

%>

Next, you can test if the ADT is configured, grabs the entities to be rendered, and renders
them using the ADT. The tag <liferay-ddm:template-renderer> aids with this process. It auto-
matically uses the selected template, or renders its body if no template is selected.
Here’s some example code that demonstrates implementing this:

<liferay-ddm:template-renderer

className="<%= YourEntity.class.getName() %>"

contextObjects="<%= contextObjects %>"

displayStyle="<%= displayStyle %>"

displayStyleGroupId="<%= displayStyleGroupId %>"

entries="<%= yourEntities %>"

>

<%-- The code that will be rendered by default when there is no

template available should be inserted here. --%>

</liferay-ddm:template-renderer>

In this step, you initialized variables dealing with the display settings (displayStyle and
displayStyleGroupId) and passed them to the tag along with other parameters listed below:

• className: your entity’s class name.
• contextObjects: accepts a Map<String, Object> with any object you want to the template
context.

1534

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BaseJSPSettingsConfigurationAction.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/DefaultConfigurationAction.html
https://github.com/liferay/liferay-portal/blob/7.1.3-ga4/modules/apps/wiki/wiki-web/src/main/resources/META-INF/resources/wiki/configuration.jsp

• entries: accepts a list of your entities (e.g., List<YourEntity>).

For an example that demonstrates implementing this, see configuration.jsp.

Awesome! Your portlet now supports ADTs! Once your script is uploaded into the portal and
saved, users with the specified roles can select the template when they’re configuring the display
settings of your portlet on a page. You can visit the Styling Widgets with Application Display
Templates section for more details on using ADTs.

140.2 Recommendations for Using ADTs

You’ve harnessed a lot of power by learning to leverage the ADT API. Be careful, for with great
power, comes great responsibility! To that end, you’ll learn about some practices you can use to
optimize your portlet’s performance and security.

First let’s talk about security. You may want to hide some classes or packages from the template
context, to limit the operations that ADTs can perform on your portal. Liferay provides some portal
system settings, which can be accessed by navigating to Control Panel → Configuration → System
Settings → Template Engines → FreeMarker Engine, to define the restricted classes, packages, and
variables. In particular, you may want to add serviceLocator to the list of default values assigned to
the FreeMarker Engine Restricted variables.

Application Display Templates introduce additional processing tasks when your portlet is
rendered. To minimize negative effects on performance, make your templates as minimal as
possible by focusing on the presentation, while using the existing API for complex operations. The
best way to make Application Display Templates efficient is to know your template context well,
and understand what you can use from it. Fortunately, you don’t need to memorize the context
information, thanks to Liferay’s advanced template editor!

To navigate to the template editor for ADTs, go to the Site Admin menu and select Configuration
→ Application Display Templates and then click Add and select the specific portlet on which you
decide to create an ADT.

The template editor provides fields, general variables, and util variables customized for the
portlet you chose. These variable references can be found on the left-side panel of the template
editor. You can use them by simply placing your cursor where you’d like the variable placed, and
clicking the desired variable to place it there. You can learn more about the template editor in the
StylingWidgets with Application Display Templates section.

Finally, don’t forget to run performance tests and tune the template cache options bymodifying
the Resource modification check field in System Settings → Template Engines → FreeMarker Engine.

The cool thing about ADTs is the power they provide to your portlets, providing infinite ways
of editing your portlet to provide new interfaces for your portal users. Be sure to configure your
FreeMarker templates appropriately for the most efficient customization process.

1535

https://github.com/liferay/liferay-portal/blob/7.1.3-ga4/modules/apps/site-navigation/site-navigation-site-map-web/src/main/resources/META-INF/resources/configuration.jsp

CHAPTER 141

AUDIENCE TARGETING

Liferay’s Audience Targeting application uses defined criteria to display content to users, who are
organized into segments. You can target content to those user segments and create campaigns to
expose user segments to a certain set of assets. Visit Targeting Content to your Audience for more
information on Audience Targeting and how to use it.

Audience Targeting can be used to do all this without any customization, but it also contains a
framework to be extended by developers.

There are a set of extension points you can use to customize its functionality, including

• Rule Types
• Report Types
• Report Metrics

Audience Targeting extensions are created using OSGi modules. There are convenient Blade
CLI templates for creating these projects, but you can create the modules any way you want.

Important: Not all AudienceTargeting features function using the embeddedHSQLdatabase, so
developers must use a Liferay-supported database to make full use of Audience Targeting features.

In these tutorials, you’ll learn how to create these extension points for your Audience Targeting
application.

141.1 Accessing the Content Targeting API

With the Content Targeting API you can integrate Audience Targeting features with third party
applications or customize howLiferay’s applications interact with AudienceTargeting. For example,
you could list user segments in your own application or update a campaign when someone creates
a calendar event.

In this tutorial, you’ll learn how to give your application access to the Content Targeting API.
Then you can view some examples of how to use the Java and JSON APIs that are available.

1537

Exposing the Content Targeting API

Configuring your app to have access to the Content Targeting API requires only one line of code.
This line of code is a dependency that should be added to your project’s build file. Follow the
instructions below to add the Content Targeting API dependency for a Gradle project.

1. Open the build.gradle file in your app’s project folder.

2. Find the dependencies { ... } declaration and add the following line within that section:

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.api", version: 5.0.0"

Your app now has access to the Content Targeting API and can take advantage of everything
Audience Targeting has to offer. Next, you’ll learn how to use the Content Targeting API by studying
a few examples.

Using the Content Targeting Java API

You can call the Content Targeting API through Java or through JSON.
To display a list of existing user segments in your portlet using Java,

1. Obtain an implementation of the UserSegmentLocalService provided by Audience Targeting
by adding the following code to your Portlet class (e.g., the class that extends the MVCPortlet

class):

@Reference(unbind = "-")

protected void setUserSegmentLocalService(

UserSegmentLocalService userSegmentLocalService) {

_userSegmentLocalService = userSegmentLocalService;

}

private UserSegmentLocalService _userSegmentLocalService;

When the Audience Targeting application is installed and an implementation of the
UserSegmentLocalService is available, the _userSegmentLocalService field is populated.
Otherwise, the portlet is unavailable till this dependency is resolved.

2. Use the service to obtain a list of existing user segments and make it available to your view
layer as a request attribute. To do this, add logic to your portlet class that obtains user
segments and exposes them in a request attribute, like this:

ThemeDisplay themeDisplay = (ThemeDisplay)renderRequest.getAttribute(

WebKeys.THEME_DISPLAY);

List<UserSegment> userSegments = null;

try {

userSegments = _userSegmentLocalService.getUserSegments(

themeDisplay.getScopeGroupId());

}

catch (Exception e) {

_log.error(e, e);

}

renderRequest.setAttribute("userSegments", userSegments);

private static final Log _log = LogFactoryUtil.getLog(MyPortlet.class)

1538

Notice that the userSegments list is populated by calling UserSegmentLocalService’s
getUserSegmentsmethod. This service is part of the Content Targeting API.

3. Add this logic to your portlet’s view.jsp:

<h2>User Segments</h2>

<%

List<UserSegment> userSegments = (List<UserSegment>)request.getAttribute("userSegments");

for (UserSegment userSegment : userSegments) {

%>

<%= userSegment.getName(locale) %>

<%

}

%>

This logic uses the UserSegment object to list the existing user segments. That’s it! By importing
the UserSegment and UserSegmentLocalService classes into your files, you have direct access to
your portal’s user segments through the Content Targeting Java API.

Using the Content Targeting JSON API

You could do the same thing using the JSON API.

1. Open your portlet’s view.jsp file and insert the following code:

<h2>Campaigns</h2>

<ul id="<portlet:namespace/>campaigns">

<aui:script use="aui-base">

var campaignsList = A.one('#<portlet:namespace/>campaigns');

Liferay.Service(

'/ct.campaign/get-campaigns',

{

groupId: '<%= scopeGroupId %>'

},

function(response) {

if (response.length) {

A.Array.each(response, function(item) {

campaignsList.append('' + item.name + '');

});

}

}

);

</aui:script>

Notice that the Content Targeting API is called to retrieve the existing campaigns:

Liferay.Service(

'/ct.campaign/get-campaigns',

{

1539

Then, each campaign is listed in the campaignsList and displayed in your portlet for users to
see.

If you want to view all the available methods (with examples) exposed in the JSON API by
Audience Targeting, you can visit the /api/jsonws URL (e.g., localhost:8080/api/jsonws). As you can
see, accessing the Content Targeting JSON API is just as easy as accessing the related Java API.

You’ve learned how to expose the Content Targeting API and use it in your application. Next
you’ll learn to create custom rule types.

1540

CHAPTER 142

CREATING NEW AUDIENCE TARGETING RULE TYPES

In Audience Targeting, a User Segment is defined as a group of users that match a set of rules.
Out of the box, Liferay provides several types of rules that are based on characteristics such as
age range, gender, or location. You combine these rules to create User Segments. For example, if
you want to target probable buyers of a shoe that has a particular style, you might create a User
Segment composed of Females over 40 who live in urban areas.

Audience Targeting ships with many rules for User Segments, but it’s also extensible: if there
isn’t a rule that fits your case, you can create it yourself!

Creating a rule type involves targeting what you want to evaluate. Suppose you own an Outdoor
Sporting Goods store. On your website, you want to promote goods appropriate for the current
weather. If a user is from Los Angeles and it’s raining the day he or she visits your website, you
could show that user new umbrellas. If it’s sunny, however, you could show the user sunglasses
instead. For this example, your evaluation entity would be weather based on the user’s location. To
make this work, you must do two things:

1. Retrieve the user’s location so you can obtain that location’s weather.

2. Let administrators set the value to compare with the user’s current weather, using a UI
component like a selection list of weather options.

With this design, an administrator can set rainy as the value for the rule, and the rule could
be added to a user segment targeted for rain-related goods. When users visit your site, their user
segment assignments come frommatching the weather in their current locations with the rule’s
preset weather value (rainy). On a match, you show rain-related content; otherwise, the user is
part of a different user segment and sees that segment’s content, like a promotion for sunglasses.

There are four steps to create a custom rule type:

1. Create a module and ensure it has the necessary Content Targeting API dependencies.

2. Definehowyour ruleworksby implementing the com.liferay.content.targeting.api.model.Rule
interface’s methods.

3. Create the rule evaluation criteria.

4. Define the Rule’s UI.

Now that you have an idea of how to plan your custom rule’s development, you can create one!

1541

https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc

Figure 142.1: This diagram breaks down the evaluation process for the weather rule.

1542

142.1 Creating a Custom Rule Type

First, you must create a module and ensure it has the necessary Content Targeting API dependen-
cies.

Note: To view the Javadoc for the Content Targeting classes mentioned in this article, download
the Javadoc JAR.

1. Create a module project for deploying a rule. A Blade CLI content-targeting-rule template
is available to help you get started quickly. It sets the default configuration for you, and it
contains boilerplate code so you can skip the file creation steps and get started right away. To
use it, use this Blade command:

blade create -t content-targeting-rule weather-rule

2. Make sure the dependencies are up to date, as sometimes the template gets out of sync with
the latest release. Here are the dependency versions you should see in a Gradle based rule:

dependencies {

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.analytics.api", version: "5.0.0"

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.anonymous.users.api", version: "3.0.0"

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.api", version: "5.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "3.6.2"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "3.0.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

You can learn more about exposing the Content Targeting API in the Accessing the Content
Targeting API tutorial. Once you’ve created your module and specified its dependencies, you
must define your rule’s behavior. How your rule behaves is controlled by a Java class file that
you create.

3. In the module’s src directory appears a generated class. To follow naming conventions,
your class name should begin with the rule name you’re creating, and end with Rule (e.g.,
WeatherRule.java). Your Java class should implement the com.liferay.content.targeting.api.model.Rule
interface.

You must implement the Rule interface, but there are Rule extension classes that pro-
vide helpful utilities that you can extend. For example, your rule can extend the
com.liferay.content.targeting.api.model.BaseJSPRule class to support generating your rule’s
UI using JSPs. This tutorial demonstrates implementing the UI using a JSP and assumes the
Rule interface is implemented by extending the BaseJSPRule class. For more information on
choosing a UI for your rule, see Selecting a UI Technology.

4. Directly above the class’s declaration should be the following annotation:

@Component(immediate = true, service = Rule.class)

1543

https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc
https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc
https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc

This annotation declares the implementation class of the Component, and specifies to start
the module immediately once deployed to Liferay DXP.

Now that your Java class is set up, you must define how your rule works by implementing the
Rule interface’s methods. You’ll begin implementing these methods next.

Note: If you’re planning on developing a social rule type that classifies users based on their
social network profile, remember that the specific social network’s SSO (Single Sign On) must be
enabled and configured properly. Visit the Social Rules section for more details.

Next you’ll define the view/save lifecycle for the weather rule.

142.2 Defining a Rule's View/Save Lifecycle

The view/save lifecycle describes the process behind the scenes when an administrator applies a
rule to a user segment using the User Segment Editor. You’ll implement that now.

When the user opens the User Segment Editor, the render phase begins for the rule creation.
During the render phase, the HTML for the form is generated and, if necessary, the contextmap is
generated with any parameters that you need to create the form. Once the HTML is successfully
retrieved and the user has set the values and clicked Save, the action phase begins.

When the action phase begins, the processRule(...) method takes the values provided by the
form and persists them. Once the rule processing ends, the form is reloaded and the lifecycle
restarts again. The value(s) selected in the rule are stored and are ready to be accessed once user
segment evaluation begins.

In this section, you’ll begin defining the weather rule’s Java class. This assumes that you
followed the instructions in the previous tutorial, creating the WeatherRule class and extending
com.liferay.content.targeting.api.model.BaseJSPRule.

Note: To view the Javadoc for the Content Targeting classes mentioned in this article, download
the Javadoc JAR.

If you used the content-targeting-rule Blade CLI template, your project already extends
BaseJSPRule and has a default view.jsp file already created.

1. If you didn’t use the template, add the activation and deactivation methods to your class.

@Activate

@Override

public void activate() {

super.activate();

}

@Deactivate

@Override

public void deActivate() {

super.deActivate();

}

These methods call the super class com.liferay.content.targeting.api.model.BaseRule to im-
plement necessary logging and processing for when your rule starts and stops. Make sure to
include the @Activate and @Deactivate annotations, which are required.

1544

https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc
https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc
https://osgi.org/javadoc/r6/cmpn/org/osgi/service/component/annotations/Activate.html
https://osgi.org/javadoc/r6/cmpn/org/osgi/service/component/annotations/Deactivate.html

2. Define the category for the Rule when displayed in the User Segment Editor. Find the
getRuleCategoryKey()method and replace it with the code below:

@Override

public String getRuleCategoryKey() {

return SessionAttributesRuleCategory.KEY;

}

This code puts the weather rule in the Session Attributes category. To put your rule into the ap-
propriate category, use the getRuleCategoryKeymethod to return the category class’s key. Avail-
able category classes include com.liferay.content.targeting.rule.categories.BehaviourRuleCategory,
com.liferay.content.targeting.rule.categories.SessionAttributesRuleCategory, com.liferay.content.targeting.rule.categories.SocialRuleCategory,
and com.liferay.content.targeting.rule.categories.UserAttributesRoleCategory.

Figure 142.2: This example Weather rule was modified to reside in the Session Attributes category.

3. Find the populateContext()method and replace it with the code below:

1545

https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc
https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc
https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc
https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc

@Override

protected void populateContext(

RuleInstance ruleInstance, Map<String, Object> context,

Map<String, String> values) {

String weather = "";

if (!values.isEmpty()) {

weather = GetterUtil.getString(values.get("weather"));

}

else if (ruleInstance != null) {

weather = ruleInstance.getTypeSettings();

}

context.put("weather", weather);

}

To understand what this method accomplishes, you must examine the rule’s configuration
lifecycle.

Figure 142.3: An Audience Targeting rule must be configured by the user and processed before it can become part of a User Segment.

When the user opens the User Segment Editor, the render phase begins for the rule. The
getFormHTML(...) method retrieves the HTML to display. You don’t have to worry about
implementing this method because it’s already implemented in the BaseJSPRule class you’re
extending. The getFormHTMLmethod calls the populateContext(...) method.

1546

You’ll notice the populateContextmethod is not available in the com.liferay.content.targeting.api.model.Rule
interface. This is because it’s not needed in all cases. It’s available by extending the
BaseJSPRule class, and it needs more logic for the weather rule.
The populateContextmethod generates a map with all the parameters your JSP view needs to
render the rule’s HTML. This map is stored in the context variable. This variable is a map
defining the form evaluation context for Audience Targeting rules. Each rule contributes
its specific parameters to it. The populateContextmethod above populates a weather context
variable with the weather values from the valuesmap parameter, which is then passed to the
JSP.
For the weather rule, the populateContextmethod accounts for three use cases:

a. The rule was added but has no set values yet. In this case, the default values defined by
the developer are injected (e.g., weather="").

b. The rule was added and a value is set, but the request failed to complete (e.g., due to an
error). In this case, the values parameter of the populateContextmethod contains the
values that were intended to be saved, and they are injected so that they are displayed
in the rule’s view together with the error message.

c. The rule was added and a value was successfully set. In this case, the values parameter
is empty, and you must obtain the values that the form should display from storage and
inject them in the context so they appear in the rule’s HTML. The weather rule uses
the typeSettings field of the rule instance, but complex rules could use services to store
values.

You can think of the populateContextmethod as the intermediary between your JSP and your
back-end code. Creating the weather rule’s UI using a JSP is covered in Defining the Rule’s UI.
Once the HTML is successfully retrieved and the user has set the weather value and clicked
Save, the action phase begins.

4. Replace the processRule()method with this code:

@Override

public String processRule(

PortletRequest portletRequest, PortletResponse portletResponse,

String id, Map<String, String> values) {

return values.get("weather");

}

The processRule(...) method is invoked when the action phase is initiated. The values

parameter only contains the value(s) the user added in the form. The logic you could add to a
processRulemethod is outlined below.

a. Obtain the value(s) from the values parameter.

b. (Optional) Validate the data consistency and possible errors. If anything is wrong,
throw an com.liferay.content.targeting.exception.InvalidRuleException and prohibit
the values from being stored. In the weather rule scenario, when the rule is reloaded
after an exception is thrown in the form, case 3b from the previous step occurs.

1547

https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc
https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc

c. Return the value to be stored in the rule instance’s typeSettings field. The typeSettings

field is managed by the framework in the Rule Instance table. If your rule has its own
storage mechanism, then you should call your services in the processRulemethod.

Once the rule processing ends, the form is reloaded and the lifecycle restarts again. The
value(s) selected in the rule are stored and are ready to be accessed once user segment
evaluation begins. You must add two more methods to the WeatherRule class before defining
the rule’s evaluation.

5. Define a way to retrieve the rule’s localized summary. In many instances, you can do this by
combining keys in the rule’s resource bundle with the information stored for the rule. For
the weather rule, you can return the rule’s type settings, which contains the selected weather
condition. Replace the generated getSummary()method with this one:

@Override

public String getSummary(RuleInstance ruleInstance, Locale locale) {

return ruleInstance.getTypeSettings();

}

6. Set the servlet context for your rule. This method was generated and can be left alone:

@Override

@Reference(

target = "(osgi.web.symbolicname=weather)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

Setting the servlet context is only required for rules extending the BaseJSPRule class. The
servlet context must be set for the rule to render its own JSP files. The setServletContext

method is invoked automatically when the rule module is installed and resolved in Liferay.
Make sure the osgi.web.symbolicname in the target property of the @Reference annotation is
set to the same value as the Bundle-SymbolicName defined in the bnd.bnd file of the module.

Next, you’ll learn how to evaluate a rule that is configured and saved to a user segment.

142.3 Evaluating a Rule

After the administrator has successfully configured and saved your custom rule to his or her user
segment, your rule needs to fulfill its purpose: to evaluate the preset weather value compared to a
user’s weather value visiting the site. If the user’s value matches the preset value (along with the
segment’s other rules), that user is added to the user segment.

1. You must implement the evaluate(...) rule to begin the evaluation process. This method is
part of the user segmentation lifecycle. When a page is loaded, Liferay invokes the evaluate

method of the rule to determine if the current user belongs to the user segment. For the
weather rule, add this evaluatemethod:

1548

@Override

public boolean evaluate(

HttpServletRequest request, RuleInstance ruleInstance,

AnonymousUser anonymousUser)

throws Exception {

String userWeather = getUserWeather(anonymousUser);

String weather = ruleInstance.getTypeSettings();

if (Validator.equals(userWeather, weather)) {

return true;

}

return false;

}

You acquire the user’s weather by calling the getUserWeather method, which you’ll define
later. Then you get the preset weather value by accessing the rule instance’s typeSettings

parameter. Finally, you compare the two values. If they match, return true; otherwise return
false. Remember that users are only added to User Segments when all the Rules in the User
Segment return true.

2. Next, you need to retrieve the user’s weather. As you learned earlier, you must access the
user’s location first. Add the logic below to do this.

protected String getCityFromUserProfile(long contactId, long companyId)

throws PortalException, SystemException {

List<Address> addresses = AddressLocalServiceUtil.getAddresses(companyId, Contact.class.getName(), contactId);

if (addresses.isEmpty()) {

return null;

}

Address address = addresses.get(0);

return address.getCity() + StringPool.COMMA + address.getCountry().getA2();

}

This method retrieves the location by accessing the user’s profile information. You could
also have used a geo-location service to find this by the user’s IP address. Once you have the
user’s location, you can find the current weather for that location.

3. Add the following method to retrieve a user’s weather forecast.

protected String getUserWeather(AnonymousUser anonymousUser)

throws PortalException, SystemException {

User user = anonymousUser.getUser();

String city = getCityFromUserProfile(user.getContactId(), user.getCompanyId());

Http.Options options = new Http.Options();

String location = HttpUtil.addParameter(API_URL, "q", city);

location = HttpUtil.addParameter(location, "format", "json");

options.setLocation(location);

int weatherCode = 0;

1549

try {

String text = HttpUtil.URLtoString(options);

JSONObject jsonObject = JSONFactoryUtil.createJSONObject(text);

weatherCode = jsonObject.getJSONArray("weather").getJSONObject(0).getInt("id");

}

catch (Exception e) {

_log.error(e);

}

return getWeatherFromCode(weatherCode);

}

private static Log _log = LogFactoryUtil.getLog(WeatherRule.class);

This method calls the getCityFromUserProfilemethod to acquire the user’s location. Then it
retrieves the weather code for that location from a weather service.

4. Set the API_URL field to the OpenWeather Map’s API URL:

private static final String API_URL = "http://api.openweathermap.org/data/2.5/weather";

For the weather rule, you can access OpenWeather Map’s APIs to retrieve the weather code.

5. The last thing is to convert the weather code to a string you can evaluate (e.g., sunny). Add the
following method to convert OpenWeather Map’s weather codes:

protected String getWeatherFromCode(int code) {

if (code == 800 || code == 801) {

return "sunny";

}

else if (code > 801 && code < 805) {

return "clouds";

}

else if (code >= 600 && code < 622) {

return "snow";

}

else if (code >= 500 && code < 532) {

return "rain";

}

return null;

}

All possible weather codes are here.

Excellent! You’ve implemented the evaluate method and added the necessary logic in your
-Rule class to acquire a user’s local weather. The weather rule’s behavior is defined and complete.
The last thing you need to do is create a JSP template.

142.4 Defining the Rule's UI

The Java code you’ve added to this point has assumed that a preset weather value is available for
comparing during the evaluation process. To let administrators set that value, you must define a UI
so your rule can be configured during the view/save lifecycle. Create a view.jsp file in your rule’s
module (e.g., /src/main/resources/META-INF/resources/view.jsp) and add the following logic:

1550

http://openweathermap.org/weather-conditions

<%

Map<String, Object> context = (Map<String, Object>)request.getAttribute("context");

String weather = (String)context.get("weather");

%>

<aui:fieldset>

<aui:select name="weather" value="<%= weather %>">

<aui:option label="sunny" value="sunny" />

<aui:option label="clouds" value="clouds" />

<aui:option label="snow" value="snow" />

<aui:option label="rain" value="rain" />

</aui:select>

</aui:fieldset>

The weather variable in the context map should be set for the weather rule. When the user
selects an option, it’s passed from the view template to the populateContextmethod.

Figure 142.4: The weather rule uses a select drop-down box to set the weather value.

Note: The weather rule uses JSP templates to display the rule’s view. Audience Targeting,
however, is compatible with any UI technology. Visit the Selecting a UI Technology section for
details on how to use other UI technologies like FreeMarker.

You’ve created the weather rule and can now target users based on their weather conditions.
You can view the finished version of the weather rule by downloading its ZIP file.

Now you’ve created and examined a fully functional rule and have the knowledge to create your
own.

1551

https://portal.liferay.dev/documents/113763090/114000653/weather-7-1.zip/c1865f26-c4df-f4fa-a012-459e23d3b3c8?t=1565967914487

CHAPTER 143

TRACKING USER ACTIONS WITH AUDIENCE
TARGETING

In Audience Targeting, a campaign defines a set of content targeted to specific user segments
during a time period. Reports allow campaign administrators to learn how users behave in the
context of a campaign by monitoring their interaction over different elements of the site. Out of
the box, Liferay provides several metrics based on entity types that you can track, such as content,
forms, links, pages, etc. For example, if you want track howmany users watch a YouTube video
that is published on your site, you might create a custom report with the YouTube Videos metric.

Audience Targeting ships with many metrics, but it’s also extensible. This means that if the
default metrics available do not fulfill your needs, you can create one yourself.

First you need to define some criteria about your metric:

• Entity to Track
• Tracking Mechanism
• Tracking Events
• Differentiation Method

Creating a metric involves targeting what you want to track in a report. Suppose you’re the
owner of a hardware store and you want to send emails to your customers with the store’s weekly
newsletter. You send the email every week, but you’re in the dark about how many customers
actually open and read the newsletter. For this example, your entity to track is the newsletter.

To track how many customers view the newsletter, you must create a tracking mechanism. You
can provide a custom tracking mechanism (e.g., a servlet) or you can use the ones provided by
AudienceTargeting. For a newsletter, you could use a transparent image as the trackingmechanism,
which would have the View tracking event capability. Whenever the image is viewed, the Audience
Targeting app computes and stores the information.

Finally, youmust assign themetric to an entity. For a newsletter, you could provide a Newsletter
ID field that the user could fill in to differentiate newsletters, if there’s more than one.

To learn more about how metrics are used in the Audience Targeting application, visit the
Defining Metrics section.

For this tutorial, you’ll create a newsletter that can track who views it. To do this you will,

1. Create a module with the necessary Content Targeting API dependencies.

1553

https://dev.liferay.com/discover/portal/-/knowledge_base/7-1/managing-campaigns#defining-metrics

2. Define the metric’s View/Save lifecycle.

3. Implement a tracking mechanism and differentiation method.

4. Define the UI.

Figure 143.1: The sample Newsletter metric requires the newsletter name, ID, and event type.

Now that you have an idea of how to plan your new metric, you’ll begin creating one next!

143.1 Related Topics

Creating Projects with Blade CLI
Defining a Metric’s View/Save Lifecycle
Defining the Metric’s UI

143.2 Creating a Metric

Now that all of your criteria has been defined, you can get started developing the actual metric:

Note: To view the Javadoc for the Content Targeting classes mentioned in this article, download
the Javadoc JAR.

1. Create amodule project for deploying ametric. A Blade CLI content-targeting-tracking-action
template is available to help you get started quickly. It sets the default configuration for you,
and it contains boilerplate code so you can skip the file creation steps and get started right
away.

2. Make sure your module specifies the dependencies necessary for an Audience Targeting
metric. For example, you should specify the Content Targeting API and necessary Liferay
packages. For example, this is the example build.gradle file used from a Gradle based metric:

1554

https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc

dependencies {

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.analytics.api", version: "5.0.0"

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.anonymous.users.api", version: "3.0.0"

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.api", version: "5.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "3.6.2"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "3.0.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

You can learn more about exposing the Content Targeting API in the Accessing the Content
Targeting API tutorial. Once you’ve created your module and specified its dependencies,
you’ll need to define your metric’s behavior. How your metric behaves is controlled by a Java
class file that you create.

3. Create a unique package name in the module’s src directory, and create a new Java class in
that package. To follow naming conventions, your class name should begin with the metric’s
name you’re creating and end with TrackingAction (e.g., NewsletterTrackingAction.java). Your
Java class should implement the com.liferay.content.targeting.api.model.TrackingAction in-
terface.
You must implement the TrackingAction interface, but there are TrackingAction extension
classes that provide helpful utilities that you can extend. For example, your metric can
extend the BaseJSPTrackingAction class to support generating your metric’s UI using JSPs.
This tutorial demonstrates implementing the UI using a JSP and assumes the TrackingAction

interface is implemented by extending the BaseJSPTrackingAction class. Formore information
on choosing a UI for your metric, see the Selecting a UI Technology section.

4. Directly above the class’s declaration, insert the following annotation:

@Component(immediate = true, service = TrackingAction.class)

This declares the Component’s implementation class and configures it to start immediately
once deployed to Liferay DXP.

Now that your Java class is set up, you must define how your metric works by implementing the
TrackingAction interface’s methods. You’ll begin implementing these methods next.

143.3 Defining a Metric's View/Save Lifecycle

In this section, you will define the metric’s view/save lifecycle: what happens when a user applies a
metric to a report using the Report Editor.

Note: To view the Javadoc for the Content Targeting classes mentioned in this article, download
the Javadoc JAR.

You’ll begin defining the newsletter metric’s Java class. This assumes that you fol-
lowed the instructions in the previous article to create the NewsletterTrackingAction class
and extend com.liferay.content.targeting.api.model.BaseJSPTrackingAction. If you used the
content-targeting-tracking-action Blade CLI template, your project is already extending
BaseJSPTrackingAction and a default view.jsp file is already created.

1555

https://repository.liferay.com/nexus/service/local/artifact/maven/redirect?r=liferay-public-releases&g=com.liferay.content-targeting&a=com.liferay.content.targeting.api&v=5.0.0&e=jar&c=javadoc

1. Add the activation and deactivation methods to your class.

@Activate

@Override

public void activate() {

super.activate();

}

@Deactivate

@Override

public void deActivate() {

super.deActivate();

}

Thesemethods call the super class com.liferay.content.targeting.api.model.BaseTrackingAction
to implement necessary logging and processing for when your metric starts and stops. Make
sure to include the @Activate and @Deactivate annotations, which are required.

2. Add the following method:

@Override

protected void populateContext(

TrackingActionInstance trackingActionInstance,

Map<String, Object> context, Map<String, String> values) {

String alias = StringPool.BLANK;

String elementId = StringPool.BLANK;

String eventType = StringPool.BLANK;

if (!values.isEmpty()) {

alias = values.get("alias");

elementId = values.get("elementId");

eventType = values.get("eventType");

}

else if (trackingActionInstance != null) {

alias = trackingActionInstance.getAlias();

elementId = trackingActionInstance.getElementId();

eventType = trackingActionInstance.getEventType();

}

context.put("alias", alias);

context.put("elementId", elementId);

context.put("eventType", eventType);

context.put("eventTypes", getEventTypes());

}

To understand what this method accomplishes, you should look at the metric’s configuration
lifecycle.

When the user opens the Report Editor, the render phase begins for the metric. The
getFormHTML(...) method retrieves the HTML to display. You don’t have to worry about
implementing this method because it’s already implemented in the BaseJSPTrackingAction

class you’re extending. The getFormHTMLmethod calls the populateContext(...) method.

You’ll notice the populateContextmethod is not available in the TrackingAction interface. This
is because it’s not needed in all cases. It’s available by extending the BaseJSPTrackingAction

class, and you’ll need to add more logic to it for the newsletter metric.

The populateContextmethod generates a map with all the parameters your JSP view needs to
render the metric’s HTML. This map is stored in the context variable, which is pre-populated

1556

https://osgi.org/javadoc/r6/cmpn/org/osgi/service/component/annotations/Activate.html
https://osgi.org/javadoc/r6/cmpn/org/osgi/service/component/annotations/Deactivate.html

Figure 143.2: An Audience Targeting metric must be configured by the user and processed before it can become part of a Report.

with basic values in the Portlet logic, and then each metric contributes its specific parame-
ters to it. The populateContextmethod above populates the alias, elementId, eventType, and
eventTypes context variables with the adjacent values from the valuesmap parameter, which
is then passed to the JSP.
For the newsletter metric, the populateContextmethod accounts for three use cases:

a. The metric was added but has no set values yet. In this case, the default values defined
by the developer are injected (e.g., alias="").

b. The metric was added and a value is set, but the request failed to complete (e.g., due to
an error). In this case, the values parameter of the populateContextmethod contains the
values that were intended to be saved, and they are injected so that they are displayed
in the metric’s view together with the error message.

c. Themetricwas added and a valuewas successfully set. In this case, the valuesparameter
is empty, and you have to obtain the values from storage that the form should display
and inject them in the context so they’re displayed in themetric’s HTML. The newsletter
metric stores values in the metric’s instance, but complex metrics could use services to
store values.

1557

You can think of the populateContextmethod as the intermediary between your JSP and your
backend code. You can see how to create the newsletter metric’s UI using a JSP by skipping
to the Defining the Metric’s UI section. Once the HTML is successfully retrieved and the user
has set the newsletter’s values and clicked Save, the action phase begins.

3. Once the action phase begins, Audience Targeting processes the tracking action (met-
ric). The processTrackingAction(...) method takes the values from the metric’s UI form
and stores them in the corresponding fields of the trackingActionInstance. Since the
BaseTrackingAction class provides a default implementation of this method that returns null,
the NewsletterTrackingAction class does not need to implement it.
If you need to process any custom fields in your metric, you should override this
method. If you want your custom values to be stored in the typeSettings field of the
trackingActionInstance, return their value instead of null.

Note: For more complex cases, you can create your own services to store

your metric's information to a database. You should invoke your services'

update logic within the `processTrackingAction` method. For more information

on creating services, see the

[Service Builder](/docs/7-1/tutorials/-/knowledge_base/t/service-builder)

tutorials.

Once the metric processing ends, the form is reloaded and the lifecycle

restarts again. The value(s) specified in the metric are stored and are

ready to be accessed once the report generation begins. Next, you must set

the event types that the newsletter metric should evaluate.

4. Add the following method and private field:

@Override

public List<String> getEventTypes() {

return ListUtil.fromArray(_EVENT_TYPES);

}

private static final String[] _EVENT_TYPES = {"view"};

This specifies that your newsletter metric only tracks who views the newsletter.

5. Define a way to retrieve the metric’s localized summary. In many instances, you can do this
by combining keys in the metric’s resource bundle with the information stored for the metric.
For the newsletter metric, you can provide information about the ID of the newsletter being
tracked, which is stored in the alias field of the trackingActionInstance object.

@Override

public String getSummary(

TrackingActionInstance trackingActionInstance, Locale locale) {

return LanguageUtil.get(

locale, trackingActionInstance.getTypeSettings());

}

6. Set the servlet context for your metric.

1558

@Override

@Reference(

target = "(osgi.web.symbolicname=newsletter)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

This is only required for metrics extending the BaseJSPTrackingAction class. The servlet
context must be set for the metric to render its own JSP files. The setServletContextmethod
is invoked automatically when the metric module is installed and resolved in Liferay. Make
sure the osgi.web.symbolicname in the target property of the @Reference annotation is set to
the same value as the Bundle-SymbolicName defined in the bnd.bnd file of the module.

Next, you’ll define a tracking mechanism for your metric to use.

143.4 Using a Tracking Mechanism

An administrator has successfully configured and saved your custommetric to his or her report.
Now what? Your metric needs to fulfill its purpose, which is to track the view event type for
the defined newsletter. To do this, you must define a tracking mechanism. For your newsletter,
you’ll use a transparent image as the tracking mechanism, which would have the View tracking
event capability. Whenever the image is viewed, the newsletter metric computes and stores the
information.

For the newsletter metric, you’ll use a tracking mechanism provided by the Audience Targeting
app.

1. Set the analytics processor that the Content Targeting API provides for tracking events. Add
the following method and private field:

@Reference

protected void setAnalyticsProcessor(AnalyticsProcessor analyticsProcessor) {

_analyticsProcessor = analyticsProcessor;

}

private AnalyticsProcessor _analyticsProcessor;

The analytics processor contains a servlet to track analytics from Liferay pages (views, clicks,
etc.) and an API to leverage this tracking mechanism. In the setAnalyticsProcesoor(...)

method, you’re obtaining a reference of the current analytics processor to build the URL used
to generate a transparent image. All you have to do is insert the generated URL into your
newsletter’s HTML, and the transparent image tracks who reads it. Everything is processed
by the default Audience Targeting Analytics system automatically.

Now that you’ve obtained a reference of the analytics processor, you need to add logic for
generating the appropriate tracking URL.

2. Replace the populateContextmethod with the updated method:

1559

@Override

protected void populateContext(

TrackingActionInstance trackingActionInstance,

Map<String, Object> context, Map<String, String> values) {

String alias = StringPool.BLANK;

String elementId = StringPool.BLANK;

String eventType = StringPool.BLANK;

String trackImageHTML = StringPool.BLANK;

if (!values.isEmpty()) {

alias = values.get("alias");

elementId = values.get("elementId");

eventType = values.get("eventType");

}

else if (trackingActionInstance != null) {

alias = trackingActionInstance.getAlias();

elementId = trackingActionInstance.getElementId();

eventType = trackingActionInstance.getEventType();

String trackImageURL = _analyticsProcessor.getTrackingURL(

trackingActionInstance.getCompanyId(), 0, 0, "", 0,

Campaign.class.getName(),

new long[] {trackingActionInstance.getCampaignId()},

trackingActionInstance.getElementId(), "view", "");

trackImageHTML = "";

}

context.put("alias", alias);

context.put("elementId", elementId);

context.put("eventType", eventType);

context.put("eventTypes", getEventTypes());

context.put("trackImageHTML", trackImageHTML);

}

This updated method creates a new variable named trackImageHTML, retrieves a tracking URL
using the analytics processor, and then populates the trackImageHTML context variable. When
creating a newmetric, the transparent image’s URL field is not present in the metric’s form.
When themetric is initially saved, however, theURL is generated using the analytics processor
and is available for copying.

Excellent! You’ve obtained the analytics processor and can create the transparent image tracking
mechanism. The newsletter metric’s behavior is defined and complete. The last thing you need to
do is create a JSP template.

143.5 Defining the Metric's UI

The Java code you’ve added to this point has assumed that there are three configurable fields for
your newsletter metric:

• Name: used in reports that count the number of times a metric has been triggered. This is
also known as the newsletter’s alias.

• Newsletter ID: used to differentiate between newsletters.
• Event Type: used to differentiate several actions on the same newsletter, such as opening the
newsletter or clicking on a link.

1560

To let administrators set these values, you must define a UI so your metric can be config-
ured during the view/save lifecycle. Remember that you must also define a field to display
the generated transparent image’s URL. Create a view.jsp file in your metric’s module (e.g.,
/src/main/resources/META-INF/resources/view.jsp) and add the following logic:

<%

Map<String, Object> context = (Map<String, Object>)request.getAttribute("context");

String alias = (String)context.get("alias");

String elementId = (String)context.get("elementId");

String eventType = (String)context.get("eventType");

List<String> eventTypes = (List<String>)context.get("eventTypes");

String trackImageHTML = (String)context.get("trackImageHTML");

%>

<aui:input helpMessage="name-help" label="name" name='<%= ContentTargetingUtil.GUID_REPLACEMENT + "alias" %>' type="text" value="<%= alias %>">

<aui:validator name="required" />

</aui:input>

<aui:input helpMessage="enter-the-id-of-the-newsletter-to-be-tracked" label="newsletter-id" name='<%= ContentTargetingUtil.GUID_REPLACEMENT + "elementId" %>' type="text" value="<%= elementId %>">

<aui:validator name="required" />

</aui:input>

<c:if test="<%= ListUtil.isNotEmpty(eventTypes) %>">

<aui:select label="event-type" name='<%= ContentTargetingUtil.GUID_REPLACEMENT + "eventType" %>'>

<%

for (String curEventType : eventTypes) {

%>

<aui:option label="<%= curEventType %>" selected="<%= curEventType.equals(eventType) %>" value="<%= curEventType %>" />

<%

}

%>

</aui:select>

</c:if>

<c:if test="<%= !Validator.isBlank(trackImageHTML) %>">

<liferay-ui:message key="paste-this-code-at-the-beginning-of-your-newsletter" />

<label for='<%= renderResponse.getNamespace() + ContentTargetingUtil.GUID_REPLACEMENT + "trackImageHTML" %>' key="paste-

this-code-at-the-beginning-of-your-newsletter" /></label>

<liferay-ui:input-resource id='<%= renderResponse.getNamespace() + ContentTargetingUtil.GUID_REPLACEMENT + "trackImageHTML" %>' url="<%= trackImageHTML %>" />

</c:if>

First, you instantiate the context variable and its attributes you configured in your Java class’s
populateContextmethod. Then you specify the appropriate fields Name, Newsletter ID, and Event
Type. Finally, you present the generated transparent image URL.

Notice that the inputfieldnames in the JSP areprefixedwith ContentTargetingUtil.GUID_REPLACEMENT.
This prefix is required for multi-instantiable metrics, which are metrics that return true in the
isInstantiable method of their -TrackingAction class and can be added more than once to the
Metrics form.

Congratulations! You’ve created the newsletter metric and can now track whether users viewed
a newsletter. You can test if the metric is working by copying the generated tracking image HTML
into an email HTML editor, sending it, and opening it as if it were an actual newsletter. Then open
the custom report containing the newsletter metric and select Update Report. A chart and table
with the newsletter’s view count is shown.

1561

Figure 143.3: Once you’ve saved the metric, you can copy the generated transparent image URL into your newsletter’s HTML to track who views it.

You can view the finished version of the newsletter metric by downloading its ZIP file.
Now you’ve created and examined a fully functional metric and have the knowledge to create

your own.

143.6 Best Practices for Audience Targeting

Now that you’ve created a rule, here are some best practices to keep in mind when creating
additional rules. Before going through some best practices, you should understand the three
components you can specify for a rule:

• Rule Behavior
• UI for Configuration (optional)
• Language Keys (optional)

You discuss rule behavior and its UI configuration in great detail in the To learn more about
language keys and how to create, use, and generate them, visit the Internationalization tutorials.

Selecting a UI Technology

Audience Targeting gives you the option to choose whatever frontend technology you like, but
JSP is the preferred technology for Audience Targeting extension views. FreeMarker views,
however, are still supported through their respective base classes (e.g., BaseFreemarkerRule or
BaseFreemarkerTrackingAction). If you’re interested in using a technology besides JSP or FreeMarker
to implement your UI, you can add a method getFormHTML to your -Rule or -TrackingAction class.
Here’s an example of implementing the getFormHTMLmethod:

@Override

public String getFormHTML(

1562

https://portal.liferay.dev/documents/113763090/114000653/newsletter-7-1.zip/47e5b490-dd9d-9201-8abd-09b534ff7507?t=1565967901027

RuleInstance ruleInstance, Map<String, Object> context,

Map<String, String> values) {

String content = "";

try {

populateContext(ruleInstance, context, values);

content = ContentTargetingContextUtil.parseTemplate(

getClass(), getFormTemplatePath(), context);

}

catch (Exception e) {

_log.error(

"Error while processing template " + getFormTemplatePath(), e);

}

return content;

}

The getFormHTML is used to retrieve the HTML created by the technology you choose, and to
return it as a string that is viewable from your rule’s form. If you plan, therefore, on using an
alternative to JSP or FreeMarker, you must override this method by creating and modifying it in
your -Rule or -TrackingAction class.

Other Best Practices

Here are some things to consider as you implement and deploy Audience Targeting rules:

• As an alternative to storing complex information in the typeSettings field, which is managed
by the framework in the Rule Instance table, youmaywant to consider persisting to a database
by using Service Builder, which is supported for Rule plugins.

• If you deploy your rule into a production environment, you may want to consider adding
your values to the cache (e.g., weather in different locations), since obtaining the same
value on every request is very inefficient and could result in slowing down your portal. For
example, when the evaluatemethod is called, you could obtain the current user ID, current
user’s weather forecast, and the time at which the user first visited the page. Then you could
evaluate the rule only when the cached time is over three hours old. This would prevent the
rule from evaluating every time the user visited the page. This is best done using services.

• You can override the BaseJSPRule.deleteDatamethod in your -Rule, so that it deletes any data
associated with the rule that is currently being deleted.

• If your rule handles data or references to data that can be staged (e.g., a reference to
a page or web content article), you may need to override the BaseRule.exportData and
BaseRule.importDatamethods, to manage the content properly.

1563

CHAPTER 144

WYSIWYG EDITORS

WYSIWYG editors are an important part of content creation. Liferay’s platform supports several
different editors, including CKEditor, TinyMCE, and our flagship, AlloyEditor. This section of
tutorials shows how to customize theseWYSIWYG editors for your apps and sites.

144.1 Adding aWYSIWYG Editor to a Portlet

It’s easy to includeWYSIWYG editors in your portlet, thanks to the <liferay-editor:editor /> tag.

Note: The <liferay-ui:input-editor /> tag is deprecated as of 7.0 in favor of the <liferay-

editor:editor /> tag. Use the <liferay-editor:editor /> tag to avoid future issues.

Below is an example configuration:

<%@ taglib uri="http://liferay.com/tld/editor" prefix="liferay-editor" %>

<div class="alloy-editor-container">

<liferay-editor:editor

contents="Default Content"

cssClass="my-alloy-editor"

editorName="alloyeditor"

name="myAlloyEditor"

placeholder="description"

showSource="true"

/>

</div>

It is also possible to pass JavaScript functions through the onBlurMethod, onChangeMethod,
onFocusMethod, and onInitMethod attributes. Here is an example configuration that uses the
onInitMethod attribute to pass a JavaScript function called OnDescriptionEditorInit:

<%@ taglib uri="http://liferay.com/tld/editor" prefix="liferay-editor" %>

<div class="alloy-editor-container">

<liferay-editor:editor

contents="Default Content"

cssClass="my-alloy-editor"

editorName="alloyeditor"

1565

name="myAlloyEditor"

onInitMethod="OnDescriptionEditorInit"

placeholder="description"

showSource="true" />

</div>

<aui:script>

function <portlet:namespace />OnDescriptionEditorInit() {

<c:if test="<%= !customAbstract %>">

document.getElementById(

'<portlet:namespace />myAlloyEditor'

).setAttribute('contenteditable', false);

</c:if>

}

</aui:script>

Below is an overview of the main attributes of the <liferay-editor:editor /> tag:

Attribute Type Description

autoCreate java.lang.String Whether to show the HTML
edit view of the editor initially

contents java.lang.String Sets the initial contents of the
editor

contentsLanguageId java.lang.String Sets the language ID for the
input editor’s text

cssClass java.lang.String A CSS class for styling the
component.

data java.util.Map Data that can be used as the
editorConfig

editorName java.lang.String The editor you want to use
(alloyeditor, ckeditor, tinymce,
simple)

name java.lang.String A name for the input editor.
The default value is editor.

onBlurMethod java.lang.String A function to be called when
the input editor loses focus.

onChangeMethod java.lang.String A function to be called on a
change in the input editor.

onFocusMethod java.lang.String A function to be called when
the input editor gets focus.

onInitMethod java.lang.String A function to be called when
the input editor initializes.

placeholder java.lang.String Placeholder text to display in
the input editor.

showSource java.lang.String Whether to enable editing the
HTML source code of the
content. The default value is
true.

See the taglibdocs for the complete list of supported attributes.

1566

https://docs.liferay.com/dxp/apps/frontend-editor/latest/taglibdocs/liferay-editor/editor.html

As you can see, it’s easy to includeWYSIWYG editors in your portlets!

Related Topics

Adding New Behavior to an Editor
Modifying an Editor’s Configuration
Modifying the AlloyEditor

144.2 Modifying an Editor's Configuration

You can use many different kinds ofWYSIWYG editors to edit content in portlets. Depending on the
content you’re editing, you may want to modify the editor to provide a customized configuration
for your needs. In this tutorial, you’ll learn how to modify the default configuration for Liferay
DXP’s supportedWYSIWYG editors to meet your requirements.

Updating the Editor's Configuration

To modify the editor’s configuration, create a module with a component that implements the
EditorConfigContributor interface. Follow these steps to modify one of Liferay DXP’s WYSIWYG
editors:

1. Create an OSGi module.

2. Open the portlet’s build.gradle file and update the com.liferay.portal.kernel version to 3.6.2.
This is the version bundled with the Liferay DXP release.

3. Create a unique package name in the module’s src directory, and create a new Java class in
that package that extends the BaseEditorConfigContributor class:

4. Create a component class that implements the EditorConfigContributor service:

@Component(

property = {

},

service = EditorConfigContributor.class

)

5. Add the following imports:

import com.liferay.portal.kernel.editor.configuration.BaseEditorConfigContributor;

import com.liferay.portal.kernel.editor.configuration.EditorConfigContributor;

import com.liferay.portal.kernel.json.JSONArray;

import com.liferay.portal.kernel.json.JSONFactoryUtil;

import com.liferay.portal.kernel.json.JSONObject;

import com.liferay.portal.kernel.portlet.RequestBackedPortletURLFactory;

import com.liferay.portal.kernel.theme.ThemeDisplay;

6. Specify the editor’s name, editor’s configuration key, and/or the portlet name(s) where the
editor resides. These three properties can be specified independently, or together, in any
order. See the EditorConfigContributor interface’s Javadoc for more information about the

1567

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/editor/configuration/EditorConfigContributor.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/editor/configuration/BaseEditorConfigContributor.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/editor/configuration/EditorConfigContributor.html

available properties and how to use them. The example configuration below modifies the
AlloyEditor’s Content Editor, identified by the contentEditor configuration key and alloyeditor

name key.

Note: If you're targeting all editors for a portlet, the

`editor.config.key` is not required. For example, if you just want to target

the Web Content portlet's editors, you can provide the configuration below:

@Component(

property = {"editor.name=ckeditor",

"javax.portlet.name=com_liferay_journal_web_portlet_JournalPortlet",

"service.ranking:Integer=100"

}

Two portlet names are declared (Blogs and Blogs Admin), specifying that the

service applies to the content editors in those portlets. Lastly, the

configuration overrides the default one by providing a higher

[service ranking](/docs/7-1/tutorials/-/knowledge_base/t/fundamentals#services):

@Component(

property = {

"editor.config.key=contentEditor", "editor.name=alloyeditor",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsPortlet",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsAdminPortlet",

"service.ranking:Integer=100"

},

service = EditorConfigContributor.class

)

NOTE: If you want to create a global configuration that applies to an

editor everywhere it's used, you must create two separate configurations:

one configuration that targets just the editor and a second configuration

that targets the Blogs and Blogs Admin portlets. For example, the two

separate configurations below apply the updates to AlloyEditor everywhere

it's used:

Configuration one:

```java

@Component(

immediate = true,

property = {

"editor.name=alloyeditor",

"service.ranking:Integer=100"

},

service = EditorConfigContributor.class

)

```

Configuration two:

```java

@Component(

immediate = true,

property = {

"editor.name=alloyeditor",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsPortlet",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsAdminPortlet",

"service.ranking:Integer=100"

1568



},

service = EditorConfigContributor.class

)

```

7. Override the populateConfigJSONObject() method to provide the custom configuration for
the editor. This method updates the original configuration JSON object. It can also Up-
date or delete existing configurations, or any other configuration introduced by another
*EditorConfigContributor.

@Override

public void populateConfigJSONObject(

JSONObject jsonObject, Map<String, Object> inputEditorTaglibAttributes,

ThemeDisplay themeDisplay,

RequestBackedPortletURLFactory requestBackedPortletURLFactory) {

}

8. In the populateConfigJSONObjectmethod, youmust instantiate a JSONObject to hold the current
configuration of the editor. For instance, you could use the code snippet below to retrieve
the available toolbars for the editor:

JSONObject toolbars = jsonObject.getJSONObject("toolbars");

Note: This toolbar configuration is only applicable for the AlloyEditor.

If you choose a configuration that is supported by multiple editors, you

could apply it to them all. To do this, you could specify all the editors

(e.g., `"editor.name=alloyeditor"`, `"editor.name=ckeditor"`,

`ckeditor_bbcode` etc.) in the `@Component` annotation of your

`EditorConfigContributor` implementation, as you did in step six. Use the

links the bottom of this tutorial to view each editor's configuration

options and requirements.

9. Now that you’ve retrieved the toolbar, you can modify it. The example below adds a cam-
era button to the AlloyEditor’s Add toolbar. It extracts the Add buttons out of the toolbar
configuration object as a JSONArray, and then adds the button to that JSONArray:

if (toolbars != null) {

JSONObject toolbarAdd = toolbars.getJSONObject("add");

if (toolbarAdd != null) {

JSONArray addButtons = toolbarAdd.getJSONArray("buttons");

addButtons.put("camera");

}

}

The configuration JSON object is passed to the editor with the modifications you’ve imple-
mented in the populateConfigJSONObjectmethod.

1569

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/json/JSONObject.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/json/JSONArray.html

10. Finally, generate the module’s JAR file and copy it to your deploy folder. Once the module is
installed and activated in the service registry, your new editor configuration is available for
use.

LiferayDXP supports several different types ofWYSIWYG editors, which include (among others):

• AlloyEditor
• CKEditor
• TinyMCE

Make sure to visit each editor’s configuration API to learn what each editor offers for configura-
tion settings.

Related Topics

Adding New Behavior to an Editor
Modifying the AlloyEditor
Adding aWYSIWYG Editor to a Portlet

144.3 Adding New Behavior to an Editor

You can select from several differentWYSIWYG editors for your users, and each is configurable
and has its strengths and weaknesses. Configuration alone, however, doesn’t always expose the
features you want. In these cases, you can programmatically access the editor instance to create
the editor experience you want, using the liferay-util:dynamic-include JavaScript extension point.
It injects JavaScript code right after the editor instantiation to configure/change the editor.

Note: By default, the CKEditor strips empty <i> tags, such as those used for Font Awesome
icons, from published content, when switching between the Code View and the Source View
of the editor. You can disable this behavior by using the ckeditor#additionalResources or
alloyeditor#additionalResources extension points to add the following code to the editor:

CKEDITOR.dtd.$removeEmpty.i = 0

In this tutorial, you’ll learn how to use this JavaScript extension point.

Injecting JavaScript into a WYSIWYG Editor

The liferay-util:dynamic-include extension point is in configurable editors’ JSP files: it’s the gate-
way for injecting JavaScript into your editor instance:

1. Create a JS file containing your editor functionality in a folder that makes sense to reference,
since you must register the file in your module. The extension point injects the JavaScript
code right after editor initialization.
Liferay injects JavaScript code for some applications:

• creole_dialog_definition.js for the wiki

1570

https://alloyeditor.com/api/1.5.0/Core.html
http://docs.ckeditor.com/#!/api/CKEDITOR.config
http://www.tinymce.com/wiki.php/Configuration
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/extension/creole_dialog_definition.js

• creole_dialog_show.js also for the wiki
• dialog_definition.js for various applications

These JS files redefine the fields that show in dialogs, depending onwhat the selected language
(HTML, BBCode, Creole) supports. For example, Creole doesn’t support background color
in table cells, so the table cells are removed from the options displayed to the user when
running in Creole mode.

2. Create a module that can register your new JS file and inject it into your editor instance.

3. Create a unique package name in the module’s src directory, and create a new Java class
in that package. To follow naming conventions, your class name should begin with the
editor you’re modifying, followed by custom attributes, and ending with DynamicInclude
(e.g., CKEditorCreoleOnEditorCreateDynamicInclude.java). Your Java class should implement
the DynamicInclude interface.

4. Directly above the class’s declaration, insert the following annotation:

@Component(immediate = true, service = DynamicInclude.class)

This declares the component’s implementation class and starts the module once deployed to
Portal.

5. If you have not yet overridden the abstract methods from DynamicInclude, do that now. There
are two implemented methods to edit: include(...) and register(...).

6. In the include(...) method, retrieve the bundle containing your custom JS file. Retrieve the
JS file as a URL and inject its contents into the editor. Here’s the code that does this for the
creole_dialog_definition.js file:

Bundle bundle = _bundleContext.getBundle();

URL entryURL = bundle.getEntry(

"/META-INF/resources/html/editors/ckeditor/extension" +

"/creole_dialog_definition.js");

StreamUtil.transfer(entryURL.openStream(), response.getOutputStream());

In the include(...) method, you can also retrieve editor configurations and choose the JS
file to inject based on the configuration selected by the user. For example, this would be
applicable for the use case that was suggested previously dealing with Creole’s deficiency
with displaying background colors in table cells. Liferay implemented this in the include(...)
method in the CKEditorCreoleOnEditorCreateDynamicInclude class.

7. Make sure you’ve instantiated your bundle’s context so you can successfully retrieve your
bundle. As a best practice, do this by creating an activation method and then setting the
BundleContext as a private field. Here’s an example:

@Activate

protected void activate(BundleContext bundleContext) {

_bundleContext = bundleContext;

}

private BundleContext _bundleContext;

1571

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/extension/creole_dialog_show.js
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/extension/dialog_definition.js
https://github.com/liferay/liferay-portal/blob/7.1.x/portal-kernel/src/com/liferay/portal/kernel/servlet/taglib/DynamicInclude.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/java/com/liferay/frontend/editor/ckeditor/web/internal/servlet/taglib/CKEditorCreoleOnEditorCreateDynamicInclude.java

This method uses the @Activate annotation, which specifies that it should be invoked once the
service component has satisfied its requirements. For this default example, the _bundleContext
was used in the include(...) method.

8. Now register the editor you’re customizing. For example, if you were injecting JS code into
the CKEditor’s JSP file, the code would look like this:

dynamicIncludeRegistry.register(

"com.liferay.frontend.editor.ckeditor.web#ckeditor#onEditorCreate");

This registers the CKEditor into the Dynamic Include registry and specifies that JS code will
be injected into the editor once it’s created.
Just as you can configure individual JSP pages to use a specific implementation of the available
WYSIWYG editors, you can use those same implementation options for the registration
process. Visit the Editors section of portal.properties for more details. For example, to
configure the Creole implementation of the CKEditor, you could use the following key:

"com.liferay.frontend.editor.ckeditor.web#ckeditor_creole#onEditorCreate"

That’s it! The JS code that you created is now injected into the editor instance you’ve specified.
You’re now able to use JavaScript to add new behavior to your Liferay DXP supportedWYSIWYG
editor!

Related Topics

Adding New Behavior to an Editor
Embedding Portlets in Themes
Portlets

1572

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Editors

CHAPTER 145

ALLOYEDITOR

AlloyEditor is a modernWYSIWYG editor built on top of CKEDITOR, designed to create modern
and gorgeous web content. AlloyEditor is the default WYSIWYG editor.

Figure 145.1: AlloyEditor is the default WYSIWYG editor built on top of CKEditor.

This section of tutorials shows how to modify the default AlloyEditor configuration to meet
your requirements.

1573

CHAPTER 146

ADDING BUTTONS TO ALLOYEDITOR’S TOOLBARS

AlloyEditor’s toolbars contain several useful functions out-of-the-box. You may, however, want to
customize the default configuration to include a button you’ve created, to add an existing button
to a toolbar, or to add an existing CKEditor button that’s bundled with Liferay DXP’s AlloyEditor.
The EditorConfigContributor interface, provides everything you need to modify an editor’s configu-
ration, including adding buttons to AlloyEditor’s toolbars. CKEditor Configuration settings that
modify the editor’s behavior (excluding UI modifications) can also be passed down through this
configuration object.

The com.liferay.docs.my.buttonmodule is the example throughout these tutorials. If you want
to use it as a starting point for your own configuration or follow along with the tutorials, you can
download the module’s zip file from the Github repo.

146.1 Creating the OSGi Module and Configuring the EditorConfigContributor Class

To add a button to the AlloyEditor’s toolbars, you must first create an OSGi component class of
service type EditorConfigContributor.class. Follow these steps to create and configure the OSGi
module:

1. Create an OSGi module, using Blade’s portlet template:

blade create -t portlet -p com.liferay.docs.my.button -c

MyEditorConfigContributor my-new-button

2. Open the portlet’s build.gradle file and update the com.liferay.portal.kernel version to 3.6.2.
This is the version bundled with the Liferay DXP release.

3. Open the portlet class you created in step one (MyEditorConfigContributor) and add the follow-
ing imports:

import com.liferay.portal.kernel.editor.configuration.BaseEditorConfigContributor;

import com.liferay.portal.kernel.editor.configuration.EditorConfigContributor;

import com.liferay.portal.kernel.json.JSONArray;

import com.liferay.portal.kernel.json.JSONFactoryUtil;

import com.liferay.portal.kernel.json.JSONObject;

import com.liferay.portal.kernel.portlet.RequestBackedPortletURLFactory;

import com.liferay.portal.kernel.theme.ThemeDisplay;

1575

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/editor/configuration/EditorConfigContributor.html
https://docs.ckeditor.com/ckeditor4/latest/api/CKEDITOR_config.html
https://github.com/liferay/liferay-docs/tree/7.1.x/en/develop/tutorials/code/osgi/modules/com.liferay.docs.my.button

4. Replace the @Component and properties with the properties below:

@Component(

immediate = true,

property = {

"editor.name=alloyeditor",

"service.ranking:Integer=100"

},

service = EditorConfigContributor.class

)

This targets AlloyEditor for the configuration and overrides the default service by providing
a higher service ranking. If you want to target a more specific configuration, you can find the
available properties in the EditorConfigContributor interface’s Javadoc.

5. Extend BaseEditorConfigContributor instead of GenericPortlet.

6. Replace the doView()method and contentswith the populateConfigJSONObject()method shown
below:

@Override

public void populateConfigJSONObject(

JSONObject jsonObject, Map<String, Object> inputEditorTaglibAttributes,

ThemeDisplay themeDisplay,

RequestBackedPortletURLFactory requestBackedPortletURLFactory) {

}

7. Inside the populateConfigJSONObject()method, retrieve the AlloyEditor’s toolbars:

JSONObject toolbarsJSONObject = jsonObject.getJSONObject("toolbars");

if (toolbarsJSONObject == null) {

toolbarsJSONObject = JSONFactoryUtil.createJSONObject();

}

8. If you’re adding a button for one of the CKEditor plugins bundledwith the AlloyEditor, add the
code below to retrieve the extra plugins and add the plugin to the AlloyEditor’s configuration.
The example below adds the clipboard CKEditor plugin:

String extraPlugins = jsonObject.getString("extraPlugins");

if (Validator.isNotNull(extraPlugins)) {

extraPlugins = extraPlugins + ",ae_uibridge,ae_autolink,

ae_buttonbridge,ae_menubridge,ae_panelmenubuttonbridge,ae_placeholder,

ae_richcombobridge,clipboard";

}

else {

extraPlugins = "ae_uibridge,ae_autolink,ae_buttonbridge,ae_menubridge,

ae_panelmenubuttonbridge,ae_placeholder,ae_richcombobridge,clipboard";

}

jsonObject.put("extraPlugins", extraPlugins);

AlloyEditor also comes with several plugins to bridge the gap between the CKEditor’s UI and
the AlloyEditor’s UI. These are prefixed with the ae_ you see above. We recommend that you
include them all to ensure compatibility.

The *EditorConfigContributor class is prepared. Now you must choose which toolbar you want
to add the button(s) to: the Add Toolbar or one of the Styles Toolbars.

1576

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/editor/configuration/EditorConfigContributor.html

Related Topics

Adding New Behavior to an Editor
CKEditor Plugin Reference Guide

146.2 Adding a Button to the Add Toolbar

The Add Toolbar appears in the AlloyEditor when your cursor is in the editor and you click the Add
button:

Figure 146.1: The Add toolbar lets you add content to the editor.

Follow these steps to add a button to the AlloyEditor’s Add Toolbar:

1. Inside the populateConfigJSONObject()method, retrieve the Add Toolbar:

JSONObject addToolbar = toolbarsJSONObject.getJSONObject("add");

2. Retrieve the existing Add Toolbar buttons:

JSONArray addToolbarButtons = addToolbar.getJSONArray("buttons");

3. Add the button to the existing buttons. Note that the button’s name is case sensitive. The
example below adds the camera button to the Add Toolbar:

addToolbarButtons.put("camera");

The camera button is just one of the buttons available by default with AlloyEditor, but they
are not all enabled. Here’s the full list of available buttons you can add to the Add Toolbar:

• camera

1577

• embed
• hline
• image
• table

See here for an explanation of each button’s features.

4. Update the AlloyEditor’s configuration with the changes you made:

addToolbar.put("buttons", addToolbarButtons);

toolbarsJSONObject.put("add", addToolbar);

jsonObject.put("toolbars", toolbarsJSONObject);

5. Deploy your module and create new content that uses the AlloyEditor—like a blog entry or
web content article—to see your new configuration in action!

The com.liferay.docs.my.buttonmodule’s updated Add Toolbar is shown in the figure below:

Figure 146.2: The Updated Add toolbar lets you add pictures from a camera directly to the editor.

Related Topics

Adding New Behavior to an Editor
Adding a Button to a Styles Toolbar

146.3 Adding a Button to a Styles Toolbar

A Styles Toolbar appears when content is selected or highlighted in AlloyEditor. There are five
Styles toolbars to choose from:

1578

https://alloyeditor.com/docs/features/

Figure 146.3: The embed URL Styles toolbar lets you format embedded content in the editor.

embedurl: Appears when embedded content is selected.
image: Appears when an image is selected.
link: Appears when a hyperlink is selected.
table: Appears when a table is selected.
text: Appears when text is highlighted.
Follow these steps to add a button to one of the Styles toolbars:

1. Inside the populateConfigJSONObject()method, retrieve the Styles toolbar:

JSONObject stylesToolbar = toolbarsJSONObject.getJSONObject("styles");

if (stylesToolbar == null) {

stylesToolbar = JSONFactoryUtil.createJSONObject();

}

2. Retrieve the available selection toolbars:

JSONArray selectionsJSONArray = stylesToolbar.getJSONArray(

"selections");

3. Iterate through the selection toolbars, select the one youwant to add the button(s) to (embedurl,
image, link, table, or text), retrieve the existing buttons, and add your button. The example

1579

Figure 146.4: The image Styles toolbar lets you format images in the editor.

below adds the clipboard plugin’s Copy, Cut, and Paste buttons to the text selection toolbar.
Note that buttons are case sensitive and may be aliased or not match the name of the plugin.
Search the plugin’s plugin.js file for editor.ui.addButton to find the button’s name:

for (int i = 0; i < selectionsJSONArray.length(); i++) {

JSONObject selection = selectionsJSONArray.getJSONObject(i);

if (Objects.equals(selection.get("name"), "text")) {

JSONArray buttons = selection.getJSONArray("buttons");

buttons.put("Copy");

buttons.put("Cut");

buttons.put("Paste");

}

}

The example above adds one of the CKEditor plugins bundled with Liferay DXP’s AlloyEditor.
There are also several buttons available by default with the AlloyEditor, but they are not all
enabled. The full list of existing buttons you can add to the Styles toolbars is shown in the
table below, ordered by Toolbar:

1580

Figure 146.5: The link Styles toolbar lets you format hyperlinks in the editor.

Figure 146.6: The table Styles toolbar lets you format tables in the editor.

1581

Figure 146.7: The text Styles toolbar lets you format highlighted text in the editor.

text | table | image | link |

---- | ----- | ----- | ---- |

bold | tableHeading | imageCenter | linkEdit |

code | tableRow | imageLeft | |

h1 | tableColumn | imageRight | |

h2 | tableCell | | |

indentBlock | tableRemove | | |

italic | | | |

link | | | |

ol | | | |

outdentBlock | | | |

paragraphLeft | | | |

paragraphRight | | | |

paragraphCenter | | | |

paragraphJustify | | | |

quote | | | |

removeFormat | | | |

strike | | | |

styles | | | |

subscript | | | |

superscript | | | |

twitter | | | |

ul | | | |

underline | | | |

See

[here](https://alloyeditor.com/docs/features/)

for an explanation of each button's features.

4. Update the AlloyEditor’s configuration with the changes you made:

stylesToolbar.put("selections", selectionsJSONArray);

1582

toolbarsJSONObject.put("styles", stylesToolbar);

jsonObject.put("toolbars", toolbarsJSONObject);

5. Deploy your module and create a new piece of content that uses the AlloyEditor—such as a
blog entry or web content article—to see your new configuration in action!

The com.liferay.docs.my.button module’s updated text styles toolbar is shown in the figure
below:

Figure 146.8: The Updated text styles toolbar lets you copy, cut, and paste text in the editor.

Related Topics

Adding a Button to the Add Toolbar
CKEditor Plugin Reference Guide

1583

CHAPTER 147

CREATING NEW BUTTONS FOR ALLOYEDITOR

AlloyEditor is built on React.js and uses jsx to render each button in the editor. To add a new
button to the AlloyEditor, you must create an OSGi bundle that contains three key pieces:

• A JSX file containing the button’s configuration
• A Java class that contributes the button to the list of available buttons
• A Java class that adds the button to the AlloyEditor’s toolbar

Below is the folder structure for a module that adds a new button:

• frontend-editor-my-button-web

– src

* main

· java

· com/liferay/frontend/editor/my/button/web/

· editor

· configuration

· AlloyEditorMyButtonConfigContributor.java

· servlet

· taglib

· AlloyEditorMyButtonDynamicInclude.java

· resources

· META-INF

· resources

· js

· my_button.jsx

– .babelrc

– bnd.bnd

1585

– build.gradle

– package.json

The tutorials in this section cover the following topics:

• How to create your button’s OSGi bundle
• How to create your button’s JSX file
• How to contribute your button to the list of available buttons

You can learn how to add your button to the editor’s toolbars in the Adding Buttons to AlloyEdi-
tor’s Toolbars tutorials.

The my-log-text-button bundle is used as an example throughout this tutorial. You can download
the bundle’s zip file for reference, or use it as a starting point for your project if you wish.

147.1 Creating the AlloyEditor Button's OSGi Bundle

Follow these steps to create your OSGi bundle for your new button:

1. Create an OSGi module

2. Add a resources\META-INF\resources\js folder to your module’s src\main folder.

3. Specify your bundle’s Web-ContextPath in its bnd.bnd file. An example BND file configuration
is shown below with the Web-ContextPath pointing to the bundle’s root folder. This is required
to properly locate and load the module’s JavaScript:

Bundle-Name: my-log-text-button

Bundle-SymbolicName: com.liferay.docs.portlet

Bundle-Version: 1.0.0

Web-ContextPath: /my-button-portlet-project

4. Since the button’s configuration is defined in a JSX file, it must be transpiled for the browser.
You can do this by adding the transpileJS task to your build.gradle file. An example configu-
ration is shown below:

configJSModules {

enabled = false

}

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "3.6.2"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "3.0.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "jstl", name: "jstl", version: "1.2"

compileOnly group: "org.osgi", name: "osgi.cmpn", version: "6.0.0"

compileOnly group: "org.osgi", name: "org.osgi.core", version: "6.0.0"

}

transpileJS {

bundleFileName = "js/buttons.js"

globalName = "AlloyEditor.Buttons"

modules = "globals"

srcIncludes = "⁎⁎/*.jsx"

}

1586

https://github.com/liferay/liferay-docs/tree/7.1.x/en/develop/tutorials/code/osgi/modules/com.liferay.docs.my.button/my-log-text-button
https://github.com/liferay/liferay-docs/blob/7.1.x/en/develop/tutorials/code/osgi/modules/com.liferay.docs.my.button/my-log-text-button.zip
https://github.com/liferay/liferay-docs/blob/7.1.x/en/develop/tutorials/code/osgi/modules/com.liferay.docs.my.button/my-log-text-button.zip

5. Add the following devDependencies to your package.json file:

{

"devDependencies": {

"babel-preset-react": "^6.11.1",

"metal-cli": "^4.0.1"

},

"name": "my-bundle-name",

"version": "1.0.0"

}

6. Add the following preset to your module’s .babelrc file to transpile your JSX file:

{

"presets": [

"react"

]

}

Related Topics

Adding New Behavior to an Editor
Creating the Button’s JSX File
Contributing the Button to AlloyEditor

147.2 Creating the Button's JSX File

Follow these steps to create your button for AlloyEditor:

1. Create a .jsx file in your OSGi bundle’s resources\META-INF\resources\js folder. This file
defines your button’s configuration.

2. Inside the JSX file, define the React variables your buttons require (React, ReactDOM). The
log text button only uses AlloyEditor’s React:

(function() {

'use strict';

var React = AlloyEditor.React;

3. Create your button’s class:

var LogSelectedTextButton = React.createClass(

{

//button configuration goes here

}

);

4. Inside the React.createClass()method’s configuration object, specify the mixins your button
requires. These provide additional functionality, making it easy to add features to your button,
such as binding a shortcut key to your button. The example below uses the ButtonStateClasses
and ButtonKeystrokemixins:

1587

mixins: [AlloyEditor.ButtonStateClasses, AlloyEditor.ButtonKeystroke],

5. Pass validating props for your button. These are defined for each instance of the button. At
the very least, the editor must be defined. The example below sets up properties for the
editor, label, and tabIndex:

propTypes: {

/**

* The editor instance where the component is being used.

*

* @instance

* @memberof LogSelectedTextButton

* @property {Object} editor

⁎/

editor: React.PropTypes.object.isRequired,

/**

* The label that should be used for accessibility purposes.

*

* @instance

* @memberof LogSelectedTextButton

* @property {String} label

⁎/

label: React.PropTypes.string,

/**

* The tabIndex of the button in its toolbar current state. A value other than -1

* means that the button has focus and is the active element.

*

* @instance

* @memberof LogSelectedTextButton

* @property {Number} tabIndex

⁎/

tabIndex: React.PropTypes.number

},

6. Define the static properties for your button. You must at least provide the key. The key

defines the button’s name to specify in the AlloyEditor’s configuration. The my-log-text-

buttonmodule’s static properties are shown below:

statics: {

/**

* The name which is used as an alias of the button in the configuration.

*

* @default myTestButton

* @memberof LogSelectedTextButton

* @property {String} key

* @static

⁎/

key: 'logSelectedText'

},

7. Optionally define any default properties your button has for each instance using the
getDefaultProps property. The example below uses the ButtonKeystroke mixin’s required
command and keystroke properties to set the shortcut keys for the button’s logText() function:

getDefaultProps: function() {

return {

command: 'logText',

keystroke: {

1588

fn: 'logText',

keys: CKEDITOR.CTRL + CKEDITOR.SHIFT + 89 /*Y⁎/

}

};

},

8. Define the HTML markup to render for your button. The example below uses the
getStateClasses() method to retrieve the state class information provided by the
ButtonStateClasses mixin and add it to the current cssClass value. It also uses Liferay
Util’s getLexiconIconTpl() method to retrieve a Lexicon icon to use for the button. See
Lexicon’s Design Site for a full list of the available icons.

render: function() {

var cssClass = 'ae-button ' + this.getStateClasses();

var svg = Liferay.Util.getLexiconIconTpl('desktop');

return (

<button

className={cssClass}

onClick={this._logText}

title="Log the selected text in the console"

dangerouslySetInnerHTML={{__html: svg}}

/>

);

},

9. Define your button’smain action. Retrieving the nativeEditor, as shown in the example below,
gives you access to the full API of CKEditor. From there, you can use any of the available
CKEditor.editormethods to interact with the editor’s content. The example below chains the
editor’s getSelection() and getSelectedText()methods to retrieve the user’s highlighted text,
and then it logs it to the browser’s console:

/**

* @protected

* @method _logText

⁎/

_logText: function() {

var editor = this.props.editor.get('nativeEditor');

var selectedText = editor.getSelection().getSelectedText();

console.log("Your selected text is " + selectedText);

}

10. Finally, add the button to the list of available buttons:

AlloyEditor.Buttons[LogSelectedTextButton.key] = AlloyEditor.LogSelectedTextButton = LogS-
electedTextButton;

Now you know how to create a button for AlloyEditor!

Related Topics

Adding New Behavior to an Editor
Creating the AlloyEditor Button’s OSGi Bundle
Contributing the Button to AlloyEditor

1589

https://v2.clayui.com/docs/components/icons.html
https://alloyeditor.com/api/1.5.0/Core.html#nativeEditor
https://ckeditor.com/docs/ckeditor4/latest/api/CKEDITOR_editor.html#methods
https://ckeditor.com/docs/ckeditor4/latest/api/CKEDITOR_editor.html#method-getSelection
https://ckeditor.com/docs/ckeditor4/latest/api/CKEDITOR_dom_selection.html#method-getSelectedText

147.3 Contributing the Button to AlloyEditor

Once you’ve created your button, you can add it to the list of available buttons. This can be achieved
thanks to some smartly placed <liferay-util:dynamic-include /> tags in the editor’s infrastructure.
To make your button available in the AlloyEditor, you must extend the BaseDynamicInclude class.
Below is an example configuration that extends this class:

1. Create a Component class that implements the DynamicInclude.class service and extends
BaseDynamicInclude:

@Component(immediate = true, service = DynamicInclude.class)

public class MyButtonDynamicInclude extends BaseDynamicInclude {

2. Override the include()method to include a script with your transpiled JSX file. You can use
the StringBundler to concatenate the script. Note the sb.append("/js/buttons.js") line below.
This is the bundleFileName you defined in your bundle’s build.gradle transpileJS task:

@Override

public void include(

HttpServletRequest request, HttpServletResponse response,

String key)

throws IOException {

ThemeDisplay themeDisplay = (ThemeDisplay)request.getAttribute(

WebKeys.THEME_DISPLAY);

PrintWriter printWriter = response.getWriter();

StringBundler sb = new StringBundler(7);

sb.append("<script src=\"");

sb.append(themeDisplay.getPortalURL());

sb.append(PortalUtil.getPathProxy());

sb.append(_servletContext.getContextPath());

sb.append("/js/buttons.js");

sb.append("\" ");

sb.append("type=\"text/javascript\"></script>");

printWriter.println(sb.toString());

}

3. Override the register()method to use the additionalResources dynamic include to add your
script. Note the @Reference annotation’s target value is your bundle’s symbolic name defined
in its bnd.bnd file:

@Override

public void register(DynamicIncludeRegistry dynamicIncludeRegistry) {

dynamicIncludeRegistry.register(

"com.liferay.frontend.editor.alloyeditor.web#alloyeditor#" +

"additionalResources");

}

@Reference(

target = "(osgi.web.symbolicname=com.liferay.frontend.editor.alloyeditor.my.button.web)"

)

private ServletContext _servletContext;

1590

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/BaseDynamicInclude.html

}

Now that your button is included, you can follow the steps covered in Adding Buttons to the
AlloyEditor’s Toolbars tutorials to add the button to the editor’s toolbars.

Related Topics

Adding New Behavior to an Editor
Creating the Button’s JSX File
WYSIWYG Editor Dynamic Includes

147.4 Embedding Content in the AlloyEditor

Whether it’s a video from a popular streaming service, or an entertaining podcast, embedded
content is commonplace on the web. Sharing content from a third party is sometimes required to
properly cover a topic. The EmbedProvidermechanism lets you embed third party content in the
AlloyEditor, while writing blog posts, web content articles, etc. By default, the EmbedProvidermech-
anism is only configured for embedding video content (Facebook, Twitch, Vimeo, and YouTube)
into the AlloyEditor. This tutorial shows how to include additional video providers, and even add
support for additional content types.

An EmbedProvider requires four pieces of information:

• An ID: The content’s ID
• A Template: The required embed code for the provider
• A URL Schemes: URL patterns that are supported for the provider template
• A Type (optional): The provider category

When you add a supported URL to the editor, the EmbedProvider transforms the URL into the
embed code.

Follow these steps to create an *EmbedProvider:

1. Create a module for the Embed Provider.

2. Add the following dependencies to the build.gradle file:

compileOnly group: "com.liferay", name:

"com.liferay.frontend.editor.api", version: "1.0.1"

compileOnly group: "com.liferay", name: "com.liferay.petra.string",

version: "2.0.0"

3. Create a component class that implements the EditorEmbedProvider service:

@Component(

immediate = true,

service = EditorEmbedProvider.class

)

1591

4. Optionally set the type property to the content’s type. If creating a provider for a content type
other than video, you can create a new type constant and add a new button for the content
type. If you do create your own button, we recommend that you use the existing embed
video button’s JSX files as an example to write your own files. By default, the provider is
categorized as UNKNOWN. The example configuration below specifies the VIDEO type, using a
constant provided by the EditorEmbedProviderTypeConstants class:

@Component(

immediate = true,

property = "type=" + EditorEmbedProviderTypeConstants.VIDEO,

service = EditorEmbedProvider.class

)

5. Implement the EditorEmbedProvider interface. An example configuration is shown below:

public class MyEditorEmbedProvider implements EditorEmbedProvider {

}

6. Add the required imports:

import com.liferay.frontend.editor.api.embed.EditorEmbedProvider;

import com.liferay.frontend.editor.api.embed.EditorEmbedProviderTypeConstants;

import com.liferay.petra.string.StringBundler;

Note the *TypeConstants import is only needed if you’re adding a Video type provider.

7. Override the *EmbedProvider’s getId()method to return the ID for the provider. An example
configuration is shown below:

@Override

public String getId() {

return "providerName";

}

8. Override the *EmbedProvider’s getTpl()method to provide the embed template code (usually
an iframe for the provider). The example below defines the template for a streaming video
service. Note that {embedId} is a placeholder for the unique identifier for the embedded
content:

@Override

public String getTpl() {

return StringBundler.concat(

"<iframe allow=\"autoplay; encrypted-media\" allowfullscreen ",

"height=\"315\" frameborder=\"0\" ",

"src=\"https://www.liferaylunarresortstreaming.com/embed/{embedId}?rel=0\" ",

"width=\"560\"></iframe>");

}

9. Override the *EmbedProvider’s getURLSchemes()method to return an array of supported URL
schemes that have an embedded representation for the provider. URL schemes are defined
using a JavaScript regular expression that indicates whether a URL matches the provider.
Every URL scheme should contain a single matching group. Matches replace the {embedId}

placeholder defined in the previous step:

1592

https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-editor/frontend-editor-alloyeditor-web/src/main/resources/META-INF/resources/js/extras/buttons/embed
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-editor/frontend-editor-alloyeditor-web/src/main/resources/META-INF/resources/js/extras/buttons/embed
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-api/src/main/java/com/liferay/frontend/editor/api/embed/EditorEmbedProviderTypeConstants.java
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-api/src/main/java/com/liferay/frontend/editor/api/embed/EditorEmbedProvider.java

@Override

public String[] getURLSchemes() {

return new String[] {

"https?:\\/\\/(?:www\\.)?liferaylunarresortstreaming.com\\/watch\\?v=(\\S*)$"

};

}

10. Deploy your module and open an app that uses the AlloyEditor, such as Blogs, and create
a new entry. Click the add button and select the video button—or your new content type
button—and paste the content’s URL. Click the checkmark to confirm that the URL scheme is
supported. The content is embedded into the editor.

Now you know how to embed content in the AlloyEditor. Create a new content entry, such as a
blog post, and click the embed video button—or the one you created—and paste the content’s URL.

Related Topics

Adding Buttons to AlloyEditor’s Toolbars
Adding New Behavior to an Editor

1593

CHAPTER 148

SERVLETS

Java Servlets are foundational to Java EE. You can use servlets and servlet filters to provide applica-
tions in your portal context and to process requests and responses to specific URLs in your sites.
The tutorials here cover servlet technology and how it integrates with Liferay DXP.

148.1 Servlets in a Module

You can use servlets or JAX-RS to provide a lightweight web integration or a web endpoint to a
browser client. Servlets, rather than REST endpoints or portlets, let you control an application’s en-
tire UI experience. Liferay DXP supports servlet based applications and embeds HTTPWhiteboard
for servlets.

Here you’ll examine a servlet sample and create your own servlet based application.

Servlet Sample

The servlet sample uses HTTPWhiteboard to respond to requests at URLs that match the pattern
http://localhost:8080/o/blade/servlet/*.

Figure 148.1: If users visit http://localhost:8080/o/blade/servlet, the servlet sample shows the message Hello World.

Here’s the sample servlet class:

package com.liferay.blade.samples.servlet;

import java.io.IOException;

import javax.servlet.Servlet;

1595

https://en.wikipedia.org/wiki/Java_servlet
https://osgi.org/specification/osgi.cmpn/7.0.0/service.http.whiteboard.html
https://osgi.org/specification/osgi.cmpn/7.0.0/service.http.whiteboard.html

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import org.osgi.service.log.LogService;

/**

* @author Liferay

⁎/

@Component(

immediate = true,

property = {

"osgi.http.whiteboard.context.path=/",

"osgi.http.whiteboard.servlet.pattern=/blade/servlet/*"

},

service = Servlet.class

)

public class BladeServlet extends HttpServlet {

@Override

public void init() throws ServletException {

_log.log(LogService.LOG_INFO, "BladeServlet init");

super.init();

}

@Override

protected void doGet(

HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException {

_log.log(LogService.LOG_INFO, "doGet");

_writeSampleHTML(response);

}

/**

* Dummy contents

*

* @return dummy contents string

⁎/

private String _generateSampleHTML() {

StringBuffer sb = new StringBuffer();

sb.append("<html>");

sb.append("<head><title>Sample HTML</title></head>");

sb.append("<body>");

sb.append("<h2>Hello World</h2>");

sb.append("</body>");

sb.append("</html>");

return new String(sb);

}

/**

* Write sample HTML

*

* @param resp

⁎/

private void _writeSampleHTML(HttpServletResponse resp) {

resp.setCharacterEncoding("UTF-8");

resp.setContentType("text/html; charset=UTF-8");

resp.setStatus(HttpServletResponse.SC_OK);

try {

1596

resp.getWriter().write(_generateSampleHTML());

}

catch (Exception e) {

_log.log(LogService.LOG_WARNING, e.getMessage(), e);

resp.setStatus(HttpServletResponse.SC_PRECONDITION_FAILED);

}

}

private static final long serialVersionUID = 1L;

@Reference

private LogService _log;

}

The sample servlet class uses the @Component annotation to declare itself an OSGi ser-
vice of type Servlet. It uses OSGi HTTP Whiteboard to respond to requests at URLs matching
http://localhost:8080/o/blade/servlet/*. Since the component’s osgi.http.whiteboard.context.path
and osgi.http.whiteboard.servlet.pattern properties configure the servlet mapping, there’s no
need to specify one in a WEB-INF/web.xml descriptor.

The Portal web application’s WEB-INF/web.xml defines Liferay’s Module Framework Servlet map-
ping:

<servlet-mapping>

<servlet-name>Module Framework Servlet</servlet-name>

<url-pattern>/o/*</url-pattern>

</servlet-mapping>

The servlet mapping starts at URL pattern /o/*. Combined with the @Component property
"osgi.http.whiteboard.servlet.pattern=/blade/servlet/*", the servlet samplematches URL pattern
/o/blade/servlet/*.

To develop your own servlet, you can copy andmodify all (or part) of the Servlet sample module
project or create a servlet in your own module.

Creating a Servlet

Here’s how to create your own servlet:

1. Create a module project.

2. Add the necessary dependencies. Here they are for Gradle:

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.4.0"

compileOnly group: "org.osgi", name: "org.osgi.service.log", version: "1.4.0"

3. Create a servlet class that extends javax.servlet.http.HttpServlet.

4. Add the following @Component annotation.

@Component(

property = {

"osgi.http.whiteboard.context.path=/",

"osgi.http.whiteboard.servlet.pattern=/blade/servlet/*"

},

service = Servlet.class

)

1597

service = Servlet.class: Makes the component an OSGi service of type Servlet.

5. Set the following @Component property values to specify a context path and servlet URL pattern:

"osgi.http.whiteboard.context.path=/": Sets the servlet’s context. Replace the valuewith your
servlet’s context path.

"osgi.http.whiteboard.servlet.pattern=/blade/servlet/*": Sets the servlet’s mapping pattern.
Replace the value with your servlet’s pattern.

6. Override HttpServletmethods to implement your servlet’s behavior.

7. Deploy your module.

Your servlet is up and running. You’re well on your way to delivering custom user experiences
using servlets.

Related Topics

Servlet Sample
Servlet Filters
JAX-RS
Portlets

148.2 Servlet Filters

Servlet filters can both pre-process requests as they arrive and post-process responses before they
go to the client browser. They let you apply functionality to requests and responses for multiple
servlets, without the servlets knowing. Here are some common filter use cases:

• Logging
• Auditing
• Transaction management
• Security

You can use patterns in descriptors to map the filters to servlet URLs. When requests arrive at
these URLs, your filters process them. Filter chaining lets you apply filters in an order you want.
Servlet Filter Hook plugins let you deploy and undeploy filters without modifying the Liferay web
application. Here are the steps for creating and deploying a servlet filter:

1. Create a Servlet Filter class

2. Map URLs to your Servlet Filter

3. Create a Liferay plugin descriptor

4. Deploy your plugin

1598

For reference, you can download the example servlet filter project code.
In a traditional web application (.war) project, start with creating your servlet filter class.

Note: Portlet filters let you apply functionality to portlet requests and responses. JSP overrides
are one way to use portlet filters.

Step 1: Create a Servlet Filter class

Create a class that implements javax.servlet.Filter. Here’s an example servlet filter class:

package com.liferay.sampleservletfilter.hook.filter;

import com.liferay.portal.kernel.util.WebKeys;

import java.io.IOException;

import javax.servlet.Filter;

import javax.servlet.FilterChain;

import javax.servlet.FilterConfig;

import javax.servlet.ServletException;

import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

public class SampleFilter implements Filter {

@Override

public void destroy() {

System.out.println("Called SampleFilter.destroy()");

}

@Override

public void doFilter(

ServletRequest servletRequest, ServletResponse servletResponse,

FilterChain filterChain)

throws IOException, ServletException {

String uri = (String)servletRequest.getAttribute(

WebKeys.INVOKER_FILTER_URI);

System.out.println(

"Called SampleFilter.doFilter(" + servletRequest + ", " +

servletResponse + ", " + filterChain + ") for URI " + uri);

filterChain.doFilter(servletRequest, servletResponse);

}

@Override

public void init(FilterConfig filterConfig) {

System.out.println(

"Called SampleFilter.init(" + filterConfig + ") where hello=" +

filterConfig.getInitParameter("hello"));

}

}

Here are the Filtermethods to implement:

1. init(FilterConfig): Configure the filter and perform any necessary initializations.

When SampleFilter is initialized, for example, its init(FilterConfig) method prints the
FilterConfig object and the hello parameter’s value:

1599

https://portal.liferay.dev/documents/113763090/114000653/sample-servlet-filter-hook.zip
https://portals.apache.org/pluto/portlet-3.0-apidocs/javax/portlet/filter/PortletFilter.html
https://tomcat.apache.org/tomcat-9.0-doc/servletapi/index.html
https://tomcat.apache.org/tomcat-9.0-doc/servletapi/index.html

Called SampleFilter.init(com.liferay.portal.kernel.servlet.filters.invoker.InvokerFilterConfig@7c953747) where hello=world

2. doFilter(ServletRequest, ServletResponse, FilterChain): Filter on requests and responses
here. To apply your filter, invoke filterChain.doFilter(servletRequest, servletResponse).
When users visit URLsmapped for SampleFilter, for example, its doFilter(...) method prints
the ServletResponse object, FilterChain object, and the ServletRequest URI before passing
control to the next filter by invoking filterChain.doFilter(servletRequest, servletResponse).

Called SampleFilter.doFilter(org.apache.catalina.connector.RequestFacade@68be71e0, com.liferay.portal.servlet.filters.absoluteredirects.AbsoluteRedirectsResponse@2b598f1a, com.liferay.portal.kernel.servlet.filters.invoker.InvokerFilterChain@72220503) for URI /web/guest

3. destroy(): Clean up the filter’s unneeded resources.
When SampleFilter is destroyed, its destroy() method prints the message: Called

SampleFilter.destroy().

It’s time to map URLs to your servlet filter.

Step 2: Map URLs to your Servlet Filter

Traditionally, specifying a servlet filter and its filter mapping requires modifying your web applica-
tion’s web.xml file. Liferay DXP, however, lets you specify them in your plugin, so you don’t need to
modify the Liferay DXP web application. Specify your servlet filter mapping in a descriptor file
WEB-INF/liferay-hook.xml, like this one for Sample Filter:

<?xml version="1.0"?>

<!DOCTYPE hook PUBLIC "-//Liferay//DTD Hook 7.1.0//EN" "http://www.liferay.com/dtd/liferay-hook_7_1_0.dtd">

<hook>

<servlet-filter>

<servlet-filter-name>Sample Filter</servlet-filter-name>

<servlet-filter-impl>com.liferay.sampleservletfilter.hook.filter.SampleFilter</servlet-filter-impl>

<init-param>

<param-name>hello</param-name>

<param-value>world</param-value>

</init-param>

</servlet-filter>

<servlet-filter-mapping>

<servlet-filter-name>Sample Filter</servlet-filter-name>

<before-filter>SSO Open SSO Filter</before-filter>

<url-pattern>/group/*</url-pattern>

<url-pattern>/user/*</url-pattern>

<url-pattern>/web/*</url-pattern>

<url-pattern>*.jsp</url-pattern>

<dispatcher>REQUEST</dispatcher>

<dispatcher>FORWARD</dispatcher>

</servlet-filter-mapping>

</hook>

Here’s how to map URLs to your servlet filter:

1. Create a descriptor file WEB-INF/liferay-hook.xml, based on the Liferay Hook DTD.

2. Add a servlet-filter element as a sub element of hook. Specify your servlet-filter sub-
elements.
servlet-filter-name: Arbitrary name. (required)
servlet-filter-impl: Filter implementation class. (required)
init-param elements: Initialization parameters. (optional)

1600

https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-hook_7_1_0.dtd.html

3. Add a servlet-filter-mapping element as a sub element of hook.
servlet-filter-name: Match the one used in the servlet-filter. (required)
after-filter: Name of a servlet-filter for this filter to go after. (optional)
before-filter: Name of a servlet-filter for this filter to go before. (optional)
url-pattern elements: URL patterns you want to filter requests and responses for. (required)
dispatcher elements: Specify Dispatcher enumerated constants to constrain how the filter is
applied to requests. (optional)

Step 3: Create a Liferay plugin descriptor

In a WEB-INF/liferay-plugin-package.properties file, specify the versions of Liferay DXP your plugin
supports:

liferay-versions=7.1.0+

Step 4: Deploy your plugin

Specify compile-time dependencies on these artifacts:

• com.liferay.portal.kernel

• javax.servlet-api

Gradle:

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "3.0.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

Maven:

<dependency>

<groupId>com.liferay.portal</groupId>

<artifactId>com.liferay.portal.kernel</artifactId>

<version>3.0.0</version>

</dependency>

<dependency>

<groupId>javax.servlet</groupId>

<artifactId>javax.servlet-api</artifactId>

<version>3.0.1</version>

</dependency>

Build your plugin .war file and deploy it by copying it to the [LIFERAY_HOME]/deploy folder. Lif-
eray’s auto-deployer copies the .war to the [LIFERAY_HOME]/osgi/war folder. The WAB Generator
converts the .war to an OSGiWeb Application Bundle (WAB) and installs it to Liferay DXP’s runtime.
The output in your console should look like this:

2018-11-03 16:20:09.118 INFO [fileinstall-C:/workspace_liferay/bundles/osgi/war][BaseAutoDeployListener:43] Copying hook plugin for C:\workspace_liferay\bundles\tomcat-

9.0.6\temp\20181103162009108XCJZAKUY\sample-servlet-filter-hook.war

2018-11-03 16:20:09.390 INFO [fileinstall-C:/workspace_liferay/bundles/osgi/war][BaseDeployer:880] Deploying sample-servlet-

filter-hook.war

2018-11-03 16:20:10.019 INFO [fileinstall-C:/workspace_liferay/bundles/osgi/war][BaseAutoDeployListener:50] Hook for C:\workspace_liferay\bundles\tomcat-

9.0.6\temp\20181103162009108XCJZAKUY\sample-servlet-filter-hook.war copied successfully

2018-11-03 16:20:10.730 INFO [Refresh Thread: Equinox Container: 4023060a-c8de-0018-1c3a-ebee784b7a28][BundleStartStopLogger:35] STARTED sample-

servlet-filter-hook_7.1.10.1 [963]

2018-11-03 16:20:11.050 INFO [Refresh Thread: Equinox Container: 4023060a-c8de-0018-1c3a-ebee784b7a28][HotDeployImpl:226] Deploying sample-

servlet-filter-hook from queue

1601

https://docs.liferay.com/ce/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/filters/invoker/Dispatcher.html#enum.constant.summary
https://docs.oracle.com/cd/E19798-01/821-1841/bnagf/index.html
https://docs.oracle.com/cd/E19798-01/821-1841/bnagf/index.html

2018-11-03 16:20:11.052 INFO [Refresh Thread: Equinox Container: 4023060a-c8de-0018-1c3a-ebee784b7a28][PluginPackageUtil:1001] Reading plugin package for sample-

servlet-filter-hook

03-Nov-2018 16:20:11.066 INFO [Refresh Thread: Equinox Container: 4023060a-c8de-0018-1c3a-ebee784b7a28] org.apache.catalina.core.ApplicationContext.log Initializing Spring root WebApplicationContext

2018-11-03 16:20:11.093 INFO [Refresh Thread: Equinox Container: 4023060a-c8de-0018-1c3a-ebee784b7a28][HookHotDeployListener:457] Registering hook for sample-

servlet-filter-hook

Called SampleFilter.init(com.liferay.portal.kernel.servlet.filters.invoker.InvokerFilterConfig@7c953747) where hello=world

2018-11-03 16:20:11.134 INFO [Refresh Thread: Equinox Container: 4023060a-c8de-0018-1c3a-ebee784b7a28][HookHotDeployListener:533] Hook for sample-

servlet-filter-hook is available for use

The servlet container calls your filter’s init method. Deploying SampleFilter, for example,
invokes its initmethod, which prints this output:

Called SampleFilter.init(com.liferay.portal.kernel.servlet.filters.invoker.InvokerFilterConfig@7c953747) where hello=world

Visiting the URLs mapped to your servlet filter invokes your filter’s doFiltermethod. Since the
sample’s servlet filter mapping includes the URL /web/*, visiting http://localhost:8080/web/guest
invokes SampleFilter.doFilter, which prints this:

Called SampleFilter.doFilter(org.apache.catalina.connector.RequestFacade@68be71e0, com.liferay.portal.servlet.filters.absoluteredirects.AbsoluteRedirectsResponse@2b598f1a, com.liferay.portal.kernel.servlet.filters.invoker.InvokerFilterChain@72220503) for URI /web/guest

Undeploying your servlet filter .war invokes its destroy()method.
Congratulations on filtering requests to your site’s URLs.

Related Topics

Configuring Dependencies

1602

CHAPTER 149

TESTING

Assuring top quality is paramount in producing awesome software. Test driven development plays
a key role in this process. Liferay’s tooling and integration with standard test frameworks support
test driven development and help you reach quality milestones. Liferay lets you use whatever
testing framework you want. There’s JUnit for unit testing, Arquillian plus JUnit annotations for
integration testing, and more; consult the testing framework’s documentation for details.

Here are the ways Liferay facilitates testing:

• Injecting Service Components into Tests: Liferay’s @Inject annotation allows you to inject
service instances into tests.

149.1 Injecting Service Components into Integration Tests

You can use Liferay DXP’s @Inject annotation to inject service components into an integration test,
like you use the @Reference annotation to inject service components into an OSGi component.

Note: Arquillian plus JUnit annotations is one way to develop integration tests. Liferay lets you
use whatever testing framework you want.

@Inject uses reflection to inject a field with a service component object matching the field’s
interface. Test rule LiferayIntegrationTestRule provides the annotation. The annotation accepts
filter and type parameters, which you can use separately or together.

To fill a field with a particular implementation or sub-class object, set the type with it.

@Inject(type = SubClass.class)

Replace SubClass with the name of the service interface to inject.
Here’s an example test class that injects a DDLServiceUpgradeobject into an UpgradeStepRegistrator

interface field:

public class Test {

@ClassRule

@Rule

1603

https://junit.org
http://arquillian.org/
http://arquillian.org/
https://junit.org
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-test-integration/com/liferay/portal/test/rule/LiferayIntegrationTestRule.html

public static final AggregateTestRule aggregateTestRule =

new LiferayIntegrationTestRule();

@Test

public void testSomething() {

// your test code here

}

@Inject(

filter = "(&(objectClass=com.liferay.dynamic.data.lists.internal.upgrade.DDLServiceUpgrade))"

)

private static UpgradeStepRegistrator _upgradeStepRegistrator;

}

Here’s how to inject a service component into a test class:

1. In your test class, add a rulefield of type com.liferay.portal.test.rule.LiferayIntegrationTestRule.
For example,

@ClassRule

@Rule

public static final AggregateTestRule aggregateTestRule =

new LiferayIntegrationTestRule();

2. Add a field to hold a service component. Making the field static improves efficiency, because
the container injects static fields once before test runs and nulls them after all tests run.
Non-static fields are injected before each test run but stay in memory till all tests finish.

3. Annotate the field with an @Inject annotation. By default, the container injects the field with
a service component object matching the field’s type.

4. Optionally add a filter string or type parameter to further specify the service component
object to inject.

At runtime, the @Inject annotation blocks the test until a matching service component is
available. The block has a timeout and messages are logged regarding the test’s unavailable
dependencies.

Important: If you’re publishing the service component you are injecting, the test might never
run. If you must publish the service component from the test class, use Service Trackers to access
service components.

Great! Now you can inject service components into your tests.

Related Articles

Service Trackers

1604

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-test-integration/com/liferay/portal/test/rule/LiferayIntegrationTestRule.html

CHAPTER 150

MODULARITY AND OSGI

Things we use every day are made of carefully designed, created, and tested subsystems. For
example, a car has an engine, suspension, and air conditioner. Teams of engineers, machinists,
and technicians make these subsystems the best they can be separately before combining them to
create a high quality car. This is modularity in action: creating things from smaller well-designed,
well-tested parts.

Liferay DXP is modular too. It comprises code modules created and tested independently and
in parallel. It’s a platform on which modules and modular applications are installed, started, used,
stopped, and uninstalled. Liferay’s components use the OSGi modularity standard.

These tutorials demonstrate developing OSGi services and components to customize Liferay
DXP and create applications on it. As Liferay’s developers used modules to create applications,
you and your team can enjoy developing your own modules, applications, and customizations in
parallel.

150.1 The Benefits of Modularity

Dictionary.com defines modularity as the use of individually distinct functional units, as in assembling
an electronic or mechanical system. The distinct functional units are called modules.

NASA’s Apollo spacecraft, for example, comprised three modules, each with a distinct function:

• Lunar Module: Carried astronauts from the Apollo spacecraft to the moon’s surface and back.
• Service Module: Provided fuel for propulsion, air conditioning, and water.
• Command Module: Housed the astronauts and communication and navigation controls.

The spacecraft and its modules exemplified these modularity characteristics:

• Distinct functionality: Each module provides a distinct function (purpose); modules can be
combined to provide an entirely new collective function.

The Apollo spacecraft’s modules were grouped together for a distinct collective function: take
astronauts from the Earth’s atmospheric rim, to the moon’s surface, and back to Earth. The
previous list identifies each module’s distinct function.

1605

http://www.dictionary.com/browse/modularity

Figure 150.1: The Apollo spacecraft’s modules collectively took astronauts to the moon’s surface and back to Earth.

• Dependencies: Modules can require capabilities other modules satisfy.

The Apollo modules had these dependencies:

– Lunar Module depended on the Service Module to get near the moon.

– Command Module depended on the Service Module for power and oxygen.

– Service Module depended on the Command Module for instruction.

• Encapsulation: Modules hide their implementation details but publicly define their capabili-
ties and interfaces.

Each Apollo module was commissioned with a contract defining its capabilities and interface,
while eachmodule’s details were encapsulated (hidden) fromothermodules. NASA integrated
the modules based on their interfaces.

• Reusability: A module can be applied to different scenarios.

The Command Module’s structure and design were reusable. NASA used different versions
of the Command Module, for example, throughout the Apollo program, and in the Gemini
Program, which focused on Earth orbit.

NASA used modularity to successfully complete over a dozen missions to the moon. Can
modularity benefit software too? Yes! The following sections show you how:

• Modularity benefits for software
• Example: How to design a modular application

Modularity Benefits for Software

Java applications have predominantly been monolithic: they’re developed in large code bases. In a
monolith, it’s difficult to avoid tight coupling of classes. Modular application design, conversely,
facilitates loose coupling, making the code easier to maintain. It’s much easier and more fun to
develop small amounts of cohesive code in modules. Here are some key benefits of developing
modular software.

1606

Distinct Functionality

It’s natural to focus on developing one piece of software at a time. In a module, you work on a
small set of classes to define and implement the module’s function. Keeping scope small facilitates
writing high quality, elegant code. The more cohesive the code, the easier it is to test, debug,
and maintain. Modules can be combined to provide a new function, distinguishable from each
module’s function.

Encapsulation

A module encapsulates a function (capability). Module implementations are hidden from con-
sumers, so you can create and modify them as you like. Throughout a module’s lifetime, you can
fix and improve the implementation or swap in an entirely new one. You make the changes behind
the scenes, transparent to consumers. A module’s contract defines its capability and interface,
making the module easy to understand and use.

Dependencies

Modules have requirements and capabilities. The interaction between modules is a function of the
capability of one satisfying the requirement of another and so on. Modules are published to artifact
repositories, such as Maven Central. Module versioning schemes let you specify dependencies on
particular module versions or version ranges.

Reusability

Modules that do their job well are hot commodities. They’re reusable across projects, for different
purposes. As you discover helpful reliable modules, you’ll use them again and again.

It’s time to design a modular application.

Example: Designing a Modular Application

Application design often starts out simple but gets more complex as you determine capabilities the
application requires. If a third party library already provides the capability, you can deploy it with
your app. You can otherwise implement the capability yourself.

As you design various aspects of your app to support its function, you must decide how those
aspects fit into the code base. Putting them in a single monolithic code base often leads to tight
coupling, while designating separate modules for each aspect fosters loose coupling. Adopting a
modular approach to application design lets you reap the modularity benefits.

For example, you can apply modular design to a speech recognition app. Here are the app’s
function and required capabilities:

Function: interface with users to translate their speech into text for the computer to understand.
Required capabilities:

• Translates user words to text
• Uses a selected computer voice to speak to users.
• Interacts with users based on a script of instructions that include questions, commands,
requests, and confirmations.

You could create modules to provide the required capabilities:

1607

• Speech to text: Translates spoken words to text the computer understands.
• Voice UI: Interacts with users based on stored questions, commands, and confirmations.
• Instruction manager: Stores and provides the application’s questions, commands, and confir-
mations.

• Computer voice: Stores and provides computer voices for users to choose from.

The following diagram contrasts a monolithic design for the speech recognition application
with a modular design.

Figure 150.2: The speech recognition application can be implemented in a single monolithic code base or in modules, each focused on a particular function.

Designing the app as a monolith lumps everything together. There are no initial boundaries
between the application aspects, whereas the modular design distinguishes the aspects.

Developers can create the modules in parallel, each one with its own particular capability.
Designing applications that comprisemodules fosterswriting cohesive pieces of code that represent
capabilities. Each module’s capability can potentially be reused in other scenarios too.

For example, the Instruction manager and Computer voice modules can be reused by a navigation
app.

Figure 150.3: The Instruction manager and Computer voicemodules designed for the speech recognition app can be used (or reused) by a navigation app.

Here are the benefits of designing the speech recognition app as modules:

• Each module represents a capability that contributes to the app’s overall function.
• The app depends on modules, that are easy to develop, test, and maintain.
• The modules can be reused in different applications.

1608

In conclusion, modularity has literally taken us to the moon and back. It benefits software
development too. The example speech recognition application demonstrated how to design an app
that comprises modules.

Next you’ll learn how OSGi facilitates creating modules that provide and consume services.

150.2 OSGi and Modularity

Modularity makes writing software, especially as a team, fun! Here are some benefits to modular
development on DXP:

• Liferay DXP’s runtime framework is lightweight, fast, and secure.
• The framework uses the OSGi standard. If you have experience using OSGi with other projects,
you can apply your existing knowledge to developing on DXP.

• Modules publish services to and consume services from a service registry. Service contracts
are loosely coupled from service providers and consumers, and the registry manages the
contracts automatically.

• Modules’ dependencies are managed automatically by the container, dynamically (no restart
required).

• The container manages module life cycles dynamically. Modules can be installed, started,
updated, stopped, and uninstalled while Liferay is running, making deployment a snap.

• Only a module’s classes whose packages are explicitly exported are publicly visible; OSGi
hides all other classes by default.

• Modules and packages are semantically versioned and declare dependencies on specific
versions of other packages. This allows two applications that depend on different versions of
the same packages to each depend on their own versions of the packages.

• Teammembers can develop, test, and improve modules in parallel.
• You can use your existing developer tools and environment to develop modules.

There are many benefits to modular software development with OSGi, and we can only scratch
the surface here. Once you start developingmodules, youmight find it hard to go back to developing
any other way.

Modules

It’s time to see what module projects look like and see Liferay DXP’s modular development features
in action. To keep things simple, only project code and structure are shown: you can createmodules
like these anytime.

These modules collectively provide a command that takes a String and uses it in a greeting.
Consider it “HelloWorld” for modules.

API

The API module is first. It defines the contract that a provider implements and a consumer uses.
Here is its structure:

• greeting-api

– src

1609

* main

· java

· com/liferay/docs/greeting/api

· Greeting.java

– bnd.bnd

– build.gradle

Very simple, right? Beyond the Java source file, there are only two other files: a Gradle build
script (though you can use any build system you want), and a configuration file called bnd.bnd. The
bnd.bnd file describes and configures the module:

Bundle-Name: Greeting API

Bundle-SymbolicName: com.liferay.docs.greeting.api

Bundle-Version: 1.0.0

Export-Package: com.liferay.docs.greeting.api

The module’s name is Greeting API. Its symbolic name–a name that ensures uniqueness–is
com.liferay.docs.greeting.api. Its semantic version is declared next, and its package is exported,
which means it’s made available to other modules. This module’s package is just an API other
modules can implement.

Finally, there’s the Java class, which in this case is an interface:

package com.liferay.docs.greeting.api;

import aQute.bnd.annotation.ProviderType;

@ProviderType

public interface Greeting {

public void greet(String name);

}

The interface’s @ProviderType annotation tells the service registry that anything implementing
the interface is a provider. The interface’s onemethod asks for a String and doesn’t return anything.

That’s it! As you can see, creatingmodules is not very different from creating other Java projects.

Provider

An interface only defines an API; to do something, it must be implemented. This is what the
provider module is for. Here’s what a provider module for the Greeting API looks like:

• greeting-impl

– src

* main

· java

· com/liferay/docs/greeting/impl

· GreetingImpl.java

– bnd.bnd

1610

– build.gradle

It has the same structure as the API module: a build script, a bnd.bnd configuration file, and an
implementation class. The only differences are the file contents. The bnd.bnd file is a little different:

Bundle-Name: Greeting Impl

Bundle-SymbolicName: com.liferay.docs.greeting.impl

Bundle-Version: 1.0.0

The bundle name, symbolic name, and version are all set similarly to the API.
Finally, there’s no Export-Package declaration. A client (which is the third module you’ll create)

just wants to use the API: it doesn’t care how its implementation works as long as the API returns
what it’s supposed to return. The client, then, only needs to declare a dependency on the API; the
service registry injects the appropriate implementation at runtime.

Pretty cool, eh?
All that’s left, then, is the class that provides the implementation:

package com.liferay.docs.greeting.impl;

import com.liferay.docs.greeting.api.Greeting;

import org.osgi.service.component.annotations.Component;

@Component(

immediate = true,

property = {

},

service = Greeting.class

)

public class GreetingImpl implements Greeting {

@Override

public void greet(String name) {

System.out.println("Hello " + name + "!");

}

}

The implementation is simple. It uses the String as a name and prints a hello message. A better
implementation might be to use Liferay’s API to collect all the names of all the users in the system
and send each user a greeting notification, but the point here is to keep things simple. You should
understand, though, that there’s nothing stopping you from replacing this implementation by
deploying another module whose Greeting implementation’s @Component annotation specifies a
higher service ranking property (e.g., "service.ranking:Integer=100").

This @Component annotation defines three options: immediate = true, an empty property list, and
the service class that it implements. The immediate = true setting means that this module should
not be lazy-loaded; the service registry loads it as soon as it’s deployed, instead of when it’s first
used. Using the @Component annotation declares the class as a Declarative Services component,
which is the most straightforward way to create components for OSGi modules. A component is a
POJO that the runtime creates automatically when the module starts.

To compile this module, the API it’s implementing must be on the classpath. If you’re using Gra-
dle, you’d add the greetings-api project to your dependencies { ... } block. In a LiferayWorkspace
module, the dependency looks like this:

compileOnly project (':modules:greeting-api')

That’s all there is to a provider module.

1611

Consumer

The consumer or client uses the API that the API module defines and the provider module im-
plements. DXP has many different kinds of consumer modules. Portlets are the most common
consumer module type, but since they are a topic all by themselves, this example stays simple
by creating an command for the Apache Felix Gogo shell. Note that consumers can, of course,
consume many different APIs to provide functionality.

A consumer module has the same structure as the other module types:

• greeting-command

– src

* main

· java

· com/liferay/docs/greeting/command

· GreetingCommand.java

– bnd.bnd

– build.gradle

Again, you have a build script, a bnd.bnd file, and a Java class. Thismodule’s bnd.bnd file is almost
the same as the provider’s:

Bundle-Name: Greeting Command

Bundle-SymbolicName: com.liferay.docs.greeting.command

Bundle-Version: 1.0.0

There’s nothing new here: you declare the same things you declared for the provider.
Your Java class has a little bit more going on:

package com.liferay.docs.greeting.command;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import com.liferay.docs.greeting.api.Greeting;

@Component(

immediate = true,

property = {

"osgi.command.scope=greet",

"osgi.command.function=greet"

},

service = Object.class

)

public class GreetingCommand {

public void greet(String name) {

Greeting greeting = _greeting;

greeting.greet(name);

}

@Reference

private Greeting _greeting;

}

1612

The @Component annotation declares the same attributes, but specifies different properties and
a different service. As in Java, where every class is a subclass of java.lang.Object (even though
you don’t need to specify it by default), in Declarative Services, the runtime needs to know the
type of class to register. Because you’re not implementing any particular type, your parent class is
java.lang.Object, so you must specify that class as the service. While Java doesn’t require you to
specify Object as the parent when you’re creating a class that doesn’t inherit anything, Declarative
Services does.

The two properties define a command scope and a command function. All commands have a
scope to define their context, as it’s common for multiple APIs to have similar functions, such as
copy or delete. These properties specify you’re creating a command called greet in a scope called
greet. While you get no points for imagination, this sufficiently defines the command.

Since you specified osgi.command.function=greet in the @Component annotation, your class must
have a method named greet, and you do. But how does this greet method work? It obtains an
instance of the Greeting OSGi service and invokes its greetmethod, passing in the name parameter.
How is an instance of the Greeting OSGi service obtained? The GreetingCommand class declares a
private service bean, _greeting of type Greeting. This is the OSGi service type that the provider
module registers. The @Reference annotation tells the OSGi runtime to instantiate the service bean
with a service from the service registry. The runtime binds the Greeting object of type GreetingImpl

to the private field _greeting. The greetmethod uses the _greeting field value.
Just like the provider, the consumer needs to have the API on its classpath in order to compile,

but at runtime, since you’ve declared all the dependencies appropriately, the container knows
about these dependencies, and provides them automatically.

If you were to deploy these modules to a DXP instance, you’d be able to attach to the Gogo Shell
and execute a command like this:

greet:greet "Captain\ Kirk"

The shell would then return your greeting:

Hello Captain Kirk!

This most basic of examples should make it clear that module-based development is easy
and straightforward. The API-Provider-Consumer contract fosters loose coupling, making your
software easy to manage, enhance, and support.

A Typical Liferay Application

If you look at a typical application from Liferay’s source, you’ll generally find at least four modules:

• An API module
• A Service (provider) module
• A Test module
• AWeb (consumer) module

This is exactly what you’ll find for some smaller applications, like the Mentions application
that lets users mention other users with the @username nomenclature in comments, blogs, or other
applications. Larger applications like the Documents and Media library have more modules. In
the case of the Documents and Media library, there are separate modules for different document
storage back-ends. In the case of theWiki, there are separate modules for differentWiki engines.

1613

Encapsulating capability variations as modules facilitates extensibility. If you have a document
storage back-end that Liferay doesn’t yet support, you can implement Liferay’s document storage
API for your solution by developing a module for it and thus extend Liferay’s Documents andMedia
library. If there’s aWiki dialect that you like better than what Liferay’s wiki provides, you can write
a module for it and extend Liferay’s wiki.

Are you excited yet? Are you ready to start developing? Here are some resources for you to
learn more.

Related Topics

Liferay IDE
LiferayWorkspace
Blade CLI
Maven
Planning a Plugin Upgrade to Liferay 7

150.3 Leveraging Dependencies

Using anOSGimanifest, amodule declares the Javapackages it consumes and shares. Themanifest’s
Import-Package and Export-Package settings expose this information. As you determine whether
to use a particular module, you know up-front what it offers and what it depends on. As an
improvement over Java EE, OSGi takes away dependency guesswork.

This part of the tutorial explains:

• How dependencies work

• How dependencies facilitate modular development

Let’s start by learning how dependencies operate in 7.0.

HowDependencies Work

Each module’s manifest lists the packages the module depends on. Using a build environment
such as Gradle, Maven, or Ant/Ivy, you can set dependencies on each package’s module. At build
time, the dependency framework verifies the entire dependency chain, downloading all newly
specified modules. The same thing happens at runtime: the OSGi runtime knows exactly which
modules depend on which other modules (failing fast if any dependency is unmet). Dependency
management is explicit and enforced automatically upfront.

Note: Since Liferay 7.0, all of what was in Liferay Portal 6 and its apps has been refactored into
OSGi modules. The portal-service API (the main API in Liferay Portal 6) has been replaced by the
portal-kernel module (7.0’s kernel API) and many small, highly-cohesive modules that provide
frameworks, utilities, apps, and more. Not only do Liferay DXP modules depend on third-party
modules but they also depend on each other. You can likewise leverage dependencies in your
projects. Whether you’re developing new OSGi modules or continuing to develop traditional apps,
you need only set dependencies on modules whose packages you need.

1614

Versioning is independent for each module and its exported packages. You can use a specific
package version by depending on the version of the module that exports it. And you’re free to
use a mix of modules in the versions you want (but remember, “With great power comes great
responsibility,” so unless you really know what you’re doing, use the same version of each module
you depend on).

For all its modules, Liferay DXP uses Semantic Versioning. It’s a standard that enables API
authors to communicate programmatic compatibility of a package or module automatically as it
relates to dependent consumers and API implementations. If a package is programmatically (i.e.,
semantically) incompatible with a project, bnd (used in LiferayWorkspace and projects created
from Liferay project templates) fails that project’s build immediately. Developers not using bnd
can check package versions manually in each dependency module’s manifest.

SemanticVersioning also gives you flexibility to specify a version range of packages andmodules
to depend on. In other words, if several versions of a packagework for an app, you can configure the
app to use any of them. What’s more, bnd automatically determines the semantically compatible
range of each package a module depends on and records the range to the module’s manifest.

On testing your project, you might find a new version of a dependency package has bugs or
behaves differently than you’d like. No problem. You can adjust the package version range to
include versions up to, but not including, the one you don’t want.

Next you want to consider when to modularize existing apps and when to combine modules to
create apps.

Dependencies Facilitate Modular Development

Liferay DXP’s support of dependencies and semantic versioning facilitates modular development.
The dependency frameworks enable you to use modules and link them together. You can use these
modules throughout your organization and distribute them to others. Liferay’s integration with
dependency management frees you to modularize existing apps and develop apps that combine
modules. It’s a powerful and fun way to develop apps on Liferay.

Here are some general steps to consider when modularizing an existing app:

1. Start by putting the entire app in a singlemodule: This is a minimal first step that acquaints
you with Liferay’s module framework. You’ll gain confidence as you build, deploy, and test
your app in an environment of your choice, such as a LiferayWorkspace, Gradle, or Maven
project.

2. Split the front-end from the back-end: Modularizing front-end portlets and servlets and
back-end implementations (e.g., Service Builder or OSGi component) is a logical next step.
This enables each code area to evolve separately and allows for varying implementations.

3. Extract non-essential features tomodules: You may have functionality or API extensions
that need not be tied to an app’s core codebase. They can be refactored as independent
modules that implement APIs you provide. Examples might be connectors to third-party
systems or support for various data export/import formats.

The principles listed above also apply to developing newmodular-based apps. As you design
an app, consider possible implementation variations with respect to its features, front-end, and
back-end. Encapsulate the variations using APIs. Then develop the APIs and implementations as
separate modules. You can wire them together using dependencies.

Liferay’s Blogs application exemplifies modularization in the manner we’ve described:
API:

1615

http://semver.org

• blogs-api - Encapsulates the core implementation

Back-end:

• blogs-service - Implements blogs-api

Front-end:

• blogs-web - Provides the app’s UI

Non-essential features and extensions:

• blogs-editor-configuration - Extends the portal-kernelmodule for extending editors

• blogs-recent-bloggers-web - Provides the Recent Bloggers app

• blogs-item-selector-api - Encapsulates the item-selector implementation

• blogs-item-selector-web - Renders the Blogs app’s item-selector

• blogs-layout-prototype - Creates a Page Template showcasing blog entries

The Blogs app, like many modular apps, separates concerns into modules. In this way, front-
end developers concentrate on front-end code, back-end developers concentrate on that code,
and so on. These logical boundaries free developers to design, implement, and test the modules
independently.

As you develop app-centered modules, you can consider bundling them with your app (e.g.,
as part of a Liferay Marketplace app). Including them as part of the app is convenient for the
consumer. By bundling a module with an app, however, you’re committing to the app’s release
schedule. In other words, you can’t directly deploy a new version of a module for the app–youmust
release it as part of the app’s next release.

So far, you’ve learned how dependencies and Semantic Versioning work. You’ve considered
guidelines for modularizing existing apps and creating new modular apps. Now, to add to the
momentum around OSGi and modularity, explore OSGi Services and dependency injection using
OSGi Declarative Services.

If you visited this tutorial as a part of the Learning Path From Liferay Portal 6 to 7.1, you can
continue with the next topic: OSGi Services and dependency injection using OSGi Declarative
Services.

Related Topics

Configuring Dependencies
Importing Packages
Exporting Packages

1616

150.4 OSGi Services and Dependency Injection with Declarative Services

In Liferay DXP, the OSGi framework registers objects as services. Each service offers functional-
ity and can leverage functionality other services provide. The OSGi Services model supports a
collaborative environment for objects.

Declarative Services (DS) provides a service component model on top of OSGi Services. DS
service components are marked with the @Component annotation and implement or extend a service
class. Service components can refer to and use each other’s services. The Service Component
Runtime (SCR) registers component services and handles binding them to other components that
reference them.

Here’s how the “magic” happens:

1. Service registration: On installing a module that contains a service component, the SCR
creates a component configuration that associates the component with its specified service
type and stores it in a service registry.

2. Service reference handling: On installing a module whose service component references
another service type, the SCR searches the registry for a component configuration that
matches the service type and on finding a match binds an instance of that service to the
referring component.

It’s publish, find, and bind at its best!
How do you use DS to register and bind services? Does it involve creating XML files? No, it’s

much easier than that. You use two annotations: @Component and @Reference.

• @Component: Add this annotation to a class definition to make the class a component–a service
provider.

• @Reference: Add this annotation to a field to inject it with a service that matches the field’s
type.

The @Component annotation makes the class an OSGi component. Setting a service property
to a particular service type in the annotation, allows other components to reference the service
component by the specified service type.

For example, the following class is a service component of type SomeApi.class.

@Component(

service = SomeApi.class

)

public class Service1 implements SomeApi {

...

}

On deploying this class’s module, the SCR creates a component configuration that associates
the class with the service type SomeApi.

Specifying a service reference is easy too. Applying the @Reference annotation to a field marks
it to be injected with a service matching the field’s type.

@Reference

SomeApi _someApi;

1617

https://osgi.org/javadoc/r6/residential/org/osgi/service/component/annotations/Component.html
ttps://osgi.org/javadoc/r6/residential/org/osgi/service/component/annotations/Reference.html

On deploying this class’s module, the SCR finds a component configuration of the class type
SomeApi and binds the service to this referencing component class.

Note: The @Reference annotation can only be used in a class that is annotated with @Component.
That is, only a Declarative Services component can use @Reference to bind to an OSGi service.

At build time in modules created from Liferay project templates, bnd creates a component
description file for each module’s components automatically. The file specifies the component’s ser-
vices, dependencies, and activation characteristics. On module deployment, the OSGi framework
reads the component description to create the component and manage its dependency on other
components.

The SCR stands ready to pair service components with each other. For each referencing compo-
nent, the SCR binds an instance of the targeted service to it.

As an improvement over dependency injection with Spring, OSGi Declarative Services supports
dynamic dependency injection. You can create and publish service components for other classes
to use. You can update the components and even publish alternative component implementations
for a service. This kind of dynamism is a powerful part of Liferay DXP.

If you visited this tutorial as a part of the Learning Path From Liferay Portal 6 to 7.1, you can
with the next topic: dynamic deployment in OSGi.

150.5 Dynamic Deployment

In OSGi, all components, Java classes, resources, and descriptors are deployed via modules. The
MANIFEST.MF file describes the module’s physical characteristics, such as the packages it exports
and imports. The module’s component description files specify its functional characteristics (i.e.,
the services its components offer and consume). Also modules and their components have their
own lifecycles and administrative APIs. Declarative Services and shell tools give you fine-grained
control over module and component deployment.

Since a module’s contents depend on its activation, consider the activation steps:

1. Installation: Copying the module JAR into Liferay DXP’s [Liferay Home]/deploy folder installs
the module to the OSGi framework, marking the module INSTALLED.

2. Resolution: Once all the module’s requirements are met (e.g., all packages it imports are
available), the framework publishes the module’s exported packages and marks the module
RESOLVED.

3. Activation: Modules are activated eagerly by default. That is, they’re started in the framework
and marked ACTIVE on resolution. An active module’s components are enabled. If a module
specifies a lazy activation policy, as shown in the manifest header below, it’s activated only
after another module requests one of its classes.

Bundle-ActivationPolicy: lazy

The figure below illustrates the module lifecycle.
The Apache Felix Gogo Shell lets you manage the module lifecycle. You can install/uninstall

modules and start/stop them. You can update a module and notify dependent modules to use the

1618

Figure 150.4: This state diagram illustrates the module lifecycle.

update. Liferay’s tools, including Liferay Dev Studio DXP, LiferayWorkspace, and Blade CLI offer
similar shell commands that use the OSGi Admin API.

On activating a module, its components are enabled. But only activated components can be
used. Component activation requires all its referenced services be satisfied. That is, all services it
references must be registered. The highest ranked service that matches a reference is bound to
the component. When the container finds and binds all the services the component references, it
registers the component. It’s now ready for activation.

Components can use delayed (default) or immediate activation policies. To specify immediate
activation, the developer adds the attribute immediate=true to the @Component annotation.

@Component(

immediate = true,

...

)

Unless immediate activation is specified, the component’s activation is delayed. That is, the
component’s object is created and its classes are loaded once the component is requested. In this
way, delayed activation can improve startup times and conserve resources.

Gogo Shell’s Service Component Runtime commands let you manage components:

1619

http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html#shell-command

• scr:list [bundleID]: Lists the module’s (bundle’s) components.

• scr:info [componentID|fullClassName]: Describes the component, including its status and the
services it provides.

• scr:enable [componentID|fullClassName]: Enables the component.

• scr:disable [componentID|fullClassName]: Disables the component. It’s disabled on the server
(or current server node in a cluster) until the server is restarted.

Service references are static and reluctant by default. That is, an injected service remains
bound to the referencing component until the service is disabled. Alternatively, you can specify
greedy service policies for references. Every time a higher ranked matching service is registered,
the framework unbinds the lower ranked service from the component (whose service policy is
greedy) and binds the new service in its place automatically. Here’s a @Reference annotation that
uses a greedy policy:

@Reference(policyOption = ReferencePolicyOption.GREEDY)

Declarative Services annotations let you specify component activation and service policies.
Gogo Shell commands let you control modules and components.

If you visited this tutorial as a part of the Learning Path From Liferay Portal 6 to 7.1, you can go
here to continue it.

Related Topics

Starting Module Development
Planning Plugin Upgrades

150.6 Learning More about OSGi

There is much more to learn about developing apps using OSGi. Several resources are listed below
and many more abound. To make the best of your time, however, avoid OSGi service articles that
explain techniques that are older and more complicated than Declarative Services.

Developers new to OSGi should check out these resources:

• Introduction to Liferay Development: For using OSGi to develop on Liferay DXP.

• OSGi enRoute is a site the OSGi Alliance provides to the OSGi community. Its Tutorials provide
hands-on experience with OSGi modules and Declarative Services.

• OSGi Alliance’s Developer section explains OSGi’s architecture and modularity.

If you’re ready to dive deep into OSGi, read the OSGi specifications. They’re well-written and
provide comprehensive details on all that OSGi offers. The OSGi Alliance OSGi Compendium: Release
6 specifies the following services that 7.0 leverages extensively.

• Declarative Services Specification

1620

http://enroute.osgi.org/
https://enroute.osgi.org/Tutorial/
https://www.osgi.org/developer
https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf
https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf

• Configuration Admin Service Specification: For modifying deployed bundles. Since Configu-
ration Admin services are already integrated with Declarative Services, however, Liferay
developers need not use the low-level API.

• Metatype Service Specification: For describing attribute types as metadata.

1621

CHAPTER 151

OSGI BASICS FOR LIFERAY DEVELOPMENT

Liferay leverages the OSGi framework to provide a development environment for modular applica-
tions. There aremanyOSGi best practices that Liferay DXP follows to provide an easy-to-develop-for
platform. Here, you’re introduced to some OSGi basics and common Liferay best practices for
developing OSGi bundles (modules).

151.1 Liferay Portal Classloader Hierarchy

All Liferay DXP applications live in its OSGi container. Portal is a web application deployed on your
application server. Portal’s Module Framework bundles (modules) live in the OSGi container and
have classloaders. All the classloaders from Java’s Bootstrap classloader to classloaders for bundle
classes and JSPs are part of a hierarchy.

This tutorial explains Liferay’s classloader hierarchy and describes how it works in the following
contexts:

• Web application, such as Liferay Portal, deployed on the app server
• OSGi bundle deployed in the Module Framework

The following diagram shows Liferay’s classloader hierarchy.
Here are the classloader descriptions:

• Bootstrap: The JRE’s classes (from packages java.*) and Java extension classes (from
$JAVA_HOME/lib/ext). No matter the context, loading all java.* classes is delegated to the
Bootstrap classloader.

• System: Classes configured on the CLASSPATH and or passed in via the application server’s Java
classpath (-cp or -classpath) parameter.

• Common: Classes accessible globally to web applications on the application server.

• Web Application: Classes in the application’s WEB-INF/classes folder and WEB-INF/lib/*.jar.

• Module Framework: Liferay’s OSGi module framework classloader which is used to provide
controlled isolation for the module framework bundles.

1623

Figure 151.1: 0: Here is Liferay’s classloader hierarchy.

1624

• bundle: Classes from a bundle’s packages or from packages other bundles export.

• JSP: A classloader that aggregates the following bundle and classloaders:

– Bundle that contains the JSPs’ classloader
– JSP servlet bundle’s classloader
– Javax Expression Language (EL) implementation bundle’s classloader
– Javax JSTL implementation bundle’s classloader

• Service Builder: Service Builder classes

The classloader used depends on context. Classloading rules vary between application servers.
Classloading in web applications and OSGi bundles differs too. In all contexts, however, the
Bootstrap classloader loads classes from java.* packages.

Classloading from a web application perspective is up next.

Web Application Classloading Perspective

Application servers dictate where and in what order web applications, such as Liferay DXP, search
for classes and resources. Application servers such as Apache Tomcat enforce the following default
search order:

1. Bootstrap classes
2. Web app’s WEB-INF/classes
3. web app’s WEB-INF/lib/*.jar
4. System classloader
5. Common classloader

First, the web application searches Bootstrap. If the class/resource isn’t there, the web applica-
tion searches its own classes and JARs. If the class/resource still isn’t found, it checks the System
classloader and then Common classloader. Except for the web application checking its own classes
and JARs, it searches the hierarchy in parent-first order.

Application servers such as OracleWebLogic and IBMWebSphere have additional classloaders.
They may also have a different classloader hierarchy and search order. Consult your application
server’s documentation for classloading details.

Other Classloading Perspectives

The Bundle Classloading Flow tutorial explains classloading from an OSGi bundle perspective.
Classloading for JSPs and Service Builder classes is similar to that of web applications and OSGi

bundle classes.
YounowknowLiferayDXP’s classloadinghierarchy, understand it in context ofweb applications,

and have references to information on other classloading perspectives.

Related Topics

Bundle Classloading Flow

1625

https://tomcat.apache.org/tomcat-7.0-doc/class-loader-howto.html
https://docs.oracle.com/cd/E19501-01/819-3659/beadf/index.html

151.2 Bundle Classloading Flow

The OSGi container searches several places for imported classes. It’s important to know where it
looks and in what order. Liferay DXP’s classloading flow for OSGi bundles follows the OSGi Core
specification. It’s straightforward, but complex. The figure below illustrates the flow and this
tutorial walks you through it.

Figure 151.2: 0: This flow chart illustrates classloading in a bundle.

Here is the algorithm for classloading in a bundle:

1. If the class is in a java.* package, delegate loading to the parent classloader. Otherwise,
continue.

2. If the class is in the OSGi Framework’s boot delegation list, delegate loading to the parent
classloader. Otherwise, continue.

3. If the class is in one of the packages the bundle imports from a wired exporter, the exporting
bundle’s classloader loads it. A wired exporter is another bundle’s classloader that previously
loaded the package. If the class isn’t found, continue.

1626

4. If the class is imported by one of the bundle’s required bundles, the required bundle’s
classloader loads it.

5. If the class is in the bundle’s classpath (manifest header Bundle-ClassPath), the bundle’s
classloader loads it. Otherwise, continue.

6. If the class is in the bundle’s fragments classpath, the bundle’s classloader loads it.

7. If the class is in a package that’s dynamically imported using DynamicImport-Package and a
wire is established with the exporting bundle, the exporting bundle’s classloader loads it.
Otherwise, the class isn’t found.

Congratulations! Now you know how Liferay DXP finds and loads classes for OSGi bundles.

151.3 Importing Packages

Your modules often must use Java classes from packages exported by other modules. When a
module is set up to import, the OSGi framework finds other registered modules that export the
needed packages and wires them to the importing module. At run time, the importing module gets
the class from the wired module that exports the class’s package.

For this to happen, a module must specify the Import-Package OSGi manifest header with a
comma-separated list of the Java packages it needs. For example, if a module needs classes from
the javax.portlet and com.liferay.portal.kernel.util packages, it must specify them like so:

Import-Package: javax.portlet,com.liferay.portal.kernel.util,*

The * character represents all packages that the module refers to explicitly. Bnd detects the
referenced packages.

Import packages must sometimes be specified manually, but not always. Conveniently, Liferay
DXP project templates and tools automatically detect the packages a module uses and add them to
the package imports in themodule JAR’s manifest. Here are the different package import scenarios:

• Automatic Package Import Generation

• Manually Adding Package Imports

Let’s explore how package imports are specified in these scenarios.

Automatic Package Import Generation

Gradle and Maven module projects created using Blade CLI, Liferay’s Maven archetypes, or Liferay
Dev Studio DXP use bnd. On building such a project’s module JAR, bnd detects the packages the
module uses and generates a META-INF/MANIFEST.MF file whose Import-Package header specifies the
packages.

Note: Liferay’s Maven module archetypes use the bnd-maven-plugin. Liferay’s Gradle module
project templates use a third-party Gradle plugin to invoke bnd.

For example, suppose you’re developing a Liferaymodule usingMaven or Gradle. Inmost cases,
you specify your module’s dependencies in your pom.xml or build.gradle file. At build time, the

1627

https://bnd.bndtools.org/heads/import_package.html
http://bnd.bndtools.org/
https://github.com/TomDmitriev/gradle-bundle-plugin

Maven or Gradle bundle plugin reads your pom.xml or build.gradle file and bnd adds the required
Import-Package headers to your module JAR’s META-INF/MANIFEST.MF.

Here’s an example dependencies section from a module’s build.gradle file:

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

And here’s the Import-Package header that’s generated in the module JAR’s META-INF/MANIFEST.MF
file:

Import-Package: com.liferay.portal.kernel.portlet.bridges.mvc;version=

"[1.0,2)",com.liferay.portal.kernel.util;version="[7.0,8)",javax.nami

ng,javax.portlet;version="[2.0,3)",javax.servlet,javax.servlet.http,j

avax.sql

Note that your build file need only specify JAR file dependencies. bnd examines your module’s
class path to determine which packages from those JAR files contain classes your application uses
and imports the packages. The examination includes all classes found in the class path–even those
from embedded third party library JARs.

Regarding classes used by a traditional Liferay pluginWAR, Liferay’sWAB Generator detects
their use in theWAR’s JSPs, descriptor files, and classes (in WEB-INF/classes and embedded JARs).
TheWAB Generator searches the web.xml, liferay-web.xml, portlet.xml, liferay-portlet.xml, and
liferay-hook.xml descriptor files. It adds package imports for classes that are neither found in the
plugin’s WEB-INF/classes folder nor in embedded JARs.

Note: Packages for Java APIs, such as Java Portlet, aren’t semantically versioned but have
Portable Java Contracts. Each API’s contract specifies the JSR it satisfies. Modules that use these
APIs must specify requirements on the API contracts. The contract requirement specifies your
module’s relationship with the imported API packages. If the system you’re running does not
provide the exact contract, your module does not resolve. Resolving the missing package is better
than handling an incompatibility failure during execution.

• Blade CLI and Liferay Dev Studio DXP module projects specify Portable Java Contracts
automatically! For example, if your Blade CLI or Liferay Dev Studio DXP module uses the
Java Portlet API and you compile against the Java Portlet 2.0 artifact, a contract requirement
for the package is added to your module’s manifest.

• Module projects that use bnd but are not created using Blade CLI or Liferay Dev Studio
DXPmust specify contracts in their bnd.bnd file. For example, here are contract instructions
for Java Portlet and Java Servlet APIs:

-contract: JavaPortlet,JavaServlet

At build time, bnd adds the contract instructions to your module’s manifest. It adds a re-
quirement for the first version of the API found in your classpath and removes version range
information from Import-Package entries for corresponding API packages—the package ver-
sion information isn’t needed.

1628

• Projects that don’t use bndmust specify contracts in their module manifest. For example,
here’s the specified contract for JavaPortlet 2.0, which goes in your META-INF/MANIFEST.MF file:

Import-Package: javax.portlet

Require-Capability: osgi.contract;filter:=(&(osgi.contract=JavaPortlet)(version=2.0))

For Portable Java Contract details, see Portable Java Contract Definitions.

Note: Liferay DXP 7.1 GA1 exports the Java Portlet 2.0 API. Until Java Portlet 3.0 API is supported,
make sure to use the 2.0 version.

Manually Adding Package Imports

TheWAB Generator and bnd don’t add package imports for classes referenced in these places:

• Unrecognized descriptor file
• Custom or unrecognized descriptor element or attribute
• Reflection code
• Class loader code

In such cases, you must manually determine these packages and specify an Import-Package

OSGi header that includes these packages and the packages that Bnd detects automatically. The
Import-Package header belongs in the location appropriate to your project type:

Project type Import-Package header location

Module (uses bnd) [project]/bnd.bnd

Module (doesn’t use bnd) [module JAR]/META-INF/MANIFEST.MF

Traditional Liferay plugin
WAR

WEB-INF/liferay-plugin-package.properties

Here’s an example of adding a package called com.liferay.docs.foo to the list of referenced
packages that Bnd detects automatically:

Import-Package:\

com.liferay.docs.foo,\

*

Note: The WAB Generator refrains from addingWAR project embedded third-party JARs to a
WAB if Liferay DXP already exports the JAR’s packages.

If your WAR requires a different version of a third-party package that Liferay DXP exports,
specify that package in your Import-Package: list. Then if the package provider is an OSGi module,
publish its exported packages by deploying the module. If the package provider is not an OSGi
module, follow
the instructions for adding third-party libraries.

Please see the Import-Package header documentation for more information.
Congratulations! Now you can import all kinds of packages for your modules and plugins to

use.

1629

https://www.osgi.org/portable-java-contract-definitions/
https://bnd.bndtools.org/heads/import_package.html

Related Topics

Configuring Dependencies
Resolving a Plugin’s Dependencies
Using theWAB Generator
Tooling

151.4 Exporting Packages

An OSGi module’s Java packages are private by default. To expose a package, you must explicitly
export it. This way you share only the classes you want to share. Exporting a package in your OSGi
module JAR’s manifest makes all the package’s classes available for other modules to import.

To export a package, add it to your module’s or plugin’s Export-Package OSGi header. A header
exporting com.liferay.petra.io and com.liferay.petra.io.unsync would look like this:

Export-Package:\

com.liferay.petra.io,\

com.liferay.petra.io.unsync

The correct location for the header depends on your project’s type:

Project Type Export-Package header location

Module (uses bnd) [project]/bnd.bnd

Module (doesn’t use bnd) [module JAR]/META-INF/MANIFEST.MF

Traditional Liferay plugin
WAR

WEB-INF/liferay-plugin-package.properties

Module projects created using Blade CLI, Liferay’s Maven archetypes, or Liferay Dev Studio
DXP use bnd. On building such a project’s module JAR, bnd propagates the OSGi headers from the
project’s bnd.bnd file to the JAR’s META-INF/MANIFEST.MF.

In module projects that don’t use bnd, you must manually add package exports to an Export-

Package header in the module JAR’s META-INF/MANIFEST.MF.
In traditional Liferay pluginWAR projects, you must add package exports to an Export-Package

header in the project’s liferay-plugin-package.properties. On copying theWAR into the [Liferay

Home]/deploy folder, the WAB Generator propagates the OSGi headers from the WAR’s liferay-

plugin-package.properties file to the META-INF/MANIFEST.MF file in the generated Web Application
Bundle (WAB).

Note: bnd makes a module’s exported packages substitutable. That is, the OSGi framework
can substitute your module’s exported package with a compatible package of the same name, but
potentially different version, that’s exported from a different module. bnd enables this for your
module by automatically making your module import every package it exports. In this way, your
module canwork on its own, but can also work in conjunction withmodules that provide a different
(compatible) version, or even the same version, of the package. A package from another module
might provide better “wiring” opportunities with other modules. Peter Kriens’ blog post provides
more details on how substitutable exports works.

1630

http://bnd.bndtools.org/
http://blog.osgi.org/2007/04/importance-of-exporting-nd-importing.html

Important: Don’t export the same package from different JARs. Multiple exports of the same
package leads to “split package” issues, whose side affects differ from case to case.

Now you can share your module’s or plugin’s terrific [EDITOR: or terrible!] packages with other
modules!

Related Topics

Using theWAB Generator
Tooling

151.5 Resolving Third Party Library Package Dependencies

The OSGi framework lets you build applications composed of multiple OSGi bundles (modules).
For the framework to assemble the modules into a working system, the modules must resolve their
Java package dependencies. In a perfect world, every Java library would be an OSGi module, but
many libraries aren’t. So how do you resolve the packages your module needs from non-OSGi third
party libraries?

Here is the main workflow for resolving third party Java library packages:
Step 1 - Find an OSGi module of the library: Projects, such as Eclipse Orbit and ServiceMix

Bundles, convert hundreds of traditional Java libraries toOSGimodules. Their artifacts are available
at these locations:

• Eclipse Orbit
• ServiceMix Bundles

Deploying the module to Liferay’s OSGi framework lets you share it on the system. If you find
a module for the library you need, deploy it. Then add a compileOnly dependency for it in your
module. When you deploy your module, the OSGi framework wires the dependency module to
your module. If you don’t find an OSGi module based on the Java library, go to Step 2.

Tip: Refrain from embedding library JARs that provide the same packages that Liferay DXP or
existing modules provide already.

Note: If you’re developing a WAR that requires a different version of a third-party package
that Liferay DXP or another module exports, specify that package in your Import-Package: list. If
the package provider is an OSGi module, publish its exported packages by deploying that module.
Otherwise, rename the third-party library (not an OSGi module) differently from the JAR that the
WAB generator excludes and embed the JAR in your project.

Step 2 - Resolve the Java packages privately in yourmodule: You can copy required library
packages into your module or embed them wholesale, if you must. The rest of the tutorial shows
you how to do these things.

1631

https://www.eclipse.org/orbit/
https://servicemix.apache.org/developers/source/bundles-source.html
https://servicemix.apache.org/developers/source/bundles-source.html
https://download.eclipse.org/tools/orbit/downloads/drops/R20170919201930/
https://mvnrepository.com/artifact/org.apache.servicemix.bundles

Note: Liferay’s Gradle plugin com.liferay.plugin automates several third party library config-
uration steps. The plugin is automatically applied to LiferayWorkspace Gradle module projects
created using Liferay Dev Studio DXP or Liferay Blade CLI.

To leverage the com.liferay.plugin plugin outside of LiferayWorkspace, add code like the listing
below to your Gradle project:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins", version: "3.2.29"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.plugin"

If youuseGradlewithout the com.liferay.pluginplugin, youmust embed the thirdparty libraries
wholesale.

The recommended package resolution workflow is next.

Library Package Resolution Workflow

When you depend on a library JAR, much of the time you only need parts of it. Explicitly specifying
only the Java packages you need makes your module more modular. This also keeps other modules
that depend on your module from incorporating unneeded packages.

Here’s a configuration workflow that minimizes dependencies and Java package imports:

1. Add the library as a compile-only dependency (e.g., compileOnly in Gradle).

2. Copy only the library packages you need by specifying them in a conditional package instruc-
tion (Conditional-Package) in your bnd.bnd file. Here are some examples:
Conditional-Package: foo.common* adds packages your module uses such as foo.common,
foo.common-messages, foo.common-web to your module’s class path.
Conditional-Package: foo.bar.* adds packages your module uses such as foo.bar and all its
sub-packages (e.g., foo.bar.baz, foo.bar.biz, etc.) to your module’s class path.
Deploy your module. If a class your module needs or class its dependencies need isn’t found,
go back to main workflow Step 1 - Find an OSGi module version of the library to resolve it.
Important: Resolving packages by using compile-only dependencies and conditional package
instructions assures you use only the packages you need and avoids unnecessary transitive
dependencies. It’s recommended to use the steps up to this point, as much as possible, to
resolve required packages.

3. If a library package you depend on requires non-class files (e.g., DLLs, descriptors) from the
library, then you might need to embed the library wholesale in your module. This adds the
entire library to your module’s classpath.

Next you’ll learn how to embed libraries in your module.

1632

Embedding Libraries in a Module

You can use Gradle, Maven, or Ivy to embed libraries in your module. Below are examples for
adding Apache Shiro using all three build utilities.

Embedding a Library Using Gradle

Open your module’s build.gradle file and add the library as a dependency in the compileInclude

configuration:

dependencies {

compileInclude group: 'org.apache.shiro', name: 'shiro-core', version: '1.1.0'

}

The com.liferay.plugin plugin’s compileInclude configuration is transitive. The compileInclude

configuration embeds the artifact and all its dependencies in a lib folder in the module’s JAR. Also,
it adds the artifact JARs to the module’s Bundle-ClassPathmanifest header.

Note: The compileInclude configuration does not download transitive optional dependencies. If
your module requires such artifacts, add them as you would another third party library.

Note: If the library you’ve added as a dependency in your build.gradle file has transitive depen-
dencies, you can reference them by name in an -includeresource: instruction without having to
add them explicitly to the dependency list. See how it’s used in the Maven section next.

Embedding a Library Using Maven or Ivy

Follow these steps:

1. Open your module’s build file and add the library as a dependency in the provided scope:

Maven:

<dependency>

<groupId>org.apache.shiro</groupId>

<artifactId>shiro-core</artifactId>

<version>1.1.0</version>

<scope>provided</scope>

</dependency>

Ant/Ivy:

<dependency conf="provided" name="shiro-core" org="org.apache.shiro" rev="1.1.0" />

2. Open your module’s bnd.bnd file and add the library to an -includeresource instruction:

-includeresource: META-INF/lib/shiro-core.jar=shiro-core-[0-9]*.jar;lib:=true

This instruction adds the shiro-core-[version].jarfile as an included resource in themodule’s
META-INF/lib folder. The META-INF/lib/shiro-core.jar is yourmodule’s embedded library. The
expression [0-9]* helps the build tool match the library version to make available on the
module’s classpath. The lib:=true directive adds the embedded JAR to themodule’s classpath
via the Bundle-Classpathmanifest header.

1633

https://shiro.apache.org
https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html

Lastly, if after embedding a library you get unresolved imports when trying to deploy to Liferay,
you might need to blacklist some imports:

Import-Package:\

!foo.bar.baz,\

*

The * character represents all packages that the module refers to explicitly. Bnd detects the
referenced packages.

Congratulations! Resolving all of your module’s package dependencies, especially those from
traditional Java libraries, is a quite an accomplishment.

Related Topics

Importing Packages
Exporting Packages
Creating Projects with Blade CLI

151.6 Waiting on Lifecycle Events

Liferay registers lifecycle events like portal and database initialization into the OSGi service registry.
Your OSGi Component or non-component class can listen for these events by way of their service
registrations. The ModuleServiceLifecycle interface defines these names for the lifecycle event
services:

• DATABASE_INITIALIZED
• PORTAL_INITIALIZED
• SPRING_INITIALIZED

Here you’ll learn how to wait on lifecycle event services to act on them fromwithin a component
or non-component class.

Taking action from a component

Declarative Services (DS) facilitates waiting for OSGi services and acting on them once they’re
available.

Here’s a componentwhose doSomethingmethod is invokedonce the ModuleServiceLifecycle.PORTAL_INITIALIZED
lifecycle event service and other services are available.

@Component

public class MyXyz implements XyzApi {

// Plain old OSGi service

@Reference

private SomeOsgiService _someOsgiService;

// Service Builder generated service

@Reference

private DDMStructureLocalService _ddmStructureLocalService;

// Liferay lifecycle service

@Reference(target = ModuleServiceLifecycle.PORTAL_INITIALIZED)

private ModuleServiceLifecycle _portalInitialized;

1634

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/module/framework/ModuleServiceLifecycle.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/constant-values.html#com.liferay.portal.kernel.module.framework.ModuleServiceLifecycle.DATABASE_INITIALIZED
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/constant-values.html#com.liferay.portal.kernel.module.framework.ModuleServiceLifecycle.PORTAL_INITIALIZED
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/constant-values.html#com.liferay.portal.kernel.module.framework.ModuleServiceLifecycle.SPRING_INITIALIZED
https://osgi.org/specification/osgi.cmpn/7.0.0/service.component.html

@Activate

public void doSomething() {

// `@Activate` method is only executed once all of

// `_someOsgiService`,

// `_ddmStructureLocalService` and

// `_portalInitialized`

// are set.

}

}

Here’s how to act on services in your component:

1. For each lifecycle event service and OSGi service your component uses, add a field of that
service type and add an @Reference annotation to that field. The OSGi framework binds the
services to your fields. This field, for example, binds to a standard OSGi service.

@Reference

SomeOsgiService _someOsgiService;

2. To bind to a particular lifecycle event service, target its name as the ModuleServiceLifecycle

interface defines. This field, for example, targets database initialization.

@Reference(target = ModuleServiceLifecycle.DATABASE_INITIALIZED)

ModuleServiceLifecycle _dataInitialized;

3. Create a method that’s triggered on the event(s) and add the @Activate annotation to that
method. It’s invoked when all the service objects are bound to the component’s fields.

Your component fires (via its @Activatemethod) after all its service dependencies resolve. DS
components are the easiest way to act on lifecycle event services.

Taking action from a non-component class

Classes that aren’t DS components can use a org.osgi.util.tracker.ServiceTracker or
org.osgi.util.tracker.ServiceTrackerCustomizer as a service callback handler for the lifecycle event.
If you depend on multiple services, add logic to your ServiceTracker or ServiceTrackerCustomizer to
coordinate taking action when all the services are available.

To target a lifecycle event service, create a service tracker that filters on that service. Use
org.osgi.framework.FrameworkUtil to create an org.osgi.framework.Filter that specifies the service.
Then pass that filter as a parameter to the service tracker constructor. For example, this service
tracker filters on the lifecycle service ModuleServiceLifecycle.PORTAL_INITIALIZED.

import org.osgi.framework.Filter;

import org.osgi.framework.FrameworkUtil;

Filter filter = FrameworkUtil.createFilter(

String.format(

"(&(objectClass=%s)%s)",

ModuleServiceLifecycle.class.getName(),

ModuleServiceLifecycle.PORTAL_INITIALIZED));

new ServiceTracker<>(bundleContext, filter, null);

Acting on lifecycle event services in this way requires service callback handling and some
boilerplate code. Using DS components is easier and more elegant, but at least service trackers
provide a way to work with lifecycle events outside of DS components.

1635

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/module/framework/ModuleServiceLifecycle.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/module/framework/ModuleServiceLifecycle.html

Related Topics

Service Trackers
Liferay DXP Startup Phases

151.7 Using the WAB Generator

You can create applications for LiferayDXP as Java EE-styleWebApplicationARchive (WAR) artifacts
or as Java ARchive (JAR) OSGi bundle artifacts. Some portlet types, however, limit your flexibility.
Portlets like Spring MVC and JSF must be packaged asWAR artifacts because their frameworks are
designed for Java EE. Therefore, they expect aWAR layout and require Java EE resources such as
the WEB-INF/web.xml descriptor.

Liferay provides a way for these WAR-styled plugins to be deployed and treated like OSGi
modules by Liferay’s OSGi runtime. They can be converted to WABs.

Liferay DXP supports the OSGi Web Application Bundle (WAB) standard for deployment of
Java EE styleWARs. Simply put, a WAB is an archive that has aWAR layout and contains a META-

INF/MANIFEST.MFfilewith the Bundle-SymbolicNameOSGi directive. AWAB is anOSGi bundle. Although
the project source has a WAR layout, the artifact filename may end with either the .jar or .war
extension.

Liferay only supports the use ofWABs that have been auto-generated by theWAB Generator.
TheWAB Generator transforms a traditionalWAR-style plugin into aWAB during deployment. So
what exactly does theWAB Generator do to aWAR file to transform it into aWAB?

The WAB Generator detects packages referenced in the plugin WAR’s JSPs, descriptor files,
and classes (in WEB-INF/classes and embedded JARs). The descriptor files include web.xml,
liferay-web.xml, portlet.xml, liferay-portlet.xml, and liferay-hook.xml. The WAB Generator
verifies whether the detected packages are in the plugin’s WEB-INF/classes folder or in an embedded
JAR in the WEB-INF/lib folder. Packages that aren’t found in either location are added to an
Import-Package header in theWAB’s META-INF/MANIFEST.MF file.

To import a package that is only referenced in the following types of locations, you must add an
Import-Package OSGi header to the plugin’s WEB-INF/liferay-plugin-package.properties file and add
the package to that header’s list of values.

• Unrecognized descriptor file
• Custom or unrecognized descriptor element or attribute
• Reflection code
• Classloader code

TheWAB folder structure andWAR folder structure differ. Consider the following folder struc-
ture of aWAR-style portlet:

• my-war-portlet

– src

* main

· java
· webapp

1636

· WEB-INF
· classes
· lib
· resources
· views
· faces-config.xml
· liferay-display.xml
· liferay-plugin-package.properties
· liferay-portlet.xml
· portlet.xml
· web.xml

When a WAR-style portlet is deployed to Liferay and processed by the WAB Generator, the
portlet’s folder structure is transformed to something like this

• my-war-portlet-that-is-now-a-wab

– META-INF

* MANIFEST.MF

– WEB-INF

* classes

* lib

* resources

* views

* faces-config.xml

* liferay-display.xml

* liferay-plugin-package.properties

* liferay-portlet.xml

* portlet.xml

* web.xml

The major difference is the addition of the META-INF/MANIFEST.MF file. TheWAB Generator auto-
matically generates an OSGi-ready MANIFEST.MF file. If you want to affect the content of the manifest
file, you can place bnd directives and OSGi headers directly into your plugin’s liferay-plugin-

package.properties file. It’s pointless to add a bnd.bnd file or a build-time plugin (e.g., bnd-maven-
plugin) to yourWAR plugin, because the generatedWAB cannot use of them.

Do you want to try generating a WAB? Follow the steps below to see the WAB Generator in
action.

1. Create aWAR-style plugin that follows a similar structure to the one outlined above. You can
download an exampleWAR-style portlet here, for demonstration.

2. Open your Liferay DXP instance in a file explorer and add a portal-ext.properties file with
the following properties:

module.framework.web.generator.generated.wabs.store=true

module.framework.web.generator.generated.wabs.store.dir=${module.framework.base.dir}/wabs

1637

https://portal.liferay.dev/documents/113763090/114000186/com.liferay.hello.user.jsf.portlet-1.0-SNAPSHOT.war

These properties store your generatedWAB into your Liferay instance’s osgi/wabs folder. You
can learn more about these properties in the Module FrameworkWeb Application Bundles
properties section. Restart Liferay to use these properties.

3. Copy yourWAR plugin in your Liferay instance’s deploy folder.

4. Navigate to your Liferay instance’s osgi/wabs folder and inspect the generatedWAB.

Awesome! You’ve seen theWAB Generator in action!

Related Topics

Configurable Applications

151.8 Service Trackers

In an OSGi runtime ecosystem, you must consider how your modules can rely on services in other
modules for functionality. It’s possible for service implementations to be swapped out or removed
entirely, and your module must not just survive but thrive in this environment.

If you call services from @Component classes, it’s easy: you just use another Declarative Ser-
vices (DS) annotation, @Reference, to get a service reference. The component activates when the
referenced service is available.

Note: The @Reference annotation can only be used in a class that is annotated with @Component.
That is, only a Declarative Services component can use @Reference to bind to an OSGi service.

If you can use DS and leverage the @Component and @Reference annotations, you should. DS
handles much of the complexity of handling service dynamism for you transparently.

If you can’t use DS to create a Component, keep reading to learn how to implement a Service
Tracker to look up services in the service registry.

Note: When using Service Trackers in yourWAR-style project, you must configure the required
org.osgi.core dependency carefully in your build file (e.g., build.gradle, pom.xml, etc.) to avoid
errors. Since it’s included in Liferay DXP by default, it must be configured as provided. See the
Third Party Packages Portal Exports tutorial for more information.

What scenariosmight require using a service tracker? Keep inmindwe’re focusing on scenarios
where DS can’t be used. This typically involves a non-native (to OSGi) Dependency Injection
framework.

• Calling OSGi services from a Spring MVC portlet
• Calling OSGi services from aWAR-packaged portlet that’s been upgraded to run on 7.0, but
not fully modularized and made into an OSGi module

Note: The static utility classes (e.g., UserLocalServiceUtil) that were useful in Liferay Portal
6.2 (and earlier) exist for compatibility but should not be called, if possible. Static utility classes
cannot account for the OSGi runtime’s dynamic environment. If you use a static class, you might

1638

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework%20Web%20Application%20Bundles
https://osgi.org/specification/osgi.cmpn/7.0.0/service.component.html
https://osgi.org/specification/osgi.cmpn/7.0.0/service.component.html

Figure 151.3: Service implementations that are registered in the OSGi service registry can be accessed using Service Trackers.

attempt calling a stopped service or one that hasn’t been deployed or started. This could cause
unrecoverable runtime errors. Service Trackers, however, help you make OSGi-friendly service
calls.

Your non-OSGi application can access any service registered in the OSGi runtime using a
Service Tracker, including your own Service Builder services and the services published by Liferay’s
modules (like the popular UserLocalService).

Implementing a Service Tracker

Service Trackers don’t give you the luxury of managing your service dependencies with DS, but
you can call services from the service registry.

You can implement a service tracker in two ways: 1) In the code where you need it, or 2) In a
class that extends org.osgi.util.tracker.ServiceTracker.

To create it directly, do this:

import org.osgi.framework.Bundle;

import org.osgi.framework.FrameworkUtil;

import org.osgi.util.tracker.ServiceTracker;

Bundle bundle = FrameworkUtil.getBundle(this.getClass());

BundleContext bundleContext = bundle.getBundleContext();

ServiceTracker<SomeService, SomeService> serviceTracker =

new ServiceTracker(bundleContext, SomeService.class, null);

serviceTracker.open();

SomeService someService = serviceTracker.waitForService(500);

A better way is to create a class that extends org.osgi.util.tracker.ServiceTracker, because this
simplifies your code.

1639

1. Create a class like this one that extends ServiceTracker:

public class SomeServiceTracker

extends ServiceTracker<SomeService, SomeService> {

public SomeServiceTracker(Object host) {

super(

FrameworkUtil.getBundle(host.getClass()).getBundleContext(),

SomeService.class, null);

}

}

2. From the initialization part of your logic that uses the service, call your service tracker
constructor. The Object host parameter obtains your own bundle context and must be an
object from your own bundle in order to give accurate results.

ServiceTracker<SomeService, SomeService> someServiceTracker =

new SomeServiceTracker(this);

3. When you want to use the service tracker, open it, typically as early as you can.

someServiceTracker.open();

4. Before attempting to use a service, use the Service Tracker to interrogate the service’s state.
In your program logic, for example, check whether the service is null before using it:

SomeService someService = someServiceTracker.getService();

if (someService == null) {

_log.warn("The required service 'SomeService' is not available.");

}

else {

someService.doSomethingCool();

}

Service Trackers have several other utility functions for introspecting tracked services.

5. Later when your application is being destroyed or undeployed, close the service tracker.

someServiceTracker.close();

Service Trackers make it possible to call OSGi services from outside the OSGi runtime.

Implementing a Callback Handler for Services

If there’s a strong possibility the service might not be available or if you need to track multiple ser-
vices, the Service Tracker API provides a callbackmechanism that operates on service events. To use
this, override ServiceTracker’s addingService and removedServicemethods. Their ServiceReference
parameter references an active service object.

Here’s an example ServiceTracker implementation from the OSGi Alliance’s OSGi Core Release
7 specification:

1640

https://osgi.org/specification/osgi.core/7.0.0/util.tracker.html#d0e51991
https://osgi.org/specification/osgi.core/7.0.0/util.tracker.html#d0e51991

new ServiceTracker<HttpService, MyServlet>(context, HttpService.class, null) {

public MyServlet addingService(ServiceReference<HttpService> reference) {

HttpService httpService = context.getService(reference);

MyServlet myServlet = new MyServlet(httpService);

return myServlet;

}

public void removedService(

ServiceReference<HttpService> reference, MyServlet myServlet) {

myServlet.close();

context.ungetService(reference);

}

}

When the HttpService is added to the OSGi registry, this ServiceTracker creates a new wrapper
class, MyServlet, which uses the newly added service. When the service is removed from the registry,
the removedServicemethod cleans up related resources.

As analternative to directly overloading ServiceTrackermethods, create a org.osgi.util.tracker.ServiceTrackerCustomizer:

class MyServiceTrackerCustomizer

implements ServiceTrackerCustomizer<SomeService, MyWrapper> {

private final BundleContext bundleContext;

MyServiceTrackerCustomizer(BundleContext bundleContext) {

this.bundleContext = bundleContext;

}

@Override

public MyWrapper addedService(

ServiceReference<SomeService> serviceReference) {

// Determine if the service is one that's interesting to you.

// The return type of this method is the `tracked` type. Its type

// is what is returned from `getService*` methods; useful for wrapping

// the service with your own type (e.g., MyWrapper).

if (isInteresting(serviceReference)) {

MyWrapper myWrapper = new MyWrapper(

serviceReference, bundleContext.getService());

// trigger the logic that requires the available service(s)

triggerServiceAddedLogic(myWrapper);

return myWrapper;

}

// If the return is null, the tracker is effectively ignoring any further

// events for the service reference

return null;

}

@Override

public void modifiedService(

ServiceReference<SomeService> serviceReference, MyWrapper myWrapper) {

// handle the modified service

}

@Override

public void removedService(

ServiceReference<SomeService> serviceReference, MyWrapper myWrapper) {

// finally, trigger logic when the service is going away

triggerServiceRemovedLogic(myWrapper);

}

1641

}

Register the ServiceTrackerCustomizer by passing it as the ServiceTracker constructor’s third
parameter.

ServiceTrackerCustomizer<SomeService, MyWrapper> serviceTrackerCustomizer =

new MyServiceTrackerCustomizer();

ServiceTracker<SomeService, MyWrapper> serviceTracker =

new ServiceTracker<>(

bundleContext, SomeService.class, serviceTrackerCustomizer);

There’s a little boilerplate code you need to produce, but now you can look up services in the
service registry, even if your plugins can’t take advantage of the Declarative Services component
model.

151.9 Semantic Versioning

Semantic Versioning is a three tiered versioning system that increments version numbers based
on the type of API change introduced to a releasable software component. It’s a standard way of
communicating programmatic compatibility of a package or module for dependent consumers
and API implementations. If a package is programmatically (i.e., semantically) incompatible with
a project, Bnd (used when building modules) fails that project’s build immediately.

The semantic version format looks like this:

MAJOR.MINOR.MICRO

Certain events force each tier to be incremented:

• MAJOR: an incompatible, API-breaking change is made
• MINOR: a change that affects only providers of the API, or new backwards- compatible
functionality is added

• MICRO: a backwards-compatible bug fix is made

For more details on semantic versioning, see the official Semantic Versioning site and OSGi
Alliance’s Semantic Versioning technical whitepaper.

All of Liferay DXP’s modules use Semantic Versioning.
Following Semantic Versioning is especially important because Liferay DXP is a modular plat-

form containing hundreds of independent OSGi modules. With many independent modules con-
taining a slew of dependencies, releasing new package versions can quickly become terrifying.
With this complex intertwined system of dependencies, you must meticulously manage your own
project’s API versions to ensure compatibility for those who leverage it. With Semantic Versioning’s
straightforward system and the help of Liferay tooling, managing your project’s versions is easy.

Baselining Your Project

Following Semantic Versioning manually seems deceptively easy. There’s a sad history of good-
intentioned developers updating their projects’ semantic versions manually, only to find out later
they made a mistake. The truth is, it’s hard to anticipate the ramifications of a simple update. To
avoid this, you can baseline your project after it has been updated. Baselining verifies that the

1642

https://semver.org
http://bnd.bndtools.org
https://semver.org/
http://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf
http://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf

Semantic Versioning rules are obeyed by your project. This can catch many obvious API changes
that are not so obvious to humans. Care must always be taken, however, when making any kind of
code change because this tool is not smart enough to identify compatibility changes not represented
in the signatures of Java classes or interfaces, or in API use changes (e.g., assumptions aboutmethod
call order, or changes to input and/or output encoding). Baseline, as the name implies, does give
you a certain measure of baseline comfort that a large class of compatibility issues won’t sneak past
you.

You can use Liferay’s Baseline Gradle plugin to provide baselining capabilities. Add it to your
Gradle build configuration and execute the following command:

./gradlew baseline

See the Baseline Gradle Plugin article for configuration details. This plugin is not provided in
LiferayWorkspace by default.

When you run the baseline command, the plugin baselines your new module against the latest
released non-snapshot module (i.e., the baseline). That is, it compares the public exported API of
your new module with the baseline. If there are any changes, it uses the OSGi Semantic Versioning
rules to calculate the minimum new version. If your newmodule has a lower version, errors are
thrown.

With baselining, your project’s Semantic Versioning is as accurate as its API expresses.

Managing Artifact and Dependency Versions

There are two ways to track your project’s artifact and dependency versions with Semantic Version-
ing:

• Range of versions
• Exact version (one-to-one)

You should track a range of versions if you intend to build your project for multiple versions of
Liferay DXP and maintain maximum compatibility. In other words, if several versions of a package
work for an app, you can configure the app to use any of them. What’s more, Bnd automatically
determines the semantically compatible range of each package a module depends on and records
the range to the module’s manifest.

For help with version range syntax, see the OSGi Specifications.
A version range for imported packages in an OSGi bundle’s bnd.bnd looks like this:

Import-Package: com.liferay.docs.test; version="[1.0.0,2.0.0)"

Popular build tools also follow this syntax. In Gradle, a version range for a dependency looks
like this:

compile group: "com.liferay.portal", name: "com.liferay.portal.test", version: "[1.0.0,2.0.0)"

In Maven, it looks like this:

<groupId>com.liferay.portal</groupId>

<artifactId>com.liferay.portal.test</artifactId>

<version>[1.0.0,2.0.0)</version>

1643

https://osgi.org/specification/osgi.core/7.0.0/framework.module.html#i3189032

Specifying the latest release version can also be considered a range of versions with no upper
limit. For example, in Gradle, it’s specified as version: "latest.release". This can be done in
Maven 2.x with the usage of the version marker RELEASE. This is not possible if you’re using Maven
3.x. See Gradle and Maven’s respective docs for more information.

Tracking a range of versions comes with a price. It’s hard to reproduce old builds when you’re
debugging an issue. It also comes with the risk of differing behaviors depending on the version
used. Also, relying on the latest release could break compatibility with your project if a major
change is introduced. You should proceed with caution when specifying a range of versions and
ensure your project is tested on all included versions.

Tracking a dependency’s exact version is much safer, but is less flexible. This might limit you
to a specific version of Liferay DXP. You would also be locked in to APIs that only exist for that
specific version. This means your module is much easier to test and has less chance for unexpected
failures.

Note: When specifying package versions in your bnd.bnd file, exact versions are typically speci-
fied like this: version="1.1.2". However, this syntax is technically a range; it is interpreted as [1.1.2,
∞). Therefore, if a higher version of the package is available, it’s used instead of the version you
specified. For these cases, it may be better to specify a version range for compatible versions that
have been tested. If you want to specify a true exact match, the syntax is like this: [1.1.2]. See the
Version Range section in the OSGi specifications for more info.

Gradle and Maven use exact versions when only one version is specified.

You now know the pros and cons for tracking dependencies as a range and as an exact match.

1644

https://gradle.org/docs
http://maven.apache.org/guides/
https://osgi.org/specification/osgi.core/7.0.0/framework.module.html#i3189032

CHAPTER 152

TROUBLESHOOTING FAQ

When coding on any platform, you can sometimes run into issues that have no clear resolution.
This can be particularly frustrating. If you have issues building, deploying, or running apps and
modules, you want to resolve them fast. These frequently asked questions and answers help you
troubleshoot and correct problems.

Here are the troubleshooting sections:

• Modules
• Services and Components
• Front-end

Click a question to view the answer.

152.1 Modules

How can I configure dependencies on Liferay artifacts?

<p>See Configuring Dependencies. </p>

What are optional package imports and how can I specify them?

<p>When developing modules, you can declare optional package imports. An optional package import is one your module can use if it's available, but can still function without it. <a href="/docs/7-

1/tutorials/-/knowledge_base/t/declaring-optional-import-package-requirements">Specifying optional package imports is straightforward. </p>

How can I connect to a JNDI data source frommymodule?

<p>Connecting to an application server's JNDI data sources from Liferay's OSGi environment is almost the same as connecting to them from the Java EE environment. In an OSGi environment, the only difference is that you must <a href="/docs/7-

1/tutorials/-/knowledge_base/t/connecting-to-data-sources-using-jndi">use Liferay DXP's class loader to load the application server's JNDI classes. </p>

Mymodule has an unresolved requirement. What can I do?

<p>If one of your bundles imports a package that no other bundle in the Liferay OSGi runtime exports, Liferay DXP reports an unresolved requirement:</p>

<pre><code>! could not resolve the bundles: ...

Unresolved requirement: Import-Package: ...

...

Unresolved requirement: Require-Capability ...

</code></pre>

<p>To satisfy the requirement, find a module that provides the capability, add it to your build file's dependencies, and deploy it. </p>

1645

An IllegalContextNameException reports thatmy bundle’s context name does not followBundle-
SymbolicName syntax. How can I fix the context name?

<p>Adjust the <code>Bundle-

SymbolicName</code> to adhere to the syntax. </p>

Why aren’t my module’s JavaScript and CSS changes showing?

<p>Incorrect component properties or stale browser cache can prevent JavaScript and CSS changes from showing. </p>

Why aren’t my fragment’s JSP overrides showing?

<p>Make sure your <code>Fragment-

Host</code>'s bundle version is compatible with the host's bundle version. </p>

Why doesn’t the package I use from the fragment host resolve?

<p>Refrain from importing (<code>Import-

Package: ...</code>) host packages that the host doesn't export. </p>

The application server and database started, but Liferay DXP failed to connect to the database.
What happened and how can I fix this?

<p>Liferay DXP initialization can fail while attempting to connect to a database server that isn't ready. <a href="/docs/7-

1/tutorials/-/knowledge_base/t/portal-failed-to-initialize-because-the-database-wasnt-ready">Configuring startup to retry JDBC connections facilitates connecting Liferay DXP to databases. </p>

How can I adjust my module’s logging?

<p>See Adjusting Module Logging. </p>

How can I implement logging in my module or plugin?

<p>Use Simple Logging Facade for Java (SLF4J) to log messages.</p>

Why did the entity sort order change when I migrated to a new database type?

<p>Your new database uses a different default query result order--

you should be able to configure a different order.</p>

After creating a relational mapping between Service Builder entities, my portlet is using too
much memory. What can I do?

<p>Disabling the cache related to the entity mapping lowers memory usage..</p>

1646

152.2 Services and Components

How can I see what’s happening in the OSGi container?

<p>Run a System Check.. </p>

How can I detect unresolved OSGi components?

<p>module components that use Service Builder use Dependency Manager (DM) and most other module components use Declarative Services (DS). <a href="/docs/7-

1/tutorials/-/knowledge_base/t/detecting-unresolved-osgi-components">Gogo shell commands and tools help you find and inspect unsatisfied component references for DM and DS components. </p>

What is the safest way to call OSGi services from non-OSGi code?

<p>See Calling Non-OSGi Code that Uses OSGi Services. </p>

How can I use files to configure components?

<p>See Using Files to Configure Module Components. </p>

How can I access OSGi Services frommy Ext plugin?

<p>Use `ServiceTrackers`. </p>

152.3 Resolving Bundle Requirements

If one of your bundles needs a package that is not exported by any other bundle in the Liferay OSGi
runtime, you get a bundle exception. Here’s an example exception:

! could not resolve the bundles: [com.liferay.messaging.client.command-1.0.0.201707261701 org.osgi.framework.BundleException: Could not resolve module: com.liferay.messaging.client.command [1]

Unresolved requirement: Import-Package: com.liferay.messaging.client.api; version="[1.0.0,2.0.0)"

-> Export-Package: com.liferay.messaging.client.api; bundle-symbolic-name="com.liferay.messaging.client.provider"; bundle-

version="1.0.0.201707261701"; version="1.0.0"; uses:="org.osgi.framework"

com.liferay.messaging.client.provider [2]

Unresolved requirement: Import-Package: com.liferay.messaging; version="[1.0.0,2.0.0)"

-> Export-Package: com.liferay.messaging; bundle-symbolic-name="com.liferay.messaging.api"; bundle-version="1.0.0"; version="1.0.0"; uses:="com.liferay.petra.concurrent"

com.liferay.messaging.api [12]

Unresolved requirement: Import-Package: com.liferay.petra.io; version="[1.0.0,2.0.0)"

-> Export-Package: com.liferay.petra.io; bundle-symbolic-name="com.liferay.petra.io"; bundle-version="1.0.0"; version="1.0.0"

com.liferay.petra.io [16]

Unresolved requirement: Require-Capability osgi.extender; filter:="(osgi.extender=osgi.serviceloader.processor)"

The first line states could not resolve the bundles. What follows is a string of requirements that
Lferay’s OSGi Runtime could not resolve.

The bundle exception message follows this general pattern:

• Module A has an unresolved requirement (package or capability) aaa.bbb.
• Module B provides aaa.bbb but has an unresolved requirement ccc.ddd.
• Module C provides ccc.ddd but has an unresolved requirement eee.fff.
• etc.
• Module Z provides www.xxx but has an unresolved requirement yyy.zzz.

The pattern stops at the final unsatisfied requirement. The last module’s dependencies are key
to resolving the bundle exception. There are two possible causes:

1647

1. A dependency that satisfies the final requirement might be missing from the build file.

2. A dependency that satisfies the final requirement might not be deployed.

Both cases require deploying a bundle that provides the missing requirement.
The example bundle exception concludes that module com.liferay.petra.io requires capabil-

ity osgi.extender; filter:="(osgi.extender=osgi.serviceloader.processor)". To resolve the require-
ment, make sure all of com.liferay.petra.io’s dependencies are deployed.

The com.liferay.petra.iomodule’s build.gradle file lists its dependencies:

dependencies {

provided group: "com.liferay", name: "com.liferay.petra.concurrent", version: "1.0.0"

provided group: "com.liferay", name: "com.liferay.petra.memory", version: "1.0.0"

provided group: "org.apache.aries.spifly", name: "org.apache.aries.spifly.dynamic.bundle", version: "1.0.8"

provided group: "org.slf4j", name: "slf4j-api", version: "1.7.2"

testCompile group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "default"

}

Then use Felix Gogo Shell’s lb command to verify the dependencies are in Liferay’s OSGi Runtime:

lb

START LEVEL 1

ID|State |Level|Name

0|Active | 0|OSGi System Bundle (3.10.100.v20150529-1857)|3.10.100.v20150529-1857

1|Active | 1|com.liferay.messaging.client.command (1.0.0.201707261923)|1.0.0.201707261923

2|Active | 1|com.liferay.messaging.client.provider (1.0.0.201707261927)|1.0.0.201707261927

3|Active | 1|Apache Felix Configuration Admin Service (1.8.8)|1.8.8

4|Active | 1|Apache Felix Log Service (1.0.1)|1.0.1

5|Active | 1|Apache Felix Declarative Services (2.0.2)|2.0.2

6|Active | 1|Meta Type (1.4.100.v20150408-1437)|1.4.100.v20150408-1437

7|Active | 1|org.osgi:org.osgi.service.metatype (1.3.0.201505202024)|1.3.0.201505202024

8|Active | 1|Apache Felix Gogo Command (0.16.0)|0.16.0

9|Active | 1|Apache Felix Gogo Runtime (0.16.2)|0.16.2

10|Active | 1|Apache Felix Gogo Runtime (1.0.0)|1.0.0

...

The dependency module org.apache.aries.spifly.dynamic.bundle is missing from the runtime
bundle list. The org.apache.aries.spifly.dynamic.bundlemodule’s MANIFEST.MFfile shows it provides
the requirement capability osgi.extender; filter:="(osgi.extender=osgi.serviceloader.processor)":

Provide-Capability: osgi.extender;osgi.extender="osgi.serviceloader.regi

strar";version:Version="1.0",osgi.extender;osgi.extender="osgi.servicel

oader.processor";version:Version="1.0"

This capability osgi.extender; filter:="(osgi.extender=osgi.serviceloader.processor)"

is the unresolved requirement we identified earlier. Deploying this missing bundle
org.apache.aries.spifly.dynamic.bundle satisfies the example module’s requirement and al-
lows the module to resolve and install.

You can resolve your bundle exceptions by following steps similar to these.

Note: Bndtools’s Resolve button can resolve bundle dependencies automatically. You specify the
bundles your application requires and Bndtools adds transitive dependencies from your configured
artifact repository.

1648

Related Topics

Configuring Dependencies
Adding Third Party Libraries to a Module
Felix Gogo Shell
Resolving a Plugins’s Dependencies

152.4 Resolving Bundle-SymbolicName Syntax Issues

Liferay’s OSGi Runtime framework sometimes throws an IllegalContextNameException. Often, this
is because an OSGi bundle’s Bundle-SymbolicNamemanifest header has a space in it.

The Bundle-SymbolicName uniquely identifies the bundle—along with the Bundle-Versionmanifest
header—and cannot contain spaces. To follow naming best practices, use a reverse-domain name
in your Bundle-SymbolicName. For example, a module with the domain troubleshooting.liferay.com

would be reversed to com.liferay.troubleshooting..
There are three ways to specify a bundle’s Bundle-SymbolicName:

1. Bundle-SymbolicName header in a bundle’s bnd.bnd file.

2. Bundle-SymbolicName header in a pluginWAR’s liferay-plugin-package.properties file.

3. Plugin WAR file name, if the WAR’s liferay-plugin-package.properties has no Bundle-

SymbolicName header.

For pluginWARs, specifying the Bundle-SymbolicName in the liferay-plugin-package.properties

file is preferred.
For example, if you deploy a plugin WAR that has no Bundle-SymbolicName header in its

liferay-plugin-package.properties, the WAB Generator uses the WAR’s name as the WAB’s
Bundle-SymbolicName. If the WAR’s name has a space in it (e.g., space-program-theme v1.war) an
IllegalContextNameException occurs on deployment.

org.apache.catalina.core.ApplicationContext.log The context name 'space-program-theme v1' does not follow Bundle-SymbolicName syntax.

org.eclipse.equinox.http.servlet.internal.error.IllegalContextNameException: The context name 'space-program-theme v1' does not follow Bundle-

SymbolicName syntax.

However you set your a Bundle-SymbolicName, refrain from using spaces.

Related Topics

Using theWAB Generator

152.5 Resolving ClassNotFoundException and NoClassDefFoundError in OSGi Bundles

ClassNotFoundException and NoClassDefFoundError are common, well known exceptions:

• ClassNotFoundException is thrown when looking up a class that isn’t on the classpath or using
an invalid name to look up a class that isn’t on the runtime classpath.

• NoClassDefFoundError occurs when a compiled class references another class that isn’t on the
runtime classpath.

1649

In OSGi environments, however, there are additional cases where a ClassNotFoundException or
NoClassDefFoundError can occur:

1. The missing class belongs to a module dependency that’s an OSGi module.
2. The missing class belongs to a module dependency that’s not an OSGi module.
3. The missing class belongs to a global library, either at the Liferay DXP webapp scope or the

application server scope.
4. The missing class belongs to a Java runtime package.

This tutorial explains how to handle each case.

Case 1: The Missing Class Belongs to an OSGi Module

In this case, there are two possible causes:

1. Themodule doesn’t import the class’s package: For a module (orWAB) to consume another
module’s exported class, the consuming module must import the exported package that
contains the class. To do this, you add an Import-Package header in the consuming module’s
bnd.bnd file. If the consuming module tries to access the class without importing the package,
a ClassNotFoundException or NoClassDefFoundError occurs.

Check the package name and make sure the consuming module imports the right package. If
the import is correct but you still get the exception or error, the class might no longer exist in
the package.

2. The class no longer exists in the imported package: Modules are changed frequently in OSGi
runtime environments. If you reference another module’s class that its developer removed, a
NoClassDefFoundError or ClassNotFoundException occurs. Semantic Versioning guards against
this scenario: removing a class from an exported package constitutes a newmajor version
for that package. Neglecting to increment the package’s major version breaks dependent
modules.

For example, say a module that consumes the class com.foo.Bar specifies the package import
com.foo;version=[1.0.0, 2.0.0). The module uses com.foo versions from 1.0.0 up to (but
not including) 2.0.0. The first part of the version number (the 1 in 1.0.0) represents the
major version. The consuming module doesn’t expect any major breaking changes, like a
class removal. Removing com.foo.Bar from com.foo without incrementing the package to a
newmajor version (e.g., 2.0.0) causes a ClassNotFoundException or NoClassDefFoundErrorwhen
other modules look up or reference that class.

You have limited options when the class no longer exists in the package:

• Adapt to the new API. To learn how to do this, read the package’s/module’s Javadoc,
release notes, and/or formal documentation. You can also ask the author or search
forums.

• Revert to the module version you used previously. Deployed module versions reside in
[Liferay_Home]/osgi/. For details, see Backing up Liferay Installations.

Do what you think is best to get your module working properly.

1650

http://semver.org

Now you know how to resolve common situations involving ClassNotFoundException or
NoClassDefFoundError. For additional information on NoClassDefFoundError, see OSGi Enroute’s
article What is NoClassDefFoundError?.

Case 2: The Missing Class Doesn't Belong to an OSGi Module

In this case, you have two options:

1. Convert the dependency into an OSGi module so it can export the missing class. Converting
a non-OSGi JAR file dependency into an OSGi module that you can deploy alongside your
application is the ideal solution, so it should be your first choice.

2. Embed the dependency in your module by embedding the dependency JAR file’s packages as
private packages in yourmodule. If you want to embed a non-OSGi JAR file in your application,
see the tutorial Adding Third Party Libraries to a Module.

Case 3: The Missing Class Belongs to a Global Library

In this case, you can configure Liferay DXP so the OSGi systemmodule exports the missing class’s
package. Then your module can import it. You should NOT, however, undertake this lightly. If
Liferay intended to make a global library available for use by developers, the system module
would already export this library! Proceed only if you have no other solution, and watch out for
unintended consequences. There are two ways to export the package:

1. In your portal-ext.properties file, use the property module.framework.system.packages.extra

to specify the packages to export. Preserve the property’s current list.

2. If the package you need is from a Liferay DXP JAR, you might be able to add the module to
the list of exported packages in [LIFERAY_HOME]/osgi/core/com.liferay.portal.bootstrap.jar’s
META-INF/system.packages.extra.bnd file. Try this option only if the first option doesn’t work.

If the package you need is from a Liferay DXP module, (i.e., it’s NOT from a global library), you
can add the package to that module’s bnd.bnd exports. You should NOT, however, undertake this
lightly. The package would already be exported if Liferay intended for it to be available.

Case 4: The Missing Class Belongs to a Java Runtime Package

rt.jar (the JRE library) has non-public packages. If your module imports one of them, configure
Liferay DXP’s system bundle to export the package to the module framework.

1. Add the current module.framework.system.packages.extraproperty setting to a [LIFERAY_HOME]/portal-
ext.properties file. Your server’s current setting is in the Liferay DXP web application’s
/WEB-INF/lib/portal-impl.jar/portal.properties file.

2. In your portal-ext.properties file, append the required Java runtime package to the end of
the module.framework.system.packages.extra property’s package list.

3. Restart your server.

The package requirement resolves.

1651

http://enroute.osgi.org/faq/class-not-found-exception.html
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Module%20Framework

Related Topics

Backing up Liferay Installations
Adding Third Party Libraries to a Module
Bundle Classloading Flow

152.6 Identifying Liferay Artifact Versions for Dependencies

When you’re developing an application using Liferay APIs or tools—for example, you might create
a Service Builder application or use Message Bus or Asset Framework—you must determine which
versions of Liferay artifacts (modules, apps, etc.) you application’s modules must specify as
dependencies. To learn how to find Liferay artifacts and configure dependencies on them, see
Configuring Dependencies.

Related Topics

Configuring Dependencies
Finding Extension Points

152.7 Connecting to JNDI Data Sources

Connecting to an application server’s JNDI data sources from Liferay DXP’s OSGi environment is
almost the same as connecting to them from the Java EE environment. In an OSGi environment,
the only difference is that you must use Liferay DXP’s class loader to load the application server’s
JNDI classes. The following code demonstrates this.

Thread thread = Thread.currentThread();

// Get the thread's class loader. You'll reinstate it after using

// the data source you look up using JNDI

ClassLoader origLoader = thread.getContextClassLoader();

// Set Liferay's class loader on the thread

thread.setContextClassLoader(PortalClassLoaderUtil.getClassLoader());

try {

// Look up the data source and connect to it

InitialContext ctx = new InitialContext();

DataSource datasource = (DataSource)

ctx.lookup("java:comp/env/jdbc/TestDB");

Connection connection = datasource.getConnection();

Statement statement = connection.createStatement();

// Execute SQL statements here ...

connection.close();

}

catch (NamingException ne) {

ne.printStackTrace();

1652

}

catch (SQLException sqle) {

sqle.printStackTrace();

}

finally {

// Switch back to the original context class loader

thread.setContextClassLoader(origLoader);

}

The example code sets Liferay DXP’s classloader on the thread to access the JNDI API.

thread.setContextClassLoader(PortalClassLoaderUtil.getClassLoader());

It uses JNDI to look up the data source.

InitialContext ctx = new InitialContext();

DataSource datasource = (DataSource)

ctx.lookup("java:comp/env/jdbc/TestDB");

After working with the data source, the code reinstates the thread’s original classloader.

thread.setContextClassLoader(origLoader);

Here are the class imports for the example code:

import java.sql.Connection;

import java.sql.SQLException;

import java.sql.Statement;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.sql.DataSource;

import com.liferay.portal.kernel.util.PortalClassLoaderUtil;

Your applications can use similar code to access a data source. Make sure to substitute
jdbc/TestDB with your data source name.

Note: An OSGi bundle’s attempt to connect to a JNDI data source without using Liferay DXP’s
classloader results in a java.lang.ClassNotFoundException. For example, here’s an exception from
attempting to use Apache Tomcat’s JNDI API without using Liferay DXP’s classloader:

javax.naming.NoInitialContextException: Cannot instantiate class:

org.apache.naming.java.javaURLContextFactory [Root exception is

java.lang.ClassNotFoundException:

org.apache.naming.java.javaURLContextFactory]

An easier way to work with databases is to connect to them using Service Builder.

Related Topics

Connecting Service Builder to External Databases

1653

152.8 Adjusting Module Logging

Liferay DXP uses Log4j logging services. Here are the ways to configure logging for module classes
and class hierarchies.

• Log Levels in Liferay DXP’s UI
• Configure Log4j for multiple modules in a [anyModule]/src/main/resources/META-INF/module-

log4j.xml file.
• Configure Log4j for a specificmodule in a [Liferay Home]/osgi/log4j/[symbolicNameOfBundle]-

log4j-ext.xml file.
• Configure Log4j for an OSGi fragment host module in a /META-INF/module-log4j-ext.xml file

Here’s an example Log4j XML configuration:

<?xml version="1.0"?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<category name="org.foo">

<priority value="DEBUG" />

</category>

</log4j:configuration>

Use category elements to specify each class or class hierarchy to log messages for. Set the
name attribute to that class name or root package. The example category sets logging for the class
hierarchy starting at package org.foo. Log messages at or above the DEBUG log level are printed for
classes in org.foo and classes in packages starting with org.foo.

Set each category’s priority element to the log level (priority) you want.

• ALL
• DEBUG
• INFO
• WARN
• ERROR
• FATAL
• OFF

The log messages are printed to Liferay log files in [Liferay_Home]/logs.
You can see examples of module logging in several Liferay sample projects. For example,

the action-command-portlet, document-action, and service-builder/jdbc samples (among others)
leverage module logging.

Note: If the log level configuration isn’t appearing (e.g., you set the log level to ERROR but you’re
still getting WARNmessages), make sure the log configuration file name prefix matches the module’s
symbolic name. If you have bnd installed, output from command bnd print [path-to-bundle]

includes the module’s symbolic name (Here are instructions for installing bnd for the command
line).

That’s it for module log configuration. You’re all set to print the information you want.

1654

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/action-command-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions/document-action
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/service-builder/jdbc
https://github.com/bndtools/bnd/wiki/Install-bnd-on-the-command-line

Related Topics

Implementing Logging

152.9 Implementing Logging

7.0 uses the Log4j logging framework, but it may be replaced in the future. It’s a best practice to use
Simple Logging Facade for Java (SLF4J) to log messages in your modules and traditional plugins.
SLF4J is already integrated into Liferay DXP, so you can focus on logging messages.

Here’s how to use SLF4J to log messages in a class:

1. Add a private static SLF4J Logger field.

private static Logger _logger;

2. Instantiate the logger.

_logger = LoggerFactory.getLogger(this.getClass().getName());

3. Throughout your class, log messages where noteworthy things happen.

For example,

_logger.debug("...");

_logger.warn("...");

_logger.error("...");

...

Use Loggermethods appropriate for each message:

• debug: Event and application information helpful for debugging.
• error: Normal errors. This is the least verbose message level.
• info: High level events.
• trace: Provides more information than debug. This is the most verbose message level.
• warn: Information that might, but does not necessarily, indicate a problem.

Log verbosity should correlate with the log level set for the class or package. Make sure you
provide additional information at log levels expected to be more verbose, such as info and debug.

You’re all set to add logging to your modules and traditional plugins.

Related Topics

Adjusting Module Logging

1655

https://www.slf4j.org/
https://www.slf4j.org/apidocs/org/slf4j/Logger.html

152.10 Declaring Optional Import Package Requirements

When developing modules, you can declare optional dependencies. An optional dependency is one
your module can use if available, but can still function without it.

Important: Try to avoid optional dependencies. The best module designs rely on normal
dependencies. If an optional dependency seems desirable, your module may be trying to provide
more than one distinct type of functionality. In such a situation, it’s best to split it into multiple
modules that provide smaller, more focused functionality.

If you decide that your module requires an optional dependency, follow these steps to add it:

1. In your module’s bnd.bnd file, declare the package your module optionally depends on:

Import-Package: com.liferay.demo.foo;resolution:="optional"

Note that you can use either an optional or dynamic import. The differences are explained
here.

2. Create a component to use the optional package:

import com.liferay.demo.foo.Foo; // A class from the optional package

@Component(

enabled = false // instruct declarative services to ignore this component by default

)

public class OptionalPackageConsumer implements Foo {...}

3. Create a second component to be a controller for the first. The second component checks
the classloader for the optional class on the classpath. If it’s not there, this means you must
catch any ClassNotFoundException. For example:

@Component

public class OptionalPackageConsumerStarter {

@Activate

void activate(ComponentContext componentContext) {

try {

Class.forName(com.liferay.demo.foo.Foo.class.getName());

componentContext.enableComponent(OptionalPackageConsumer.class.getName());

}

catch (Throwable t) {

_log.warn("Could not find {}", t.getMessage()); // Could use _log.info instead

}

}

}

If the classloader check in the controller component is successful, the client component is
enabled. This check is automatically performed whenever there are any wiring changes to the
module containing these components (Declarative Services components are always restarted when
there are wiring changes).

If you install the module when the optional dependency is missing from Liferay DXP’s OSGi
runtime, your controller component catches a ClassNotFoundException and logs a warning or info

1656

https://osgi.org/specification/osgi.core/7.0.0/framework.module.html#i2548181

message (or takes whatever other action you implement to handle this case). If you install the
optional dependency, refreshing your module triggers the OSGi bundle lifecycle events that trigger
your controller’s activatemethod and the check for the optional dependency. Since the dependency
exists, your client component uses it.

Note that you can refresh a bundle from Gogo shell with this command:

equinox:refresh [bundle ID]

Related Topics

Configuring Dependencies

152.11 Why Aren't myModule's JavaScript and CSS Changes Showing?

To determinewhy JavaScript and CSS updates to yourmodule aren’t having an effect in your browser,
perform these checks:

1. If you’re developing a portlet module, check that your portlet class has the correct properties
specified in its @Component annotation:

• Make sure the resources referred to by the properties of your portlet class’s @Component
annotation exist in the correct location in your module project.

• Make sure that you’re using a portlet CSS wrapper class to prevent potential CSS ID and
class name conflicts with other applications on the page.

For example, consider this sample portlet class:

@Component(

immediate = true,

property = {

"com.liferay.portlet.css-class-wrapper=example-portlet",

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"com.liferay.portlet.header-portlet-css=/css/main.css",

"com.liferay.portlet.header-portlet-javascript=/css/main.js",

"javax.portlet.display-name=Example Portlet",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.name=" + ExamplePortletKeys.TicTacToe,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

public class ExamplePortlet extends MVCPortlet {

}

As described in the first item above, the portlet’s CSS file is specified by the property
com.liferay.portlet.header-portlet-css. Paths specified as values of this property are
relative to the module’s src/main/resources/META-INF/resources folder. So if you specify a
value of css/main.css, the actual path to the CSS file in themodule is src/main/resources/META-
INF/resources/css/main.css. The path to your portlet’s JavaScript file is specified by the

1657

property com.liferay.portlet.header-portlet-javascript. Values for this property work the
same as the values for the CSS property.

Also note that the property com.liferay.portlet.css-class-wrapper specifies the CSS class
wrapper example-portlet. Thus, you should use subclasses of example-portlet in your portlet’s
actual CSS file. For example, in main.css you’d do this to change the background to green:

.example-portlet {

.greenBackground {

background-color: green;

}

... (further properties)

}

In other words, to avoid CSS class and ID name conflicts, all the CSS properties you specify
must be subclasses of the class specified via the com.liferay.portlet.css-class-wrapper prop-
erty. Liferay DXP wraps your portlet’s HTML content with a <div>. The class specified by
com.liferay.portlet.css-class-wrapper (example-portlet, in this example) has been applied to
this <div>.

2. Check that caching isn’t preventing JS and CSS updates to your module from appearing in
your browser:

• Clear your browser’s cache.
• During development, enable developer mode to turn off Liferay DXP’s resource caching.
Click here to learn how to enable Liferay DXP’s developer mode.

Related Topics

Using Developer Mode with Themes

152.12 Why Aren't JSP overrides I Made Using Fragments Showing?

Important: It’s strongly recommended to customize JSPs using Liferay DXP’s API. Since over-
riding a JSP using an OSGi fragment is not based on APIs there’s no way to guarantee that it will fail
gracefully. Instead, if your customization is buggy (because of your code or because of a change in
Liferay), you are most likely to find out at runtime, where functionality breaks and nasty log errors
greet you. Overriding a JSP using a fragment should only be used as a last resort.

The fragmentmodulemust specify the exact version of the host module. A Liferay DXP upgrade
might have changed some JSPs in the host module, prompting a version update. If this occurs,
check that your JSP customizations are compatible with the updated host JSPs and then update
your fragment module’s targeted version to match the host module.

For example, this bnd.bnd file from a fragment module uses Fragment-Host to specify the host
module and host module version:

1658

Bundle-Name: custom-login-jsp

Bundle-SymbolicName: custom.login.jsp

Bundle-Version: 1.0.0

Fragment-Host: com.liferay.login.web;bundle-version="1.1.18"

Finding versions of deployed modules is straightforward.

Related Topics

JSP Overrides using Portlet Filters
Customizing JSPs
Configuring Dependencies

152.13 Why doesn't the package I use from the fragment host resolve?

An OSGi fragment can access all of the fragment host’s packages—it doesn’t need to import them
from another bundle. bnd adds external packages the fragment uses (even ones in the fragment
host) to the fragment’s Import-Package: [package],... OSGi manifest header. That’s fine for pack-
ages exported to the OSGi runtime. The problem is, however, when bnd tries to import a host’s
internal package (a package the host doesn’t export). The OSGi runtime can’t activate the fragment
because the internal package remains an Unresolved requirement—a fragment shouldn’t import a
fragment host’s packages.

Resolve the issue by explicitly excluding host packages that the host doesn’t export.
For example, this fragment bundle’s JSP uses classes from the fragment host bundle’s internal

package com.liferay.portal.search.web.internal.custom.facet.display.context:

<%@

page import="com.liferay.portal.search.web.internal.custom.facet.display.context.CustomFacetDisplayContext" %><%@

page import="com.liferay.portal.search.web.internal.custom.facet.display.context.CustomFacetTermDisplayContext" %>

Since the example host bundle doesn’t export the package, the fragment bundle can avoid
importing the package by using an OSGi manifest header, like the one below, to explicitly exclude
the package from package imports:

Import-Package: !com.liferay.portal.search.web.internal.*,*

152.14 Sort Order Changedwith a Different Database

If you’ve been using Liferay DXP, but are switching it to use a different database type, consult your
database vendor documentation to understand your old and new database’s default query result
order. The default order is either case-sensitive or case-insensitive. This affects entity sort order in
Liferay DXP.

Here are some examples of ascending alphabetical sort order.
Case-sensitive:

111

222

AAA

BBB

aaa

bbb

1659

Case-insensitive:

111

222

AAA

aaa

BBB

bbb

Your new database’s default query result order might differ from your current database’s order.
Consult your vendor’s documentation to configure the order the way you want.

152.15 Disabling Cache for Table Mapper Tables

Service Builder creates relationalmappings between entities. It usesmapping tables to associate the
entities. In your service.xml file, both entities have a mapping-table column attribute of the format
mapping-table="table1_table2". For example, a service.xml that maps AssetEntrys to AssetCategorys
has an AssetCategory entity with this column:

<column entity="AssetEntry"

mapping-table="AssetEntries_AssetCategories"

name="entries" type="Collection" />

and an AssetEntry entity element with this column:

<column entity="AssetCategory"

mapping-table="AssetEntries_AssetCategories"

name="categories" type="Collection" />

By default, a table mapper cache is associated with each mapping table. The cache optimizes
object retrieval. In some cases, however, it’s best to disable a table mapper cache.

Whywould I want to disable cache on a table mapper?

Super-large entity tables can result in a memory-hogging table mapper cache. For this reason,
consider disabling cache on a table mapper.

The table.mapper.cacheless.mapping.table.names Portal property disables cache for table map-
pers associated with the specified mapping tables. Here’s the default property setting:

##

Table Mapper

##

#

Set a list of comma delimited mapping table names that will not be using

cache in their table mappers.

#

table.mapper.cacheless.mapping.table.names=\

Users_Groups,\

Users_Orgs,\

Users_Roles,\

Users_Teams,\

Users_UserGroups

1660

https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/portal.properties.html#Table%20Mapper

All of the disabled caches above pertain to the User object because the table mappers tend to be
much too large to have a useful cache—each User can have several entries in each related table.

Potential race conditions retrieving objects from the cache is another reason to disable a table
mapper.

For example, LPS-84374 describes a race condition in which a custom entity’s table mapper
cache can be cleared while in use, causing transactional rollbacks. Publishing AssetEntrys clears all
associated table mapper caches. If they’re published at the same time getter methods are retrieving
objects from the AssetEntries_AssetCategoriesmapping table, transaction rollbacks occur.

Disabling a Table Mapper Cache

Adding a mapping table name to the table.mapper.cacheless.mapping.table.names Portal property
disables the associated table mapper cache.

1. In your [Liferay_Home]/portal-ext.propertiesfile, add the current table.mapper.cacheless.mapping.table.names
property setting. The setting is in yourLiferayDXP installation’s portal-impl.jar/portal.properties
file.

2. Append your mapping table name to the list. For example, to disable the cache associated
with a mapping table named AssetEntries_AssetCategories, add that name to the list.

table.mapper.cacheless.mapping.table.names=\

Users_Groups,\

Users_Orgs,\

Users_Roles,\

Users_Teams,\

Users_UserGroups,\

AssetEntries_AssetCategories

3. Restart the Liferay DXP instance to delete the table mapper cache.

You’ve disabled an unwanted table mapper cache.

152.16 Patching DXP Source Code

Auto mechanics, enthusiasts, and prospective owners ask about cars, “What’s under the hood?”
Here are common reasons for asking that question:

• Concern about an issue
• Curiosity about the car’s capability and inner-workings
• Desire to improve or customize the car

Youmight have similar reasons for asking “What’s underDXP’s hood?” And since you get access
to DXPDigital Enterprise (DXP)’s source code, you can attach a debugger and see it in action! Setting
up the code locally is your ticket to exploring DXP, investigating issues, and making improvements
and customizations.

Here’s how:

1. Download DXP, the DXP source code, and patches

2. Prepare DXP

3. Patch the DXP source code

1661

https://issues.liferay.com/browse/LPS-84374

Step 1: Download DXP, the DXP source code, and patches

1. Download a DXP bundle (or DXP JARs) and the DXP source code for the version you’re using
from the customer portal.

2. Download fix packs and their source code from here. Fix pack ZIP files that end in -src.zip

contain a fix pack and source code.

Next install and configure DXP. DXP’s patching tool lets you install fix packs and fix pack source
code. If you have a patched DXP installation already and want to use it, skip to the section below
on patching the DXP source code.

Step 2: Prepare DXP

Preparing DXP locally involves installing, configuring, and patching DXP.

Install and Configure DXP

Here’s how to install and configure DXP:

1. Install and Deploy DXP locally.

2. Start DXP.

3. Configure DXP to use your database.

4. Stop DXP.

It’s time apply the DXP patches you want.

Patch DXP

Here’s how to patch DXP:

1. Copy all the patch ZIP files you want to [LIFERAY_HOME]/patching-tool/patches. The -src.zip

fix pack files are best to use because they contain both the fix pack binaries and source code.

2. Open a command line to [LIFERAY_HOME]/patching-tool.

3. Run the command patching-tool.sh auto-discovery to generate the default patching profile
called default.properties. Make sure the profile’s properties refer to your DXP installation.
See the patching tool documentation for more details.
Here’s an example profile:

patching.mode=binary

war.path=../tomcat-9.0.6/webapps/ROOT/

global.lib.path=../tomcat-9.0.6/lib/ext/

liferay.home=../

4. To list all the patch files available in [LIFERAY_HOME]/patching-tool/patches, execute the fol-
lowing command:

patching-tool.sh info

1662

https://web.liferay.com/group/customer/dxp/downloads/7-1
https://web.liferay.com/group/customer/dxp/downloads/7-1

5. Execute this command to install the patches:

patching-tool.sh install

The patching tool documentation describes additional steps thatmight apply to your situation,
such as creating database indexes.

It’s time to prepare the DXP source code and patch source code.

Step 3: Patch the DXP Source Code

Unzip the DXP source code to where you want to work with it.
Next you’ll create a patching tool profile for your DXP source code.

Create a Patching Tool Profile for the Source Code

Here’s how to create a profile that refers to your source code.

1. Execute the following command to create a profile. Replace [profile] with a name for your
profile.

patching-tool.sh auto-discovery [profile]

2. In the profile properties file generated in the previous step, set the patching.mode property to
source and set the source.path property to your source code path:

patching.mode=source

source.path=[DXP source code path]

It’s time to apply the DXP patches you downloaded earlier.

Patch the Source Code

DXP’s patching tool is safe and easy to use. Beyond installing patches, it has these functions:

• List a patch’s code changes
• List the issues (LPS/LPE tickets) a patch fixes
• Revert a patch

See the following patching tool documentation for more details:

• Comparing Patch Levels
• Removing or Reverting Patches

In addition to using the patching tool to manage DXP source code, you can optionally manage it
in a version control system such as Git.

Here are commands for setting up the DXP source code in Git:

1663

https://issues.liferay.com
https://git-scm.com/

cd [path to source code root folder]

git init

git add .

git commit -a

Here are the command descriptions:

• init creates a Git repository for the current folder (i.e., the root folder) and all its contents.
• add stages the root folder and its contents.
• commit checks in the staged files.

You can commit any code changes (e.g., DXP patches) to your Git repository.

The patching tool installs all patches and patch source code from the ZIP files it finds in
[LIFERAY_HOME]/patching-tool/patches. All your patches must be in the patches folder for the patch-
ing tool to apply them.

1. Copy all the patch source ZIP files to [LIFERAY_HOME]/patching-tool/patches if you haven’t
already copied them there.

2. Execute the info command to make sure it lists your patches. If a patch isn’t listed, copy its
ZIP file into the patches folder. Replace [profile] with your DXP source code profile name:

patching-tool.sh [profile] info

3. Apply the patches by executing the install command on your profile:

patching-tool.sh [profile] install

Your DXP installation and source code is patched and ready to debug!
Attach your favorite debugger to your DXP instance and start the server. See your debugger’s

documentation for configuration details.
Congratulations! You’re free to explore DXP inside and out!

Related Topics

Troubleshooting FAQ
Liferay Dev Studio DXP

152.17 Troubleshooting Front-End Development Issues

Front-end development involves many moving parts. Sometimes it’s hard to tell what may be
causing the issues you run into along the way. This can be particularly frustrating. These frequently
asked questions and answers help you troubleshoot and correct problems arising during front-end
development.

Here are the troubleshooting sections:

• CSS
• Modules

1664

• Portlets
• Templates
• Themes

Click a question to view the answer.

CSS

• Why are my CSS templates not applied in my Angular app?
• Why is Liferay Portal’s CSS broken in Internet Explorer?

Why are my CSS templates not applied in my Angular app?

<p>A known bug with Angular causes absolute URLs for CSS files not to be recognized.</p>

<p>Due to the nature of portals, a relative URL is not an option either because the app can be placed on any page.</p>

<p>To fix this, you can either provide the CSS with a theme or themelet, or you can specify the path to the CSS file with the <code>com.liferay.portlet.header-

portlet-css</code> property in the portlet containing your Angular code.</p>

Why is Liferay Portal’s CSS broken in Internet Explorer?

<p>By default CSS files are minified in the browser. This can cause issues in Internet Explorer. You can disable this behavior by including <code>theme.css.fast.load=false</code> and <code>minifier.enabled=false</code> in your <code>portal-

ext.properties</code> file. </p>

Modules

• Why does my JQuery module throw an anonymous module error when I try to load it?
• Why are my source maps not showing for my Angular or Typescript module?
• I’m using the liferay-npm-bundler for multiple projects. How can I disable analytics tracking
for the entire tool across all my projects?

Why does my JQuery module throw an anonymous module error when I try to load it?

<p>If you're using an external library that you host, you must disable the <i>Expose Global</i> option as described in the <a href="https://portal.liferay.dev/docs/7-

1/tutorials/-/knowledge_base/t/using-external-javascript-libraries#using-libraries-that-you-host">Using External JavaScript Libraries tutorial.</p>

Why are my source maps not showing for my Angular or Typescript module?

<p>This is due to LPS-83052.</p>

<p>To solve this, activate the <code>inlineSources</code> compiler option via argument or your <code>tsconfig.json</code> file.</p>

I’m using the liferay-npm-bundler for multiple projects. How can I disable analytics tracking
for the liferay-npm-bundler in my projects?

<p>There are a couple options you can use to disable reporting:</p>

<p>Use the <code>--no-tracking</code> flag in your <code>package.json</code>'s build script to disable reporting:</p>

<p><pre><code>liferay-npm-bundler --no-tracking</code></pre></p>

<p>Create a <code>.liferay-npm-bundler-no-tracking</code> file in your project's root folder, or any of its ancestors, to disable reporting.</p>

<p>This equates to answering <code>No</code> to the <code>May liferay-npm-bundler anonymously report usage statistics to improve the tool over time?</code> question.</p>

1665

Portlets

• I want to use a custom router in my Angular/React/Vue portlet. How can I disable the default
Senna JS SPA engine in my portlet?

I want to use a custom router in my Angular/React/Vue portlet. How can I disable the default
Senna JS SPA engine in my portlet?
<p>By default, the <a href="https://portal.liferay.dev/docs/7-1/tutorials/-/knowledge_base/t/automatic-single-page-applications#what-

is-sennajs">Senna JS SPA engine is enabled in your portlets and sites. This disables full page reloads during portlet navigation.</p>

<p>If you want to use a custom router in your portlet instead, follow the <a href="https://portal.liferay.dev/docs/7-1/tutorials/-

/knowledge_base/t/automatic-single-page-applications#disabling-spa">instructions in the SPA documentation to blacklist your portlet from SPA.</p>

Templates

• Why does my web content break when I refresh the page?

Why does my web content break when I refresh the page?
<p>Some taglibs, such as the <code>liferay-map</code> taglib, have limitations when used in a cacheable template (e.g., FreeMarker and Velocity). For instance, when the <code>liferay-

map</code> taglib is used in a cacheable template and the user refreshes the page, the map does not show. </p>

<p>One possible workaround is to disable cache for the template by editing it and unchecking the cacheable option. Alternatively, you can disable cache for all templates by navigating to <code>System Settings</code>→<code>Template Engines</code> and setting <code>Resource Modification Check</code> to <code>0</code>. </p>

<p>As best practice, however, we recommend that you don't use taglibs in cacheable web content. </p>

Themes

• How can I use the Classic theme as my base theme?
• How can I include OSGi headers in my theme?
• Why aren’t my changes showing up after I redeploy my theme?
• Why is my theme not loading? It returns the default theme instead.
• How can I prevent specific CSS rules from transforming for RTL Languages?

How can I use the Classic theme as my base theme?
<p>The Classic theme is already an implementation of an existing base theme and should not be extended. You can use the <a href="/docs/7-

1/tutorials/-/knowledge_base/t/copying-an-existing-themes-files">Gulp kickstart task to copy files from the Classic theme into your theme if you wish. If you want to start off with some base styling, start with the Styled theme instead.</p>

How can I include OSGi headers in my theme?
<p>Specify the headers you want to use in your theme's <code>liferay-plugin-package.properties</code> file. Any headers placed in this file are included automatically in your MANIFEST and the OSGi bundle.</p>

<p>For example, you can add OSGi dependencies in your theme by importing the exported package with the <code>Import-Package</code> header:</p>

<pre><code>Import-Package:com.liferay.docs.portlet</code></pre>

Why aren’t my changes showing up after I redeploy my theme?
<p>By default CSS, JS, and theme template files are cached in the browser. During development, you can enable <a href="/docs/7-

1/tutorials/-/knowledge_base/t/using-developer-mode-with-themes">Devloper Mode to prevent your theme's files from caching. </p>

Why is my theme not loading? It returns the default theme instead.
<p>If you receive the warning "No theme found for specified theme id...", you may be referencing an outdated theme ID in your Site. Verify that the theme ID in your theme's <code>liferay-

look-and-feel.xml</code> matches the theme ID in the warning message: "mytheme_WAR_mytheme". If the theme IDs match, there may be pages using the outdated theme instead of the Site theme. You can verify this by checking the pages manually or searching the database for layouts with values for <code>themeId -</code>. </p>

How can I prevent specific CSS rules from transforming for RTL Languages?
<p>You can prevent specific CSS rules from transforming (flipping) with the <code>/* @noflip ⁎/</code> decoration. Place the decoration to the left of the CSS rule to apply it. For example, this rule gives a left margin of <code>20em</code> to the <code>body</code> no matter if the selected language is LTR or RTL:</p>

<pre><code>

/* @noflip ⁎/ body {

margin-left: 20em;

}

</pre></code>

<p>You can also use the <code>.rtl</code> CSS selector for rules that exclusively apply to RTL languages.</p>

1666

152.18 System Check

During development, all kinds of strange things can happen in the OSGi container. Liferay’s
system:check Gogo shell command can help you see what’s happening. You can enable it to run as
the last Portal startup step and you can execute it any time in Gogo shell.

system:check aggregates these commands:

• ds:unsatisfied: Reports unsatisfied Declarative Service components.

• dm na: Reports unsatisfied Dependency Manager service components, including Service
Builder services.

System checking functionality from future Liferay tools will be added to system:check.
Developer mode runs system:check automatically on every startup.
You can enable system:check to run on startup outside of developermode by setting this property

in your portal-ext.properties file:

module.framework.properties.initial.system.check.enabled=true

As stated previously, you can run the system:check command any time in Gogo shell. Enjoy
detecting unresolved components and other issues fast using system:check.

Related Topics

Detecting Unresolved OSGi Components
Gogo shell

152.19 Detecting Unresolved OSGi Components

Liferay DXP includes Gogo shell commands that come in handy when trying to diagnose a prob-
lem due to an unresolved OSGi component. The specific tools to use depend on the component
framework of the unresolved component. Most Liferay DXP components are developed using
Declarative Services (DS), also known as SCR (Service Component Runtime). An exception to this
is Liferay DXP’s Service Builder services, which are Dependency Manager (DM) components. Both
Declarative Services and Dependency Manager are Apache Felix projects.

The unresolved component troubleshooting instructions are divided into these sections:

• Declarative Services Components

– Declarative Services Unsatisfied Component Scanner
– ds:unsatisfied Command

• Service Builder Components

– Unavailable Component Scanner
– dm na Command
– ServiceProxyFactory

1667

http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html
http://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager.html

Declarative Services Components

Start with DS, since most Liferay DXP components, apart from Service Builder components, are DS
components. Suppose one of your bundle’s components has an unsatisfied service reference. How
can you detect this? Two ways:

• Enable aDeclarative ServicesUnsatisfiedComponent Scanner to report unsatisfied references
automatically or

• Use the Gogo shell command ds:unsatisfied to check for themmanually.

Declarative Services Unsatisfied Component Scanner

Here’s how to enable the unsatisfied component scanner:

1. Create afile com.liferay.portal.osgi.debug.declarative.service.internal.configuration.UnsatisfiedComponentScannerConfiguration.cfg.

2. Add the following content:

unsatisfiedComponentScanningInterval=5

3. Copy the file into [LIFERAY_HOME]/osgi/configs.

The scanner detects and logs unsatisfied service component references. The log message
describes the bundle, the referencing DS component class, and the referenced component.

Here’s an example scanner message:

11:18:28,881 WARN [Declarative Service Unsatisfied Component Scanner][UnsatisfiedComponentScanner:91]

Bundle {id: 631, name: com.liferay.blogs.web, version: 2.0.0}

Declarative Service {id: 3333, name: com.liferay.blogs.web.internal.portlet.action.EditEntryMVCRenderCommand, unsatisfied references:

{name: ItemSelectorHelper, target: null}

}

The message above warns that the com.liferay.blogs.web bundle’s DS component
com.liferay.blogs.web.internal.portlet.action.EditEntryMVCRenderCommand has an unsatisfied
reference to a component of type ItemSelectorHelper. The referencing component’s ID (SCR ID) is
3333 and its bundle ID is 631.

ds:unsatisfied Command

Another way to detect unsatisfied component references is to invoke the Gogo shell command
ds:unsatisfied.

• ds:unsatisfied shows all unsatisfied DS components
• ds:unsatisfied [BUNDLE_ID] shows the bundle’s unsatisfied DS components

To view more detailed information about the unsatisfied DS component, pass the component’s
ID to the command scr:info [component ID]. For example, the following command does this for a
component with ID 1701:

1668

g! scr:info 1701

*** Bundle: org.foo.bar.command (507)

Component Description:

Name: org.foo.bar.command

Implementation Class: org.foo.bar.command.FooBarCommand

Default State: enabled

Activation: delayed

Configuration Policy: optional

Activate Method: activate

Deactivate Method: deactivate

Modified Method: -

Configuration Pid: [org.foo.bar.command]

Services:

org.foo.bar.command.DuckQuackCommand

Service Scope: singleton

Reference: Duck

Interface Name: org.foo.bar.api.Foo

Cardinality: 1..1

Policy: static

Policy option: reluctant

Reference Scope: bundle

Component Description Properties:

osgi.command.function = foo

osgi.command.scope = bar

Component Configuration:

ComponentId: 1701

State: unsatisfied reference

UnsatisfiedReference: Foo

Target: null

(no target services)

Component Configuration Properties:

component.id = 1701

component.name = org.foo.bar.command

osgi.command.function = foo

osgi.command.scope = bar

In the Component Configuration section, UnsatisfiedReference lists the unsatisfied reference’s
type. This bundle’s component isn’t working because it’s missing a Foo service. Now you can focus
on why Foo is unavailable. The solution may be as simple as starting or deploying a bundle that
provides the Foo service.

Service Builder Components

Service Builder modules are implemented using Spring. Liferay DXP uses the Apache Felix Depen-
dencyManager tomanage Service Builder module OSGi components via the Portal Spring Extender
module.

When developing a Liferay Service Builder application, you might sometimes have an unre-
solved Spring-related OSGi component. This can occur if you update your application’s database
schema but forget to trigger an upgrade (for information on creating database upgrade processes
for your Liferay DXP applications, see the tutorial Creating an Upgrade Process for Your App).

These features detect unresolved Service Builder related components.

• Unavailable Component Scanner
• dm na Command
• ServiceProxyFactory

1669

http://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager.html
http://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager.html
https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.spring.extender/

Unavailable Component Scanner

The OSGi Debug Spring Extender module’s Unavailable Component Scanner reports missing
components in modules that use Service Builder. Here’s how to enable the scanner:

1. Create the configurationfile com.liferay.portal.osgi.debug.spring.extender.internal.configuration.UnavailableComponentScannerConfiguration.cfg.

2. In the configuration file, set the time interval (in seconds) between scans:
unavailableComponentScanningInterval=5

3. Copy the file into [LIFERAY_HOME]/osgi/configs.

The scanner reports Spring extender dependencymanager component status on the set interval.
If all components are registered, the scanner sends a confirmation message.

11:10:53,817 INFO [Spring Extender Unavailable Component Scanner][UnavailableComponentScanner:166] All Spring extender dependency manager components are registered

If a component is unavailable, it warns you:

11:13:08,851 WARN [Spring Extender Unavailable Component Scanner][UnavailableComponentScanner:173] Found unavailable component in bundle com.liferay.screens.service_1.0.28 [516].

Component ComponentImpl[null com.liferay.portal.spring.extender.internal.context.ModuleApplicationContextRegistrator@1541eee] is unavailable due to missing required dependencies: ServiceDependency[interface com.liferay.blogs.service.BlogsEntryService null].

Component unavailability, such as what’s reported above, can occur when DS components and
Service Builder components are published and used in the same module. Use separate modules to
publish DS components and Service Builder components.

dm na Command

DependencyManager’s Gogo shell command dm lists all Service Builder components, their required
services, and whether each required service is available.

To list unresolved components only execute this Gogo shell command:
dm na

The na option stands for “not available.”

ServiceProxyFactory

Liferay DXP’s logs report unresolved Service Builder components too. For example, Liferay DXP
logs an error when a Service Proxy Factory can’t create a new instance of a Service Builder based
entity because a service component is unresolved.

The following code demonstrates using a ServiceProxyFactory class to create a new entity in-
stance:

private static volatile MessageBus _messageBus =

ServiceProxyFactory.newServiceTrackedInstance(

MessageBus.class, MessageBusUtil.class, "_messageBus", true);

This message alerts you to the unavailable service:

11:07:35,139 ERROR [localhost-startStop-1][ServiceProxyFactory:265] Service "com.liferay.portal.kernel.messaging.sender.SingleDestinationMessageSenderFactory" is unavailable in 60000 milliseconds while setting field "_singleDestinationMessageSenderFactory" for class "com.liferay.portal.kernel.messaging.sender.SingleDestinationMessageSenderFactoryUtil", will retry...

Basedon themessage above, there’s nobundleproviding the service com.liferay.portal.kernel.messaging.sender.SingleDestinationMessageSenderFactory.
Now you can detect unresolved components, DS and DM components, automatically using scan-

ners, manually using Gogo shell commands, and programmatically using a ServiceProxyFactory.

1670

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.osgi.debug.spring.extender/
http://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager/tutorials/leveraging-the-shell.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ServiceProxyFactory.html

Related Topics

System Check

152.20 Using Files to Configure Module Components

Liferay DXP uses Felix File Install to monitor file system folders for new/updated configuration
files, and the Felix OSGi implementation of Configuration Admin to let you use files to configure
module service components.

To learn how to work with configuration files, first review Understanding System Configuration
Files.

Configuration File Formats

There are two different configuration file formats:

• .cfg: An older, simple format that only supports String values as properties.
• .config: A format that supports strings, type information, and other non-string values in its
properties.

Although Liferay DXP supports both formats, use .config files for their flexibility and ability
to use type information. Since .cfg files lack type information, if you want to store anything but
a String, you must use properties utility classes to cast Strings to intended types (and you must
carefully document properties that aren’t Strings). .config files eliminate this need by allowing
type information. The articles below explain the file formats:

• Understanding System Configuration Files
• Configuration file (.config) syntax
• Properties file(.cfg) syntax

Naming Configuration Files

Before you create a configuration file, follow these steps to determine whether multiple instances
of the component can be created or if the component is intended to be a singleton:

1. Deploy the component’s module if you haven’t done so already.

2. In Liferay DXP’s UI, go to Control Panel → Configuration → System Settings.

3. Find the component’s settings by searching or browsing for the component.

4. If the component’s settings page has a section called Configuration Entries, you can create
multiple instances of the component configured however you like. Otherwise, you should
treat the component as a singleton.

All configuration file names must start with the component’s PID (PID stands for persistent
identity) and end with .config or .cfg.

For example, this class uses Declarative Services to define a component:

1671

http://felix.apache.org/documentation/subprojects/apache-felix-file-install.html
http://felix.apache.org/
http://felix.apache.org/documentation/subprojects/apache-felix-config-admin.html
https://sling.apache.org/documentation/bundles/configuration-installer-factory.html#configuration-files-config
https://sling.apache.org/documentation/bundles/configuration-installer-factory.html#property-files-cfg

Figure 152.1: You can create multiple instances of components whose System Settings page has a Configuration Entries section.

package com;

@Component

class Foo {}

The component’s PID is com.Foo. All the component’s configuration files must start with the
PID com.Foo.

For each non-singleton component instance you want to create or update with a configuration,
you must use a uniquely named configuration file that starts with the component’s PID and ends
with .config or .cfg. Creating configurations for multiple component instances requires that the
configuration files use different subnames. A subname is the part of a configuration file name
after the PID and before the suffix .config or .cfg. Here’s the configuration file name pattern for
non-singleton components:

• [PID]-[subname1].config

• [PID]-[subname2].config

• etc.

For example, you could configure two different instances of the component com.Foo by using
configuration files with these names:

• com.Foo-one.config

• com.Foo-two.config

Each configuration file creates and/or updates an instance of the component that matches the
PID. The subname is arbitrary—it doesn’t have to match a specific component instance. This means
you can use whatever subname you like. For example, these configuration files are just as valid as
the two above:

• com.Foo-puppies.config

• com.Foo-kitties.config

Using the subname default, however, is Liferay DXP’s convention for configuring a component’s
first instance. The file name pattern is therefore

[PID]-default.config

A singleton component’s configuration file must also start with [PID] and end with .config or
.cfg. Here’s the common pattern used for singleton component configuration file names:

[PID].config

When you’re done creating a configuration file, you can deploy it.

1672

Resolving Configuration File Deployment Failures

The following IOException hints that the configuration file has a syntax issue:

Failed to install artifact: [path to .config or .cfg file]

java.io.IOException: Unexpected token 78; expected: 61 (line=0, pos=107)

To resolve this, fix the configuration file’s syntax.
Great! Now you know how to configure module components using configuration files.

Related Articles

Understanding System Configuration Files

152.21 Calling Non-OSGi Code that Uses OSGi Services

Liferay DXP’s static service utilities (e.g., UserServiceUtil, CompanyServiceUtil, GroupServiceUtil,
etc.) are examples of non-OSGi code that use OSGi services. Service Builder generates them
for backwards compatibility purposes only. If you’re tempted to call a *ServiceUtil class or your
existing code calls one, access the *Service directly instead using one these alternatives:

• If your class is a Declarative Services component, use an @Reference annotation to access the
*Service class.

• If your class isn’t a Declarative Services component, use a ServiceTracker to access the *Service
class.

You can check the state of Liferay DXP’s services in the Gogo shell. The scr:list Gogo shell
command shows all Declarative Services components, including inactive ones from unsatisfied
dependencies. To find unsatisfied dependencies for Service Builder services, use the Dependency
Manager’s dependencymanager:dm wtf command. Note that these commands only show components
that haven’t been activated because of unsatisfied dependencies. They don’t show pure service
trackers that are waiting for a service because of unsatisfied dependencies.

Related Topics

Detecting Unresolved OSGi Components
Felix Gogo Shell
OSGi Basics For Liferay Development

152.22 Liferay DXP Failed to Initialize Because the Database Wasn't Ready

If you start your database server and application server at the same time, Liferay DXP might
try connecting to the data source before the database is ready. By default, Liferay DXP doesn’t
retry connecting to the database; it just fails. But there is a way to avoid this situation: database
connection retries.

1. Create a portal-ext.properties file in your Liferay Home folder.

1673

2. Set the property retry.jdbc.on.startup.max.retries equal to the number of times to retry
connecting to the data source.

3. Set property retry.jdbc.on.startup.delay equal to the number of seconds to wait before
retrying connection.

If at first the connection doesn’t succeed, Liferay DXP uses the retry settings to try again.

Related Topics

Connecting to JNDI Data Sources

152.23 Using OSGi Services from EXT Plugins

ServiceTrackers are the best way for Ext plugins to access OSGi services. They account for the
possibility of OSGi services coming and going.

Related Topics

Detecting Unresolved OSGi Components
Felix Gogo Shell
OSGi Basics For Liferay Development

1674

CHAPTER 153

DATA UPGRADES

The development process doesn’t end when you first release your application. Through your own
planning, feature requests, and bug reports, developers improve their applications on a regular
basis.

Sometimes, those changes result in changes to the data structure and underlying database.
When users upgrade, they need a process that transitions them to improved versions of your
application. For this, you must create an upgrade process.

This section shows how to do that.

153.1 Creating Data Upgrade Processes for Modules

Some changes you make to a module involve modifying the database. These changes bring with
them the need for an upgrade process to move your module’s database from one version to the
next. Liferay has an upgrade framework you can use to make this easier to do. It’s a feature-rich
framework that makes upgrades safe: the system records the current state of the schema so that if
the upgrade fails, the process can revert the module back to its previous version.

Note: Upgrade processes for traditional Liferay plugins (WAR files) work the same way they did
for Liferay Portal 6.x.

Liferay DXP’s upgrade framework executes your module’s upgrades automatically when the
new version starts for the first time. You implement concrete data schema changes in upgrade step
classes and then register them with the upgrade framework using an upgrade step registrator. In
this tutorial, you’ll learn how to do all these things to create an upgrade process for your module.

Here’s what’s involved:

• Specifying the schema version

• Declaring dependencies

• Writing upgrade steps

• Writing the registrator

1675

• Waiting for upgrade completion

It’s time to get started.

Specifying the Schema Version

In your module’s bnd.bnd file, specify a Liferay-Require-SchemaVersion header with the new schema
version value. Here’s an example schema version header for a module whose new schema is
version 1.1:

Liferay-Require-SchemaVersion: 1.1

Specifying the major and minor schema version only (format major.minor) gives your module
flexibility to use any micro schema version. This lets you disregard new micro schema versions or
upgrade to them when you want. You can also revert micro schema versions.

Important: If no Liferay-Require-SchemaVersion header is specified, Liferay DXP considers the
Bundle-Version header value to be the database schema version.

Next, you’ll specify your upgrade’s dependencies.

Declaring Dependencies

In your module’s dependency management file (e.g., Maven POM, Gradle build file, or Ivy ivy.xml

file), add a dependency on the com.liferay.portal.upgrademodule.
In a build.gradle file, the dependency would look like this:

compile group: "com.liferay", name: "com.liferay.portal.upgrade.api", version: "2.0.3"

If there are other modules your upgrade process requires, specify them as dependencies.
You’ve configured your module project for the upgrade. It’s time to create upgrade steps to

update the database from the current schema version to the new one.

Writing Upgrade Steps

An upgrade step is a class that adapts module data to the module’s target database schema. It
can execute SQL commands and DDL files to upgrade the data. The upgrade framework lets you
encapsulate upgrade logic in multiple upgrade step classes per schema version.

The upgrade class extends the UpgradeProcess base class, which implements the UpgradeStep

interface. Each upgrade step must override the UpgradeProcess class’s method doUpgrade with
instructions for modifying the database.

Since UpgradeProcess extends the BaseDBProcess class, you can use its runSQL and runSQLTemplate*

methods to execute your SQL commands and SQL DDL, respectively.
If you want to create, modify, or drop tables or indexes by executing DDL sentences from an

SQL file, make sure to use ANSI SQL only. Doing this assures the commands work on different
databases.

If you need to use non-ANSI SQL, it’s best to write it in the UpgradeProcess class’s runSQL or alter
methods, along with tokens that allow porting the sentences to different databases.

For example, consider the journal-service module’s UpgradeSchema upgrade step class:

1676

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.upgrade/
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upgrade/UpgradeProcess.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upgrade/UpgradeStep.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upgrade/UpgradeStep.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/db/BaseDBProcess.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upgrade/UpgradeProcess.html
https://github.com/liferay/liferay-portal/blob/master/modules/apps/journal/journal-service/src/main/java/com/liferay/journal/internal/upgrade/v0_0_4/UpgradeSchema.java

package com.liferay.journal.internal.upgrade.v0_0_4;

import com.liferay.journal.internal.upgrade.v0_0_4.util.JournalArticleTable;

import com.liferay.journal.internal.upgrade.v0_0_4.util.JournalFeedTable;

import com.liferay.portal.kernel.upgrade.UpgradeMVCCVersion;

import com.liferay.portal.kernel.upgrade.UpgradeProcess;

import com.liferay.portal.kernel.util.StringUtil;

/**

* @author Eduardo Garcia

⁎/

public class UpgradeSchema extends UpgradeProcess {

@Override

protected void doUpgrade() throws Exception {

String template = StringUtil.read(

UpgradeSchema.class.getResourceAsStream("dependencies/update.sql"));

runSQLTemplateString(template, false, false);

upgrade(UpgradeMVCCVersion.class);

alter(

JournalArticleTable.class,

new AlterColumnName(

"structureId", "DDMStructureKey VARCHAR(75) null"),

new AlterColumnName(

"templateId", "DDMTemplateKey VARCHAR(75) null"),

new AlterColumnType("description", "TEXT null"));

alter(

JournalFeedTable.class,

new AlterColumnName("structureId", "DDMStructureKey TEXT null"),

new AlterColumnName("templateId", "DDMTemplateKey TEXT null"),

new AlterColumnName(

"rendererTemplateId", "DDMRendererTemplateKey TEXT null"),

new AlterColumnType("targetPortletId", "VARCHAR(200) null"));

}

}

The above example class UpgradeSchema uses the runSQLTemplateStringmethod to execute ANSI
SQLDDL froman SQLfile. Tomodify columnnames and column types, it uses the altermethod and
UpgradeProcess’s UpgradeProcess.AlterColumnName and UpgradeProcess.AlterColumnType inner classes
as token classes.

Here’s a simpler example upgrade step from the com.liferay.calendar.servicemodule. It uses
the altermethod to modify a column type in the calendar booking table:

public class UpgradeCalendarBooking extends UpgradeProcess {

@Override

protected void doUpgrade() throws Exception {

alter(

CalendarBookingTable.class,

new AlterColumnType("description", "TEXT null"));

}

}

You can implement upgrade steps just like these for your module schemas.
How you name and organize upgrade steps is up to you. Liferay’s upgrade classes are organized

using a package structure similar to this one:

• some.package.structure

1677

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upgrade/UpgradeProcess.html

– upgrade

* v1_1_0

· UpgradeFoo.java ← Upgrade Step

* v2_0_0

· UpgradeFoo.java ← Upgrade Step
· UpgradeBar.java ← Upgrade Step

* MyCustomModuleUpgrade.java ← Registrator

The example upgrade structure shown above is for a module that has two database schema
versions: 1.1.0 and 2.0.0. They’re represented by packages v1_1_0 and v2_0_0. Each version package
contains upgrade step classes that update the database. The example upgrade steps focus on
fictitious data elements Foo and Bar. The registrator class (MyCustomModuleUpgrade, in this example)
is responsible for registering the applicable upgrade steps for each schema version.

Here are some organizational tips:

• Put all upgrade classes in a sub-package called upgrade.

• Group together similar database updates (ones that operate on a data element or related data
elements) in the same upgrade step class.

• Create upgrade steps in sub-packages named after each data schema version.

Before continuing with upgrade step registrators, if your application was modularized from
a former traditional Liferay plugin application (applicationWAR) and it uses Service Builder, it
requires a Bundle Activator to register itself in Liferay DXP’s Release_ table. If this is the case for
your application, create and register a Bundle Activator and then return here to write your upgrade
step registrator.

Writing the Upgrade Step Registrator

Amodule’s upgrade step registrator notifies Liferay’s upgrade framework of all the upgrade steps to
update the module data for each schema version. It specifies the module’s entire upgrade process.
The upgrade framework executes the upgrade steps to update the current module data to the latest
schema.

For example, the upgrade step registrator class MyCustomModuleUpgrade (below) registers upgrade
steps incrementally for each schema version (past and present):

package com.liferay.mycustommodule.upgrade;

import com.liferay.portal.upgrade.registry.UpgradeStepRegistrator;

import org.osgi.service.component.annotations.Component;

@Component(immediate = true, service = UpgradeStepRegistrator.class)

public class MyCustomModuleUpgrade implements UpgradeStepRegistrator {

@Override

public void register(Registry registry) {

registry.register(

1678

"com.liferay.mycustommodule", "0.0.0", "2.0.0",

new DummyUpgradeStep());

registry.register(

"com.liferay.mycustommodule", "1.0.0", "1.1.0",

new com.liferay.mycustommodule.upgrade.v1_1_0.UpgradeFoo());

registry.register(

"com.liferay.mycustommodule", "1.1.0", "2.0.0",

new com.liferay.mycustommodule.upgrade.v2_0_0.UpgradeFoo(),

new com.liferay.mycustommodule.upgrade.v2_0_0.UpgradeBar());

}

}

The registrator’s registermethod informs the upgrade framework about each new schema and
associated upgrade steps to adapt data to it. Each schema upgrade is represented by a registration.
A registration is an abstraction for all the changes you need to apply to the database from one
schema version to the next one.

The following diagram illustrates the relationship between the registrator and the upgrade
steps.

Figure 153.1: In a registrator class, the developer specifies a registration for each schema version upgrade. The upgrade steps handle the database updates.

1679

The previous example MyCustomModuleUpgrade registrator class listing shows how this works.
The registrator class declares itself to be anOSGiComponent of service type UpgradeStepRegistrator.class.

The @Component annotation registers the class to the OSGi framework as the module’s upgrade
step registrator. The attribute immediate = true tells the OSGi framework to activate this module
immediately after it’s installed.

The registrator implements the UpgradeStepRegistrator interface, which is in the com.liferay.portal.upgrade
module. The interface declares a register method that the registrator must override. In that
method, the registrator implements all the module’s upgrade registrations.

Upgrade registrations are defined by the following values:

• Module’s bundle symbolic name
• Schema version to upgrade from (as a String)
• Schema version to upgrade to (as a String)
• List of upgrade steps

The example registrator MyCustomModuleUpgrade registers three upgrades:

• 0.0.0 to 2.0.0

• 1.0.0 to 1.1.0

• 1.1.0 to 2.0.0

The MyCustomModuleUpgrade registrator’s first registration is applied by the upgrade framework
if the module has not been installed previously. Its list of upgrade steps contains only one: new
DummyUpgradeStep().

registry.register(

"com.liferay.document.library.web", "0.0.0", "2.0.0",

new DummyUpgradeStep());

The DummyUpgradeStep class provides an empty upgrade step. The MyCustomModuleUpgrade regis-
trator defines this registration so that the upgrade framework records the module’s latest schema
version (i.e., 2.0.0) in Liferay DXP’s Release_ table.

Important: Modules that use Service Builder should not define a registration for their initial
database schema version, as Service Builder already records their schema versions to Liferay DXP’s
Release_ table. Modules that don’t use Service Builder, however, should define a registration for
their initial schema.

The MyCustomUpgrade registrator’s next registration (from schema version 1.0.0 to 1.1.0) includes
one upgrade step.

registry.register(

"com.liferay.mycustommodule", "1.0.0", "1.1.0",

new com.liferay.mycustommodule.upgrade.v1_1_0.UpgradeFoo());

Theupgrade step’s fully qualified class name is required because classes named UpgradeFoo are in
package com.liferay.mycustommodule.upgrade.v1_1_0and com.liferay.mycustommodule.upgrade.v2_0_0.

The registrator’s final registration (from schema version 1.1.0 to 2.0.0) contains two upgrade
steps.

registry.register(

"com.liferay.mycustommodule", "1.1.0", "2.0.0",

new com.liferay.mycustommodule.upgrade.v2_0_0.UpgradeFoo(),

new UpgradeBar());

1680

https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/portal/upgrade/registry/UpgradeStepRegistrator.html
https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/portal/upgrade/registry/UpgradeStepRegistrator.html#register-com.liferay.portal.upgrade.registry.UpgradeStepRegistrator.Registry-
https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/portal-kernel/src/com/liferay/portal/kernel/upgrade/DummyUpgradeStep.java

Bothupgrade steps, UpgradeFoo and UpgradeBar, reside in themodule’s com.liferay.mycustommodule.upgrade.v2_0_0
package. The fully qualified class name com.liferay.mycustommodule.upgrade.v2_0_0.UpgradeFoo is
used for the UpgradeFoo class, while the simple class name UpgradeBar is fine for the second upgrade
step.

A registration’s upgrade step list can consist of as many upgrade steps as needed.
Important: If your upgrade step uses an OSGi service, your upgrade must wait for that service’s

availability. To specify that your upgrade is to be executed only after that service is available, add
an OSGi reference to that service.

For example, the WikiServiceUpgrade registrator class references the SettingsFactory class. The
upgrade step class UpgradePortletSettings upgrade step uses it. Here’s the WikiServiceUpgrade class:

@Component(immediate = true, service = UpgradeStepRegistrator.class)

public class WikiServiceUpgrade implements UpgradeStepRegistrator {

@Override

public void register(Registry registry) {

registry.register(

"com.liferay.wiki.service", "0.0.1", "0.0.2", new UpgradeSchema());

registry.register(

"com.liferay.wiki.service", "0.0.2", "0.0.3",

new UpgradeKernelPackage(), new UpgradePortletId());

registry.register(

"com.liferay.wiki.service", "0.0.3", "1.0.0",

new UpgradeCompanyId(), new UpgradeLastPublishDate(),

new UpgradePortletPreferences(),

new UpgradePortletSettings(_settingsFactory),

new UpgradeWikiPageResource());

}

@Reference(unbind = "-")

protected void setSettingsFactory(SettingsFactory settingsFactory) {

_settingsFactory = settingsFactory;

}

private SettingsFactory _settingsFactory;

}

In the third registration in the listing above, the UpgradePortletSettings upgrade step uses the
SettingsFactory service. The setSettingsFactorymethod’s @Reference annotation declares that the
registrator class depends on andmust wait for the SettingsFactory service to be available in the run
time environment. The annotation’s attribute setting unbind = "-" indicates that the registrator
class has no method for unbinding the service.

Next, youmustmake sure themodule’s upgrade is executed beforemaking its services available.

Waiting for Upgrade Completion

Before module services that access the database are used, the database should be upgraded to the
latest database schema.

As a convenience, configuring the Bnd header Liferay-Require-SchemaVersion to the latest
schema version is all that’s required to assure the database is upgraded for Service Builder services.

For all other services, the developer can assure database upgrade by specifying an @Reference

annotation that targets the containing module and its latest schema version.
Here are the target’s required attributes:

1681

https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/wiki/wiki-service/src/main/java/com/liferay/wiki/upgrade/WikiServiceUpgrade.java
https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/wiki/wiki-service/src/main/java/com/liferay/wiki/upgrade/v1_0_0/UpgradePortletSettings.java

• release.bundle.symbolic.name: module’s bundle symbolic name
• release.schema.version: module’s current schema version

For example, the com.liferay.comment.page.comments.webmodule’s PageCommentsPortlet class as-
sures upgrading to schema version 1.0.0 by defining the following reference:

@Reference(

target = "(&(release.bundle.symbolic.name=com.liferay.comment.page.comments.web)(release.schema.version=1.0.0))",

unbind = "-"

)

protected void setRelease(Release release) {

}

Dependencies betweenOSGi services can reduce thenumber of service classes inwhichupgrade
reference annotations are needed. For example, there’s no need to add an upgrade reference in a
dependent service, if the dependency already refers to the upgrade.

Note: Data verifications using the class VerifyProcess are deprecated. Verifications should be
tied schema versions. Upgrade processes are associated with schema versions but VerifyProcess
instances are not.

Now you know how to create data upgrades for all your modules. You specify the new data
schema version in the bnd.bnd file, add a reference to your module and to the schema version to
assure upgrade execution if the module doesn’t use Service Builder, and add a dependency on the
com.liferay.portal.upgrademodule. For the second part of the process, you create upgrade step
classes to update the database schema and register the upgrade steps in a registrator class. That’s
all there is to it!

Related Topics

Upgrade Processes for Former Service Builder Plugins
Upgrading Plugins to Liferay 7
Configurable Applications
Migrating Data Upgrade Processes to the New Framework for Modules

153.2 Upgrade Processes for Former Service Builder Plugins

If youmodularized a traditional Liferay plugin application that implements Service Builder services,
your new modular application must register itself in the Liferay DXP’s Release_ table. This is
required regardless of whether release records already exist for previous versions of the app. A
Bundle Activator is the recommended way to add a release record for the first modular version of
your converted application. Here you’ll see an example Bundle Activator and learn how to create
and activate a Bundle Activator for your application.

Important: This tutorial only applies to modular applications that use Service Builder and
were modularized from traditional Liferay plugin applications. It does not apply to you if your
application does not use Service Builder or has never been a traditional Liferay plugin application
(aWAR application).

Bundle Activator class code is dense but straightforward. Referring to an example Bundle
Activator can be helpful. Here’s the Liferay Knowledge Base application’s Bundle Activator:

1682

https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/comment/comment-page-comments-web/src/main/java/com/liferay/comment/page/comments/web/internal/portlet/PageCommentsPortlet.java

public class KnowledgeBaseServiceBundleActivator implements BundleActivator {

@Override

public void start(BundleContext bundleContext) throws Exception {

Filter filter = bundleContext.createFilter(

StringBundler.concat(

"(&(objectClass=", ModuleServiceLifecycle.class.getName(), ")",

ModuleServiceLifecycle.DATABASE_INITIALIZED, ")"));

_serviceTracker = new ServiceTracker<Object, Object>(

bundleContext, filter, null) {

@Override

public Object addingService(

ServiceReference<Object> serviceReference) {

try {

BaseUpgradeServiceModuleRelease

upgradeServiceModuleRelease =

new BaseUpgradeServiceModuleRelease() {

@Override

protected String getNamespace() {

return "KB";

}

@Override

protected String getNewBundleSymbolicName() {

return "com.liferay.knowledge.base.service";

}

@Override

protected String getOldBundleSymbolicName() {

return "knowledge-base-portlet";

}

};

upgradeServiceModuleRelease.upgrade();

return null;

}

catch (UpgradeException ue) {

throw new RuntimeException(ue);

}

}

};

_serviceTracker.open();

}

@Override

public void stop(BundleContext bundleContext) throws Exception {

_serviceTracker.close();

}

private ServiceTracker<Object, Object> _serviceTracker;

}

The following steps explain how to create a Bundle Activator, like the example above.

1. Create a class that implements the interface org.osgi.framework.BundleActivator.

2. Add a service tracker field:

1683

private ServiceTracker<Object, Object> _serviceTracker;

3. Override BundleActivator’s stopmethod to close the service tracker:

@Override

public void stop(BundleContext bundleContext) throws Exception {

_serviceTracker.close();

}

4. Override BundleActivator’s startmethod to instantiate a service tracker that creates a filter
to listens for the app’s database initialization event and initializes the service tracker to use
that filter. You’ll add the service tracker initialization code in the next steps. At the end of the
startmethod, open the service tracker.

@Override

public void start(BundleContext bundleContext) throws Exception {

Filter filter = bundleContext.createFilter(

StringBundler.concat(

"(&(objectClass=", ModuleServiceLifecycle.class.getName(), ")",

ModuleServiceLifecycle.DATABASE_INITIALIZED, ")"));

_serviceTracker = new ServiceTracker<Object, Object>(

bundleContext, filter, null) {

// See the next step for this code ...

};

_serviceTracker.open();

}

5. In the service tracker initialization block { // See the next step for this code ... }

from theprevious step, add an addingServicemethod that instantiates a BaseUpgradeServiceModuleRelease
for describing your app. The example BaseUpgradeServiceModuleRelease instance below
describes Liferay’s Knowledge Base app:

@Override

public Object addingService(

ServiceReference<Object> serviceReference) {

try {

BaseUpgradeServiceModuleRelease

upgradeServiceModuleRelease =

new BaseUpgradeServiceModuleRelease() {

@Override

protected String getNamespace() {

return "KB";

}

@Override

protected String getNewBundleSymbolicName() {

return "com.liferay.knowledge.base.service";

}

@Override

protected String getOldBundleSymbolicName() {

return "knowledge-base-portlet";

}

};

upgradeServiceModuleRelease.upgrade();

1684

return null;

}

catch (UpgradeException ue) {

throw new RuntimeException(ue);

}

}

The BaseUpgradeServiceModuleRelease implements the following methods:

• getNamespace: Returns the namespace value as specified in the former plugin’s
service.xml file. This value is also in the buildNamespace field in the plugin’s
ServiceComponent table record.

• getOldBundleSymbolicName: Returns the former plugin’s name.
• getNewBundleSymbolicName: Returns the module’s symbolic name. In the module’s
bnd.bnd file, it’s the Bundle-SymbolicName value.

• upgrade: Invokes the app’s upgrade processes.

6. In the module’s bnd.bnd file, reference the Bundle Activator class you created. Here’s the
example’s Bundle Activator reference:

Bundle-Activator: com.liferay.knowledge.base.internal.activator.KnowledgeBaseServiceBundleActivator

The Bundle Activator uses one of the following values to initialize the schemaVersion field in the
application’s Release_ table record:

• Current buildNumber: if there is an existing Release_ table record for the previous plugin.
• 0.0.1: if there is no existing Release_ table record.

You’ve set your service module’s data upgrade process.

Related Topics

Creating Data Upgrade Processes for Modules
Upgrading Plugins to Liferay 7

153.3 Meaningful Schema Versioning

Data schema versions can be as arbitrary as you like; but they are most helpful when they provide
meaning. Liferay’s data schema version convention communicates a schema’s compatibility with
older versions of the software. It tells you whether a schema’s changes maintain or break compat-
ibility with existing software. For example, if a new data schema removes a field your software
expects, the schema breaks compatibility. But if a new schema’s changes are non-breaking (e.g.,
adds a new field), the schema is compatible and can be used with existing software. Since Liferay
DXP 7.1, Liferay uses a meaningful schema version convention (similar to Semantic Versioning)
to define new upgrade steps and support rollback of schema micro versions. The convention is
optional but tracks data schema backwards compatibility.

Here’s Liferay’s schema version convention:
MAJOR.MINOR.MICRO

1685

http://semver.org

Each part means something:
MAJOR: Contains breaking schema/data changes that are incompatible with the latest version

of existing code.
MINOR: Contains schema/data changes compatible with the latest version of existing code. The

changes typically involve supporting new functionality.
MICRO: Contains schema/data changes that are compatible with the latest version of existing

code.
Next are some concrete examples of micro, minor, and major changes.

Micro change examples

Here are common micro changes:

• Increasing VARCHAR field sizes.
• Modifying DB indexes.
• Modifying data values to adapt to current logic. These include backwards compatible data
changes only. These changes commonly occur when data updates are missed for new func-
tionalities.

• Converting a field from a String to a CLOB, as long as the field has few records and isn’t used
in DISTINCT or GROUP BY SQL clauses.

Minor change examples

Here are common minor changes:

• Adding a new DB field.
• Creating a new DB table.

Major change examples

Here are common major changes:

• Removing a DB field
• Removing a DB table.
• Altering a column name.
• Decreasing the size of a VARCHAR field.
• Converting a field from a String to a CLOB, where the field is has many records or is used in
DISTINCT or GROUP BY SQL clauses.

Now you can ascribe meaningful versions to your module’s data schemas.

153.4 Upgrading Data Schemas in Development

As you develop modules, you might need to iterate through several database schema changes.
Before you release newmodule versions with your finalized schema changes, you must create a
formal data upgrade process. Until then, you can use the Build Auto Upgrade feature to test schema
changes on the fly.

1686

Note: In Liferay Portal 6.x Service Builder portlets, the build.auto.upgrade property in
service.properties applies Liferay Service schema changes upon rebuilding services and
redeploying the portlets. As of 7.0, this property is deprecated.

The Build Auto Upgrade feature is now in a global property schema.module.build.auto.upgrade

in the file [Liferay_Home]/portal-developer.properties.

Setting the global property schema.module.build.auto.upgrade to true applies module schema
changes for redeployedmodules whose service build numbers have incremented. The build.number
property in the module’s service.properties file indicates the service build number. Build Auto
Upgrade executes schema changes without massaging existing data. It leaves data empty for
created columns, drops data from deleted and renamed columns, and orphans data from deleted
and renamed tables.

Although Build Auto Upgrade updates databases quickly and automatically, it doesn’t guarantee
a proper data upgrade–you implement that via data upgrade processes. Build Auto Upgrade is for
development purposes only.

WARNING: DO NOT USE the Build Auto Upgrade feature in production. Liferay DXP DOES
NOT support Build Auto Upgrade in production. Build Auto Upgrade is for development purposes
only. Enabling it in production can result in data loss and improper data upgrade. In production
environments, leave the property schema.module.build.auto.upgrade in portal-developer.properties

set to false.

By default, schema.module.build.auto.upgrade is set to false. On any module’s first deployment,
the module’s tables are generated regardless of the schema.module.build.auto.upgrade value.

The following table summarizes Build Auto Upgrade’s handling of schema changes:

Schema Change Result

Add column Create a new empty column.
Rename column Drop the existing column and delete all its

data. Create a new empty column.
Delete column Drop the existing column and delete all its

data.
Create or rename a table in Liferay DXP’s built-in
data source.

Orphan the existing table and all its data.
Create the new table.

Great! Now you know how to use the Build Auto Upgrade developer feature.

Related Topics

Creating Data Upgrade Process for Modules

1687

CHAPTER 154

BACK-END FRAMEWORKS

Back-end frameworks are analogous to supporting actors and actresses in show business. They fill
out the stories in films we know and love. As actors bring richness and life to their films, Liferay’s
powerful back-end frameworks bring essential services and deliver terrific performances of their
own. Here are some of the frameworks:

• Device Recognition
• Portlet Providers
• Data Scopes
• Message Bus

These frameworks and more deliver smashing performances and are stars in their own right.

1689

CHAPTER 155

PORTLET PROVIDERS

Some apps perform the same operations on different entity types. For example, the Asset Publisher
lets users browse, add, preview, and view various entities as assets including documents, web
content, blogs, and more. The entities vary, while the operations and surrounding business logic
stay the same. Apps such as the Asset Publisher rely on the Portlet Providers framework to fetch
portlets to operate on the entities. In this way, the framework lets you focus on entity operations
and frees you from concern about portlets that carry out those operations. This tutorial shows you
how to

• Create and register Portlet Providers

• Retrieve portlets from the Portlet Providers

155.1 Creating PortletProviders

PortletProviders are Component classes associated with an entity type. They have methods that
return portlet IDs and portlet URLs. Once you’ve registered a PortletProvider, you can invoke
the PortletProviderUtil class to retrieve the portlet ID or portlet URL from the corresponding
PortletProvider.

Examine the WikiPortletProvider class:

@Component(

immediate = true,

property = {

"model.class.name=com.liferay.wiki.model.WikiPage",

"service.ranking:Integer=100"

},

service = {EditPortletProvider.class, ViewPortletProvider.class}

)

public class WikiPortletProvider

extends BasePortletProvider

implements EditPortletProvider, ViewPortletProvider {

@Override

public String getPortletName() {

return WikiPortletKeys.WIKI;

}

1691

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/PortletProvider.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/PortletProviderUtil.html
https://docs.liferay.com/dxp/portal/7.1.0-ga1/modules/apps/wiki/wiki-web/src/main/java/com/liferay/wiki/web/internal/portlet/WikiPortletProvider.java#L27-L44

}

WikiPortletProvider extends BasePortletProvider, inheriting its getPortletURLmethods. It must,
however, implement PortletProvider’s getPortletNamemethod, which returns the portlet’s name
WikiPortletKeys.WIKI.

Note: If you’re creating a PortletProvider for one of Liferay’s portlets, make your getPortletName
method returns the portlet name from that portlet’s *PortletKeys class if it has such a class.

WikiPortletProvider’s @Component annotation specifies these elements and properties:

• immediate = true activates the component immediately upon installation.
• "model.class.name=com.liferay.wiki.model.WikiPage" specifies the entity type the portlet op-
erates on.

• "service.ranking:Integer=100" sets the component’s rank to 100, prioritizing it above all
PortletProviders that specify the same model.class.name value but have a lower rank.

• service = {EditPortletProvider.class, ViewPortletProvider.class} reflects the subinterface
PortletProvider classes this class implements.

Here’s how to create your own PortletProvider:

1. Create an OSGi module.

2. Create a PortletProvider class in your module. Use the recommended class naming conven-
tion:

[Entity] + [Action] + PortletProvider

Example:

LanguageEntryViewPortletProvider

3. Extend BasePortletProvider if you want to use its getPortletURLmethod implementations.

4. Implement one or more PortletProvider subinterfaces that match your action(s):

• BrowsePortletProvider

• EditPortletProvider

• ManagePortletProvider

• PreviewPortletProvider

• ViewPortletProvider

5. Make the class an OSGi Component by adding an annotation like this one:

@Component(

immediate = true,

property = {"model.class.name=CLASS_NAME"},

service = {INTERFACE_1.class, ...}

)

1692

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BasePortletProvider.html
https://docs.liferay.com/ce/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/PortletProvider.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BrowsePortletProvider.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/EditPortletProvider.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/ManagePortletProvider.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/PreviewPortletProvider.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/ViewPortletProvider.html

The immediate = true element specifies that the component should be activated immediately
upon installation.

Assign the property model.class.name class name of the entity the portlet operates on
by replacing CLASS_NAME with your entity’s fully qualified class name. Here’s an example
model.class.name property:

"model.class.name=com.liferay.wiki.model.WikiPage"

Assign the service element to the PortletProvider subinterface(s) you’re implementing (e.g.,
ViewPortletProvider.class, BrowsePortletProvider). Replace INTERFACE_1.class, ... with a list
of the subinterface(s) you’re implementing.

6. If you’re overriding an existing PortletProvider, outrank it with your own custom
PortletProvider by specifying a service.ranking:Integer property with a higher integer
ranking.

property= {"service.ranking:Integer=10"}

7. Implement the provider methods you want. Make sure you implement PortletProvider’s
getPortletNamemethod. If youdidn’t extend BasePortletProvider, implement PortletProvider’s
getPortletURLmethods too.

8. Deploy your module.

Now your PortletProvider is available to return the ID and URL of the portlet that provides the
desired behaviors. Using PortletProviderUtil to fetch the portlet IDs and URLs is next.

155.2 Retrieving Portlets for Desired Behaviors

The PortletProviderUtil class facilitates fetching portlets to execute actions on entities. You can
request the ID or URL of a portlet that performs the entity action you want.

The Portlet Provider framework’s PortletProvider.Action Enums define these action types:

• ADD

• BROWSE

• EDIT

• MANAGE

• PREVIEW

• VIEW

The action type and entity type are key parameters in fetching a portlet’s ID or URL.

1693

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/PortletProvider.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BasePortletProvider.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/PortletProviderUtil.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/PortletProvider.Action.html

Fetching a Portlet ID

The Portlet Provider framework’s PortletProviderUtil class facilitates fetching an ID of a portlet
for handling an entity operation. For example, this call gets the ID of a portlet for viewing Recycle
Bin entries:

String portletId = PortletProviderUtil.getPortletId(

"com.liferay.portlet.trash.model.TrashEntry",

PortletProvider.Action.VIEW);

PortletProvider.Action.VIEW is the operation and com.liferay.portlet.trash.model.TrashEntry

is the entity type.
Another example is how the Asset Publisher uses the Portlet Provider framework to add a

previewed asset to a page—it adds the asset to a portlet and adds that portlet to the page. The Asset
Publisher uses the liferay-asset:asset_display tag library tag whose asset_display/preview.jsp

shows an Add button for adding the portlet. If the previewed asset is a Blogs entry, for example,
the framework returns a blogs portlet ID or URL for adding the portlet to the current page. Here’s
the relevant code from the asset_display/preview.jsp:

Map<String, Object> data = new HashMap<String, Object>();

<!-- populate the data map -->

String portletId = PortletProviderUtil.getPortletId(assetEntry.getClassName(), PortletProvider.Action.ADD);

data.put("portlet-id", portletId);

<!-- add more to the data map -->

%>

<c:if test="<%= PortletPermissionUtil.contains(permissionChecker, layout, portletId, ActionKeys.ADD_TO_PAGE) %>">

<aui:button cssClass="add-button-preview" data="<%= data %>" value="add" />

</c:if>

The code above invokes PortletProviderUtil.getPortletId(assetEntry.getClassName(),

PortletProvider.Action.ADD) to get the ID of a portlet that adds and displays the asset of the
underlying entity class.

The JSP puts the portlet ID into the datamap.

data.put("portlet-id", portletId);

Then it passes the datamap to a new Add button that adds the portlet to the page.

<aui:button cssClass="add-button-preview" data="<%= data %>" value="add" />

Fetching a portlet URL is just as easy.

Fetching a Portlet URL

PortletProviderUtil’s getPortletURL methods return a javax.portlet.PortletURL based on an
HttpServletRequest or PortletRequest. They also let you specify a Group.

For example, when the Asset Publisher is configured in Manual mode, the user can use an Asset
Browser to select asset entries. The asset-publisher-webmodule’s configuration/asset_entries.jsp
file uses PortletProviderUtil’s getPortletURLmethod (at the end of the code below) to generate a
corresponding Asset Browser URL.

1694

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/PortletProviderUtil.html
https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/asset/asset-taglib/src/main/resources/META-INF/resources/asset_display/preview.jsp#L75-L91
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/PortletProviderUtil.html
https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/asset/asset-publisher-web/src/main/resources/META-INF/resources/configuration/asset_entries.jsp#L125

List<AssetRendererFactory<?>> assetRendererFactories =

ListUtil.sort(

AssetRendererFactoryRegistryUtil.getAssetRendererFactories(

company.getCompanyId()),

new AssetRendererFactoryTypeNameComparator(locale));

for (AssetRendererFactory<?> curRendererFactory : assetRendererFactories) {

long curGroupId = groupId;

if (!curRendererFactory.isSelectable()) {

continue;

}

PortletURL assetBrowserURL = PortletProviderUtil.getPortletURL(

request, curRendererFactory.getClassName(),

PortletProvider.Action.BROWSE);

Now you can unleash an arsenal of PortletProviders to use in your apps!

155.3 Related Topics

Portlets
Embedding Portlets in Themes
Customizing Liferay Services

1695

CHAPTER 156

DATA SCOPES

Apps can restrict their data to specific scopes. Scopes provide a context for the application’s data.
Global: One data set throughout a portal instance.
Site: Separate data sets for each Site it’s added to.
Page: Separate data sets for each page it’s added to.
For example, a Site-scoped app can display its data across a single Site. For a detailed explanation

of scopes, see the user guide article Widget Scope. To give your applications scope, you must
manually add support for it. This tutorial shows you how.

156.1 Scoping Your Entities

In your service layer, your entities must have a companyId attribute of type long to enable scoping by
portal instance and a groupId attribute of type long to enable scoping by Site. Using Service Builder
is the simplest way to do this. The Service Builder Persistence and Business Logic with Service
Builder tutorials show you how.

156.2 Enabling Scoping

To enable scoping in your app, set the property "com.liferay.portlet.scopeable=true" in your portlet
class’s @Component annotation. For example, the Web Content Display Portlet’s portlet class sets this
component property:

@Component(

immediate = true,

property = {

...

"com.liferay.portlet.scopeable=true",

...,

},

service = Portlet.class

)

public class JournalContentPortlet extends MVCPortlet {...

That’s it! Next, you’ll access your app’s scope in your code.

1697

https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/journal/journal-content-web/src/main/java/com/liferay/journal/content/web/internal/portlet/JournalContentPortlet.java

156.3 Accessing Your App's Scope

Users can typically set an app’s scope to a page, a Site, or the entire portal. To handle your app’s
data, you must access it in its current scope. Your app’s scope is available in these ways:

1. Via the scopeGroupId variable that is injected in your JSPs that use the <liferay-

theme:defineObjects /> tag. This variable contains your app’s current scope. For example,
the Liferay Bookmarks app’s view.jsp uses its scopeGroupId to retrieve the bookmarks and
total number of bookmarks in the current scope:

...

total = BookmarksEntryServiceUtil.getGroupEntriesCount(scopeGroupId, groupEntriesUserId);

bookmarksSearchContainer.setTotal(total);

bookmarksSearchContainer.setResults(BookmarksEntryServiceUtil.getGroupEntries(scopeGroupId, groupEntriesUserId, bookmarksSearchContainer.getStart(), bookmarksSearchContainer.getEnd()));

...

2. By calling the getScopeGroupId() method on the request’s ThemeDisplay instance. This
method returns your app’s current scope. For example, the Liferay Blogs app’s
EditEntryMVCActionCommand class does this in its subscribe and unsubscribemethods:

protected void subscribe(ActionRequest actionRequest) throws Exception {

ThemeDisplay themeDisplay = (ThemeDisplay)actionRequest.getAttribute(

WebKeys.THEME_DISPLAY);

_blogsEntryService.subscribe(themeDisplay.getScopeGroupId());

}

protected void unsubscribe(ActionRequest actionRequest) throws Exception {

ThemeDisplay themeDisplay = (ThemeDisplay)actionRequest.getAttribute(

WebKeys.THEME_DISPLAY);

_blogsEntryService.unsubscribe(themeDisplay.getScopeGroupId());

}

If you know your app always needs the portal instance ID, use themeDisplay.getCompanyId().

3. By calling the getScopeGroupId()method on a ServiceContext object. The tutorial Understand-
ing ServiceContext provides an example and details. If you know your app always needs the
portal instance ID, use the ServiceContext object’s getCompanyId()method.

Awesome! Now you know how to get your app’s scope. Next, you’ll learn about a special use
case: getting the Site scope for entities that belong to a different app.

156.4 Accessing the Site Scope Across Apps

There may be times when you must access a different app’s Site-scoped data from your app that
is scoped to a page or the portal. For example, web content articles can be created in the page,
Site, or portal scope. Structures and Templates for such articles, however, exist only in the Site
scope. The above techniques return the app’s scope, which might not be the Site scope. What a
pickle! Never fear, the ThemeDisplaymethod getSiteGroupId() is here! This method always gets the
Site scope, no matter your app’s current scope. For example, theWeb Content app’s edit_feed.jsp
uses this method to get the Site ID needed to retrieve Structures:

1698

https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/bookmarks/bookmarks-web/src/main/resources/META-INF/resources/bookmarks/view.jsp#L122-L125
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/theme/ThemeDisplay.html
https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/blogs/blogs-web/src/main/java/com/liferay/blogs/web/internal/portlet/action/EditEntryMVCActionCommand.java#L371-L383
https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/journal/journal-web/src/main/resources/META-INF/resources/edit_feed.jsp#L40

...

ddmStructure = DDMStructureLocalServiceUtil.fetchStructure(themeDisplay.getSiteGroupId(),

PortalUtil.getClassNameId(JournalArticle.class), ddmStructureKey, true);

...

Great! Now you know how to scope your apps, access their scope, and even get the Site scope
of entities that belong to other apps.

156.5 Related Topics

Widget Scope
Service Builder
Service Builder Persistence
Business Logic with Service Builder

1699

CHAPTER 157

MESSAGE BUS

If you ever need to do some data processing outside the scope of the web’s request/response, look
no further than the Message Bus. It’s conceptually similar to Java Messaging Service (JMS) Topics,
but sacrifices transactional, reliable delivery capabilities, making it much lighter-weight. Liferay
DXP uses Message Bus all over the place:

• Auditing
• Search engine integration
• Email subscriptions
• Monitoring
• Document Library processing
• Background tasks
• Cluster-wide request execution
• Clustered cache replication

You can use it too! Here are some of Message Bus’s most important features:

• publish/subscribe messaging
• request queuing and throttling
• flow control
• multi-thread message processing

There are also tools, such as the Java SE’s JConsole, that can monitor Message Bus activities.
The Message Bus topics are covered in these tutorials:

• Messaging Destinations
• Message Listeners
• Sending Messages

Since all messages are sent to and received at destinations, messaging destinations is worth
exploring first.

1701

Figure 157.1: JConsole shows statistics on Message Bus messages sent, messages pending, andmore.

157.1 Messaging Destinations

In Message Bus, you send messages to destinations. A destination is a named logical (not physical)
location. Sender classes send messages to destinations, while listener classes wait to receive
messages at the destinations. In this way, the sender and recipient don’t need to know each
other—they’re loosely coupled. Here are the messaging destination topics this tutorial covers:

• Destination configuration
• Creating a destination
• Messaging event listeners

It’s time to configure a destination.

Destination Configuration

Each destination has a name and type and can have several other attributes. The destination type
determines whether there’s a message queue, the kinds of threads involved with a destination, and
the message delivery behavior to expect at the destination.

1702

Here are the primary destination types:

• Parallel Destination

– Messages sent here are queued.

– Multipleworker threads froma threadpool deliver eachmessage to a registeredmessage
listener. There’s one worker thread per message per message listener.

• Serial Destination

– Messages sent here are queued.

– Worker threads from a thread pool deliver the messages to each registered message
listener, one worker thread per message.

• Synchronous Destination

– Messages sent here are directly delivered to message listeners.

– The thread sending the message here delivers the message to all message listeners also.

Liferay has preconfigured destinations for various purposes. The DestinationNames class
defines String constants for each of them. For example, DestinationNames.HOT_DEPLOY (value is
"liferay/hot_deploy") is for deployment event messages. Since destinations are tuned for specific
purposes, don’t modify them.

Destinations are based on DestinationConfiguration instances. The configuration specifies the
destination type, name, and these destination- related attributes:

MaximumQueue Size: limits the number of queued messages for the destination.
RejectedExecutionHandler: A com.liferay.portal.kernel.concurrent.RejectedExecutionHandler

instance can take action (e.g., log warnings) regarding rejected messages when the destination
queue is full.

Workers Core Size: initial number of worker threads for processing messages.
Workers Max Size: limits the number of worker threads for processing messages.
The DestinationConfiguration class provides these static methods for creating the various types

of configurations.

• createParallelDestinationConfiguration(String destinationName)

• createSerialDestinationConfiguration(String destinationName)

• createSynchronousDestinationConfiguration(String destinationName)

You can also use the DestinationConfiguration constructor to create a configuration for any
destination type, even your own.

1703

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationNames.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationConfiguration.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/concurrent/RejectedExecutionHandler.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/concurrent/RejectedExecutionHandler.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationConfiguration.html#DestinationConfiguration-java.lang.String-java.lang.String-

Creating a Destination

Message Bus destinations are based on destination configurations and registered as OSGi services.
Message Bus detects the destination services and manages their associated destinations.

Here are the general steps for creating a destination. The example configurator class that
follows demonstrates these steps.

1. Create a destination configuration using one of DestinationConfiguration’s static create*meth-
ods or its constructor. Set any attributes that apply to the destinations you’ll create with it.

2. Create a destinationby invoking the DestinationFactorymethod createDestination(DestinationConfiguration),
passing in the destination configuration you created in the previous step.

3. Register the destination as an OSGi service by invoking the BundleContext method
registerService, passing in the following parameters.

• Destination class Destination.class
• Your Destination object
• A Dictionary of properties defining the destination, including the destination.name

4. Manage the destination object and service registration resources using a collection, such
as a Map<String, ServiceRegistration<Destination>>. Keeping references to these resources
is helpful for when you’re ready to unregister and destroy them. The deactivatemethod in
the example below demonstrates this.

Here’s an example messaging configurator component that creates and registers a parallel
destination and manages its resources:

@Component (

immediate = true,

service = MyMessagingConfigurator .class

)

public class MyMessagingConfigurator {

@Activate

protected void activate(BundleContext bundleContext) {

_bundleContext = bundleContext;

// Create a DestinationConfiguration for parallel destinations.

DestinationConfiguration destinationConfiguration =

new DestinationConfiguration(

DestinationConfiguration.DESTINATION_TYPE_PARALLEL,

"myDestinationName");

// Set the DestinationConfiguration's max queue size and

// rejected execution handler.

destinationConfiguration.setMaximumQueueSize(_MAXIMUM_QUEUE_SIZE);

RejectedExecutionHandler rejectedExecutionHandler =

new CallerRunsPolicy() {

@Override

public void rejectedExecution(

Runnable runnable, ThreadPoolExecutor threadPoolExecutor) {

1704

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationFactory.html
https://osgi.org/javadoc/r4v43/core/org/osgi/framework/BundleContext.html
https://osgi.org/javadoc/r4v43/core/org/osgi/framework/BundleContext.html

if (_log.isWarnEnabled()) {

_log.warn(

"The current thread will handle the request " +

"because the graph walker's task queue is at " +

"its maximum capacity");

}

super.rejectedExecution(runnable, threadPoolExecutor);

}

};

destinationConfiguration.setRejectedExecutionHandler(

rejectedExecutionHandler);

// Create the destination

Destination destination = _destinationFactory.createDestination(

destinationConfiguration);

// Add the destination to the OSGi service registry

Dictionary<String, Object> properties = new HashMapDictionary<>();

properties.put("destination.name", destination.getName());

ServiceRegistration<Destination> serviceRegistration =

_bundleContext.registerService(

Destination.class, destination, properties);

// Track references to the destination service registrations

_serviceRegistrations.put(destination.getName(),

serviceRegistration);

}

@Deactivate

protected void deactivate() {

// Unregister and destroy destinations this component unregistered

for (ServiceRegistration<Destination> serviceRegistration :

_serviceRegistrations.values()) {

Destination destination = _bundleContext.getService(

serviceRegistration.getReference());

serviceRegistration.unregister();

destination.destroy();

}

_serviceRegistrations.clear();

}

@Reference

private DestinationFactory _destinationFactory;

private final Map<String, ServiceRegistration<Destination>>

_serviceRegistrations = new HashMap<>();

}

On activation, the example configurator above does these things:

1. Creates a DestinationConfiguration for parallel destinations.

1705

2. Sets the DestinationConfiguration’s max queue size and a rejected execution handler.

3. Uses the DestinationFactory (the one bound to the _destinationFactory field) to create the
destination.

4. Adds the destination to the OSGi service registry

5. Adds the destination service registration to a map for managing them.

Once the destination is registered, Message Bus detects its service and manages the destina-
tion. On deactivating the example configurator, its deactivatemethod unregisters the destination
services and destroys the destinations.

As an added bonus to creating destinations, you can create classes that listen for new destina-
tions and new message listeners. You might want to create such listeners to log the deployment of
new message bus endpoints.

Messaging Event Listeners

There are Message Bus framework interfaces that let you listen for new destinations and message
listeners.

Listening for new Destinations

The Message Bus notifies Message Bus Event Listeners when destinations are added and removed.
To register these listeners, publish a MessageBusEventListener instance to the OSGi service registry
(e.g., via an @Component annotation).

@Component(

immediate = true,

service = MessageBusEventListener.class

)

public class MyMessageBusEventListener implements MessageBusEventListener {

void destinationAdded(Destination destination) {

...

}

void destinationDestroyed(Destination destination) {

...

}

}

Listening for new message listeners is easy too.

Listening for new Message Listeners

The Message Bus notifies DestinationEventListener instances when message listeners are either
registered or unregistered to destinations. To register a listener to a destination, publish
a DestinationEventListener service to the OSGi service registry, making sure to specify the
destination’s destination.name property.

@Component(

immediate = true,

property = {"destination.name=myCustom/Destination"},

service = DestinationEventListener.class

)

1706

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/MessageBusEventListener.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationEventListener.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationEventListener.html

public class MyDestinationEventListener implements DestinationEventListener {

void messageListenerRegistered(String destinationName,

MessageListener messageListener) {

...

}

void messageListenerUnregistered(String destinationName,

MessageListener messageListener) {

...

}

}

And that’s how you listen for new destinations and message listeners.
Now you understand the different destination types, how to create and register destinations,

and how to manage destination resources. Once you deploy your destination, registered message
listeners receive messages sent to it.

Related Topics

Message Listeners
Sending Messages

157.2 Message Listeners

If you’re interested in messages sent to a destination, you need to “listen” for them. That is, you
must create and register a message listener for the destination.

To create a message listener, implement the MessageListener interface and override its
receive(Message)method to process messages your way.

public void receive(Message message) {

// Process messages your way

}

Here are the ways to register your listener with Message Bus:

• Automatic Registration as a Component: Publish the listener to the OSGi registry as a
Declarative Services Component that specifies a destination. Message Bus automatically
wires the listener to the destination.

• Registering via MessageBus: Obtain a reference to the Message Bus and use it directly to
register the listener to a destination.

• Registering directly to a Destination: Obtain a reference to a specific destination and use it
directly to register the listener with that destination.

Note: The DestinationNames class defines String constants for Liferay DXP’s preconfigured
destinations.

The Declarative Services component module provides the easiest way to register a message
listener.

1707

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/MessageListener.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationNames.html

Automatic Registration as a Component

You can specify a message listener in the Declarative Services (DS) @Component annotation:

@Component (

immediate = true,

property = {"destination.name=myCustom/Destination"},

service = MessageListener.class

)

public class MyMessageListener implements MessageListener {

...

public void receive(Message message) {

// Handle the message

}

}

The Message Bus listens for MessageListener service components like this one to publish them-
selves to the OSGi service registry. The attribute immediate = true tells the OSGi framework to
activate the component as soon as its dependencies resolve. Message Bus wires each registered
listener to the destination its destination.name property specifies. If the destination is not yet
registered, Message Bus queues the listener until the destination registers.

Registration as a component is the preferred way to register message listeners to destinations.

Registering via MessageBus

You can use the MessageBus instance directly to register message listeners to destinations. Youmight
want to do this if, for example, you want to create some special proxy wrappers. Here’s a registrator
that demonstrates registering a listener this way:

@Component (

immediate = true,

service = MyMessageListenerRegistrator.class

)

public class MyMessageListenerRegistrator {

...

@Activate

protected void activate() {

_messageListener = new MessageListener() {

public void receive(Message message) {

// Handle the message

}

};

_messageBus.registerMessageListener("myDestinationName",

_messageListener);

}

@Deactivate

protected void deactivate() {

_messageBus.unregisterMessageListener("myDestinationName",

_messageListener);

}

@Reference

private MessageBus _messageBus;

private MessageListener _messageListener;

}

1708

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/MessageBus.html

The _messageBus field’s @Reference annotation binds it to the MessageBus instance. The activate

method creates the listener and uses theMessage Bus to register the listener to a destination named
"myDestination". When this registrator component is destroyed, the deactivatemethod unregisters
the listener.

Registering directly to the Destination

You can use a Destination instance to register a listener to that destination. You might want to do
this if, for example, you want to create some special proxy wrappers. Here’s a registrator that
demonstrates registering a listener this way:

@Component (

immediate = true,

service = MyMessageListenerRegistrator.class

)

public class MyMessageListenerRegistrator {

...

@Activate

protected void activate() {

_messageListener = new MessageListener() {

public void receive(Message message) {

// Handle the message

}

};

_destination.register(_messageListener);

}

@Deactivate

protected void deactivate() {

_destination.unregister(_messageListener);

}

@Reference(target = "(destination.name=someDestination)")

private Destination _destination;

private MessageListener _messageListener;

}

The _destination field’s @Reference annotation binds it to a destination named "someDestination".
The activatemethod creates the listener and registers it to the destination. When this registrator
component is destroyed, the deactivatemethod unregisters the listener.

Now you know how to create and register message listeners for receiving messages sent to the
destinations.

Related Topics

Messaging Destinations
Sending Messages

157.3 Sending Messages

1709

Message Bus lets you send messages to destinations that have any number of listening classes. As a
message sender you don’t need to know the message recipients. Instead, you focus on creating
message content (payload) and sending messages to destinations.

You can also send messages in a synchronous or asynchronous manner. The synchronous
option waits for a response that the message was received or that it timed out. The asynchronous
option gives you the “fire and forget” behavior; send the message and continue processing without
waiting for a response.

Here are the message sending topics:

• Creating a message
• Sending a message (the way you want)
• Sending messages across a cluster

Start by creating a message.

Creating a Message

Here’s how to create a message:

1. Call the Message constructor.

Message message = new Message();

2. Populate the message with a String or Object payload

• String payload: message.setPayload("Message Bus is great!")

• Object payload: message.put("firstName", "Joe")

3. To receive responses at a particular location, set both of these attributes

• Response destination name: setResponseDestinationName(String)

• Response ID: setResponseId(String)

Your new message is ready to send.

Sending a Message

Here are the ways to send a message:

• Directly using the MessageBus

• Asynchronously using a SingleDestinationMessageSender

• Using a SynchronousMessageSender

First, let’s consider using Message Bus directly.

1710

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/Message.html

Directly Using the Message Bus

This method involves obtaining a MessageBus instance and invoking it to send messages. Here’s an
example of directly using Message Bus to send a message.

@Component(

immediate = true,

service = SomeServiceImpl.class

)

public class SomeServiceImpl {

...

public void sendSomeMessage() {

Message message = new Message();

message.put("myId", 12345);

message.put("someAttribute", "abcdef");

_messageBus.sendMessage("myDestinationName", message);

}

@Reference

private MessageBus _messageBus;

}

To send messages asynchronously, consider using SingleDestinationMessageSender.

Using SingleDestinationMessageSender

The SingleDestinationMessageSender class wraps the Message Bus to sendmessages asynchronously.
This class demonstrates using a SingleDestinationMessageSender:

@Component(

immediate = true,

service = SomeServiceImpl.class

)

public class SomeServiceImpl {

...

public void sendSomeMessage() {

Message message = new Message();

message.put("myId", 12345);

message.put("someValue", "abcdef");

SingleDestinationMessageSender messageSender =

_messageSenderFactory.createSingleDestinationMessageSender("myDestinationName");

messageSender.send(message);

}

@Reference

private SingleDestinationMessageSenderFactory _messageSenderFactory;

}

The _messageSenderFactory field’s @Referencewires it to a SingleDestinationMessageSenderFactory

instance. The method sendSomeMessage creates a message, uses the _messageSenderFactory to create
a SingleDestinationMessageSender for the specified destination, and sends the message through the
sender.

1711

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/MessageBus.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/sender/SingleDestinationMessageSender.html

Using a SynchronousMessageSender

A SynchronousMessageSender instance sends a message to the Message Bus and blocks until receiving
a response or the response times out. A SynchronousMessageSender has these operating modes:

• DEFAULT: Delivers the message in a separate thread and also provides timeouts, in case the
message is not delivered properly.

• DIRECT: Delivers the message in the same thread of execution and blocks until it receives a
response.

Here’s an example of using SynchronousMessageSender in DEFAULTmode.

@Component(

immediate = true,

service = SomeServiceImpl.class

)

public class SomeServiceImpl {

...

public void sendSomeMessage() {

Message message = new Message();

message.put("myId", 12345);

message.put("someAttribute", "abcdef");

SingleDestinationSynchronousMessageSender messageSender =

_messageSenderFactory.createSingleDestinationSynchronousMessageSender(

"myDestinationName", SynchronousMessageSender.Mode.DEFAULT);

messageSender.send(message);

}

@Reference

private SingleDestinationMessageSenderFactory _messageSenderFactory;

}

And those are the ways to send messages. Next, if you’re in a cluster and want messages sent to
a destination across all nodes, you must register a bridge message listener to that destination.

Sending Messages Across the Cluster

To ensure a message sent to a destination is received by all cluster nodes, you must register a
ClusterBridgeMessageListener at that destination. This bridges the local destination to the cluster.

Here’s a message listener registrator that bridges a destination for distributing messages to all
the cluster nodes.

@Component(

immediate = true,

service = MyMessageListenerRegistrator.class

)

public class MyMessageListenerRegistrator {

...

@Activate

protected void activate() {

_clusterBridgeMessageListener = new ClusterBridgeMessageListener();

_clusterBridgeMessageListener.setPriority(Priority.LEVEL_5)

_destination.register(_clusterBridgeMessageListener);

1712

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/sender/SynchronousMessageSender.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/sender/SynchronousMessageSender.Mode.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/cluster/messaging/ClusterBridgeMessageListener.html

}

@Deactivate

protected void deactivate() {

_destination.unregister(_clusterBridgeMessageListener);

}

@Reference(target = "(destination.name=liferay/live_users)")

private Destination _destination;

private MessageListener _clusterBridgeMessageListener;

}

The destination named "liferay/live_users" is bound to the _destination field. The activate

method creates a ClusterBridgeMessageListener, sets its priority queue, and registers it to the desti-
nation. Messages sent to the destination are distributed across the cluster’s JVMs.

The com.liferay.portal.kernel.cluster.Priority class has ten levels (Level_1 through Level_10,
with Level 10being themost important). Each level is a priority queue for sendingmessages through
the cluster. This is similar in concept to thread priorities: Thread.MIN_PRIORITY, Thread.MAX_PRIORITY,
and Thread.NORM_PRIORITY.

That concludes the tour on sending messages. You’ve learned how to create messages, send
messages synchronously and asynchronously, and send messages to a destination in a clustered
environment.

Related Topics

Messaging Destinations
Message Listeners

1713

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/cluster/Priority.html

Part II

Developer Reference

CHAPTER 158

DEVELOPMENT REFERENCE

Here you’ll find reference documentation for Liferay DXP, Liferay Screens, Liferay Faces, and
technologies related to you as a third-party developer.

The different types of reference docs you’ll find in this section are as follows:

• Descriptions of Java and JavaScript APIs, CSS, tags and tag libraries, and XML DTDs
• Write ups on the latest Screenlets for Liferay Screens
• Breaking changes
• Cheat sheets and tips on

– Plugin anatomy
– Design patterns
– Tools
– Adapting to new APIs

Liferay’s reference docs are at your fingertips.

158.1 Java APIs

Here you’ll find Javadoc for Liferay DXP and Liferay DXP apps.

7.0 Java APIs

This table links you to the 7.0 API modules. Their root location is here. (Opens NewWindow) The
reference doc Zip is available here. (Opens NewWindow)

Core:
com.liferay.portal.kernel (portal-kernel): (Opens NewWindow) for developing applications

on Liferay DXP
com.liferay.util.bridges (util-bridges): (Opens NewWindow) for using various non-proprietary

computing languages, frameworks, and utilities on Liferay DXP
com.liferay.util.java (util-java): (OpensNewWindow) for using various Java-related frameworks

and utilities on Liferay DXP

1717

com.liferay.util.slf4j (util-slf4j): (Opens NewWindow) for using the Simple Logging Facade for
Java (SLF4J)

com.liferay.portal.impl (portal-impl): (Opens NewWindow) refer to this only if you are an
advanced Liferay developer that needs a deeper understanding of 7.0’s implementation in order to
contribute to it

Liferay DXP App Java APIs

This table links you to Liferay DXP application APIs. Their root location is here.

App | Packages | Announcements: | com.liferay.announcements.constants | Apio Architect: |
com.liferay.apio.architect.api | Application List: | com.liferay.application.list.api com.liferay.appli-
cation.list.taglib | Asset: | com.liferay.asset.api com.liferay.asset.categories.navigation.api com.lif-
eray.asset.category.property.api com.liferay.asset.display.api com.liferay.asset.display.page.api
com.liferay.asset.display.page.item.selector.api com.liferay.asset.entry.rel.api com.liferay.as-
set.publisher.api com.liferay.asset.tag.stats.api com.liferay.asset.taglib com.liferay.asset.tags.api
com.liferay.asset.tags.navigation.api com.liferay.asset.test.util | Blogs: | com.liferay.blogs.api
com.liferay.blogs.demo.data.creator.api com.liferay.blogs.item.selector.api com.liferay.blogs.re-
cent.bloggers.api com.liferay.blogs.test.util | Calendar: | com.liferay.calendar.api | Captcha:
| com.liferay.captcha.api com.liferay.captcha.taglib | Comment: | com.liferay.comment.api
com.liferay.comment.demo.data.creator.api com.liferay.comment.taglib | Configuration Admin: |
com.liferay.configuration.admin.api | Contacts: | com.liferay.contacts.api | Document Library:
| com.liferay.document.library.api com.liferay.document.library.content.api com.liferay.docu-
ment.library.demo.data.creator.api com.liferay.document.library.file.rank.api com.liferay.doc-
ument.library.repository.authorization.api com.liferay.document.library.repository.cmis.api
com.liferay.document.library.repository.external.api com.liferay.document.library.sync.api
com.liferay.document.library.test.util | Dynamic Data Lists: | com.liferay.dynamic.data.lists.api |
Dynamic Data Mapping: | com.liferay.dynamic.data.mapping.api com.liferay.dynamic.data.map-
ping.taglib com.liferay.dynamic.data.mapping.test.util | Export Import: | com.liferay.exportim-
port.api com.liferay.exportimport.changeset.api com.liferay.exportimport.changeset.taglib
com.liferay.exportimport.test.util | Flags: | com.liferay.flags.api com.liferay.flags.taglib |
Fragment: | com.liferay.fragment.api com.liferay.fragment.demo.data.creator.api com.liferay.frag-
ment.item.selector.api | Friendly URL: | com.liferay.friendly.url.api | Frontend Editor: | com.lif-
eray.frontend.editor.api | Frontend Image Editor: | com.liferay.frontend.image.editor.capability |
Frontend JS: | com.liferay.frontend.js.loader.modules.extender.npm |HTML Preview: | com.lif-
eray.html.preview.api | Invitation: | com.liferay.invitation.invite.members.api | Item Selector: |
com.liferay.item.selector.api com.liferay.item.selector.criteria.api com.liferay.item.selector.taglib
| Journal: | com.liferay.journal.api com.liferay.journal.content.asset.addon.entry.api com.lif-
eray.journal.demo.data.creator.api com.liferay.journal.item.selector.api com.liferay.journal.taglib
com.liferay.journal.test.util | Layout: | com.liferay.layout.api com.liferay.layout.admin.api
com.liferay.layout.item.selector.api com.liferay.layout.page.template.api com.liferay.layout.proto-
type.api com.liferay.layout.set.prototype.api com.liferay.layout.taglib |Map: | com.liferay.map.api
com.liferay.map.taglib | Mentions: | com.liferay.mentions.api | Message Boards: | com.lif-
eray.message.boards.api com.liferay.message.boards.demo.data.creator.api com.liferay.mes-
sage.boards.test.util |Mobile Device Rules: | com.liferay.mobile.device.rules.api | Organizations:
| com.liferay.organizations.api com.liferay.organizations.item.selector.api | Password Policies
Admin: | com.liferay.password.policies.admin.constants | Polls: | com.liferay.polls.api | Portal: |
com.liferay.portal.custom.jsp.bag.api com.liferay.portal.dao.orm.custom.sql.api com.liferay.por-

1718

https://docs.liferay.com/dxp/apps
https://docs.liferay.com/portal/7.1-latest/apps/announcements-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/apio-architect-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/application-list-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/asset-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/blogs-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/calendar-3.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/captcha-1.0.0/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/comment-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/configuration-admin-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/contacts-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/document-library-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/dynamic-data-lists-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/dynamic-data-mapping-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/export-import-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/flags-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/fragment-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/friendly-url-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/frontend-editor-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/frontend-image-editor-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/frontend-js-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/html-preview-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/invitation-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/item-selector-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/journal-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/layout-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/map-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/mentions-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/message-boards-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/mobile-device-rules-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/organizations-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/password-policies-admin-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/password-policies-admin-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/polls-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-1.0.1/javadocs/

tal.instance.lifecycle.api com.liferay.portal.jmx.api com.liferay.portal.output.stream.container.api
com.liferay.portal.spring.extender.api com.liferay.portal.upgrade.api | Portal Background
Task: | com.liferay.portal.background.task.api | Portal Cache: | com.liferay.portal.cache.api
com.liferay.portal.cache.ehcache.spi com.liferay.portal.cache.test.util | Portal Configuration: |
com.liferay.portal.configuration.test.util com.liferay.portal.configuration.upgrade.api | Portal
Instances: | com.liferay.portal.instances.service | Portal Lock: | com.liferay.portal.lock.api |
Portal Reports Engine: | com.liferay.portal.reports.engine.api | Portal Remote: | com.liferay.por-
tal.remote.soap.extender | Portal Rules: | com.liferay.portal.rules.engine | Portal Scripting:
| com.liferay.portal.scripting | Portal Search: | com.liferay.portal.search.api com.liferay.por-
tal.search.engine.adapter.api com.liferay.portal.search.spi com.liferay.portal.search.test.util
com.liferay.portal.search.web.api | Portal Security: | com.liferay.portal.security.exportimport.api
com.liferay.portal.security.ldap.api com.liferay.portal.security.permission.api com.liferay.por-
tal.security.service.access.policy.api com.liferay.portal.security.service.access.quota.api |
Portal Security Audit: | com.liferay.portal.security.audit.api com.liferay.portal.security.au-
dit.event.generators.api com.liferay.portal.security.audit.storage.api | Portal Security SSO:
| com.liferay.portal.security.sso.cas.api com.liferay.portal.security.sso.facebook.connect.api
com.liferay.portal.security.sso.google.api com.liferay.portal.security.sso.ntlm.api com.lif-
eray.portal.security.sso.openid.api com.liferay.portal.security.sso.openid.connect.api com.lif-
eray.portal.security.sso.opensso.api com.liferay.portal.security.sso.token.api | Portal Settings: |
com.liferay.portal.settings.api | Portal Template: | com.liferay.portal.template.soy.api | Portal
URL Builder: | com.liferay.portal.url.builder | Portal Workflow: | com.liferay.portal.work-
flow.api com.liferay.portal.workflow.kaleo.api com.liferay.portal.workflow.kaleo.definition.api
com.liferay.portal.workflow.kaleo.runtime.api | Portlet Display Template: | com.liferay.port-
let.display.template.api | Product Navigation: | com.liferay.product.navigation.control.menu.api
com.liferay.product.navigation.product.menu.api com.liferay.product.navigation.simulation.api
com.liferay.product.navigation.taglib | Ratings: | com.liferay.ratings.page.ratings.constants |
Reading Time: | com.liferay.reading.time.api com.liferay.reading.time.taglib | Roles: | com.lif-
eray.roles.admin.api com.liferay.roles.admin.demo.data.creator.api com.liferay.roles.item.se-
lector.api | RSS: | com.liferay.rss.api com.liferay.rss.taglib | Site: | com.liferay.site.api com.lif-
eray.site.demo.data.creator.api com.liferay.site.item.selector.api com.liferay.site.taglib | Social:
| com.liferay.social.activities.api com.liferay.social.activities.taglib com.liferay.social.activ-
ity.api com.liferay.social.activity.test.util com.liferay.social.bookmarks.api com.liferay.so-
cial.bookmarks.taglib com.liferay.social.user.statistics.api | Staging: | com.liferay.staging.api
com.liferay.staging.taglib | Subscription: | com.liferay.subscription.api | Text Localizer: | com.lif-
eray.text.localizer.address.api com.liferay.text.localizer.taglib | Trash: | com.liferay.trash.api
com.liferay.trash.taglib com.liferay.trash.test.util | Upload: | com.liferay.upload | User Associated
Data: | com.liferay.user.associated.data.api com.liferay.user.associated.data.test.util | User Groups
Admin: | com.liferay.user.groups.admin.api com.liferay.user.groups.admin.item.selector.api |
Users Admin: | com.liferay.users.admin.api com.liferay.users.admin.demo.data.creator.api com.lif-
eray.users.admin.item.selector.api com.liferay.users.admin.test.util |Wiki: | com.liferay.wiki.api |
XStream: | com.liferay.xstream.configurator |

For help finding module attributes and configuring dependencies, see Configuring Dependen-
cies.

158.2 Taglibs

1719

https://docs.liferay.com/portal/7.1-latest/apps/portal-background-task-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-background-task-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-cache-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-configuration-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-instances-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-instances-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-lock-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-reports-engine-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-remote-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-rules-engine-1.0.1/javadocs/com/liferay/portal/rules/engine/package-summary.html
https://docs.liferay.com/portal/7.1-latest/apps/portal-scripting-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-search-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-security-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-security-audit-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-security-sso-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-settings-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-template-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-url-builder-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-url-builder-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portal-workflow-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/portlet-display-template-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/product-navigation-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/ratings-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/reading-time-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/roles-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/rss-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/site-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/social-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/staging-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/subscription-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/text-localizer-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/trash-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/upload-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/user-associated-data-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/user-associated-data-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/user-groups-admin-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/user-groups-admin-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/users-admin-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/wiki-1.0.1/javadocs/
https://docs.liferay.com/portal/7.1-latest/apps/xstream-1.0.1/javadocs/

Here you’ll find tag library documentation for the Liferay DXP, Liferay DXP apps, and Liferay Faces.

7.0 Taglibs

Util Taglibs (Opens NewWindow)
JSTL core
aui
liferay-portlet
portlet
portlet_1_0
liferay-security
liferay-theme
liferay-ui
liferay-util

Liferay DXP App Taglibs

Adaptive Media:
liferay-application-list (Opens NewWindow)
Application List:
liferay-application-list (Opens NewWindow)
Assets:
liferay-asset (Opens NewWindow)
liferay-trash (Opens NewWindow)
Forms:
liferay-ddm (Opens NewWindow)
Foundation:
liferay-map (Opens NewWindow)
liferay-frontend (Opens NewWindow)
Import, Export, & Staging:
liferay-staging (Opens NewWindow)
Item Selector:
liferay-item-selector (Opens NewWindow)
Product Navigation:
liferay-product-navigation (Opens NewWindow)
Sites:
liferay-layout (Opens NewWindow)
liferay-site-navigation (Opens NewWindow)
Social:
liferay-flags (Opens NewWindow)
For help finding module attributes and configuring dependencies, see Configuring Dependen-

cies.

Faces Taglibs

Faces 3.2 Taglibs: the latest version of Liferay Faces JSF tag docs in View Declaration Language
(VDL) format. VDL docs for all versions of Liferay Faces are available here.

1720

https://docs.liferay.com/faces/3.2/vdldoc/
http://docs.liferay.com/faces/

158.3 JavaScript and CSS

Lexicon: A system for building applications in and outside of Liferay DXP, designed to be fluid and
extensible, as well as provide a consistent and documented API.

Clay: The web implementation of Liferay’s Lexicon Experience Language.
Bootstrap: The base CSS library onto which Lexicon is built. Liferay DXP uses Bootstrap

natively and all of its CSS classes and JavaScript features are available within portlets, templates,
and themes.

AlloyUI: Liferay includes AlloyUI and all of its JavaScript APIs are available within portlets,
templates and themes.

Descriptor Definitions

DTDs: Describes the XML files used in configuring Liferay DXP apps, 7.0 plugins, and Liferay DXP
7.1.

1721

https://lexicondesign.io/
https://clayui.com/
https://lexicondesign.io/
http://getbootstrap.com/
http://alloyui.com
https://docs.liferay.com/dxp/portal/7.1-latest/definitions/

CHAPTER 159

BACK-END

As you create portlets and customizations, it helps to reference backend APIs, descriptors, and
third-party artifacts. These articles provide such references.

159.1 Classes Moved from portal-service.jar

To leverage the benefits of modularization in 7.0, many classes from former Liferay Portal 6 JAR
file portal-service.jar have been moved into application and framework API modules. The table
below provides details about these classes and the modules they’ve moved to. Package changes
and each module’s symbolic name (artifact ID) are listed, to facilitate configuring dependencies.

Classes Moved from portal-service to modules
This information was generated based on comparing classes in liferay-portal-src-6.2-ee-sp20 to

classes in liferay-dxp-src-7.1.10-ga1.
Class
Package
Module Symbolic Name (Artifact ID)
ActionHandler
Old: com.liferay.portal.kernel.mobile.device.rulegroup.action New: com.liferay.mobile.de-

vice.rules.action
com.liferay.mobile.device.rules.api
ActionHandlerManager
Old: com.liferay.portal.kernel.mobile.device.rulegroup New: com.liferay.mobile.de-

vice.rules.action
com.liferay.mobile.device.rules.api
ActionHandlerManagerUtil
Old: com.liferay.portal.kernel.mobile.device.rulegroup New: com.liferay.mobile.de-

vice.rules.action
com.liferay.mobile.device.rules.api
ActionTypeException
Old: com.liferay.portlet.mobiledevicerules New: com.liferay.mobile.device.rules.exception
com.liferay.mobile.device.rules.api
AlternateKeywordQueryHitsProcessor

1723

Old: com.liferay.portal.kernel.search New: com.liferay.portal.search.internal.hits
com.liferay.portal.search
ArticleContentException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleContentSizeException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleCreateDateComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleDisplayDateComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleDisplayDateException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleExpirationDateException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleIDComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleIdException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleModifiedDateComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleResourcePKComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleReviewDateComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleReviewDateException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleSmallImageNameException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleSmallImageSizeException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleTitleComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleTitleException

1724

Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleVersionComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleVersionException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
AssetPublisherUtil
Old: com.liferay.portlet.assetpublisher.util New: com.liferay.asset.publisher.web.util
com.liferay.asset.publisher.web
AuditMessageProcessor
Old: com.liferay.portal.kernel.audit New: com.liferay.portal.security.audit
com.liferay.portal.security.audit.api
AutoDeleteFileInputStream
Old: com.liferay.portal.kernel.io New: com.liferay.petra.io
com.liferay.petra.io
AverageStatistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.inter-

nal.statistics
com.liferay.portal.monitoring
BackgroundTaskLocalService
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskLocalServiceUtil
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskLocalServiceWrapper
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskModel
Old: com.liferay.portal.model New: com.liferay.portal.background.task.model
com.liferay.portal.background.task.api
BackgroundTaskPersistence
Old: com.liferay.portal.service.persistence New: com.liferay.portal.background.task.ser-

vice.persistence
com.liferay.portal.background.task.api
BackgroundTaskService
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskServiceUtil
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskServiceWrapper
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskSoap
Old: com.liferay.portal.model New: com.liferay.portal.background.task.model

1725

com.liferay.portal.background.task.api
BackgroundTaskUtil
Old: com.liferay.portal.service.persistence New: com.liferay.portal.background.task.ser-

vice.persistence
com.liferay.portal.background.task.api
BackgroundTaskWrapper
Old: com.liferay.portal.model New: com.liferay.portal.background.task.model
com.liferay.portal.background.task.api
BannedUserException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
BaseCmisRepository
Old: com.liferay.portal.kernel.repository.cmis New: com.liferay.document.library.reposi-

tory.cmis
com.liferay.document.library.repository.cmis.api
BaseCmisSearchQueryBuilder
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
BaseDDLExporter
Old: com.liferay.portlet.dynamicdatalists.util New: com.liferay.dynamic.data.lists.internal.ex-

porter
com.liferay.dynamic.data.lists.service
BaseDDMDisplay
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.map-

ping.util
com.liferay.dynamic.data.mapping.api
BaseFieldRenderer
Old: com.liferay.portlet.dynamicdatamapping.storage New: com.liferay.dynamic.data.map-

ping.storage
com.liferay.dynamic.data.mapping.api
BaseScriptingExecutor
Old: com.liferay.portal.kernel.scripting New: com.liferay.portal.scripting
com.liferay.portal.scripting.api
BaseStatistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.inter-

nal.statistics
com.liferay.portal.monitoring
BaseStorageAdapter
Old: com.liferay.portlet.dynamicdatamapping.storage New: com.liferay.dynamic.data.map-

ping.storage
com.liferay.dynamic.data.mapping.api
BlockingPortalCache
Old: com.liferay.portal.kernel.cache New: com.liferay.portal.cache
com.liferay.portal.cache.api
BlogsEntry
Old: com.liferay.portlet.blogs.model New: com.liferay.blogs.model
com.liferay.blogs.api

1726

BlogsEntryFinder
Old: com.liferay.portlet.blogs.service.persistence New: com.liferay.blogs.service.persistence
com.liferay.blogs.api
BlogsEntryLocalService
Old: com.liferay.portlet.blogs.service New: com.liferay.blogs.service
com.liferay.blogs.api
BlogsEntryLocalServiceUtil
Old: com.liferay.portlet.blogs.service New: com.liferay.blogs.service
com.liferay.blogs.api
BlogsEntryLocalServiceWrapper
Old: com.liferay.portlet.blogs.service New: com.liferay.blogs.service
com.liferay.blogs.api
BlogsEntryModel
Old: com.liferay.portlet.blogs.model New: com.liferay.blogs.model
com.liferay.blogs.api
BlogsEntryPersistence
Old: com.liferay.portlet.blogs.service.persistence New: com.liferay.blogs.service.persistence
com.liferay.blogs.api
BlogsEntryService
Old: com.liferay.portlet.blogs.service New: com.liferay.blogs.service
com.liferay.blogs.api
BlogsEntryServiceUtil
Old: com.liferay.portlet.blogs.service New: com.liferay.blogs.service
com.liferay.blogs.api
BlogsEntryServiceWrapper
Old: com.liferay.portlet.blogs.service New: com.liferay.blogs.service
com.liferay.blogs.api
BlogsEntrySoap
Old: com.liferay.portlet.blogs.model New: com.liferay.blogs.model
com.liferay.blogs.api
BlogsEntryUtil
Old: com.liferay.portlet.blogs.service.persistence New: com.liferay.blogs.service.persistence
com.liferay.blogs.api
BlogsEntryWrapper
Old: com.liferay.portlet.blogs.model New: com.liferay.blogs.model
com.liferay.blogs.api
BlogsStatsUser
Old: com.liferay.portlet.blogs.model New: com.liferay.blogs.model
com.liferay.blogs.api
BlogsStatsUserFinder
Old: com.liferay.portlet.blogs.service.persistence New: com.liferay.blogs.service.persistence
com.liferay.blogs.api
BlogsStatsUserLocalService
Old: com.liferay.portlet.blogs.service New: com.liferay.blogs.service
com.liferay.blogs.api
BlogsStatsUserLocalServiceUtil
Old: com.liferay.portlet.blogs.service New: com.liferay.blogs.service
com.liferay.blogs.api

1727

BlogsStatsUserLocalServiceWrapper
Old: com.liferay.portlet.blogs.service New: com.liferay.blogs.service
com.liferay.blogs.api
BlogsStatsUserModel
Old: com.liferay.portlet.blogs.model New: com.liferay.blogs.model
com.liferay.blogs.api
BlogsStatsUserPersistence
Old: com.liferay.portlet.blogs.service.persistence New: com.liferay.blogs.service.persistence
com.liferay.blogs.api
BlogsStatsUserSoap
Old: com.liferay.portlet.blogs.model New: com.liferay.blogs.model
com.liferay.blogs.api
BlogsStatsUserUtil
Old: com.liferay.portlet.blogs.service.persistence New: com.liferay.blogs.service.persistence
com.liferay.blogs.api
BlogsStatsUserWrapper
Old: com.liferay.portlet.blogs.model New: com.liferay.blogs.model
com.liferay.blogs.api
BookmarksEntry
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksEntryFinder
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.ser-

vice.persistence
com.liferay.bookmarks.api
BookmarksEntryLocalService
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntryLocalServiceUtil
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntryLocalServiceWrapper
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntryModel
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksEntryPersistence
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.ser-

vice.persistence
com.liferay.bookmarks.api
BookmarksEntryService
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntryServiceUtil
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntryServiceWrapper

1728

Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntrySoap
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksEntryUtil
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.ser-

vice.persistence
com.liferay.bookmarks.api
BookmarksEntryWrapper
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksFolder
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksFolderConstants
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksFolderFinder
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.ser-

vice.persistence
com.liferay.bookmarks.api
BookmarksFolderLocalService
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderLocalServiceUtil
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderLocalServiceWrapper
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderModel
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksFolderPersistence
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.ser-

vice.persistence
com.liferay.bookmarks.api
BookmarksFolderService
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderServiceUtil
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderServiceWrapper
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderSoap

1729

Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksFolderUtil
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.ser-

vice.persistence
com.liferay.bookmarks.api
BookmarksFolderWrapper
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
ByteArrayReportResultContainer
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
CMISBetweenExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISConjunction
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISContainsExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISContainsNotExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISContainsValueExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISCriterion
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISDisjunction
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISFullTextConjunction
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISInFolderExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api

1730

CMISInTreeExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISJunction
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISNotExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISParameterValueUtil
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISRepositoryHandler
Old: com.liferay.portal.kernel.repository.cmis New: com.liferay.document.library.reposi-

tory.cmis
com.liferay.document.library.repository.cmis.api
CMISRepositoryUtil
Old: com.liferay.portal.kernel.repository.cmis New: com.liferay.document.library.reposi-

tory.cmis.internal
com.liferay.document.library.repository.cmis.impl
CMISSearchQueryBuilder
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISSimpleExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CMISSimpleExpressionOperator
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.li-

brary.repository.cmis.search
com.liferay.document.library.repository.cmis.api
CharPool
Old: com.liferay.portal.kernel.util New: com.liferay.petra.string
com.liferay.petra.string
CharsetDecoderUtil
Old: com.liferay.portal.kernel.nio.charset New: com.liferay.petra.nio
com.liferay.petra.nio
CharsetEncoderUtil
Old: com.liferay.portal.kernel.nio.charset New: com.liferay.petra.nio
com.liferay.petra.nio
ClassLoaderPool
Old: com.liferay.portal.kernel.util New: com.liferay.petra.lang
com.liferay.petra.lang

1731

ClassResolverUtil
Old: com.liferay.portal.kernel.util New: com.liferay.petra.lang
com.liferay.petra.lang
CollatedSpellCheckHitsProcessor
Old: com.liferay.portal.kernel.search New: com.liferay.portal.search.internal.hits
com.liferay.portal.search
CompoundSessionIdServletRequest
Old: com.liferay.portal.kernel.servlet.filters.compoundsessionid New: com.liferay.portal.com-

pound.session.id.internal
com.liferay.portal.compound.session.id
Condition
Old: com.liferay.portlet.dynamicdatamapping.storage.query New: com.liferay.adaptive.me-

dia.image.media.query
com.liferay.adaptive.media.image.api
ContactConverterKeys
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap
com.liferay.portal.security.ldap.api
ContentException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
ContentNameException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
ContextClassloaderReportDesignRetriever
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
CountStatistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.inter-

nal.statistics
com.liferay.portal.monitoring
DDL
Old: com.liferay.portlet.dynamicdatalists.util New: com.liferay.dynamic.data.lists.util
com.liferay.dynamic.data.lists.api
DDLExporter
Old: com.liferay.portlet.dynamicdatalists.util New: com.liferay.dynamic.data.lists.exporter
com.liferay.dynamic.data.lists.api
DDLExporterFactory
Old: com.liferay.portlet.dynamicdatalists.util New: com.liferay.dynamic.data.lists.exporter
com.liferay.dynamic.data.lists.api
DDLRecord
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordConstants
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordFinder

1732

Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dy-
namic.data.lists.service.persistence

com.liferay.dynamic.data.lists.api
DDLRecordLocalService
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordLocalServiceUtil
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordModel
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordPersistence
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dy-

namic.data.lists.service.persistence
com.liferay.dynamic.data.lists.api
DDLRecordService
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordServiceUtil
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordServiceWrapper
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSet
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordSetConstants
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordSetFinder
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dy-

namic.data.lists.service.persistence
com.liferay.dynamic.data.lists.api
DDLRecordSetLocalService
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetLocalServiceUtil
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetModel

1733

Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordSetPersistence
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dy-

namic.data.lists.service.persistence
com.liferay.dynamic.data.lists.api
DDLRecordSetService
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetServiceUtil
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetServiceWrapper
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetSoap
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordSetUtil
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dy-

namic.data.lists.service.persistence
com.liferay.dynamic.data.lists.api
DDLRecordSetWrapper
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordSoap
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordUtil
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dy-

namic.data.lists.service.persistence
com.liferay.dynamic.data.lists.api
DDLRecordVersion
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordVersionModel
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordVersionPersistence
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dy-

namic.data.lists.service.persistence
com.liferay.dynamic.data.lists.api
DDLRecordVersionSoap
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordVersionUtil
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dy-

namic.data.lists.service.persistence

1734

com.liferay.dynamic.data.lists.api
DDLRecordVersionVersionComparator
Old: com.liferay.portlet.dynamicdatalists.util.comparatorNew: com.liferay.dynamic.data.lists.util.com-

parator
com.liferay.dynamic.data.lists.api
DDLRecordVersionWrapper
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordWrapper
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDM
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.map-

ping.util
com.liferay.dynamic.data.mapping.api
DDMContent
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMContentLocalService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMContentLocalServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMContentLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMContentModel
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMContentPersistence
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMContentSoap
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMContentUtil
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMContentWrapper

1735

Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-
ping.model

com.liferay.dynamic.data.mapping.api
DDMDisplay
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.map-

ping.util
com.liferay.dynamic.data.mapping.api
DDMDisplayRegistry
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.map-

ping.util
com.liferay.dynamic.data.mapping.api
DDMIndexer
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.map-

ping.util
com.liferay.dynamic.data.mapping.api
DDMStorageLink
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMStorageLinkLocalService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStorageLinkLocalServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStorageLinkLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStorageLinkModel
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMStorageLinkPersistence
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStorageLinkSoap
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMStorageLinkUtil
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStorageLinkWrapper

1736

Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-
ping.model

com.liferay.dynamic.data.mapping.api
DDMStructureConstants
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMStructureFinder
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStructureLinkLocalService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStructureLinkLocalServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStructureLinkLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStructureLinkModel
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMStructureLinkPersistence
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStructureLinkSoap
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMStructureLinkUtil
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStructureLinkWrapper
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMStructureLocalService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStructureLocalServiceUtil

1737

Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-
ping.service

com.liferay.dynamic.data.mapping.api
DDMStructureLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStructureModel
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMStructurePersistence
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStructureService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStructureServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStructureServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMStructureSoap
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMStructureUtil
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStructureWrapper
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMTemplateConstants
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMTemplateFinder
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMTemplateHelper

1738

Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.map-
ping.util

com.liferay.dynamic.data.mapping.api
DDMTemplateLocalService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateLocalServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateModel
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMTemplatePersistence
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMTemplateService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.map-

ping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateSoap
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMTemplateUtil
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dy-

namic.data.mapping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMTemplateWrapper
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.map-

ping.model
com.liferay.dynamic.data.mapping.api
DDMUtil

1739

Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.map-
ping.util

com.liferay.dynamic.data.mapping.api
DDMXML
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.map-

ping.util
com.liferay.dynamic.data.mapping.api
DLContent
Old: com.liferay.portlet.documentlibrary.model New: com.liferay.document.library.con-

tent.model
com.liferay.document.library.content.api
DLContentDataBlobModel
Old: com.liferay.portlet.documentlibrary.model New: com.liferay.document.library.con-

tent.model
com.liferay.document.library.content.api
DLContentLocalService
Old: com.liferay.portlet.documentlibrary.service New: com.liferay.document.library.con-

tent.service
com.liferay.document.library.content.api
DLContentLocalServiceUtil
Old: com.liferay.portlet.documentlibrary.service New: com.liferay.document.library.con-

tent.service
com.liferay.document.library.content.api
DLContentLocalServiceWrapper
Old: com.liferay.portlet.documentlibrary.service New: com.liferay.document.library.con-

tent.service
com.liferay.document.library.content.api
DLContentModel
Old: com.liferay.portlet.documentlibrary.model New: com.liferay.document.library.con-

tent.model
com.liferay.document.library.content.api
DLContentPersistence
Old: com.liferay.portlet.documentlibrary.service.persistence New: com.liferay.document.li-

brary.content.service.persistence
com.liferay.document.library.content.api
DLContentSoap
Old: com.liferay.portlet.documentlibrary.model New: com.liferay.document.library.con-

tent.model
com.liferay.document.library.content.api
DLContentUtil
Old: com.liferay.portlet.documentlibrary.service.persistence New: com.liferay.document.li-

brary.content.service.persistence
com.liferay.document.library.content.api
DLContentVersionComparator
Old: com.liferay.portlet.documentlibrary.util.comparator New: com.liferay.document.li-

brary.content.service.util.comparator
com.liferay.document.library.content.service
DLContentWrapper

1740

Old: com.liferay.portlet.documentlibrary.model New: com.liferay.document.library.con-
tent.model

com.liferay.document.library.content.api
DLFileRank
Old: com.liferay.portlet.documentlibrary.modelNew: com.liferay.document.library.file.rank.model
com.liferay.document.library.file.rank.api
DLFileRankFinder
Old: com.liferay.portlet.documentlibrary.service.persistence New: com.liferay.document.li-

brary.file.rank.service.persistence
com.liferay.document.library.file.rank.api
DLFileRankLocalService
Old: com.liferay.portlet.documentlibrary.serviceNew: com.liferay.document.library.file.rank.ser-

vice
com.liferay.document.library.file.rank.api
DLFileRankLocalServiceUtil
Old: com.liferay.portlet.documentlibrary.serviceNew: com.liferay.document.library.file.rank.ser-

vice
com.liferay.document.library.file.rank.api
DLFileRankLocalServiceWrapper
Old: com.liferay.portlet.documentlibrary.serviceNew: com.liferay.document.library.file.rank.ser-

vice
com.liferay.document.library.file.rank.api
DLFileRankModel
Old: com.liferay.portlet.documentlibrary.modelNew: com.liferay.document.library.file.rank.model
com.liferay.document.library.file.rank.api
DLFileRankPersistence
Old: com.liferay.portlet.documentlibrary.service.persistence New: com.liferay.document.li-

brary.file.rank.service.persistence
com.liferay.document.library.file.rank.api
DLFileRankSoap
Old: com.liferay.portlet.documentlibrary.modelNew: com.liferay.document.library.file.rank.model
com.liferay.document.library.file.rank.api
DLFileRankUtil
Old: com.liferay.portlet.documentlibrary.service.persistence New: com.liferay.document.li-

brary.file.rank.service.persistence
com.liferay.document.library.file.rank.api
DLFileRankWrapper
Old: com.liferay.portlet.documentlibrary.modelNew: com.liferay.document.library.file.rank.model
com.liferay.document.library.file.rank.api
DLSyncConstants
Old: com.liferay.portlet.documentlibrary.model New: com.liferay.document.library.sync.con-

stants
com.liferay.document.library.sync.api
DLSyncEvent
Old: com.liferay.portlet.documentlibrary.modelNew: com.liferay.document.library.sync.model
com.liferay.document.library.sync.api
DLSyncEventLocalService

1741

Old: com.liferay.portlet.documentlibrary.service New: com.liferay.document.library.sync.ser-
vice

com.liferay.document.library.sync.api
DLSyncEventLocalServiceUtil
Old: com.liferay.portlet.documentlibrary.service New: com.liferay.document.library.sync.ser-

vice
com.liferay.document.library.sync.api
DLSyncEventLocalServiceWrapper
Old: com.liferay.portlet.documentlibrary.service New: com.liferay.document.library.sync.ser-

vice
com.liferay.document.library.sync.api
DLSyncEventModel
Old: com.liferay.portlet.documentlibrary.modelNew: com.liferay.document.library.sync.model
com.liferay.document.library.sync.api
DLSyncEventPersistence
Old: com.liferay.portlet.documentlibrary.service.persistence New: com.liferay.document.li-

brary.sync.service.persistence
com.liferay.document.library.sync.api
DLSyncEventSoap
Old: com.liferay.portlet.documentlibrary.modelNew: com.liferay.document.library.sync.model
com.liferay.document.library.sync.api
DLSyncEventUtil
Old: com.liferay.portlet.documentlibrary.service.persistence New: com.liferay.document.li-

brary.sync.service.persistence
com.liferay.document.library.sync.api
DLSyncEventWrapper
Old: com.liferay.portlet.documentlibrary.modelNew: com.liferay.document.library.sync.model
com.liferay.document.library.sync.api
Database
Old: com.liferay.portal.kernel.util New: com.liferay.portal.tools.db.upgrade.client
com.liferay.portal.tools.db.upgrade.client
DefaultAttributesTransformer
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.internal
com.liferay.portal.security.ldap.impl
DefaultMessageBus
Old: com.liferay.portal.kernel.messaging New: com.liferay.portal.messaging.internal
com.liferay.portal.messaging
DefaultSingleDestinationMessageSender
Old: com.liferay.portal.kernel.messaging.sender New: com.liferay.portal.messaging.inter-

nal.sender
com.liferay.portal.messaging
DefaultSingleDestinationSynchronousMessageSender
Old: com.liferay.portal.kernel.messaging.sender New: com.liferay.portal.messaging.inter-

nal.sender
com.liferay.portal.messaging
DefaultSynchronousMessageSender
Old: com.liferay.portal.kernel.messaging.sender New: com.liferay.portal.messaging.inter-

nal.sender

1742

com.liferay.portal.messaging
DeleteFileFinalizeAction
Old: com.liferay.portal.kernel.memory New: com.liferay.petra.memory
com.liferay.petra.memory
DestinationStatisticsManager
Old: com.liferay.portal.kernel.messaging.jmx New: com.liferay.portal.messaging.internal.jmx
com.liferay.portal.messaging
DestinationStatisticsManagerMBean
Old: com.liferay.portal.kernel.messaging.jmx New: com.liferay.portal.messaging.internal.jmx
com.liferay.portal.messaging
DirectSynchronousMessageSender
Old: com.liferay.portal.kernel.messaging.sender New: com.liferay.portal.messaging.inter-

nal.sender
com.liferay.portal.messaging
DummyContext
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap.dummy
com.liferay.portal.security.ldap.api
DummyDirContext
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap.dummy
com.liferay.portal.security.ldap.api
DummyFinalizeAction
Old: com.liferay.portal.kernel.memory New: com.liferay.petra.memory
com.liferay.petra.memory
DuplicateArticleIdException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
DuplicateFeedIdException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
DuplicateLDAPServerNameException
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap
com.liferay.portal.security.ldap.api
DuplicateNodeNameException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
DuplicatePageException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
DuplicateRuleGroupInstanceException
Old: com.liferay.portlet.mobiledevicerules New: com.liferay.mobile.device.rules.exception
com.liferay.mobile.device.rules.api
DuplicateVoteException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
EntryDisplayDateComparator
Old: com.liferay.portlet.blogs.util.comparator New: com.liferay.blogs.util.comparator
com.liferay.blogs.api
EntryModifiedDateComparator

1743

Old: com.liferay.portlet.bookmarks.util.comparator New: com.liferay.bookmarks.util.com-
parator

com.liferay.bookmarks.api
EntryNameComparator
Old: com.liferay.portlet.bookmarks.util.comparator New: com.liferay.bookmarks.util.com-

parator
com.liferay.bookmarks.api
EntryPriorityComparator
Old: com.liferay.portlet.bookmarks.util.comparator New: com.liferay.bookmarks.util.com-

parator
com.liferay.bookmarks.api
EntrySmallImageNameException
Old: com.liferay.portlet.blogs New: com.liferay.blogs.exception
com.liferay.blogs.api
EntryURLComparator
Old: com.liferay.portlet.bookmarks.util.comparator New: com.liferay.bookmarks.util.com-

parator
com.liferay.bookmarks.api
EntryVisitsComparator
Old: com.liferay.portlet.bookmarks.util.comparator New: com.liferay.bookmarks.util.com-

parator
com.liferay.bookmarks.api
EqualityWeakReference
Old: com.liferay.portal.kernel.memory New: com.liferay.petra.memory
com.liferay.petra.memory
Fact
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
FeedContentFieldException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
FeedIdException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
FeedNameException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
FeedTargetLayoutFriendlyUrlException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
FeedTargetPortletIdException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
FieldConstants
Old: com.liferay.portlet.dynamicdatamapping.storage New: com.liferay.dynamic.data.map-

ping.storage
com.liferay.dynamic.data.mapping.api
FieldRenderer

1744

Old: com.liferay.portlet.dynamicdatamapping.storage New: com.liferay.dynamic.data.map-
ping.storage

com.liferay.dynamic.data.mapping.api
FieldRendererFactory
Old: com.liferay.portlet.dynamicdatamapping.storage New: com.liferay.dynamic.data.map-

ping.storage
com.liferay.dynamic.data.mapping.api
Fields
Old: com.liferay.portlet.dynamicdatamapping.storage New: com.liferay.dynamic.data.map-

ping.storage
com.liferay.dynamic.data.mapping.api
FinalizeAction
Old: com.liferay.portal.kernel.memory New: com.liferay.petra.memory
com.liferay.petra.memory
FinalizeManager
Old: com.liferay.portal.kernel.memory New: com.liferay.petra.memory
com.liferay.petra.memory
FlagsEntryService
Old: com.liferay.portlet.flags.service New: com.liferay.flags.service
com.liferay.flags.api
FlagsEntryServiceUtil
Old: com.liferay.portlet.flags.service New: com.liferay.flags.service
com.liferay.flags.api
FlagsEntryServiceWrapper
Old: com.liferay.portlet.flags.service New: com.liferay.flags.service
com.liferay.flags.api
FlagsRequest
Old: com.liferay.portlet.flags.messaging New: com.liferay.flags.internal.messaging
com.liferay.flags.service
GroupConverterKeys
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap
com.liferay.portal.security.ldap.api
ImportFilesException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
JournalArticle
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleConstants
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleDisplay
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleFinder
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api

1745

JournalArticleLocalService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleLocalServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticlePersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalArticleResource
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleResourceLocalService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleResourceLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleResourceLocalServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleResourceModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleResourcePersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalArticleResourceSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleResourceUtil
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalArticleResourceWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api

1746

JournalArticleServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleUtil
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalArticleWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalContent
Old: com.liferay.portlet.journalcontent.util New: com.liferay.journal.util
com.liferay.journal.api
JournalContentSearch
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalContentSearchLocalService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalContentSearchLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalContentSearchLocalServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalContentSearchModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalContentSearchPersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalContentSearchSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalContentSearchUtil
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalContentSearchWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api

1747

JournalConverter
Old: com.liferay.portlet.journal.util New: com.liferay.journal.util
com.liferay.journal.api
JournalFeed
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFeedConstants
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFeedFinder
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalFeedLocalService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedLocalServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFeedPersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalFeedService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFeedUtil
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalFeedWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api

1748

JournalFolder
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFolderFinder
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalFolderLocalService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderLocalServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFolderPersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalFolderService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFolderUtil
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persis-

tence
com.liferay.journal.api
JournalFolderWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalSearchConstants
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalStructureConstants
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api

1749

LDAPFilterException
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap.validator
com.liferay.portal.security.ldap.api
LDAPGroup
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.exportimport
com.liferay.portal.security.ldap.api
LDAPServerNameException
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap
com.liferay.portal.security.ldap.api
LDAPToPortalConverter
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.exportimport
com.liferay.portal.security.ldap.api
LDAPUser
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.exportimport
com.liferay.portal.security.ldap.api
LDAPUtil
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap.util
com.liferay.portal.security.ldap.api
LockLocalService
Old: com.liferay.portal.service New: com.liferay.portal.lock.service
com.liferay.portal.lock.api
LockLocalServiceUtil
Old: com.liferay.portal.service New: com.liferay.portal.lock.service
com.liferay.portal.lock.api
LockLocalServiceWrapper
Old: com.liferay.portal.service New: com.liferay.portal.lock.service
com.liferay.portal.lock.api
LockModel
Old: com.liferay.portal.model New: com.liferay.portal.lock.model
com.liferay.portal.lock.api
LockPersistence
Old: com.liferay.portal.service.persistence New: com.liferay.portal.lock.service.persistence
com.liferay.portal.lock.api
LockSoap
Old: com.liferay.portal.model New: com.liferay.portal.lock.model
com.liferay.portal.lock.api
LockUtil
Old: com.liferay.portal.service.persistence New: com.liferay.portal.lock.service.persistence
com.liferay.portal.lock.api
LockWrapper
Old: com.liferay.portal.model New: com.liferay.portal.lock.model
com.liferay.portal.lock.api
LockedThreadException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
MBBan
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api

1750

MBBanLocalService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBBanLocalServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBBanLocalServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBBanModel
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBBanPersistence
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBBanService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBBanServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBBanServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBBanSoap
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBBanUtil
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBBanWrapper
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBCategory
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBCategoryConstants
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.constants
com.liferay.message.boards.api
MBCategoryDisplay
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.web.inter-

nal.display
com.liferay.message.boards.web
MBCategoryFinder
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence

1751

com.liferay.message.boards.api
MBCategoryLocalService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBCategoryLocalServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBCategoryLocalServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBCategoryModel
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBCategoryPersistence
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBCategoryService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBCategoryServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBCategoryServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBCategorySoap
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBCategoryUtil
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBCategoryWrapper
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBDiscussion
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBDiscussionLocalService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBDiscussionLocalServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBDiscussionLocalServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api

1752

MBDiscussionModel
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBDiscussionPersistence
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBDiscussionSoap
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBDiscussionUtil
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBDiscussionWrapper
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBMailingList
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBMailingListLocalService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBMailingListLocalServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBMailingListLocalServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBMailingListModel
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBMailingListPersistence
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBMailingListSoap
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBMailingListUtil
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBMailingListWrapper
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBMessage
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model

1753

com.liferay.message.boards.api
MBMessageConstants
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.constants
com.liferay.message.boards.api
MBMessageDisplay
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBMessageFinder
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBMessageLocalService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBMessageLocalServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBMessageLocalServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBMessageModel
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBMessagePersistence
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBMessageService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBMessageServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBMessageServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBMessageSoap
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBMessageUtil
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBMessageWrapper
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBStatsUser
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model

1754

com.liferay.message.boards.api
MBStatsUserLocalService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBStatsUserLocalServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBStatsUserLocalServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBStatsUserModel
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBStatsUserPersistence
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBStatsUserSoap
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBStatsUserUtil
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBStatsUserWrapper
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBThread
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBThreadConstants
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.constants
com.liferay.message.boards.api
MBThreadFinder
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBThreadFlag
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBThreadFlagLocalService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBThreadFlagLocalServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBThreadFlagLocalServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service

1755

com.liferay.message.boards.api
MBThreadFlagModel
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBThreadFlagPersistence
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBThreadFlagSoap
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBThreadFlagUtil
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBThreadFlagWrapper
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBThreadLocalService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBThreadLocalServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBThreadLocalServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBThreadModel
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBThreadPersistence
Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-

sage.boards.service.persistence
com.liferay.message.boards.api
MBThreadService
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBThreadServiceUtil
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBThreadServiceWrapper
Old: com.liferay.portlet.messageboards.service New: com.liferay.message.boards.service
com.liferay.message.boards.api
MBThreadSoap
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBThreadUtil

1756

Old: com.liferay.portlet.messageboards.service.persistence New: com.liferay.mes-
sage.boards.service.persistence

com.liferay.message.boards.api
MBThreadWrapper
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBTreeWalker
Old: com.liferay.portlet.messageboards.model New: com.liferay.message.boards.model
com.liferay.message.boards.api
MBeanRegistry
Old: com.liferay.portal.kernel.jmx New: com.liferay.portal.jmx
com.liferay.portal.jmx.api
MDRAction
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRActionLocalService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRActionLocalServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRActionLocalServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRActionModel
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRActionPersistence
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.de-

vice.rules.service.persistence
com.liferay.mobile.device.rules.api
MDRActionService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRActionServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRActionServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRActionSoap
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model

1757

com.liferay.mobile.device.rules.api
MDRActionUtil
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.de-

vice.rules.service.persistence
com.liferay.mobile.device.rules.api
MDRActionWrapper
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRPermission
Old: com.liferay.portlet.mobiledevicerules.service.permission New: com.liferay.mobile.de-

vice.rules.web.internal.security.permission.resource
com.liferay.mobile.device.rules.web
MDRRule
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroup
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupFinder
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.de-

vice.rules.service.persistence
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceLocalService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceLocalServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceLocalServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceModel
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupInstancePermission
Old: com.liferay.portlet.mobiledevicerules.service.permission New: com.liferay.mobile.de-

vice.rules.web.internal.security.permission.resource
com.liferay.mobile.device.rules.web
MDRRuleGroupInstancePersistence
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.de-

vice.rules.service.persistence
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice

1758

com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceSoap
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceUtil
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.de-

vice.rules.service.persistence
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceWrapper
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupLocalService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleGroupLocalServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleGroupLocalServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleGroupModel
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupPermission
Old: com.liferay.portlet.mobiledevicerules.service.permission New: com.liferay.mobile.de-

vice.rules.web.internal.security.permission.resource
com.liferay.mobile.device.rules.web
MDRRuleGroupPersistence
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.de-

vice.rules.service.persistence
com.liferay.mobile.device.rules.api
MDRRuleGroupService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleGroupServiceUtil

1759

Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-
vice

com.liferay.mobile.device.rules.api
MDRRuleGroupServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleGroupSoap
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupUtil
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.de-

vice.rules.service.persistence
com.liferay.mobile.device.rules.api
MDRRuleGroupWrapper
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleLocalService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleLocalServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleLocalServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleModel
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRulePersistence
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.de-

vice.rules.service.persistence
com.liferay.mobile.device.rules.api
MDRRuleService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api
MDRRuleServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.ser-

vice
com.liferay.mobile.device.rules.api

1760

MDRRuleSoap
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleUtil
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.de-

vice.rules.service.persistence
com.liferay.mobile.device.rules.api
MDRRuleWrapper
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MailingListEmailAddressException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
MailingListInServerNameException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
MailingListInUserNameException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
MailingListOutEmailAddressException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
MailingListOutServerNameException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
MailingListOutUserNameException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
MemoryReportDesignRetriever
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
MessageBodyException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
MessageBusManager
Old: com.liferay.portal.kernel.messaging.jmx New: com.liferay.portal.messaging.internal.jmx
com.liferay.portal.messaging
MessageBusManagerMBean
Old: com.liferay.portal.kernel.messaging.jmx New: com.liferay.portal.messaging.internal.jmx
com.liferay.portal.messaging
MessageCreateDateComparator
Old: com.liferay.portlet.messageboards.util.comparatorNew: com.liferay.message.boards.util.com-

parator
com.liferay.message.boards.api
MessageSubjectException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
MessageThreadComparator

1761

Old: com.liferay.portlet.messageboards.util.comparatorNew: com.liferay.message.boards.util.com-
parator

com.liferay.message.boards.api
Modifications
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.exportimport
com.liferay.portal.security.ldap.api
NoSuchArticleException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
NoSuchArticleImageException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
NoSuchArticleResourceException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
NoSuchBanException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
NoSuchChoiceException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
NoSuchContentException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
NoSuchContentSearchException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
NoSuchDiscussionException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
NoSuchFeedException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
NoSuchFileRankException
Old: com.liferay.portlet.documentlibrary New: com.liferay.document.library.file.rank.excep-

tion
com.liferay.document.library.file.rank.api
NoSuchMailingListException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
NoSuchNodeException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
NoSuchPageException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
NoSuchPageResourceException

1762

Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
NoSuchQuestionException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
NoSuchRecordException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
NoSuchRecordSetException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
NoSuchRecordVersionException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
NoSuchRuleException
Old: com.liferay.portlet.mobiledevicerules New: com.liferay.mobile.device.rules.exception
com.liferay.mobile.device.rules.api
NoSuchRuleGroupException
Old: com.liferay.portlet.mobiledevicerules New: com.liferay.mobile.device.rules.exception
com.liferay.mobile.device.rules.api
NoSuchRuleGroupInstanceException
Old: com.liferay.portlet.mobiledevicerules New: com.liferay.mobile.device.rules.exception
com.liferay.mobile.device.rules.api
NoSuchStatsUserException
Old: com.liferay.portlet.blogs New: com.liferay.blogs.exception
com.liferay.blogs.api
NoSuchStorageLinkException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
NoSuchStructureLinkException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
NoSuchTemplateException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
NoSuchThreadException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
NoSuchThreadFlagException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
NoSuchVoteException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
NodeNameException

1763

Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
PageContentException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
PageCreateDateComparator
Old: com.liferay.portlet.wiki.util.comparator New: com.liferay.wiki.util.comparator
com.liferay.wiki.api
PageTitleComparator
Old: com.liferay.portlet.wiki.util.comparator New: com.liferay.wiki.util.comparator
com.liferay.wiki.api
PageTitleException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
PageVersionComparator
Old: com.liferay.portlet.wiki.util.comparator New: com.liferay.wiki.util.comparator
com.liferay.wiki.api
PageVersionException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
PollsChoice
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsChoiceLocalService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceLocalServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceLocalServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceModel
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsChoicePersistence
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsChoiceService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceSoap

1764

Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsChoiceUtil
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsChoiceWrapper
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsQuestion
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsQuestionLocalService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionLocalServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionLocalServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionModel
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsQuestionPersistence
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsQuestionService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionSoap
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsQuestionUtil
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsQuestionWrapper
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsVote
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsVoteLocalService

1765

Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteLocalServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteLocalServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteModel
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsVotePersistence
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsVoteService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteSoap
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsVoteUtil
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsVoteWrapper
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PoolAction
Old: com.liferay.portal.kernel.memory New: com.liferay.petra.memory
com.liferay.petra.memory
PortalExecutorFactory
Old: com.liferay.portal.kernel.executor New: com.liferay.portal.executor.internal
com.liferay.portal.executor
PortalToLDAPConverter
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.exportimport
com.liferay.portal.security.ldap.api
PortletDisplayTemplate
Old: com.liferay.portlet.portletdisplaytemplate.util New: com.liferay.portlet.display.template
com.liferay.portlet.display.template.api
PortletDisplayTemplateConstants
Old: com.liferay.portlet.portletdisplaytemplate.util New: com.liferay.portlet.display.tem-

plate.constants
com.liferay.portlet.display.template.api

1766

PortletDisplayTemplateUtil
Old: com.liferay.portlet.portletdisplaytemplate.util New: com.liferay.roles.admin.web.inter-

nal.util
com.liferay.roles.admin.web
PortletDisplayTemplateUtil
Old: com.liferay.portlet.portletdisplaytemplate.util New: com.liferay.roles.admin.web.inter-

nal.util
com.liferay.roles.admin.web
PortletDisplayTemplateUtil
Old: com.liferay.portlet.portletdisplaytemplate.util New: com.liferay.roles.admin.web.inter-

nal.util
com.liferay.roles.admin.web
QueryIndexingHitsProcessor
Old: com.liferay.portal.kernel.search New: com.liferay.portal.search.internal.hits
com.liferay.portal.search
QuerySuggestionHitsProcessor
Old: com.liferay.portal.kernel.search New: com.liferay.portal.search.internal.hits
com.liferay.portal.search
QueryType
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
QuestionChoiceException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
QuestionDescriptionException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
QuestionExpirationDateException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
QuestionExpiredException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
QuestionTitleException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
RecordSetDDMStructureIdException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
RecordSetDuplicateRecordSetKeyException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
RecordSetNameException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
RegistryAwareMBeanServer
Old: com.liferay.portal.kernel.jmx New: com.liferay.portal.jmx.internal
com.liferay.portal.jmx

1767

ReportCompilerRequestMessageListener
Old: com.liferay.portal.kernel.bi.reporting.messaging New: com.liferay.portal.reports.en-

gine.messaging
com.liferay.portal.reports.engine.api
ReportDataSourceType
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportDesignRetriever
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportEngine
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportExportException
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportFormat
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportFormatExporter
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportFormatExporterRegistry
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportGenerationException
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportRequest
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportRequestContext
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportRequestMessageListener
Old: com.liferay.portal.kernel.bi.reporting.messaging New: com.liferay.portal.reports.en-

gine.messaging
com.liferay.portal.reports.engine.api
ReportResultContainer
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
RequestStatistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.inter-

nal.statistics
com.liferay.portal.monitoring
RequiredMessageException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api

1768

RequiredNodeException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
RequiredTemplateException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
RequiredTemplateException
Old: com.liferay.portlet.journal New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
RuleGroupInstancePriorityComparator
Old: com.liferay.portlet.mobiledevicerules.util New: com.liferay.mobile.device.rules.util.com-

parator
com.liferay.mobile.device.rules.api
RuleGroupProcessor
Old: com.liferay.portal.kernel.mobile.device.rulegroup New: com.liferay.mobile.de-

vice.rules.rule
com.liferay.mobile.device.rules.api
RuleGroupProcessorUtil
Old: com.liferay.portal.kernel.mobile.device.rulegroup New: com.liferay.mobile.de-

vice.rules.rule
com.liferay.mobile.device.rules.api
RuleHandler
Old: com.liferay.portal.kernel.mobile.device.rulegroup.rule New: com.liferay.mobile.de-

vice.rules.rule
com.liferay.mobile.device.rules.api
RulesEngine
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
RulesEngineException
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
RulesEngineUtil
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
RulesLanguage
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
RulesResourceRetriever
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
SearchUtil
Old: com.liferay.portal.kernel.search.util New: com.liferay.portal.search.web.internal.util
com.liferay.portal.search.web
ServletContextReportDesignRetriever
Old: com.liferay.portal.kernel.bi.reporting.servlet New: com.liferay.portal.reports.en-

gine.servlet
com.liferay.portal.reports.engine.api

1769

SoftReferencePool
Old: com.liferay.portal.kernel.memory New: com.liferay.petra.memory
com.liferay.petra.memory
SortFactoryImpl
Old: com.liferay.portal.kernel.search New: com.liferay.portal.search.internal
com.liferay.portal.search
SplitThreadException
Old: com.liferay.portlet.messageboards New: com.liferay.message.boards.exception
com.liferay.message.boards.api
Statistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.inter-

nal.statistics
com.liferay.portal.monitoring
StatsUserLastPostDateComparator
Old: com.liferay.portlet.blogs.util.comparator New: com.liferay.blogs.util.comparator
com.liferay.blogs.api
StorageAdapter
Old: com.liferay.portlet.dynamicdatamapping.storage New: com.liferay.dynamic.data.map-

ping.storage
com.liferay.dynamic.data.mapping.api
StorageEngine
Old: com.liferay.portlet.dynamicdatamapping.storage New: com.liferay.dynamic.data.map-

ping.storage
com.liferay.dynamic.data.mapping.api
StorageException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
StorageFieldNameException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
StructureDuplicateStructureKeyException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
StructureFieldException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
StructureIdComparator
Old: com.liferay.portlet.dynamicdatamapping.util.comparator New: com.liferay.dy-

namic.data.mapping.util.comparator
com.liferay.dynamic.data.mapping.api
StructureModifiedDateComparator
Old: com.liferay.portlet.dynamicdatamapping.util.comparator New: com.liferay.dy-

namic.data.mapping.util.comparator
com.liferay.dynamic.data.mapping.api

1770

StructureStructureKeyComparator
Old: com.liferay.portlet.dynamicdatamapping.util.comparator New: com.liferay.dy-

namic.data.mapping.util.comparator
com.liferay.dynamic.data.mapping.api
SummaryStatistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.inter-

nal.statistics
com.liferay.portal.monitoring
SynchronousMessageListener
Old: com.liferay.portal.kernel.messaging.sender New: com.liferay.portal.messaging.inter-

nal.sender
com.liferay.portal.messaging
TemplateDuplicateTemplateKeyException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
TemplateIdComparator
Old: com.liferay.portlet.dynamicdatamapping.util.comparator New: com.liferay.dy-

namic.data.mapping.util.comparator
com.liferay.dynamic.data.mapping.api
TemplateModifiedDateComparator
Old: com.liferay.portlet.dynamicdatamapping.util.comparator New: com.liferay.dy-

namic.data.mapping.util.comparator
com.liferay.dynamic.data.mapping.api
TemplateNameException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
TemplateNameException
Old: com.liferay.portlet.journal New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
TemplateScriptException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
TemplateSmallImageNameException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
TemplateSmallImageNameException
Old: com.liferay.portlet.journal New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
TemplateSmallImageSizeException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.excep-

tion
com.liferay.dynamic.data.mapping.api
TemplateSmallImageSizeException
Old: com.liferay.portlet.journal New: com.liferay.dynamic.data.mapping.exception

1771

com.liferay.dynamic.data.mapping.api
ThreadLastPostDateComparator
Old: com.liferay.portlet.messageboards.util.comparatorNew: com.liferay.message.boards.util.com-

parator
com.liferay.message.boards.api
UnknownRuleHandlerException
Old: com.liferay.portal.kernel.mobile.device.rulegroup.rule New: com.liferay.mobile.de-

vice.rules.rule
com.liferay.mobile.device.rules.api
UserConverterKeys
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap
com.liferay.portal.security.ldap.api
WikiFormatException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
WikiNode
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiNodeLocalService
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeLocalServiceUtil
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeLocalServiceWrapper
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeModel
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiNodePersistence
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiNodeService
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeServiceUtil
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeServiceWrapper
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeSoap
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiNodeUtil
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api

1772

WikiNodeWrapper
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPage
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageConstants
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageDisplay
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageFinder
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiPageLocalService
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageLocalServiceUtil
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageLocalServiceWrapper
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageModel
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPagePersistence
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiPageResource
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageResourceLocalService
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageResourceLocalServiceUtil
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageResourceLocalServiceWrapper
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageResourceModel
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageResourcePersistence
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api

1773

WikiPageResourceSoap
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageResourceUtil
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiPageResourceWrapper
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageService
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageServiceUtil
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageServiceWrapper
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageSoap
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageUtil
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiPageWrapper
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api

1774

CHAPTER 160

FRONT-END

Front-end development involves multiple frameworks and tools. Keeping track of all the moving
pieces in your project can be a daunting task. This section of reference docs provides the following
helpful information for front-end development:

• Understanding the liferay-npm-bundler
• The CKEditor plugins available for use in your custom AlloyEditor configurations.
• AlloyEditor button reference guide
• Fully qualified portlet IDs
• FreeMarker taglib macros
• Setting up your npm environment
• Liferay JS Generator

1775

CHAPTER 161

LIFERAY-NPM-BUNDLER

The liferay-npm-bundler is a bundler (like Webpack or Browserify) that targets Liferay DXP as a
platform and assumes you’re using your npm packages from portlets (as opposed to typical web
applications).

The workflow for running npm packages inside portlets is slightly different from standard
bundlers. Instead of bundling the JavaScript in a single file, you must link all packages together in
the browser when the full web page is assembled. This lets portlets share common versions of
modules instead of each one loading its own copy. The liferay-npm-bundler handles this for you.

This section of reference docs covers how Portal supports npm-based portlet projects with the
liferay-npm-bundler.

Note: You can also find information for the liferay-npm-bundler in the project’s Wiki.

161.1 How the Liferay npm Bundler Works Internally

The liferay-npm-bundler takes a portlet project and outputs its files (including npm packages) to
a build folder, so the standard portlet build (Gradle) can produce an OSGi bundle. You can learn
more about the build folder’s structure in The Structure of OSGi Bundles Containing NPM Packages
reference.

The liferay-npm-bundler uses the process below to create the OSGi bundle:

1. Copy the project’s package.json file to the output directory.

2. Traverse the project’s dependency tree to determine its dependencies.

3. For the project:

a. Run the source files, specified in the .npmbundlerrc configuration, through the rules.

b. Pre-process the project’s package with any configured plugins.

c. Run Babel with configured plugins for each .js file inside the project.

d. Post-process the project package with any configured plugins.

1777

https://webpack.github.io/
http://browserify.org/
https://github.com/liferay/liferay-npm-build-tools/wiki
https://babeljs.io/

4. For each npm package dependency:

a. Copy the npm package to the output folder and prefix the bundle’s name to it. Note
that the bundler stores packages in a plain bundle-name$package@version format, rather
than the standard node_modules tree format. To determine what is copied, the bundler
invokes a plugin to filter the package file list.

b. Run rules on the package files.

c. Pre-process the npm package with any configured plugins.

d. Run Babel with configured plugins for each .js file inside the npm package.

e. Post-process the npm package with any configured plugins.

The only difference between the pre-process and post-process steps are when they are run
(before or after Babel is run, respectively). During this workflow, liferay-npm-bundler calls all
the configured plugins so they can perform transformations on the npm packages (for instance,
modifying their package.json files, or deleting or moving files).

Note: that the pre, post, and Babel phases were designed for the old mode of operation (See
the Migrating Your Project to Use the NewMode for more information) and they will gradually be
replaced with rules for the new mode.

161.2 Configuring liferay-npm-bundler

The liferay-npm-bundler is configured via a .npmbundlerrc file placed in the portlet project’s root
folder. You can create a complete configuration manually or extend a configuration preset (via
Babel).

This article explains the .npmbundlerrc file’s structure. See the default preset reference to learn
how the default preset configures the liferay-npm-bundler. See the Creating JavaScript Portlets
with JavaScript Tooling tutorial to learn how to use the liferay-npm-bundler to create JavaScript
portlets.

Understanding the .npmbundlerrc File's Structure

The .npmbundlerrc file has four possible phase definitions: copy-process, pre-process, post-process, and
babel. These phase definitions are explained in more detail below:

Copy-Process: Definedwith the copy-plugins property (only available for dependency packages).
Specifies which files should be copied or excluded from each given package.

Pre-Process: Defined with the plugins property. Specifies plugins to run before the Babel phase
is run.

Babel: Defined with the .babelrc definition. Specifies the .babelrc file to use when running
Babel through the package’s .js files.

Note: During this phase, Babel transforms package files (for example, to convert them to AMD
format, if necessary), but doesn’t transpile them. In theory, you could also transpile them by

1778

https://babeljs.io/

configuring the proper plugins. We recommend transpiling before running the bundler, to avoid
mixing both unrelated processes.

Post-Process: Defined with the post-plugins property. An alternative to using the pre-process
phase, this specifies plugins to run after the Babel phase has completed.

Here’s an example of a .npmbundlerrc configuration:

{

"exclude": {

"*": [

"test/**/*"

],

"some-package-name": [

"test/**/*",

"bin/**/*"

],

"another-package-name@1.0.10": [

"test/**/*",

"bin/**/*",

"lib/extras-1.0.10.js"

]

},

"include-dependencies": [

"isobject", "isarray"

],

"output": "build",

"process-serially": false,

"verbose": false,

"dump-report": true,

"config": {

"imports": {

"npm-angular5-provider": {

"@angular/common": "^5.0.0",

"@angular/core": "^5.0.0"

}

}

},

"/": {

"plugins": ["resolve-linked-dependencies"],

".babelrc": {

"presets": ["liferay-standard"]

},

"post-plugins": [

"namespace-packages",

"inject-imports-dependencies"

]

},

"*": {

"copy-plugins": ["exclude-imports"],

"plugins": ["replace-browser-modules"],

".babelrc": {

"presets": ["liferay-standard"]

},

"post-plugins": [

"namespace-packages",

"inject-imports-dependencies",

"inject-peer-dependencies"

]

},

"packages": {

"a-package-name": [

"copy-plugins": ["exclude-imports"],

"plugins": ["replace-browser-modules"],

".babelrc": {

"presets": ["liferay-standard"]

},

1779

"post-plugins": [

"namespace-packages",

"inject-imports-dependencies",

"inject-peer-dependencies"

]

],

"other-package-name@1.0.10": [

"copy-plugins": ["exclude-imports"],

"plugins": ["replace-browser-modules"],

".babelrc": {

"presets": ["liferay-standard"]

},

"post-plugins": [

"namespace-packages",

"inject-imports-dependencies",

"inject-peer-dependencies"

]

]

}

}

Note: Not all definition formats (*, some-package-name, and some-package-name@version) shown
above are required. In most cases, the wildcard definition (*) is enough. The non-wildcard formats
(some-package-name and some-package-name@version) are rare exceptions for packages that require a
more specific configuration than the wildcard definition provides.

Standard Configuration Options

Below are the standard configuration options for the .npmbundlerrc file:
config: global configuration which is passed to all bundler and Babel plugins. Please refer to

each plugin’s documentation to find the available options for each specific plugin.
dump-report: Sets whether to generate a debugging report. If true, a liferay-npm-bundler-

report.html file is generated in the project directory with information such as what the liferay-
npm-bundler is doing with each package. Note that you can also pass this as the build flag $

liferay-npm-bundler --dump-report or $ liferay-npm-bundler -r. The default value is false.
no-tracking: whether to send usage analytics to our servers. Note that you can also pass this as a

build flag with the CLI argument $ liferay-npm-bundler --no-tracking, or by creating a marker file
called .liferay-npm-bundler-no-tracking in the project’s root folder or any of its ancestors, or by
setting the environment variable LIFERAY_NPM_BUNDLER_NO_TRACKING=''. The default value is false.

output: by default the bundler writes packages to the standard Gradle resources folder:
build/resources/main/META-INF/resources. Set this value to override the default output folder. Note
that the dependency npm packages are placed in a node_modules folder inside the build folder. Note
if create-jar is set, the default output folder is build.

preset: specifies the liferay-npm-bundler preset to use as a base configuration. Note that if a
.npmbundlerrc file is not provided, the default liferay-npm-bundler-preset-standard preset is used.

verbose: Sets whether to output detailed information about what the tool is doing to the console.
The default value is false.

Package Processing Options

“/”: plugins’ configuration for the project’s package.
“”: plugins’ configuration for dependency packages.

1780

(asterisk): Defines the default plugin configuration for all npm packages. It contains four values
identified by a corresponding key. Keys copy-plugins, plugins and post-plugins identify arrays of
liferay-npm-bundler plugins to apply in the copy, pre and post process steps. Key .babelrc identifies
an object specifying the configuration to use in the Babel step and has the same structure of a
standard .babelrc file.

exclude: defines glob expressions of files to exclude from bundling from all or specific packages.
Each list is an array identified by one of the following keys: * (any package), {package name} (any
version of the package), or {package name}@{version} (a specific version of a package). Below is an
example configuration:

{

"exclude": {

"*": ["__tests__/**/*"],

"is-object": ["test/**/*"],

"is-array@1.0.1": ["test/**/*", "Makefile"]

}

}

ignore: skips processing the specified JavaScript files with Babel for the project. An example
configuration is shown below:

{

"ignore": ["lib/legacy/**/*.js"]

}

include-dependencies: defines packages to include in bundling, even if they are not listed under
the dependencies section of package.json. These packages must be available in the node_modules

folder (i.e. installed manually, without saving them to package.json, or listed in the devDependencies

section).
max-parallel-files: Defines the maximum number of files to process in parallel to avoid EMFILE

errors (especially onWindows). The default value is 128.
packages: defines plugin configuration for npm packages, per package.
process-serially: removed since v2.7.0. Replaced with max-parallel-files.
rules: defines rules to apply to the projects source files with the loader. Rules must have a use

array property, which defines the loader to use, which may be specified by just a package name or
an object with loader and options properties if applicable, and one or more of the properties below:

• test: defines a regular expression to filter files in the sources folders to determine whether to
apply rules to them. The project-relative path of each eligible file is compared against the
regular expression and files that match are processed by the loaders.

• exclude: refines the test expression by specifying files to exclude.
• include: refines the test expression by specifying files to include.

An example configuration is shown below:

{

"rules": [

{

"test": "\\.js$",

"exclude": "node_modules",

"use": [

{

"loader": "babel-loader",

"options": {

"presets": ["env", "react"]

1781

}

}

]

},

{

"test": "\\.css$",

"use": ["style-loader"]

},

{

"test": "\\.json$",

"use": ["json-loader"]

}

]

}

sources: defines the folders in the project that contain the source files to apply rules to. Folders
can be nested (e.g. /src/main/resources/) and must be written using POSIX path separators (i.e. use
/ instead of \ onWin32 systems). Note that rules are automatically applied to package dependency
files of the project.

An example configuration is shown below:

{

"sources": ["src", "assets"]

}

OSGi Bundle Creation Options

Since version 2.2.0, the liferay-npm-bundler can create portlet OSGi bundles for you. See the
Creating and Bundling JavaScript Portlets with JavaScript Tooling tutorial for complete instructions.
The configuration options for OSGi bundle creation are shown below:

• create-jar: Creates an OSGi bundle when set to a truthy value. When set to true, all sub-
options take default values. When an object is passed, as shown in the example above, each
sub-option can be configured individually. Note that you can also pass this as a build flag: $
liferay-npm-bundler --create- or $ liferay-npm-bundler -j. The default value is false.

{ “create-jar”: true }

• create-jar.auto-deploy-portlet: Note that this option is deprecated. Use the create-

jar.features.js-extender option instead.

• create-jar.features.configuration: specifies the file describing the system (OSGi) and widget
instance (portlet preferences, as defined in the Portlet spec) configuration to use. (see Config-
uring System Settings and Instance Settings for Your JavaScript Portlets for more information
on the required settings configuration). The default value is features/configuration.json if
that file exists, otherwise the default is undefined.

{ “create-jar”: { “features”: { “configuration”: “features/configuration.json” } } }

• create-jar.output-dir: specifies where to place the final JAR

{ “create-jar”: { “features”: { “configuration”: “features/configuration.json” } } }

• create-jar.features.js-extender: controls whether to process the OSGi bundle with the JS
Portlet Extender CE App

1782

https://web.liferay.com/marketplace/-/mp/application/115542926

DXP App. You can also specify the minimum required version of the Extender to use
for the bundle. This can be useful if you want to use advanced features in your bundle, but you
want it to be deployable in older versions of the Extender. Pass the string "any" to let the bundle
deploy in any version of the Extender. If true, the liferay-npm-bundler automatically determines
the minimum version of the Extender required for the features used in the bundle. the default
value is true. An example configuration is shown below:

{

"create-jar": {

"features": {

"js-extender": "1.1.0"

}

}

}

• create-jar.features.web-context: specifies the context path to use for publishing bundle’s
static resources. The default value is /{project name}-{project version}.
{ “create-jar”: { “features”: { “web-context”: “/my-project” } } }

• create-jar.features.localization: specifies the L10N file to be used by the bundle (see the
Creating JS Portlets with JS Tooling tutorial for more information on using localization in
your portlet. The default value is features/localization/Language if a properties file with that
base name exists, otherwise the default is undefined.
{ “create-jar”: { “features”: { “localization”: “features/localization/Language” } } }

• create-jar.features.settings: specifies the JSON file describing the configuration structure
(see the Creating JS Portlets with JS Tooling tutorial for more information on the required set-
tings configuration). The default value is features/settings.json if that file exists, otherwise
the default is undefined.

Note: Plugins’ configuration specifies the options for configuring plugins in all the possible
phases, as well as the .babelrc file to use when running Babel (see Babel’s documentation for more
information on that file format).

Note: Prior to version 1.4.0 of the liferay-npm-bundler, package configurations were placed
next to the tools options (*, output, exclude, etc.) To prevent package name collisions, package
configurations are now namespaced and placed under the packages section. Tomaintain backwards
compatibility, the liferay-npm-bundler falls back to the root section outside packages for package
configuration, if no package configurations (package-name@version, package-name, or *) are found in
the packages section.

Now you know the structure of the .npmbundlerrc file!

161.3 How the Default Preset Configures the liferay-npm-bundler

The liferay-npm-bundler comes with a default configuration preset: liferay-npm-bundler-preset-
standard in your .npmbundlerrc file. This preset configures several plugins for the build process and

1783

https://web.liferay.com/marketplace/-/mp/application/115543020
https://babeljs.io/docs/usage/babelrc/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-preset-standard
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-preset-standard

is automatically used (even if the .npmbundlerrc is missing), unless you override it with one of your
own. Running the liferay-npm-bundler with this preset applies the config file from liferay-npm-

bundler-preset-standard:

{

"/": {

"plugins": ["resolve-linked-dependencies"],

".babelrc": {

"presets": ["liferay-standard"]

},

"post-plugins": ["namespace-packages", "inject-imports-dependencies"]

},

"*": {

"copy-plugins": ["exclude-imports"],

"plugins": ["replace-browser-modules"],

".babelrc": {

"presets": ["liferay-standard"]

},

"post-plugins": [

"namespace-packages",

"inject-imports-dependencies",

"inject-peer-dependencies"

]

}

}

The configuration above states that for all npm packages (*) the pre-process phase (plugins)
must run the replace-browser-modules plugin. Setting this to post-pluginswould run it during the
post phase instead.

Note: You can override configuration preset values by adding your own configuration to your
project’s .npmbundlerrc file. For instance, using the configuration preset example above, you can
define your own .babelrc value in .npmbundlerrc file to override the defined “liferay-standard”
babelrc preset.

The liferay-standard preset applies the following plugins to packages:

• exclude-imports: Exclude packages declared in the imports section from the build.

• inject-imports-dependencies: Inject dependencies declared in the imports section in the
dependencies’ package.json files.

• inject-peer-dependencies: Inject declared peer dependencies (as they are resolved in the
project’s node_modules folder) in the dependencies’ package.json files.

• namespace-packages: Namespace package names based on the root project’s package name
to isolate packages per project and avoid collisions. This prepends <project-package-name>$
to each package name appearance in package.json files.

• replace-browser-modules: Replaces the server side files for modules listed under
browser/unpkg/jsdelivr section of package.json with their browser counterparts.

• resolve-linked-dependencies: Replace linked dependencies versions appearing in
package.json files (those obtained from local file system or GitHub, for example) by their real
version number, as resolved in the project’s node_modules directory.

1784

https://github.com/liferay/liferay-npm-build-tools/blob/master/packages/liferay-npm-bundler-preset-standard/config.json
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-preset-liferay-standard
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-exclude-imports
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-inject-imports-dependencies
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-inject-peer-dependencies
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-namespace-packages
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-replace-browser-modules
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-resolve-linked-dependencies

In addition, the bundler runs Babel with the babel-preset-liferay-standard preset, that invokes
the following plugins:

• babel-plugin-normalize-requires: Normalize AMD require() calls.

• babel-plugin-transform-node-env-inline: Inline the NODE_ENV environment variable, and if
it’s part of a binary expression (eg. process.env.NODE_ENV === "development"), then statically
evaluate and replace it.

• babel-plugin-minify-dead-code-elimination: Inline bindings when possible. Tries to evaluate
expressions and prunes unreachable as a result.

• babel-plugin-wrap-modules-amd: Wrap modules inside an AMD define()module.

• babel-plugin-name-amd-modules: Name AMDmodules based on package name, version,
and module path.

• babel-plugin-namespace-modules: Namespace modules based on the root project’s package
name, prepending <project-package-name>$. Wrap modules inside an AMD define()module
for each module name appearance (in define() or require() calls) so that the packages are
localized per project and don’t clash.

• babel-plugin-namespace-amd-define: Add a prefix to AMD define() calls (by default
Liferay.Loader.).

Now you know the available configuration presets for .npmbundlerrc and how they work.

161.4 The Structure of OSGi Bundles Containing npm Packages

Todeploy JavaScriptmodules, youmust create anOSGi bundlewith thenpmdependencies extracted
from the project’s node_modules folder and modify them to work with the Liferay AMD Loader. The
liferay-npm-bundler automates this process for you, creating a bundle similar to the one below:

• my-bundle/

– META-INF/

* resources/

· package.json

· name: my-bundle-package
· version: 1.0.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 2.0.0
· my-bundle-package$isobject: 2.1.0

· …

· lib/

1785

https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-preset-liferay-standard
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-plugin-normalize-requires
https://github.com/babel/minify/tree/master/packages/babel-plugin-transform-node-env-inline
https://www.npmjs.com/package/babel-plugin-minify-dead-code-elimination
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-plugin-wrap-modules-amd
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-plugin-name-amd-modules
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-plugin-namespace-modules
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-plugin-namespace-amd-define
https://github.com/liferay/liferay-amd-loader

· index.js

· …

· …
· node_modules/

· my-bundle-package$isobject@2.1.0/

· package.json

· name: my-bundle-package$isobject
· version: 2.1.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 1.0.0

· …

· …

· my-bundle-package$isarray@1.0.0/

· package.json

· name: my-bundle-package$isarray
· version: 1.0.0
· …

· …

· my-bundle-package$isarray@2.0.0/

· package.json

· name: my-bundle-package$isarray
· version: 2.0.0
· …

· …

The packages inside node_modules are the same format as the npm tool and can be copied (after
a little processing for things like converting to AMD, for example) from a standard node_modules

folder. The node_modules folder can hold any number of npm packages (even different versions of
the same package), or no npm packages at all.

Now that you know the structure for OSGi bundles containing npm packages, you can learn
how the liferay-npm-bundler handles inline JavaScript packages.

Inline JavaScript packages

The resulting OSGi bundle that the liferay-npm-bundler creates lets you deploy one inline JavaScript
package (named my-bundle-package in the example)with several npmpackages that are placed inside
the node_modules folder, one package per folder.

The inline package is nested in the OSGi standard META-INF/resources folder and is defined by a
standard npm package.json file.

The inline package is optional, but only one inline package is allowed per OSGi bundle. The
inline package usually provides the JavaScript code for a portlet, when the OSGi bundle contains

1786

one. Note that the architecture does not differentiate between inline and npm packages once they
are published. The inline package is only used for organizational purposes.

Now you know how the liferay-npm-bundler creates OSGi bundles for npm packages!

161.5 How the Liferay npm Bundler Publishes npm Packages

When you deploy an OSGi bundle with the specified structure, as explained in The Structure of OSGi
Bundles Containing NPM Packages reference, its modules are made available for consumption
through canonical URLs. To better illustrate resolved modules, the example structure below is
the standard structure that the liferay-npm-bundler 1.x generates, and therefore doesn’t have the
namespaced packages that the 2.x version generates. Please refer to the last sections of this article
to know how liferay-npm-bundler 2.0 overrides this de-duplication mechanism to implement
isolated dependencies and imports.

• my-bundle/

– META-INF/

* resources/

· package.json

· name: my-bundle-package
· version: 1.0.0
· main: lib/index
· dependencies:
· isarray: 2.0.0
· isobject: 2.1.0

· …

· lib/

· index.js

· …

· …
· node_modules/

· isobject@2.1.0/

· package.json

· name: isobject
· version: 2.1.0
· main: lib/index
· dependencies:
· isarray: 1.0.0

· …

· …

1787

· isarray@1.0.0/

· package.json

· name: isarray
· version: 1.0.0
· …

· …

· isarray@2.0.0/

· package.json

· name: isarray
· version: 2.0.0
· …

· …

If you deploy the example OSGi bundle shown above, the following URLs are made available
(one for each module):

• http://localhost/o/js/module/598/my-bundle-package@1.0.0/lib/index.js

• http://localhost/o/js/module/598/isobject@2.1.0/index.js

• http://localhost/o/js/module/598/isarray@1.0.0/index.js

• http://localhost/o/js/module/598/isarray@2.0.0/index.js

NOTE: The OSGi bundle ID (598) may vary.

You can learn about package de-duplication next.

Package De-duplication

Since two or more OSGi modules may export multiple copies of the same package and version,
Liferay Portal must de-duplicate such collisions. To accomplish de-duplication, a new concept
called resolved module was created.

A resolvedmodule is the referencepackage exported to Liferay Portal’s front-end, whenmultiple
copies of the same package and version exist. It’s randomly referenced from one of the several
bundles exporting the same copies of the package.

Using the example from the previous section, for each group of canonical URLs referring to
the same module inside different OSGi bundles, there’s another canonical URL for the resolved
module. The example structure has the resolved module URLs shown below:

• http://localhost/o/js/resolved-module/my-bundle-package@1.0.0/lib/index.js

• [http://localhost/o/js/resolved-module/my-bundle-package𝑖𝑠𝑜𝑏𝑗𝑒𝑐𝑡@2.1.0/𝑖𝑛𝑑𝑒𝑥.𝑗𝑠](ℎ𝑡𝑡𝑝 ∶
//𝑙𝑜𝑐𝑎𝑙ℎ𝑜𝑠𝑡/𝑜/𝑗𝑠/𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 − 𝑚𝑜𝑑𝑢𝑙𝑒/𝑚𝑦 − 𝑏𝑢𝑛𝑑𝑙𝑒 − 𝑝𝑎𝑐𝑘𝑎𝑔𝑒isobject@2.1.0/index.js)

• [http://localhost/o/js/resolved-module/my-bundle-package𝑖𝑠𝑎𝑟𝑟𝑎𝑦@1.0.0/𝑖𝑛𝑑𝑒𝑥.𝑗𝑠](ℎ𝑡𝑡𝑝 ∶
//𝑙𝑜𝑐𝑎𝑙ℎ𝑜𝑠𝑡/𝑜/𝑗𝑠/𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 − 𝑚𝑜𝑑𝑢𝑙𝑒/𝑚𝑦 − 𝑏𝑢𝑛𝑑𝑙𝑒 − 𝑝𝑎𝑐𝑘𝑎𝑔𝑒isarray@1.0.0/index.js)

1788

http://localhost/o/js/module/598/my-bundle-package@1.0.0/lib/index.js
http://localhost/o/js/module/598/isobject@2.1.0/index.js
http://localhost/o/js/module/598/isarray@1.0.0/index.js
http://localhost/o/js/module/598/isarray@2.0.0/index.js
http://localhost/o/js/resolved-module/my-bundle-package@1.0.0/lib/index.js

• [http://localhost/o/js/resolved-module/my-bundle-package𝑖𝑠𝑎𝑟𝑟𝑎𝑦@2.0.0/𝑖𝑛𝑑𝑒𝑥.𝑗𝑠](ℎ𝑡𝑡𝑝 ∶
//𝑙𝑜𝑐𝑎𝑙ℎ𝑜𝑠𝑡/𝑜/𝑗𝑠/𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 − 𝑚𝑜𝑑𝑢𝑙𝑒/𝑚𝑦 − 𝑏𝑢𝑛𝑑𝑙𝑒 − 𝑝𝑎𝑐𝑘𝑎𝑔𝑒isarray@2.0.0/index.js)

NOTE: The OSGi bundle ID (598 in the example) is removed andmodule is replaced by resolved-

module.

Next you can learn how the bundler (since version 2.0.0) isolates package dependencies. See
What Changed Between liferay-npm-bundler 1.x and 2.x for more information on why this change
was made.

Isolated Package Dependencies

A typical OSGi bundle structure generated with liferay-npm-bundler 2.x is shown below:

• my-bundle/

– META-INF/

* resources/

· package.json

· name: my-bundle-package
· version: 1.0.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 2.0.0
· my-bundle-package$isobject: 2.1.0

· …

· lib/

· index.js

· …

· …
· node_modules/

· my-bundle-package$isobject@2.1.0/

· package.json

· name: my-bundle-package$isobject
· version: 2.1.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 1.0.0

· …

· …

· my-bundle-package$isarray@1.0.0/

1789

· package.json

· name: my-bundle-package$isarray
· version: 1.0.0
· …

· …

· my-bundle-package$isarray@2.0.0/

· package.json

· name: my-bundle-package$isarray
· version: 2.0.0
· …

· …

Note that each package dependency is namespaced with the bundle’s name (my-bundle-package$
in the example structure). This lets each project load its own dependencies and avoid potential
collisions with projects that export the same package. For example, consider the two portlet
projects below:

- `my-portlet`

- package.json

- dependencies:

- a-library 1.0.0

- a-helper 1.0.0

- node_modules

- a-library

- version: 1.0.0

- dependencies:

- a-helper ^1.0.0

- a-helper

- version: 1.0.0

- `another-portlet`

- package.json

- dependencies:

- a-library 1.0.0

- a-helper 1.2.0

- node_modules

- a-library

- version: 1.0.0

- dependencies:

- a-helper ^1.0.0

- a-helper

- version: 1.2.0

In this example, a-library depends on a-helper at version 1.0.0 or higher (note the caret ^
expression in the dependencies). The bundler implements isolated dependencies by prefixing the
nameof the bundle to themodules, so that my-portlet gets its a-helper at 1.0.0, while another-portlet
gets its a-helper at 1.2.0.

The dependencies isolation not only avoids collisions between bundles, but also makes peer
dependencies behave deterministically as each portlet gets what it had in its node_modules folder
when it was developed.

Now that you understand how namespacing modules isolates bundle dependencies, avoiding
collisions, you can learn about de-duplication next.

1790

De-duplication through Importing

Isolated dependencies are very useful, but there are times when sharing the same package between
modules would be more beneficial. To do this, the liferay-npm-bundler lets you import packages
from an external OSGi bundle, instead of using your own. This lets you put shared dependencies
in one project and reference them from the rest.

Imagine that you have three portlets that compose the homepage of your site: my-toolbar, my-
menu, and my-content. These portlets depend on the fake, but awesome,Wonderful UI Components
(WUI) framework. This quite limited framework is composed of only three packages:

1. component-core

2. button

3. textfield

Since the bundler namespaces each dependency package with the portlet’s name by default,
you would end up with three namespaced copies of theWUI package on the page. This is not what
you want. Since they share the same package, instead you can create a fourth bundle that contains
theWUI package, and import theWUI package in the three portlets. This results in the structure
below:

• my-toolbar/

– .npmbundlerrc

* config:

· imports:
· wui-provider:
· component-core: ^1.0.0
· button: ^1.0.0
· textfield: ^1.0.0

• my-menu/

– .npmbundlerrc

* config:

· imports:
· wui-provider:
· component-core: ^1.0.0
· button: ^1.0.0
· textfield: ^1.0.0

• my-content/

– .npmbundlerrc

* config:

· imports:

1791

· wui-provider:
· component-core: ^1.0.0
· button: ^1.0.0
· textfield: ^1.0.0

• wui-provider/

– .package.json

* name: wui-provider

* dependencies:

· component-core: 1.0.0
· button: 1.0.0
· textfield: 1.0.0

The bundler switches the namespace of certain packages, thus pointing them to an external
bundle. Say that you have the following code in my-toolbar portlet:

var Button = require('button');

By default, the bundler 2.x transforms this into the following when not imported from another
bundle:

var Button = require('my-toolbar$button');

But, because button is imported from wui-provider, it is instead changed to the value below:

var Button = require('wui-provider$button');

Also, a dependency on wui-provider$button at version ^1.0.0 is included in my-toolbar’s
package.json file so that the loader finds the correct version. That’s all you need. Once
wui-provider$button is required at runtime, it jumps to wui-provider’s context and loads the
subdependencies from there on, even if code is executed from my-toolbar. This works because, as
you can imagine, wui-provider’s modules are namespaced too, and once you load a module from it,
it keeps requiring wui-provider$ prefixed modules all the way down.

Next, you will learn possible strategies for importing.

Strategies When Importing Packages

De-duplication by importing is a powerful tool, but you must design a versioning strategy suitable
for you so that you don’t run into errors.

First of all, you must decide if you want to declare imported dependencies only in the
.npmbundlerrc file or in the package.json too. Listing an imported dependency in .npmbundlerrc is
enough, even if it isn’t present in your node_modules folder because during runtime the loader will
find it. Listing an imported dependency in .npmbundlerrc is enough, even if it isn’t present in your
node_modules folder, because during runtime the loader finds it. If you have previous experience
with dynamic linking support in standard operating systems, think of it as a DLL or shared object.

You may need to install your dependencies in node_modules too if you use them for tests, or if
they contain types needed to compile (like in Typescript), etc. If that is the case, then you can place
them in the dependencies or devDependencies section of your package.json. If you list them under

1792

the latter, they are automatically excluded from the output bundle by the liferay-npm-bundler.
Otherwise, you need to exclude them in the .npmbundlerrc file so they don’t redundantly appear in
the output.

If you list dependencies both in package.json and .npmbundlerrc, decide how to keep versions in
sync. The best advice is to use the same version constraints in both files, but you may decide not
to do so if it is necessary. For example, imagine that you import one of your dependencies from
another bundle during runtime to run tests. Say you are using version constraint ^1.5.1. It would
be desirable that if you have tested your code with a version >=1.5.1 and <2.0.0 (that’s what ^1.5.1
means), you get a compatible version during runtime. Thus, you would declare the dependency
with ^1.5.1 in .npmbundlerrc too.

However, there are times when you may want to be more lenient, and you may need to get a
lower version (1.4.0 for example) during runtime, even if you are developing against ^1.5.1. In that
case, you can declare ^1.5.1 in your package.json and ^1.0.0 in .npmbundlerrc.

In the end, it’s up to you to decide how you want to handle your dependencies:

1. package.json (While developing)

2. .npmbundlerrc (During runtime)

we recommend that you choose a versioning strategy and stick to it, to ensure dependencies
are satisfied at runtime.

161.6 Understanding How liferay-npm-bundler Formats JavaScript Modules for AMD

Liferay AMD Loader is based on the AMD specification. All modules inside an npm OSGi bundle
must be in AMD format. This is done for CommonJS modules by wrapping the module code inside
a define call. The liferay-npm-bundler helps automate this process by wrapping the module for
you. This article references the OSGi structure below as an example. You can learn more about
this structure in The Structure of OSGi Bundles Containing NPM Packages reference.

• my-bundle/

– META-INF/

* resources/

· package.json

· name: my-bundle-package
· version: 1.0.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 2.0.0
· my-bundle-package$isobject: 2.1.0

· …

· lib/

· index.js

1793

https://github.com/amdjs/amdjs-api/wiki/AMD
http://www.commonjs.org/

· …

· …
· node_modules/

· my-bundle-package$isobject@2.1.0/

· package.json

· name: my-bundle-package$isobject
· version: 2.1.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 1.0.0

· …

· …

· my-bundle-package$isarray@1.0.0/

· package.json

· name: my-bundle-package$isarray
· version: 1.0.0
· …

· …

· my-bundle-package$isarray@2.0.0/

· package.json

· name: my-bundle-package$isarray
· version: 2.0.0
· …

· …

For example, the my-bundle-package$isobject@2.1.0 package’s index.js file contains the follow-
ing code:

'use strict';

var isArray = require('my-bundle-package$isarray');

module.exports = function isObject(val) {

return val != null && typeof val === 'object' && isArray(val) === false;

};

The updated module code configured for AMD format is shown below:

define(

'my-bundle-package$isobject@2.1.0/index',

['module', 'require', 'my-bundle-package$isarray'],

function (module, require) {

'use strict';

var define = undefined;

var isArray = require('my-bundle-package$isarray');

1794

module.exports = function isObject(val) {

return val != null && typeof val === 'object'

&& isArray(val) === false;

};

}

);

Note: The module’s name must be based on its package, version, and file path (for example
my-bundle-package$isobject@2.1.0/index), otherwise Liferay AMD Loader can’t find it.

Note the module’s dependencies: ['module', 'require', 'my-bundle-package$isarray'].
module and require must be used to get a reference to the module.exports object and the local

require function, as defined in the AMD specification.
The subsequent dependencies state the modules on which this module depends. Note that

my-bundle-package$isarray in the example is not a package but rather an alias of the my-bundle-

package$isarray package’s main module (thus, it is equivalent to my-bundle-package$isarray/index).
Also note that there is enough information in the package.json files to know that my-bundle-

package$isarray refers to my-bundle-package$isarray/index, but also that it must be resolved to ver-
sion 1.0.0 of suchpackage, i.e., that my-bundle-package$isarray/index in this case refers to my-bundle-

package$isarray@1.0.0/index.
Youmay also have noted the var define = undefined; addition to the top of the file. This is intro-

duced by liferay-npm-bundler to make the module think that it is inside a CommonJS environment
(instead of an AMD one). This is because some npm packages are written in UMD format and,
because we are wrapping it inside our AMD define() call, we don’t want them to execute their
own define() but prefer them to take the CommonJS path, where the exports are done through the
module.exports global.

Now you have a better understanding of how liferay-npm-bundler formats JavaScript modules
for AMD!

161.7 Understanding How Liferay AMD Loader Configuration is Exported

NOTE: This article is for users who know how Liferay AMD Loader works under the hood. You can
learn more about Liferay AMD Loader in the Liferay AMDModule Loader tutorial.

With de-duplication in place, JavaScript modules are made available to Liferay AMD Loader
through the configuration returned by the /o/js_loader_modules URL.

The OSGi bundle shown below is used for reference in this article:

• my-bundle/

– META-INF/

* resources/

· package.json

· name: my-bundle-package
· version: 1.0.0
· main: lib/index
· dependencies:

1795

· isarray: 2.0.0
· isobject: 2.1.0

· …

· lib/

· index.js

· …

· …
· node_modules/

· isobject@2.1.0/

· package.json

· name: isobject
· version: 2.1.0
· main: lib/index
· dependencies:
· isarray: 1.0.0

· …

· …

· isarray@1.0.0/

· package.json

· name: isarray
· version: 1.0.0
· …

· …

· isarray@2.0.0/

· package.json

· name: isarray
· version: 2.0.0
· …

· …

For example, for the specified structure (shown above), as explained in The Structure of OSGi
Bundles Containing npm Packages reference, the following configuration is published for Liferay
AMD loader to consume:

Liferay.PATHS = {

...

'my-bundle-package@1.0.0/lib/index': '/o/js/resolved-module/my-bundle-package@1.0.0/lib/index',

'isobject@2.1.0/index': '/o/js/resolved-module/isobject@2.1.0/index',

'isarray@1.0.0/index': '/o/js/resolved-module/isarray@1.0.0/index',

'isarray@2.0.0/index': '/o/js/resolved-module/isarray@2.0.0/index',

...

}

Liferay.MODULES = {

...

1796

"my-bundle-package@1.0.0/lib/index.es": {

"dependencies": ["exports", "isarray", "isobject"],

"map": {

"isarray": "isarray@2.0.0",

"isobject": "isobject@2.1.0"

}

},

"isobject@2.1.0/index": {

"dependencies": ["module", "require", "isarray"],

"map": {

"isarray": "isarray@1.0.0"

}

},

"isarray@1.0.0/index": {

"dependencies": ["module", "require"],

"map": {}

},

"isarray@2.0.0/index": {

"dependencies": ["module", "require"],

"map": {}

},

...

}

Liferay.MAPS = {

...

'my-bundle-package@1.0.0': { value: 'my-bundle-package@1.0.0/lib/index', exactMatch: true}

'isobject@2.1.0': { value: 'isobject@2.1.0/index', exactMatch: true},

'isarray@2.0.0': { value: 'isarray@2.0.0/index', exactMatch: true},

'isarray@1.0.0': { value: 'isarray@1.0.0/index', exactMatch: true},

...

}

Note:

• The Liferay.PATHS property describes paths to the JavaScript module files.

• The Liferay.MODULES property describes the dependency names and versions of each module.

• The Liferay.MAPS property describes the aliases of the package’s main modules.

161.8 What Changed Between Liferay npm Bundler 1.x and 2.x

This reference doc outlines the key changes between liferay-npm-bundler version 1.x and 2.x.

Automatically Formatting Modules for AMD

In version series 1.x of the bundler it was the developer’s responsibility to wrap project modules
in an AMD define() call. However, since 2.x the bundler does it for you, so the only requisite is
that the project’s code is transpiled/written for CommonJS modules model (the standard model for
module handling in Node.js, that uses require() calls to load modules).

Isolating Project Dependencies

Package names are prefixed with the bundle name since version 2.0.0 of the bundler, but were
left intact in previous versions. This strategy is used to isolate packages from different bundles.
You can still deploy bundler 1.x packages (without prefix), and they will still work as they did for
previous versions of the bundler.

1797

Improved Peer Dependency Support

In bundler 1.x, there was only one shared peer dependency package available between portlets.
With isolated dependencies per portlet, it’s easy to honor peer dependencies perfectly. Peer
dependencies can be resolved exactly as stated in projects because their names are prefixed with
the project’s name. This is possible because of the new liferay-npm-bundler-plugin-inject-peer-
dependencies plugin. It scans all JS modules for require calls. If the bundler finds a required
package in the main.js file, but it is not declared in the package.json, it resolves it to the proper
version that is found in the node_modules folder. The plugin then injects a new dependency in the
output package.json for the required package.

Note that injected dependency version constraints are the specific version number required,
without caret or any other semantic version operator. This is to honor the exact peer dependency
found in the project. Injecting more relaxed semantic version expressions could lead to unstable
results.

Manually De-duplicating Through Importing

Namespacing means that each portlet gets its own dependencies. Only using the bundler this way
obtains the same functionality as standard bundlers like webpack or Browserify, so you wouldn’t
need a specific tool like liferay-npm-bundler. Since Liferay DXP is a portlet based architecture,
sharing dependencies among different portlets would be very beneficial.

In bundler 1.x that deduplication was made automatically, but there was no control over it.
However, with version 2.x, you may now import packages from an external OSGi bundle, instead
of using your own. This lets you put shared dependencies in one project, and reference them from
the rest. Though This new way of de-duplication is not automatic, it leads to full control (during
build time) of how each package is resolved.

Now that you understand what changed between version 1.x and 2.x of the liferay-npm-bundler,
you can follow the steps in the Migrating a liferay-npm-bundler Project from 1.x to 2.x tutorial to
migrate your 1.x projects to 2.x.

161.9 Understanding liferay-npm-bundler's Loaders

liferay-npm-bundler’s mechanism is inspired by webpack. Like webpack, the liferay-npm-bundler
processes files with a set of rules, which includes loaders that transform a project’s source files
before producing the final output.

Note: While webpack creates a single JS bundle file, liferay-npm-bundler targets an AMD loader,
so webpack and liferay-npm-bundler loaders are not compatible.

Loaders are npm packages that export a function in their main module, which receives source
files and returns modified files, and optionally new files, based on the loader’s configuration. For
example, the babel-loader receives ES6+ JavaScript files, runs Babel on them, and returns transpiled
ES5 files along with a generated source map. You can use this simple pattern to create custom
loaders. A few example loader functions are shown below:

• Pass JS files through Babel or TSC
• Convert CSS files into JS modules that dynamically inject the CSS into the HTML page

1798

https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-inject-peer-dependencies
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-inject-peer-dependencies
https://github.com/liferay/liferay-js-toolkit/tree/master/packages/liferay-npm-bundler-loader-babel-loader

• Process CSS files with SASS
• Create tools that generate code based on IDL files

Loaders are configured via the project’s .npmbundlerrc file. A loader’s configuration is specified
with two key options: sources (the folders that contain the sources files to process) and rules (
the loaders, options (if applicable), and regular expressions that determine which files to pro-
cess). See Understanding the .npmbundlerrc’s Structure for more information on the configuration
requirements and options.

Loaders can be chained. Files are processed by the loaders in the order in which they are listed
in the use property. The files are passed to the first loader, processed, sent to the next loader, and
so on and so forth, until the files are processed by the rules. This lets you run complex processes,
such as converting a SASS file into CSS with the sass-loader, and then convert it into a JavaScript
module with the style-loader. Once the rules are applied, the liferay-npm-bundler continues with
the pre, post, and babel phases of the bundler plugins.

161.10 Default liferay-npm-bundler Loaders

Several loaders are available for the liferay-npm-bundler by default. These loaders are listed below:

• babel-loader: processes source files with Babel. This avoids an extra build step before the
bundler.

• copy-loader: copies source files (static assets) to the output folder.

• css-loader: converts a CSS file into a JavaScript module that’s inserted into the DOM once it’s
loaded.

• json-loader: generates JavaScript modules that export the contents of a JSON file as an object.
This lets you include JSON files with the require() call.

• sass-loader: runs node-sass or sass on source files. This lets you generate static CSS files. It
can be chained before style-loader.

• style-loader: converts a CSS file into a JavaScriptmodule that directly inserts the CSS contents
into the DOM once it’s loaded. This lets you include CSS files with a require() call.

See the liferay-js-toolkit loaders showcase for an example use case of the liferay-npm-bundler’s
loaders. If the default loaders don’t meet your requirements, you can follow the instructions in
Creating Custom Loaders for the Bundler to create your own loaders.

161.11 CKEditor Plugin Reference Guide

This reference guide provides a list of the default CKEditor plugins bundled with Liferay DXP’s
AlloyEditor. You can use these existing CKEditor plugins in your custom AlloyEditor configurations.
Each plugin below links to its plugin.js file for reference, specifying the plugin’s name and buttons
if applicable:

• about

1799

https://en.wikipedia.org/wiki/Interface_description_language
https://github.com/liferay/liferay-js-toolkit/tree/master/packages/liferay-npm-bundler-loader-babel-loader
https://babeljs.io/
https://github.com/liferay/liferay-js-toolkit/tree/master/packages/liferay-npm-bundler-loader-copy-loader
https://github.com/liferay/liferay-js-toolkit/tree/master/packages/liferay-npm-bundler-loader-css-loader
https://github.com/liferay/liferay-js-toolkit/tree/master/packages/liferay-npm-bundler-loader-json-loader
https://github.com/liferay/liferay-js-toolkit/tree/master/packages/liferay-npm-bundler-loader-sass-loader
https://github.com/liferay/liferay-js-toolkit/tree/master/packages/liferay-npm-bundler-loader-style-loader
https://github.com/izaera/liferay-js-toolkit-showcase/tree/loaders
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/about/plugin.js

• allyhelp
• allyhelpbtn
• ajaxsave
• autocomplete
• basicstyles
• bbcode
• bidi
• blockquote
• clipboard
• colorbutton
• colordialog
• contextmenu
• creole
• dialogadvtab
• div
• elementspath
• enterkey
• entities
• filebrowse
• find
• flash
• floatingspace
• font
• format
• forms
• horizontalrule
• htmlwriter
• image
• iframe
• indent
• itemselector
• justify
• link
• list
• liststyle
• lfrpopup
• magicline
• media
• newpage
• pagebreak
• pastefromword
• pastetext
• preview
• removeformat
• resize
• restore
• selectall
• showblocks

1800

https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/a11yhelp/plugin.js
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/a11yhelpbtn/plugin.js
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/ajaxsave/plugin.js
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/autocomplete/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/basicstyles/plugin.js
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/bbcode/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/bidi/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/blockquote/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/clipboard/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/colorbutton/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/colordialog/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/contextmenu/plugin.js
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/creole/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/dialogadvtab/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/div/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/elementspath/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/enterkey/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/entities/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/filebrowser/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/find/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/flash/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/floatingspace/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/font/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/format/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/forms/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/horizontalrule/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/htmlwriter/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/image/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/iframe/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/indent/plugin.js
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/itemselector/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/justify/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/link/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/list/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/liststyle/plugin.js
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/lfrpopup/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/magicline/plugin.js
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/media/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/newpage/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/pagebreak/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/pastefromword/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/pastetext/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/preview/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/removeformat/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/resize/plugin.js
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/restore/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/selectall/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/showblocks/plugin.js

• showborders
• smiley
• sourcearea
• specialchar
• stylescombo
• tab
• table
• tabletools
• templates
• toolbar
• undo
• wikilink
• wysiwygarea

Note: The following CKEditor plugins are not available for inline mode in AlloyEditor at this
time, but you can still use them in the classic CKEditor:

• maximize
• print
• save

To use the Classic CKEditor instead of AlloyEditor, there are a few properties to set, depending
on the portlet. Add the properties that you need to your portal-ext.properties file:

editor.wysiwyg.default=ckeditor

editor.wysiwyg.portal-impl.portlet.ddm.text_html.ftl=ckeditor

editor.wysiwyg.portal-web.docroot.html.portlet.announcements.edit_entry.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.portlet.blogs.edit_entry.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.portlet.mail.edit.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.portlet.mail.edit_message.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.portlet.message_boards.edit_message.html.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.taglib.ui.discussion.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.taglib.ui.email_notification_settings.jsp=ckeditor

161.12 AlloyEditor Button Reference Guide

This reference guide provides additional information that you may find helpful while creating new
buttons for AlloyEditor. In this guide provides useful information on the following topics:

• Mixins

Mixins

When creating a new button for the Alloy Editor, several mixins are available that make it easy to
provide additional functionality. The available mixins, along with a brief description and a link to
their API docs, are listed below:

• ButtonActionStyle: provides applying style implementation for a button based on the
applyStyle and removeStyle API of CKEDITOR

1801

https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/showborders/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/smiley/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/sourcearea/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/specialchar/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/stylescombo/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/tab/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/table/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/tabletools/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/templates/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/toolbar/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/undo/plugin.js
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/wikilink/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/wysiwygarea/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/maximize/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/print/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/save/plugin.js
https://github.com/liferay/liferay-portal/blob/7.1.x/portal-impl/src/portal.properties#L5484-L5493
https://github.com/liferay/alloy-editor/tree/master/src/ui/react/src/components/base/button-action-style

• ButtonCommandActive: provides an isActivemethod to determine if a context-aware com-
mand is currently in an active state.

• ButtonCommand: executes a command via CKEDITOR’s API
• ButtonKeystroke: provides a keystroke prop that allows configuring a function of the instance
to be invoked upon the keystroke activation. https://docs-old.ckeditor.com/ckeditor_api/sym-
bols/CKEDITOR.dom.event.html#getKeystroke

• ButtonCfgProps: provides a style prop and some methods to apply the resulting style and
checking if it is present in a given path or selection.

• ButtonStateClasses: decorates the domElement of a component with different CSS classes
based on the current state of the element.

• ButtonStyle: provides a style prop and somemethods to apply the resulting style and checking
if it is present in a given path or selection.

• ToolbarButtons: provides a list of buttons which have to be displayed on the current toolbar
depending on user preferences and given state.

161.13 Fully Qualified Portlet IDs

Below is a listing of the portlet IDs for the default portlets in Liferay DXP. You can use these IDs to
embed portlets in your theme’s sitemap.

Collaboration

Portlet ID

Blogs com_liferay_blogs_web_portlet_BlogsPortlet

Blogs Aggregator com_liferay_blogs_web_portlet_BlogsAgreggatorPortlet

Calendar com_liferay_calendar_web_portlet_CalendarPortlet

Dynamic Data Lists Display com_liferay_dynamic_data_lists_web_portlet_DDLDisplayPortlet

Form com_liferay_dynamic_data_mapping_form_web_portlet_DDMFormPortlet

Invite Members com_liferay_invitation_invite_members_web_portlet_InviteMembersPortlet

Message Boards com_liferay_message_boards_web_portlet_MBPortlet

Recent Bloggers com_liferay_blogs_recent_bloggers_web_portlet_RecentBloggersPortlet

Community

Portlet ID

My Sites com_liferay_site_my_sites_web_portlet_MySitesPortlet

Page Comments com_liferay_comment_page_comments_web_portlet_PageCommentsPortlet

Page Flags com_liferay_flags_web_portlet_PageFlagsPortlet

Page Ratings com_liferay_ratings_page_ratings_web_portlet_PageRatingsPortlet

Content Management

1802

https://alloyeditor.com/api/1.5.0/ButtonCommandActive.html
https://alloyeditor.com/api/1.5.0/ButtonCommand.html
https://alloyeditor.com/api/1.5.0/ButtonKeystroke.html
https://alloyeditor.com/api/1.5.0/ButtonCfgProps.html
https://alloyeditor.com/api/1.5.0/ButtonStateClasses.html
https://alloyeditor.com/api/1.5.0/ButtonStyle.html
https://alloyeditor.com/api/1.5.0/ToolbarButtons.html

Portlet ID

Asset Publisher com_liferay_asset_publisher_web_portlet_AssetPublisherPortlet

Breadcrumb com_liferay_site_navigation_breadcrumb_web_portlet_SiteNavigationBreadcrumbPortlet

Categories Navigation com_liferay_asset_categories_navigation_web_portlet_AssetCategoriesNavigationPortlet

Documents and Media com_liferay_document_library_web_portlet_DLPortlet

Highest Rated Assets com_liferay_asset_publisher_web_portlet_HighestRatedAssetsPortlet

Knowledge Base Article com_liferay_knowledge_base_web_portlet_ArticlePortlet

Knowledge Base Display com_liferay_knowledge_base_web_portlet_DisplayPortlet

Knowledge Base Search com_liferay_knowledge_base_web_portlet_SearchPortlet

Knowledge Base Section com_liferay_knowledge_base_web_portlet_SectionPortlet

Media Gallery com_liferay_document_library_web_portlet_IGDisplayPortlet

Most Viewed Assets com_liferay_asset_publisher_web_portlet_MostViewedAssetsPortlet

Navigation Menu com_liferay_site_navigation_menu_web_portlet_SiteNavigationMenuPortlet

Nested Applications com_liferay_nested_portlets_web_portlet_NestedPortletsPortlet

Polls Display Portlet com_liferay_polls_web_portlet_PollsDisplayPortlet

Related Assets com_liferay_asset_publisher_web_portlet_RelatedAssetsPortlet

Site Map com_liferay_site_navigation_site_map_web_portlet_SiteNavigationSiteMapPortlet

Sites Directory com_liferay_site_navigation_directory_web_portlet_SitesDirectoryPortlet

Tag Cloud com_liferay_asset_tags_navigation_web_portlet_AssetTagsCloudPortlet

Tags Navigation com_liferay_asset_tags_navigation_web_portlet_AssetTagsNavigationPortlet

Web Content Display com_liferay_journal_content_web_portlet_JournalContentPortlet

News

Portlet ID

Alerts com_liferay_announcements_web_portlet_AlertsPortlet

Announcements com_liferay_announcements_web_portlet_AnnouncementsPortlet

Recent Content Portlet com_liferay_asset_publisher_web_portlet_RecentContentPortlet

Sample

Portlet ID

HelloWorld com_liferay_hello_world_web_portlet_HelloWorldPortlet

IFrame com_liferay_iframe_web_portlet_IFramePortlet

Search

Portlet ID

Category Facet com_liferay_portal_search_web_category_facet_portlet_CategoryFacetPortlet

1803

Portlet ID

Custom Facet com_liferay_portal_search_web_custom_facet_portlet_CustomFacetPortlet

Folder Facet com_liferay_portal_search_web_folder_facet_portlet_FolderFacetPortlet

Modified Facet com_liferay_portal_search_web_modified_facet_portlet_ModifiedFacetPortlet

Search Bar com_liferay_portal_search_web_search_bar_portlet_SearchBarPortlet

Search Insights com_liferay_portal_search_web_search_insights_portlet_SearchInsightsPortlet

Search Options com_liferay_portal_search_web_search_options_portlet_SearchOptionsPortlet

Search Results com_liferay_portal_search_web_search_results_portlet_SearchResultsPortlet

Site Facet com_liferay_portal_search_web_site_facet_portlet_SiteFacetPortlet

Suggestions com_liferay_portal_search_web_suggestions_portlet_SuggestionsPortlet

Tag Facet com_liferay_portal_search_web_tag_facet_portlet_TagFacetPortlet

Type Facet com_liferay_portal_search_web_type_facet_portlet_TypeFacetPortlet

User Facet com_liferay_portal_search_web_user_facet_portlet_UserFacetPortlet

Social

Portlet ID

Activities com_liferay_social_activities_web_portlet_SocialActivitiesPortlet

Contacts Center com_liferay_contacts_web_portlet_ContactsCenterPortlet

Members com_liferay_social_networking_web_members_portlet_MembersPortlet

My Contacts com_liferay_contacts_web_portlet_MyContactsPortlet

Profile com_liferay_contacts_web_portlet_ProfilePortlet

Tools

Portlet ID

Language Selector com_liferay_site_navigation_language_web_portlet_SiteNavigationLanguagePortlet

Search com_liferay_portal_search_web_portlet_SearchPortlet

Sign In com_liferay_login_web_portlet_LoginPortlet

Wiki

Portlet ID

Page Menu com_liferay_wiki_navigation_web_portlet_WikiNavigationPageMenuPortlet

Tree Menu com_liferay_wiki_navigation_web_portlet_WikiNavigationTreeMenuPortlet

Wiki com_liferay_wiki_web_portlet_WikiPortlet

Wiki Display com_liferay_wiki_web_portlet_WikiDisplayPortlet

1804

161.14 FreeMarker Taglib Macros

Liferay DXP’s taglibs are mapped to FreeMarker macros, so you can use them in your FreeMarker
templates. See the Taglib tutorials for more information on using each taglib in your theme
templates. The taglib macros are defined in taglib-mappings.properties files. For convenience,
these macros are listed in the table below:

Macro
Taglib
TLD
liferay_aui
liferay-aui
liferay-aui.tld
liferay_portlet
liferay-portlet
liferay-portlet-ext.tld
liferay_security
liferay-security
liferay-security.tld
liferay_theme
liferay-theme
liferay-theme.tld
liferay_ui
liferay-ui
liferay-ui.tld
liferay_util
liferay-util
liferay-util.tld
portlet
portlet
liferay-portlet.tld
liferay_frontend
liferay-frontend
liferay-frontend.tld
clay
clay
liferay-clay.tld
liferay_map
liferay-map
liferay-map.tld
liferay_rss
liferay-rss
liferay-rss.tld
liferay_flags
liferay-flags
liferay-flags.tld
liferay_expando
liferay-expando

1805

liferay-expando.tld
liferay_journal
liferay-journal
liferay-journal.tld
liferay_social_bookmarks
liferay-social-bookmarks
liferay-social-bookmarks.tld
liferay_site
liferay-site
liferay-site.tld
liferay_comment
liferay-comment
liferay-comment.tld
liferay_social_activities
liferay-social-activities
liferay-social-activities.tld
liferay_asset
liferay-asset
liferay-asset.tld
liferay_trash
liferay-trash
liferay-trash.tld
liferay_item_selector
liferay-item-selector
liferay-item-selector.tld
liferay_layout
liferay-layout
liferay-layout.tld
liferay_editor
liferay-editor
liferay-editor.tld
liferay-fragment
liferay-fragment
liferay-fragment.tld
liferay_reading_time
liferay-reading-time
liferay-reading-time.tld
liferay_site_navigation
liferay-site-navigation
liferay-site-navigation.tld
adaptive_media_image
liferay-adaptive-media
liferay-adaptive-media.tld
liferay_product_navigation
liferay-product-navigation
liferay-product-navigation.tld

1806

161.15 Setting up Your npm Environment

If you’re using npm for development in Liferay DXP, you should set up your npm environment to
avoid potential permissions issues. Follow these steps to configure your npm environment:

1. Create an .npmrc file in your user’s home directory. This helps bypass npm permission-related
issues.

2. In the .npmrc file, specify a prefix property based on your user’s home directory, like the one
shown below. This value specifies where to install global npm packages:

prefix=/Users/[username]/.npm-packages

3. Set the NPM_PACKAGES system environment variable to the prefix value you just specified:

NPM_PACKAGES=/Users/[username]/.npm-packages (same as prefix value)

4. Since npm installs Yeoman and gulp executables to ${NPM_PACKAGES}/bin on UNIX and to
%NPM_PACKAGES% onWindows, make sure to add the appropriate directory to your system path.
For example, on UNIX you’d set this:

PATH=${PATH}:${NPM_PACKAGES}/bin

161.16 Liferay JS Generator

This reference section covers these topics for the Liferay JS Generator:

• Understanding the JS Portlet Extender’s Configuration
• A reference list of available commands for the Liferay JS Generator
• Configuration JSON options

161.17 Understanding the JS Portlet Extender Configuration

Bundles generated with the Liferay JS Generator require specific method signatures, MANIFEST
headers, and configuration within their package.json file to use the JS Portlet Extender. This
configuration is provided by default. For reference, this configuration is covered in detail below.

Manifest Header

The OSGi bundle is identified with the MANIFEST header shown below, which specifies to process
it with the JS Portlet Extender:

Require-Capability: osgi.extender;filter:="(osgi.extender=liferay.npm.portlet)"

1807

Main Entry Point

The main module of your JavaScript widget must export a JavaScript function with the signature
below. Bundles created with the Liferay JS Generator have this out-of-the-box:

function({portletNamespace, contextPath, portletElementId, configuration}) {

...

}

The entry point function receives one object parameter with four fields:

• portletNamespace: the unique namespace of the widget as defined in the Portlet specification.

• contextPath: the URL path that can be used to retrieve bundle resources from the browser (it
doesn’t contain the protocol, host, or port, just the absolute path).

• portletElementId: the DOM identifier of the widget’s <div> node that can be used to render
HTML.

• configuration (optional): since JS Portlet Extender version 1.1.0, this field contains the system
(OSGi) and portlet instance (preferences as described in the Portlet spec) configuration for
the widget. It has two subfields:

– system: contains the system level configuration (defined in Control Panel → System
Settings)

– portletInstance: contains the per-widget configuration (defined in the Configuration
menu option of the widget)

Note that all values are received as strings, no matter what their type is in OSGi configuration
store.

The JavaScript-based widget’s main index.js file configuration is shown below for reference.
Note that system settings and localization are enabled in the example below:

export default function main({portletNamespace, contextPath, portletElementId, configuration}) {

const node = document.getElementById(portletElementId);

node.innerHTML =`

<div>

${Liferay.Language.get('porlet-namespace')}:

${portletNamespace}

</div>

<div>

${Liferay.Language.get('context-path')}:

${contextPath}

</div>

<div>

${Liferay.Language.get('portlet-element-id')}:

${portletElementId}

</div>

<div>

${Liferay.Language.get('configuration')}:

${JSON.stringify(configuration, null, 2)}

</div>

1808

`;

}

The JavaScript file containing the main entry point function is specified in the main entry of the
package.json file. Below is the main entry for the JavaScript based portlet:

"main": "index.js"

161.18 Liferay JS Generator Commands

The npm commands shown below are available for the Liferay JS Generator:

• npm run build: Places the output of liferay-npm-bundler in the designated output folder. The
standard output is a JAR file that can be deployed manually to Liferay DXP.

• npm run deploy: Deploys the bundle to the configured app server

• npm run start: Tests the application in a local webpack installation instead of a Liferay DXP
server. This speeds up development because you can see live changes without any need to
deploy. Note, however, that because this is separate from a Liferay instance, you don’t have
access to Liferay’s APIs.

Note: By default, the webpack server uses port 8080. You can point the webpack server to a
different port by setting the port key in .npmbuildrc:

"webpack": {

"port": 2070

}

• npm run translate: Runs the translation features for your bundle. Note that this feature
requires Microsoft Translator credentials. See Using Translation Features in Your widget for
more information.

161.19 Configuring System Settings for OSGi Bundles Created with the liferay-npm-bundler

If you’re creating an OSGi bundle with the Liferay JS Generator and want to provide system settings
for your widget, you must provide a configuration.json file. This reference guide lists the available
configuration options for configuration.json along with example code.

1809

JSON Format

The configuration.jsonmust follow the basic pattern shown below:

{

"system": {

"category": "{category identifier}",

"name": "{name of configuration}",

"fields": {

"{field id 1}": {

"type": "{field type}",

"name": "{field name}",

"description": "{field description}",

"default": "{default value}",

"options": {

"{option id 1}": "{option name 1}",

"{option id 2}": "{option name 2}",

"{option id n}": "{option name n}"

}

},

"{field id 2}": {},

"{field id n}": {}

}

},

"portletInstance": {

"name": "{name of configuration}",

"fields": {

"{field id 1}": {

"type": "{field type}",

"name": "{field name}",

"description": "{field description}",

"default": "{default value}",

"options": {

"{option id 1}": "{option name 1}",

"{option id 2}": "{option name 2}",

"{option id n}": "{option name n}"

}

},

"{field id 2}": {},

"{field id n}": {}

}

}

}

The available options are described in the table below:

1810

Option Value

{category identifier} Describes the identifier of the configuration
category where the settings must be placed. It’s
equivalent to the category field of the
@ExtendedObjectClassDefinition annotation
explained here. The category field of
configuration.json is optional and, when not
set, the project’s name specified in package.json

is used. You need JS Portlet Extender 1.1.0+ for
this feature to work. Otherwise, the system
configuration will show up under Platform →
Third Party in System Settings.

{name of configuration} the configuration’s name as a string or a
localization key. If no value is given, the
bundler falls back to the project’s name, then
description given in package.json.

{field id} the field’s name as a string or a localization key
{field type} specifies the field’s type, which can be one of

the following types: - number: an integer
number - float: a floating point number -
string: a string - boolean: true or false -
password: a password (string)

{field name} the field’s name as a string or a localization key
{field description} an optional string or a localization key that

describes the field’s purpose and appears as
hint text near it

{default value} an optional default value for the field
options an optional section that defines a fixed set of

values for the field
{option id} a string that defines the option’s ID
{option name} the option’s name as a string or a localization

key

An example configuration is shown below:

{

"system": {

"category": "third-party",

"name": "My project",

"fields": {

"a-number": {

"type": "number",

"name": "A number",

"description": "An integer number",

"default": "42"

},

"a-string": {

"type": "string",

"name": "A string",

"description": "An arbitrary length string",

"default": "this is a string"

1811

},

"a-password": {

"type": "password",

"name": "A password",

"description": "A secret string",

"default": "s3.cr3t"

},

"a-boolean": {

"type": "boolean",

"name": "A boolean",

"description": "A true|false value",

"default": true

},

"an-option": {

"type": "string",

"name": "An option",

"description": "A restricted values option",

"required": true,

"default": "A",

"options": {

"A": "Option a",

"B": "Option b"

}

}

}

},

"portletInstance": {

"name": "Widget configuration",

"fields": {

"a-float": {

"type": "float",

"name": "A float",

"description": "A floating point number",

"default": "1.1"

}

}

}

}

1812

CHAPTER 162

SCREENLETS IN LIFERAY SCREENS

Liferay Screens includes several Screenlets that you can use in your mobile apps. Screenlets are
ready-to-use components that contain a complete UI and the code necessary to call Liferay DXP’s
remote services for tasks like logging in, displaying portal content, submitting forms, and much
more.

This section contains each Screenlet’s reference documentation in separate sections for Android
and iOS. Each document in these sections lists a Screenlet’s features, compatibility, available Views,
attributes, listener methods, and more:

• Screenlets in Liferay Screens for Android
• Screenlets in Liferay Screens for iOS

Note: This section only contains Screenlet reference documentation. For instructional infor-
mation on installing, using, and customizing Liferay Screens and its Screenlets, see the Screens
tutorials for Android and iOS.

1813

CHAPTER 163

SCREENLETS IN LIFERAY SCREENS FOR ANDROID

Liferay Screens for Android contains several Screenlets that you can use in your Android apps. This
section contains the reference documentation for each. If you’re looking for instructions on using
Screens, see the Screens tutorials. The Screens tutorials contain instructions on using Screenlets
and using views in Screenlets. Each Screenlet reference document here lists the Screenlet’s features,
compatibility, its module (if any), available Views, attributes, listener methods, and more. The
available Screenlets are listed here with links to their reference documents:

• Login Screenlet: Signs users in to a Liferay DXP instance.

• Sign Up Screenlet: Registers new users in a Liferay DXP instance.

• Forgot Password Screenlet: Sends emails containing a new password or password reset link
to users.

• User Portrait Screenlet: Show the user’s portrait picture.

• DDL Form Screenlet: Presents dynamic forms to be filled out by users and submitted back to
the server.

• DDL List Screenlet: Shows a list of records based on a pre-existing DDL in a Liferay DXP
instance.

• Asset List Screenlet: Shows a list of assets managed by the Asset Framework. This includes
web content, blog entries, documents, users, and more.

• Web Content Display Screenlet: Shows the web content’s HTML or structured content. This
Screenlet uses the features available in Web Content Management.

• Web Content List Screenlet: Shows a list of web contents from a folder, usually based on a
pre-existing DDMStructure.

• Image Gallery Screenlet: Shows a list of images from a folder. This Screenlet also lets users
upload and delete images.

• Rating Screenlet: Shows the rating for an asset. This Screenlet also lets the user update or
delete the rating.

1815

• Comment List Screenlet: Shows a list of comments for an asset.

• Comment Display Screenlet: Shows a single comment for an asset.

• Comment Add Screenlet: Lets the user comment on an asset.

• Asset Display Screenlet: Displays an asset. Currently, this Screenlet can display Documents
and Media Library files (DLFileEntry entities), blog articles (BlogsEntry entities), and web
content articles (WebContent entities). You can also use it to display custom assets.

• Blogs Entry Display Screenlet: Shows a single blog entry.

• Image Display Screenlet: Shows a single image file from the Documents and Media Library.

• Video Display Screenlet: Shows a single video file from the Documents and Media Library.

• Audio Display Screenlet: Shows a single audio file from the Documents and Media Library.

• PDF Display Screenlet: Shows a single PDF file from the Documents and Media Library.

• WebScreenlet: Displays anywebpage. You can also customize thewebpage through injection
of local and remote JavaScript and CSS files.

163.1 Login Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Login Screenlet lets you authenticate portal users in your Android app. The following types of
authentication are supported:

• Basic: uses user login and password according to HTTP Basic Access Authentication specifi-
cation. Depending on the authentication method used by your Liferay instance, you need
to provide the user’s email address, screen name, or user ID. You also need to provide the
user’s password.

• OAuth: implements OAuth 2.

1816

http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
https://oauth.net/2/

• Cookie: uses a cookie to log in. This lets you access documents and images in the portal’s
document library without the guest view permission in the portal. The other authentication
types require this permission to access such files.

For instructions on configuring the Screenlet to use these authentication types, see the below
Portal Configuration and Screenlet Attributes sections.

When a user successfully authenticates, their user attributes are retrieved for use in the app.
You can use the SessionContext class to get the current user’s attributes.

Note that user credentials and attributes can be stored in an app’s data store (see the
saveCredentials attribute). Android’s SharedPreferences is currently the only data store imple-
mented. However, new and more secure data stores will be added in the future. Stored user
credentials can be used to automatically log the user in to subsequent sessions. To do this, you can
use the method SessionContext.loadStoredCredentials().

JSON Services Used

Screenlets in Liferay Screens call the portal’s JSON web services. This Screenlet calls the following
services and methods.

Service Method Notes

UserService getUserByEmailAddress Basic login
UserService getUserByScreenName Basic login
UserService getUserById Basic login
UserService getCurrentUser Cookie and OAuth login

Module

• Auth

Views

• Default
• Material

For instructions on using these Views, see the layoutId attribute in the Attributes section below.

Portal Configuration

Basic Authentication

Before using Login Screenlet, you should make sure your portal is configured with the authenti-
cation option you want to use. You can choose email address, screen name, or user ID. You can
set this in the Control Panel by selecting Configuration → Instance Settings, and then selecting the
Authentication section. The authentication options are in the How do users authenticate? selector
menu. For more information, see the User Guide’s authentication section.

1817

Figure 163.1: The Login Screenlet using the Default (left) and Material (right) Viewsets.

1818

Figure 163.2: Set the authentication method in your Liferay DXP instance.

OAuth Authentication

For instructions on using OAuth with Login Screenlet, see the tutorial on using OAuth 2 with Liferay
Screens.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity. If you need to log in
users automatically, even when there’s no network connection, you can use the credentialsStorage

attribute together with the SessionContext.loadStoredCredentialsmethod.

Required Attributes

• None

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The ID of the View’s layout. You can set
this attribute to @layout/login_default (Default View) or @layout/login_material (Material View). To
use the Material View, you must first install the Material View Set. Click here for instructions on
installing and using Views and View Sets, including the Material View Set. | companyId | number | The
ID of the portal instance to authenticate to. If you don’t set this attribute or set it to 0, the Screenlet
uses the companyId setting in LiferayServerContext. | loginMode | enum | The Screenlet’s authentication
type. You can set this attribute to basic, cookie, oauth2Redirect, or oauth2UsernameAndPassword. If
you don’t set this attribute, the Screenlet defaults to basic authentication. | basicAuthMethod | string
| Specifies the authentication option to use with basic or cookie authentication. You can set this
attribute to email, screenName or userId. This must match the server’s authentication option. If
you don’t set this attribute, and don’t set the loginMode attribute to one of the OAuth values or
cookie, the Screenlet defaults to basic authentication with the email option. | oauth2Redirect |

1819

string | The URL that the mobile browser will redirect the user to after successful login. You must
configure this in the portal’s OAuth 2 Admin portlet, and associate the URL with the Android
app. | oauth2ClientId | string | The ID of the OAuth 2 application in the portal. You can find this
value in the portal’s OAuth 2 Admin portlet. | oauth2ClientSecret | string | The client secret of the
OAuth 2 application in the portal. You can find this value in the portal’s OAuth 2 Admin portlet.
| oauth2Scopes | string | The portal permissions to request. You can define a set of permissions
associated with an OAuth 2 application in the portal’s OAuth 2 Admin portlet. Use this attribute to
request a subset of those permissions. Separate multiple scopes with a space (e.g., "scope1 scope2

scope3"). | credentialsStorage | enum | Sets the mode for storing user credentials. The possible
values are none, auto, and shared_preferences. If set to shared_preferences, the user credentials and
attributes are stored using Android’s SharedPreferences class. If set to none, user credentials and
attributes aren’t saved at all. If set to auto, the best of the available storagemodes is used. Currently,
this is equivalent to shared_preferences. The default value is none. | shouldHandleCookieExpiration
| bool | Whether to refresh the cookie automatically when using cookie login. When set to true

(the default value), the cookie refreshes as it’s about to expire. | cookieExpirationTime | int | How
long the cookie lasts, in seconds. This value depends on your portal instance’s configuration. The
default value is 900. | authenticator | Authenticator | An instance of a class that implements the
Authenticator interface. The Challenge-Response Authentication section below discusses this further.
|

Listener

The Login Screenlet delegates some events to an object that implements the LoginListener interface.
This interface let you implement the following methods:

• onLoginSuccess(User user): Called when login successfully completes. The user parameter
contains a set of the logged in user’s attributes. The supported keys are the same as those in
the portal’s User entity.

• onLoginFailure(Exception e): Called when an error occurs in the process.

Challenge-Response Authentication

To support challenge-response authentication when using a cookie to log in to the portal, Login
Screenlet has an authenticator attribute. As mentioned in the above Attributes table, this attribute’s
value is a class that implements the Authenticator interface.

Here’s an example of such a class. It sends a basic authorization in response to an authentication
challenge:

public class BasicAuthAutenticator extends BasicAuthentication implements Authenticator {

public BasicAuthAutenticator(String username, String password) {

super(username, password);

}

@Override

public Request authenticate(Proxy proxy, Response response) throws IOException {

String credential = Credentials.basic(username, password);

return response.request().newBuilder().header(Headers.AUTHORIZATION, credential).build();

}

@Override

1820

https://github.com/liferay/liferay-portal/blob/master/portal-impl/src/com/liferay/portal/service.xml#L2575-L2737
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication
https://square.github.io/okhttp/3.x/okhttp/okhttp3/Authenticator.html

public Request authenticateProxy(Proxy proxy, Response response) throws IOException {

return null;

}

}

163.2 Sign Up Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Sign Up Screenlet creates a new user in your Liferay instance: a new user of your app can
become a new user in your portal. You can also use this Screenlet to save new users’ credentials on
their devices. This enables auto login for future sessions. The Screenlet also supports navigation
of form fields from the device’s keyboard.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

UserService addUser

Module

• Auth

Views

• Default
• Material

1821

Figure 163.3: The Sign Up Screenlet with the Default (left) and Material (right) Viewsets.

1822

Portal Configuration

Sign Up Screenlet’s corresponding configuration in the Liferay instance can be set in the Control
Panel by selecting Configuration → Instance Settings, and then selecting the Authentication section.

Figure 163.4: The Liferay instance’s authentication settings.

For more details, see the Authentication section of the User Guide.

Anonymous Requests

Anonymous requests are unauthenticated requests. Authentication is still required, however, to
call the API. To allow this operation, the portal administrator should create a user with minimal
permissions. To use Sign Up Screenlet, you need to use that user in your layout. You should add
that user’s credentials to server_context.xml.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity.

Required Attributes

• anonymousApiUserName

• anonymousApiPassword

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout used to show the View.|
anonymousApiUserName | string | The user’s name, email address, or ID to use for authenticating the
request. The portal’s authentication method defines which of these is used. | anoymousApiPassword |
string | The password used to authenticate the request. | companyId | number | When set, a user in the
specified company is authenticated. If not set, the company specified in LiferayServerContext is
used. | autoLogin | boolean | Sets whether the user is logged in automatically after a successful sign
up. | credentialsStorage | enum | Sets the mode for storing user credentials. The possible values are
none, auto, and shared_preferences. If set to shared_preferences, the user credentials and attributes
are stored using Android’s SharedPreferences class. If set to none, user credentials and attributes
aren’t saved at all. If set to auto, the best of the available storage modes is used. Currently, this

1823

is equivalent to shared_preferences. The default value is none. | basicAuthMethod|enum| Specifies the
authentication method to use after a successful sign up. This must match the authentication
method configured on the server. You can set this attribute to email, screenName or userId. The
default value is email. |

Listener

The Sign Up Screenlet delegates some events to an object that implements the SignUpListener

interface. This interface lets you implement the following methods:

• onSignUpSuccess(User user): Called when sign up successfully completes. The user parameter
contains a set of the created user’s attributes, as defined in the portal’s User entity.

• onSignUpFailure(Exception e): Called when an error occurs in the process.

163.3 Forgot Password Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Forgot Password Screenlet sends an email to registered users with their new passwords or
password reset links, depending on the server configuration. The available authenticationmethods
are

• Email address
• Screen name
• User id

1824

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/User.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

UserService sendPasswordByEmailAddress

UserService sendPasswordByUserId

UserService sendPasswordByScreenName

Module

• Auth

Views

• Default
• Material

Portal Configuration

To use Forgot Password Screenlet, the portal must be configured to allow users to request new
passwords. The below sections show you how to do this.

Authentication Method

The authentication method configured in the portal can be different from the one used by this
Screenlet. For example, it’s perfectly fine to use screenName for sign in authentication, but allow
users to recover their password using the email authentication method.

Password Reset

You can set the Liferay instance’s corresponding password reset options in the Control Panel
by selecting Configuration → Instance Settings, and then selecting the Authentication section. The
Screenlet’s password functionality depends on the authentication settings in the portal:

If these options are both unchecked, password recovery is disabled. If both options are checked,
an email containing a password reset link is sent when a user requests it. If only the first option is
checked, an email containing a new password is sent when a user requests it.

For more details, see the Authentication section of the User Guide.

Anonymous Request

An anonymous request can be made without the user being logged in. However, authentication is
needed to call the API. To allow this operation, the portal administrator should create a specific
user with minimal permissions.

1825

Figure 163.5: The Forgot Password Screenlet with the Default (left) and Material (right) Viewsets.

Figure 163.6: Checkboxes for the password recovery features in your Liferay instance.

1826

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity.

Required Attributes

• anonymousApiUserName

• anonymousApiPassword

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout used to show the View. |
anonymousApiUserName | string | The user name, email address, or userId to use for authenticating the
request. This depends on the portal’s authentication settings. | anonymousApiPassword | string | The
password to use to authenticate the request. | companyId | number | When set, a user within the speci-
fied company is authenticated. If the value is set to 0, the company specified in LiferayServerContext

is used. | basicAuthMethod | string | The authentication method presented to the user. This can be
email, screenName, or userId. The default value is email. |

Listener

The Forgot Password Screenlet delegates some events to an object that implements the
ForgotPasswordListener interface. This interface lets you implement the following methods:

• onForgotPasswordRequestSuccess(boolean passwordSent): Called when a password reset email
is successfully sent. The boolean parameter determines whether the email contains the new
password or a password reset link.

• onForgotPasswordRequestFailure(Exception e): Called when an error occurs in the process.

163.4 User Portrait Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Picasso library

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1827

Features

The User Portrait Screenlet shows the users’ profile pictures. If a user doesn’t have a profile picture,
a placeholder image is shown. The Screenlet allows the profile picture to be edited via the editable

property.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

UserService getUserById

Module

• None

Views

• Default
• Material

Portal Configuration

No additional steps required.

Activity Configuration

The User Portrait Screenlet needs the following user permissions:

<uses-permission android:name="android.permission.CAMERA"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture.

When loading the portrait, the Screenlet supports the following offline mode policies:

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the user portrait from
the portal. If a connection issue occurs, the Screenlet uses the listener to notify the developer
about the error. If the Screenlet loads the portrait, it stores the received image in the local cache for
later use. | Use this policy when you always need to show updated portraits, and show the default
placeholder when there’s no connection. | CACHE_ONLY | The Screenlet loads the user portrait from
the local cache. If the portrait isn’t there, the Screenlet uses the listener to notify the developer
about the error. | Use this policy to show local portraits, without retrieving remote information

1828

Figure 163.7: The User Portrait Screenlet using the Default (left) and Material (right) Views.

1829

under any circumstance. | REMOTE_FIRST | The Screenlet loads the user portrait from the portal.
The Screenlet displays the portrait to the user and stores it in the local cache for later use. If a
connection issue occurs, the Screenlet retrieves the portrait from the local cache. If the portrait
doesn’t exist there, the Screenlet uses the listener to notify the developer about the error. | Use this
policy to show the most recent portrait when connected, but show a potentially outdated version
when there’s no connection. | CACHE_FIRST | If the portrait exists in the local cache, the Screenlet
loads it from there. If it doesn’t exist there, the Screenlet requests the portrait from the portal
and uses the listener to notify the developer about any connection errors. | Use this policy to save
bandwidth and loading time in the event a local (but probably outdated) portrait exists. |

When editing the portrait, the Screenlet supports the following offline mode policies:

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet sends the user portrait to
the portal. If a connection issue occurs, the Screenlet uses the listener to notify the developer
about the error, but it also discards the new portrait. | Use this policy when you need to make sure
portal always has themost recent version of the portrait. | CACHE_ONLY | The Screenlet stores the user
portrait in the local cache. | Use this policy when you need to save the portrait locally, but don’t
want to change the portrait in the portal. | REMOTE_FIRST | The Screenlet sends the user portrait to
the portal. If this succeeds, the Screenlet also stores the portrait in the local cache for later usage.
If a connection issue occurs, the Screenlet stores the portrait in the local cache with the dirty flag
enabled. This causes the portrait to be sent to the portal when the synchronization process runs.
| Use this policy when you need to make sure the Screenlet sends the new portrait to the portal
as soon as the connection is restored. | CACHE_FIRST | The Screenlet stores the user portrait in the
local cache and then sends it to the portal. If a connection issue occurs, the Screenlet stores the
portrait in the local cache with the dirty flag enabled. This causes the portrait to be sent to the
portal when the synchronization process runs. | Use this policy when you need to make sure the
Screenlet sends the new portrait to the portal as soon as the connection is restored. Compared to
REMOTE_FIRST, this policy always stores the portrait in the cache. The REMOTE_FIRST policy only stores
the new image in the cache in the event of a network error or a successful upload. |

Required Attributes

• None

Note that if you don’t set any attributes, the Screenlet loads the logged-in user’s portrait.

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout used to show the View. |
autoLoad | boolean |Whether the portrait should load when the Screenlet is attached to the window. |
userId | number | The ID of the user whose portrait is being requested. If this attribute is set, the male,
portraitId, and uuid attributes are ignored. | male | boolean |Whether the default portrait placeholder
shows a male or female outline. This attribute is used if userId isn’t specified. | portraitId | number
| The ID of the portrait to load. This attribute is used if userId isn’t specified. | uuid | string | The
uuid of the user whose portrait is being requested. This attribute is used if userId isn’t specified. |
editable | boolean | Lets the user change the portrait image by taking a photo or selecting a gallery

1830

picture. | offlinePolicy | enum | Configure the loading and saving behavior in case of connectivity
issues. For more details, read the “Offline” section below. |

Methods

Method | Return | Explanation | load() | void | Starts the request to load the user specified in
the userId property, or the portrait specified in the portraitIdand uuid properties. | upload(int
requestCode,Intent onActivityResultData) | void | Starts the request to upload a profile picture from
the source specified in the requestCode property (gallery or camera), and with the path stored in
the onActivityResultData variable. |

Listener

The User Portrait Screenlet delegates some events to an object that implements the
UserPortraitListener interface. This interface lets you implement the following methods:

• onUserPortraitLoadReceived(Bitmap bitmap): Calledwhen an image is received from the server.
You can then apply image filters (grayscale, for example) and return the new image. You can
return null or the original image supplied as the argument if you don’t want to modify it.

• onUserPortraitUploaded(): Called when the user portrait upload service finishes.

• error(Exception e, String userAction): Called when an error occurs in the process. For
example, an error can occur when receiving or uploading a user portrait. The userAction

argument distinguishes the specific action in which the error occurred.

163.5 DDL Form Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1831

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

DDL Form Screenlet shows a set of fields that can be filled in by the user. Initial or existing values
can be shown in the fields. Fields of the following data types are supported:

• Boolean: A two state value typically represented by a checkbox.
• Date: A formatted date value. The format depends on the device’s current locale.
• Decimal, Integer, and Number: A numeric value.
• Documents & Media: A file stored on the device. It can be uploaded to a specific portal
repository.

• Radio: A set of options to choose from. A single option must be chosen.
• Select: A selection box of options to choose from. A single option must be chosen.
• Text: A single line of text.
• Text Area: Multiple lines of text.

The DDL Form Screenlet also supports the following features:

• Stored records can support a specific workflow.
• A Submit button can be shown at the end of the form.
• Required values and validation for fields can be used.
• Users can traverse the form fields from the keyboard.
• Supports i18n in record values and labels.

There are also a few limitations that you should be aware of when using DDL Form Screenlet.
They are listed here:

• Nested fields in the data definition aren’t supported.
• Selection of multiple items in the Radio and Select data types isn’t supported.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensddlrecordService (Screens
compatibility plugin)

getDDMStructureVersion Load form

ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecord Load record

DLAppService addFileEntry Upload document
DDLRecordService addRecord Submit form
DDLRecordService updateRecord Update form

Module

• DDL

1832

Views

• Default
• Material

The Default View uses a standard vertical ScrollView to show a scrollable list of fields. Other
Views may use different components, such as ViewPager or others, to show the fields. You can find
a sample of this implementation in the DDLFormScreenletPagerView class.

Figure 163.8: DDL Form Screenlet’s Default (left) and Material (right) Views.

Editor Types

Each field defines an editor type. You must define each editor type’s layout by using the following
attributes:

1833

• checkboxFieldLayoutId: The layout to use for Boolean fields.
• dateFieldLayoutId: The layout to use for Date fields.
• numberFieldLayoutId: The layout to use for Number, Decimal, or Integer fields.
• radioFieldLayoutId: The layout to use for Radio fields.
• selectFieldLayoutId: The layout to use for Select fields.
• textFieldLayoutId: The layout to use for Text fields.
• textAreaFieldLayoutId: The layout to use for Text Box fields.
• textDocumentFieldLayoutId: The layout to use for Documents & Media fields.

If you don’t define the editor type’s layout in DDL Form Screenlet’s attributes, the default layout
ddlfield_xxx_default is used, where xxx is the name of the editor type. It’s important to note that
you can change the layout used with any editor type at any point.

Custom Editors

If you want to have a unique appearance for one specific field, you can customize your field’s
editor View by calling the Screenlet’s setCustomFieldLayoutId(fieldName, layoutId) method,
where the first parameter is the name of the field to customize and the second parameter is
the layout to use. You can also create custom editor Views. For examples of this, see the files
ddlfield_custom_rating_number.xml and CustomRatingNumberView.java.

Activity Configuration

DDL Form Screenlet needs the following user permissions:

<uses-permission android:name="android.permission.CAMERA"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

Both are used by the Documents and Media fields to take a picture/video and store it locally
before uploading it to the portal. The Documents and Media fields also need to override the
onActivityResultmethod to receive the picture/video information. Here’s an example implementa-
tion:

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

screenlet.startUploadByPosition(requestCode);

}

Portal Configuration

Before using DDL Form Screenlet, you should make sure that Dynamic Data Lists and Data Types
are configured properly in the portal. Refer to the Creating Data Definitions and Creating Data Lists
sections of the User Guide for more details. If Workflow is required, it must also be configured.
See the UsingWorkflow section of the User Guide for details.

Permissions

To use DDL Form Screenlet to add new records, you must grant the Add Record permission in the
Dynamic Data List in the portal. If you want to use DDL Form Screenlet to view or edit record

1834

Figure 163.9: The permissions for adding, viewing, and editing DDL records.

values, you must also grant the View and Update permissions, respectively. The Add Record, View,
and Update permissions are highlighted by the red boxes in the following screenshot:

Also, if your form includes at least one Documents andMedia field, youmust grant permissions
in the target repository and folder. For more details, see the repositoryId and folderId attributes
below.

Figure 163.10: The permission for adding a document to a Documents and Media folder.

For more details, see the User Guide sections Creating Data Definitions, Creating Data Lists,
and UsingWorkflow.

1835

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture.

When loading the form or record, the Screenlet supports the following offline mode policies:

Policy | What happens |When to use | REMOTE_ONLY | The Screenlet loads the form or record from
the portal. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet loads the form or record, it stores the received data (record structure and
data) in the local cache for later use. | Use this policy when you always need to show updated data,
and show nothing when there’s no connection. | CACHE_ONLY | The Screenlet loads the form or record
from the local cache. If the form or record isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without
retrieving remote information under any circumstance. | REMOTE_FIRST | The Screenlet requests the
form or record from the portal. The Screenlet shows the record or form to the user and stores
it in the local cache for later use. If a connection issue occurs, the Screenlet retrieves the form
or record from the local cache. If the form or record doesn’t exist there, the Screenlet uses the
listener to notify the developer about the error. | Use this policy to show the most recent version of
the data when connected, but show an outdated version when there’s no connection. | CACHE_FIRST
| If the form or record exists in the local cache, the Screenlet loads it from there. If it doesn’t exist
there, the Screenlet requests it from the portal and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

When editing the record, the Screenlet supports the following offline mode policies:

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet sends the record to the portal.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error,
but it also discards the record. | Use this policy to make sure the portal always has the most recent
version of the record. | CACHE_ONLY | The Screenlet stores the record in the local cache. | Use this
policy when you need to save the data locally, but don’t want to update the data in the portal (update
or add record). | REMOTE_FIRST | The Screenlet sends the record to the portal. If this succeeds, it also
stores the record in the local cache for later usage. If a connection issue occurs, then Screenlet
stores the record in the local cache with the dirty flag enabled. This causes the synchronization
process to send the record to the portal when it runs. | Use this policy when you need to make sure
the Screenlet sends the record to the portal as soon as the connection is restored. | CACHE_FIRST
| The Screenlet stores the record in the local cache and then sends it to the remote portal. If a
connection issue occurs, then Screenlet stores the record in the local cache with the dirty flag
enabled. This causes the the synchronization process to send the record to the portal when it runs.
| Use this policy when you need to make sure the Screenlet sends the record to the portal as soon
as the connection is restored. Compared to REMOTE_FIRST, this policy always stores the record in the
cache. The REMOTE_FIRST policy only stores the record in the event of a network error. |

Required Attributes

• structureId

• recordSetId

1836

Attributes

Attribute | Data Type | Explanation | layoutId | @layout | The layout to use to show the
View. | checkboxFieldLayoutId | @layout | The layout to use to show the view for Boolean
fields. | dateFieldLayoutId | @layout | The layout to use to show the view for Date fields. |
numberFieldLayoutId | @layout | The layout to use to show the view for Number, Decimal, and
Integer fields. | radioFieldLayoutId | @layout | The layout to use to show the view for Radio fields. |
selectFieldLayoutId | @layout | The layout to use to show the view for Select fields. | textFieldLayoutId
| @layout | The layout to use to show the view for Text fields. | textAreaFieldLayoutId | @layout | The
layout to use to show the view for Text Box fields. | documentFieldLayoutId | @layout | The layout
to use to show the view for Documents & Media fields. | structureId | number | The ID of a data
definition in your Liferay site. To find the IDs for your data definitions, click Admin → Content from
the Dockbar. Then click Dynamic Data Lists on the left and click the Manage Data Definitions button.
The ID of each data definition is in the ID column of the table. | groupId | number | The ID of the site
(group) where the record is stored. If this value is 0, the groupId specified in LiferayServerContext

is used. | recordSetId | number | A dynamic data list’s ID. To find your dynamic data lists’ IDs, click
Admin → Content from the Dockbar. Then click Dynamic Data Lists on the left. Each dynamic data
list’s ID is in the ID column of the table. | recordId | number | The ID of the record you want to show.
You can also allow the record’s values to be edited. This ID can be obtained from other methods or
listeners. | repositoryId | number | The ID of the Documents and Media repository to upload to. If
this value is 0, the default repository for the site specified by groupId is used. | folderId | number |
The ID of the folder where Documents and Media files are uploaded. If this value is 0, the root is
used. | filePrefix | string | The prefix to attach to the names of files uploaded to a Documents and
Media repository. The upload date followed by the original file name is appended following the
prefix. | autoLoad | boolean | Sets whether the form loads when the Screenlet is shown. If recordId
is set, the record value is loaded together with the form definition. The default value is false. |
autoScrollOnValidation | boolean | Sets whether the form automatically scrolls to the first failed field
when validation is used. The default value is true. | showSubmitButton | boolean | Sets whether the
form shows a submit button at the bottom. If this is set to false, you should call the submitForm()

method. The default value is true. | cachePolicy | string | The offline mode setting. See the Offline
section for details. |

Methods

Method | Return Type | Explanation | loadForm() | void | Starts the request to load the form
definition. The form fields are shown when the response is received. | loadRecord() | void | Starts
the request to load the record specified by recordId. If needed, the form definition also loads. When
the response is received, the form fields are shown filled with record values. | load() | void | Starts
the request to load the record if recordId is specified. Otherwise, the form definition is loaded. |
submitForm() | void | Starts the request to submit form values to the dynamic data list specified by
recordSetId. If the record is new, a new record is added. If loadRecord is used to retrieve the record,
or the record already exists, its values are updated. Fields are validated prior to the request. If
validation fails, the validation errors are shown and the request is terminated. |

1837

Listener

DDL Form Screenlet delegates some events to an object that implements to the DDLFormListener

interface. This interface lets you implement the following methods:

• onDDLFormLoaded(Record record): Called when the form definition successfully loads.

• onDDLFormRecordLoaded(Record record, Map<String, Object> valuesAndAttributes): Called
when the form record data successfully loads.

• onDDLFormRecordAdded(Record record): Called when the form record is successfully added.

• onDDLFormRecordUpdated(Record record): Called when the form record data successfully up-
dates.

• error(Exception e, String userAction): Called when an error occurs in the process. For
example, this method is called when an error occurs while loading a form definition or
record, or adding or updating a record. The userAction variable distinguishes these events.

• onDDLFormDocumentUploaded(DocumentField field): Called when a specified document field’s
upload completes.

• onDDLFormDocumentUploadFailed(DocumentField field, Exception e): Called when a specified
document field’s upload fails.

163.6 DDL List Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The DDL List Screenlet has the following features:

• Shows a scrollable collection of Dynamic Data List (DDL) records.
• Implements fluent pagination with configurable page size.
• Allows record filtering by creator.
• Supports i18n in record values.

1838

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecords With ddlRecordSetId, or
ddlRecordSetId and userId

ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecordsCount

Module

• DDL

Views

• Default
• Material

The Default View uses a standard RecyclerView to show the scrollable list. Other Views may use
a different component, such as ViewPager or others, to show the items.

Portal Configuration

DDLs and Data Types should be configured in the portal before using DDL List Screenlet. For more
details, see the Liferay User Guide sections Creating Data Definitions and Creating Data Lists .

Also, to allow remote calls without the userId, the Liferay Screens Compatibility app must be
installed in your Liferay instance. You can find this app on Liferay Marketplace.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture.

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the list from the portal.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error.
If the Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this
policy when you always need to show updated data, and show nothing when there’s no connection.
| CACHE_ONLY | The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet
uses the listener to notify the developer about the error. | Use this policy when you always need to
show local data, without retrieving remote information under any circumstance. | REMOTE_FIRST |
The Screenlet loads the list from the portal. If this succeeds, the Screenlet shows the list to the user
and stores it in the local cache for later use. If a connection issue occurs, the Screenlet retrieves
the list from the local cache. If the list doesn’t exist there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy to show the most recent version of the data when

1839

https://web.liferay.com/marketplace

Figure 163.11: The DDL List Screenlet using the Default and Material Views.

1840

connected, but show an outdated version when there’s no connection. | CACHE_FIRST | The Screenlet
loads the list from the local cache. If the list isn’t there, the Screenlet requests it from the portal
and notifies the developer about any errors that occur (including connectivity errors). | Use this
policy to save bandwidth and loading time in case you have local (but probably outdated) data. |

Required Attributes

• recordSetId

• labelFields

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View. |
autoLoad | boolean | Defines whether the list should be loaded when it’s presented on the screen.
The default value is true. | recordSetId | number | The ID of the DDL being called. To find your DDLs’
IDs, click Admin → Content from the Dockbar. Then click Dynamic Data Lists on the left. Each
DDL’s ID is in the ID column of the table. | userId | number | The ID of the user to filter records on.
Records aren’t filtered if the userId is 0. The default value is 0. | cachePolicy | string | The offline
mode setting. See the Offline section for details. | firstPageSize | number | The number of items to
retrieve from the server for display on the first page. The default value is 50. | pageSize | number | The
number of items to retrieve from the server for display on the second and subsequent pages. The
default value is 25. | labelFields | string | The comma-separated names of the DDL fields to show.
Refer to the list’s data definition to find the field names. For more information on this, see Creating
Data Definitions. Note that the appearance of these values in your app depends on the layoutId

set. | obcClassName | string | The name of the OrderByComparator class to use to sort the results. Omit
this property if you don’t want to sort the results. Click here to see some comparator classes. Note,
however, that not all of these classes can be used with obcClassName. You can only use comparator
classes that extend OrderByComparator<DDLRecord>. You can also create your own comparator classes
that extend OrderByComparator<DDLRecord>. |

Methods

Method | Return | Explanation | loadPage(pageNumber) | void | Starts the request to load the
specified page of records. The page is shown when the response is received. |

Listener

DDL List Screenlet delegates some events to an object or a class that implements the
BaseListListener interface. This interface lets you implement the following methods:

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page
of items fails. This method’s arguments include the Exception generated when the server call
fails.

1841

https://github.com/liferay/liferay-portal/tree/master/modules/apps/forms-and-workflow/dynamic-data-lists/dynamic-data-lists-api/src/main/java/com/liferay/dynamic/data/lists/util/comparator
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java

• onListPageReceived(int startRow, int endRow, List<Record> records, int rowCount): Called
when the server call to retrieve a page of items succeeds. Note that this method may be
called more than once; once for each page received. Because startRow and endRow change for
each page, a startRow of 0 corresponds to the first item on the first page.

• onListItemSelected(Record records, View view): Called when an item is selected in the list.
This method’s arguments include the selected list item (Record).

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.7 Asset List Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Asset List Screenlet can be used to show asset lists from a Liferay instance. For example, you
can use the Screenlet to show a scrollable list of assets. It also implements fluent pagination with
configurable page size. The Asset List Screenlet can show assets belonging to the following classes:

• BlogsEntry

• BookmarksEntry

• BookmarksFolder

• CalendarEvent

• DLFileEntry

• DDLRecord

• DDLRecordSet

• Group

• JournalArticle (Web Content)
• JournalFolder

• Layout

• LayoutRevision

• MBThread

• MBCategory

1842

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

• MBDiscussion

• MBMailingList

• Organization

• User

• WikiPage

• WikiPageResource

• WikiNode

The Asset List Screenlet also supports i18n in asset values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensddlrecordService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensddlrecordService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

AssetEntryService getEntriesCount

Module

• None

Views

• Default
• Material

The Default Views use a standard RecyclerView to show the scrollable list. Other Views may use
a different component, such as ViewPager or others, to show the items.

Portal Configuration

Dynamic Data Lists (DDL) and Data Types should be configured properly in the portal. Refer to the
Creating Data Definitions
and Creating Data Lists sections of the User Guide for more details.

Also, to allow remote calls without the userId, the Liferay Screens Compatibility app must be
installed in your Liferay instance. You can find this app on Liferay Marketplace.

1843

https://web.liferay.com/marketplace

Figure 163.12: Asset List Screenlet using the Default (left) and Material (right) Views.

1844

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture.

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the list from the portal.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error.
If the Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this
policy when you always need to show updated data, and show nothing when there’s no connection.
| CACHE_ONLY | The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet
uses the listener to notify the developer about the error. | Use this policy when you always need to
show local data, without retrieving remote information under any circumstance. | REMOTE_FIRST |
The Screenlet loads the list from the portal. If this succeeds, the Screenlet shows the list to the user
and stores it in the local cache for later use. If a connection issue occurs, the Screenlet retrieves
the list from the local cache. If the list doesn’t exist there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy to show the most recent version of the data when
connected, but show an outdated version when there’s no connection. | CACHE_FIRST | The Screenlet
loads the list from the local cache. If the list isn’t there, the Screenlet requests it from the portal
and notifies the developer about any errors that occur (including connectivity errors). | Use this
policy to save bandwidth and loading time in case you have local (but probably outdated) data. |

Required Attributes

• classNameId

If you don’t set classNameId, you must set this attribute instead:

• portletItemName

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View.|
autoLoad | boolean |Whether the list should be loaded when it’s presented on the screen. The default
value is true. | groupId | number | The asset’s group (site) ID. If this value is 0, the groupId specified
in LiferayServerContext is used. The default value is 0. | cachePolicy | string | The offline mode
setting. See the Offline section for details. | portletItemName | string | The name of the configuration
template you used in the Asset Publisher. To use this feature, add an Asset Publisher to one of
your site’s pages (it may be a hidden page), configure the Asset Publisher’s filter (in Configuration →
Setup → Asset Selection), and then use the Asset Publisher’s Configuration Templates option to save
this configuration with a name. Use this name in this attribute. | classNameId | number | The asset
class name’s ID. Use values from the portal’s classname_ database table. | firstPageSize | number |
The number of items to retrieve from the server for display on the list’s first page. The default
value is 50. | pageSize | number | The number of items to retrieve from the server for display on the
second and subsequent pages. The default value is 25. | labelFields | string | The comma-separated
names of the DDL fields to show. Refer to the list’s data definition to find the field names. For more
information on this, see Creating Data Definitions. Note that the appearance of these values in your
app depends on the layoutId set. | customEntryQuery | HashMap | The set of keys (string) and values

1845

(string or number) to be used in the AssetEntryQuery object. These values filter the assets returned
by the Liferay instance. |

Methods

Method | Return | Explanation | loadPage(pageNumber) | void | Starts the request to load the
specified page of assets. The page is shown when the response is received. |

Listener

Asset List Screenlet delegates some events to an object or a class that implements the
BaseListListener interface. This interface lets you implement the following methods:

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page
of items fails. This method’s arguments include the Exception generated when the server call
fails.

• onListPageReceived(int startRow, int endRow, List<Model> entries, int rowCount): Called
when the server call to retrieve a page of items succeeds. Note that this method may be
called more than once; once for each page received. Because startRow and endRow change for
each page, a startRow of 0 corresponds to the first item on the first page.

• onListItemSelected(Model entries, View view): Called when an item is selected in the list.
This method’s arguments include the selected list item (Model).

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.8 Web Content Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1846

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/asset/kernel/service/persistence/AssetEntryQuery.html
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

TheWeb Content Display Screenlet shows web content elements in your app, rendering the web
content’s inner HTML. The Screenlet also supports i18n, rendering contents differently depending
on the device’s locale.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

DDMStructureService getStructure

JournalArticleService getArticle

JournalArticleService getArticleContent

ScreensddlrecordService (Screens
compatibility plugin)

getJournalArticleContent With entryQuery

Module

• None

Views

• Default

The Default View uses a standard WebView to render the HTML.

Portal Configuration

For theWeb Content Display Screenlet to function properly, there should be web content in the
Liferay instance your app connects to. Formore details onweb content, see the web content section
of the User Guide.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the content from the
portal. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the content, it stores the data in the local cache for
later use. | Use this policy when you always need to show updated content, and show nothing
when there’s no connection. | CACHE_ONLY | The Screenlet loads the content from the local cache.
If the content isn’t there, the Screenlet uses the listener to notify the developer about the error. |

1847

Figure 163.13: Web Content Display Screenlet using the Default View.

1848

Use this policy when you always need to show local content, without retrieving remote content
under any circumstance. | REMOTE_FIRST | The Screenlet loads the content from the portal. If this
succeeds, the Screenlet shows the content to the user and stores it in the local cache for later use. If
a connection issue occurs, the Screenlet retrieves the content from the local cache. If the content
doesn’t exist there, the Screenlet uses the listener to notify the developer about the error. | Use
this policy to show the most recent version of the content when connected, but show a possibly
outdated version when there’s no connection. | CACHE_FIRST | The Screenlet loads the content from
the local cache. If the content isn’t there, the Screenlet requests it from the portal and notifies
the developer about any errors that occur (including connectivity errors). | Use this policy to save
bandwidth and loading time in case you have local (but probably outdated) content. |

Required Attributes

• articleId

Note that if your web content uses structures and templates, you can use templateId or
structureId in conjunction with articleId.

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout used to show the View. |
groupId | number | The site (group) identifier where the asset is stored. If this value is 0, the groupId

specified in LiferayServerContext is used. | articleId | string | The identifier of the web content to
display. You can find the identifier by clicking Edit on the web content in the portal. | classPK |
number | The corresponding asset’s class primary key. If the web content is an asset (from Asset
List Screenlet, for example), this is the asset’s identifier. This attribute is used only if articleId is
empty. | templateId | number | The identifier of the template used to render the web content. This
only applies to structured web content. | structureId | number | The identifier of the DDMStructure

used to model the web content. This parameter lets the Screenlet retrieve and parse the structure.
| labelFields | string | A comma-delimited list of DDMStructure fields to display in the Screenlet. |
autoLoad | boolean |Whether the content should be retrieved from the portal as soon as the screenlet
appears. Default value is true. | javascriptEnabled | boolean | Enables support for JavaScript. This
is disabled by default. | cachePolicy | string | The offline mode setting. See the Offline section for
details. |

Methods

Method | Return | Explanation | load() | void | Starts the request to load the web content. The
HTML is rendered when the response is received. | getLocalized(String name) | String | Returns the
value, according to the device locale, of a field of the DDMStructure used to render the web content.

Listener

The Web Content Display Screenlet delegates some events to an object that implements the
WebContentDisplayListener interface. This interface lets you implement the following methods:

1849

• onWebContentReceived(WebContent webContent): Called when the web content’s HTML or
DDMStructure is received. The HTML is available by calling the getHtml method. To make
some adaptations, the listener may return a modified version of the HTML. The original
HTML is rendered if the listener returns null.

• onUrlClicked(String url): Called when a URL is clicked. Return true to replace the default
behavior, or false to load the url.

• onWebContentTouched(View view, MotionEvent event): Calledwhen something is touched in the
web content. Return true to replace the default behavior, or false to keep processing the
event.

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.9 Web Content List Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Web Content List Screenlet has the following features:

• Shows a scrollable collection of web content articles.
• Implements fluent pagination with configurable page size.
• Supports i18n in web content values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

JournalArticleService getJournalArticles

JournalArticleService getJournalArticlesCount

1850

http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Module

• None

Views

• Default

The Default View uses a standard RecyclerView to show the scrollable list. Other Views may use
a different component, such as ViewPager or others, to show the items.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the list from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer
about the error. If the Screenlet successfully loads the list, it stores the data in the local cache
for later use. | Use this policy when you always need to show updated data, and show nothing
when there’s no connection. | CACHE_ONLY | The Screenlet loads the list from the local cache. If the
list isn’t there, the Screenlet uses the listener to notify the developer about the error. | Use this
policy when you always need to show local data, without retrieving remote information under
any circumstance. | REMOTE_FIRST | The Screenlet loads the list from the Liferay instance. If this
succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use. If
a connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t
exist there, the Screenlet uses the listener to notify the developer about the error. | Use this policy
to show the most recent version of the data when connected, but show a possibly outdated version
when there’s no connection. | CACHE_FIRST | The Screenlet loads the list from the local cache. If
the list isn’t there, the Screenlet requests it from the Liferay instance and notifies the developer
about any errors that occur (including connectivity errors). | Use this policy to save bandwidth and
loading time in case you have local (but possibly outdated) data. |

Required Attributes

• folderId

• labelFields

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The ID of the layout to use to show the
View. | autoLoad | boolean | Whether the list loads automatically when the Screenlet appears in the
app’s UI. The default value is true. | folderId | number | The ID of the web content folder to retrieve
content from. | groupId | number | The ID of the site (group) where the asset is stored. If set to 0, the
groupId specified in LiferayServerContext is used. The default value is 0. | cachePolicy | string | The
offline mode setting. See the Offline section for details. | firstPageSize | number | The number of
items to retrieve from the server for display on the first page. The default value is 50. | pageSize |

1851

Figure 163.14: The Web Content List Screenlet using the Default View.

1852

number | The number of items to retrieve from the server for display on the second and subsequent
pages. The default value is 25. | labelFields | string | The comma-separated names of the DDM
fields to show. Refer to the list’s data definition to find the field names. For more information on
this, see the article on structured web content. Note that the appearance of data from a structure’s
fields depends on the layoutId. | obcClassName | string | The name of the OrderByComparator class to
use to sort the results. Omit this property if you don’t want to sort the results. Click here to see
some comparator classes. Note, however, that not all of these classes can be used with obcClassName.
You can only use comparator classes that extend OrderByComparator<JournalArticle>. You can also
create your own comparator classes that extend OrderByComparator<JournalArticle>. |

Methods

Method | Return | Explanation | loadPage(pageNumber) | void | Starts the request to load the
specified page of records. The page is shown when the response is received. |

Listener

Web Content List Screenlet delegates some events to an object or a class that implements the
BaseListListener interface. This interface lets you implement the following methods:

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page
of items fails. This method’s arguments include the Exception generated when the server call
fails.

• onListPageReceived(int startRow, int endRow, List<Record> records, int rowCount): Called
when the server call to retrieve a page of items succeeds. Note that this method may be
called more than once; once for each page received. Because startRow and endRow change for
each page, a startRow of 0 corresponds to the first item on the first page.

• onListItemSelected(Record records, View view): Called when an item is selected in the list.
This method’s arguments include the selected list item (Record).

163.10 Image Gallery Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

1853

https://github.com/liferay/liferay-portal/tree/master/modules/apps/web-experience/journal/journal-api/src/main/java/com/liferay/journal/util/comparator
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Image Gallery Screenlet shows a list of images from a Documents and Media folder in a Liferay
instance. You can also use Image Gallery Screenlet to upload images to and delete images from the
same folder. The Screenlet implements fluent pagination with configurable page size, and supports
i18n in asset values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

DLAppService getFileEntries Load
DLAppService getFileEntriesCount

DLAppService addFileEntry Upload
DLAppService deleteFileEntry Delete

Module

• None

Views

The included Views use a standard Android RecyclerView to show the scrollable list. Other custom
Views may use a different component, such as ViewPager or others, to show the items.

This Screenlet has three different Views:

1. Grid (default)
2. Slideshow
3. List

Offline

This Screenlet supports offlinemode so it can function without a network connection when loading
or uploading images (deleting images while offline is unsupported). For more information on how
offline mode works, see the tutorial on its architecture. This Screenlet supports the REMOTE_ONLY,
CACHE_ONLY, REMOTE_FIRST, and CACHE_FIRST offline mode policies.

These policies take the following actions when loading images from a Liferay instance:

1854

Figure 163.15: Image Gallery Screenlet using the Grid, Slideshow, and List Views.

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the list from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer
about the error. If the Screenlet successfully loads the list, it stores the data in the local cache
for later use. | Use this policy when you always need to show updated data, and show nothing
when there’s no connection. | CACHE_ONLY | The Screenlet loads the list from the local cache. If the
list isn’t there, the Screenlet uses the listener to notify the developer about the error. | Use this
policy when you always need to show local data, without retrieving remote information under
any circumstance. | REMOTE_FIRST | The Screenlet loads the list from the Liferay instance. If this
succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use. If
a connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t
exist there, the Screenlet uses the listener to notify the developer about the error. | Use this policy
to show the most recent version of the data when connected, but show an outdated version when
there’s no connection. | CACHE_FIRST | The Screenlet loads the list from the local cache. If the list
isn’t there, the Screenlet requests it from the Liferay instance and notifies the developer about any
errors that occur (including connectivity errors). | Use this policy to save bandwidth and loading
time in case you have local (but probably outdated) data. |

These policies take the following actions when uploading an image to a Liferay instance:

Policy | What happens |When to use | REMOTE_ONLY | The Screenlet sends the image to the Liferay
instance. If a connection issue occurs, the Screenlet uses the delegate to notify the developer
about the error, but it also discards the image. | Use this policy to make sure the Liferay instance
always has the most recent version of the image. | CACHE_ONLY | The Screenlet stores the image in

1855

the local cache. | Use this policy when you need to save the image locally, but don’t want to update
the image in the Liferay instance (delete or add image). | REMOTE_FIRST | The Screenlet sends the
image to the Liferay instance. If this succeeds, it also stores the image in the local cache for later
use. If a connection issue occurs, the Screenlet stores the image in the local cache and sends it
to the Liferay instance when the connection is re-established. | Use this policy when you need
to make sure the Screenlet sends the image to the Liferay instance as soon as the connection is
restored. | CACHE_FIRST | The Screenlet stores the image in the local cache and then attempts to
send it to the Liferay instance. If a connection issue occurs, the Screenlet sends the image to the
Liferay instance when the connection is re-established. | Use this policy when you need to make
sure the Screenlet sends the image to the Liferay instance as soon as the connection is restored.
Compared to REMOTE_FIRST, this policy always stores the image in the cache. The REMOTE_FIRST policy
only stores the image in the event of a network error. |

Required Attributes

• folderId

• repositoryId

Attributes

Attribute | Data type | Explanation | repositoryId | number | The ID of the Liferay instance’s
Documents and Media repository that contains the image gallery. If you’re using a site’s default
Documents and Media repository, then the repositoryIdmatches the site ID (groupId). | folderId
| number | The ID of the Documents and Media repository folder that contains the image gallery.
When accessing the folder in your browser, the folderId is at the end of the URL. | cachePolicy |
string | The offline mode setting. See the Offline section for details. | firstPageSize | number | The
number of items to display on the first page. The default value is 50. | pageSize | number | The number
of items to display on second and subsequent pages. The default value is 25. | mimeTypes | string |
The comma-separated list of MIME types for the Screenlet to support. | autoLoad | boolean | Whether
the list automatically loads when the Screenlet appears in the app’s UI. The default value is true.
| layoutId | @layout | The layout to use to show the View. | obcClassName | string | The name of the
OrderByComparator class to use to sort the results. Omit this property if you don’t want to sort the
results. Note that you can only use comparator classes that extend OrderByComparator<DLFileEntry>.
Liferay contains no such comparator classes. You must therefore create your own by extending
OrderByComparator<DLFileEntry>. To see examples of some comparator classes that extend other
Document Library classes, click here. |

Methods

Method | Return | Explanation | loadPage(pageNumber) | void | Starts the request to load the
specified page of images. The page is shown when the response is received. |

1856

https://github.com/liferay/liferay-portal/tree/master/portal-impl/src/com/liferay/portlet/documentlibrary/util/comparator

Listener

Image Gallery Screenlet delegates some events to an object or class that implements its
ImageGalleryListener interface. This interface extends the BaseListListener interface. Therefore,
Image Gallery Screenlet’s listener methods are as follows:

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page
of items fails. This method’s arguments include the Exception generated when the server call
fails.

• onListPageReceived(int startRow, int endRow, List<Record> records, int rowCount): Called
when the server call to retrieve a page of items succeeds. Note that this method may be
called more than once; once for each page received. Because startRow and endRow change for
each page, a startRow of 0 corresponds to the first item on the first page.

• onListItemSelected(Record records, View view): Called when an item is selected in the list.
This method’s arguments include the selected list item (Record).

• onImageEntryDeleted(long imageEntryId): Called when an item in the list is deleted.

• onImageUploadStarted(String picturePath, String title, String description, String

changelog): Called when an item is prepared for upload.

• onImageUploadProgress(int totalBytes, int totalBytesSent): Called when an item is upload-
ing.

• onImageUploadEnd(ImageEntry entry): Called when an item finishes uploading.

• showUploadImageView(String actionName, String picturePath, int screenletId): Called when
the View for uploading an image is instantiated. The default behavior is to show the default
View in a dialog. To retain this behavior, all this method needs to do is return false. To
change the default behavior, use the initializeUploadView method to initialize a custom
View that extends BaseDetailUploadView. Then return true to prevent the Screenlet from
executing the default behavior. For example, the following sample implementation uses
initializeUploadView to initialize the customView instance uploadDetailView. It then performs
a custom UI action (uploadImageCard.goRight()) and returns true:

@Override

public boolean showUploadImageView(String actionName, String picturePath, int screenletId) {

uploadDetailView.initializeUploadView(actionName, picturePath, screenletId);

uploadImageCard.goRight();

return true;

}

• provideImageUploadDetailView(): Called when the Screenlet provides the image upload View.
To inflate the default View, return 0 in this method. Alternatively, display this View with a
custom layout by returning its layout ID. Such a layout must have DefaultUploadDetailView as
its root class.

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

1857

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/imagegallery/ImageGalleryListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java

163.11 Rating Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Rating Screenlet shows an asset’s rating. It also lets users update or delete the rating. This Screenlet
comes with different Views that display ratings as thumbs, stars, and emojis.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensratingsentryService (Screens
compatibility plugin)

getRatingsEntries With entryId

ScreensratingsentryService (Screens
compatibility plugin)

getRatingsEntries With classPK and
className

ScreensratingsentryService (Screens
compatibility plugin)

updateRatingsEntry

ScreensratingsentryService (Screens
compatibility plugin)

deleteRatingsEntry

Module

• None

1858

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Views

The default View uses an Android RatingBar to show an asset’s rating. Other custom Views may
show the rating with a different Android component such as Button, ImageButton, or others.

This Screenlet has five different Views:

1. Like
2. Thumbs (default)
3. Stars
4. Reactions
5. Emojis

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | CACHE_ONLY | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
REMOTE_FIRST | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | CACHE_FIRST | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• entryId

If you don’t use entryId, you must use both of the following attributes:

• className

• classPK

1859

https://developer.android.com/reference/android/widget/RatingBar.html

Figure 163.16: Rating Screenlet’s different Views.

1860

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The IDof the layout to use to show theView.
| autoLoad | boolean |Whether the rating loads automatically when the Screenlet appears in the app’s
UI. The default value is true. | editable | boolean |Whether the user can change the rating. | entryId |
number | The primary key of the asset with the rating to display. | className | string | The asset’s fully
qualified class name. For example, a blog entry’s className is com.liferay.blogs.model.BlogsEntry.
The className attribute is required when using it with classPK to instantiate the Screenlet. | classPK |
number | The asset’s unique identifier. Only use this attribute when also using className to instantiate
the Screenlet. | groupId | number | The ID of the site (group) containing the asset. | cachePolicy |
string | The offline mode setting. See the Offline section for details. |

Methods

Method | Return | Explanation | load() | void | Starts the request to load the asset’s ratings. |

Listener

Rating Screenlet delegates some events to an object or class that implements its RatingListener

interface. Therefore, Rating Screenlet’s listener methods are as follows:

• onRatingOperationSuccess(AssetRating assetRating): Called when the operation finishes suc-
cessfully and the rating is loaded.

163.12 Comment List Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Comment List Screenlet can list all the comments of an asset in a Liferay instance. It also lets the
user update or delete comments.

1861

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/rating/RatingListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/rating/RatingListener.java
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

getComments

ScreenscommentService (Screens
compatibility plugin)

getCommentsCount

Module

• None

Views

• Default

The Default View uses an Android RecyclerView to show an asset’s comments. Other Views may
use a different component, such as TableView or others, to show the items.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the comments from
the Liferay instance. If a connection issue occurs, the Screenlet uses the listener to notify the
developer about the error. If the Screenlet successfully loads the comments, it stores the data in
the local cache for later use. | Use this policy when you always need to show updated data, and
show nothing when there’s no connection. | CACHE_ONLY | The Screenlet loads the comments from
the local cache. If the data isn’t there, the Screenlet uses the listener to notify the developer about
the error. | Use this policy when you always need to show local data, without retrieving remote
information under any circumstance. | REMOTE_FIRST | The Screenlet loads the comments from the
Liferay instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local
cache for later use. If a connection issue occurs, the Screenlet retrieves the data from the local
cache. If the data doesn’t exist there, the Screenlet uses the listener to notify the developer about
the error. | Use this policy to show the most recent version of the data when connected, but show
an outdated version when there’s no connection. | CACHE_FIRST | The Screenlet loads the comments
from the local cache. If the data isn’t there, the Screenlet requests it from the Liferay instance and
notifies the developer about any errors that occur (including connectivity errors). | Use this policy
to save bandwidth and loading time in case you have local (but probably outdated) data. |

1862

https://developer.android.com/training/material/lists-cards.html

Figure 163.17: Comment List Screenlet using the Default View.

1863

Required Attributes

• className

• classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View. |
autoLoad | boolean | Whether the list should automatically load when the Screenlet appears in the
app’s UI. The default value is true. | cachePolicy | string | The offline mode setting. See the Offline
section for details. | className | string | The asset’s fully qualified class name. For example, a blog
entry’s className is com.liferay.blogs.model.BlogsEntry. The className and classPK attributes are
required to instantiate the Screenlet. | classPK | number | The asset’s unique identifier. The className

and classPK attributes are required to instantiate the Screenlet. | firstPageSize | number | The number
of items to retrieve from the server for display on the first page. The default value is 50. | pageSize |
number | The number of items to retrieve from the server for display on the second and subsequent
pages. The default value is 25. | labelFields | string | The comma-separated names of the DDL fields
to show. Refer to the list’s data definition to find the field names. For more information on this, see
the article on structured web content. Note that the appearance of data from a structure’s fields
depends on the layoutId. | editable | boolean | Whether the user can edit the comment. |

Methods

Method | Return | Explanation | loadPage(pageNumber) | void | Starts the request to load the
specified page of records. The page is shown when the response is received. |

Listener

Comment List Screenlet delegates some events to a class that implements CommentListListener.
This interface lets you implement the following methods:

• onDeleteCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully
deletes the comment.

• onUpdateCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully
updates the comment.

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page
of items fails. This method’s arguments include the Exception generated when the server call
fails.

• onListPageReceived(int startRow, int endRow, List<CommentEntry> entries, int rowCount):
Called when the server call to retrieve a page of items succeeds. Note that this method may
be called more than once; once for each page received. Because startRow and endRow change
for each page, a startRow of 0 corresponds to the first item on the first page.

1864

• onListItemSelected(CommentEntry element, View view): Called when an item is selected in the
list. This method’s arguments include the selected list item (CommentEntry).

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.13 Comment Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Comment Display Screenlet can show one comment of an asset in a Liferay instance. It also lets
the user update or delete the comment.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

getComment

ScreenscommentService (Screens
compatibility plugin)

updateComment

CommentmanagerjsonwsService deleteComment

Module

• None

1865

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Views

• Default

The Default View uses User Portrait Screenlet, and TextView and ImageButton elements to show
an asset’s comment. Other Views may different components to show the comment.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | CACHE_ONLY | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
REMOTE_FIRST | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | CACHE_FIRST | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• commentId

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View.|
autoLoad | boolean | Whether the list should automatically load when the Screenlet appears in the
app’s UI. The default value is true. | cachePolicy | string | The offline mode setting. See the Offline
section for details. | commentId | number | The primary key of the comment to display. | editable |
boolean | Whether the user can edit the comment. |

Methods

Method | Return | Explanation | load() | void | Starts the request to load the comment. |

1866

Figure 163.18: Comment Display Screenlet using the Default View.

1867

Listener

CommentDisplay Screenlet delegates someevents to a class that implements CommentDisplayListener.
This interface lets you implement the following methods:

• onLoadCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully
loads the comment.

• onDeleteCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully
deletes the comment.

• onUpdateCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully
updates the comment.

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.14 Comment Add Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Comment Add Screenlet can add a comment to an asset in a Liferay instance.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

addComment

1868

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Module

• None

Views

• Default

The Default View uses Android’s EditText and Button elements to show an add comment dialog.
Other Views may use different components to show this dialog.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet sends the data to the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully sends the data, it also stores it in the local cache. | Use this
policy when you always need to send updated data, and send nothing when there’s no connection.
| CACHE_ONLY | The Screenlet sends the data to the local cache. If an error occurs, the Screenlet uses
the listener to notify the developer. | Use this policy when you always need to store local data
without sending remote information under any circumstance. | REMOTE_FIRST | The Screenlet sends
the data to the Liferay instance. If this succeeds, the Screenlet also stores the data in the local
cache. If a connection issue occurs, the Screenlet stores the data to the local cache and sends it to
the Liferay instance when the connection is restored. If an error occurs, the Screenlet uses the
listener to notify the developer. | Use this policy to send the most recent version of the data when
connected, and store the data for later synchronization when there’s no connection. | CACHE_FIRST |
The Screenlet sends the data to the local cache, then sends it to the Liferay instance. If sending
the data to the Liferay instance fails, the Screenlet still stores the data locally and then notifies
the developer about any errors that occur (including connectivity errors). | Use this policy to save
bandwidth and store local (but possibly outdated) data. |

Required Attributes

• className

• classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View.|
className | string | The asset’s fully qualified class name. For example, a blog entry’s className is
com.liferay.blogs.model.BlogsEntry. The className and classPK attributes are required to instantiate
the Screenlet. | classPK | number | The asset’s unique identifier. The className and classPK attributes
are required to instantiate the Screenlet. | cachePolicy | string | The offline mode setting. See the
Offline section for details. |

1869

Figure 163.19: Comment Add Screenlet using the Default View.

1870

Listener

Comment Add Screenlet delegates some events to a class that implements CommentAddListener. This
interface lets you implement the following methods:

• onAddCommentSuccess(CommentEntry commentEntry): Calledwhen the Screenlet successfully adds
a comment to the asset.

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.15 Asset Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Asset Display Screenlet can display an asset from a Liferay instance. The Screenlet can currently
display Documents andMedia files (DLFileEntry images, videos, audio files, and PDFs), blogs entries
(BlogsEntry) and web content articles (WebContent).

Asset Display Screenlet can also display your custom asset types. See the Listener section of
this document for details.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

1871

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Views

• Default

The Default View uses different UI elements to show each asset type. For example, it displays
images with ImageView and blogs with TextView. Note that otherViewsmay use different UI elements.

This Screenlet can also render other Screenlets as inner Screenlets:

• Images: Image Display Screenlet
• Videos: Video Display Screenlet
• Audio: Audio Display Screenlet
• PDFs: PDF Display Screenlet
• Blog entries: Blogs Entry Display Screenlet
• Web content: Web Content Display Screenlet

These Screenlets can also be used alone without Asset Display Screenlet.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | CACHE_ONLY | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
REMOTE_FIRST | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | CACHE_FIRST | The Screenlet loads the data from the local cache. If the data isn’t there,

1872

Figure 163.20: Asset Display Screenlet using the Default View.

1873

the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• entryId

Instead of entryId, you can use both of the following attributes:

• className

• classPK

If you don’t use entryId, className, or classPK, you must use this attribute:

• portletItemName

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View.
| autoLoad | boolean | Whether the asset automatically loads when the Screenlet appears in
the app’s UI. The default value is true. | entryId | number | The primary key of the asset. |
className | string | The asset’s fully qualified class name. For example, a blog entry’s className

is com.liferay.blogs.model.BlogsEntry. The className and classPK attributes are required to
instantiate the Screenlet. | classPK | number | The asset’s unique identifier. The className and classPK

attributes are required to instantiate the Screenlet. | portletItemName | string | The name of the
configuration template you used in the Asset Publisher. To use this feature, add an Asset Publisher
to one of your site’s pages (it may be a hidden page), configure the Asset Publisher’s filter (in
Configuration → Setup → Asset Selection), and then use the Asset Publisher’s Configuration Templates
option to save this configuration with a name. Use this name in this attribute. If there is more than
one asset in the configuration, the Screenlet displays only the first one. | cachePolicy | string | The
offline mode setting. See the Offline section for details. | imageLayoutId | @layout | The layout to
use to show an image (DLFileEntry). | videoLayoutId | @layout | The layout to use to show a video
(DLFileEntry). | audioLayoutId | @layout | The layout to use to show an audio file (DLFileEntry). |
pdfLayoutId | @layout | The layout to use to show a PDF (DLFileEntry). | blogsLayoutId | @layout | The
layout to use to show a blog entry (BlogsEntry). | webDisplayLayoutId | @layout | The layout to use to
show a web content article (WebContent). |

Methods

Method | Return | Explanation | load(AssetEntry assetEntry) | void | Loads the given AssetEntry

in the Screenlet. If no inner Screenlet is instantiated, the method tries to load the asset with a
custom asset listener method. If this returns null, a new Intent is called to display the asset. |
loadAsset() | void | Searches for the AssetEntry defined by the required attributes and loads it in the
Screenlet. |

1874

Listener

Asset Display Screenlet delegates some events to a class that implements AssetDisplayListener.
This interface contains the following methods:

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads
the asset.

A second listener, AssetDisplayInnerScreenletListener, also exists for configuring a child Screen-
let (the Screenlet rendered inside Asset Display Screenlet) or rendering a custom asset.

• onConfigureChildScreenlet(AssetDisplayScreenlet screenlet, BaseScreenlet innerScreenlet,

AssetEntry assetEntry): Called when the child Screenlet has been successfully initialized.
Use this method to configure or customize the child Screenlet. The example implementation
here sets the child Screenlet’s background color to light gray if the asset is a blog entry entity
(BlogsEntry):

@Override

public void onConfigureChildScreenlet(AssetDisplayScreenlet screenlet,

BaseScreenlet innerScreenlet, AssetEntry assetEntry) {

if ("blogsEntry".equals(assetEntry.getObjectType())) {

innerScreenlet.setBackgroundColor(ContextCompat.getColor(this,

R.color.light_gray));

}

}

• onRenderCustomAsset(AssetEntry assetEntry): Called to render a custom asset. The following
example implementation inflates and returns the customView necessary to render a user
from a Liferay instance (User):

@Override

public View onRenderCustomAsset(AssetEntry assetEntry) {

if (assetEntry instanceof User) {

View view = getLayoutInflater().inflate(R.layout.user_display, null);

User user = (User) assetEntry;

TextView username = (TextView) view.findViewById(R.id.liferay_username);

username(user.getUsername());

return view;

}

return null;

}

163.16 Blogs Entry Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

1875

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Blogs Entry Display Screenlet displays a single blog entry. Image Display Screenlet renders any
header image the blogs entry may have.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Views

• Default

The Default View uses different components to show a blogs entry (BlogsEntry). For example,
it uses an Android TextView to show the blog’s text, and User Portrait Screenlet to show the pro-
file picture of the Liferay user who posted it. Note that other custom Views may use different
components.

1876

Figure 163.21: Blogs Entry Display Screenlet using the Default View.

1877

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use.
| Use this policy when you always need to show updated data, and show nothing when there’s
no connection. | CACHE_ONLY | The Screenlet loads the data from the local cache. If the data isn’t
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy when
you always need to show local data, without retrieving remote data under any circumstance. |
REMOTE_FIRST | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | CACHE_FIRST | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• entryId

If you don’t use entryId, you must use both of the following attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View.|
autoLoad | boolean | Whether the blog entry automatically loads when the Screenlet appears in
the app’s UI. The default value is true. | entryId | number | The primary key of the blog entry
(BlogsEntry). | className | string | The BlogsEntry object’s fully qualified class name. This is
com.liferay.blogs.model.BlogsEntry. If you don’t use entryId, the className and classPK attributes
are required to instantiate the Screenlet. | classPK | number | The BlogsEntry object’s unique identifier.
If you don’t use entryId, the className and classPK attributes are required to instantiate the
Screenlet. | cachePolicy | string | The offline mode setting. See the Offline section for details. |

Listener

Because a blog entry is an asset, Blogs Entry Display Screenlet delegates its events to a class that
implements AssetDisplayListener. This interface lets you implement the following method:

1878

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads
the blog entry.

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.17 Image Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Image Display Screenlet displays an image file from a Liferay instance’s Documents and Media
Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

1879

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Module

• None

Views

• Default

The Default View uses an Android ImageView to display the image.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | CACHE_ONLY | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
REMOTE_FIRST | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | CACHE_FIRST | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• entryId or classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View. |
autoLoad | boolean | Whether the image automatically loads when the Screenlet appears in the app’s
UI. The default value is true. | entryId | number | The primary key of the image. | classPK | number
| The image’s unique identifier. | cachePolicy | string | The offline mode setting. See the Offline
section for details. | imageScaleType | number | Lets you set a scale image type like CENTER, CENTER_CROP,
CENTER_INSIDE, FIT_CENTER, FIT_END, FIT_START, FIT_XY, MATRIX. | placeHolder | @resource | Image to load
until the final image loads. | placeHolderScaleType | number | Lets you set a scale image type for the
placeholder like CENTER, CENTER_CROP, CENTER_INSIDE, FIT_CENTER, FIT_END, FIT_START, FIT_XY, MATRIX. |

1880

Figure 163.22: Image Display Screenlet using the Default View.

1881

Note that the values for imageScaleType and placeHolderScaleType match those described in
Android’s ImageView.ScaleType.

Listener

Because images are assets, Image Display Screenlet delegates its events to a class that implements
AssetDisplayListener. This interface lets you implement the following methods:

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads
the image.

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.18 Video Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Video Display Screenlet displays a video file from a Liferay instance’s Documents andMedia Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

1882

https://developer.android.com/reference/android/widget/ImageView.ScaleType.html
https://developer.android.com/reference/android/widget/ImageView.ScaleType.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Views

• Default

The Default View uses an Android VideoView to display the video.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | CACHE_ONLY | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
REMOTE_FIRST | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | CACHE_FIRST | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• entryId or classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View. |
autoLoad | boolean | Whether the video automatically loads when the Screenlet appears in the app’s

1883

Figure 163.23: Video Display Screenlet using the Default View.

1884

UI. The default value is true. | entryId | number | The primary key of the video file. | classPK | number |
The video file’s unique identifier. | cachePolicy | string | The offline mode setting. See the Offline
section for details. |

Listener

Video Display Screenlet delegates its events to a class that implements VideoDisplayListener. This
interface lets you implement these methods:

• onVideoPrepared(): Called when the video is ready for display.

• onVideoCompleted(): Called when the video is completed.

• onVideoError(Exception e): Called when an error occurs displaying the video.

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads
the video.

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.19 Audio Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Audio Display Screenlet displays an audio file from a Liferay instance’s Documents and Media
Library.

1885

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Views

• Default

The Default View uses an Android VideoView to display the audio file.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | CACHE_ONLY | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
REMOTE_FIRST | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | CACHE_FIRST | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that

1886

Figure 163.24: Audio Display Screenlet using the Default View.

1887

occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• entryId or classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View. |
autoLoad | boolean | Whether the audio file automatically loads when the Screenlet appears in the
app’s UI. The default value is true. | entryId | number | The primary key of the audio file. | classPK |
number | The audio file’s unique identifier. | cachePolicy | string | The offline mode setting. See the
Offline section for details. |

Listener

Because audio files are assets, AudioDisplay Screenlet delegates its events to a class that implements
AssetDisplayListener. This interface lets you implement the following methods:

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads
the audio file.

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.20 PDF Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

PDF Display Screenlet displays a PDF file from a Liferay Instance’s Documents and Media Library.

1888

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Views

• Default

The Default View uses Android’s PdfRenderer to display the PDF. Note that PdfRenderer requires
an Android API level of 21 or higher.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | CACHE_ONLY | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
REMOTE_FIRST | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | CACHE_FIRST | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that

1889

Figure 163.25: PDF Display Screenlet using the Default View.

1890

occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• entryId or classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View. |
autoLoad | boolean | Whether the PDF automatically loads when the Screenlet appears in the app’s
UI. The default value is true. | entryId | number | The primary key of the PDF file. | classPK | number |
The PDF file’s unique identifier. | cachePolicy | string | The offline mode setting. See the Offline
section for details. |

Listener

Because PDF files are assets, PDF Display Screenlet delegates its events to a class that implements
AssetDisplayListener. This interface lets you implement the following methods:

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads
the PDF file.

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.21 Web Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1891

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

Web Screenlet lets you display any web page. It also lets you customize the web page through
injection of local and remote JavaScript and CSS files. If you’re using Liferay DXP as backend, you
can use Application Display Templates in your page to customize its content from the server side.

Module

• None

Views

• Default

Configuration

To learn how to useWeb Screenlet, follow the steps in the tutorial RenderingWeb Pages in Your
Android App. That tutorial gives detailed instructions for using the configuration items described
here.

Web Screenlet has WebScreenletConfiguration and WebScreenletConfiguration.Builder classes
that you can use together to supply the parameters that the Screenlet needs to work.
WebScreenletConfiguration.Builder has the following methods, which let you supply the de-
scribed configuration parameters:

Method | Return | Explanation | addLocalJs(fileName) | WebScreenletConfiguration.Builder | Adds
a local JavaScript filewith the supplied filename. The JavaScript filesmust be in the first level of your
app’s assets folder. Create this folder at the same level of the res folder. | addLocalCss(fileName)
| WebScreenletConfiguration.Builder | Adds a local CSS file with the supplied filename. The CSS
files must be in the first level of your app’s assets folder. Create this folder at the same level
of the res folder. | addRawJs(rawJs, name) | WebScreenletConfiguration.Builder | Adds a JavaScript
file from your app’s res/raw folder. Create this folder if it doesn’t exist. Reference the file using
R.raw.yourfilename. Thismethod also takes a second parameter called name, which is only for debug-
ging purposes. If there’s an error, the console displays it with this name value. | addRawCss(rawCss,
name) | WebScreenletConfiguration.Builder | Adds a CSS file from your app’s res/raw folder. Create
this folder if it doesn’t exist. Reference the file using R.raw.yourfilename. This method also takes a
second parameter called name, which is only for debugging purposes. If there’s an error, the con-
sole displays it with this name value. | addRemoteJs(url) | WebScreenletConfiguration.Builder | Adds a
JavaScript file from the suppliedURL. | addRemoteCss(url) | WebScreenletConfiguration.Builder | Adds
a CSS file from the supplied URL. | setWebType(webType) | WebScreenletConfiguration.Builder | Sets
the WebType. | enableCordova(observer) | WebScreenletConfiguration.Builder | Enables Cordova inside
the Web Screenlet. | load() | WebScreenletConfiguration | Returns the WebScreenletConfiguration

object that you can set to the Screenlet instance. |

Note: If you want to add comments in the scripts, use the /**/ notation.

1892

Figure 163.26: The Web Screenlet with the Default View Set.

1893

WebType

• WebType.LIFERAY_AUTHENTICATED (default): Displays a Liferay DXP page that re-
quires authentication. The user must therefore be logged in with Screens via Login
Screenlet or a SessionContext method. For this WebType, the URL you must pass to the
WebScreenletConfiguration.Builder constructor is a relative URL. For example, if the full
URL is http://screens.liferay.org.es/web/guest/blog, then the URL you must supply to the
constructor is /web/guest/blog.

• WebType.OTHER: Displays any other page. For this WebType, the URL you must pass to the
WebScreenletConfiguration.Builder constructor is a full URL. For example, if the full URL
is http://screens.liferay.org.es/web/guest/blog, then you must supply that URL to the con-
structor.

Attributes

Attribute | Data type | Explanation | autoLoad | boolean | Whether to load the page automatically
when the Screenlet appears in the app’s UI. The default value is true. | layoutId | @layout | The layout
to use to show the View. | isLoggingEnabled | boolean | Whether logging is enabled. | isScrollEnabled
| boolean | Whether to enable scrolling on the page inside the Screenlet. |

Methods

Method | Return | Explanation | load() | void | Checks if the page’s URL is valid, and then loads
it. The operation fails if the URL is invalid. | clearCache() | void | Clears theWeb Screenlet’s cache. |
injectScript(script) | void | Injects a script when the page is already loaded. |

Listener

Web Screenlet delegates some events to an object or class that implements its WebListener interface.
This interface extends the BaseCacheListener interface. Therefore,Web Screenlet’s listenermethods
are as follows:

• onPageLoaded(String url): Called when the Screenlet loads the page correctly.

• onScriptMessageHandler(String namespace, String body): Called when the WebView in the
Screenlet sends a message. The namespace parameter is the source namespace key, and body

is the source namespace body.

• error(Exception e, String userAction): Called when an error occurs in the process. The
userAction argument distinguishes the specific action in which the error occurred.

163.22 DDM Form Screenlet for Android

1894

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/web/WebListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/listener/BaseCacheListener.java

Requirements

• Android SDK 4.1 (API Level 21) or above
• Liferay DXP 7.1 SP2+
• Liferay Hypermedia REST APIs. These APIs are installed but disabled by default. To enable
them, follow the instructions in the tutorial Enabling Hypermedia REST APIs.

Compatibility

• Android SDK 4.1 (API Level 21) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

DDM Form Screenlet shows a set of fields that can be filled in by the user. The fields can contain
initial or existing values. The following fields are supported:

Paragraph: Add a title and/or text in your form.
Text Field: A single or multiline text area.
Single Selection: Select one item with a radio button.
Select From List: Choose one or more items in a list.
Multiple Selection: Select multiple items via a checkbox.
Date: Select a date from a date picker.
Grid: Select items in a matrix.
Numeric: Enter an integer or decimal number.
Upload: Upload files via Documents and Media.
DDM Form Screenlet also supports the following features:
Element Sets: Reuse pre-existing element sets in your form.
Multiple Pages: Use multi-page forms.
Success Page: Show friendly feedback at the end of your form. Autosave: Automatically save

any change in form values to a draft.
Restore Previous Draft: Automatically restore the last draft when opening the form, indepen-

dent of platform.
Rules: Create complex rules in your form. For example, you can show or hide fields depending

on the input of other fields.
Workflow: Form submission can trigger a specific workflow.
Required Values: Require specific values and/or validate form fields.
Internationalization: Support i18n in record values and labels.

Module

• DDM

1895

Views

• Default
• Lexicon
• Material

Figure 163.27: The DDM Form Screenlet with the Lexicon View Set.

Custom Layouts

To create custom layouts for a field, create the new layout following the naming pattern
<field_editor_id>_<view_name>. The Screenlet automatically loads such layouts.

For example, this table lists the filename you should use when creating custom layouts for each
field type, for the Lexicon View. Note that because some DDM fields inherit from DDL, they are
referenced as DDL.

1896

Editor Type
Field Editor ID
Example Using Lexicon View
Checkbox
ddlfield_checkbox
ddlfield_checkbox_lexicon.xml
Checkbox Multiple
ddmfield_checkbox
ddmfield_checkbox_multiple.xml
Date
ddlfield_date
ddlfield_date_lexicon.xml
Number
ddlfield_number
ddlfield_number_lexicon.xml
Integer
ddlfield_number
ddlfield_number_lexicon.xml
Decimal
ddlfield_number
ddlfield_number_lexicon.xml
Radio
ddlfield_radio
ddlfield_radio_lexicon.xml
Text
ddlfield_text
ddlfield_text_lexicon.xml
Select
ddlfield_select
ddlfield_select_lexicon.xml
Text Area
ddlfield_text_area
ddlfield_text_area_lexicon.xml
Paragraph
ddmfield_paragraph
ddmfield_paragraph_lexicon.xml
Document
ddlfield_document
ddlfield_document_lexicon.xml
Grid
ddmfield_grid
ddmfield_grid_lexicon.xml
Repeatable
ddmfield_repeatable
ddmfield_repeatable_lexicon.xml

1897

Application Configuration

DDM Form Screenlet needs the following user permissions:

<uses-permission android:name="android.permission.CAMERA"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

The Documents and Media fields use both to take a picture/video and store it locally before
uploading it to the portal.

Portal Configuration

Before using DDM Form Screenlet, ensure that the following exist in the portal:

• A form for the Screenlet to display. For instructions on this, see the article Creating and
Managing Forms.

• If your form uses it, workflowmust be configured. See theWorkflow section of the user guide
for instructions on configuring and using workflow.

Required Attributes

• formInstanceId

Attributes

Attribute
Data Type
Explanation
formInstanceId
number
The ID of the form to display in the Screenlet. To find the IDs for your data definitions in the

portal, select the site to work in and click Content → Forms. The table that lists the site’s forms also
lists each form’s ID.

layoutId
@layout
The layout to use to show the View.
autoloadDraftEnabled
boolean
Sets whether the form loads the last draft for the current user when the Screenlet is shown.

The default value is true.
autosaveDraftEnabled
boolean
Sets whether the form should autosave a draft for the current user. The default value is true.
syncFormTimeout
number
Time in milliseconds to start synchronize the form (save and evaluate form rules). The default

value is 500.

1898

Figure 163.28: The red box in this image highlights a form’s ID.

Permissions

If your form includes at least one Documents and Media field, you must grant permissions in the
target repository and folder. For more information, see Granting File Permissions and Roles, and
Setting Folder Permissions. To set permissions for Documents and Media’s Home folder, navigate
to Documents and Media and select Options () → Home Folder Permissions.

Figure 163.29: Select which roles can add a document to a Documents and Media folder.

Methods

Method
Return Type
Explanation
load()

1899

void
Starts the request to load the form. The form fields are shown when the response is received.
setDDMFormListener()
void
Sets the listener for this form.

Listener

DDM Form Screenlet delegates some events to an object that implements to the DDMFormListener

interface. This interface lets you implement the following methods:
onFormLoaded(FormInstance formInstance): Called when the form instance successfully loads.
onError(Exception e): Called when an error occurs in the process. For example, this method is

called when an error occurs while loading a form instance.
onDraftLoaded(FormInstanceRecord formInstanceRecord): Called when a draft is retored.
onDraftSaved(FormInstanceRecord formInstanceRecord): Called when a draft is saved.
onFormSubmitted(FormInstanceRecord formInstanceRecord): Called when a form is successfully

submitted.

1900

CHAPTER 164

SCREENLETS IN LIFERAY SCREENS FOR IOS

Liferay Screens for iOS contains several Screenlets that you can use in your iOS apps. This section
contains the reference documentation for each. If you’re looking for instructions on using Screens,
see the Screens tutorials. The Screens tutorials contain instructions on using Screenlets and using
Themes in Screenlets. Each Screenlet reference document here lists the Screenlet’s features,
compatibility, its module (if any), available Themes, attributes, delegate methods, and more. The
available Screenlets are listed here with links to their reference documents:

• Login Screenlet: Signs users in to a Liferay DXP instance.

• Sign Up Screenlet: Registers new users in a Liferay DXP instance.

• Forgot Password Screenlet: Sends emails containing a new password or password reset link
to users.

• User Portrait Screenlet: Shows the user’s portrait picture.

• DDL Form Screenlet: Presents dynamic forms to be filled out by users and submitted back to
the server.

• DDL List Screenlet: Shows a list of records based on a pre-existing DDL in a Liferay DXP
instance.

• Asset List Screenlet: Shows a list of assets managed by the Asset Framework. This includes
web content, blog entries, documents, and more.

• Web Content Display Screenlet: Shows the web content’s HTML or structured content. This
Screenlet uses the features available in Web Content Management.

• Web Content List Screenlet: Shows a list of web contents from a folder, usually based on a
pre-existing DDMStructure.

• Image Gallery Screenlet: Shows a list of images from a folder. This Screenlet also lets users
upload and delete images.

• Rating Screenlet: Shows the rating for an asset. This Screenlet also lets the user update or
delete the rating.

1901

• Comment List Screenlet: Shows a list of comments for an asset.

• Comment Display Screenlet: Shows a single comment for an asset.

• Comment Add Screenlet: Lets the user comment on an asset.

• Asset Display Screenlet: Displays an asset. Currently, this Screenlet can display Documents
and Media Library files (DLFileEntry entities), blog articles (BlogsEntry entities), and web
content articles (WebContent entities). You can also use it to display custom assets.

• Blogs Entry Display Screenlet: Shows a single blog entry.

• Image Display Screenlet: Shows a single image file from the Documents and Media Library.

• Video Display Screenlet: Shows a single video file from the Documents and Media Library.

• Audio Display Screenlet: Shows a single audio file from the Documents and Media Library.

• PDF Display Screenlet: Shows a single PDF file from the Documents and Media Library.

• File Display Screenlet: Shows a single file from the Documents and Media Library. Use this
Screenlet to display file types not covered by the other display Screenlets (e.g., DOC, PPT,
XLS).

• WebScreenlet: Displays anywebpage. You can also customize thewebpage through injection
of local and remote JavaScript and CSS files.

164.1 Login Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Login Screenlet authenticates portal users in your iOS app. The following authentication
methods are supported:

• Basic: uses user login and password according to HTTP Basic Access Authentication specifi-
cation. Depending on the authentication method used by your Liferay instance, you need
to provide the user’s email address, screen name, or user ID. You also need to provide the
user’s password.

1902

http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617

• OAuth: implements OAuth 2.

• Cookie: uses a cookie to log in. This lets you access documents and images in the portal’s
document library without the guest view permission in the portal. The other authentication
types require this permission to access such files.

For instructions on configuring the Screenlet to use these authentication types, see the below
Portal Configuration and Screenlet Attributes sections.

When a user successfully authenticates, their attributes are retrieved for use in the app. You
can use the SessionContext class to get the current user’s attributes.

Note that user credentials and attributes can be stored securely in the keychain (see the
saveCredentials attribute). Stored user credentials can be used to automatically log the user in to
subsequent sessions. To do this, you can use the method SessionContext.loadStoredCredentials()

method.

JSON Services Used

Screenlets in Liferay Screens call the portal’s JSON web services. This Screenlet calls the following
services and methods.

Service Method Notes

UserService getUserByEmailAddress Basic login
UserService getUserByScreenName Basic login
UserService getUserById Basic login
UserService getCurrentUser Cookie and OAuth login

Module

• Auth

Themes

• Default (default)
• Flat7 (flat7)

For instructions on using Themes, see the tutorial Using Themes in iOS Screenlets.

Portal Configuration

Basic Authentication

Before using Login Screenlet, you should make sure your portal is configured with the authenti-
cation option you want to use. You can choose email address, screen name, or user ID. You can
set this in the Control Panel by selecting Configuration → Instance Settings, and then selecting the
Authentication section. The authentication options are in the How do users authenticate? selector
menu. For more information, see the User Guide’s authentication section.

1903

https://oauth.net/2/

Figure 164.1: The Login Screenlet using the Default and Flat7 Themes.

1904

Figure 164.2: Setting the authentication method in your Liferay instance.

OAuth

For instructions on using OAuth with Login Screenlet, see the tutorial on using OAuth 2 with Liferay
Screens.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity. If you need to log in
users automatically, even when there’s no network connection, you can use the saveCredentials

attribute together with the SessionContext.loadStoredCredentials()method.

Attributes

Attribute | Data type | Explanation | companyId | number | The ID of the portal instance to authen-
ticate to. If you don’t set this attribute or set it to 0, the Screenlet uses the companyId setting in
LiferayServerContext. | loginMode | string | The Screenlet’s authentication type. You can set this at-
tribute to basic, cookie, oauth2Redirect, or oauth2UsernameAndPassword. If you don’t set this attribute,
the Screenlet defaults to basic authentication. | basicAuthMethod | string | Specifies the basic authen-
tication option to use. You can set this attribute to email, screenName or userId. This must match the
server’s authentication option. If you don’t set this attribute, and don’t set the loginMode attribute
to one of the OAuth values or cookie, the Screenlet defaults to basic authentication with the email

option. | oauth2clientId | string | The ID of the OAuth 2 application in the portal. You can find this
value in the portal’s OAuth 2 Admin portlet. | oauth2redirectUrl | string | The URL that the mobile
browser will redirect the user to after successful login. You must configure this in the portal’s
OAuth 2 Admin portlet, and associate the URL with the iOS app. | oauth2clientSecret | string | The
client secret of the OAuth 2 application in the portal. You can find this value in the portal’s OAuth 2
Admin portlet. | oauth2Scopes | string | The portal permissions to request. You can define a set of
permissions associated with an OAuth 2 application in the portal’s OAuth 2 Admin portlet. Use
this attribute to request a subset of those permissions. Separate multiple scopes with a space (e.g.,

1905

"scope1 scope2 scope3"). | saveCredentials | boolean | When set, the user credentials and attributes
are stored securely in the keychain. This information can then be loaded in subsequent sessions by
calling the SessionContext.loadStoredCredentials() method. | shouldHandleCookieExpiration | bool
| Whether to refresh the cookie automatically when using cookie login. When set to true (the
default value), the cookie refreshes as it’s about to expire. | cookieExpirationTime | int | How long the
cookie lasts, in seconds. This value depends on your portal instance’s configuration. The default
value is 900. |

Delegate

The Login Screenlet delegates some events to an object that conforms to the LoginScreenletDelegate

protocol. This protocol lets you implement the following methods:

• - screenlet:onLoginResponseUserAttributes:: Called when login successfully completes. The
user attributes are passed as a dictionary of keys (String or NSStrings) and values (AnyObject
or NSObject). The supported keys are the same as the portal’s User entity.

• - screenlet:onLoginError:: Called when an error occurs during login. The NSError object
describes the error.

• - screenlet:onCredentialsSavedUserAttributes:: Called when the user credentials are stored
after a successful login.

• - screenlet:onCredentialsLoadedUserAttributes:: Called when the user credentials are re-
trieved. Note that this only occurs when the Screenlet is used and stored credentials are
available.

Challenge-Response Authentication

To support challenge-response authentication when using a cookie to log in to the portal, the
SessionContext class has a challengeResolver attribute. For more information about how iOS han-
dles challenge-response authentication, see the article Authentication Challenges and TLS Chain
Validation.

The challenge resolver type is a closure or block that receives two parameters:

1. URLAuthenticationChallenge

2. Another closure or block. You must call this to resolve the challenge (e.g., by
passing credentials, canceling the challenge, etc.). You can do this by passing a
URLSession.AuthChallengeDisposition.

Here’s an example that sends a basic authorization in response to an authentication challenge:

SessionContext.challengeResolver = resolver

func resolver(challenge: URLAuthenticationChallenge,

decisionCallback: (URLSession.AuthChallengeDisposition, URLCredential) -> Void) {

// Use the challenge variable to get information about the challenge itself

if challenge.previousFailureCount == 0 {

// To solve the challenge, call the decision callback with your decision

// Pass the credentials to the server

decisionCallback(.useCredential, URLCredential(user: "user", password: "password",

1906

https://github.com/liferay/liferay-portal/blob/master/portal-impl/src/com/liferay/portal/service.xml#L2575-L2737
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/URLLoadingSystem/Articles/AuthenticationChallenges.html
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/URLLoadingSystem/Articles/AuthenticationChallenges.html

persistence: .forSession))

}

else {

// Something went wrong, so let the system handle the challenge

decisionCallback(.performDefaultHandling, URLCredential(user: "these credentials",

password: "are ignored", persistence: .none))

}

}

164.2 Sign Up Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Sign Up Screenlet creates a new user in your Liferay instance: a new user of your app can
become a new user in your portal. You can also use this Screenlet to save the credentials of the new
user in their keychain. This enables auto login for future sessions. The Screenlet also supports
navigation of form fields from the keyboard of the user’s device.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

UserService addUser

Module

• Auth

1907

Themes

• Default (default)
• Flat7 (flat7)

Figure 164.3: The Sign Up Screenlet with the Default and Flat7 Themes.

Portal Configuration

Sign Up Screenlet’s corresponding configuration in the Liferay instance can be set in the Control
Panel by selecting Configuration → Instance Settings, and then selecting the Authentication section.

1908

Figure 164.4: The Liferay instance’s authentication settings.

For more details, see the Authentication section of the User Guide.

Anonymous Request

Anonymous requests are unauthenticated requests. Authentication is needed, however, to call the
API. To allow this operation, the portal administrator should create a specific user with minimal
permissions.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity.

Attributes

Attribute | Data type | Explanation | anonymousApiUserName | string | The user name, email address,
or user ID (depending on the portal’s authentication method) to use for authenticating the request.
| anoymousApiPassword | string | The password for use in authenticating the request. | companyId |
number | When set, authentication is done for a user in the specified company. If the value is 0, the
company specified in LiferayServerContext is used. | autoLogin | boolean |Whether the user is logged
in automatically after a successful sign up. | saveCredentials | boolean | Sets whether or not the
user’s credentials and attributes are stored in the keychain after a successful log in. This attribute
is ignored if autologin is disabled. |

Delegate

TheSignUpScreenlet delegates someevents to anobject that conforms to the SignUpScreenletDelegate
protocol. If the autologin attribute is enabled, login events are delegated to an object conforming to
the LoginScreenletDelegate protocol. Refer to the LoginScreenlet documentation for more details.

The SignUpScreenletDelegate protocol lets you implement the following methods:

• - screenlet:onSignUpResponseUserAttributes:: Called when sign up successfully completes.
The user attributes are passed as a dictionary of keys (String or NSStrings) and values

1909

LoginScreenlet.md

(AnyObject or NSObject). The supported keys are the same as the attributes in the portal’s User
entity.

• - screenlet:onSignUpError:: Called when an error occurs in the process. The NSError object
describes the error.

164.3 Forgot Password Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Forgot Password Screenlet sends emails to registered users with their new passwords or
password reset links, depending on the server configuration. The available authenticationmethods
are:

• Email address
• Screen name
• User id

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

UserService sendPasswordByEmailAddress

UserService sendPasswordByUserId

UserService sendPasswordByScreenName

1910

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/User.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/User.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Module

• Auth

Themes

• Default (default)
• Flat7 (flat7)

Figure 164.5: The Forgot Password Screenlet with the Default and Flat7 Themes.

1911

Portal Configuration

To use the Forgot Password Screenlet, you must allow users to request new passwords in the portal.
The next sections show you how to do this.

Authentication Method

Note that the authentication method configured in the portal can be different from the one used by
this Screenlet. For example, it’s perfectly fine to use screenName for sign in authentication, but allow
users to recover their password using the email authentication method.

Password Reset

You can set the Liferay instance’s corresponding password reset options in the Control Panel
by selecting Configuration → Instance Settings, and then selecting the Authentication section. The
Screenlet’s password functionality depends on the authentication settings in the portal:

Figure 164.6: Checkboxes for the password recovery features in Liferay Portal.

If both of these options are unchecked, password recovery is disabled. If both options are
checked, an email containing a password reset link is sent when a user requests it. If only the first
option is checked, an email containing a new password is sent when a user requests it.

For more details, see the Authentication section of the User Guide.

Anonymous Request

An anonymous request can be made without the user being logged in. However, authentication is
needed to call the API. To allow this operation, the portal administrator should create a specific
user with minimal permissions.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity.

Attributes

Attribute | Data type | Explanation | anonymousApiUserName | string | The user name, email address,
or userId (depending on the portal’s authentication method) to use for authenticating the request. |
anonymousApiPassword | string | The password to use to authenticate the request. | companyId | number
| When set, the authentication is done for a user within the specified company. If the value is 0, the

1912

company specified in LiferayServerContext is used. | basicAuthMethod | string | The authentication
method that is presented to the user. This can be email, screenName, or userId. |

Delegate

The Forgot Password Screenlet delegates some events to an object that conforms to the
ForgotPasswordScreenletDelegate protocol. This protocol lets you implement the following
methods:

• - screenlet:onForgotPasswordSent:: Called when a password reset email is successfully sent.
The Boolean parameter indicates whether the email contains the new password or a password
reset link.

• - screenlet:onForgotPasswordError:: Called when an error occurs in the process. The NSError

object describes the error.

164.4 User Portrait Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The User Portrait Screenlet shows the user’s portrait from Liferay Portal. If the user doesn’t have a
portrait configured, a placeholder image is shown.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

UserService getUserById

UserService getUserByEmailAddress

UserService getUserByScreenName

1913

Service Method Notes

Module

• None

Themes

• Default (default)
• Flat7 (flat7)

Portal Configuration

None

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture.

When loading the portrait, the Screenlet supports the following offline mode policies:

Policy | What happens | When to use | remote-only | The Screenlet loads the user portrait from
the portal. If a connection issue occurs, the Screenlet uses the delegate to notify the developer
about the error. If the Screenlet loads the portrait, it stores the received image in the local cache for
later use. | Use this policy when you always need to show updated portraits, and show the default
placeholder when there’s no connection. | cache-only | The Screenlet loads the user portrait from
the local cache. If the portrait isn’t there, the Screenlet uses the delegate to notify the developer
about the error. | Use this policy to show local portraits, without retrieving remote information
under any circumstance. | remote-first | The Screenlet loads the user portrait from the portal.
The Screenlet displays the portrait to the user and stores it in the local cache for later use. If a
connection issue occurs, the Screenlet retrieves the portrait from the local cache. If the portrait
doesn’t exist there, the Screenlet uses the delegate to notify the developer about the error. | Use this
policy to show the most recent portrait when connected, but show a potentially outdated version
when there’s no connection. | cache-first | If the portrait exists in the local cache, the Screenlet
loads it from there. If it doesn’t exist there, the Screenlet requests the portrait from the portal and
uses the delegate to notify the developer about any connection errors. | Use this policy to save
bandwidth and loading time in the event a local (but probably outdated) portrait exists. |

When editing the portrait, the Screenlet supports the following offline mode policies:

Policy | What happens | When to use | remote-only | The Screenlet sends the user portrait to
the portal. If a connection issue occurs, the Screenlet uses the delegate to notify the developer
about the error, but it also discards the new portrait. | Use this policy when you need to make sure
portal always has themost recent version of the portrait. | cache-only | The Screenlet stores the user
portrait in the local cache. | Use this policy when you need to save the portrait locally, but don’t

1914

Figure 164.7: The User Portrait Screenlet using the Default and Flat7 Themes.

1915

want to change the portrait in the portal. | remote-first | The Screenlet sends the user portrait to
the portal. If this succeeds, the Screenlet also stores the portrait in the local cache for later usage.
If a connection issue occurs, the Screenlet stores the portrait in the local cache with the dirty flag
enabled. This causes the portrait to be sent to the portal when the synchronization process runs.
| Use this policy when you need to make sure the Screenlet sends the new portrait to the portal
as soon as the connection is restored. | cache-first | The Screenlet stores the user portrait in the
local cache and then sends it to the portal. If a connection issue occurs, the Screenlet stores the
portrait in the local cache with the dirty flag enabled. This causes the portrait to be sent to the
portal when the synchronization process runs. | Use this policy when you need to make sure the
Screenlet sends the new portrait to the portal as soon as the connection is restored. Compared to
remote-first, this policy always stores the portrait in the cache. The remote-first policy only stores
the new image in the event of a network error. |

Attributes

Attribute | Data type | Explanation | borderWidth | number | The size in pixels for the portrait’s
border. The default value is 1. Set this to 0 if you want to hide the border.| borderColor | UIColor |
The border’s color. Use the system’s transparent color to hide the border. | editable | boolean | Lets
the user change the portrait image by taking a photo or selecting a gallery picture. The default
value is false. Portraits loaded with the load(portraitId, uuid, male) method aren’t editable. |
offlinePolicy | string | Configure the loading and saving behavior in case of connectivity issues.
For more details, read the “Offline” section below. |

Methods

Method | Return | Explanation | loadLoggedUserPortrait() | boolean | Starts the request to load
the currently logged in user’s portrait image (see the SessionContext class). | load(userId) | boolean
| Starts the request to load the specified user’s portrait image. | load(portraitId, uuid, male) |
boolean | Starts the request to load the portrait image using the specified user’s data. The param-
eters portraitId and uuid can be retrieved by using the SessionContext.userAttributes() method.
| load(companyId, emailAddress) | boolean | Starts the request to load the portrait image using the
user’s email address. | load(companyId, screenName) | boolean | Starts the request to load the portrait
image using the user’s screen name. |

Delegate

The User Portrait Screenlet delegates some events to an object that conforms to the
UserPortraitScreenletDelegate protocol. This protocol lets you implement the following
methods:

• - screenlet:onUserPortraitResponseImage:: Called when an image is received from the server.
You can then apply image filters (grayscale, for example) and return the new image. You can
return the original image supplied as the argument if you don’t want to modify it.

1916

• - screenlet:onUserPortraitError:: Called when an error occurs in the process. The NSError

object describes the error.

• - screenlet:onUserPortraitUploaded:: Called when a new portrait is uploaded to the server.
You receive the user attributes as a parameter.

• - screenlet:onUserPortraitUploadError:: Called when an error occurs in the upload process.
The NSError object describes the error.

164.5 DDL Form Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

DDL Form Screenlet can be used to show a collection of fields so that a user can fill in their values.
Initial or existing valuesmay be shown in the fields. Fields of the following data types are supported:

• Boolean: A two state value typically shown using a checkbox.
• Date: A formatted date value. The format depends on the device’s locale.
• Decimal, Integer, and Number: A numeric value.
• Document and Media: A file stored on the current device. It can be uploaded to a specific
portal repository.

• Radio: A set of options to choose from. A single option must be chosen.
• Select: A selection box of options to choose from. A single option must be chosen.
• Text: A single line of text.
• Text Box: Supports multiple lines of text.

DDL Form Screenlet also supports the following features:

• Stored records can support a specific workflow.
• A Submit button can be shown at the end of the form.
• Required values and validation for fields can be used.
• Users can traverse the form fields from the keyboard.

1917

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

• Supports i18n in record values and labels.

There are also a few limitations you should be aware of when using DDL Form Screenlet. They
are listed here:

• Nested fields in the data definition aren’t supported.
• Selection of multiple items in the Radio and Select data types isn’t supported yet.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

DDMStructureService getStructureWithStructureId Load form
ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecord Load record

DLAppService addFileEntry Upload document
DDLRecordService addRecord Submit form
DDLRecordService updateRecord Update form

Module

• DDL

Themes

• Default

The Default Theme uses a standard UITableView to show a scrollable list of fields. Other Themes
may use a different component, such as UICollectionView or others, to show the fields.

Custom Cells

AThemeneeds to definea cell view for eachfield type. For instance, the xibfile DDLFieldDateTableCell_default
is used to render Date fields in the Default Theme.

If you want a specific field to have a unique appearance, you can customize your
field’s display by using the following filename pattern, where XXX is your field’s name:
DDLCustomFieldXXXTableCell_default. For example, the “Are you a subscriber?” field in screenshot
above shows how text fields appear in the Default Theme. If you want to customize this, you don’t
need to create an entire Theme. You just need to create an xib file for the field subscriberName. The
filename is therefore DDLCustomFieldSubscriberNameTableCell_default. Be careful to keep the same
components and IBOutlet defined in the custom file.

1918

Figure 164.8: DDL Form Screenlet using the Default (default) Theme.

1919

Portal Configuration

Before using DDL Form Screenlet, you should make sure that Dynamic Data Lists and Data Types
are configured properly in the portal. Refer to the Creating Data Definitions and Creating Data Lists
sections of the User Guide for more details. If Workflow is required, it must also be configured.
See the UsingWorkflow section of the User Guide for details.

Permissions

To use DDL Form Screenlet to add new records, you must grant the Add Record permission in the
Dynamic Data List in the portal. If you want to use DDL Form Screenlet to view or edit record
values, you must also grant the View and Update permissions, respectively. The Add Record, View,
and Update permissions are highlighted by the red boxes in the following screenshot:

Figure 164.9: The permissions for adding, viewing, and editing DDL records.

Also, if your form includes at least one Documents andMedia field, youmust grant permissions
in the target repository and folder. For more details, see the repositoryId and folderId attributes
below.

For more details, please see the User Guide sections Creating Data Definitions, Creating Data
Lists, and UsingWorkflow.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture.

When loading the form or record, the Screenlet supports the following offline mode policies:

Policy | What happens |When to use | remote-only | The Screenlet loads the form or record from
the portal. If a connection issue occurs, the Screenlet uses the delegate to notify the developer about

1920

Figure 164.10: The permission for adding a document to a Documents and Media folder.

the error. If the Screenlet loads the form or record, it stores the received data (record structure and
data) in the local cache for later use. | Use this policy when you always need to show updated data,
and show nothing when there’s no connection.| cache-only | The Screenlet loads the form or record
from the local cache. If the form or record isn’t there, the Screenlet uses the delegate to notify
the developer about the error. | Use this policy when you always need to show local data, without
retrieving remote information under any circumstance.| remote-first | The Screenlet requests the
form or record from the portal. The Screenlet shows the record or form to the user and stores
it in the local cache for later use. If a connection issue occurs, the Screenlet retrieves the form
or record from the local cache. If the form or record doesn’t exist there, the Screenlet uses the
delegate to notify the developer about the error. | Use this policy to show the most recent version of
the data when connected, but show an outdated version when there’s no connection. | cache-first
| If the form or record exists in the local cache, the Screenlet loads it from there. If it doesn’t exist
there, the Screenlet requests it from the portal and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

When editing the record, the Screenlet supports the following offline mode policies:

Policy | What happens | When to use | remote-only | The Screenlet sends the record to the portal.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error,
but it also discards the record. | Use this policy to make sure the portal always has the most recent
version of the record. | cache-only | The Screenlet stores the record in the local cache. | Use this
policy when you need to save the data locally, but don’t want to update the data in the portal (update
or add record). | remote-first | The Screenlet sends the record to the portal. If this succeeds, it also
stores the record in the local cache for later usage. If a connection issue occurs, then Screenlet
stores the record in the local cache with the dirty flag enabled. This causes the synchronization
process to send the record to the portal when it runs. | Use this policy when you need to make sure
the Screenlet sends the record to the portal as soon as the connection is restored. | cache-first
| The Screenlet stores the record in the local cache and then sends it to the remote portal. If a
connection issue occurs, then Screenlet stores the record in the local cache with the dirty flag
enabled. This causes the the synchronization process to send the record to the portal when it runs.
| Use this policy when you need to make sure the Screenlet sends the record to the portal as soon

1921

as the connection is restored. Compared to remote-first, this policy always stores the record in the
cache. The remote-first policy only stores the record in the event of a network error. |

Required Attributes

• structureId

• recordSetId

Attributes

Attribute | Data Type | Explanation | structureId | number | This is the identifier of a data definition
for your site in Liferay. Tofind the identifiers for your data definitions, clickAdmin from theDockbar
and select Content. Then click Dynamic Data Lists and click the Manage Data Definitions button.
The identifier of each data definition is in the ID column of the table that appears. | groupId | number
| The site (group) identifier where the record is stored. If this value is 0, the groupId specified
in LiferayServerContext is used. | recordSetId | number | The identifier of a dynamic data list. To
find the identifiers for your dynamic data lists, click Admin from the Dockbar and select Content.
Then click Dynamic Data Lists. The identifier of each dynamic data list is in the ID column of
the table that appears. | recordId | number | The identifier of the record you want to show. Setting
the editable attribute to true allows editing of the record’s values. The recordId can be obtained
from other methods or delegates. | repositoryId | number | The identifier of the Documents and
Media repository to upload to. If this value is 0, the default repository for the site specified in
groupId is used. | folderId | number | The identifier of the folder where Documents and Media files
are uploaded. If this value is 0, the root folder is used. | filePrefix | string | The prefix to attach
to the names of files uploaded to a Documents and Media repository. A random GUID string is
appended following the prefix. | autoLoad | boolean | Sets whether or not the form is loaded when the
Screenlet is shown. If recordId is set, the record value is loaded together with the form definition.
| autoscrollOnValidation | boolean | Sets whether or not the form automatically scrolls to the first
failed field when validation is used. | showSubmitButton | boolean | Sets whether or not the form shows
a submit button at the bottom. If this is set to false, you should call the submitForm() method. |
editable | boolean | Sets whether the values can be changed by the user. The default is true. |

Methods

Method | Return Type | Explanation | loadForm() | boolean | Starts the request to load the form
definition. The form fields are shown when the response is received. This method returns true
if the request is sent. | loadRecord() | boolean | Starts the request to load the record specified in
recordId. If needed, the form definition is also loaded. The form fields are shown filled with record
values when the response is received. This method returns true if the request is sent. | submitForm()
| boolean | Starts the request to submit form values to the dynamic data list specified in recordSetId.
All fields are validated prior to submission. Validation errors stop the submit process. |

1922

Delegate

DDLFormScreenlet delegates someevents to anobject that conformswith the DDLFormScreenletDelegate
protocol. This protocol lets you implement the following methods:

• - screenlet:onFormLoaded:: Called when the form is loaded. The second parameter (record)
contains only field definitions.

• - screenlet:onFormLoadError:: Called when an error occurs while loading the form. The
NSError object describes the error.

• - screenlet:onRecordLoaded:: Called when a form with values loads. The second parameter
(record) contains field definitions and values. The method onFormLoadResult is called before
onRecordLoaded.

• - screenlet:onRecordLoadError:: Called when an error occurs while loading a record. The
NSError object describes the error.

• - screenlet:onFormSubmitted:: Called when the form values are successfully submitted to the
server.

• - screenlet:onFormSubmitError:: Called when an error occurs while submitting the form. The
NSError object describes the error.

• - screenlet:onDocumentFieldUploadStarted:: Called when the upload of a Documents and Me-
dia field begins.

• - screenlet:onDocumentField:uploadedBytes:totalBytes:: Called when a block of bytes in a
Documents and Media field is uploaded. This method is intended to track progress of the
uploads.

• - screenlet:onDocumentField:uploadResult:: Calledwhen aDocuments andMedia field upload
is completed.

• - screenlet:onDocumentField:uploadError:: Called when an error occurs in the Documents
and Media upload process. The NSError object describes the error.

164.6 DDL List Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

1923

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The DDL List Screenlet enables the following features:

• Shows a scrollable collection of DDL records.
• Implements fluent pagination with configurable page size.
• Allows filtering of records by creator.
• Supports i18n in record values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecords With ddlRecordSetId, or
ddlRecordSetId and userId

ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecordsCount

Module

• DDL

Themes

• The Default Theme uses a standard UITableView to show the scrollable list. Other Themes
may use a different component, such as UICollectionView or others, to show the items.

Portal Configuration

Dynamic Data Lists (DDL) and Data Types should be configured in the portal. For more details,
please refer to the Liferay User Guide sections Creating Data Definitions and Creating Data Lists.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

1924

http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Figure 164.11: The DDL List Screenlet using the Default (default) Theme.

1925

Policy | What happens | When to use | remote-only | The Screenlet loads the list from the portal.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error.
If the Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this
policy when you always need to show updated data, and show nothing when there’s no connection.
| cache-only | The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet
uses the delegate to notify the developer about the error. | Use this policy when you always need to
show local data, without retrieving remote information under any circumstance. | remote-first |
The Screenlet loads the list from the portal. If this succeeds, the Screenlet shows the list to the user
and stores it in the local cache for later use. If a connection issue occurs, the Screenlet retrieves
the list from the local cache. If the list doesn’t exist there, the Screenlet uses the delegate to notify
the developer about the error. | Use this policy to show the most recent version of the data when
connected, but show an outdated version when there’s no connection. | cache-first | The Screenlet
loads the list from the local cache. If the list isn’t there, the Screenlet requests it from the portal
and notifies the developer about any errors that occur (including connectivity errors). | Use this
policy to save bandwidth and loading time in case you have local (but probably outdated) data. |

Required Attributes

• recordSetId

• labelFields

Attributes

Attribute | Data type | Explanation | recordSetId | number | The ID of the DDL being called. To
find the IDs for your DDLs, first open the Product Menu and select the site that contains your DDLs.
Then click Content → Dynamic Data Lists. Each DDL’s ID is in the table’s ID column. | userId | number
| The ID of the user to filter records on. Records aren’t filtered if the userId is 0. The default value is
0. | labelFields | string | The comma-separated names of the DDL fields to show. Refer to the list’s
data definition to find the field names. To do so, first open the Product Menu and select the site that
contains your DDLs. Then click Content → Dynamic Data Lists, and find the find the icon () for the
Dynamic Data List configuration menu at the upper right. Click this icon and select Manage Data
Definitions. You can view the fields by clicking on any of the data definitions in the table that appears.
Note that the appearance of these values in your app depends on the Theme selected by the user. |
offlinePolicy | string | The offline mode setting. The default value is remote-first. See the Offline
section for details. | autoLoad | boolean | Whether the list loads automatically when the Screenlet
appears in the app’s UI. The default value is true. | refreshControl | boolean | Whether a standard
iOS UIRefreshControl appears when the user performs the pull to refresh gesture. The default value
is true. | firstPageSize | number | The number of items retrieved from the server for display on the
first page. The default value is 50. | pageSize | number | The number of items retrieved from the
server for display on the second and subsequent pages. The default value is 25. | obcClassName |
string | The name of the OrderByComparator class to use to sort the results. Omit this property if
you don’t want to sort the results. Click here to see some comparator classes. Note, however, that
not all of these classes can be used with obcClassName. You can only use comparator classes that
extend OrderByComparator<DDLRecord>. You can also create your own comparator classes that extend
OrderByComparator<DDLRecord>. |

1926

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIRefreshControl_class/
https://github.com/liferay/liferay-portal/tree/master/modules/apps/forms-and-workflow/dynamic-data-lists/dynamic-data-lists-api/src/main/java/com/liferay/dynamic/data/lists/util/comparator

Methods

Method | Return | Explanation | loadList() | boolean | Starts the request to load the list of records.
The list is shown when the response is received. This method returns true if the request is sent. |

Delegate

TheDDLList Screenlet delegates someevents in anobject that conforms to the DDLListScreenletDelegate
protocol. This protocol lets you implement the following methods:

• - screenlet:onDDLListResponseRecords:: Called when a page of contents is received. Note that
this method may be called more than once; once for each retrieved page.

• - screenlet:onDDLListError:: Called when an error occurs in the process. The NSError object
describes the error.

• - screenlet:onDDLSelectedRecord:: Called when an item in the list is selected.

164.7 Asset List Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Asset List Screenlet can be used to show lists of assets from a Liferay instance. For example, you
can use the Screenlet to show a scrollable collection of assets. It also implements fluent pagination
with configurable page size. The Asset List Screenlet can show assets of the following classes:

• BlogsEntry

• BookmarksEntry

• BookmarksFolder

• CalendarEvent

• DLFileEntry

1927

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

• DDLRecord

• DDLRecordSet

• Group

• JournalArticle (Web Content)
• JournalFolder

• Layout

• LayoutRevision

• MBThread

• MBCategory

• MBDiscussion

• MBMailingList

• Organization

• User

• WikiPage

• WikiPageResource

• WikiNode

The Asset List Screenlet also supports i18n in asset values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensddlrecordService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensddlrecordService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

AssetEntryService getEntriesCount

Module

• None

Themes

• Default

The Default Theme uses a standard UITableView to show the scrollable list. Other Themes may
use a different component, such as UICollectionView or others, to show the items.

1928

Figure 164.12: Asset List Screenlet using the Default (default) Theme.

1929

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy | What happens | When to use | remote-only | The Screenlet loads the list from the portal.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error.
If the Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this
policy when you always need to show updated data, and show nothing when there’s no connection.
| cache-only | The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet
uses the delegate to notify the developer about the error. | Use this policy when you always need to
show local data, without retrieving remote information under any circumstance. | remote-first |
The Screenlet loads the list from the portal. If this succeeds, the Screenlet shows the list to the user
and stores it in the local cache for later use. If a connection issue occurs, the Screenlet retrieves
the list from the local cache. If the list doesn’t exist there, the Screenlet uses the delegate to notify
the developer about the error. | Use this policy to show the most recent version of the data when
connected, but show an outdated version when there’s no connection. | cache-first | The Screenlet
loads the list from the local cache. If the list isn’t there, the Screenlet requests it from the portal
and notifies the developer about any errors that occur (including connectivity errors). | Use this
policy to save bandwidth and loading time in case you have local (but probably outdated) data. |

Required Attributes

• classNameId

If you don’t use classNameId, you must use this attribute:

• portletItemName

Attributes

Attribute | Data type | Explanation | groupId | number | The ID of the site (group) where the asset
is stored. If set to 0, the groupId specified in LiferayServerContext is used. The default value is
0. | classNameId | number | The ID of the asset’s class name. Use values from the AssetClassNameId

class or the Liferay Instance’s classname_ database table. | portletItemName | string | The name of
the configuration template you used in the Asset Publisher. To use this feature, add an Asset
Publisher to one of your site’s pages (it may be a hidden page), configure the Asset Publisher’s
filter (in Configuration → Setup → Asset Selection), and then use the Asset Publisher’s Configuration
Templates option to save this configuration with a name. Use this name as this attribute’s value. |
offlinePolicy | string | The offline mode setting. The default value is remote-first. See the Offline
section for details. | autoLoad | boolean | Whether the list loads automatically when the Screenlet
appears in the app’s UI. The default value is true. | refreshControl | boolean | Defines whether a
standard ios UIRefreshControl appears when the user does the pull to refresh gesture. The default
value is true. | firstPageSize | number | The number of items retrieved from the server for display on
the first page. The default value is 50. | pageSize | number | The number of items retrieved from the
server for display on the second and subsequent pages. The default value is 25. | customEntryQuery |

1930

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIRefreshControl_class/

Dictionary | The set of keys (string) and values (string or number) to be used in the AssetEntryQuery

object. These values filter the assets returned by the Liferay instance. |

Methods

Method | Return | Explanation | loadList() | boolean | Starts the request to load the list of assets.
This list is shown when the response is received. Returns true if the request is sent. |

Delegate

TheAsset List Screenlet delegates someevents to anobject that conforms to the AssetListScreenletDelegate
protocol. This protocol lets you implement the following methods:

• - screenlet:onAssetListResponse:: Called when a page of assets is received. Note that this
method may be called more than once; one call for each page received.

• - screenlet:onAssetListError:: Called when an error occurs in the process. The NSError

object describes the error.

• - screenlet:onAssetSelected:: Called when an item in the list is selected.

164.8 Web Content Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

TheWeb Content Display Screenlet shows web content elements in your app, rendering the in-
ner HTML of the web content. The Screenlet also supports i18n, rendering contents differently
depending on the device’s current locale.

1931

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/asset/kernel/service/persistence/AssetEntryQuery.html
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/asset/kernel/service/persistence/AssetEntryQuery.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

DDMStructureService getStructureWithStructureId

JournalArticleService getArticleWithGroupId

JournalArticleService getArticleContent

ScreensddlrecordService (Screens
compatibility plugin)

getJournalArticleContent With entryQuery

Module

• WebContent

Themes

• Default

The Default Theme uses a standard UIWebView to render the HTML. Other Themes may use a
different component, such as iOS 8’s.

Portal Configuration

For theWeb Content Display Screenlet to function properly, there should be web content in the
Liferay instance your app connects to. For more details on web content, please refer to the web
content section of the User Guide.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy | What happens | When to use | remote-only | The Screenlet loads the content from the
portal. If a connection issue occurs, the Screenlet uses the delegate to notify the developer about
the error. If the Screenlet successfully loads the content, it stores the data in the local cache for
later use. | Use this policy when you always need to show updated content, and show nothing
when there’s no connection. | cache-only | The Screenlet loads the content from the local cache. If
the content isn’t there, the Screenlet uses the delegate to notify the developer about the error. |
Use this policy when you always need to show local content, without retrieving remote content
under any circumstance. | remote-first | The Screenlet loads the content from the portal. If this
succeeds, the Screenlet shows the content to the user and stores it in the local cache for later use. If
a connection issue occurs, the Screenlet retrieves the content from the local cache. If the content
doesn’t exist there, the Screenlet uses the delegate to notify the developer about the error. | Use

1932

Figure 164.13: The Web Content Display Screenlet using the Default (default) Theme

1933

this policy to show the most recent version of the content when connected, but show a possibly
outdated version when there’s no connection. | cache-first | The Screenlet loads the content from
the local cache. If the content isn’t there, the Screenlet requests it from the portal and notifies
the developer about any errors that occur (including connectivity errors). | Use this policy to save
bandwidth and loading time in case you have local (but probably outdated) content. |

Required Attributes

• articleId

If you have structured web content, you can alternatively use templateId or structureId with
articleId.

Attributes

Attribute | Data type | Explanation | groupId | number | The site (group) identifier where the asset
is stored. If this value is 0, the groupId specified in LiferayServerContext is used. | articleId | string
| The identifier of the web content to display. You can find the identifier by clicking Edit on the web
content in the portal. | templateId | number | The identifier of the template used to render the web
content. This is applicable only with structured web content. | structureId | number | The identifier
of the DDMStructure used to model the web content. This parameter lets the Screenlet retrieve and
parse the structure. | autoLoad | boolean | Whether the content should be retrieved from the portal
as soon as the Screenlet appears. The default value is true. |

Methods

Method | Return | Explanation | loadWebContent() | boolean | Starts the request to load the web
content. The HTML is rendered when the response is received. Returns true if the request is sent. |

Delegate

The Web Content Display Screenlet delegates some events to an object that conforms to the
WebContentDisplayScreenletDelegate protocol. This protocol lets you implement the following meth-
ods:

• - screenlet:onWebContentResponse:: Called when the web content’s HTML is received.

• - screenlet:onWebContentError:: Called when an error occurs in the process. The NSError

object describes the error.

• - screenlet:onRecordContentResponse:: Called when a web content record is received.

• - screenlet:onUrlClicked:: Called when a URL is clicked in the web content. Return true to
handle the navigation, or false to cancel it.

1934

164.9 Web Content List Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Web Content List Screenlet can show lists of web content from a Liferay instance. It can show
both basic and structured web content. The Screenlet also implements fluent pagination with
configurable page size, and supports i18n in asset values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

JournalArticleService getArticlesWithGroupId

JournalArticleService getArticlesCount

Module

• WebContent

Themes

• Default

The Default Theme uses a standard UITableView to show the scrollable list. Other Themes may
use a different component, such as UICollectionView or others, to show the contents.

1935

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Figure 164.14: Web Content List Screenlet using the Default (default) Theme.

1936

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy | What happens | When to use | remote-only | The Screenlet loads the list from the Liferay
instance. If a connection issue occurs, the Screenlet uses the delegate to notify the developer
about the error. If the Screenlet successfully loads the list, it stores the data in the local cache
for later use. | Use this policy when you always need to show updated data, and show nothing
when there’s no connection. | cache-only | The Screenlet loads the list from the local cache. If the
list isn’t there, the Screenlet uses the delegate to notify the developer about the error. | Use this
policy when you always need to show local data, without retrieving remote information under
any circumstance. | remote-first | The Screenlet loads the list from the Liferay instance. If this
succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use. If
a connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t
exist there, the Screenlet uses the delegate to notify the developer about the error. | Use this policy
to show the most recent version of the data when connected, but show a possibly outdated version
when there’s no connection. | cache-first | The Screenlet loads the list from the local cache. If
the list isn’t there, the Screenlet requests it from the Liferay instance and notifies the developer
about any errors that occur (including connectivity errors). | Use this policy to save bandwidth and
loading time in case you have local (but possibly outdated) data. |

Required Attributes

• folderId

Attributes

Attribute | Data type | Explanation | groupId | number | The ID of the site (group) where the web
content exists. If set to 0, the groupId specified in LiferayServerContext is used. The default value is
0. | folderId | number | The ID of the web content folder. If set to 0, the root folder is used. The default
value is 0. | offlinePolicy | string | The offline mode setting. The default value is remote-first. See
the Offline section for details. | autoLoad | boolean | Whether the list loads automatically when the
Screenlet appears in the app’s UI. The default value is true. | refreshControl | boolean | Whether a
standard iOS UIRefreshControl appears when the user does the pull to refresh gesture. The default
value is true. | firstPageSize | number | The number of items to display on the first page. The default
value is 50. | pageSize | number | The number of items to display on the second and subsequent pages.
The default value is 25. | obcClassName | string | The name of the OrderByComparator class to use to
sort the results. Omit this property if you don’t want to sort the results. Click here to see some
comparator classes. Note, however, that not all of these classes can be used with obcClassName.
You can only use comparator classes that extend OrderByComparator<JournalArticle>. You can also
create your own comparator classes that extend OrderByComparator<JournalArticle>. |

1937

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIRefreshControl_class/
https://github.com/liferay/liferay-portal/tree/master/modules/apps/web-experience/journal/journal-api/src/main/java/com/liferay/journal/util/comparator

Methods

Method | Return | Explanation | loadList() | boolean | Starts the request to load the web content
list. This list is shownwhen the response is received. Returns true if the request is sent successfully.
|

Delegate

Web Content List Screenlet delegates some events to an object that conforms to the
WebContentListScreenletDelegate protocol. This protocol lets you implement the following
methods:

• - screenlet:onWebContentListResponse:: Called when a page of contents is received. Note that
this method may be called more than once: one call for each page received.

• - screenlet:onWebContentListError:: Called when an error occurs in the process. The NSError

object describes the error.

• - screenlet:onWebContentSelected:: Called when an item in the list is selected.

164.10 Image Gallery Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Image Gallery Screenlet shows a list of images from a Documents and Media folder in a Liferay
instance. You can also use Image Gallery Screenlet to upload images to and delete images from the
same folder. The Screenlet implements fluent pagination with configurable page size, and supports
i18n in asset values.

1938

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

DLAppService getFileEntries Load
DLAppService getFileEntriesCount

DLAppService addFileEntry Upload
DLAppService deleteFileEntry Delete

Module

• None

Themes

The default Theme uses a standard iOS UICollectionView to show the scrollable list as a grid. Other
Themes may use a different component, such as UITableView or others, to show the contents.

This screenlet has three different Themes:

1. Grid (default)
2. Slideshow
3. List

Offline

This Screenlet supports offlinemode so it can function without a network connection when loading
or uploading images (deleting images while offline is unsupported). For more information on how
offline mode works, see the tutorial on its architecture. This Screenlet supports the remote-only,
cache-only, remote-first, and cache-first offline mode policies.

These policies take the following actions when loading images from a Liferay instance:

Policy |What happens |When to use | remote-only | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the delegate to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | cache-only | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the delegate to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
remote-first | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the delegate to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show a possibly outdated version when there’s

1939

Figure 164.15: Image Gallery Screenlet using the Grid, Slideshow, and List Themes.

no connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t
there, the Screenlet requests it from the Liferay instance and notifies the developer about any
errors that occur (including connectivity errors). | Use this policy to save bandwidth and loading
time in case you have local (but possibly outdated) data. |

These policies take the following actions when uploading an image to a Liferay instance:

Policy | What happens |When to use | remote-only | The Screenlet sends the image to the Liferay
instance. If a connection issue occurs, the Screenlet uses the delegate to notify the developer
about the error, but it also discards the image. | Use this policy to make sure the Liferay instance
always has the most recent version of the image. | cache-only | The Screenlet stores the image
in the local cache. | Use this policy when you need to save the image locally, but don’t want to
update it in the Liferay instance. | remote-first | The Screenlet sends the image to the Liferay
instance. If this succeeds, it also stores the image in the local cache for later use. If a connection
issue occurs, the Screenlet stores the image in the local cache and sends it to the Liferay instance
when the connection is re-established. | Use this policy when you need to make sure the Screenlet
sends the image to the Liferay instance as soon as the connection is restored. | cache-first | The
Screenlet stores the image in the local cache and then attempts to send it to the Liferay instance. If a
connection issue occurs, the Screenlet sends the image to the Liferay instance when the connection
is re-established. | Use this policy when you need to make sure the Screenlet sends the image to

1940

the Liferay instance as soon as the connection is restored. Compared to remote-first, this policy
always stores the image in the cache. The remote-first policy only stores the image in the event of
a network error. |

Required Attributes

• repositoryId

• folderId

Attributes

Attribute | Data type | Explanation | repositoryId | number | The ID of the Liferay instance’s
Documents and Media repository that contains the image gallery. If you’re using a site’s default
Documents and Media repository, then the repositoryIdmatches the site ID (groupId). | folderId
| number | The ID of the Documents and Media repository folder that contains the image gallery.
When accessing the folder in your browser, the folderId is at the end of the URL. | mimeTypes | string
| The comma-separated list of MIME types for the Screenlet to support. | filePrefix | string | The
prefix to use on uploaded image file names. | offlinePolicy | string | The offline mode setting. The
default value is remote-first. See the Offline section for details. | autoLoad | boolean | Whether the
list automatically loads when the Screenlet appears in the app’s UI. The default value is true. |
refreshControl | boolean | Whether a standard iOS UIRefreshControl appears when the user does the
pull to refresh gesture. The default value is true. | firstPageSize | number | The number of items to
display on the first page. The default value is 50. | pageSize | number | The number of items to display
on the second and subsequent pages. The default value is 25. | obcClassName | string | The name of
the OrderByComparator class to use to sort the results. Omit this property if you don’t want to sort the
results. Note that you can only use comparator classes that extend OrderByComparator<DLFileEntry>.
Liferay contains no such comparator classes. You must therefore create your own by extending
OrderByComparator<DLFileEntry>. To see examples of some comparator classes that extend other
Document Library classes, click here. |

Methods

Method | Return | Explanation | loadList() | boolean | Starts the request to load the list of images.
This list is shown when the response is received. Returns true if the request is sent successfully. |

Delegate

ImageGallery Screenlet delegates someevents to anobject that conforms to the ImageGalleryScreenletDelegate
protocol. This protocol lets you implement the following methods:

• - screenlet:onImageEntriesResponse:: Called when a page of contents is received. Note that
this method may be called more than once: one call for each page received.

• - screenlet:onImageEntriesError:: Called when an error occurs in the process. The NSError

object describes the error.

1941

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIRefreshControl_class/
https://github.com/liferay/liferay-portal/tree/master/portal-impl/src/com/liferay/portlet/documentlibrary/util/comparator

• - screenlet:onImageEntrySelected:: Called when an item in the list is selected.

• - screenlet:onImageEntryDeleted:: Called when an image in the list is deleted.

• - screenlet:onImageEntryDeleteError:: Calledwhen an error occurs during imagefile deletion.
The NSError object describes the error.

• - screenlet:onImageUploadStart:: Called when an image is prepared for upload.

• - screenlet:onImageUploadProgress:: Called when the image upload progress changes.

• - screenlet:onImageUploadError:: Called when an error occurs in the image upload process.
The NSError object describes the error.

• - screenlet:onImageUploaded:: Called when the image upload finishes.

• - screenlet:onImageUploadDetailViewCreated:: Called when the image upload View is instanti-
ated. By default, the Screenlet uses a modal view controller to present this View. You only
need to implement this method if you want to override this behavior. This method should
present the View, passed as parameter, and then return true. For example, the following
example implementation presents ImageUploadDetailViewBase as a parameter, and then uses
it to customize the View’s appearance:

func screenlet(screenlet: ImageGalleryScreenlet,

onImageUploadDetailViewCreated uploadView: ImageUploadDetailViewBase) -> Bool {

self.cardDeck?.cards[safe: 0]?.addPage(uploadView)

self.cardDeck?.cards[safe: 0]?.moveRight()

return true

}

164.11 Rating Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Rating Screenlet shows an asset’s rating. It also lets users update or delete the rating. This Screenlet
comes with different Themes that display ratings as thumbs, stars, and emojis.

1942

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensratingsentryService (Screens
compatibility plugin)

getRatingsEntries With entryId

ScreensratingsentryService (Screens
compatibility plugin)

getRatingsEntries With classPK and
className

ScreensratingsentryService (Screens
compatibility plugin)

updateRatingsEntry

ScreensratingsentryService (Screens
compatibility plugin)

deleteRatingsEntry

Module

• None

Themes

The default Theme uses the CosmosView library to show an asset’s rating. Other custom Themes
may use a different component, such as UIButton or others, to show the items.

This screenlet has four different Themes:

1. Like
2. Thumbs (default)
3. Stars
4. Emojis

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | remote-only | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the delegate to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | cache-only | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the delegate to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
remote-first | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue

1943

https://github.com/marketplacer/Cosmos

Figure 164.16: Rating Screenlet’s different Themes.

1944

occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the delegate to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show a possibly outdated version when there’s
no connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t
there, the Screenlet requests it from the Liferay instance and notifies the developer about any
errors that occur (including connectivity errors). | Use this policy to save bandwidth and loading
time in case you have local (but possibly outdated) data. |

Required Attributes

• entryId

If you don’t use entryId, you must use these attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The ID of the layout to use to show
the Theme. | autoLoad | boolean | Whether the rating loads automatically when the Screenlet
appears in the app’s UI. The default value is true. | editable | boolean | Whether the user can
change the rating. | entryId | number | The primary key of the asset with the rating to display. |
className | string | The asset’s fully qualified class name. For example, a blog entry’s className is
com.liferay.blogs.model.BlogsEntry. The className attribute is required when using it with classPK

to instantiate the Screenlet. | classPK | number | The asset’s unique identifier. Only use this attribute
when also using className to instantiate the Screenlet. | groupId | number | The ID of the site (group)
containing the asset. | offlinePolicy | string | The offline mode setting. See the Offline section for
details. |

Methods

Method | Return | Explanation | loadRatings() | boolean | Starts the request to load the asset’s
ratings. |

Delegate

Rating Screenlet delegates some events to an object that conforms to the RatingScreenletDelegate

protocol. This protocol lets you implement the following methods:

• - screenlet:onRatingRetrieve:: Called when the ratings are received.

• - screenlet:onRatingDeleted:: Called when a rating is deleted.

• - screenlet:onRatingUpdated:: Called when a rating is updated.

1945

• - screenlet:onRatingError:: Called when an error occurs in the process. The NSError object
describes the error.

164.12 Comment List Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Comment List Screenlet can list all the comments of an asset in a Liferay instance. It also lets the
user update or delete comments.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

getCommentsWithClassName

ScreenscommentService (Screens
compatibility plugin)

getCommentsCount

Module

• None

1946

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Themes

• Default

The Default Theme uses an iOS UITableView to show an asset’s comments. Other Themes may
use a different component, such as iOS’s UICollectionView or others, to show the items.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy | What happens | When to use | remote-only | The Screenlet loads the list from the Liferay
instance. If a connection issue occurs, the Screenlet uses the delegate to notify the developer
about the error. If the Screenlet successfully loads the list, it stores the data in the local cache
for later use. | Use this policy when you always need to show updated data, and show nothing
when there’s no connection. | cache-only | The Screenlet loads the list from the local cache. If the
list isn’t there, the Screenlet uses the delegate to notify the developer about the error. | Use this
policy when you always need to show local data, without retrieving remote information under
any circumstance. | remote-first | The Screenlet loads the list from the Liferay instance. If this
succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use. If
a connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t
exist there, the Screenlet uses the delegate to notify the developer about the error. | Use this policy
to show the most recent version of the data when connected, but show a possibly outdated version
when there’s no connection. | cache-first | The Screenlet loads the list from the local cache. If
the list isn’t there, the Screenlet requests it from the Liferay instance and notifies the developer
about any errors that occur (including connectivity errors). | Use this policy to save bandwidth and
loading time in case you have local (but possibly outdated) data. |

Required Attributes

• className

• classPK

Attributes

Attribute | Data type | Explanation | className | string | The asset’s fully qualified class name. For
example, a blog entry’s className is com.liferay.blogs.model.BlogsEntry. The className and classPK

attributes are required to instantiate the Screenlet. | classPK | number | The asset’s unique identifier.
The className and classPK attributes are required to instantiate the Screenlet. | offlinePolicy |
string | The offline mode setting. The default is remote-first. See the Offline section for details. |
editable | boolean | Whether the user can edit the comment. | autoLoad | boolean | Whether the list
should automatically load when the Screenlet appears in the app’s UI. The default value is true. |
refreshControl | boolean | Defines whether a standard iOS UIRefreshControl is shown when the user
does the pull to refresh gesture. The default value is true. | firstPageSize | number | The number of
items retrieved from the server for display on the first page. The default value is 50. | pageSize |

1947

https://developer.apple.com/reference/uikit/uitableview
https://developer.apple.com/reference/uikit/uicollectionview
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIRefreshControl_class/

Figure 164.17: Comment List Screenlet using the Default Theme.

1948

number | The number of items retrieved from the server for display on the second and subsequent
pages. The default value is 25. | obcClassName | string | The name of the OrderByComparator class to
use to sort the results. You can only use classes that extend OrderByComparator<MBMessage>. If you
don’t want to sort the results, you can omit this property. |

Methods

Method | Return | Explanation | loadList() | boolean | Starts the request to load the list. This list
is shown when the response is received. Returns true if the request is sent. |

Delegate

CommentList Screenlet delegates someevents to anobject that conforms to the ComentListScreenletDelegate
protocol. This protocol lets you implement the following methods:

• - screenlet:onListResponseComments:: Called when the Screenlet receives the comments.

• - screenlet:onCommentListError:: Called when an error occurs in the process. The NSError

object describes the error.

• - screenlet:onSelectedComment:: Called when a comment is selected.

• - screenlet:onDeletedComment:: Called when a comment is deleted.

• - screenlet:onCommentDelete:: Called when the Screenlet prepares a comment for deletion.

• - screenlet:onUpdatedComment:: Called when a comment is updated.

• - screenlet:onCommentUpdate:: Called when the Screenlet prepares a comment for update.

164.13 Comment Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1949

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/OrderByComparator.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

Comment Display Screenlet can show one comment of an asset in a Liferay instance. It also lets
the user update or delete the comment.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

getCommentWithCommentId

ScreenscommentService (Screens
compatibility plugin)

updateComment

CommentmanagerjsonwsService deleteComment

Module

• None

Themes

• Default

The Default Theme uses User Portrait Screenlet and iOS UILabel elements to show an asset’s
comment. Other Themes may use different components to show the comment.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offlinemodeworks, see the tutorial on its architecture. This Screenlet supports
the remote-only, cache-only, remote-first, and cache-first offline mode policies.

These policies take the following actions when loading a comment from a Liferay instance:

Policy |What happens |When to use | remote-only | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | cache-only | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
remote-first | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the

1950

Figure 164.18: Comment Display Screenlet using the Default Theme.

1951

most recent version of the data when connected, but show an outdated version when there’s no
connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

These policies take the following actions when updating or deleting a comment in a Liferay
instance:

Policy | What happens | When to use | remote-only | The Screenlet sends the data to the Liferay
instance. If a connection issue occurs, the Screenlet uses the delegate to notify the developer
about the error, but it also discards the data. | Use this policy to make sure the Liferay instance
always has the most recent version of the data. | cache-only | The Screenlet stores the data in the
local cache. | Use this policy when you need to save the data locally, but don’t want to update it in
the Liferay instance. | remote-first | The Screenlet sends the data to the Liferay instance. If this
succeeds, it also stores the data in the local cache for later use. If a connection issue occurs, the
Screenlet stores the data in the local cache and sends it to the Liferay instance when the connection
is re-established. | Use this policy when you need to make sure the Screenlet sends the data to the
Liferay instance as soon as the connection is restored. | cache-first | The Screenlet stores the data
in the local cache and then attempts to send it to the Liferay instance. If a connection issue occurs,
the Screenlet sends the data to the Liferay instance when the connection is re-established. | Use
this policy when you need to make sure the Screenlet sends the data to the Liferay instance as soon
as the connection is restored. Compared to remote-first, this policy always stores the data in the
cache. The remote-first policy only stores the data in the event of a network error. |

Required Attributes

• commentId

Attributes

Attribute | Data type | Explanation | commentId | number | The primary key of the comment to display.
| autoLoad | boolean | Whether the list should automatically load when the Screenlet appears in the
app’s UI. The default value is true. | editable | boolean | Whether the user can edit the comment. |
offlinePolicy | string | The offlinemode setting. The default is remote-first. See the Offline section
for details. |

Methods

Method | Return | Explanation | load() | none | Starts the request to load the comment. |

1952

Delegate

Comment Display Screenlet delegates some events to an object that conforms to the
CommentDisplayScreenletDelegate protocol. This protocol lets you implement the following
methods:

• - screenlet:onCommentLoaded:: Called when the Screenlet loads the comment.

• - screenlet:onLoadCommentError:: Called when an error occurs in the process. The NSError

object describes the error.

• - screenlet:onSelectedComment:: Called when a comment is selected.

• - screenlet:onDeletedComment:: Called when a comment is deleted.

• - screenlet:onCommentDelete:: Called when the Screenlet prepares the comment for deletion.

• - screenlet:onUpdatedComment:: Called when a comment is updated.

• - screenlet:onCommentUpdate:: Called when the Screenlet prepares the comment for update.

164.14 Comment Add Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Comment Add Screenlet can add a comment to an asset in a Liferay instance.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

1953

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

addComment

Module

• None

Themes

• Default

The Default Theme uses the iOS elements UITextField and UIButton to add a comment to an
asset. Other Themes may use other components to show the comment.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy | What happens | When to use | remote-only | The Screenlet sends the data to the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully sends the data, it also stores it in the local cache. | Use this
policy when you always need to send updated data, and send nothing when there’s no connection.
| cache-only | The Screenlet sends the data to the local cache. If an error occurs, the Screenlet uses
the listener to notify the developer. | Use this policy when you always need to store local data
without sending remote information under any circumstance. | remote-first | The Screenlet sends
the data to the Liferay instance. If this succeeds, the Screenlet also stores the data in the local
cache. If a connection issue occurs, the Screenlet stores the data to the local cache and sends it to
the Liferay instance when the connection is restored. If an error occurs, the Screenlet uses the
listener to notify the developer. | Use this policy to send the most recent version of the data when
connected, and store the data for later synchronization when there’s no connection. | cache-first |
The Screenlet sends the data to the local cache, then sends it to the Liferay instance. If sending
the data to the Liferay instance fails, the Screenlet still stores the data locally and then notifies
the developer about any errors that occur (including connectivity errors). | Use this policy to save
bandwidth and store local (but possibly outdated) data. |

Required Attributes

• className

• classPK

1954

Figure 164.19: Comment Add Screenlet using the Default Theme.

1955

Attributes

Attribute | Data type | Explanation | className | string | The asset’s fully qualified class name. For
example, a blog entry’s className is com.liferay.blogs.model.BlogsEntry. The className and classPK

attributes are required to instantiate the Screenlet. | classPK | number | The asset’s unique identifier.
The className and classPK attributes are required to instantiate the Screenlet. | offlinePolicy |
string | The offline mode setting. The default value is remote-first. See the Offline section for
details. |

Delegate

CommentAddScreenlet delegates someevents to anobject that conforms to the CommentAddScreenletDelegate
protocol. This protocol lets you implement the following methods:

• - screenlet:onCommentAdded:: Called when the Screenlet adds a comment.

• - screenlet:onAddCommentError:: Called when an error occurs while adding a comment. The
NSError object describes the error.

• - screenlet:onCommentUpdated:: Called when the Screenlet prepares a comment for update.

• - screenlet:onUpdateCommentError:: Called when an error occurs while updating a comment.
The NSError object describes the error.

164.15 Asset Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1956

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

Asset Display Screenlet can display an asset from a Liferay instance. The Screenlet can currently
display Documents andMedia files (DLFileEntry images, videos, audio files, and PDFs), blogs entries
(BlogsEntry) and web content articles (WebContent).

Asset Display Screenlet can also display your custom asset types. See the delegate section of
this document for details.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The Default Theme uses different UI elements to show each asset type. For example, it displays
images with UIImageView, and blogs with UILabel.

This Screenlet can also render other Screenlets:

• Images: Image Display Screenlet
• Videos: Video Display Screenlet
• Audio: Audio Display Screenlet
• PDFs: PDF Display Screenlet
• Blog entries: Blogs Entry Display Screenlet
• Web content: Web Content Display Screenlet

These Screenlets can also be used alone without Asset Display Screenlet.

1957

Figure 164.20: Asset Display Screenlet using the Default Theme.

1958

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | remote-only | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | cache-only | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
remote-first | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• assetEntryId

Instead of assetEntryId, you can use both of these attributes:

• className

• classPK

If you don’t use the above attributes, you must use this attribute:

• portletItemName

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the asset. |
className | string | The asset’s fully qualified class name. For example, a blog entry’s className is
com.liferay.blogs.model.BlogsEntry. The className and classPK attributes are required to instantiate
the Screenlet. | classPK | number | The asset’s unique identifier. The className and classPK attributes
are required to instantiate the Screenlet. | portletItemName | string | The name of the configuration
template you used in the Asset Publisher. To use this feature, add an Asset Publisher to one of
your site’s pages (it may be a hidden page), configure the Asset Publisher’s filter (in Configuration →
Setup → Asset Selection), and then use the Asset Publisher’s Configuration Templates option to save
this configuration with a name. Use this name as this attribute’s value. If there is more than one
asset in the configuration, the Screenlet displays only the first one. | assetEntry | Asset | The Asset

1959

object to display, selected from a list of assets. Note that if you use this attribute, the Screenlet
doesn’t need to call the server. | autoLoad | boolean | Whether the asset automatically loads when
the Screenlet appears in the app’s UI. The default value is true. | offlinePolicy | string | The offline
mode setting. The default value is remote-first. See the Offline section for details. |

Delegate

AssetDisplay Screenlet delegates someevents to anobject that conforms to the AssetDisplayScreenletDelegate
protocol. This protocol lets you implement the following methods:

• - screenlet:onAssetResponse:: Called when the Screenlet receives the asset.

• - screenlet:onAssetError:: Called when an error occurs in the process. The NSError object
describes the error.

• - screenlet:onConfigureScreenlet:: Called when the child Screenlet (the Screenlet rendered
inside Asset Display Screenlet) has been successfully initialized. Use this method to config-
ure or customize it. The example implementation here sets the child Blogs Entry Display
Screenlet’s background color to gray:

func screenlet(screenlet: AssetDisplayScreenlet, onConfigureScreenlet,

childScreenlet: BaseScreenlet?, onAsset asset: Asset) {

if childScreenlet is BlogsEntryDisplayScreenlet {

childScreenlet?.screenletView?.backgroundColor = UIColor.grayColor()

}

}

• - screenlet:onAsset:: Called to render a custom asset. The following example implemen-
tation renders a portal user (User). If the asset is a user, this method instantiates a custom
UserProfileView to render that user:

public func screenlet(screenlet: AssetDisplayScreenlet, onAsset asset: Asset) -> UIView? {

if let type = asset.attributes["object"]?.allKeys.first as? String {

if type == "user" {

let view = NSBundle.mainBundle().loadNibNamed("UserProfileView", owner: self,

options: nil)![0] as? UserProfileView

view?.user = User(attributes: asset.attributes)

return view

}

}

return nil

}

164.16 Blogs Entry Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

1960

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Blogs Entry Display Screenlet displays a single blog entry. Image Display Screenlet renders any
header image the blogs entry may have.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The Default Theme can use different components to show a blogs entry (BlogsEntry). For
example, it uses UILabel to show a blog’s text, and User Portrait Screenlet to show the profile picture
of the Liferay user who posted it. Note that other Themes may use different components.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

1961

Figure 164.21: Blogs Entry Display Screenlet using the Default Theme.

1962

Policy |What happens |When to use | remote-only | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use.
| Use this policy when you always need to show updated data, and show nothing when there’s
no connection. | cache-only | The Screenlet loads the data from the local cache. If the data isn’t
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy when
you always need to show local data, without retrieving remote data under any circumstance. |
remote-first | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• assetEntryId or classPK

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the blog entry
(BlogsEntry). | classPK | number | The BlogsEntry object’s unique identifier. | autoLoad | boolean |
Whether the blog entry automatically loads when the Screenlet appears in the app’s UI. The default
value is true. | offlinePolicy | string | The offline mode setting. The default value is remote-first.
See the Offline section for details. |

Delegate

Blogs Entry Display Screenlet delegates some events to an object that conforms to the
BlogsEntryDisplayScreenletDelegate protocol. This protocol lets you implement the following
methods:

• - screenlet:onBlogEntryResponse:: Called when the Screenlet receives the BlogsEntry object.

• - screenlet:onBlogEntryError:: Called when an error occurs in the process. The NSError

object describes the error.

164.17 Image Display Screenlet for iOS

Requirements

• Xcode 9.3 or above

1963

• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Image Display Screenlet displays an image file from a Liferay instance’s Documents and Media
Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The Default Theme uses an iOS UIImageView for displaying the image.

1964

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Figure 164.22: Image Display Screenlet using the Default Theme.

1965

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | remote-only | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | cache-only | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
remote-first | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• assetEntryId

If you don’t use assetEntryId, you must use these attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the image. |
className | string | The image’s fully qualified class name. Since files in a Documents and Media Li-
brary are DLFileEntryobjects, their className is com.liferay.document.library.kernel.model.DLFileEntry.
The className and classPK attributes are required to instantiate the Screenlet. | classPK | number |
The image’s unique identifier. The className and classPK attributes are required to instantiate the
Screenlet. | autoLoad | boolean | Whether the image automatically loads when the Screenlet appears
in the app’s UI. The default value is true. | offlinePolicy | string | The offline mode setting. The
default value is remote-first. See the Offline section for details. |

1966

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFileEntry.html

Delegate

Because images are files, Image Display Screenlet delegates its events to an object that conforms to
the FileDisplayScreenletDelegate protocol. This protocol lets you implement the following meth-
ods:

• - screenlet:onFileAssetResponse:: Called when the Screenlet receives the image file.

• - screenlet:onFileAssetError:: Called when an error occurs in the process. The NSError

object describes the error.

164.18 Video Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Video Display Screenlet displays a video file from a Liferay instance’s Documents andMedia Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

1967

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Module

• None

Themes

• Default

The Default Theme uses an iOS AVPlayerViewController to display the video.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | remote-only | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | cache-only | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
remote-first | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• assetEntryId

If you don’t use assetEntryId, you must use these attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the video file. |
className | string | The video file’s fully qualified class name. Since files in a Documents and Media

1968

Figure 164.23: Video Display Screenlet using the Default Theme.

1969

Library are DLFileEntryobjects, the className is com.liferay.document.library.kernel.model.DLFileEntry.
The className and classPK attributes are required to instantiate the Screenlet. | classPK | number |
The video file’s unique identifier. The className and classPK attributes are required to instantiate
the Screenlet. | autoLoad | boolean | Whether the video automatically loads when the Screenlet
appears in the app’s UI. The default value is true. | offlinePolicy | string | The offline mode setting.
See the Offline section for details. |

Delegate

Because images are files, Video Display Screenlet delegates its events to an object that conforms to
the FileDisplayScreenletDelegate protocol. This protocol lets you implement the following meth-
ods:

• - screenlet:onFileAssetResponse:: Called when the Screenlet receives the image file.

• - screenlet:onFileAssetError:: Called when an error occurs in the process. The NSError

object describes the error.

164.19 Audio Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Audio Display Screenlet displays an audio file from a Liferay instance’s Documents and Media
Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

1970

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFileEntry.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The Default Theme uses an iOS AVAudioPlayer to display the audio player. For the player compo-
nents, this Theme uses UIButton, UISlider, and several UILabel instances.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | remote-only | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | cache-only | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
remote-first | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

1971

Figure 164.24: Audio Display Screenlet using the Default Theme.

1972

Required Attributes

• assetEntryId

If you don’t use assetEntryId, you must use these attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the audio file.
| className | string | The audio file’s fully qualified class name. Since files in a Documents andMedia
Library are DLFileEntryobjects, their className is com.liferay.document.library.kernel.model.DLFileEntry.
The className and classPK attributes are required to instantiate the Screenlet. | classPK | number |
The audio file’s unique identifier. The className and classPK attributes are required to instantiate
the Screenlet. | autoLoad | boolean | Whether the audio file automatically loads when the Screenlet
appears in the app’s UI. The default value is true. | offlinePolicy | string | The offline mode setting.
See the Offline section for details. |

Delegate

AudioDisplay Screenlet delegates its events to anobject that conforms to the FileDisplayScreenletDelegate
protocol. This protocol lets you implement the following methods:

• - screenlet:onFileAssetResponse:: Called when the Screenlet receives the audio file.

• - screenlet:onFileAssetError:: Called when an error occurs in the process. An NSError object
describes the error.

164.20 PDF Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1973

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFileEntry.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

PDF Display Screenlet displays a PDF file from a Liferay Instance’s Documents and Media Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The Default Theme uses an iOS UIWebView for displaying the PDF file.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

Policy |What happens |When to use | remote-only | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | cache-only | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
remote-first | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the

1974

Figure 164.25: PDF Display Screenlet using the Default Theme.

1975

most recent version of the data when connected, but show an outdated version when there’s no
connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Required Attributes

• assetEntryId

If you don’t use assetEntryId, you must use these attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the PDF file. |
className | string | The PDF file’s fully qualified class name. Since files in a Documents andMedia Li-
brary are DLFileEntryobjects, their className is com.liferay.document.library.kernel.model.DLFileEntry.
The className and classPK attributes are required to instantiate the Screenlet. | classPK | number |
The PDF file’s unique identifier. The className and classPK attributes are required to instantiate the
Screenlet. | autoLoad | boolean | Whether the PDF automatically loads when the Screenlet appears in
the app’s UI. The default value is true. | offlinePolicy | string | The offline mode setting. See the
Offline section for details. |

Delegate

Because PDFs are files, PDF Display Screenlet delegates some events to an object that conforms to
the FileDisplayScreenletDelegate protocol. This protocol lets you implement the following meth-
ods:

• - screenlet:onFileAssetResponse:: Called when the Screenlet receives the PDF.

• - screenlet:onFileAssetError:: Called when an error occurs in the process. An NSError object
describes the error.

164.21 File Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP
• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

1976

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFileEntry.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

File Display Screenlet shows a single file from a Liferay DXP instance’s Documents and Media
Library. Use this Screenlet to display file types not covered by the other display Screenlets (e.g.,
DOC, PPT, XLS).

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following
services and methods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and
className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The Default View uses an iOS UIWebView for displaying the file.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more
information on how offline mode works, see the tutorial on its architecture. Here are the offline
mode policies that you can use with this Screenlet:

1977

Figure 164.26: File Display Screenlet using the Default View.

1978

Policy |What happens |When to use | remote-only | The Screenlet loads the data from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about
the error. If the Screenlet successfully loads the data, it stores it in the local cache for later use. |
Use this policy when you always need to show updated data, and show nothing when there’s no
connection. | cache-only | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy when you
always need to show local data, without retrieving remote information under any circumstance. |
remote-first | The Screenlet loads the data from the Liferay instance. If this succeeds, the Screenlet
shows the data to the user and stores it in the local cache for later use. If a connection issue
occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there, the
Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no
connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that
occur (including connectivity errors). | Use this policy to save bandwidth and loading time in case
you have local (but probably outdated) data. |

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the file. | className
| string | The file’s fully qualified class name. Since files in a Documents and Media Library are
DLFileEntry objects, their className is com.liferay.document.library.kernel.model.DLFileEntry. The
className and classPK attributes are required to instantiate the Screenlet. | classPK | number | The
file’s unique identifier. The className and classPK attributes are required to instantiate the Screenlet.
| autoLoad | boolean | Whether the file automatically loads when the Screenlet appears in the app’s
UI. The default value is true. | offlinePolicy | string | The offline mode setting. See the Offline
section for details. |

Delegate

FileDisplay Screenlet delegates someevents to anobject that conforms to the FileDisplayScreenletDelegate
protocol. This protocol lets you implement the following methods:

• - screenlet:onFileAssetResponse:: Called when the Screenlet receives the file.

• - screenlet:onFileAssetError:: Called when an error occurs in the process. An NSError object
describes the error.

164.22 Web Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP

1979

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFileEntry.html

• Liferay Screens Compatibility app (CE or EE/DXP). This app is preinstalled in Liferay CE
Portal 7.0/7.1 and Liferay DXP.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Web Screenlet lets you display any web page. It also lets you customize the web page through
injection of local and remote JavaScript and CSS files. If you’re using Liferay DXP as backend, you
can use Application Display Templates in your page to customize its content from the server side.

Module

• None

Themes

• Default

The Default Theme uses an iOS WKWebView for displaying the web page.

Configuration

To learn how to useWeb Screenlet, follow the steps in the tutorial RenderingWeb Pages in Your
iOS App. That tutorial gives detailed instructions for using the configuration items described here.

Web Screenlet has WebScreenletConfiguration and WebScreenletConfigurationBuilder ob-
jects that you can use together to supply the parameters that the Screenlet needs to work.
WebScreenletConfigurationBuilder has the following methods, which let you supply the described
configuration parameters:

Method | Returns | Explanation | addJs(localFile: String) | WebScreenletConfigurationBuilder
| Adds a local JavaScript file with the supplied filename. | addCss(localFile: String) |
WebScreenletConfigurationBuilder | Adds a local CSS file with the supplied filename. | addJs(url:
String) | WebScreenletConfigurationBuilder | Adds a JavaScript file from the supplied URL. |
addCss(url: String) | WebScreenletConfigurationBuilder | Adds a CSS file from the supplied URL.
| set(webType: WebType) | WebScreenletConfigurationBuilder | Sets the WebType. | enableCordova()
| WebScreenletConfigurationBuilder | Enables Cordova inside the Web Screenlet. | load() |
WebScreenletConfiguration | Returns the WebScreenletConfiguration object that you can set to the
Screenlet instance. |

Note: If you want to add comments in the scripts, use the /**/ notation.

1980

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Figure 164.27: Web Screenlet using the Default Theme.

1981

WebType

• WebType.liferayAuthenticated (default): Displays a Liferay DXP page that requires
authentication. The user must therefore be logged in with Screens via Login Screen-
let or a SessionContext method. For this WebType, the URL you must pass to the
WebScreenletConfigurationBuilder constructor is a relative URL. For example, if the
full URL is http://screens.liferay.org.es/web/guest/blog, then the URL you must supply to
the constructor is /web/guest/blog.

• WebType.other: Displays any other page. For this WebType, the URL you must pass to the
WebScreenletConfigurationBuilder constructor is a full URL. For example, if the full URL is
http://screens.liferay.org.es/web/guest/blog, then you must supply that URL to the con-
structor.

Attributes

Attribute | Data type | Explanation | autoLoad | boolean | Whether to load the page automatically
when the Screenlet appears in the app’s UI. The default value is true. | loggingEnabled | boolean |
Whether logging is enabled. | isScrollEnabled | boolean | Whether to enable scrolling on the page
inside the Screenlet. |

Delegate

WebScreenlet delegates someevents to anobject that conforms to the WebScreenletDelegateprotocol.
This protocol lets you implement the following methods:

• onWebLoad(_:url:): Called when the Screenlet loads the page.

func onWebLoad(_ screenlet: WebScreenlet, url: String) {

...

}

• screenlet(_:onScriptMessageNamespace:onScriptMessage:): Called when the WKWebView sends a
message.

func screenlet(_ screenlet: WebScreenlet,

onScriptMessageNamespace namespace: String,

onScriptMessage message: String) {

...

}

• screenlet(_:onError:): Called when an error occurs in the process. The NSError object de-
scribes the error.

func screenlet(_ screenlet: WebScreenlet, onError error: NSError) {

...

}

1982

164.23 SyncManagerDelegate

The SyncManagerDelegate class is required to use Screenlets with offline mode. This class receives
the events produced in the synchronization process. This document describes the class’s methods.

Methods

The following method is invoked when the synchronization process is started. The number of
items to be synced are passed.

syncManager(manager: SyncManager, itemsCount: UInt)

The following method is invoked when an item synchronization is about to start.

syncManager(manager: SyncManager, onItemSyncScreenlet screenlet: String,

startKey: String, attributes: [String:AnyObject])

• screenlet: the screenlet name that stored this cache element
• startKey: the cache key where the item is stored
• attributes: some attributes stored together with the element. The specific attributes depend
on the type of the entry. For more details, read the screenlet reference documentation.

The following method is invoked when an item synchronization is successfully completed.

syncManager(manager: SyncManager, onItemSyncScreenlet screenlet: String,

completedKey: String, attributes: [String:AnyObject])

• screenlet: the screenlet name that stored this cache element
• completedKey: the cache key where the item is stored
• attributes: some attributes stored together with the element. The specific attributes depend
on the type of the entry. For more details, read the screenlet reference documentation.

The following method is invoked when an item synchronization fails.

syncManager(manager: SyncManager, onItemSyncScreenlet screenlet: String,

failedKey: String, attributes: [String:AnyObject], error: NSError)

• screenlet: the screenlet name that stored this cache element
• failedKey: the cache key where the item is stored
• attributes: some attributes stored together with the element. The specific attributes will
depend on the type of the entry. Formore details, read the screenlet reference documentation.

• error: the error occurred in the synchronization

The following method is invoked when an item synchronization detects a conflict. The method
must invoke asynchronously a continuation argument with the conflict action result.

syncManager(manager: SyncManager, onItemSyncScreenlet screenlet: String,

conflictedKey: String, remoteValue: AnyObject, localValue: AnyObject,

resolve: SyncConflictResolution -> ())

• screenlet: the screenlet name that stored this cache element
• conflictedKey: the cache key where the item is stored

1983

https://en.wikipedia.org/wiki/Continuation-passing_style

• remoteValue: the value stored in the server for the item being synchronized
• localValue: the value stored in the cache for the item being synchronized
• resolve: this is the continuation function to be called with the action result.

Supported values for resolve are:

• UseRemote: the remote version is overwritten with the local one. Both the local cache and the
portal have the same version.

• UseLocal: the local version is overwritten with the remote one. Both the local cache and the
portal have the same version

• Discard: the local version is removed and the remote one isn’t overwritten.
• Ignore: data is not changed, so the next synchronization will detect the conflict again.

1984

CHAPTER 165

THEMES

Theme development is a multistep process, involving many tools and endless possibilities. This
section of reference docs provides the following helpful information for theme development:

• A Theme anatomy reference guide

165.1 Theme Reference Guide

A theme is made up of several files. Although most of the files are named after their matching
components, their functions may be unclear. This reference guide explains each file’s usage to
make clear which files to modify.

Theme Anatomy

There are twomain approaches to theme development for 7.0: themes built using the Node.js build
tools with the theme generator and themes built using Dev Studio DXP.

Themes developed with the theme generator have the anatomy shown below. Although themes
developed with Dev Studio DXP have a slightly different anatomy built with the theme project
template, the core theme files are the same.

• theme-name/

– src/

* css/

· _clay_custom.scss

· _clay_variables.scss

· _custom.scss

· _liferay_variables_custom.scss

* images/

· (custom images)

1985

* js/

· main.js

* templates/

· init_custom.ftl

· navigation.ftl

· portal_normal.ftl

· portal_pop_up.ftl

· portlet.ftl

* WEB-INF/

· liferay-look-and-feel.xml

· liferay-plugin-package.properties

· src/

· resources-importer/

· (Many directories)

– liferay-theme.json

– package.json

Regarding CSS files, you should only modify _clay_custom.scss, _clay_variables.scss,
_custom.scss, and _liferay_variables_custom.scss.

You can of course overwrite any CSS file you want, but if you modify any other files, you’re
removing styling that 7.0 needs to work properly.

Theme Files

_clay_custom.scss

Used for Clay custom styles, i.e. styles for a third party Bootstrap theme. Anything written in this
file is compiled in the same scope as Bootstrap/Lexicon, so you can use their variables, mixins, etc.
You can also implement any of the variables you define in _clay_variables.scss.

_clay_variables.scss

Used to store custom Sass variables. This file gets injected into the Bootstrap/Lexicon build, so you
can overwrite variables and change how those libraries are compiled.

_custom.scss

Used for custom CSS styles. You should place all of your custom CSS modifications in this file.

_liferay_variables_custom.scss

Used for overwriting variables defined in _liferay_variables.scss without wiping out the whole
file.

1986

init_custom.ftl

Used for custom FreeMarker variables i.e. theme setting variables.

navigation.ftl

The theme template for the theme’s navigation.

portal_normal.ftl

Similar to a static site’s index.html, this file acts as a hub for all theme templates.

portal_pop_up.ftl

The theme template for pop up dialogs for the theme’s portlets.

portlet.ftl

The theme template for the theme’s portlets. If your theme uses Application Decorators, you can
modify this file to create application decorator-specific theme settings. See the Portlet Decorators
tutorial for more info.

liferay-theme.json

Contains the configuration settings for your app server, in Node.js tool-based themes. You can
change this file manually at any time to update your server settings. The file can also be updated
via the gulp init task.

package.json

Contains theme setting information such as the theme template language, version, and base theme,
for Node.js tool developed themes. You can update this file manually. The gulp extend task can also
be used to change the base theme.

main.js

Used for custom JavaScript.

liferay-look-and-feel.xml

Contains basic information for the theme. If your theme has theme settings, they are defined in
this file. For a full explanation of this file, please see the Definitions docs.

liferay-plugin-package.properties

Contains general properties for the theme. Resources Importer configuration settings are also
placed in this file. For a full explanation of the properties available for this file please see the 7.1
Properties documentation.

1987

https://docs.liferay.com/dxp/portal/7.1-latest/definitions/liferay-look-and-feel_7_1_0.dtd.html
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/liferay-plugin-package_7_1_0.properties.html
https://docs.liferay.com/dxp/portal/7.1-latest/propertiesdoc/liferay-plugin-package_7_1_0.properties.html

165.2 Theme Components andWorkflow

If you want to develop a website, you must have three key components: CSS, JavaScript, and HTML.
Liferay DXP supports SASS as well as multiple JavaScript frameworks. The HTML, however, is
rendered via FreeMarker theme templates. This reference guide provides an overview of Liferay
DXP’s theme development components and workflow, covering the following topics:

• Theme templates
• Theme customizations and extensions
• Portlet customizations and extensions
• Theme workflow
• CSS Frameworks and extensions

Theme Templates

Liferay DXP provides several default FreeMarker templates that each handle a key piece of func-
tionality for the page:

• portal_normal.ftl: Similar to a static site’s index.html, this file acts as a hub for all theme
templates and provides the overall markup for the page.

• init.ftl: Contains common FreeMarker variables that can be used in your theme templates.
Useful for reference if you need access to theme objects. We recommended that you DO
NOT override this file.

• init_custom.ftl: Used to override FreeMarker variables in init.ftl and to define new vari-
ables, such as theme settings.

• portlet.ftl: This template controls the theme’s portlets. If your theme uses Portlet Decora-
tors, you can modify this file to create application decorator-specific theme settings. See the
Portlet Decorators tutorial for more info.

• navigation.ftl: Contains the navigation markup. To customize pages in the navigation, you
must use the liferay.navigation_menumacro. Then you can leverage ADTs for the navigation
menu. Note that navigation.ftl also defines the hamburger icon and navbar-collapse class
that provides the simplified navigation toggle for mobile viewports, as shown in the snippet
below for the Classic theme:

<#if has_navigation && is_setup_complete>

<button aria-controls="navigationCollapse" aria-expanded="false"

aria-label="Toggle navigation" class="navbar-toggler navbar-toggler-right"

data-target="#navigationCollapse" data-toggle="collapse" type="button">

</button>

<div aria-expanded="false" class="collapse navbar-collapse" id="navigationCollapse">

<@liferay.navigation_menu default_preferences="${preferences}" />

</div>

</#if>

1988

https://freemarker.apache.org/
https://github.com/liferay/liferay-portal/tree/7.1.x/modules/apps/site-navigation/site-navigation-menu-web/src/main/resources/com/liferay/site/navigation/menu/web/portlet/template/dependencies

Figure 165.1: The collapsed navbar provides simplified user-friendly navigation for mobile devices.

• portal_pop_up.ftl: The theme template controlling pop up dialogs for the theme’s portlets.
Similar to portal_normal.ftl, portal_pop_up.ftl provides the markup template for all pop-up
dialogs, such as a portlet’s Configurationmenu. It also has access to the FreeMarker variables
defined in init.ftl and init_custom.ftl.

Figure 165.2: Each theme template provides a portion of the page’s markup and functionality.

Theme Template Utilities

Liferay DXP provides several FreeMarker variables and macros that you can use in your theme
templates to include portlets, use taglibs, access theme objects, and more. You can see examples
of these in portal_normal.ftl. These utilities are included in the files listed below:

• Init.ftl: Provides access to common theme variables
• FTL_Liferay.ftl: Provides macros for commonly used portlets and theme resources. See the
Macros tutorial for more information.

• taglib-mappings.properties: Maps the portal taglibs to FreeMarker macros. Taglibs let you
quickly create common UI components. This properties file is also provided separately for
each app taglib. For convenience, these FreeMarker macros appear in the FreeMarker Taglib

1989

https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/frontend-theme/frontend-theme-unstyled/src/main/resources/META-INF/resources/_unstyled/templates/init.ftl
https://github.com/liferay/liferay-portal/blob/7.1.x/modules/apps/portal-template/portal-template-freemarker/src/main/resources/FTL_liferay.ftl

Mappings reference guide. See the Taglib tutorials for more information on using each taglib
in your theme templates.

CSS Frameworks and Extensions

As noted above, Liferay DXP supports the Sass CSS extension, so you can take full advantage of
Sass mixins, nesting, partials, and variables in your CSS.

Also important to note is Clay CSS, theweb implementation of Liferay’s Lexicon design language.
An extension of Bootstrap, Clay CSS fills the gaps between Bootstrap and the needs of Liferay DXP,
providing additional components and CSS patterns that you can use in your themes. Clay base,
Liferay’s Bootstrap API extension, along with Atlas, a custom Bootstrap theme, creates Liferay
DXP’s Classic theme. See the importing Clay CSS tutorial for more information.

Theme Customizations and Extensions

The theme templates, along with the CSS, provide much of the overall look and feel for the page,
but additional extension points/customizations are available. The following extensions and mecha-
nisms are available for themes:

• Color Schemes: specifies configurable color scheme settings for Administrator’s to configure
via the Look and Feel menu. See the color scheme tutorial for more information.

• Configurable Theme Settings: settings that let Administrators configure aspects of a theme
that may need changed frequently, such as controlling the visibility of certain elements,
changing a daily quote, etc. See the Configurable Theme Settings tutorial for more informa-
tion.

• Context Contributor: Exposes Java variables and functionality for you to use in your
FreeMarker templates. This lets you use non-JSP templating languages for themes, ADTs,
and any other templates used in Liferay DXP. See the Context Contributors tutorial or more
information.

• Theme Contributor: a package containing UI resources, not attached to a theme, that you
want to include on every page. See the Theme Contributors tutorial for more information.

• Themelet: small, extendable, and reusable pieces of code that contain CSS and JavaScript. It
can be shared with other developers to provide common components for themes, and it only
requires the files you want to extend. See the Themelets tutorial for more information.

Portlet Customizations and Extensions

You can customize portlets with these mechanisms and extensions:

• Portlet FTL Customizations: customize the base template markup for all portlets. See the
Theming Portlets tutorial for more information.

• Application Display Templates (ADTs): provides an alternate display style for a portlet. Note
that not all portlets support ADTs. See the Application Display Templates (ADTs) User Guide
for more information.

• Portlet Decorator: lets you customize the exterior decoration for a portlet. See the Portlet
Decorators tutorial for more information.

• Web Content Template: defines how structures are displayed for web content. See the Web
Content Templates User Guide articles for more information.

1990

https://clayui.com/
https://lexicondesign.io/

Figure 165.3: There are several extension points for customizing portlets

ThemeWorkflow

Themes are built on top of one of the following base themes:

• Unstyled: provides basic markup, functions, and images for Portal
• Styled: inherits from the Unstyled base theme and adds some styling on top

You can use the development tools you’re most comfortable with so you can focus on creating a
well designed theme. The following Liferay tools help you build themes:

• Theme Builder Gradle Plugin
• Liferay Theme Generator
• Dev Studio
• Blade CLI’s Theme Template.

Depending on the tool you choose (Theme Generator, Gradle, Blade CLI, Maven, or Dev Studio
), the theme anatomy is a bit different. The overall development process is the same though:

1. Mirror the structure of the files you want to modify. The main modifications are placed in
the following files:

• portal_normal.ftl: main theme markup
• _custom.scss: custom CSS styling
• main.js: the theme’s JavaScript

1991

2. Build and deploy the theme to your Liferay DXP server.

3. Apply the theme through the Look and Feel menu by selecting your theme’s thumbnail.

The finished theme is bundled as aWAR (Web application ARchive) file.

Note: While developing your theme, we recommend that you enable Developer Mode. This un-
minifies JS files and disable caching for CSS and FreeMarker template files, making the debugging
process much easier.

During theme development, if you’ve built your theme with the Liferay Theme Generator, you
can use some helpful Gulp tasks to make the process easier:

• build: builds your theme’s files based on the specified base theme. See the gulp build tutorial
for more information.

• extend: sets the base theme or themelet to extend. See the gulp extend tutorial for more
information.

• init: specifies the app server to deploy your theme to (automatically run during the initial
creation of the theme). See the gulp init tutorial for more information.

• kickstart: copies files from an existing theme into your theme to help kickstart it. See the
gulp kickstart tutorial for more information.

• status: lists the base theme/themelets that your theme extends. See the gulp status tutorial
for more information.

• watch: watches for changes to your theme’s files and automatically deploys them to the
server when a change is made. See the gulp watch tutorial for more information.

165.3 Understanding the Page Layout

Knowing the layout’s structure is crucial to targeting the correct markup for styling, organizing
your content, and creating your site. Your page layout is unique to the requirements and design for
your site. The Unstyled theme’s default page layout is organized into three key sections:

• Header: contains the navigation, site logo and title (if shown), and sign-in link when the user
isn’t logged in

• Main Content: contains the portlets or fragments for the page
• Footer: contains additional information, such as the copyright or author

Portlets or Fragments

The #content Sectionmakes up the majority of the page. Portlets or fragments are contained inside
the #main-content div. Liferay DXP ships with a default set of applications that provide common
functionality, such as forums and Wikis, documents and media, blogs, and more. For more
information on using Liferay DXP and its native portlets, see the User & Admin documentation.
You can also create custom portlets for your site. Portlets can be added via the Add Menu (referred
to as widget), included in a sitemap through the Resources Importer, or they can be embedded in
the page’s theme. See the portlet tutorials section for more information on creating and developing
portlets.

1992

Figure 165.4: The page layout is broken into three key sections.

You can target the elements and IDs shown in the table below to style the page:

Element ID Description

div #wrapper The container div for the page
contents

header #banner The page’s header
section #content > #main-content The main contents of the page

(portlets or fragments)
footer #footer The page’s footer

As shown in the diagram above, you can also add fragments to a page. You can have a page that
contains portlets or a content page that contains fragments, not both. Fragments are components—
composed of CSS, JavaScript, and HTML—that provide key pieces of functionality for the page
(i.e. a carousel or banner). Liferay DXP provides an editor for creating collections of fragments
that you can then add to the page. These fragments can be edited on the page to suit your vision.

Layout Templates, Page Templates, and Site Templates

The page layout within the #content Section is determined by the Layout Template. Several layout
templates are included out-of-the-box. You can also create custom layout templates manually or
with the Liferay Theme Generator’s layout sub-generator.

Layout templates can be pre-configured depending on the page type you choose when the page
is created. Along with setting the types of portlets to include on the page, the page template may
also define the default layout template for the page. Climbing further up the scope chain, you can
create site templates, which can define the pages, page templates, layout templates, and theme(s)
to use for site pages.

Product Navigation Sidebars and Panels

The main page layout also contains a few notable sidebars an administrative user can trigger
through the Control Menu. These are listed below:

• AddMenu: lets you add portlets (widgets) and fragments (if applicable) to the page
• Control Menu: provides the main navigation for accessing the Add Menu, Product Menu,
and Simulation Panel

• Product Menu: contains administrative apps, configuration settings, and user account set-
tings, profile, and dashboard page

• Simulation Panel: simulates how the page appears on different devices

When styling the page, you must keep the navigation menus in mind, especially for absolutely
positioned elements, such as a fixed navbar. If the user is logged in and can view the Control Menu,
the fixed navbar must have a top margin equal to the Control Menu’s height. See the Product
Navigation tutorials section for more information on customizing these menus.

1993

Figure 165.5: Each section of the page has elements and IDs that you can target for styling.

1994

Figure 165.6: Remember to account for the product navigation sidebars and panels when styling your site.

Figure 165.7: The Add Menu pushes the main contents to the left.

1995

Figure 165.8: The Product Menu pushes the main contents to the right.

Figure 165.9: The Simulation Panel pushes the main contents to the left.

1996

CHAPTER 166

GRADLE

Liferay provides plugins that you can apply to your Gradle project. This reference documentation
describes how to apply and use Liferay’s Gradle plugins.

Important: If you’re using LiferayWorkspace to create Liferay apps, most of the Liferay Gra-
dle plugins covered in this section are already applied by default. The com.liferay.gradle.plug-
ins.workspace and com.liferay.gradle.plugins dependencies provide them, both of which are preset
in workspace by default.

Do not apply a Liferay Gradle plugin to an app that already has access to it.
Each article in this section describes how to apply the plugin, what Gradle tasks the plugin

provides, the plugin’s configuration properties, and the plugin’s dependencies.

166.1 Resolving Common Output Errors Reported by the resolve Task

Liferay Workspace provides the resolve Gradle task to validate modules. This is very useful for
finding issues and reporting them as output before deployment. For more information on running
this task from LiferayWorkspace, see the Validating Modules Against the Target Platform tutorial
section. For general help with OSGi related issues, visit the Troubleshooting FAQ tutorial section.

For help interpreting the resolve task’s output, see the list below for common output errors,
what they mean, and how to fix them.

Missing Import Error

When your module refers to an unavailable import, the container throws this error. For example,
suppose you have a module test-service that depends on the com.google.common.base package. If
the container can’t find that package, it throws this error:

Resolution exception in project 'modules:test-service': Unresolved requirements in root project 'modules:test-service':

Mandatory:

[osgi.wiring.package] com.google.common.base; version=[23.0.0,24.0.0)

[osgi.identity] test.service

This kind of error can also occur when separate modules require different versions of another
module. If you havemodule A requiringmodule Test version 1 andmodule B requiringmodule Test
version 4, without running the resolver, both modules A and B would compile successfully. When

1997

https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-workspace
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-workspace
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins

they were deployed, however, one would fail in the OSGi runtime because both dependencies
cannot be satisfied. These types of scenarios are difficult to diagnose, but with the resolve task,
can be found with ease.

To fix missing import errors, you may need to adjust the export and/or import configuration of
your modules. Also, see the Resolving Third Party Library Package Dependencies tutorial for more
information on resolving import errors. Sometimes, this kind of error can be solved by editing
the resolve task’s list of capabilities. See the Resolving Third Party Library Package Dependencies
section to learn how to do this.

Missing Service Reference

If yourmodule references a non-existent service, an error is thrown. This is helpful because service
reference issues are hard to diagnose during deployment without using the Gogo Shell.

For example, if your module test-portlet references a service (e.g., test.api.TestApi) it does
not have access to, the following error is thrown:

Resolution exception in project 'modules:test-portlet': Unresolved requirements in project 'modules:test-portlet':

Mandatory:

[osgi.identity] test.portlet

[osgi.service] objectClass=test.api.TestApi

To fix this, youmustmake the service available to yourmodule. If you’re expecting the service to
be provided by your target platform, check tomake sure it’s being provided. If it’s a service provided
by a custommodule, check that service provider module and ensure it’s correctly providing that
service to your module. To check the target platform for available services, follow the steps below:

1. Start your target platform instance.

2. Open the Gogo shell.

3. List all services containing a keyword by running services | grep "SERVICE_NAME". It’s
easiest to do this rather than listing all services since there are usually too many to sift
through.

4. You can also list services provided by a component. Run lb -s to list all provided bundles by
their bundle symbolic name (BSN). Find the BSN for the desired component and then run
scr:info <BSN>.

If you’re unable to track down your missing service, it may be provided by a customized Liferay
DXP core feature or an external Liferay DXP feature. If this is the case, it isn’t included in the target
platform’s default capabilities. You can make the custom service capability available to reference
by generating a new custom distro JAR.

Missing Fragment Host

Referring to a non-existent fragment host throws an error. For example, if your test.login fragment
is configured to modify a fragment host named com.liferay.login.web that cannot be referenced,
the following error is thrown:

Resolution exception in project 'modules:test.login': Unresolved requirements in project 'modules:test-login':

Mandatory:

[osgi.identity] test.login

[osgi.wiring.host] com.liferay.login.web; version=1.0.10

1998

Configuring a fragment host in your module is typically done with the Fragment-Host header in
the bnd.bnd file:

Fragment-Host: com.liferay.login.web;bundle-version="[1.0.0,1.0.1)"

To fix this, inspect your target platform to ensure it includes the JAR you’re attempting to add a
fragment for. Your fragment host header may be referencing an incorrect bundle symbolic name
(BSN) or version. The easiest way to check this is by using the Gogo Shell. Follow the steps below
to find the bundle symbolic name:

1. Start your target platform instance.

2. Open the Gogo shell.

3. List all installed bundles by BSN with the command lb -s. You can search through the output
to find the BSN. If you already know the BSN and want to check the version, run lb -s | grep

"<BSN>".

Once you know the correct BSN/version to reference, update your Fragment-Host header to
resolve the error.

For more information on fragments, see the JSP Overrides Using OSGi Fragments tutorial.

166.2 App Javadoc Builder Gradle Plugin

The App Javadoc Builder Gradle plugin lets you generate API documentation as a single, combined
HTML document for an application that spans different subprojects, each one representing a
different component of the same application.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in the build script of the root project:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.app.javadoc.builder", version: "1.2.2"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.app.javadoc.builder"

The App Javadoc Builder plugin automatically applies the base and reporting-base plugins.

1999

https://docs.gradle.org/current/userguide/standard_plugins.html#N135C1

Project Extension

The App Javadoc Builder plugin exposes the following properties through the extension named
appJavadocBuilder:

Property Name | Type | Default Value | Description copyTags | boolean | true | Whether to copy
the custom block tags configuration from the subprojects. It sets the Javadoc -tag argument
for the appJavadoc task. doclintDisabled | boolean | true on JDK8+, false otherwise. | Whether to
ignore Javadoc errors. It sets the Javadoc -Xdoclint and -quiet arguments for the appJavadoc task.
groupNameClosure | Closure<String> | The subproject’s description, or the subproject’s name if the
description is empty. | The closure invoked in order to get the group heading for a subproject. The
given closure is passed a Project as its parameter. If groupPackages is false, this property is not
used. groupPackages | boolean | true | Whether to separate packages on the overview page based on
the subprojects they belong to. It sets the -group argument for the appJavadoc task. subprojects |
Set<Project> | project.subprojects | The subprojects to include in the API documentation of the
app.

The same extension exposes the following methods:
Method | Description AppJavadocBuilderExtension onlyIf(Closure<Boolean> onlyIfClosure) | In-

cludes a subproject in the API documentation if the given closure returns true. The closure is
evaluated at the end of the subproject configuration phase and is passed a single parameter: the
subproject. If the closure returns false, the subproject is not included in the API documenta-
tion. AppJavadocBuilderExtension onlyIf(Spec<Project> onlyIfSpec) | Includes a subproject in the
API documentation if the given spec is satisfied. The spec is evaluated at the end of the subproject
configuration phase. If the spec is not satisfied, the subproject is not included in the API documenta-
tion. AppJavadocBuilderExtension subprojects(Iterable<Project> subprojects) | Include additional
projects in the API documentation of the app. AppJavadocBuilderExtension subprojects(Project...

subprojects) | Include additional projects in the API documentation of the app.

Tasks

The plugin adds two tasks to your project:
Name |DependsOn |Type |Description appJavadoc | The javadoc tasks of the subprojects. | Javadoc

| Generates Javadoc API documentation for the app. jarAppJavadoc | appJavadoc | Jar | Assembles a
JAR archive containing the Javadoc files for this app.

The appJavadoc task is automatically configured with sensible defaults:
Property Name | Default Value classpath | The javadoc.classpath of all the subprojects.

destinationDir | ${project.buildDir}/docs/javadoc options.encoding | "UTF-8" source | The
javadoc.source of all the subprojects. title | project.reporting.apiDocTitle

166.3 Baseline Gradle Plugin

The Baseline Gradle plugin lets you verify that the OSGi semantic versioning rules are obeyed by
your OSGi bundle.

When you run the baseline task, the plugin baselines the new bundle against the latest released
non-snapshot bundle (i.e., the baseline). That is, it compares the public exported API of the new
bundle with the baseline. If there are any changes, it uses the OSGi semantic versioning rules to
calculate the minimum new version. If the new bundle has a lower version, errors are thrown.

The plugin has been successfully tested with Gradle 4.10.2.

2000

http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#tag
docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#BEJEFABE
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#CHDGFHAA
https://docs.gradle.org/current/javadoc/org/gradle/api/Project.html
docs.oracle.com/javase/8/docs/technotes/tools/unix/javadoc.html#CHDIGGII
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html#org.gradle.api.tasks.javadoc.Javadoc:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html#org.gradle.api.tasks.javadoc.Javadoc:destinationDir
https://docs.gradle.org/current/javadoc/org/gradle/external/javadoc/MinimalJavadocOptions.html#getEncoding()
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html#org.gradle.api.tasks.javadoc.Javadoc:source
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html#org.gradle.api.tasks.javadoc.Javadoc:title
http://semver.org/

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.baseline", version: "2.1.0"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.baseline"

The Baseline plugin automatically applies the java and reporting-base plugins.
Since the plugin needs to download the baseline, you have to configure a repository that hosts

it; for example, the central Maven 2 repository:

repositories {

mavenCentral()

}

Project Extension

The Baseline plugin exposes the following properties through the baselineConfiguration extension:
Property Name | Type | Default Value | Description allowMavenLocal | boolean | false | Whether

to let the baseline come from the local Maven cache (by default: ${user.home}/.m2). If the
local Maven cache is not configured as a project repository, this property has no effect.
lowestBaselineVersion | String | "1.0.0" | The greatest project version to ignore for the baseline
check. If the project version is less than or equal to the value of this property, the baseline task
is skipped. lowestMajorVersion | Integer | Content of the file ${project.projectDir}/.lfrbuild-

lowest-major-version, where the default file name can be changed by setting the project property
baseline.lowest.major.version.file. | The lowest major version of the released artifact to use in
the baseline check. lowestMajorVersionRequired | boolean | false | Whether to fail the build if the
lowestMajorVersion is not specified.

If the lowestMajorVersion is not specified, the plugin runs the check using the most recent
released non-snapshot bundle as baseline, which matches the version range (,${project.version}).
Otherwise, if the lowestMajorVersion is equal to a value L and the project has version M.x.y (with L

less or equal than M), multiple checks are performed in order, using the following version ranges as
baseline:

1. [L.0.0, (L + 1).0.0)

2. [(L + 1).0.0, (L + 2).0.0)

3. …
4. [(M - 2).0.0, (M - 1).0.0)

5. [(M - 1).0.0, M.0.0)

6. [M.0.0, M.x.y)

The first failing check fails the whole build.

2001

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/standard_plugins.html#sec:base_plugins
https://docs.gradle.org/current/userguide/artifact_dependencies_tutorial.html#sec:repositories_tutorial
https://docs.gradle.org/current/userguide/dependency_management.html#sub:maven_local
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html#org.gradle.api.tasks.bundling.Jar:version
http://ant.apache.org/ivy/history/latest-milestone/settings/version-matchers.html

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description baseline | jar | BaselineTask | Compares the public API

of this project with the public API of the previous released version, if found.
The baseline task is automatically configured with sensible defaults:
Property Name | Default Value baselineConfiguration | configurations.baseline bndFile |

${project.projectDir}/bnd.bnd newJarFile | project.tasks.jar.archivePath sourceDir | The first
resources directory of the main source set (by default: src/main/resources).

BaselineTask

Task Properties Property Name | Type | Default Value | Description baselineConfiguration |
Configuration | null | The configuration that contains exactly one dependency to the baseline bundle.
bndFile | File | null | The BND file of the project. If provided, the task will automatically update the
Bundle-Version header. forceCalculatedVersion | boolean | false | Whether to fail the baseline check
if the Bundle-Version has been excessively increased. ignoreExcessiveVersionIncreases | boolean |
false | Whether to ignore excessive package version increase warnings. ignoreFailures | boolean |
false | Whether the build should not break when semantic versioning errors are found. logFile |
File | null | The file to which the results of the baseline check are written. (Read-only) logFileName |
String | "baseline/${task.name}.log" | The name of the file to which the results of the baseline check
are written. If the reporting-base plugin is applied, the file name is relative to reporting.baseDir;
otherwise, it’s relative to the project directory. newJarFile | File | null | The file of the new OSGi
bundle. reportDiff | boolean | true if the project property baseline.jar.report.level has either value
"diff" or "persist"; false otherwise |Whether to show a granular, differential report of all changes
that occurred in the exported packages of the OSGi bundle. reportOnlyDirtyPackages | boolean |
Value of the project property baseline.jar.report.only.dirty.packages if specified; true otherwise.
| Whether to show only packages with API changes in the report. sourceDir | File | null | The
directory to which the packageinfo files are generated or updated.

The properties of type File support any type that can be resolved by project.file. Moreover,
it is possible to use Closures and Callables as values for the String properties to defer evaluation
until task execution.

Helper Tasks

If the lowestMajorVersion property is specified with a value L, the plugin creates a series of helper
tasks of type BaselineTask at the end of the project evaluation, one for each major version between
L and the major version M of the project:

1. Task baseline${L + 1}, which depends on baseline${L + 2} and uses the version range [(L +

1).0.0, (L + 2).0.0) as baseline.
2. Task baseline${L + 2}, which depends on baseline${L + 3} and uses the version range [(L +

2).0.0, (L + 3).0.0) as baseline.
3. …
4. Task baseline${M - 2}, which depends on baseline${M - 1} and uses the version range [(M -

2).0.0, (M - 1).0.0) as baseline.
5. Task baseline${M - 1}, which depends on baseline${M} and uses the version range [(M -

1).0.0, M.0.0) as baseline.
6. Task baseline${M}, which uses the version range [M.0.0, M.x.y) as baseline.

2002

(https://docs.gradle.org/current/userguide/java_plugin.html#sec:jar)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html#org.gradle.api.tasks.bundling.Jar:archivePath
http://bnd.bndtools.org/heads/bundle_version.html
https://docs.gradle.org/current/dsl/org.gradle.api.reporting.ReportingExtension.html#org.gradle.api.reporting.ReportingExtension:baseDir
http://bnd.bndtools.org/chapters/170-versioning.html#versioning-packages
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.gradle.org/current/userguide/build_lifecycle.html#N11BAE

The baseline task is also configured to use the version range [L.0.0, (L + 1).0.0) as baseline,
and to depend on the task baseline${L + 1}. This means that running the baseline task runs the
baseline check against multiple versions, starting from the most recent M and going back to L.

Moreover, all tasks except baseline${M} have the property ignoreExcessiveVersionIncreases set
to true.

Additional Configuration

There are additional configurations that can help you baseline your OSGi bundle.

Baseline Dependency

The plugin creates a configuration called baseline with a default dependency to a released non-
snapshot version of the bundle:

• version range [L.0.0, (L + 1).0.0) if the lowestMajorVersion property is specifiedwith a value
L.

• version range (,${project.version}) otherwise.

It is possible to override this setting and use a different version of the bundle as baseline.

System Properties

It is possible to set the default values of the ignoreFailures property for a BaselineTask task via
system properties:

-D${task.name}.ignoreFailures=true

For example, run the following Bash command to execute the baseline check without breaking
the build, in case of errors:

./gradlew baseline -Dbaseline.ignoreFailures=true

166.4 Change Log Builder Gradle Plugin

The Change Log Builder Gradle plugin lets you generate and maintain a change log file based on
the Git commits in your project. A change log file generated by this plugin looks like this

#

Bundle Version 1.0.1

#

9c77ff4c95cb1a325db3bdd089be105206e8b63c^..b421f00ac84b065685b131833fecc594fc01c760=LPS-123 LPS-1321

#

Bundle Version 1.0.2

#

b421f00ac84b065685b131833fecc594fc01c760^..bc15d8d84e12b9544f78e4e3743c510dbaec2d89=LPS-456

Every time the buildChangeLog task is executed, a new line is added to the change log, which
lists all Git commit prefixes (usually issue ticket IDs) that occurred in a certain range. The end of
the range is always the tip of the current branch. The start range can vary, depending on the case:

2003

• If buildChangeLog has never been executed for the project, the change log does not exist.
Therefore, the most recent commit from two years ago is used for the range start.

• If a change log already exists for your project, the start range begins at the range end of the
last line in the change log.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.change.log.builder", version: "1.1.3"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.change.log.builder"

Tasks

The plugin adds one task to your project:
Name | DependsOn | Type | Description buildChangeLog | - | BuildChangeLogTask | Builds the change

log file for this project.
The buildChangeLog task is automatically configured with sensible defaults, depending on

whether the java plugin is applied:
Property Name | Default Value changeLogHeader | "Bundle Version ${project.version}"

changeLogFile |
If the java plugin is applied: The META-INF/liferay-releng.changelog file in the first resources

directory of the main source set (by default, src/main/resources/META-INF/liferay-releng.changelog).
Otherwise: "${project.projectDir}/liferay-releng.changelog"
dirs | [project.projectDir]

BuildChangeLogTask

Task Properties Property Name | Type | Default Value | Description changeLogFile | File | null
| The change log file to build. changeLogHeader | String | null | The header for the new line in the
change log. dirs | FileCollection | [] | The directories to consider when listing the commits in the
range specified. gitDir | File | project.rootDir | The base directory to start searching for the .git

directory. The search proceeds in all the ancestors of the directory specified. rangeEnd | String |
null | The hash of the last commit to consider. If not set, it corresponds to the range end of the
last line in the change log, or the most recent commit from at least two years ago if the change
log file does not exist yet. rangeStart | String | null | The hash of the first commit to consider. If
not set, it corresponds to the hash of the tip of the current branch. ticketIdPrefixes | Set<String>
| ["CLDSVCS", "LPS", "SOS", "SYNC"] | The valid prefix of the Git commit messages to add to the
change log. For example, if a commit message is "LPS-123 Bugfix", "LPS-123" will be added to the
change log.

2004

https://docs.gradle.org/current/userguide/java_plugin.html

The properties of type File support any type that can be resolved by project.file. Moreover,
it is possible to use Closures and Callables as values for the String properties to defer evaluation
until task execution.

Task Methods Method | Description BuildChangeLogTask dirs(Iterable<?> dirs) | Adds di-
rectories to consider when listing the commits in the range specified. BuildChangeLogTask

dirs(Object... dirs) | Adds directories to consider when listing the commits in the range specified.
BuildChangeLogTask ticketIdPrefixes(Iterable<String> ticketIdPrefixes) | Adds valid prefixes of
the Git commit messages to add to the change log. BuildChangeLogTask ticketIdPrefixes(String...

ticketIdPrefixes) | Adds valid prefixes of the Git commit messages to add to the change log.

166.5 CSS Builder Gradle Plugin

The CSS Builder Gradle plugin lets you run the Liferay CSS Builder tool to compile Sass files in your
project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.css.builder", version: "3.0.0"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.css.builder"

Since the plugin automatically resolves the Liferay CSS Builder library as a dependency, you
have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildCSS | - | BuildCSSTask | Compiles the Sass files in

this project.
The plugin also adds the following dependencies to tasks defined by the java plugin:
Name | Depends On processResources | buildCSS

2005

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://github.com/liferay/liferay-portal/tree/master/modules/util/css-builder
http://sass-lang.com/
https://docs.gradle.org/current/userguide/java_plugin.html

The buildCSS task is automatically configured with sensible defaults, depending on whether the
java or the war plugins are applied:

Property Name | Default Value baseDir |
If the java plugin is applied: The first resources directory of the main source set (by default:

src/main/resources).
If the war plugin is applied: project.webAppDir.
Otherwise: null

BuildCSSTask

Tasks of type BuildCSSTask extend JavaExec, so all its properties and methods, such as args and
maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | CSS Builder command line arguments classpath |
project.configurations.cssBuilder defaultCharacterEncoding | "UTF-8" main | "com.liferay.css.builder.CSSBuilder"
systemProperties | ["sass.compiler.jni.clean.temp.dir", true]

Task Properties Property Name | Type | Default Value | Description appendCssImportTimestamps |
boolean | true | Whether to append the current timestamp to the URLs in the @import CSS at-rules. It
sets the sass.append.css.import.timestamps argument. baseDir | File | null | The base directory that
contains the SCSS files to compile. It sets the sass.docroot.dir argument. cssFiles | FileCollection |
- | The SCSS files to compile. (Read-only) dirNames | List<String> | ["/"] | The name of the directories,
relative to baseDir, which contain the SCSS files to compile. All sub-directories are searched for SCSS
files as well. It sets the sass.dir argument. generateSourceMap | boolean | false | Whether to generate
source maps for easier debugging. It sets the sass.generate.source.map argument. importDir | File
| null | The META-INF/resources directory of the Liferay Frontend Common CSS artifact. This is
required in order to make Bourbon and other CSS libraries available to the compilation. importFile
| File | configurations.portalCommonCSS.singleFile | The Liferay Frontend Common CSS JAR file.
If importDir is set, this property has no effect. importPath | File | - | The value of the importDir

property if set; otherwise importFile. It sets the sass.portal.common.path argument. (Read-only)
outputDirName | String | ".sass-cache/" | The name of the sub-directories where the SCSS files are
compiled to. For each directory that contains SCSS files, a sub-directory with this name is created.
It sets the sass.output.dir argument. outputDirs | FileCollection | - | The directories where the SCSS
files are compiled to. Usually, these directories are ignored by the Version Control System. (Read-
only) precision | int | 5 | The numeric precision of numbers in Sass. It sets the sass.precision

argument. rtlExcludedPathRegexps | List<String> | [] | The SCSS file patterns to exclude when
converting for right-to-left (RTL) support. It sets the sass.rtl.excluded.path.regexps argument.
sassCompilerClassName | String | null | The type of Sass compiler to use. Supported values are "jni"

and "ruby". If not set, defaults to "jni". It sets the sass.compiler.class.name argument.

Note: Liferay’s CSSBuilder is supported forOracle’s JDKanduses a native compiler for increased
speed. If you’re using an IBM JDK, you may experience issues when building your Sass files (e.g.,
when building a theme). It’s recommended to switch to using the Oracle JDK, but if you prefer
using the IBM JDK, you must use the fallback Ruby compiler. You can do this two ways:

• If you’re working in a Liferay Workspace or using the Liferay Gradle Plugins plugin, set
sass.compiler.class.name=ruby in your gradle.properties file.

• Otherwise, set buildCSS.sassCompilerClassName='ruby' in the project’s build.gradle file.

2006

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.css.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/JavaExec.html#setDefaultCharacterEncoding(java.lang.String)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:systemProperties
https://developers.google.com/web/tools/chrome-devtools/debug/readability/source-maps
https://github.com/liferay/liferay-portal/tree/master/modules/apps/frontend-css/frontend-css-common
http://bourbon.io
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins

The sass.compiler.class.name=ruby Gradle property only works for modules, so if you’re using
the Ruby compiler in aWAR project (e.g., theme), you must use the second option.

Be aware that the Ruby-based compiler doesn’t perform as well as the native compiler, so expect
longer compile times.

The properties of type File support any type that can be resolved by project.file. Moreover,
it is possible to use Closures and Callables as values for the int and String properties, to defer
evaluation until task execution.

Task Methods Method | Description BuildCSSTask dirNames(Iterable<Object> dirNames) |
Adds sub-directory names, relative to baseDir, which contain the SCSS files to compile.
BuildCSSTask dirNames(Object... dirNames) | Adds sub-directory names, relative to baseDir,
which contain the SCSS files to compile. BuildCSSTask rtlExcludedPathRegexps(Iterable<Object>

rtlExcludedPathRegexps) | Adds SCSS file patterns to exclude when converting for right-to-left (RTL)
support. BuildCSSTask rtlExcludedPathRegexps(Object... rtlExcludedPathRegexps) | Adds SCSS file
patterns to exclude when converting for right-to-left (RTL) support.

Additional Configuration

There are additional configurations that can help you use the CSS Builder.

Liferay CSS Builder Dependency

By default, the plugin creates a configuration called cssBuilder and adds a dependency to the latest
released version of the Liferay CSS Builder. It is possible to override this setting and use a specific
version of the tool by manually adding a dependency to the cssBuilder configuration:

dependencies {

cssBuilder group: "com.liferay", name: "com.liferay.css.builder", version: "3.0.0"

}

Liferay Frontend Common CSS Dependency

By default, the plugin creates a configuration called portalCommonCSS and adds a dependency to
the latest released version of the Liferay Frontend Common CSS artifact. It is possible to override
this setting and use a specific version of the artifact by manually adding a dependency to the
portalCommonCSS configuration:

dependencies {

portalCommonCSS group: "com.liferay", name: "com.liferay.frontend.css.common", version: "2.0.1"

}

166.6 DB Support Gradle Plugin

The DB Support Gradle plugin lets you run the Liferay DB Support tool to execute certain actions
on a local Liferay database. So far, the following actions are available:

• Cleans the Liferay database from the Service Builder tables and rows of a module.

The plugin has been successfully tested with Gradle 4.10.2.

2007

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-db-support

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.db.support", version: "1.0.5"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.db.support"

Since the plugin automatically resolves the Liferay DB Support library as a dependency, you
have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description cleanServiceBuilder | - | CleanServiceBuilderTask | Cleans

the Liferay database from the Service Builder tables and rows of a module.
The cleanServiceBuilder task is automatically configured with sensible defaults, depending on

whether the base plugin is applied:
Property Name | Default Value servletContextName |
If the base plugin is applied: The bundle symbolic name of the project inferred via the

OsgiHelper class.
Otherwise: null
serviceXmlFile | "${project.projectDir}/service.xml"

CleanServiceBuilderTask

Tasks of type BuildDeploymentHelperTask extend JavaExec, so all its properties and methods, such as
args and maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | The DB Support command line arguments. classpath |
project.configurations.dbSupport+ project.configurations.dbSupportTool main | "com.liferay.portal.tools.db.support.DBSupport"

Task Properties Property Name | Type | Default Value | Description password | String | null
| The user password for connecting to the Liferay database. It sets the --password argument.
If propertiesFile is set, this property has no effect. propertiesFile | File | null | The portal-

ext.properties file that contains the JDBC settings for connecting to the Liferay database. It sets the
--properties-file argument. servletContextName | String | null | The servlet context name (usually

2008

https://docs.gradle.org/current/userguide/standard_plugins.html#N135C1
https://github.com/gradle/gradle/blob/master/subprojects/osgi/src/main/java/org/gradle/api/internal/plugins/osgi/OsgiHelper.java
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main

the value of the Bundle-Symbolic-Namemanifest header) of themodule. It sets the --servlet-context-

name argument. serviceXmlFile | File | null | The service.xml file of themodule. It sets the --service-
xml-file argument. url | String | null | The JDBC URL for connecting to the Liferay database. It
sets the --url argument. If propertiesFile is set, this property has no effect. userName | String |
null | The user name for connecting to the Liferay database. It sets the --user-name argument. If
propertiesFile is set, this property has no effect.

The properties of type File support any type that can be resolved by project.file. Moreover,
it is possible to use Closures and Callables as values for the int and String properties to defer
evaluation until task execution.

Additional Configuration

There are additional configurations that can help you use the Deployment Helper.

JDBC Drivers Dependency

The plugin creates a configuration called dbSupport, which can be used to provide the suitable JDBC
driver for your Liferay database:

dependencies {

dbSupport group: "mysql", name: "mysql-connector-java", version: "5.1.23"

dbSupport group: "org.mariadb.jdbc", name: "mariadb-java-client", version: "1.1.9"

dbSupport group: "org.postgresql", name: "postgresql", version: "9.4-1201-jdbc41"

}

Liferay DB Support Dependency

By default, the plugin creates a configuration called dbSupportTool and adds a dependency to the
latest released version of the Liferay DB Support. It is possible to override this setting and use a
specific version of the tool by manually adding a dependency to the dbSupportTool configuration:

dependencies {

dbSupportTool group: "com.liferay", name: "com.liferay.portal.tools.db.support", version: "1.0.8"

}

166.7 Dependency Checker Gradle Plugin

The Dependency Checker Gradle plugin lets you warn users if a specific configuration dependency
is not the latest one available from the Maven central repository. The plugin eventually fails the
build if the dependency age (the difference between the timestamp of the current version and the
latest version) is above a predetermined threshold.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.dependency.checker", version: "1.0.3"

}

repositories {

2009

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.dependency.checker"

Project Extension

The Dependency Checker Gradle plugin exposes the following properties through the extension
named dependencyChecker:

Property Name | Type | Default Value | Description ignoreFailures | boolean | true | Whether to
print an error message instead of failing the build when the dependency check fails, either for a
network error or because the dependency is out-of-date.

The same extension exposes the following methods:
Method | Description void maxAge(Map<?, ?> args) | Declares the max age allowed for a depen-

dency. The argsmap must contain the following entries:
configuration: the configuration name
group: the dependency group
name: the dependency name
maxAge: an instance of groovy.time.Duration that represents the maximum age allowed for the

dependency
throwError: a boolean value representing whether to throw an error if the dependency is out-of-

date

Additional Configuration

There are additional configurations that can help you use the Deployment Helper.

Project Properties

It is possible to set the default values of the ignoreFailures property via the project property
dependencyCheckerIgnoreFailures:

-PdependencyCheckerIgnoreFailures=false

166.8 Deployment Helper Gradle Plugin

The Deployment Helper Gradle plugin lets you run the Liferay Deployment Helper tool to create a
cluster deployableWAR from your OSGi artifacts.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.deployment.helper", version: "1.0.5"

}

2010

http://docs.groovy-lang.org/latest/html/api/groovy/time/Duration.html
https://github.com/liferay/liferay-portal/tree/master/modules/util/deployment-helper

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.deployment.helper"

Since the plugin automatically resolves the Liferay Deployment Helper library as a dependency,
you have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildDeploymentHelper | - | BuildDeploymentHelperTask |

Builds aWAR which contains one or more files that are copied once theWAR is deployed.

BuildDeploymentHelperTask

Tasks of type BuildDeploymentHelperTask extend JavaExec, so all its properties and methods, such as
args and maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | The Deployment Helper command line arguments.
classpath | project.configurations.deploymentHelper deploymentFiles | The output files of the jar

tasks of this project and all its sub-projects. main | "com.liferay.deployment.helper.DeploymentHelper"
outputFile | "${project.buildDir}/${project.name}.war"

Task Properties Property Name | Type | Default Value | Description deploymentFiles |
FileCollection | [] | The files or directories to include in the WAR and copy once the WAR
is deployed. If a directory is added to this collection, all the JAR files contained in the directory
are included in theWAR. deploymentPath | File | null | The directory to which the included files are
copied. outputFile | File | null | TheWAR file to build.

The properties of type File support any type that can be resolved by project.file.

Task Methods Method | Description BuildDeploymentHelperTask deploymentFiles(Iterable<?>

deploymentFiles) | Adds files or directories to include in the WAR and copy once the WAR
is deployed. The values are evaluated as per project.files. BuildDeploymentHelperTask

deploymentFiles(Object... deploymentFiles) | Adds files or directories to include in the WAR
and copy once theWAR is deployed. The values are evaluated as per project.files.

Additional Configuration

There are additional configurations that can help you use the Deployment Helper.

2011

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/userguide/java_plugin.html#sec:jar
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object%5B%5D)
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object%5B%5D)

Liferay Deployment Helper Dependency

By default, the plugin creates a configuration called deploymentHelper and adds a dependency to
the latest released version of the Liferay Deployment Helper. It is possible to override this setting
and use a specific version of the tool by manually adding a dependency to the deploymentHelper

configuration:

dependencies {

deploymentHelper group: "com.liferay", name: "com.liferay.deployment.helper", version: "1.0.4"

}

166.9 Go Gradle Plugin

The Go Gradle plugin lets you run Go as part of your build.
The plugin has been successfully tested with Gradle 3.5.1 up to 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.go", version: "1.0.0"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.go"

Project Extension

The Go Gradle plugin exposes the following properties through the extension named go:
Property Name | Type | DefaultValue | Description goDir | File | "${project.buildDir}/go" | The di-

rectorywhere theGodistribution is unpacked. goUrl | String | "https://dl.google.com/go/go${go.goVersion}.${platform}-
${bitMode}.${extension} | The URL of the Go distribution to download. goVersion | String | "1.11.4"
| The Go distribution’s version to use. workingDir | File | "${project.projectDir}" | The directory
that contains the project’s Go source code.

Tasks

The plugin adds a series of tasks to your project:
Name | Depends On | Type | Description downloadGo | - | DownloadGoTask | Downloads and unpacks

the local Go distribution for the project. goBuild${programName} | downloadGo | ExecuteGoTask |
Compiles packages and dependencies for the Go program. goClean${programName} | downloadGo
| ExecuteGoTask | Removes object files for the Go program. goRun${programName} | downloadGo

| ExecuteGoTask | Compiles and runs the Go program. goTest${programName} | downloadGo |
ExecuteGoTask | Tests packages for the Go program.

2012

https://golang.org/

DownloadGoTask

The purpose of this task is to download and unpack a Go distribution.

TaskProperties PropertyName |Type | DefaultValue | Description goDir | File | null | The directory
where the Go distribution is unpacked. goUrl | String | null | The URL of the Go distribution to
download.

The File type support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties, to defer evaluation until task
execution.

ExecuteGoTask

This is the base task to run Go in a Gradle build. All tasks of type ExecuteGoTask automatically
depend on downloadGo.

Task Properties Property Name | Type | Default Value | Description args | List<Object> | [] |
The arguments for the Go invocation. command | String | "go" | The file name of the executable to
invoke. environment | Map<Object, Object> | [] | The environment variables for the Go invocation.
inheritProxy | boolean | true | Whether to set the http_proxy, https_proxy, and no_proxy environment
variables in the Go invocation based on the values of the system properties https.proxyHost,
https.proxyPort, https.proxyUser, https.proxyPassword, https.nonProxyHosts, https.proxyHost,
https.proxyPort, https.proxyUser, https.proxyPassword, and https.nonProxyHosts. If these environ-
ment variables are already set, their values will not be overwritten. goDir | File | go.goDir](#godir) |
The directory that contains the executable to invoke. useGradleExec | boolean |

If running in a Gradle Daemon: true
Otherwise: false
| Whether to invoke Go using project.exec, which can solve hanging problems with the Gradle

Daemon. workingDir | File | go.workingDir](#workingdir) | The working directory to use in the Go
invocation.

The type File properties support any type that can be resolved by project.file. Moreover, it is
possible to use Closures and Callables as values for the String properties to defer evaluation until
task execution.

TaskMethods Method | Description ExecuteGoTask args(Iterable<?> args) | Adds arguments for
the Go invocation. ExecuteGoTask args(Object... args) | Adds arguments for the Go invocation.
ExecuteGoTask environment(Map<?, ?> environment) | Adds environment variables for the Go invoca-
tion. ExecuteGoTask environment(Object key, Object value) | Adds an environment variable for the
Go invocation.

go𝑐𝑜𝑚𝑚𝑎𝑛𝑑{programName} Task

For each Go program in workingDir, four tasks of type ExecuteGoTask are added. Each of these tasks
are automatically configured with sensible defaults:

Property Name | Default Value args | ["${command}", "${programFile.absolutePath}"]

2013

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.gradle.org/current/userguide/gradle_daemon.html
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:exec(org.gradle.api.Action)
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

166.10 Gulp Gradle Plugin

The Gulp Gradle plugin lets you run Gulp tasks as part of your build.
The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.gulp", version: "2.0.59"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.gulp"

The Gulp plugin automatically applies the com.liferay.node plugin.

Tasks

The plugin adds one task rule to your project:
Name | Depends On | Type | Description gulp<Task> | downloadNode, npmInstall | ExecuteGulpTask |

Executes a named Gulp task.

ExecuteGulpTask

Tasks of type ExecuteGulpTask extend ExecuteNodeScriptTask, so all its properties and methods, such
as args and inheritProxy, are available. They also have the following properties set by default:

Property Name | Default Value scriptFile | "node_modules/gulp/bin/gulp.js"
Gulp must be already installed in the node_modules directory of the project; otherwise, it will not

be downloaded by the task. In order to ensure Gulp is installed, you can add the Gulp dependency
to the project’s package.json file.

Task Properties Property Name | Type | Default Value | Description gulpCommand | String | null |
The Gulp task to execute.

It is possible to use Closures and Callables as values for the String properties to defer evaluation
until task execution.

166.11 Jasper JSPC Gradle Plugin

The Jasper JSPC Gradle plugin lets you run the Liferay Jasper JSPC tool to compile the JavaServer
Pages (JSP) files in your project. This can be useful to

• check for errors in the JSP files.

2014

http://gulpjs.com/
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-node
https://docs.gradle.org/current/userguide/more_about_tasks.html#sec:task_rules
https://github.com/liferay/liferay-portal/tree/master/modules/util/jasper-jspc

• pre-compile the JSP files for better performance.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.jasper.jspc", version: "2.0.5"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.jasper.jspc"

The Jasper JSPC plugin automatically applies the java plugin.
Since the plugin automatically resolves the Liferay Jasper JSPC library as a dependency, you

have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds two tasks to your project:
Name | Depends On | Type | Description compileJSP | generateJSPJava | JavaCompile | Compiles

JSP files to check for errors. generateJSPJava | jar | CompileJSPTask | Compiles JSP files to Java source
files to check for errors.

The generateJSPJava task is automatically configured with sensible defaults, depending on
whether the war plugin is applied:

Property Name | Default Value classpath | project.configurations.jspCTool destinationDir |
"${project.buildDir}/jspc" jspCClasspath | project.configurations.jspC webAppDir |

If the war plugin is applied: project.webAppDir.
Otherwise: The first resources directory of the main source set (by default, src/main/resources).
The compileJSP task is also configured with the following defaults:
PropertyName |DefaultValue classpath | project.configurations.jspCTool + project.configurations.jspC

destinationDir | compileJSP.temporaryDir source | generateJSPJava.outputs

CompileJSPTask

Tasks of type CompileJSPTask extend JavaExec, so all its properties and methods, such as args and
maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value main | "com.liferay.jasper.jspc.JspC"

2015

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/current/userguide/java_plugin.html#sec:jar
https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html#org.gradle.api.tasks.compile.JavaCompile:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html#org.gradle.api.tasks.compile.JavaCompile:destinationDir
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html#org.gradle.api.tasks.compile.JavaCompile:source
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.css.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main

Task Properties Property Name | Type | Default Value | Description destinationDir | File | null
| The directory where the the JSP files are compiled to. Package directories are automatically
generated based on the directories containing the uncompiled JSP files. It sets the -d argument.
jspCClasspath | FileCollection | null | The classpath to use for the JSP files compilation. webAppDir
| File | null | The directory containing the web application. All JSP files in the directory and its
subdirectories are compiled. It sets the -webapp argument.

The properties of type File support any type that can be resolved by project.file.

Additional Configuration

There are additional configurations that can help you use Jasper JSPC.

JSP Compilation Classpath

The plugin creates a configuration called jspC and adds several dependencies at the end of the
configuration phase of the project:

• the JAR file of the project generated by the jar task.
• the output files of the main source set.
• the compileClasspath file collection of the main source set.

If necessary, it is possible to add more dependencies to the jspC configuration.

Liferay Jasper JSPC Dependency

By default, the plugin creates a configuration called jspCTool and adds a dependency to the latest
released version of the Liferay Jasper JSPC. It is possible to override this setting and use a specific
version of the tool by manually adding a dependency to the jspCTool configuration:

dependencies {

jspCTool group: "com.liferay", name: "com.liferay.jasper.jspc", version: "1.0.11"

jspCTool group: "org.apache.ant", name: "ant", version: "1.9.4"

}

166.12 Javadoc Formatter Gradle Plugin

The Javadoc Formatter Gradle plugin lets you format project Javadoc comments using the Liferay
Javadoc Formatter tool. The tool lets you generate:

• Default @author tags to all classes.
• Comment stubs to classes, fields, and methods.
• Missing @Override annotations.
• An XML representation of the Javadoc comments, which can be used by tools in order to
index the Javadocs of the project.

The plugin has been successfully tested with Gradle 4.10.2.

2016

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.gradle.org/current/userguide/java_plugin.html#sec:jar
https://github.com/liferay/liferay-portal/tree/master/modules/util/javadoc-formatter
https://github.com/liferay/liferay-portal/tree/master/modules/util/javadoc-formatter
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@author
https://docs.oracle.com/javase/8/docs/api/java/lang/Override.html

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.javadoc.formatter", version: "1.0.27"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.javadoc.formatter"

Since the plugin automatically resolves the Liferay Javadoc Formatter library as a dependency,
you have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description formatJavadoc | - | FormatJavadocTask | Runs the Liferay

Javadoc Formatter to format files.

FormatJavadocTask

Tasks of type FormatJavadocTask extend JavaExec, so all its properties and methods, like args and
maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | Javadoc Formatter command line arguments classpath |
project.configurations.javadocFormatter main | "com.liferay.javadoc.formatter.JavadocFormatter"

Task Properties Property Name | Type | Default Value | Description author | String | "Brian Wing

Shun Chan" | The value of the @author tag to add at class level if missing. It sets the javadoc.author

argument. generateXML | boolean | false | Whether to generate a XML representation of the Javadoc
comments. The XML files are generated in the src/main/resources directory only if the Java files are
contained in src/main/java. It sets the javadoc.generate.xml argument. initializeMissingJavadocs |
boolean | false | Whether to add comment stubs at the class, field, and method levels. If false, only
the class-level @author is added. It sets the javadoc.init argument. limits | List<String> | [] | The
Java file name patterns, relative to workingDir, to include when formatting Javadoc comments. The
patterns must be specified without the .java file type suffix. If empty, all Java files are formatted. It
sets the javadoc.limit argument. lowestSupportedJavaVersion | double | 1.7 | If a method is annotated
with the @SinceJava annotation and its value argument is greater than the value specified for the
lowestSupportedJavaVersion property, then the @Override annotation is not automatically added,
even if it is missing. It sets the javadoc.lowest.supported.java.version argument. See LPS-37353.
outputFilePrefix | String | "javadocs" | The file name prefix of the XML representation of the Javadoc

2017

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:workingDir
https://github.com/liferay/liferay-portal/blob/master/modules/util/javadoc-formatter/src/main/java/com/liferay/javadoc/formatter/SinceJava.java
https://issues.liferay.com/browse/LPS-37353

comments. If generateXML is false, this property is not used. It sets the javadoc.output.file.prefix

argument. updateJavadocs | boolean | false | Whether to fix existing comment blocks by adding
missing tags. It sets the javadoc.update argument.

It is possible to use Closures and Callables as values for the String properties, to defer evaluation
until task execution.

TaskMethods Method | Description FormatJavadocTask dirNames(Iterable<Object> limits) | Adds
Java file name patterns, relative to workingDir, to include when formatting Javadoc comments.
FormatJavadocTask dirNames(Object... limits) | Adds Java file name patterns, relative to workingDir,
to include when formatting Javadoc comments.

Additional Configuration

There are additional configurations that can help you use the Javadoc Formatter.

Liferay Javadoc Formatter Dependency

By default, the plugin creates a configuration called javadocFormatter and adds a dependency to
the latest released version of the Liferay Javadoc Formatter. It is possible to override this setting
and use a specific version of the tool by manually adding a dependency to the javadocFormatter

configuration:

dependencies {

javadocFormatter group: "com.liferay", name: "com.liferay.javadoc.formatter", version: "1.0.32"

}

If the java plugin is applied, the javadocFormatter configuration automatically extends from the
compile configuration.

System Properties

It is possible to set the default values of the generateXML, initializeMissingJavadocs, limits, and
updateJavadocs properties for a FormatJavadocTask task via system properties:

• -D${task.name}.generate.xml=true

• -D${task.name}.init=SomeClassName1,SomeClassName2,com.liferay.portal.**

• -D${task.name}.limit=**/com/example/

• -D${task.name}.update=true

166.13 JS Module Config Generator Gradle Plugin

The JS Module Config Generator Gradle plugin lets you run the Liferay AMDModule Config Gener-
ator to generate the configuration file needed to load AMD files via combo loader in Liferay.

The plugin has been successfully tested with Gradle 4.10.2.

2018

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_plugin_and_dependency_management
https://github.com/liferay/liferay-module-config-generator
https://github.com/liferay/liferay-module-config-generator

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.js.module.config.generator", version: "2.1.57"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.js.module.config.generator"

The JS Module Config Generator plugin automatically applies the com.liferay.node plugin.

Project Extension

The JS Module Config Generator plugin exposes the following properties through the extension
named jsModuleConfigGenerator:

Property Name | Type | Default Value | Description version | String | "1.2.1" | The version of the
Liferay AMDModule Config Generator to use.

Tasks

The plugin adds two tasks to your project:
Name | Depends On | Type | Description configJSModules | downloadLiferayModuleConfigGenerator,

processResources | ConfigJSModulesTask | Generates the configuration file needed to load
AMD files via combo loader in Liferay. downloadLiferayModuleConfigGenerator | downloadNode

| DownloadNodeModuleTask | Downloads the Liferay AMDModule Config Generator in the project’s
node_modules directory.

By default, the downloadLiferayModuleConfigGenerator task downloads the version of liferay-
module-config-generator declared in the jsModuleConfigGenerator.version property. If the project’s
package.json file, however, already lists the liferay-module-config-generator package in its
dependencies or devDependencies, the downloadLiferayModuleConfigGenerator task is disabled.

The configJSModules task is automatically configured with sensible defaults, depending on
whether the java plugin is applied:

Property Name | Default Value moduleConfigFile | "${project.projectDir}/package.json"

outputFile | "${sourceSets.main.output.resourcesDir}/META-INF/config.json" sourceDir | "${sourceSets.main.output.resourcesDir}/META-
INF/resources"

The plugin also adds the following dependencies to tasks defined by the java plugin:
Name | Depends On classes | configJSModules
If the com.liferay.js.transpiler plugin is applied, the configJSModules task is configured to

always run after the transpileJS task.

ConfigJSModulesTask

Tasks of type ConfigJSModulesTask extend ExecuteNodeScriptTask, so all its properties and methods,
such as args, inheritProxy, and workingDir, are available. The ConfigJSModulesTask instances also

2019

https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-node
https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-js-transpiler

implement the PatternFilterable interface, which lets you specify include and exclude patterns for
the files in sourceDir to process.

They also have the following properties set by default:
Property Name | Default Value includes | ["⁎⁎/*.es.js*", "⁎⁎/*.soy.js*"] scriptFile |

"${downloadLiferayModuleConfigGenerator.moduleDir}/bin/index.js"

The purpose of this task is to run the Liferay AMDModule Config Generator from the included
files in sourceDir. The generator processes these files and creates a configuration file in the location
specified by the outputFile property.

Task Properties Property Name | Type | Default Value | Description configVariable | String |
null | The configuration variable to which the modules should be added. It sets the --config

argument. customDefine | String | "Liferay.Loader" | The namespace of the define(...) call to use
in the JS files. It sets the --namespace argument. ignorePath | boolean | false | Whether not to create
module path and fullPath properties. It sets the --ignorePath argument. keepFileExtension | boolean
| false | Whether to keep the file extension when generating the module name. It sets the --

keepExtension argument. lowerCase | boolean | false | Whether to convert file name to lower case
before using it as the module name. It sets the --lowerCase argument. moduleConfigFile | File |
null | The JSON file which contains configuration data for the modules. It sets the --moduleConfig

argument. moduleExtension | String | null | The extension for the module file (e.g., .js). If specified,
use the provided string as an extension instead to get it automatically from the file name. It sets
the --extension argument. moduleFormat | String | null | The regular expression and value to apply to
the file name when generating the module name. It sets the --format argument. outputFile | File |
null | The file where the generated configuration is stored. It sets the --output argument. sourceDir
| File | null | The directory that contains the files to process.

The properties of type File support any type that can be resolved by project.file. Moreover,
it is possible to use Closures and Callables as values for the int and String properties to defer
evaluation until task execution.

166.14 JS Transpiler Gradle Plugin

The JS Transpiler Gradle plugin lets you run metal-cli to build Metal.js code, compile Soy files, and
transpile ES6 to ES5.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.js.transpiler", version: "2.4.36"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.js.transpiler"

2020

https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/util/PatternFilterable.html#getIncludes()
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://github.com/metal/metal-cli
http://metaljs.com/

There are two JS Transpiler Gradle plugins you can apply to your project:

• JS Transpiler Plugin: builds Metal.js code, compiles Soy files, and transpiles ES6 to ES5:

apply plugin: "com.liferay.js.transpiler"

• JS Transpiler Base Plugin: provides a way to use Gradle dependencies (such as an external
module or project dependencies) in Node.js scripts:

apply plugin: "com.liferay.js.transpiler.base"

JS Transpiler Plugin

The JS Transpiler plugin automatically applies the JS Transpiler Base Plugin.
The plugin adds two tasks to your project:
Name | Depends On | Type | Description downloadMetalCli | downloadNode | DownloadNodeModuleTask

| Downloads metal-cli in the project’s node_modules directory. transpileJS | downloadMetalCli,
expandJSCompileDependencies, npmInstall, processResources | TranspileJSTask | Builds Metal.js code.

By default, the downloadMetalCli task downloads the version 1.3.1 of metal-cli. If the project’s
package.json file, however, already lists the metal-cli package in its dependencies or devDependencies,
the downloadMetalCli task is disabled.

The transpileJS task is automatically configured with sensible defaults, depending on whether
the java plugin is applied:

Property Name | Default Value sourceDir | The directory META-INF/resources in the first resources
directory of the main source set (by default, src/main/resources/META-INF/resources). workingDir |
"${sourceSets.main.output.resourcesDir}/META-INF/resources"

The plugin also adds the following dependencies to tasks defined by the java plugin:
Name | Depends On classes | transpileJS
The plugin adds a new configuration to the project called soyCompile. If one or more dependen-

cies are added to this configuration, they will be expanded into temporary directories and passed
to the transpileJS task as additional soyDependencies values.

JS Transpiler Base Plugin

The JS Transpiler Base plugin automatically applies the com.liferay.node plugin.
Theplugin adds anewconfiguration to the project called jsCompile. If one ormore dependencies

are added to this configuration, they will be expanded into sub-directories of the node_modules

directory, with names equal to the names of the dependencies.
The plugin also adds one task to your project:
Name | Depends On | Type | Description expandJSCompileDependencies | - | DefaultTask | Expands

the additional configured JavaScript dependencies. The task itself does not do any work, but
depends on a series of Copy tasks called expandJSCompileDependency${file}, which expand each
dependency declared in the jsCompile configuration into the node_modules directory.

All the tasks of type ExecuteNpmTask whose name starts with "npmRun" are configured to de-
pend on expandJSCompileDependencies. This means that, before running any script declared in
the package.json file of the project, all the jsCompile dependencies will be expanded into the
node_modules directory.

2021

https://docs.gradle.org/current/userguide/dependency_management.html#sub:module_dependencies
https://docs.gradle.org/current/userguide/dependency_management.html#sub:module_dependencies
https://docs.gradle.org/current/userguide/dependency_management.html#sub:project_dependencies
https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-node
https://docs.gradle.org/current/javadoc/org/gradle/api/DefaultTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.Copy.html
https://docs.npmjs.com/misc/scripts

Tasks

TranspileJSTask

Tasks of type TranspileJSTask extend ExecuteNodeScriptTask, so all its properties and methods, such
as args, inheritProxy, and workingDir, are available. They also have the following properties set by
default:

Property Name | Default Value scriptFile | "${downloadMetalCli.moduleDir}/index.js"

soySrcIncludes | ["⁎⁎/*.soy"] srcIncludes | ["⁎⁎/*.es.js*", "⁎⁎/*.soy.js*"]

The purpose of this task is to run the build command of metal-cli to build Metal.js code from
sourceDir into the workingDir directory.

Task Properties Property Name | Type | Default Value | Description bundleFileName | String |
null | The name of the final bundle file for formats (e.g., globals) that create one. It sets the
--bundleFileName argument. globalName | String | null | The name of the global variable that holds
exported modules. It sets the --globalName argument. This is only used by the globals format build.
moduleName | String | null | The name of the project that is being compiled. All built modules are
stored in a folder with this name. It sets the --moduleName argument. This is only used by the amd
format build. modules | String | "amd" | The format(s) that the source files are built to. It sets the
--format argument. skipWhenEmpty | boolean | true | Whether to disable the task and remove its
dependencies if the sourceFiles property does not return any file at the end of the project evaluation.
sourceDir | File | null | The directory that contains the files to build. sourceFiles | FileCollection
| [] | The Soy and JS files to compile. (Read-only) sourceMaps | SourceMaps | enabled | Whether
to generate source map files. Available values include disabled, enabled, and enabled_inline.
soyDependencies | Set<String> | ["${npmInstall.workingDir}/node_modules/clay⁎/src/**/*.soy",

"${npmInstall.workingDir}/node_modules/metal⁎/src/**/*.soy"] | The path GLOBs of Soy files that
the main source files depend on, but that should not be compiled. It sets the --soyDeps argument.
soySkipMetalGeneration | boolean | false | Whether to just compile Soy files, without adding
Metal.js generated code, like the component class. It sets the --soySkipMetalGeneration argument.
soySrcIncludes | Set<String> | [] | The path GLOBs of the Soy files to compile. It sets the --soySrc

argument. srcIncludes | Set<String> | [] | The path GLOBs of the JS files to compile. It sets the --src

argument.
The properties of type File support any type that can be resolved by project.file. Moreover,

it is possible to use Closures and Callables as values for the int and String properties to defer
evaluation until task execution.

TaskMethods Method | Description TranspileJSTask soyDependency(Iterable<?> soyDependencies)

| Adds path GLOBs of Soy files that the main source files depend on, but that should
not be compiled. TranspileJSTask soyDependency(Object... soyDependencies) | Adds path
GLOBs of Soy files that the main source files depend on, but that should not be compiled.
TranspileJSTask soySrcInclude(Iterable<?> soySrcIncludes) | Adds path GLOBs of Soy files to
compile. TranspileJSTask soySrcInclude(Object... soySrcIncludes) | Adds path GLOBs of Soy files
to compile. TranspileJSTask srcInclude(Iterable<?> srcIncludes) | Adds path GLOBs of JS files
to compile. TranspileJSTask srcInclude(Object... srcIncludes) | Adds path GLOBs of JS files to
compile.

166.15 JSDoc Gradle Plugin

2022

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

The JSDoc Gradle plugin lets you run the JSDoc tool in order to generate documentation for your
project’s JavaScript files.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.jsdoc", version: "2.0.33"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

There are two JSDoc Gradle plugins you can apply to your project:

• Apply the JSDoc Plugin to generate JavaScript documentation for your project:

apply plugin: "com.liferay.jsdoc"

• Apply the App JSDoc Plugin in a parent project to generate the JavaScript documentation as a
single, combined HTML document for an application that spans different subprojects, each
one representing a different component of the same application:

apply plugin: "com.liferay.app.jsdoc"

Both plugins automatically apply the com.liferay.node plugin.

JSDoc Plugin

The plugin adds two tasks to your project:
Name | Depends On | Type | Description downloadJSDoc | downloadNode | DownloadNodeModuleTask |

Downloads JSDoc in the project’s node_modulesdirectory. jsdoc | downloadJSDoc | JSDocTask | Generates
API documentation for the project’s JavaScript code.

By default, the downloadJSDoc task downloads version 3.5.5 of the jsdoc package. If the project’s
package.json file, however, already lists the jsdoc package in its dependencies or devDependencies, the
downloadJSDoc task is disabled.

The jsdoc task is automatically configured with sensible defaults, depending on whether the
java plugin is applied:

Property Name | Default Value destinationDir |
If the java plugin is applied: "${project.docsDir}/jsdoc"
Otherwise: "${project.buildDir}/jsdoc"
sourceDirs | The directory META-INF/resources in the first resources directory of the main source

set (by default, src/main/resources/META-INF/resources).

2023

http://usejsdoc.org/
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-node
https://docs.gradle.org/current/userguide/java_plugin.html

AppJSDoc Plugin

To use the App JSDoc plugin, it is required to apply the com.liferay.app.jsdoc plugin in a parent
project (that is, a project that is a common ancestor of all the subprojects representing the var-
ious components of the app). It is also required to apply the com.liferay.jsdoc plugin to all the
subprojects that contain JavaScript files.

The App JSDoc plugin adds three tasks to your project:
Name | Depends On | Type | Description appJSDoc | downloadJSDoc | JSDocTask | Generates API

documentation for the app’s JavaScript code. downloadJSDoc | downloadNode | DownloadNodeModuleTask
| Downloads JSDoc in the app’s node_modules directory. jarAppJSDoc | appJSDoc | Jar | Assembles a
JAR archive containing the JavaScript documentation files for this app.

By default, the downloadJSDoc task downloads version 3.5.5 of the jsdoc package. If the project’s
package.json file, however, already lists the jsdoc package in its dependencies or devDependencies, the
downloadJSDoc task is disabled.

The appJSDoc task is automatically configured with sensible defaults:
Property Name | Default Value destinationDir | ${project.buildDir}/docs/jsdoc sourceDirs | The

sum of all the jsdoc.sourceDirs values of the subprojects.

Project Extension

The App JSDoc plugin exposes the following properties through the extension named
appJSDocConfiguration:

PropertyName |Type |DefaultValue |Description subprojects | Set<Project> | project.subprojects
| The subprojects to include in the JavaScript documentation of the app.

The same extension exposes the following methods:
Method | Description AppJSDocConfigurationExtension subprojects(Iterable<Project>

subprojects) | Include additional projects in the JavaScript documentation of the app.
AppJSDocConfigurationExtension subprojects(Project... subprojects) | Include additional projects
in the JavaScript documentation of the app.

Tasks

JSDocTask

Tasks of type JSDocTask extend ExecuteNodeScriptTask, so all its properties and methods, such as
args, inheritProxy, and workingDir, are available.

They also have the following properties set by default:
Property Name | Default Value scriptFile | "${downloadJSDoc.moduleDir}/jsdoc.js"

Task Properties Property Name | Type | Default Value | Description configuration | TextResource
| null | The JSDoc configuration file. It sets the --configure argument. destinationDir | File | null
| The directory where the JavaScript API documentation files are saved. It sets the --destination

argument. packageJsonFile | File | "${project.projectDir}/package.json" | The path to the project’s
package file. It sets the --package argument. sourceDirs | FileCollection | [] | The directories that
contains the files to process. readmeFile | File | null | The path to the project’s README file. It sets
the --readme argument. tutorialsDir | File | null | The directory in which JSDoc should search for
tutorials. It sets the --tutorials argument.

The properties of type File support any type that can be resolved by project.file.

2024

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/current/dsl/org.gradle.api.resources.TextResource.html
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

166.16 Lang Builder Gradle Plugin

The Lang Builder Gradle plugin lets you run the Liferay Lang Builder tool to sort and translate the
language keys in your project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.lang.builder", version: "3.0.31"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.lang.builder"

Since the plugin automatically resolves the Liferay Lang Builder library as a dependency, you
have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

See this page on the Liferay Developer Network for more information about usage of the Lang
Builder Gradle plugin.

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildLang | - | BuildLangTask | Runs Liferay Lang Builder

to translate language property files.
The buildLang task is automatically configured with sensible defaults, depending on whether

the java plugin is applied:
Property Name | Default Value langDir |
If the java plugin is applied: The directory content in the first resources directory of the main

source set (by default: src/main/resources/content).
Otherwise: null

BuildLangTask

Tasks of type BuildLangTask extend JavaExec, so all its properties and methods, such as args and
maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | Lang Builder command line arguments classpath |
project.configurations.langBuilder main | "com.liferay.lang.builder.LangBuilder"

2025

https://github.com/liferay/liferay-portal/tree/master/modules/util/lang-builder
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main

Task Properties Property Name | Type | Default Value | Description excludedLanguageIds |
Set<String> | ["da", "de", "fi", "ja", "nl", "pt_PT", "sv"] | The language IDs to exclude in
the automatic translation. It sets the lang.excluded.language.ids argument. langDir | File | null
| The directory where the language properties files are saved. It sets the lang.dir argument.
langFileName | String | "Language" | The file name prefix of the language properties files (e.g.,
Language_it.properties). It sets the lang.file argument. plugin | boolean | true |Whether to check for
duplicate language keys between the project and the portal. If portalLanguagePropertiesFile is not
set, this property has no effect. It sets the lang.plugin argument. portalLanguagePropertiesFile | File
| null | The Language.properties file of the portal. It sets the lang.portal.language.properties.file

argument. translate | boolean | true | Whether to translate the language keys and generate a
language properties file for each locale that’s supported by Liferay. It sets the lang.translate

argument. translateSubscriptionKey | String | null | The subscription key for Microsoft Translation
integration. Subscription to the Translator Text Translation API on Microsoft Cognitive Services is
required. Basic subscriptions, up to 2 million characters a month, are free. See here for more
information. It sets the lang.translate.subscription.key argument.

The properties of type File support any type that can be resolved by project.file. Moreover, it
is possible to use Closures and Callables as values for the String properties, to defer evaluation
until task execution.

Task Methods Method | Description BuildLangTask excludedLanguageIds(Iterable<Object>

excludedLanguageIds) | Adds language IDs to exclude in the automatic translation. BuildLangTask

excludedLanguageIds(Object... excludedLanguageIds) | Adds language IDs to exclude in the
automatic translation.

Additional Configuration

There are additional configurations that can help you use the Lang Builder.

Liferay Lang Builder Dependency

By default, the plugin creates a configuration called langBuilder and adds a dependency to the
latest released version of the Liferay Lang Builder. It is possible to override this setting and use a
specific version of the tool by manually adding a dependency to the langBuilder configuration:

dependencies {

langBuilder group: "com.liferay", name: "com.liferay.lang.builder", version: "1.0.29"

}

166.17 Maven Plugin Builder Gradle Plugin

The Maven Plugin Builder Gradle Plugin lets you generate the Maven plugin descriptor for any
Mojos found in your project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

2026

http://docs.microsofttranslator.com/text-translate.html
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://maven.apache.org/ref/current/maven-plugin-api/plugin.html
https://maven.apache.org/general.html#What_is_a_Mojo

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.maven.plugin.builder", version: "1.2.4"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.maven.plugin.builder"

Tasks

The plugin adds two tasks to your project:
Name | Depends On | Type | Description buildPluginDescriptor |compileJava, WriteMavenSettings |

BuildPluginDescriptorTask | Generates theMavenplugindescriptor for theproject. WriteMavenSettings
| - | WriteMavenSettingsTask | Writes a temporary Maven settings file to be used during subsequent
Maven invocations.

The Maven Plugin Builder Plugin automatically applies the java plugin.
The plugin also adds the following dependencies to tasks defined by the maven plugin:
Name | Depends On install, uploadArchives, and all the other tasks of type Upload |

buildPluginDescriptor

The buildPluginDescriptor task is automatically configured with sensible defaults:
PropertyName |DefaultValue classesDir | sourceSets.main.output.classesDir mavenEmbedderClasspath

| configurations.mavenEmbedder mavenSettingsFile | writeMavenSettings.outputFile outputDir | The
directory META-INF/maven in the first resources directory of the main source set (by default:
src/main/resources/META-INF/maven). pomArtifactId | The bundle symbolic name of the project
inferred via the OsgiHelper class. pomGroupId | project.group pomVersion | project.version (if it ends
with "-SNAPSHOT", the suffix will be removed) sourceDir | The first java directory of the main source
set (by default: src/main/java).

Theplugin ensures that the processResources task always runs before buildPluginDescriptor to let
processResources copy the newly generated files in the buildPluginDescriptor.outputDir directory.

The writeMavenSettings task is also automatically configured with sensible defaults:
Property Name | Default Value localRepositoryDir | maven.repo.local system property

nonProxyHosts | http.nonProxyHosts systemproperty outputFile | "${project.buildDir}/settings.xml"
proxyHost | http.ProxyHost or https.proxyHost system property (depending on the protocol of
repositoryUrl) proxyPassword | http.ProxyPassword or https.proxyPassword system property (depend-
ing on the protocol of repositoryUrl) proxyPort | http.ProxyPort or https.proxyPort system property
(depending on the protocol of repositoryUrl) proxyUser | http.ProxyUser or https.proxyUser system
property (depending on the protocol of repositoryUrl) repositoryUrl | repository.url system
property

If running on JDK8+, the plugin also disables the doclint feature in all tasks of type Javadoc.

BuildPluginDescriptorTask

Tasks of type BuildPluginDescriptorTask work by generating a temporary pom.xml file based on the
project, and then invoking the Maven Embedder to build the Maven plugin descriptor.

It is possible to declare information for the plugin descriptor generation using either Java 5
Annotations or Javadoc Tags.

2027

https://docs.gradle.org/current/userguide/java_plugin.html#sec:compile
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/maven_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.Upload.html
https://github.com/gradle/gradle/blob/master/subprojects/osgi/src/main/java/org/gradle/api/internal/plugins/osgi/OsgiHelper.java
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/javadoc.html#BEJEFABE
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://maven.apache.org/ref/3.3.9/maven-embedder/
https://maven.apache.org/plugin-tools/maven-plugin-tools-annotations/
https://maven.apache.org/plugin-tools/maven-plugin-tools-annotations/
https://maven.apache.org/plugin-tools/maven-plugin-tools-java/

Task Properties Property Name | Type | Default Value | Description classesDir | File | null | The
directory that contains the compiled classes. It sets the value of the build.outputDirectory element
in the generated pom.xml file. configurationScopeMappings | Map<String, String> | ["compile":

"compile", "provided", "provided"] | The mapping between the configuration names in the Gradle
project and the dependency scopes in the pom.xml file. It is used to add dependencies.dependency

elements in the generated pom.xml file. forcedExclusions | Set<String> | [] | The group:name:version
notation of the dependencies to always exclude from the ones added in the pom.xml file. It adds
dependencies.dependency.exclusions.exclusion elements to the generated pom.xml file. goalPrefix

| String | null | The goal prefix for the Maven plugin specified in the descriptor. It sets the
value of the build.plugins.plugin.configuration.goalPrefix element in the generated pom.xml

file. mavenDebug | boolean | false | Whether to invoke the Maven Embedder in debug mode.
mavenEmbedderClasspath | FileCollection | null | The classpath used to invoke the Maven Embedder.
mavenEmbedderMainClassName | String | "org.apache.maven.cli.MavenCli" | The Maven Embedder’s
main class name. mavenPluginPluginVersion | String | "3.4" | The version of the Maven Plugin
Plugin to use to generate the plugin descriptor for the project. mavenSettingsFile | File | null |
The custom settings.xml file to use. It sets the --settings argument on the Maven Embedder
invocation. outputDir | File | null | The directory where the Maven plugin descriptor files are saved.
pomArtifactId | String | null | The identifier for the artifact that is unique within the group. It
sets the value of the project.artifactId element in the generated pom.xml file. pomGroupId | String
| null | The universally unique identifier for the project. It sets the value of the project.groupId

element in the generated pom.xml file. pomRepositories | Map<String, Object> | ["liferay-public":
"http://repository.liferay.com/nexus/content/groups/public"] | The name and URL of the remote
repositories. It adds repositories.repository elements in the generated pom.xml file. pomVersion

| String | null | The version of the artifact produced by this project. It sets the value of the
project.version element in the generated pom.xml file. sourceDir | String | null | The directory that
contains the source files. It sets the value of the build.sourceDirectory element in the generated
pom.xml file. useSetterComments | boolean | true | Whether to allow Mojo Javadoc Tags in the setter
methods of the Mojo.

The properties of type File support any type that can be resolved by project.file. Moreover, it
is possible to use Closures and Callables as values for the String properties, to defer evaluation
until task execution.

Task Methods

Method | Description void configurationScopeMapping(String configurationName, String scope) |
Adds a mapping between a configuration name in the Gradle project and the dependency scope in
the pom.xml file. BuildPluginDescriptorTask forcedExclusions(Iterable<String> forcedExclusions)

| Adds group:name:version notations of dependencies to always exclude from the ones added in
the pom.xml file. BuildPluginDescriptorTask forcedExclusions(String... forcedExclusions) | Adds
group:name:version notations of dependencies to always exclude from the ones added in the pom.xml

file. BuildPluginDescriptorTask pomRepositories(Map<String, ?> pomRepositories | Adds names and
URLs of remote repositories in the pom.xml file. BuildPluginDescriptorTask pomRepository(String

id, Object url) | Adds the name and URL of a remote repository in the pom.xml file.

WriteMavenSettingsTask

Task Properties Property Name | Type | Default Value | Description localRepositoryDir | String |
null | The directory of the system’s local repository. It sets the value of the localRepository element

2028

http://maven.apache.org/ref/3.3.9/maven-model/maven.html#class_build
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_dependency
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_exclusion
https://maven.apache.org/plugin-tools/maven-plugin-plugin/examples/generate-descriptor.html
https://maven.apache.org/plugin-tools/maven-plugin-plugin/
https://maven.apache.org/plugin-tools/maven-plugin-plugin/
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_project
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_project
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_repository
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_project
http://maven.apache.org/ref/3.3.9/maven-model/maven.html#class_build
https://maven.apache.org/plugin-tools/maven-plugin-tools-java/
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://maven.apache.org/settings.html#Simple_Values

in the generated settings.xml file. nonProxyHosts | String | null | The patterns of the host that should
be accessed without going through the proxy. It sets the value of the proxies.proxy.nonProxyHosts

element in the generated settings.xml file. outputFile | File | null | The generated settings.xml file.
proxyHost | String | null | The host name or address of the proxy server. It sets the value of the
proxies.proxy.host element in the generated settings.xml file. proxyPassword | String | null | The
password to use to access a protected proxy server. It sets the value of the proxies.proxy.password

element in the generated settings.xml file. proxyPort | String | null | The port number of the
proxy server. It sets the value of the proxies.proxy.port element in the generated settings.xml file.
proxyUser | String | null | The user name to use to access a protected proxy server. It sets the value
of the proxies.proxy.username element in the generated settings.xml file. repositoryUrl | String |
null | The URL of the repository mirror. It sets the value of the mirrors.mirror.url element in the
generated settings.xml file.

The properties of type File support any type that can be resolved by project.file. Moreover, it
is possible to use Closures and Callables as values for the String properties, to defer evaluation
until task execution.

Additional Configuration

There are additional configurations that can help you use the Maven Plugin Builder.

Maven Embedder Dependency

By default, the plugin creates a configuration called mavenEmbedder and adds a dependency to the
3.3.9 version of theMaven Embedder. It is possible to override this setting and use a specific version
of the tool by manually adding a dependency to the mavenEmbedder configuration:

dependencies {

mavenEmbedder group: "org.apache.maven", name: "maven-embedder", version: "3.3.9"

mavenEmbedder group: "org.apache.maven.wagon", name: "wagon-http", version: "2.10"

mavenEmbedder group: "org.eclipse.aether", name: "aether-connector-basic", version: "1.0.2.v20150114"

mavenEmbedder group: "org.eclipse.aether", name: "aether-transport-wagon", version: "1.0.2.v20150114"

mavenEmbedder group: "org.slf4j", name: "slf4j-simple", version: "1.7.5"

}

System Properties

It is possible to set the default value of the mavenDebug property for a BuildPluginDescriptorTask task
via system property:

• -D${task.name}.maven.debug=true

For example, run the following Bash command to invoke the Maven Embedder in debug mode
to attach a remote debugger:

./gradlew buildPluginDescriptor -DbuildPluginDescriptor.maven.debug=true

166.18 Node Gradle Plugin

The Node Gradle plugin lets you run Node.js and NPM as part of your build.
The plugin has been successfully tested with Gradle 4.10.2.

2029

https://maven.apache.org/settings.html#Proxies
https://maven.apache.org/settings.html#Proxies
https://maven.apache.org/settings.html#Proxies
https://maven.apache.org/settings.html#Proxies
https://maven.apache.org/settings.html#Proxies
https://maven.apache.org/guides/mini/guide-mirror-settings.html#Using_A_Single_Repository
https://maven.apache.org/settings.html#Mirrors
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://nodejs.org/
https://www.npmjs.com/

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.node", version: "4.6.18"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.node"

Project Extension

The Node Gradle plugin exposes the following properties through the extension named node:
Property Name | Type | DefaultValue | Description download | boolean | true |Whether to download

and use a local and isolated Node.js distribution instead of the one installed in the system. global |
boolean | false | Whether to use a single Node.js installation for the whole multi-project build. This
reduces the time required to unpack the Node.js distribution and the time required to download
NPM packages thanks to a shared packages cache. If download is false, this property has no effect.
nodeDir | File |

If global is true: "${rootProject.buildDir}/node"
Otherwise: "${project.buildDir}/node"
| The directory where the Node.js distribution is unpacked. If download is false, this

property has no effect. nodeUrl | String | "http://nodejs.org/dist/v${node.nodeVersion}/node-
v${node.nodeVersion}-${platform}-x${bitMode}.${extension}" | The URL of the Node.js distribution
to download. If download is false, this property has no effect. nodeVersion | String | "5.5.0" | The
version of the Node.js distribution to use. If download is false, this property has no effect. npmArgs |
List<String> | [] | The arguments added automatically to every task of type ExecuteNpmTask. npmUrl
| String | "https://registry.npmjs.org/npm/-/npm-${node.npmVersion}.tgz" | The URL of the NPM
version to download. If download is false, this property has no effect. npmVersion | String | null | The
version of NPM to use. If null, the version of NPM embedded inside the Node.js distribution is
used. If download is false, this property has no effect.

It is possible to override the default value of the download property by setting the nodeDownload

project property. For example, this can be done via command line argument:

./gradlew -PnodeDownload=false npmInstall

The same extension exposes the following methods:
Method | Description NodeExtension npmArgs(Iterable<?> npmArgs) | Adds arguments to automat-

ically add to every task of type ExecuteNpmTask. NodeExtension npmArgs(Object... npmArgs) | Adds
arguments to automatically add to every task of type ExecuteNpmTask.

The properties of type File support any type that can be resolved by project.file. Moreover, it
is possible to use Closures and Callables as values for String, to defer evaluation until execution.

Please note that setting the global property of the node extension via the command line is not
supported. It can only be set via Gradle script, which can be done by adding the following code to
the build.gradle file in the root of a project (e.g., LiferayWorkspace):

2030

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

allprojects {

plugins.withId("com.liferay.node") {

node.global = true

}

}

Tasks

The plugin adds a series of tasks to your project:
Name | Depends On | Type | Description cleanNPM | - | Delete | Deletes the node_modules directory,

the npm-shrinkwrap.jsonfile and the package-lock.jsonfiles from theproject, if present. downloadNode
| - | DownloadNodeTask | Downloads and unpacks the local Node.js distribution for the project. If
node.download is false, this task is disabled. npmInstall | downloadNode | NpmInstallTask | Runs npm

install to install the dependencies declared in the project’s package.json file, if present. By default,
the task is configured to run npm install two more times if it fails. npmRun${script} | npmInstall |
ExecuteNpmTask | Runs the ${script} NPM script. npmPackageLock | cleanNPM, npmInstall | DefaultTask
| Deletes the NPM files and runs npm install to install the dependencies declared in the project’s
package.json file, if present. npmShrinkwrap | cleanNPM, npmInstall | NpmShrinkwrapTask | Locks down
the versions of a package’s dependencies in order to control which dependency versions are used.

DownloadNodeTask

The purpose of this task is to download and unpack a Node.js distribution.

Task Properties Property Name | Type | Default Value | Description nodeDir | File | null | The
directory where the Node.js distribution is unpacked. nodeExeUrl | String | null | The URL of node.exe
to download when on Windows. nodeUrl | String | null | The URL of the Node.js distribution to
download. npmUrl | String | null | The URL of the NPM version to download.

The properties of type File support any type that can be resolved by project.file. Moreover, it
is possible to use Closures and Callables as values for the String properties, to defer evaluation
until task execution.

ExecuteNodeTask

This is the base task to run Node.js in a Gradle build. All tasks of type ExecuteNodeTask automatically
depend on downloadNode.

Task Properties Property Name | Type | Default Value | Description args | List<Object> | [] |
The arguments for the Node.js invocation. command | String | "node" | The file name of the ex-
ecutable to invoke. environment | Map<Object, Object> | [] | The environment variables for the
Node.js invocation. inheritProxy | boolean | true | Whether to set the http_proxy, https_proxy, and
no_proxy environment variables in the Node.js invocation based on the values of the system prop-
erties https.proxyHost, https.proxyPort, https.proxyUser, https.proxyPassword, https.nonProxyHosts,
https.proxyHost, https.proxyPort, https.proxyUser, https.proxyPassword, and https.nonProxyHosts. If
these environment variables are already set, their values will not be overwritten. nodeDir | File |

If node.download is true: node.nodeDir
Otherwise: null
| The directory that contains the executable to invoke. If null, the executable must be available

in the system PATH. npmInstallRetries | int | 0 | The number of times the node_modules is deleted,
the NPM cached data is verified (npm cache verify), and npm install is retried in case the Node.js

2031

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/current/javadoc/org/gradle/api/DefaultTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

invocation defined by this task fails. This can help solving corrupted node_modules directories by
re-downloading the project’s dependencies. workingDir | File | project.projectDir | The working
directory to use in the Node.js invocation.

The properties of type File support any type that can be resolved by project.file. Moreover,
it is possible to use Closures and Callables as values for the String properties to defer evaluation
until task execution.

Task Methods Method | Description ExecuteNodeTask args(Iterable<?> args) | Adds arguments
for the Node.js invocation. ExecuteNodeTask args(Object... args) | Adds arguments for the Node.js
invocation. ExecuteNodeTask environment(Map<?, ?> environment) | Adds environment variables for
the Node.js invocation. ExecuteNodeTask environment(Object key, Object value) | Adds an environ-
ment variable for the Node.js invocation.

ExecuteNodeScriptTask

The purpose of this task is to execute a Node.js script. Tasks of type ExecuteNodeScriptTask extend
ExecuteNodeTask.

Task Properties Property Name | Type | Default Value | Description scriptFile | File | null | The
Node.js script to execute.

The properties of type File support any type that can be resolved by project.file.

ExecuteNpmTask

The purpose of this task is to execute an NPM command. Tasks of type ExecuteNpmTask extend
ExecuteNodeScriptTask with the following properties set by default:

Property Name | Default Value command |
If nodeDir is null: "npm"
Otherwise: "node"
scriptFile |
If nodeDir is null: null
Otherwise: "${nodeDir}/lib/node_modules/npm/bin/npm-cli.js"or "${nodeDir}/node_modules/npm/bin/npm-

cli.js" onWindows.

Task Properties Property Name | Type | Default Value | Description cacheConcurrent | boolean |
If node.npmVersion is greater than or equal to 5.0.0, or node.nodeVersion is greater than or equal

to 8.0.0: true
Otherwise: false
| Whether to run this task concurrently, in case the version of NPM in use supports multiple

concurrent accesses to the same cache directory. cacheDir | File |
If nodeDir is null, or node.npmVersion is greater than or equal to 5.0.0, or node.nodeVersion is

greater than or equal to 8.0.0: null
Otherwise: "${nodeDir}/.cache"
| The location of NPM’s cache directory. It sets the --cache argument. Leave the property null to

keep the default value. logLevel | String | Value to mirror the log level set in the task’s logger object.
| The NPM log level. It sets the –loglevel argument. production | boolean | false | Whether to run in
production mode during the NPM invocation. It sets the --production argument. progress | boolean
| true | Whether to show a progress bar during the NPM invocation. It sets the --progress argument.

2032

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.npmjs.com/misc/config#cache
https://docs.gradle.org/current/dsl/org.gradle.api.Task.html#org.gradle.api.Task:logger
https://docs.npmjs.com/misc/config#loglevel
https://docs.npmjs.com/misc/config#production
https://docs.npmjs.com/misc/config#progress

registry | String | null | The base URL of the NPM package registry. It sets the --registry argument.
Leave the property null or empty to keep the default value.

The properties of type File support any type that can be resolved by project.file. Moreover, it
is possible to use Closures and Callables as values for the String properties, to defer evaluation
until task execution.

DownloadNodeModuleTask

The purpose of this task is to download a Node.js package. The packages are downloaded in the
${workingDir}/node_modules directory, which is equal, by default, to the node_modules directory of
the project. Tasks of type DownloadNodeModuleTask extend ExecuteNpmTask in order to execute the
command npm install ${moduleName}@${moduleVersion}.

DownloadNodeModuleTask instances are automatically disabled if the project’s package.json file
already lists a module with the same name in its dependencies or devDependencies object.

Task Properties Property Name | Type | Default Value | Description moduleName | String | null | The
name of the Node.js package to download. moduleVersion | String | null | The version of the Node.js
package to download.

It is possible to use Closures and Callables as values for the String properties, to defer evaluation
until task execution.

NpmInstallTask

Purpose of these tasks is to install the dependencies declared in a package.json file. Tasks of type
NpmInstallTask extend ExecuteNpmTask in order to run the command npm install.

NpmInstallTask instances are automatically disabled if the package.json file does not declare any
dependency in the dependency or devDependencies object.

Task Properties Property Name | Type | Default Value | Description nodeModulesCacheDir | File |
null |

The directory where node_modules directories are cached. By setting this property, it is possible
to cache the node_modules directory of a project and avoid unnecessary invocations of npm install,
useful especially in Continuous Integration environments.

The node_modules directory is cached based on the content of the project’s package-lock.json

(or npm-shrinkwrap.json, or package.json if absent). Therefore, if NpmInstallTask tasks in multi-
ple projects are configured with the same nodeModulesCacheDir, and their package-lock.json, npm-
shrinkwrap.json or package.json declare the same dependencies, their node_modules caches will be
shared.

This feature is not available if the com.liferay.cache plugin is applied.
nodeModulesCacheNativeSync | boolean | true | Whether to use rsync (on Linux/macOS) or robocopy

(onWindows) to cache and restore the node_modules directory. If nodeModulesCacheDir is not set, this
property has no effect. nodeModulesDigestFile | File | null |

If this property is set, the content of the project’s package-lock.json (or npm-shrinkwrap.json, or
package.json if absent) is checked with the digest from the node_modules directory. If the digests
match, do nothing. If the digests don’t match, the node_modules directory is deleted before running
npm install.

This feature is not available if the com.liferay.cache plugin is applied or if the property
nodeModulesCacheDir is set.

2033

https://docs.npmjs.com/misc/config#registry
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-cache

removeShrinkwrappedUrls | boolean | true if the registry property has a value, false otherwise. |
Whether to temporarily remove all the hard-coded URLs in the from and resolved fields of the npm-

shinkwrap.json file before invoking npm install. This way, it is possible to force NPM to download
all dependencies from a custom registry declared in the registry property. useNpmCI | boolean |
false | Whether to run npm ci instead of npm install. If the package-lock.json file does not exist,
this property has no effect.

The properties of type File support any type that can be resolved by project.file.

NpmShrinkwrapTask

The purpose of this task is to lock down the versions of a package’s dependencies so that you can
control exactly which dependency versions are used when your package is installed. Tasks of type
NpmShrinkwrapTask extend ExecuteNpmTask to execute the command npm shrinkwrap.

The generated npm-shrinkwrap.json file is automatically sorted and formatted, so it’s easier to
see the changes with the previous version.

NpmShrinkwrapTask instances are automatically disabled if the package.json file does not exist.

Task Properties Property Name | Type | Default Value | Description excludedDependencies |
List<String> | [] | The package names to exclude from the generated npm-shrinkwrap.json file.
includeDevDependencies | boolean | true | Whether to include the package’s devDependencies. It sets
the --dev argument.

It is possible to use Closures and Callables as values for the String properties to defer evaluation
until task execution.

Task Methods Method | Description NpmShrinkwrapTask excludeDependencies(Iterable<?>

excludedDependencies) | Adds package names to exclude from the generated npm-shrinkwrap.json file.
NpmShrinkwrapTask excludeDependencies(Object... excludedDependencies) | Adds package names to
exclude from the generated npm-shrinkwrap.json file.

PublishNodeModuleTask

The purpose of this task is to publish a package to the NPM registry. Tasks of type
PublishNodeModuleTask extend ExecuteNpmTask in order to execute the command npm publish.

These tasks generate a new temporary package.json file in the directory assigned to the
workingDir property; then the npm publish command is executed. If the package.json file in that
location does not exist, the one in the root of the project directory (if found) is copied; otherwise, a
new file is created.

The package.json is then processed by adding the values provided by the task properties, if not
already present in the file itself. It is still possible to override one or more fields of the package.json

file with the values provided by the task properties by adding one or more keys (e.g., "version") to
the overriddenPackageJsonKeys property.

Task Properties Property Name | Type | Default Value | Description moduleAuthor | String |
null | The value of the author field in the generated package.json file. moduleBugsUrl | String
| null | The value of the bugs.url field in the generated package.json file. moduleDescription |
String | project.description | The value of the description field in the generated package.json

file. moduleKeywords | List<String> | [] | The value of the keywords field in the generated

2034

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.npmjs.com/cli/shrinkwrap
https://docs.npmjs.com/cli/shrinkwrap#other-notes
https://www.npmjs.com/
https://docs.npmjs.com/cli/publish
https://docs.npmjs.com/files/package.json#people-fields-author-contributors
https://docs.npmjs.com/files/package.json#bugs
https://docs.npmjs.com/files/package.json#description-1
https://docs.npmjs.com/files/package.json#keywords

package.json file. moduleLicense | String | null | The value of the license field in the gener-
ated package.json file. moduleMain | String | null | The value of the main field in the generated
package.json file. moduleName | String | Name based on osgiHelper.bundleSymbolicName: for example,
if osgiHelper.bundleSymbolicName is "com.liferay.gradle.plugins.node", the default value for the
moduleName property is "liferay-gradle-plugins-node". | The value of the name field in the generated
package.json file. moduleRepository | String | null | The value of the repository field in the generated
package.json file. moduleVersion | String | project.version | The value of the version field in the
generated package.json file. npmEmailAddress | String | null | The email address of the npmjs.com
user that publishes the package. npmPassword | String | null | The password of the npmjs.com user
that publishes the package. npmUserName | String | null | The name of the npmjs.com user that
publishes the package. overriddenPackageJsonKeys | Set<String> | [] | The field values to override in
the generated package.json file.

TaskMethods

Method Description

PublishNodeModuleTask

overriddenPackageJsonKeys(Iterable<String>

overriddenPackageJsonKeys)

Adds field values to override in the generated package.json

file.

PublishNodeModuleTask

overriddenPackageJsonKeys(String...

overriddenPackageJsonKeys)

Adds field values to override in the generated package.json

file.

npmRun${script} Task

For each script declared in the package.json file of the project, one task npmRun${script} of type
ExecuteNpmTask is added. Each of these tasks is automatically configured with sensible defaults:

Property Name | Default Value args | ["run-script", "${script}"]

If the java plugin is applied and the package.json file declares a script named "build", the script
is executed before the classes task but after the processResources task.

If the lifecycle-base plugin is applied and the package.json file declares a script named test,
the script is executed when running the check task.

166.19 REST Builder Gradle Plugin

The REST Builder Gradle plugin lets you generate a REST layer defined in the REST Builder rest-
config.yaml and rest-openapi.yaml files.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.rest.builder", version: "1.0.21"

}

2035

https://docs.npmjs.com/files/package.json#license
https://docs.npmjs.com/files/package.json#main
https://github.com/gradle/gradle/blob/master/subprojects/osgi/src/main/java/org/gradle/api/internal/plugins/osgi/OsgiHelper.java
https://docs.npmjs.com/files/package.json#name
https://docs.npmjs.com/files/package.json#repository
https://docs.npmjs.com/files/package.json#version
https://docs.npmjs.com/misc/scripts
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/4.0/userguide/java_plugin.html#sec:java_resources
https://docs.gradle.org/current/javadoc/org/gradle/language/base/plugins/LifecycleBasePlugin.html

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.rest.builder"

The REST Builder plugin automatically applies the java plugin.
Since the plugin automatically resolves the Liferay REST Builder library as a dependency, you

have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildREST | - | BuildRESTTask | Runs the Liferay REST

Builder.

BuildRESTTask

Tasks of type BuildRESTTask extend JavaExec, so all its properties and methods, such as args and
maxHeapSize are available. They also have the following properties set by default:

Property Name | Default Value args | REST Builder command line arguments classpath |
project.configurations.restBuilder main | "com.liferay.portal.tools.rest.builder.RESTBuilder"

systemProperties | []

Task Properties Property Name | Type | Default Value | Description copyrightFile | File | null | The
file that contains the copyright header. restConfigDir | File |${project.projectDir} | The directory
that contains the rest-config.yaml and rest-openapi.yaml files.

In the typical scenario, the rest-config.yaml and rest-openapi.yaml files are contained in
the project directory of my-rest-app-impl. In the build.gradle of the same module, apply the
com.liferay.rest.builder plugin.

The properties of type File supports any type that can be resolved by project.file. Moreover,
it is possible to use Closures and Callables as values for the String properties, to defer evaluation
until task execution.

Additional Configuration

There are additional configurations added to use REST Builder.

Liferay REST Builder Dependency

By default, the plugin creates a configuration called restBuilder and adds a dependency to the
latest released version of Liferay REST Builder.

2036

https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-rest-builder
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:systemProperties
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

dependencies {

restBuilder group: "com.liferay", name: "com.liferay.portal.tools.rest.builder", version: "1.0.22"

}

166.20 Service Builder Gradle Plugin

The Service Builder Gradle plugin lets you generate a service layer defined in a Service Builder
service.xml file.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.service.builder", version: "2.2.46"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.service.builder"

The Service Builder plugin automatically applies the java plugin.
Since the plugin automatically resolves the Liferay Service Builder library as a dependency, you

have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildService | - | BuildServiceTask | Runs the Liferay

Service Builder.
The buildService task is automatically configured with sensible defaults, depending on whether

the war plugin is applied, or whether the osgiModule property is true:
Property Name | Default Value apiDir |
If the war plugin is applied: ${project.webAppDir}/WEB-INF/service
Otherwise: null
hbmFile |
If osgiModule is true: ${buildService.resourcesDir}/META-INF/module-hbm.xml
Otherwise: ${buildService.resourcesDir}/META-INF/portlet-hbm.xml
implDir | The first java directory of the main source set (by default: src/main/java). inputFile |
If the war plugin is applied: ${project.webAppDir}/WEB-INF/service.xml

2037

https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-service-builder
https://docs.gradle.org/current/userguide/war_plugin.html

Otherwise: ${project.projectDir}/service.xml
modelHintsFile | The file META-INF/portlet-model-hints.xml in the first resources directory of the

main source set (by default: src/main/resources/META-INF/portlet-model-hints.xml). pluginName |
If osgiModule is true: ""
Otherwise: project.name
propsUtil |
If osgiModule is true: "${bundleSymbolicName}.util.ServiceProps"The bundleSymbolicName of the

project is inferred via the OsgiHelper class.
Otherwise: "com.liferay.util.service.ServiceProps"
resourcesDir | The first resources directory of the main source set (by default: src/main/resources).

springFile |
If osgiModule is true: the file META-INF/spring/module-spring.xml in the first resources directory

of the main source set (by default: src/main/resources/META-INF/spring/module-spring.xml)
Otherwise: thefile META-INF/portlet-spring.xml in thefirst resourcesdirectory of the main source

set (by default: src/main/resources/META-INF/portlet-spring.xml)
sqlDir |
If the war plugin is applied: ${project.webAppDir}/WEB-INF/sql
Otherwise: The directory META-INF/sql in the first resources directory of the main source set (by

default: src/main/resources/META-INF/sql).
In the typical scenario of a data-driven Liferay OSGi application split in myapp-app, myapp-

service and myapp-web modules, the service.xml file is usually contained in the root direc-
tory of myapp-service. In the build.gradle of the same module, it is enough to apply the
com.liferay.service.builder plugin as described, and then add the following snippet to enable the
use of Liferay Service Builder:

buildService {

apiDir = "../myapp-api/src/main/java"

testDir = "../myapp-test/src/testIntegration/java"

}

While apiDir is required, the testDir property assignment can be left out, in which case
Arquillian-based integration test classes are generated.

BuildServiceTask

Tasks of type BuildWSDDTask extend JavaExec, so all its properties and methods, such as args and
maxHeapSize are available. They also have the following properties set by default:

Property Name | Default Value args | Service Builder command line arguments classpath |
project.configurations.serviceBuilder main | "com.liferay.portal.tools.service.builder.ServiceBuilder"
systemProperties | ["file.encoding": "UTF-8"]

Task Properties Property Name | Type | Default Value | Description apiDir | File | null | A directory
where the service API Java source files are generated. It sets the service.api.dir argument.
autoImportDefaultReferences | boolean | true | Whether to automatically add default references, like
com.liferay.portal.ClassName, com.liferay.portal.Resource and com.liferay.portal.User, to the ser-
vices. It sets the service.auto.import.default.references argument. autoNamespaceTables | boolean |
true | Whether to prefix table names by the namespace specified in the service.xml file. It sets the
service.auto.namespace.tables argument. beanLocatorUtil | String | "com.liferay.util.bean.PortletBeanLocatorUtil"
| The fully qualified class name of a bean locator class to use in the generated service classes.

2038

https://github.com/gradle/gradle/blob/master/subprojects/osgi/src/main/java/org/gradle/api/internal/plugins/osgi/OsgiHelper.java
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:systemProperties

It sets the service.bean.locator.util argument. buildNumber | long | 1 | A specific value to as-
sign the build.number property in the service.properties file. It sets the service.build.number

argument. buildNumberIncrement | boolean | true | Whether to automatically increment the
build.number property in the service.properties file by one at every service generation. It sets
the service.build.number.increment argument. databaseNameMaxLength | int | 30 | The upper bound
for database table and column name lengths to ensure it works on all databases. It sets the
service.database.name.max.length argument. hbmFile | File | null | A Hibernate Mapping file to
generate. It sets the service.hbm.file argument. implDir | File | null | A directory where the
service Java source files are generated. It sets the service.impl.dir argument. inputFile | File |
null | The project’s service.xml file. It sets the service.input.file argument. modelHintsConfigs

| Set | ["classpath*:META-INF/portal-model-hints.xml", "META-INF/portal-model-hints.xml",

"classpath*:META-INF/ext-model-hints.xml", "classpath*:META-INF/portlet-model-hints.xml"] |
Paths to the model hints files for Liferay Service Builder to use in generating the service
layer. It sets the service.model.hints.configs argument. modelHintsFile | File | null | A model
hints file for the project. It sets the service.model.hints.file argument. osgiModule | boolean |
false | Whether to generate the service layer for OSGi modules. It sets the service.osgi.module

argument. pluginName | String | null | If specified, a plugin can enable additional generation
features, such as Clp class generation, for non-OSGi modules. It sets the service.plugin.name

argument. propsUtil | String | null | The fully qualified class name of the service proper-
ties util class to generate. It sets the service.props.util argument. readOnlyPrefixes | Set |
["fetch", "get", "has", "is", "load", "reindex", "search"] | Prefixes of methods to consider
read-only. It sets the service.read.only.prefixes argument. resourceActionsConfigs | Set | ["META-
INF/resource-actions/default.xml", "resource-actions/default.xml"] | Paths to the resource
actions files for Liferay Service Builder to use in generating the service layer. It sets the
service.resource.actions.configs argument. resourcesDir | File | null | A directory where the
service non-Java files are generated. It sets the service.resources.dir argument. springFile | File |
null | A service Spring file to generate. It sets the service.spring.file argument. springNamespaces
| Set | ["beans"] | Namespaces of Spring XML Schemas to add to the service Spring file. It sets
the service.spring.namespaces argument. sqlDir | File | null | A directory where the SQL files
are generated. It sets the service.sql.dir argument. sqlFileName | String | "tables.sql" | A name
(relative to sqlDir) for the file in which the SQL table creation instructions are generated. It
sets the service.sql.file argument. sqlIndexesFileName | String | "indexes.sql" | A name (relative
to sqlDir) for the file in which the SQL index creation instructions are generated. It sets the
service.sql.indexes.file argument. sqlSequencesFileName | String | "sequences.sql" | A name
(relative to sqlDir) for the file in which the SQL sequence creation instructions are generated.
It sets the service.sql.sequences.file argument. targetEntityName | String | null | If specified,
it’s the name of the entity for which Liferay Service Builder should generate the service. It
sets the service.target.entity.name argument. testDir | File | null | If specified, it’s a directory
where integration test Java source files are generated. It sets the service.test.dir argument.
uadDir | File | null | A directory where the UAD (user-associated data) Java source files are
generated. It sets the service.uad.dir argument. uadTestIntegrationDir | File | null | A directory
where integration test UAD (user-associated data) Java source files are generated. It sets the
service.uad.test.integration.dir argument.

The properties of type File supports any type that can be resolved by project.file. Moreover,
it is possible to use Closures and Callables as values for the String properties, to defer evaluation
until task execution.

2039

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Additional Configuration

There are additional configurations that can help you use Service Builder.

Liferay Service Builder Dependency

By default, the plugin creates a configuration called serviceBuilder and adds a dependency to the
latest released version of Liferay Service Builder. It is possible to override this setting and use a
specific version of the tool by manually adding a dependency to the serviceBuilder configuration:

dependencies {

serviceBuilder group: "com.liferay", name: "com.liferay.portal.tools.service.builder", version: "1.0.292"

}

If you’re applying the com.liferay.gradle.plugins or com.liferay.gradle.plugins.workspace plu-
gins to your project, the Service Builder dependency is already added to the serviceBuilder config-
uration. Therefore, if you try to apply a customized version of Service Builder, it’s not recognized;
you must override the configuration already applied.

To do this, you must customize the classpath of the buildService task. If you’re supplying the
customized Service Builder plugin through a module named custom-sb-api, you could modify the
buildService task like this:

buildService {

apiDir = "../custom-sb-api/src/main/java"

classpath = configurations.serviceBuilder.filter { file -> !file.name.contains("com.liferay.portal.tools.service.builder") }

}

If you do this in conjunction with the serviceBuilder dependency configuration, the custom
Service Builder version is used.

166.21 Source Formatter Gradle Plugin

The Source Formatter Gradle plugin lets you format project files using the Liferay Source Formatter
tool.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.source.formatter", version: "2.3.413"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.source.formatter"

2040

https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins
https://github.com/liferay/liferay-portal/blob/master/modules/sdk/gradle-plugins-workspace
https://github.com/liferay/liferay-portal/tree/master/modules/util/source-formatter

Since the plugin automatically resolves the Liferay Source Formatter library as a dependency,
you have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds two tasks to your project:
Name | Depends On | Type | Description checkSourceFormatting | - | FormatSourceTask | Runs the

Liferay Source Formatter to check for source formatting errors. formatSource | - | FormatSourceTask |
Runs the Liferay Source Formatter to format the project files.

If desired, it is possible to check for source formatting errors while executing the check task by
adding the following dependency:

check {

dependsOn checkSourceFormatting

}

The same can be achieved by adding the following snippet to the build.gradle file in the root
directory of a Liferay Workspace:

subprojects {

afterEvaluate {

if (plugins.hasPlugin("base") && plugins.hasPlugin("com.liferay.source.formatter")) {

check.dependsOn checkSourceFormatting

}

}

}

The tasks checkSourceFormatting and formatSource are automatically skipped if another task with
the same name is being executed in a parent project.

FormatSourceTask

Tasks of type FormatSourceTask extend JavaExec, so all its properties and methods, like args and
maxHeapSize are available. They also have the following properties set by default:

Property Name | Default Value args | Source Formatter command line arguments classpath |
project.configurations.sourceFormatter main | "com.liferay.source.formatter.SourceFormatter"

Task Properties Property Name | Type | Default Value | Description autoFix | boolean | false
| Whether to automatically fix source formatting errors. It sets the source.auto.fix argument.
baseDir | File | | The Source Formatter base directory. It sets the source.base.dir argument. (Read-
only) baseDirName | String | "./" | The name of the Source Formatter base directory, relative to the
project directory. fileExtensions | List<String> | [] | The file extensions to format. If empty, all file
extensions will be formatted. It sets the source.file.extensions argument. files | List<File> | | The
list of files to format. It sets the source.files argument. (Read-only) fileNames | List<String> | null
| The file names to format, relative to the project directory. If null, all files contained in baseDir

will be formatted. formatCurrentBranch | boolean | false | Whether to format only the files contained
in baseDir that are added or modified in the current Git branch. It sets the format.current.branch

2041

https://docs.gradle.org/current/userguide/java_plugin.html#N15056
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main

argument. formatLatestAuthor | boolean | false | Whether to format only the files contained in
baseDir that are added or modified in the latest Git commits of the same author. It sets the
format.latest.author argument. formatLocalChanges | boolean | false |Whether to format only the un-
staged files contained in baseDir. It sets the format.local.changes argument. gitWorkingBranchName
| String | "master" | The Git working branch name. It sets the git.working.branch.name argument.
includeSubrepositories | boolean | false | Whether to format files that are in read-only subreposito-
ries. It sets the include.subrepositories argument. maxLineLength | int | 80 | The maximum number
of characters allowed in Java files. It sets the max.line.length argument. printErrors | boolean | true
| Whether to print formatting errors on the Standard Output stream. It sets the source.print.errors

argument. processorThreadCount | int | 5 | The number of threads used by Source Formatter. It
sets the processor.thread.count argument. showDebugInformation | boolean | false | Whether to show
debug information, if present. It sets the show.debug.information argument. showDocumentation |
boolean | false | Whether to show the documentation for the source formatting issues, if present.
It sets the show.documentation argument. showStatusUpdates | boolean | false | Whether to show
status updates during source formatting, if present. It sets the show.status.updates argument.
throwException | boolean | false | Whether to fail the build if formatting errors are found. It sets the
source.throw.exception argument.

Additional Configuration

There are additional configurations that can help you use the Source Formatter.

Liferay Source Formatter Dependency

By default, the plugin creates a configuration called sourceFormatter and adds a dependency to the
latest released version of Liferay Source Formatter. It is possible to override this setting and use a
specific version of the tool by manually adding a dependency to the sourceFormatter configuration:

dependencies {

sourceFormatter group: "com.liferay", name: "com.liferay.source.formatter", version: "1.0.885"

}

System Properties

It is possible to set the default values of the fileExtensions, fileNames, formatCurrentBranch,
formatLatestAuthor, and formatLocalChanges properties for a FormatSourceTask task via system
properties:

• -D${task.name}.file.extensions=java,xml

• -D${task.name}.file.names=README.markdown,src/main/resources/hello.txt

• -D${task.name}.format.current.branch=true

• -D${task.name}.format.latest.author=true

• -D${task.name}.format.local.changes=true

For example, run the following Bash command to format only the unstaged files in the project:

./gradlew formatSource -DformatSource.format.local.changes=true

2042

166.22 Soy Gradle Plugin

The Soy Gradle plugin lets you compile Closure Templates into JavaScript functions. It also lets
you use a custom localization mechanism in the generated .soy.js files by replacing goog.getMsg

definitions with a different function call (e.g., Liferay.Language.get).
The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.soy", version: "3.1.8"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

There are two Soy Gradle plugins you can apply to your project:

• Apply the Soy Plugin to compile Closure Templates into JavaScript functions:

apply plugin: "com.liferay.soy"

• Apply the Soy Translation Plugin to use a custom localization mechanism in the generated
.soy.js files:

apply plugin: "com.liferay.soy.translation"

Since the Soy Gradle plugin automatically resolves the Soy library as a dependency, you have
to configure a repository that hosts the library and its transitive dependencies. The Liferay CDN
repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Soy Plugin

The Soy plugin adds two tasks to your project:
Name | Depends On | Type | Description buildSoy | - | BuildSoyTask | Compiles Closure Templates

into JavaScript functions. wrapSoyAlloyTemplate | - configJSModules if com.liferay.js.module.config.generator
is applied - processResources if java is applied - transpileJS if com.liferay.js.transpiler is applied |
WrapSoyAlloyTemplateTask | Wraps the JavaScript functions compiled from Closure Templates into
AlloyUI modules.

The plugin also adds the following dependencies to tasks defined by the java plugin:

2043

https://developers.google.com/closure/templates/
https://developers.google.com/closure/templates/docs/translation#closurecompiler
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-js-module-config-generator
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-js-transpiler

Name | Depends On classes | wrapSoyAlloyTemplate
The buildSoy task is automatically configured with sensible defaults, depending on whether the

java plugin is applied:
Property Name | Default Value includes | ["⁎⁎/*.soy"] source |
If the java plugin is applied: The first resources directory of the main source set (by default,

src/main/resources).
Otherwise: []
The wrapSoyAlloyTemplate task is disabled by default, and it is automatically configured with

sensible defaults, depending on whether the java plugin is applied:
Property Name | Default Value enabled | false includes | ["⁎⁎/*.soy.js"] source |
If the java plugin is applied: project.sourceSets.main.output.resourcesDir
Otherwise: []

Additional Configuration

There are additional configurations that can help you use the Soy library.

Soy Dependency By default, the plugin creates a configuration called soy and adds a dependency
to the 2015-04-10 version of the Soy library. It is possible to override this setting and use a specific
version of the tool by manually adding a dependency to the soy configuration:

dependencies {

soy group: "com.google.template", name: "soy", version: "2015-04-10"

}

Soy Translation Plugin

The Soy Translation plugin adds one task to your project:
Name | Depends On | Type | Description replaceSoyTranslation | - configJSModules if

com.liferay.js.module.config.generator is applied - processResources if java is applied - transpileJS
if com.liferay.js.transpiler is applied | ReplaceSoyTranslationTask | Replaces goog.getMsg defini-
tions with Liferay.Language.get calls.

The plugin also adds the following dependencies to tasks defined by the java plugin:
Name | Depends On classes | replaceSoyTranslation
The replaceSoyTranslation task is automatically configured with sensible defaults, depending

on whether the java plugin is applied:
Property Name | Default Value includes | ["⁎⁎/*.soy.js"] replacementClosure | Replaces

goog.getMsg definitions with Liferay.Language.get calls. source |
If the java plugin is applied: project.sourceSets.main.output.resourcesDir
Otherwise: []

Tasks

BuildSoyTask

Tasks of type BuildSoyTask extend SourceTask, so all its properties and methods, such as include and
exclude, are available.

Task Properties Property Name | Type | Default Value | Description classpath | FileCollection |
project.configurations.soy | The classpath for executing the Liferay Portal Tools Soy Builder.

2044

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:includes
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:source
https://docs.gradle.org/current/dsl/org.gradle.api.Task.html#org.gradle.api.Task:enabled
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:includes
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:source
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-js-module-config-generator
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-js-transpiler
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:includes
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:source
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)
https://docs.gradle.org/current/javadoc/org/gradle/api/file/FileCollection.html
https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-soy-builder

WrapSoyAlloyTemplateTask

Tasks of type WrapSoyAlloyTemplateTask extend SourceTask, so all its properties and methods, such
as include and exclude, are available.

Task Properties Property Name | Type | Default Value | Description moduleName | String | null | The
name of the AlloyUI module. namespace | String | null | The namespace of the Closure Templates of
the project.

It is possible to use Closures and Callables as values for the String properties to defer evaluation
until task execution.

ReplaceSoyTranslationTask

The ReplaceSoyTranslationTask task type finds all the goog.getMsg definitions in the project’s files
and replaces them with a custom function call.

var MSG_EXTERNAL_123 = goog.getMsg('welcome-to-{$releaseInfo}', { 'releaseInfo': opt_data.releaseInfo });

A goog.getMsg definition looks like the example above, and it has the following components:

• variable name: MSG_EXTERNAL_123
• language key: welcome-to-{$releaseInfo}
• arguments object: { 'releaseInfo': opt_data.releaseInfo }

Tasks of type ReplaceSoyTranslationTask extend SourceTask, so all its properties and methods,
such as include and exclude, are available.

Task Properties Property Name | Type | Default Value | Description replacementClosure |
Closure<String> | null | The Closure invoked in order to get the replacement for goog.getMsg

definitions. The given Closure is passed the variable name, language key, and arguments object as its
parameters.

166.23 Target Platform Gradle Plugin

The Target Platform Gradle plugin helps with building multiple projects against a declared API
target platform. Java dependencies can be managed with Maven BOMs and OSGi modules can be
resolved against an OSGi distribution.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.target.platform", version: "1.1.13"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

2045

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)

}

}

}

There are two Target Platform Gradle plugins you can apply to your project:

• The Target Platform Plugin helps to configure your projects to build against an established set
of platform artifacts, including Java and OSGi dependencies.

apply plugin: "com.liferay.target.platform"

• The Target Platform IDE Plugin is a superset of the Target Platform Plugin (it applies the above
plugin) and also adds IDE integration for searching and debugging source code in the target
platform artifacts.

apply plugin: "com.liferay.target.platform.ide"

Since the plugin automatically resolves target platform configurations as dependencies, you
must configure a repository that hosts these artifacts. The Liferay CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Target Platform Plugin

The plugin applies the Spring Dependency Management Plugin and then adds several specific
configurations to configure the BOMs that are imported to manage Java dependencies and the
various artifacts used in resolving OSGi dependencies. Also, a new resolve task is added to resolve
all OSGi requirements against a declared distribution artifact.

The plugin adds a series of configurations to your project:
Name | Description targetPlatformBOMs | Configures all the BOMs to import as managed de-

pendencies. targetPlatformBundles | Configures all the bundles in addition to the distro to resolve
against. targetPlatformDistro | Configures the distro JAR file to use as base for resolving against.
targetPlatformRequirements | Configures the list of JAR files to use as run requirements for resolving.

The plugin adds a task resolve of type ResolveTask to your project that performs an OSGi resolve
operation using the targetPlatformRequirements configuration as the basis of the requirements. The
targetPlatformBundles configuration is used as a repository for the resolver to resolve requirements.
Lastly, the targetPlatformDistro configuration is used to provide the distro artifact for the resolve
process. The distro is the artifact that provides all the OSGi capabilities of the target platform. All of
these parameters are used to create a bndrun file that can be used as input into the Bndrun resolve
operation.

Target Platform IDE Plugin

The plugin applies the Target Platform and the eclipse plugins to your project, and also adds a
special targetPlatformIDE configuration, which is used to configure both the eclipse model and
idea plugin model in Gradle to add all target platform artifacts to the classpath so they are visible
to both Eclipse and IntelliJ’s Java Model Search (for looking up sources to classes).

2046

https://github.com/spring-gradle-plugins/dependency-management-plugin
https://docs.gradle.org/current/userguide/eclipse_plugin.html

Project Extension

The Target Platform plugin exposes the following properties through the extension named
targetPlatform:

Property Name | Type | Default Value | Description ignoreResolveFailures | boolean | true |
Whether to ignore resolve failures found when executing tasks of type ResolveTask. subprojects
| Set<Project> | project.subprojects | The subprojects to configure with target platform support,
including dependency management and the resolve task.

The same extension exposes the following methods:
Method |Description TargetPlatformExtension applyToConfiguration(Iterable<?> configurationNames)

| Adds additional configurations to configure the BOMs that are imported to manage Java depen-
dencies and the various artifacts used in resolving OSGi dependencies. TargetPlatformExtension
applyToConfiguration(Object... configurationNames) | Adds additional configurations to configure
the BOMs that are imported to manage Java dependencies and the various artifacts used in
resolving OSGi dependencies. TargetPlatformExtension onlyIf(Closure<Boolean> onlyIfClosure)

| Includes a subproject in the target platform configuration if the given closure returns true.
The closure is evaluated at the end of the subproject configuration phase and is passed a
single parameter: the subproject. If the closure returns false, the subproject is not included
in the target platform configuration TargetPlatformExtension onlyIf(Spec<Project> onlyIfSpec)

| Includes a subproject in the target platform configuration if the given spec is satisfied. The
spec is evaluated at the end of the subproject configuration phase. If the spec is not satisfied,
the subproject is not included in the target platform configuration. TargetPlatformExtension

resolveOnlyIf(Closure<Boolean> resolveOnlyIfClosure) | Includes a subproject in the resolving
process (including both the requirements and bundles configuration) if the given closure
returns true. The closure is evaluated at the end of the subproject configuration phase and is
passed a single parameter: the subproject. If the closure returns false, the subproject is the
resolution process. TargetPlatformExtension resolveOnlyIf(Spec<Project> resolveOnlyIfSpec) |
Includes a subproject in the resolving platform configuration if the given spec is satisfied. The
spec is evaluated at the end of the subproject configuration phase. If the spec is not satisfied,
the subproject is not included in the target platform configuration. TargetPlatformExtension

subprojects(Iterable<Project> subprojects) | Includes additional projects to be configured with
Target Platform support. TargetPlatformExtension subprojects(Project... subprojects) | Includes
additional projects to be configured with Target Platform support.

Tasks

ResolveTask

The purpose of this task is to resolve an OSGi module (or all OSGi modules of subprojects) against
the available targetPlatformBundles and targetPlatformDistro configurations. By default, the
targetPlatformBundles are all the artifacts created by all the subprojects. The targetPlatformDistro

must be set explicitly to a valid distribution artifact. When the task is performed, a bndrun file is
generated using the specified targetPlatformDistro as the -distro instruction; the -runrequirements

are a set of osgi.identity requirements for the targetPlatformRequirements configuration. If the
resolve operation is able to find a valid set of -runbundles that match the -runrequirements, then
the task passes successfully (the resolution is valid). If a set of run bundles can’t be found, the
resolution has failed and the failed requirements are listed as output of the task.

2047

Task Properties Property Name | Type | Default Value | Description bndrunFile | File | null | If this
property is specified, it is used as the bndrun file to input into the resolver. bundlesFileCollection
| FileCollection | All JAR files of subprojects with jar task | The input to bndrun resolve operation.
distroFileCollection | FileCollection | null | The distro parameter for the generated bndrun file.
ignoreFailures | boolean | false | Whether the resolve task should ignore failing the build for resolu-
tion errors. offline | boolean | null | Whether to run the bndrun resolve operation in offline mode.
requirementsFileCollection | FileCollection |

For the root project: All the output JAR files of the subprojects.
For subprojects: The output JAR file of the subproject.
| For each resolve operation, the requirements must be specified in the bndrun file; each of the

JARs in this collection generate an osgi.identify requirement in the bndrun file.

Additional Configuration

There are additional configurations that you can use to configure the target platform.

Target Platform BOMs Dependency

The plugin creates a configuration called targetPlatformBOMs with no defaults. You can use this
dependency to set which BOMs to import to configure your target platform.

dependencies {

targetPlatformBOMs group: "com.liferay", name: "com.liferay.ce.portal.bom", version: "7.1.0"

targetPlatformBOMs group: "com.liferay", name: "com.liferay.ce.portal.compile.only", version: "7.1.0"

}

Target Platform Bundles Dependency

The plugin creates a configuration called targetPlatformBundles. It is configured with default
dependencies to all resolvable bundles in a multi-project build (e.g., all projects in multi-project
build that have a jar task). This can be used to specify additional bundles that should be added to
the set of bundles given to resolve task to resolve against when checking for OSGi requirements.

dependencies {

targetPlatformBundles group: "com.google.guava", name: "guava", version: "23.0"

}

Target Platform Distro Dependency

The plugin creates a configuration called targetPlatformDistro. It is has no default so you must
specify which artifact you want to use as the distribution to resolve against.

dependencies {

targetPlatformDistro group: "com.liferay", name: "com.liferay.ce.portal.distro", version: "7.1.0"

}

If you have created your own custom distro JAR that is available locally, you can use the files

method to add it to the configuration.

dependencies {

targetPlatformDistro files("custom-distro.jar")

}

2048

Target Platform Requirements Dependency

The plugin creates a configuration called targetPlatformRequirements. It is configured with default
dependencies to all resolvable bundles in a multi-project build (e.g., all projects in multi-project
build that have a jar task). This is can be used to specify additional bundles that should be added
to the set of bundles given to the resolve task to set as osgi.identity requirements.
dependencies {

targetPlatformRequirements group: "com.liferay", name: "com.liferay.other.bundle", version: "1.0"

}

166.24 Theme Builder Gradle Plugin

The Theme Builder Gradle plugin lets you run the Liferay Theme Builder tool to build the Liferay
theme files in your project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:
buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.theme.builder", version: "2.0.7"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.theme.builder"

The Theme Builder plugin automatically applies the war plugin. It also applies the
com.liferay.css.builder plugin to compile the Sass files in the theme.

Since the plugin automatically resolves the Liferay Theme Builder library as a dependency, you
have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:
repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildTheme | - | BuildThemeTask | Builds the theme files.
The plugin also adds the following dependencies to tasks defined by the com.liferay.css.builder

and war plugins:
Name | Depends On buildCSS | buildTheme war | buildTheme
The buildCSS dependency compiles the Sass files contained in the directory specified by the

buildTheme.outputDir property. Moreover, the war task is configured as follows

2049

https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-theme-builder
https://docs.gradle.org/current/userguide/war_plugin.html
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-css-builder
http://sass-lang.com/
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-css-builder#tasks
https://docs.gradle.org/current/userguide/war_plugin.html#sec:war_default_settings

• exclude the directory specified in the buildTheme.diffsDir property from theWAR file.
• include the files contained in the buildTheme.outputDir directory into theWAR file.
• include only the compiled CSS files, not SCSS files, into theWAR file.

The buildTheme task is automatically configured with sensible defaults:
PropertyName |DefaultValue diffsDir | project.webAppDir outputDir | "${project.buildDir}/buildTheme"

parentFile | Thefirst JARfile in the parentThemes configuration that contains a META-INF/resources/${buildTheme.parentName}
directory, or the first WAR file in the parentThemes configuration whose name starts with
${parentName}-theme-. parentName | "_styled" templateExtension | "ftl" themeName | project.name
unstyledFile | The first JAR file in the parentThemes configuration that contains a META-

INF/resources/_unstyled directory.

BuildThemeTask

Tasks of type BuildThemeTask extend JavaExec, so all its properties and methods, such as args and
maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | Theme Builder command line arguments classpath |
project.configurations.themeBuilder main | "com.liferay.portal.tools.theme.builder.ThemeBuilder"

Task Properties Property Name | Type | Default Value | Description diffsDir | File | null | The
directory that contains the files to copy over the parent theme. It sets the --diffs-dir argument.
outputDir | File | null | The directory where to build the theme. It sets the --output-dir argument.
parentDir | File | null | The directory of the parent theme. It sets the --parent-path argument.
parentFile | File | null | The JAR file of the parent theme. If parentDir is specified, this property has
no effect. It sets the --parent-path argument. parentName | String | null | The name of the parent
theme. It sets the --parent-name argument. templateExtension | String | null | The extension of the
template files, usually "ftl" or "vm". It sets the --template-extension argument. themeName | String
| null | The name of the new theme. It sets the --name argument. unstyledDir | File | null | The
directory of Liferay Frontend Theme Unstyled. It sets the --unstyled-dir argument. unstyledFile
| File | null | The JAR file of Liferay Frontend Theme Unstyled. If unstyledDir is specified, this
property has no effect. It sets the --unstyled-dir argument.

The properties of type File support any type that can be resolved by project.file. Moreover,
it is possible to use Closures and Callables as values for the String properties to defer evaluation
until task execution.

Additional Configuration

There are additional configurations that can help you use the CSS Builder.

Liferay Theme Builder Dependency

By default, the plugin creates a configuration called themeBuilder and adds a dependency to the
latest released version of the Liferay Theme Builder. It is possible to override this setting and use a
specific version of the tool by manually adding a dependency to the themeBuilder configuration:

dependencies {

themeBuilder group: "com.liferay", name: "com.liferay.portal.tools.theme.builder", version: "1.1.7"

}

2050

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.css.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://github.com/liferay/liferay-portal/tree/master/modules/apps/frontend-theme/frontend-theme-unstyled
https://github.com/liferay/liferay-portal/tree/master/modules/apps/frontend-theme/frontend-theme-unstyled
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

Parent Theme Dependencies

By default, the plugin creates a configuration called parentThemes and adds dependencies to the
latest released versions of the Liferay Frontend Theme Styled, Liferay Frontend Theme Unstyled,
and Liferay FrontendTheme Classic artifacts. It is possible to override this setting and use a specific
version of the artifacts by manually adding dependencies to the parentThemes configuration. For
example,
dependencies {

parentThemes group: "com.liferay", name: "com.liferay.frontend.theme.styled", version: "VERSION"

parentThemes group: "com.liferay", name: "com.liferay.frontend.theme.unstyled", version: "VERSION"

parentThemes group: "com.liferay.plugins", name: "classic-theme", version: "VERSION"

}

Specifying dependency versions is not required when leveraging workspace’s Target Platform
functionality. All dependencies with the group ID com.liferay or com.liferay.portal are automati-
cally set when targeting a platform. For external theme dependencies (e.g., classic-theme with the
group ID com.liferay.plugins), you can find the version used by your specific Liferay DXP instance
by leveraging the Gogo shell. In a Gogo shell prompt, execute the following command:
lb -s theme

This lists the deployed theme bundles and their versions. Extract the versions for the theme
dependencies you want to leverage and add them to your configuration.

166.25 TLD Formatter Gradle Plugin

The TLD Formatter Gradle plugin lets you format a project’s TLD files using the Liferay TLD
Formatter tool.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:
buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.tld.formatter", version: "1.0.9"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.tld.formatter"

Since the plugin automatically resolves the Liferay TLD Formatter library as a dependency, you
have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:
repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

2051

https://github.com/liferay/liferay-portal/tree/master/modules/apps/frontend-theme/frontend-theme-styled
https://github.com/liferay/liferay-portal/tree/master/modules/apps/frontend-theme/frontend-theme-unstyled
https://github.com/liferay/liferay-portal/tree/master/modules/apps/frontend-theme/frontend-theme-classic
https://github.com/liferay/liferay-portal/tree/master/modules/util/tld-formatter
https://github.com/liferay/liferay-portal/tree/master/modules/util/tld-formatter

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description formatTLD | - | FormatTLDTask | Runs the Liferay TLD

Formatter to format files.

FormatTLDTask

Tasks of type FormatTLDTask extend JavaExec, so all its properties and methods, such as args and
maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | TLD Formatter command line arguments classpath |
project.configurations.tldFormatter main | "com.liferay.tld.formatter.TLDFormatter"

TaskProperties PropertyName | Type | DefaultValue | Description plugin | boolean | true |Whether
to format all theTLDfiles contained in the workingDir directory. If false, all liferay-portlet-ext.tld
files are ignored. It sets the tld.plugin argument.

Additional Configuration

There are additional configurations that can help you use the TLD Formatter.

Liferay TLD Formatter Dependency

By default, the plugin creates a configuration called tldFormatter and adds a dependency to the
latest released version of Liferay TLD Formatter. It is possible to override this setting and use a
specific version of the tool by manually adding a dependency to the tldFormatter configuration:

dependencies {

tldFormatter group: "com.liferay", name: "com.liferay.tld.formatter", version: "1.0.5"

}

166.26 TLDDoc Builder Gradle Plugin

The TLDDoc Builder Gradle plugin lets you run the Tag Library Documentation Generator tool in
order to generate documentation for the JSP Tag Library Descriptor (TLD) files in your project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.tlddoc.builder", version: "1.3.3"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

2052

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:workingDir
http://web.archive.org/web/20070624180825/https://taglibrarydoc.dev.java.net/

There are two TLDDoc Builder Gradle plugins you can apply to your project:

• Apply the TLDDoc Builder Plugin to generate tag library documentation for your project:

apply plugin: "com.liferay.tlddoc.builder"

• Apply the App TLDDoc Builder Plugin in a parent project to generate the tag library docu-
mentation as a single, combined HTML document for an application that spans different
subprojects, each one representing a different component of the same application:

apply plugin: "com.liferay.app.tlddoc.builder"

Since the plugin automatically resolves the Tag Library Documentation Generator library as a
dependency, you must configure a repository that hosts the library and its transitive dependencies.
The Liferay CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

TLDDoc Builder Plugin

The plugin adds three tasks to your project:
Name | Depends On | Type | Description copyTLDDocResources | - | Copy | Copies the tag library

documentation resources from src/main/tlddoc to the destination directory of the tlddoc task.
tlddoc | copyTLDDocResources, validateTLD | TLDDocTask | Generates the tag library documentation.
validateTLD | - | ValidateSchemaTask | Validates the TLD files in the project.

The tlddoc task is automatically configured with sensible defaults, depending on whether the
java plugin is applied:

Property Name | Default Value with the java plugin destinationDir | ${project.docsDir}/tlddoc
includes | ["⁎⁎/*.tld"] source | project.sourceSets.main.resources.srcDirs

The validateTLD task is also automatically configured with sensible defaults, depending on
whether the java plugin is applied:

Property Name | Default Value includes |
If the java plugin is applied: ["⁎⁎/*.tld"]
Otherwise: []
source |
If the java plugin is applied: project.sourceSets.main.resources.srcDirs
Otherwise: null
By default, the tlddoc task generates the documentation for all the TLD files that are found in the

resources directories of the main source set. The documentation files are saved in build/docs/tlddoc

and include the files copied from src/main/tlddoc.
The copyTLDDocResources task lets you add references to images and other resources di-

rectly in the TLD files. For example, if the project includes an image called breadcrumb.png

in the src/main/tlddoc/images directory, you can reference it in a TLD file contained in the
src/main/resources directory:

<description>Hello World <![CDATA[</description>

2053

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/current/userguide/java_plugin.html

App TLDDoc Builder Plugin

In order to use theAppTLDDocBuilder plugin, it is required to apply the com.liferay.app.tlddoc.builder
plugin in a parent project (that is, a project that is a common ancestor of all the subpro-
jects representing the various components of the app). It is also required to apply the
com.liferay.tlddoc.builder plugin to all the subprojects that contain TLD files.

The App TLDDoc Builder plugin automatically applies the base plugin. It also adds three tasks
to your project:

Name | Depends On | Type | Description appTLDDoc | copyAppTLDDocResources, the validateTLD

tasks of the subprojects | TLDDocTask | Generates tag library documentation for the app.
copyAppTLDDocResources | - | Copy | Copies the tag library documentation resources defined as
inputs for the copyTDLDocResources tasks of the subprojects, aggregating them into the destination
directory of the appTLDDoc task. jarAppTLDDoc | appTLDDoc | Jar | Assembles a JAR archive containing
the tag library documentation files for this app.

The appTLDDoc task is automatically configured with sensible defaults:
Property Name | Default Value destinationDir | ${project.buildDir}/docs/tlddoc source | The

sum of all the tlddoc.source values of the subprojects

Project Extension

The App TLDDoc Builder plugin exposes the following properties through the extension named
appTLDDocBuilder:

PropertyName |Type |DefaultValue |Description subprojects | Set<Project> | project.subprojects
| The subprojects to include in the tag library documentation of the app.

The same extension exposes the following methods:
Method | Description AppTLDDocBuilderExtension subprojects(Iterable<Project> subprojects) |

Include additional projects in the tag library documentation of the app. AppTLDDocBuilderExtension
subprojects(Project... subprojects) | Include additional projects in the tag library documentation
of the app.

Tasks

TLDDocTask

Tasks of type TLDDocTask extend JavaExec, so all its properties and methods, such as args and
maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | Tag Library Documentation Generator command line
arguments classpath | project.configurations.tlddoc main | "com.sun.tlddoc.TLDDoc" maxHeapSize |
"256m"

The TLDDocTask class is also very similar to SourceTask, whichmeans it provides a source property
and lets you specify include and exclude patterns.

Task Properties Property Name | Type | Default Value | Description destinationDir | File | null |
The directory where the tag library documentation files are saved. excludes | Set<String> | [] | The
TLD file patterns to exclude. includes | Set<String> | [] | The TLD file patterns to include. source |
FileTree | [] | The TLD files to generate documentation for, after the include and exclude patterns
have been applied. xsltDir | File | null | The directory that contains the custom XSLT stylesheets
used by the Tag Library Documentation Generator to produce the final documentation files. It sets
the -xslt argument.

2054

https://docs.gradle.org/current/userguide/standard_plugins.html#N135C1
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/TaskInputs.html#getFiles()
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.tlddoc.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/javadoc/org/gradle/api/file/FileTree.html

The properties of type File support any type that can be resolved by project.file.

TaskMethods The methods available for TLDDocTask are exactly the same as the one defined in
the SourceTask class.

ValidateSchemaTask

Tasks of type ValidateSchemaTask extend SourceTask, so all its properties and methods, such as
include and exclude, are available.

Tasks of this type invoke the schemavalidate Ant task in order to validate XML files described by
an XML schema.

Task Properties Property Name | Type | Default Value | Description dtdDisabled | boolean | false
| Whether to disable DTD support. fullChecking | boolean | true | Whether to enable full schema
checking. lenient | boolean | false | Whether to only check if the XML document is well-formed.
xmlParserClassName | String | null | The class name of the XML parser to use. xmlParserClasspath |
FileCollection | null | The classpath with the XML parser.

It is possible to use Closures and Callables as values for the String properties to defer evaluation
until task execution.

Additional Configuration

There are additional configurations that can help you use the TLDDoc Builder.

Tag Library Documentation Generator Dependency

By default, the plugin creates a configuration called tlddoc and adds a dependency to the 1.3 version
of the Tag Library Documentation Generator. It is possible to override this setting and use a specific
version of the tool by manually adding a dependency to the tlddoc configuration:

dependencies {

tlddoc group: "taglibrarydoc", name: "tlddoc", version: "1.3"

}

166.27 Whip Gradle Plugin

TheWhip Gradle plugin lets you use the LiferayWhip library to ensure that unit tests fully cover
your project’s code. See here for a usage sample.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.whip", version: "1.0.7"

}

repositories {

maven {

2055

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.tlddoc.Object)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)
http://ant.apache.org/manual/Tasks/schemavalidate.html
https://github.com/liferay/liferay-portal/tree/master/modules/test/whip
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-whip/src/gradleTest/smoke

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.whip"

Since the plugin automatically resolves the Liferay Whip library as a dependency, you have
to configure a repository that hosts the library and its transitive dependencies. The Liferay CDN
repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

By default, Whip is automatically applied to all tasks of type Test. If a task hasWhip applied
andWhip is enabled, thenWhip is configured as a Java Agent.

Project Extension

TheWhip Gradle plugin exposes the following properties through the extension named whip:
Property Name | Type | Default Value | Description version | String | latest.release | The version

of the LiferayWhip library to use.
The same extension exposes the following methods:
Method | Description void applyTo(Task task) | AppliesWhip to a task. The task instance must

implement the JavaForkOptions interface.

Task Extension

If Whip is applied, the following task properties are available through the extension named whip:
Property Name | Type | Default Value | Description dataFile | File | test-coverage/whip.dat |

enabled | boolean | true | Whether to configure Whip as a Java Agent. excludes | List<String> |
[] | The class name patterns to exclude when checking for unit test code coverage. For exam-
ple, a value could be ['.*Test', '.*Test\\$.*', '.*\\$Proxy.*', 'com/liferay/whip/.*']. includes
| List<String> | [] | The class name patterns to include when checking for unit test code coverage.
instrumentDump | boolean | false | whipJarFile | File | The first file in the whip configuration whose
name starts with com.liferay.whip-. | TheWhip JAR file.

The same extension exposes the following methods:
Method | Description WhipTaskExtension excludes(Iterable<Object> excludes) | Adds class name

patterns to exclude when checking for unit test coverage. WhipTaskExtension excludes(Object...

excludes) | Adds class name patterns to exclude when checking for unit test coverage.
WhipTaskExtension includes(Iterable<Object> includes) | Adds class name patterns to include
when checking for unit test coverage. WhipTaskExtension includes(Object... includes) | Adds class
name patterns to include when checking for unit test coverage.

Additional Configuration

There are additional configurations that can help you useWhip.

2056

https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/testing/Test.html
https://docs.gradle.org/current/javadoc/org/gradle/process/JavaForkOptions.html

Liferay Whip Dependency

By default, theWhip Gradle plugin creates a configuration called whip and adds a dependency to
the version of Liferay Whip configured in the whip.version extension property. It is possible to
override this setting and use a specific version of the library by manually adding a dependency to
the whip configuration:

dependencies {

whip group: "com.liferay", name: "com.liferay.whip", version: "1.0.1"

}

In order to leverage the sensible default of the whip.whipJarFile task property, the name of
the dependency must be com.liferay.whip. Otherwise, it will be necessary to set the value of the
whip.whipJarFile property manually.

166.28 WSDD Builder Gradle Plugin

TheWSDD Builder Gradle plugin lets you run the LiferayWSDD Builder tool to generate the Apache
AxisWeb Service Deployment Descriptor (WSDD) files from a Service Builder service.xml file.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.wsdd.builder", version: "1.0.13"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.wsdd.builder"

TheWSDD Builder plugin automatically applies the java plugin.
Since the plugin automatically resolves the LiferayWSDD Builder library as a dependency, you

have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

2057

https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-wsdd-builder
http://axis.apache.org/axis/
http://axis.apache.org/axis/
https://docs.gradle.org/current/userguide/java_plugin.html

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildWSDD | compileJava | BuildWSDDTask | Runs the Liferay

WSDD Builder.
By default, the buildWSDD task uses the ${project.projectDir}/service.xml file as input. Then,

it generates ${project.projectDir}/server-config.wsdd and the *_deploy.wsdd and *_undeploy.wsdd

files in the first resources directory of the main source set (by default: src/main/resources).
If the war plugin is applied, the task uses ${project.webAppDir}/WEB-INF/service.xml as input to

generate ${project.webAppDir}/WEB-INF/server-config.wsdd. The *_deploy.wsdd and *_undeploy.wsdd

files are still generated in the first resources directory of the main source set.
Liferay WSDD Build Service requires an additional classpath (configured with the

buildWSDD.builderClasspath property), to correctly generate the WSDD files. The buildWSDD

task uses the following default value, which creates an implicit dependency to the compileJava task:

tasks.compileJava.outputs.files + sourceSets.main.compileClasspath + sourceSets.main.runtimeClasspath

BuildWSDDTask

Tasks of type BuildWSDDTask extend JavaExec, so all its properties and methods, such as args and
maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | WSDD Builder command line arguments classpath |
project.configurations.wsddBuilder main | "com.liferay.portal.tools.wsdd.builder.WSDDBuilder"

Task Properties Property Name | Type | Default Value | Description builderClasspath | String | null
| A classpath that the LiferayWSDD Builder uses to generateWSDD files. It sets the wsdd.class.path

argument. inputFile | File | null | A service.xml from which to generate the WSDD files. It sets
the wsdd.input.file argument. outputDir | File | null | A directory where the *_deploy.wsdd and
*_undeploy.wsdd files are generated. It sets the wsdd.output.path argument. serverConfigFile |
File | ${project.projectDir}/server-config.wsdd | A server-config.wsdd file to generate. It sets the
wsdd.server.config.file argument. serviceNamespace | String | "Plugin" | A namespace for theWSDD
Service. It sets the wsdd.service.namespace argument.

The properties of type File support any type that can be resolved by project.file. Moreover, it
is possible to use Closures and Callables as values for the String properties, to defer evaluation
until task execution.

Additional Configuration

There are additional configurations that can help you use theWSDD Builder.

Liferay WSDD Builder Dependency

By default, the plugin creates a configuration called wsddBuilder and adds a dependency to the
latest released version of the LiferayWSDD Builder. It is possible to override this setting and use a
specific version of the tool by manually adding a dependency to the wsddBuilder configuration:

dependencies {

wsddBuilder group: "com.liferay", name: "com.liferay.portal.tools.wsdd.builder", version: "1.0.10"

}

2058

https://docs.gradle.org/current/userguide/java_plugin.html#sec:compile
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceSet.html#org.gradle.api.tasks.SourceSet:resources
https://docs.gradle.org/current/userguide/java_plugin.html#N1503E
https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

166.29 WSDL Builder Gradle Plugin

The WSDL Builder Gradle plugin lets you generate Apache Axis client stubs from Web Service
Description (WSDL) files.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.wsdl.builder", version: "2.0.3"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.wsdl.builder"

TheWSDL Builder plugin automatically applies the java plugin.
Since the plugin automatically resolves the Apache Axis library as a dependency, you have

to configure a repository that hosts the library and its transitive dependencies. The Liferay CDN
repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one main task to your project:
Name | Depends On | Type | Description buildWSDL | - | BuildWSDLTask | Generates WSDL client

stubs.
By default, the buildWSDL task looks forWSDL files in the ${project.projectDir}/wsdl directory.

If the war plugin is applied, it looks in the ${project.webAppDir}/WEB-INF/wsdl directory.
For each WSDL file that can be found, the task generates client stubs via direct invocation

of the WSDL2Java tool, saving them in the first java directory of the main source set (by default:
src/main/java).

If configured to do so, buildWSDL can instead save the client stub Java files in a temporary
directory, compile them, and package them in JAR files. The JAR files are named after theWSDL
file and saved in ${project.projectDir}/lib, by default, or in ${project.webAppDir}/WEB-INF/lib, if
the war plugin is applied.

BuildWSDLTask

Tasks of type FormatWSDLTask extend SourceTask, so all its properties and methods, such as include
and exclude, are available.

2059

http://axis.apache.org/axis/
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/war_plugin.html
http://axis.apache.org/axis/java/user-guide.html#Client-side_bindings
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceSet.html#org.gradle.api.tasks.SourceSet:java
https://docs.gradle.org/current/userguide/java_plugin.html#N1503E
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)

Task Properties Property Name | Type | Default Value | Description buildLibs | boolean | true |
Whether to package the client stub classes of eachWSDL file in JAR files, saved to the directory
the destinationDir property references. If false, the task generates the client stub Java files to the
destinationDir directory. destinationDir | File | null | A directory where the client stub Java files (if
buildLibs is false) or the client stub JARfiles (if buildLibs is true) are saved. generateOptions.mapping
| Map | [:] | Namespace-to-package mappings (sets the --NStoPkg argument in the WSDL2Java in-
vocation). It is possible to use a Closure or a Callable, to defer evaluation until task execution..
generateOptions.noWrapped | boolean | false |Whether to turn off support for “wrapped” document/lit-
eral (sets the --noWrapped argument in the WSDL2Java invocation). generateOptions.serverSide |
boolean | false | Whether to emit server-side bindings for the web service (sets the --server-side

argument in theWSDL2Java invocation). generateOptions.verbose | boolean | false |Whether to print
informational messages (sets the --verbose argument in the WSDL2Java invocation). includeSource
| boolean | true | Whether to package the client stub Java files in the JAR file’s OSGI-OPT/src directory.
If buildLibs is false, this property has no effect. includeWSDLs | boolean | true | Whether to configure
the processResources task to include theWSDL files in the project JAR’s wsdl directory.

The properties of type File support any type that can be resolved by project.file.

TaskMethods Method Signature | Description generateOptions.mapping(Object namespace, Object

packageName) | Adds a namespace-to-package mapping. generateOptions.mappings(Map mappings) |
Adds multiple namespace-to-package mappings.

Helper Tasks At the end of the project evaluation, a series of helper tasks are created for each
WSDL file returned by the source property of the BuildWSDLTask tasks. The names of the helper tasks
start with theWSDL file name, without any extension.

• ${WSDL file title}Generate of type JavaExec: invokes WSDL2Java to generate the client stubs
for theWSDL file.

If buildWSDLTask.buildLibs is true, the following helper tasks are also created:

• ${WSDL file title}Compile of type JavaCompile: compiles the client stub Java files for theWSDL
file.

• ${WSDL file title}Jar of type Jar: packages in a JAR file called ${WSDL file title}-ws.jar, the
client stub for theWSDL file.

Additional Configuration

There are additional configurations that can help you useWSDL Builder.

Apache Axis Dependency

By default, the plugin creates a configuration called wsdlBuilder and adds the following dependen-
cies:

• axis:axis-wsdl4j:1.5.1

• com.liferay:org.apache.axis:1.4.LIFERAY-PATCHED-1

• commons-discovery:commons-discovery:0.2

• commons-logging:commons-logging:1.0.4

• javax.activation:activation:1.1

2060

https://docs.gradle.org/current/userguide/java_plugin.html#sec:resources
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/current/userguide/build_lifecycle.html#N11BAE
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:source
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://axis.apache.org/axis/java/reference.html#WSDL2Java_Reference
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html

• javax.mail:mail:1.4

• org.apache.axis:axis-jaxrpc:1.4

• org.apache.axis:axis-saaj:1.4

It is possible to override this setting and use a specific version of Apache Axis, by manually
populating the wsdlBuilder configuration with the desired dependencies.

166.30 XML Formatter Gradle Plugin

The XML Formatter Gradle plugin lets you format a project’s XML files using the Liferay XML
Formatter tool.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.xml.formatter", version: "1.0.11"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.xml.formatter"

Since the plugin automatically resolves the Liferay XML Formatter library as a dependency, you
have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description formatXML | - | FormatXMLTask | Runs the Liferay XML

Formatter to format the project files.
If the java plugin is applied, the task formats XML files contained in the resources directories

of the main source set (by default: src/main/resources/**/*.xml).

FormatXMLTask

Tasks of type FormatXMLTask extend SourceTask, so all its properties and methods, such as include
and exclude, are available.

2061

https://github.com/liferay/liferay-portal/tree/master/modules/util/xml-formatter
https://github.com/liferay/liferay-portal/tree/master/modules/util/xml-formatter
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceSet.html#org.gradle.api.tasks.SourceSet:resources
https://docs.gradle.org/current/userguide/java_plugin.html#N1503E
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)

Task Properties Property Name | Type | Default Value | Description classpath | FileCollection |
project.configurations.xmlFormatter | The classpath for executing the main class. mainClassName |
String | "com.liferay.xml.formatter.XMLFormatter" | The fully qualified name of the XML Formatter
Main class. stripComments | boolean | false | Whether to remove all the comments from the XML
files. It sets the xml.formatter.strip.comments argument.

Additional Configuration

There are additional configurations that can help you use the XML Formatter.

Liferay XML Formatter Dependency

By default, the plugin creates a configuration called xmlFormatter and adds a dependency to the
latest released version of the Liferay XML Formatter. It is possible to override this setting and use
a specific version of the tool by manually adding a dependency to the xmlFormatter configuration:

dependencies {

xmlFormatter group: "com.liferay", name: "com.liferay.xml.formatter", version: "1.0.5"

}

166.31 XSD Builder Gradle Plugin

The XSD Builder Gradle plugin lets you generate Apache XMLBeans bindings from XML Schema
(XSD) files.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.xsd.builder", version: "1.0.7"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.xsd.builder"

The XSD Builder plugin automatically applies the java plugin.
Since the plugin automatically resolves the Liferay Service Builder library as a dependency, you

have to configure a repository that hosts the library and its transitive dependencies. The Liferay
CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

2062

https://docs.gradle.org/current/javadoc/org/gradle/api/file/FileCollection.html
https://xmlbeans.apache.org/
https://docs.gradle.org/current/userguide/java_plugin.html

Tasks

The plugin adds three tasks to your project:
Name | Depends On | Type | Description buildXSD | buildXSDCompile | BuildXSDTask | Generates

XMLBeans bindings and compiles them in a JAR file. buildXSDGenerate | cleanBuildXSDGenerate
| JavaExec | Invokes the XMLBeans Schema Compiler to generate Java types from XML Schema.
buildXSDCompile | buildXSDGenerate, cleanBuildXSDCompile | JavaCompile | Compiles the generated Java
types.

By default, the buildXSD task looks for XSD files in the ${project.projectDir}/xsd directory, and
saves the generated JAR file as ${project.projectDir}/lib/${project.archivesBaseName}-xbean.jar.

If the warplugin is applied, the task looks for XSDfiles in the ${project.webAppDir}/WEB-INF/xsddi-
rectory, and saves the generated JARfile as ${project.webAppDir}/WEB-INF/lib/${project.archivesBaseName}-
xbean.jar.

BuildXSDTask

Tasks of type BuildXSDTask extend Zip. They also have the following properties set by default:
Property Name | Default Value appendix | "xbean" extension | "jar" version | null
For each task of type BuildXSDTask, the following helper tasks are created:

• ${buildXSDTask.name}Compile

• ${buildXSDTask.name}Generate

Task Properties Property Name | Type | Default Value | Description inputDir | File | null | A
directory containing XSD files from which to generate Apache XMLBeans bindings.

The properties of type File support any type that can be resolved by project.file.

Additional Configuration

There are additional configurations that can help you use the XSD Builder.

Apache XMLBeans Dependency

By default, the XSD Builder Gradle plugin creates a configuration called xsdBuilder and adds a
dependency to the 2.5.0 version of Apache XMLBeans. It is possible to override this setting and use
a specific version of the library by manually adding a dependency to the xsdBuilder configuration:

dependencies {

xsdBuilder group: "org.apache.xmlbeans", name: "xmlbeans", version: "2.6.0"

}

2063

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://xmlbeans.apache.org/docs/2.6.0/guide/tools.html#scomp
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:appendix
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:extension
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:version
https://xmlbeans.apache.org/
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

CHAPTER 167

MAVEN

Liferay provides plugins that you can apply to your Maven project. This reference documentation
describes

• Configuring the plugin in your pom.xml file.
• The plugin’s available goals you can leverage.
• The plugin’s configuration properties.

If you’re looking for additional instructions on using Maven with your modules, see the Maven
tutorials.

167.1 Bundle Support Plugin

TheBundle Support plugin lets youuse LiferayWorkspace as aMavenproject. Formore information
on how a MavenWorkspace works and the features it provides, see the MavenWorkspace tutorial.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.bundle.support</artifactId>

<version>3.2.5</version>

<executions>

<execution>

<id>clean</id>

<goals>

<goal>clean</goal>

</goals>

<phase>clean</phase>

<configuration>

</configuration>

</execution>

<execution>

<id>deploy</id>

2065

<goals>

<goal>deploy</goal>

</goals>

<phase>pre-integration-test</phase>

<configuration>

</configuration>

</execution>

</executions>

</plugin>

...

</plugins>

</build>

Goals

The plugin adds five Maven goals to your project:
Name | Description bundle-support:clean | Deletes a file from the deploy directory of a Liferay

bundle. bundle-support:create-token | Creates a token used to validate your user credentials when
downloading a DXP bundle. bundle-support:deploy | Deploys the Maven project to the specified
Liferay DXP bundle. bundle-support:dist | Creates a distributable Liferay DXP bundle archive file
(e.g., ZIP). bundle-support:init | Downloads and installs the specified Liferay DXP version.

clean Goal's Available Parameters

You can set the following parameters in the clean execution’s <configuration> section of the POM:
Parameter Name | Type | Default Value | Description liferayHome | String | bundles | The directory

where your Liferay DXP instance resides. This can be specified from the command line as -

DliferayHome=. fileName | String | ${project.artifactId}.${project.packaging} | The name of the file
to delete from your bundle.

create-token Goal's Available Parameters

You can change the default parameter values of the create-token goal by creating an <execution>

section containing <configuration> tags. For example,

<execution>

<id>create-token</id>

<goals>

<goal>create-token</goal>

</goals>

<configuration>

</configuration>

</execution>

You can set the following parameters in the create-token execution’s <configuration> section of
the POM:

Parameter Name | Type | Default Value | Description emailAddress | String | null | The email
address to use when downloading a DXP bundle. This email address must match the one reg-
istered for your DXP subscription. force | boolean | false | Whether to override the existing to-
ken with a newly generated one. password | String | null | The password to use when download-
ing a DXP bundle. This password must match the one registered for your DXP subscription.
passwordFile | File | null | The file to hold your password used when downloading a DXP bundle.
tokenFile | File | ${user.home}/.liferay/token | The file to hold the Liferay bundle authentication to-
ken. tokenUrl | URL | https://releases-cdn.liferay.com/portal/7.1.0-b3/liferay-ce-portal-tomcat-
7.1-b3-20180611140920623.zip | The URL pointing to the bundle Zip to download.

2066

After executing the create-token goal, you’re prompted for your email address and password,
both of which are used to generate your token. It’s recommended to configure your email and
password from the command line rather than specifying them in your POM file.

deploy Goal's Available Parameters

You can set the following parameters in the deploy execution’s <configuration> section of the POM:
Parameter Name | Type | Default Value | Description liferayHome | String | bundles | The directory

where your Liferay DXP instance resides. This can be specified from the command line as -

DliferayHome=. deployFile | File | ${project.build.directory}/${project.build.finalName}.${project.packaging}
| The packaged file (e.g., JAR) to deploy to the Liferay bundle. outputFileName | String |
${project.artifactId}.${project.packaging} | The name of the output file.

dist Goal's Available Parameters

You can change the default parameter values of the dist goal by creating an <execution> section
containing <configuration> tags. For example,

<execution>

<id>dist</id>

<goals>

<goal>dist</goal>

</goals>

<configuration>

</configuration>

</execution>

You can set the following parameters in the dist execution’s <configuration> section of the POM:
Parameter Name | Type | Default Value | Description liferayHome | String | bundles | The directory

where your Liferay DXP instance resides. This can be specified from the command line as -

DliferayHome=. archiveFileName | String | null | The name for the generated archive file. cacheDir

| File | ${user.home}/.liferay/bundles | The directory where the downloaded bundle Zip files are
stored. configs | String | configs | Thedirectory that contains the configurationfiles. deployFile | File
|${project.build.directory}/${project.build.finalName}.${project.packaging} | The packaged file
(e.g., JAR) to deploy to the Liferay bundle. environment | String | ${liferay.workspace.environment}
| The environment of your Liferay home deployment. (e.g., common, dev, local, prod, and uat).
format | String | zip | The format type to use when packaging the Liferay bundle as an archive.
includeFolder | boolean | true | Whether to add a parent folder to the archive. outputFileName | String
| ${project.artifactId}.${project.packaging} | The path to the archive file. password | String | null
| The password if your Liferay bundle’s URL requires authentication. stripComponents | int | 1 |
The number of directories to strip when expanding your bundle. token | boolean | false | Whether
to use a token to download a Liferay DXP bundle. This should be set to true when downloading
a DXP bundle. tokenFile | File | ${user.home}/.liferay/token | The file to hold the Liferay bundle
authentication token. url | URL | ${liferay.workspace.bundle.url} | The URL of the Liferay bundle to
expand. userName | String | null | The user name if your Liferay bundle’s URL requires authentication.

init Goal's Available Parameters

You can change the default parameter values of the init goal by creating an <execution> section
containing <configuration> tags. For example,

2067

<execution>

<id>init</id>

<goals>

<goal>init</goal>

</goals>

<configuration>

</configuration>

</execution>

You can set the following parameters in the init execution’s <configuration> section of the POM:
Parameter Name | Type | Default Value | Description liferayHome | String | bundles | The directory

where your Liferay DXP instance resides. This can be specified from the command line as -

DliferayHome=. cacheDir | File | ${user.home}/.liferay/bundles | The directorywhere the downloaded
bundle Zip files are stored. configs | String | configs | The directory that contains the configuration
files. environment | String | ${liferay.workspace.environment} | The environment with the settings
appropriate for current development (e.g., common, dev, local, prod, and uat). password | String | null
| The password if your Liferay bundle’s URL requires authentication. stripComponents | int | 1 |
The number of directories to strip when expanding your bundle. token | boolean | false | Whether
to use a token to download a Liferay DXP bundle. This should be set to true when downloading
a DXP bundle. tokenFile | File | ${user.home}/.liferay/token | The file to hold the Liferay bundle
authentication token. url | URL | ${liferay.workspace.bundle.url} | The URL of the Liferay bundle to
expand. userName | String | null | The user name if your Liferay bundle’s URL requires authentication.

167.2 CSS Builder Plugin

The CSS Builder plugin lets you compile Sass files in your project.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.css.builder</artifactId>

<version>3.0.0</version>

<executions>

<execution>

<id>default-build</id>

<phase>compile</phase>

<goals>

<goal>build</goal>

</goals>

</execution>

</executions>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the CSS Builder configuration here.

2068

http://sass-lang.com/
https://github.com/liferay/liferay-portal/blob/master/modules/util/css-builder/samples/pom.xml

Goals

The plugin adds one Maven goal to your project:
Name | Description css-builder:build | Compiles the Sass files in the project.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description appendCssImportTimestamps | boolean | true |

Whether to append the current timestamp to the URLs in the @import CSS at-rules. baseDir | File
| "src/META-INF/resources" | The base directory that contains the SCSS files to compile. dirNames |
List<String> | ["/"] | The name of the directories, relative to baseDir, which contain the SCSS files
to compile. generateSourceMap | boolean | false | Whether to generate source maps for easier debug-
ging. importDir | File | null | The META-INF/resources directory of the Liferay Frontend Common CSS
artifact. This is required in order to make Bourbon and other CSS libraries available to the com-
pilation. outputDirName | String | ".sass-cache/" | The name of the sub-directories where the SCSS
files are compiled to. For each directory that contains SCSS files, a sub-directory with this name
is created. precision | int | 9 | The numeric precision of numbers in Sass. rtlExcludedPathRegexps
| List<String> | | The SCSS file patterns to exclude when converting for right-to-left (RTL) sup-
port. sassCompilerClassName | String | "jni" | The type of Sass compiler to use. Supported val-
ues are "jni" and "ruby". The Ruby Sass compiler requires com.liferay.sass.compiler.ruby.jar,
com.liferay.ruby.gems.jar, and jruby-complete.jar to be added to the classpath.

You can also manage the com.liferay.frontend.css.common default theme dependency provided
by the CSS Builder in your pom.xml. This can be modified by adding it as a project dependency:

<project>

...

<dependencies>

<dependency>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.css.common</artifactId>

<version>3.0.1</version>

<scope>provided</scope>

</dependency>

...

</dependencies>

</project>

There are additional Liferay theme-related dependencies you can manage this way that are
provided by the Theme Builder. See this section for more information.

167.3 DB Support Plugin

The DB Support plugin lets you run the Liferay DB Support tool to execute certain actions on a
local Liferay DXP database. The following actions are available:

• Cleans the Liferay database from the Service Builder tables and rows of a module.

Usage

To use the plugin, include it in your project’s pom.xml file:

2069

https://developers.google.com/web/tools/chrome-devtools/debug/readability/source-maps
https://github.com/liferay/liferay-portal/tree/master/modules/apps/frontend-css/frontend-css-common
http://bourbon.io

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.db.support</artifactId>

<version>1.0.6</version>

<configuration>

</configuration>

<dependencies>

<dependency>

<groupId>org.hsqldb</groupId>

<artifactId>hsqldb</artifactId>

<version>2.4.0</version>

</dependency>

</dependencies>

</plugin>

...

</plugins>

</build>

Also notice the configured plugin dependency. You must configure the JDBC driver used by
your Liferay DXP bundle so the DB Support plugin can properly manage your database. Replace
the HSQLDB driver listed above with your custom database’s JDBC driver.

Goals

The plugin adds one Maven goal to your project:
Name | Description db-support:clean-service-builder | Cleans the Liferay DXP database from

the Service Builder tables and rows of a module.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description password | String | jdbc.default.password

| The user password for connecting to the Liferay DXP database. propertiesFile | File | null |
The portal-ext.properties file which contains the JDBC settings for connecting to the Liferay DXP
database. serviceXmlFile | File | null | The service.xmlfile of themodule. servletContextName | String
| null | The servlet context name (usually the value of the Bundle-Symbolic-Namemanifest header)
of the module. url | String | jdbc.default.url | The JDBC URL for connecting to the Liferay DXP
database. userName | String | jdbc.default.username | The user name for connecting to the Liferay
DXP database.

167.4 Deployment Helper Plugin

The Deployment Helper plugin lets you create a cluster deployableWAR from your OSGi artifacts.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

2070

<groupId>com.liferay</groupId>

<artifactId>com.liferay.deployment.helper</artifactId>

<version>1.0.4</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the Deployment Helper configuration here.

Goals

The plugin adds one Maven goal to your project:
Name | Description deployment-helper:build | Builds aWAR which contains one or more files

that are copied once theWAR is deployed.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description deploymentFileNames | String | null | The files

or directories to include in theWAR and copy once theWAR is deployed. If a directory is added to
this collection, all the JAR files contained in the directory are included in theWAR. deploymentPath |
String | null | The directory to which the included files are copied. outputFileName | String | null |
TheWAR file to build.

167.5 Javadoc Formatter Plugin

The Javadoc Formatter plugin lets you format project Javadoc comments. The tool lets you generate:

• Default @author tags to all classes.
• Comment stubs to classes, fields, and methods.
• Missing @Override annotations.
• An XML representation of the Javadoc comments, which can be used by tools in order to
index the Javadocs of the project.

Usage

To use the plugin, include it in your project’s root pom.xml file:
<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.javadoc.formatter</artifactId>

<version>1.0.32</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the Javadoc Formatter configuration here.

2071

https://github.com/liferay/liferay-portal/blob/master/modules/util/deployment-helper/samples/pom.xml
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@author
https://docs.oracle.com/javase/8/docs/api/java/lang/Override.html
https://github.com/liferay/liferay-portal/blob/master/modules/util/javadoc-formatter/samples/pom.xml

Goals

The plugin adds one Maven goal to your project:
Name | Description javadoc-formatter:format | Runs the Liferay Javadoc Formatter to format

files.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description author | String | "Brian Wing Shun Chan"

| The value of the @author tag to add at class level if missing. generateXml | boolean | false |
Whether to generate a XML representation of the Javadoc comments. The XML files are
generated in the src/main/resources directory only if the Java files are contained in src/main/java.
initializeMissingJavadocs | boolean | false | Whether to add comment stubs at the class, field, and
method levels. If false, only the class-level @author is added. inputDirName | String | "./" | The root
directory to begin searching for Java files to format. limits | String[] | [] | The Java file name
patterns, relative to the working directory, to include when formatting Javadoc comments. The
patterns must be specified without the .java file type suffix. If empty, all Java files are formatted.
outputFilePrefix | String | "javadocs" | The file name prefix of the XML representation of the
Javadoc comments. If generateXML is false, this property is not used. updateJavadocs | boolean |
false | Whether to fix existing comment blocks by adding missing tags.

167.6 Lang Builder Plugin

The Lang Builder plugin lets you sort and translate the language keys in your project.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.lang.builder</artifactId>

<version>1.0.31</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the Lang Builder configuration here.

Goals

The plugin adds one Maven goal to your project:
Name | Description lang-builder:build | Runs Liferay Lang Builder to translate language prop-

erty files.

2072

https://github.com/liferay/liferay-portal/blob/master/modules/util/lang-builder/samples/pom.xml

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description excludedLanguageIds | String[] | {"da",

"de", "fi", "ja", "nl", "pt_PT", "sv"} | The language IDs to exclude in the automatic transla-
tion. langDirName | String | "src/content" | The directory where the language properties files are
saved. langFileName | String | "Language" | The file name prefix of the language properties files
(e.g., Language_it.properties). plugin | boolean | true | Whether to check for duplicate language
keys between the project and the portal. portalLanguagePropertiesFileName | String | null | The
Language.properties file of the portal. translate | boolean | true | Whether to translate the language
keys and generate a language properties file for each locale that’s supported by Liferay DXP.
translateSubscriptionKey | String | null | The subscription key for Microsoft Translation integration.
Subscription to the Translator Text Translation API on Microsoft Cognitive Services is required.
Basic subscriptions, up to 2 million characters a month, are free.

167.7 REST Builder Plugin

TheRESTBuilder plugin lets you generate a REST layer defined in the RESTBuilder rest-config.yaml
and rest-openapi.yaml files.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.rest.builder</artifactId>

<version>1.0.22</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the REST Builder configuration here.

Goals

The plugin adds one Maven goal to your project:
Name | Description rest-builder:build | Runs the Liferay REST Builder.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description copyrightFile | File | null | The file that

contains the copyright header. restConfigDir | File | ${project.projectDir} | The directory that
contains the rest-config.yaml and rest-openapi.yaml files.

2073

https://github.com/liferay/liferay-portal/blob/master/modules/util/portal-tools-rest-builder/samples/pom.xml

167.8 Service Builder Plugin

The Service Builder plugin lets you generate a service layer defined in a Service Builder service.xml
file. Visit the Using Service Builder in a Maven Project tutorial to learn more about applying Service
Builder to your Maven project.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.service.builder</artifactId>

<version>1.0.292</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the Service Builder configuration here.

Goals

The plugin adds one Maven goal to your project:
Name | Description service-builder:build | Runs the Liferay Service Builder.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description apiDirName | String | "../portal-kernel/src"

| A directory where the service API Java source files are generated. autoImportDefaultReferences |
boolean | true | Whether to automatically add default references, like com.liferay.portal.ClassName,
com.liferay.portal.Resource and com.liferay.portal.User, to the services. autoNamespaceTables |
boolean | null | Whether to prefix table names by the namespace specified in the service.xml

file. beanLocatorUtil | String | "com.liferay.portal.kernel.bean.PortalBeanLocatorUtil" | The fully
qualified class name of a bean locator class to use in the generated service classes. buildNumber
| long | 1 | A specific value to assign the build.number property in the service.properties file.
buildNumberIncrement | boolean | true | Whether to automatically increment the build.number

property in the service.properties file by one at every service generation. databaseNameMaxLength
| int | 30 | The upper bound for database table and column name lengths to ensure it works
on all databases. hbmFileName | String | "src/META-INF/portal-hbm.xml" | A Hibernate Mapping
file to generate. implDirName | String | "src" | A directory where the service Java source
files are generated. inputFileName | String | "service.xml" | The project’s service.xml file.
modelHintsConfigs | String | "classpath*:META-INF/portal-model-hints.xml, META-INF/portal-

model-hints.xml, classpath*:META-INF/ext-model-hints.xml, classpath*:META-INF/portlet-model-

hints.xml" | Paths to the model hints files for Liferay Service Builder to use in generating
the service layer. modelHintsFileName | String | "src/META-INF/portal-model-hints.xml" | A model

2074

https://github.com/liferay/liferay-portal/blob/master/modules/util/portal-tools-service-builder/samples/pom.xml

hints file for the project. osgiModule | boolean | null | Whether to generate the service layer
for OSGi modules. pluginName | String | null | If specified, a plugin can enable additional
generation features, such as Clp class generation, for non-OSGi modules. propsUtil | String |
"com.liferay.portal.util.PropsUtil" | The fully qualified class name of the service properties
util class to generate. readOnlyPrefixes | String | "fetch, get, has, is, load, reindex, search" |
Prefixes of methods to consider read-only. resourceActionsConfigs | String | "META-INF/resource-
actions/default.xml, resource-actions/default.xml" | Paths to the resource actions files for Liferay
Service Builder to use in generating the service layer. resourcesDirName | String | "src" | A directory
where the service non-Java files are generated. springFileName | String | "src/META-INF/portal-
spring.xml" | A service Spring file to generate. springNamespaces | String | "beans" | Namespaces of
Spring XML Schemas to add to the service Spring file. sqlDirName | String | "../sql" | A directory
where the SQL files are generated. sqlFileName | String | "portal-tables.sql" | A name (relative to
sqlDir) for the file in which the SQL table creation instructions are generated. sqlIndexesFileName
| String | "indexes.sql" | A name (relative to sqlDir) for the file in which the SQL index creation
instructions are generated. sqlSequencesFileName | String | "sequences.sql" | A name (relative to
sqlDir) for the file in which the SQL sequence creation instructions are generated. targetEntityName
| String | null | If specified, it’s the name of the entity for which Liferay Service Builder should
generate the service. testDirName | String | "test/integration" | If specified, it’s a directory where
integration test Java source files are generated.

167.9 Source Formatter Plugin

The Source Formatter plugin formats project files according to Liferay’s source formatting stan-
dards. For more documentation on Source Formatter specific functionality, visit the tool’s docu-
mentation folder.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.source.formatter</artifactId>

<version>1.0.885</version>

<executions>

<execution>

<phase>process-sources</phase>

<goals>

<goal>format</goal>

</goals>

</execution>

</executions>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the Source Formatter configuration here.

2075

https://github.com/liferay/liferay-portal/tree/master/modules/util/source-formatter/documentation
https://github.com/liferay/liferay-portal/tree/master/modules/util/source-formatter/documentation
https://github.com/liferay/liferay-portal/blob/master/modules/util/source-formatter/samples/pom.xml

Goals

The plugin adds one Maven goal to your project:
Name | Description source-formatter:format | Runs the Liferay Source Formatter to format

source formatting errors.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description autoFix | boolean | true | Whether to auto-

matically fix source formatting errors. baseDir | String | "./" | The Source Formatter base directory.
(Read-only) fileNames | String[] | null | The file names to format, relative to the project directory. If
null, all files contained in baseDirwill be formatted. formatCurrentBranch | boolean | false | Whether
to format only the files contained in baseDir that are added or modified in the current Git branch.
formatLatestAuthor | boolean | false | Whether to format only the files contained in baseDir that are
added or modified in the latest Git commits of the same author. formatLocalChanges | boolean | false
| Whether to format only the unstaged files contained in baseDir. gitWorkingBranchName | String
| "master" | The Git working branch name. includeSubrepositories | boolean | false | Whether to
format files that are in read-only subrepositories. maxLineLength | int | 80 | Themaximumnumber of
characters allowed in Java files. printErrors | boolean | true | Whether to print formatting errors on
the Standard Output stream. processorThreadCount | int | 5 | The number of threads used by Source
Formatter. showDocumentation | boolean | false | Whether to show the documentation for the source
formatting issues, if present. throwException | boolean | false |Whether to fail the build if formatting
errors are found.

167.10 Theme Builder Plugin

The Theme Builder plugin lets you build Liferay theme files in your project. Visit the Building
Themes in a Maven Project tutorial to learn more about applying Theme Builder to your Maven
project.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.theme.builder</artifactId>

<version>1.1.7</version>

<executions>

<execution>

<phase>generate-resources</phase>

<goals>

<goal>build</goal>

</goals>

<configuration>

</configuration>

</execution>

</executions>

</plugin>

...

2076

</plugins>

</build>

You can view an example POM containing the Theme Builder configuration here.

Goals

The plugin adds one Maven goal to your project:
Name | Description theme-builder:build | Builds the theme files.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description diffsDir | File | ${maven.war.src} | The direc-

tory that contains the files to copy over the parent theme. name | String | ${project.artifactId} | The
name of the new theme. outputDir | File | ${project.build.directory}/${project.build.finalName} |
The directory where to build the theme. parentDir | File | null | The directory of the parent theme.
parentName | String | null | The name of the parent theme. templateExtension | String | "ftl" | The
extension of the template files, usually "ftl" or "vm". unstyledDir | File | null | The directory of
Liferay Frontend Theme Unstyled.

You canalsomanage the com.liferay.frontend.theme.styled and com.liferay.frontend.theme.unstyled

default theme dependencies provided by the Theme Builder in your pom.xml. They can be modified
by adding them as project dependencies:

<project>

...

<dependencies>

...

<dependency>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.theme.styled</artifactId>

<version>3.0.4</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.theme.unstyled</artifactId>

<version>3.0.4</version>

<scope>provided</scope>

</dependency>

</dependencies>

</project>

There is an additional Liferay theme-related dependency you can manage this way that’s
provided by the CSS Builder. See this section for more information.

167.11 TLD Formatter Plugin

The TLD Formatter plugin lets you format a project’s TLD files.

2077

https://github.com/liferay/liferay-portal/blob/master/modules/util/portal-tools-theme-builder/samples/pom.xml
https://github.com/liferay/liferay-portal/tree/master/modules/apps/frontend-theme/frontend-theme-unstyled

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.tld.formatter</artifactId>

<version>1.0.5</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the TLD Formatter configuration here.

Goals

The plugin adds one Maven goal to your project:
Name | Description tld-formatter:format | Runs the Liferay TLD Formatter to format files.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
ParameterName |Type |DefaultValue |Description baseDirName | String | "./" | Thebase directory

to begin searching for TLD files to format. plugin | boolean | true | Whether to format all the TLD
files contained in the working directory. If false, all liferay-portlet-ext.tld files are ignored.

167.12 WSDD Builder Plugin

TheWSDD Builder plugin lets you generate the Apache AxisWeb Service Deployment Descriptor
(WSDD) files from a Service Builder service.xml file.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.wsdd.builder</artifactId>

<version>1.0.10</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing theWSDD Builder configuration here.

2078

https://github.com/liferay/liferay-portal/blob/master/modules/util/tld-formatter/samples/pom.xml
http://axis.apache.org/axis/
https://github.com/liferay/liferay-portal/blob/master/modules/util/portal-tools-wsdd-builder/samples/pom.xml

Goals

The plugin adds one Maven goal to your project:
Name | Description wsdd-builder:build | Runs the LiferayWSDD Builder to generate theWSDD

files.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description classPath | String | null | The classpath

that the LiferayWSDD Builder uses to generateWSDD files. inputFileName | String | "service.xml"
| The file from which to generate the WSDD files. outputDirName | String | "src" | The directory
where the *_deploy.wsdd and *_undeploy.wsdd files are generated. serverConfigFileName | String |
"server-config.wsdd" | The file to generate. serviceNamespace | String | "Plugin" | The namespace for
theWSDD Service.

167.13 XML Formatter Plugin

The XML Formatter plugin lets you format a project’s XML files.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.xml.formatter</artifactId>

<version>1.0.5</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the XML Formatter configuration here.

Goals

The plugin adds one Maven goal to your project:
Name | Description xml-formatter:format | Runs the Liferay XML Formatter to format the project

files.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description fileName | String | null | The XML file to

format. This plugin only lets you format one XML file at a time. stripComments | boolean | false |
Whether to remove all the comments from the XML file.

2079

https://github.com/liferay/liferay-portal/blob/master/modules/util/xml-formatter/samples/pom.xml

167.14 Content Targeting Report Template

In this article, you’ll learn how to create a Liferay Content Targeting Report application as a Liferay
module. To create a Content Targeting Report via the command line using Blade CLI or Maven, use
one of the commands with the following parameters:

blade create -t content-targeting-report -p [package name] -c [class name] [project name]

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.content.targeting.report \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.1

You can also insert the -b maven parameter in the Blade command to generate a Maven project
using Blade CLI.

The template for this kind of project is content-targeting-report. To create a report project
called hits-by-countrywith a package prefix of com.liferay and a class name of HitsByCountryReport,
use this command:

blade create -t content-targeting-report -p com.liferay -c HitsByCountry hits-by-country

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.content.targeting.report \

-DgroupId=com.liferay \

-DartifactId=hits-by-country \

-Dpackage=com.liferay \

-Dversion=1.0 \

-DclassName=HitsByCountry \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.1

The command above creates a Content Targeting Rule project named hits-by-country in the cur-
rent folder. In the class, you’re creating a service of type com.liferay.content.targeting.api.model.Report
and extending the com.liferay.content.targeting.api.model.BaseJSPReport class. Here, service
means an OSGi service, not a Liferay API. Another way to say service type is to say component type.

After running the command above, your project’s folder structure looks like this:

• hits-by-country

– gradle

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

2080

* main

· java

· com/liferay/content/targeting/report

· HitsByCountryReport.java

· resources

· content

· Language.properties

· META-INF

· resources

· edit.jsp

· view.jsp

– bnd.bnd

– build.gradle

– gradlew

The Maven-generated project includes a pom.xml file and does not include the Gradle-specific
files, but otherwise, appears exactly the same.

The generated module is a working application and is deployable to a Liferay DXP instance. To
build upon the generated app, modify the project by adding logic and additional files to the folders
outlined above.

167.15 Content Targeting Rule Template

In this article, you’ll learn how to create a Liferay Content Targeting Rule application as a Liferay
module. To create a Content Targeting Rule via the command line using Blade CLI or Maven, use
one of the commands with the following parameters:

blade create -t content-targeting-rule -p [package name] -c [class name] [project name]

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.content.targeting.rule \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.1

You can also insert the -b maven parameter in the Blade command to generate a Maven project
using Blade CLI.

The template for this kind of project is content-targeting-rule. To create a rule project called
weather with a package prefix of com.liferay and a class name of Weather, use this command:

blade create -t content-targeting-rule -p com.liferay -c Weather weather

or

2081

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.content.targeting.rule \

-DgroupId=com.liferay \

-DartifactId=weather \

-Dpackage=com.liferay \

-Dversion=1.0 \

-DclassName=Weather \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.1

The command above creates a Content Targeting Rule project named weather in the current
folder. In the class, you’re creating a service of type com.liferay.content.targeting.api.model.Rule

and extending the com.liferay.content.targeting.api.model.BaseJSPRule class. Here, service means
an OSGi service, not a Liferay API. Another way to say service type is to say component type.

After running the command above, your project’s folder structure looks like this:

• weather

– gradle

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/content/targeting/rule

· WeatherRule.java

· resources

· content

· Language.properties

· META-INF

· resources

· view.jsp

– bnd.bnd

– build.gradle

– gradlew

The Maven-generated project includes a pom.xml file and does not include the Gradle-specific
files, but otherwise, appears exactly the same.

The generated module is a working application and is deployable to a Liferay DXP instance. To
build upon the generated app, modify the project by adding logic and additional files to the folders
outlined above.

2082

167.16 Content Targeting Tracking Action Template

In this article, you’ll learn how to create a Liferay Content Targeting Tracking Action application as
a Liferay module. To create a Content Targeting Tracking Action via the command line using Blade
CLI or Maven, use one of the commands with the following parameters:

blade create -t content-targeting-tracking-action -p [package name] -c [class name] [project name]

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.content.targeting.tracking.action \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.1

You can also insert the -b maven parameter in the Blade command to generate a Maven project
using Blade CLI.

The template for this kind of project is content-targeting-tracking-action. To create a tracking
action project called newsletterwith a package prefix of com.liferay and a class name of Newsletter,
use this command:

blade create -t content-targeting-tracking-action -p com.liferay -c Newsletter newsletter

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.content.targeting.tracking.action \

-DgroupId=com.liferay \

-DartifactId=newsletter \

-Dpackage=com.liferay \

-Dversion=1.0 \

-DclassName=Newsletter \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.1

The command above creates a Content Targeting Tracking Action project named newsletter in
the current folder. In the class, you’re creating a service of type com.liferay.content.targeting.api.model.TrackingAction
and extending the com.liferay.content.targeting.api.model.BaseJSPTrackingAction class. Here,
service means an OSGi service, not a Liferay API. Another way to say service type is to say component
type.

After running the command above, your project’s folder structure looks like this:

• newsletter

– gradle

* wrapper

· gradle-wrapper.jar

2083

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/content/targeting/tracking/action

· NewsletterTrackingAction.java

· resources

· content

· Language.properties

· META-INF

· resources

· view.jsp

– bnd.bnd

– build.gradle

– gradlew

The Maven-generated project includes a pom.xml file and does not include the Gradle-specific
files, but otherwise, appears exactly the same.

The generated module is a working application and is deployable to a Liferay DXP instance. To
build upon the generated app, modify the project by adding logic and additional files to the folders
outlined above.

2084

CHAPTER 168

SAMPLE PROJECTS

Note: This section of articles does not provide documentation for all sample projects residing
in the liferay-blade-samples repo. The documentation for these samples is in progress and will
grow over time.

Liferay provides sample projects that target different integration points in Liferay DXP. These
projects reside in the liferay-blade-samples Github repository and can be easily copy/pasted to your
local environment. The sample projects are grouped into three different parent folders based on
the build tools used to generate them:

• gradle

• liferay-workspace

• maven

Note: The LiferayWorkspace folder storesWAR-type samples in a separate folder named wars.
The Gradle andMaven tool folders mixWAR samples with the other sample types (apps, extensions,
etc.).

For more information on these sample projects, visit the Liferay Sample Projects tutorial.

2085

https://github.com/liferay/liferay-blade-samples
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/wars

CHAPTER 169

APPS

This section focuses on Liferay sample applications. You can view these sample apps by visiting
the apps folder corresponding to your preferred build tool:

• Gradle sample apps
• LiferayWorkspace sample apps
• Maven sample apps

Visit a particular sample page to learn more!

2087

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/apps

CHAPTER 170

NPM SAMPLES

This section focuses on Liferay npm sample portlets built with Gradle. You can view these samples
by visiting the apps/npm folder corresponding to your preferred build tool:

• Gradle sample apps
• LiferayWorkspace sample apps

Note: When building the npm samples, an error can occur caused by the limit of open files
allowed by your operating system. Consult your operating system vendor’s documentation to learn
how to configure the maximum number of open files for your OS.

The following npm samples are documented:

• Angular npm Portlet
• Angular npm Deduplication Portlet
• Billboard.js npm Portlet
• jQuery npm Portlet
• Metal.js npm Portlet
• React npm Portlet
• Simple npm Portlet
• Vue.js npm Portlet

Visit a particular sample page to learn more!

170.1 Angular 6 npm Portlet

The Angular 6 npm Portlet sample provides a portlet that uses the Angular framework (version 6)
to render its output.

This portlet showcases Angular’s newest version and how to leverage it in Liferay DXP. See this
article for more information on what’s new with Angular 6.

2089

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/npm
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/npm
https://angular.io/
https://blog.angular.io/version-6-of-angular-now-available-cc56b0efa7a4
https://blog.angular.io/version-6-of-angular-now-available-cc56b0efa7a4

Figure 170.1: Type custom text in the field and watch it instantaneously displayed in the portlet.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-
bundler tool to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its
package.json file:

"scripts": {

"build": "tsc && liferay-npm-bundler",

"tsc": "tsc"

},

Where Is This Sample?

This sample is built with the following build tool:

• Gradle

170.2 Angular npmDeduplication Sample

The Angular npm Deduplication sample provides a portlet that uses the Angular framework to
render its output.

This is done by providing a deduplicated instance of the Angular framework as an OSGi bundle
and then leveraging it from a sample portlet.

What API(s) and/or code components does this sample highlight?

This sample is broken into two modules:

• angular-consumer-portlet

• angular-provider

2090

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/npm/angular-npm-portlet
https://angular.io/

Figure 170.2: Type custom text in the field and watch it instantaneously displayed in the portlet..

The Angular Provider sample generates an OSGi bundle that provides a deduplicated instance
of the Angular framework that portlets can share when rendering their output. The Angular
Consumer portlet uses the deduplicated instance of the Angular framework.

Note: Both modules must be deployed to the server for this sample to run.
This sample leverages the npm development workflow support.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-
bundler tool to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its
package.json file:

"scripts": {

"build": "tsc && liferay-npm-bundler"

},

Where Is This Sample?

This sample is built with the following build tool:

• Gradle

170.3 Angular npm Portlet

The Angular npm Portlet sample provides a portlet that uses the Angular framework to render its
output.

This portlet showcases Angular’s speed and performance when rendering a user interface.

2091

https://angular.io/
https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/npm-deduplication-portlets/angular
https://angular.io/

Figure 170.3: Type custom text in the field and watch it instantaneously displayed in the portlet.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-
bundler tool to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its
package.json file:

"scripts": {

"build": "tsc && liferay-npm-bundler"

},

Where Is This Sample?

There are two different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace

170.4 Billboard.js npm Portlet

The Billboard.js npm Portlet sample provides a portlet that uses the Billboard.js framework to
render its output.

This portlet showcases the power of graphing by displaying a set of default charts and a more
advanced custom chart. These are all built using Billboard.js.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

2092

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/npm/angular-npm-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/npm/angular-npm-portlet
https://naver.github.io/billboard.js/

Figure 170.4: The Billboard.js npm Portlet shows off some nice looking graphs using Billboard.js.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-
bundler tool to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its
package.json file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-

npm-bundler"

},

Where Is This Sample?

There are two different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace

170.5 jQuery npm Portlet

2093

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/npm/billboardjs-npm-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/npm/billboardjs-npm-portlet

The jQuery npm Portlet sample provides a portlet that uses the jQuery framework to render its
output.

Figure 170.5: Clicking on the portlet’s hand symbol displays a message.

This portlet showcases the fast HTML document traversal jQuery offers.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-
bundler tool to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its
package.json file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-

npm-bundler"

},

Where Is This Sample?

There are two different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace

170.6 Metal.js npm Portlet

The Metal.js npm Portlet sample provides a portlet that uses the Metal.js framework to render its
output.

This portlet displays a Metal.js based dialog that has been rendered using SOY templates.

2094

https://jquery.com/
https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/npm/jquery-npm-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/npm/jquery-npm-portlet
https://metaljs.com/

Figure 170.6: Clicking the button returns displays a dialog window.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-
bundler tool to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its
package.json file:

"scripts": {

"build": "metalsoy && babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-

npm-bundler"

},

Where Is This Sample?

There are two different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace

170.7 React npm Portlet

The React npm Portlet sample provides a portlet that uses the React framework to render its output.
This portlet showcases the how efficiently React can render components based on user interac-

tion.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

2095

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/npm/metaljs-npm-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/npm/metaljs-npm-portlet
https://reactjs.org/

Figure 170.7: You can play the game Tic-tac-toe with this sample portlet.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-
bundler tool to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its
package.json file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-

npm-bundler"

},

Where Is This Sample?

There are two different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace

170.8 Simple npm Portlet

The SimplenpmPortlet sample provides a portlet that uses the isarraynpmpackagewhen rendering
its output.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

2096

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/npm/react-npm-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/npm/react-npm-portlet
https://www.npmjs.com/package/isarray

Figure 170.8: The portlet’s status and actions are displayed as output.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-
bundler tool to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its
package.json file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-

npm-bundler"

},

Where Is This Sample?

There are two different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace

170.9 Vue.js npm Portlet

The Vue.js npm Portlet sample provides a portlet that uses the Vue.js framework to render its
output.

This portlet showcases Vue.js’s speed and performance when rendering a user interface.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

2097

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/npm/simple-npm-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/npm/simple-npm-portlet
https://vuejs.org/

Figure 170.9: Clicking the portlet’s button reverses the message.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-
bundler tool to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its
package.json file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-

npm-bundler"

},

Where Is This Sample?

There are two different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace

2098

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/npm/vuejs-npm-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/npm/vuejs-npm-portlet

CHAPTER 171

SERVICE BUILDER SAMPLES

This section focuses on Liferay Service Builder sample projects built with various build tools. You
can view these samples by visiting the apps/service-builder folder corresponding to your preferred
build tool:

• Gradle Service Builder sample apps
• Liferay Service BuilderWorkspace sample apps
• Maven Service Builder sample apps

The following Service Builder samples are documented:

• Service Builder application demonstrating Actionable Dynamic Query
• Service Builder application with JDBC connection
• Service Builder application with JNDI connection

Visit a particular sample page to learn more!

171.1 Service Builder Application Demonstrating Actionable Dynamic Query

This sample is similar to the basic Service Builder sample, which lets you perform CRUD (create,
read, update, delete) operations on service builder entities. The distinctive feature of the Service
Builder Actionable Dynamic Query (ADQ) sample is that it also lets you perform a mass update on
all existing service builder entities.

To see the ADQ Service Builder sample in action, complete the following steps:

1. Add the sample to a page by navigating to Add () → Widgets → Sample and dragging it to the
page.

2. Select the app’s Add button and add an entity. Do this several times to create multiple entities.

3. Click the Mass Update button and click Save to invoke the update.
After invoking the update, each entity’s field3 value (whose value is less than 100) is incre-
mented.

You’ve leveraged the actionable dynamic query API in your sample!

2099

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/service-builder
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/service-builder
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/apps/service-builder
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/service-builder/basic

Figure 171.1: This sample provides options to add entities and perform amass update.

What API(s) and/or code components does this sample highlight?

This sample demonstrates LiferayDXP’s actionable dynamic queryAPI. Specifically, it demonstrates
how to create an ADQ, add criteria to an ADQ, specify an action for the ADQ, and execute the ADQ.

How does this sample leverage the API(s) and/or code component?

An action request is sent to the JSPPortlet with a cmd request parameter. When the JSPPortlet’s
processAction method processes the request, the value of the cmd parameter is parsed and then
the portlet’s massUpdatemethod is invoked. The massUpdatemethod, in turn, invokes the massUpdate

methoddefined in the adq-servicemodule’s BarLocalServiceImpl. This iswhere the sample leverages
the actionable dynamic query API:

public void massUpdate() {

ActionableDynamicQuery adq = getActionableDynamicQuery();

adq.setAddCriteriaMethod(

new ActionableDynamicQuery.AddCriteriaMethod() {

@Override

public void addCriteria(DynamicQuery dynamicQuery) {

dynamicQuery.add(RestrictionsFactoryUtil.lt("field3", 100));

2100

Figure 171.2: Clicking the Save button executes the mass update.

}

});

adq.setPerformActionMethod(

new ActionableDynamicQuery.PerformActionMethod<Bar>() {

@Override

public void performAction(Bar bar) {

int field3 = bar.getField3();

field3++;

bar.setField3(field3);

updateBar(bar);

}

});

try {

adq.performActions();

}

catch (Exception e) {

e.printStackTrace();

}

}

For more information on the actionable dynamic query API, visit its dedicated tutorial.

171.2 Service Builder Application Using External Database via JDBC

2101

This sample demonstrates how to connect a Liferay Service Builder application to an external
database via a JDBC connection. Here, an external database means any database other than Liferay
DXP’s database. For this sample to work correctly, you must prepare such an external database and
configure Liferay DXP to use it. Follow the steps below to make the required preparations before
deploying the application.

1. Create the external database to which your Service Builder application will connect. For
example, create a MariaDB database called external. Add a table to this database called
country with a BIGINT column called Id and a VARCHAR(255) column called Name. Add at least
one record to this table. Here are the MariaDB commands to accomplish this:

create database external character set utf8;

use external;

create table country(id bigint not null primary key, name varchar(255));

insert into country(id, name) values(1, 'Australia');

Make sure that your database commands were successful: Running select * from country;

should return the record you added.

2. Create a portal-ext.properties file in your Liferay DXP instance’s [LIFERAY_HOME] folder
(this folder should be marked by the presence of a .liferay-home file). In your portal-

ext.properties file, define the details of your JDBC data source connection:

jdbc.ext.driverClassName=org.mariadb.jdbc.Driver

jdbc.ext.password=userpassword

jdbc.ext.url=jdbc:mariadb://localhost/external?useUnicode=true&characterEncoding=UTF-8&useFastDateParsing=false

jdbc.ext.username=yourusername

Note that Liferay DXP’s primary data source is specified by the jdbc.default prefix. These
details are often specified in a portal-setup-wizard.properties file. Here, we’ve chosen to use
the jdbc.ext prefix for our alternate data source.

3. Create a com.liferay.blade.samples.jdbcservicebuilder.service-log4j-ext.xml in your Liferay
instance’s [LIFERAY_HOME]/osgi/log4 folder. Create this folder if it doesn’t yet exist. Add this
content to the XML file that you created:

<?xml version="1.0"?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<category name="com.liferay.blade.samples.jdbcservicebuilder.service.impl">

<priority value="INFO" />

</category>

</log4j:configuration>

ThisXMLfiledefines the log level for the classes in the com.liferay.blade.samples.jdbcservicebuilder.service.impl
package. The com.liferay.blade.samples.jdbcservicebuilder.service.impl.CountryLocalServiceImpl
is the class that will produce log messages when the sample portlet is viewed.

2102

Now your sample is ready for deployment! Make sure to build and deploy each of the three
modules that comprise the sample application:

• jdbc-api

• jdbc-service

• jdbc-web

After these modules have been deployed, add the -web portlet to a Liferay DXP page.

Figure 171.3: This sample prints out the values previously inputted into the database.

A sample table is printed in the portlet’s view, representing the info inputted into the database.

What API(s) and/or code components does this sample highlight?

The sample configures the data source using Spring Beans and demonstrates two ways to access
data from an external database defined by a JDBC connection:

• extract data directly from the raw data source by explicitly specifying a SQL query.
• read data using the helper methods that Service Builder generates in your application’s
persistence layer.

How does this sample leverage the API(s) and/or code component?

Once you’ve added the -web portlet to a page, the CountryLocalService.useJDBCmethod is invoked.
This method accesses the database defined by the JDBC connection you specified and logs informa-
tion about the rows in the country table to Liferay DXP’s log.

Configuring the Data Source

The -service module’s src/main/resources/META-INF/spring/ext-spring.xml file configures the
external data source connection and applies the alias extDataSource to the data source. The
service.xml file entity element specifies the data source via the attribute assignment data-

source="extDataSource". The ext-spring.xml and service.xml files demonstrate the configuration
steps explained in Connecting the Data Source Using Spring Beans.

2103

Accessing Data

The first way of accessing data from the external database is to extract it directly from the
raw data source by explicitly specifying a SQL query. This technique is demonstrated by the
CountryLocalServiceImpl.useJDBC method. That method obtains the Spring-defined data source
that’s injected into the countryPersistence bean, opens a new connection, and reads data from the
data source. This is the technique used by the sample application to write the data to Liferay DXP’s
log.

The second way of accessing data from the external database is to read data using the
helper methods that Service Builder generates in your application’s persistence layer. This
technique is demonstrated by the UseJDBC.getCountries method which first obtains an instance
of the CountryLocalService OSGi service and then invokes countryLocalService.getCountries. The
countryLocalService.getCountries and countryLocalService.getCountriesCount methods are two
examples of the persistence layer helper methods that Service Builder generates. This is the
technique used by the sample application to actually display the data. The portlet’s view.jsp

uses the <search-container> JSP tag to display a list of results. The results are obtained by the
UseJDBC.getCountriesmethod mentioned above.

171.3 Service Builder Application Using External Database via JNDI

This sample demonstrates how to connect a Liferay Service Builder application to an external
database via a JNDI connection. Here, an external database means any database other than Liferay
DXP’s database. For this sample to work correctly, you must prepare such an external database and
configure Liferay DXP to use it. Follow the steps below to make the required preparations before
deploying the application.

1. Create the external database to which your Service Builder application will connect. For
example, create aMariaDB database called external. Add a table to this database called region

with a BIGINT column called Id and a VARCHAR(255) column called Name. Add at least one record
to this table. Here are the MariaDB commands to accomplish this:

create database external character set utf8;

use external;

create table region(id bigint not null primary key, name varchar(255));

insert into region(id, name) values(1, 'Tasmania');

Make sure that your database commands were successful: Running select * from region;

should return the record you added.

2. Now you need to define a JNDI connection to your database. The way this is done depends on
your application server. Here we demonstrate how to specify the JNDI connection for Tom-
cat. First, open your [LIFERAY_HOME]/tomcat-9.0.6/conf/server.xml file and add this resource
element inside of the <GlobalNamingResources> element:

<Resource

name="jdbc/externalDataSource"

auth="Container"

2104

type="javax.sql.DataSource"

factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"

driverClassName="org.mariadb.jdbc.Driver"

url="jdbc:mariadb://localhost/external"

username="yourusername"

password="yourpassword"

maxActive="20"

maxIdle="5"

maxWait="10000"

/>

Replace the specified username and password with the correct values for your database.

3. Open your [LIFERAY_HOME]/tomcat-9.0.6/conf/context.xml file and add this resource link ele-
ment inside of the <Context> element:

<ResourceLink name="jdbc/externalDataSource" global="jdbc/externalDataSource" type="javax.sql.DataSource"/>

Now your data source is defined at Tomcat’s scope.

4. Create a com.liferay.blade.samples.jndiservicebuilder.service-log4j-ext.xml in your Liferay
DXP instance’s [LIFERAY_HOME]/osgi/log4 folder. Create this folder if it doesn’t yet exist. Add
this content to the XML file that you created:

<?xml version="1.0"?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<category name="com.liferay.blade.samples.jndiservicebuilder.service.impl">

<priority value="INFO" />

</category>

</log4j:configuration>

ThisXMLfiledefines the log level for the classes in the com.liferay.blade.samples.jndiservicebuilder.service.impl
package. The com.liferay.blade.samples.jndiservicebuilder.service.impl.RegionLocalServiceImpl
is the class that will produce log messages when the sample portlet is viewed.

Now your sample is ready for deployment! Make sure to build and deploy each of the three
modules that comprise the sample application:

• jndi-api

• jndi-service

• jndi-web

After these modules have been deployed, add the jndi-web portlet to a Liferay DXP page.
A sample table is printed in the portlet’s view, representing the info inputted into the database.

What API(s) and/or code components does this sample highlight?

This sample demonstrates two ways to access data from an external database defined by a JNDI
connection:

• extract data directly from the raw data source by explicitly specifying a SQL query.
• read data using the helper methods that Service Builder generates in your application’s
persistence layer.

2105

Figure 171.4: This sample prints out the values previously inputted into the database.

How does this sample leverage the API(s) and/or code component?

Once you’ve added the jndi-web portlet to a page, the RegionLocalServiceUtil.useJNDI method is
invoked. This method accesses the database defined by the JNDI connection you specified and logs
information about the rows in the region table to Liferay DXP’s log.

The first way of accessing data from the external database is to extract data directly from
the raw data source by explicitly specifying a SQL query. This technique is demonstrated by the
RegionLocalServiceImpl.useJNDImethod. That method obtains the Spring-defined data source that’s
injected into the regionPersistence bean, opens a new connection, and reads data from the data
source. This is the technique used by the sample application to write the data to Liferay DXP’s log.

The second way of accessing data from the external database is to read data using the
helper methods that Service Builder generates in your application’s persistence layer. This
technique is demonstrated by the UseJNDI.getRegions method which first obtains an instance
of the RegionLocalService OSGi service and then invokes regionLocalService.getRegions. The
regionLocalService.getRegions and regionLocalService.getRegionsCountmethods are two examples
of the persistence layer helper methods that Service Builder generates. This is the technique used
by the sample application to actually display the data. The portlet’s view.jsp uses the <search-

container> JSP tag to display a list of results. The results are obtained by the UseJNDI.getRegions

method mentioned above.

171.4 Greedy Policy Option Application

The Greedy Policy Option sample provides two portlets that can be added to a Liferay DXP page:
Greedy Portlet and Reluctant Portlet.

These two portlets do not provide anything useful out-of-the-box. They are, however, very
effective at demonstrating the ability to reference services using greedy and reluctant policy options.
You’ll learn how to do this later.

2106

Figure 171.5: The Greedy Policy Option app provides two portlets that only print text. You’ll dive deeper later to discover their interesting capabilities involving services.

What API(s) and/or code components does this sample highlight?

This sample provides two modules referencing services using greedy and reluctant policy options.

• service-reference: Provides an OSGi service interface called SomeService, a default implemen-
tation of it, and portlets that refer to service instances. One portlet refers to new higher
ranked instances of the service automatically. The other portlet is reluctant to use new higher
ranked instances and continues to use its bound service. The reluctant portlet can, however,
be configured dynamically to use other service instances.

• higher-ranked-service: Has a higher ranked SomeService implementation.

Here are each module’s file structures:

• service-reference/

– bnd.bnd

– configs/

* com.liferay.blade.reluctant.vs.greedy.portlet.portlet.ReluctantPortlet.config

→ ReluctantPortlet configuration file

– src/main/java/com/liferay/blade/reluctant/vs/greedy/portlet/

* api/

· SomeService.java → Service interface

* constants/

2107

· ReluctantPortletVsGreedyPortletKeys.java → Portlet constants

* portlet/

· DefaultSomeService.java → Zero ranked service implementation
· GreedyPortlet.java → Refers to SomeService using a greedy service policy
option

· ReluctantPortletPortlet.java → Refers to SomeService using a reluctant ser-
vice policy option by default.

• higher-ranked-service/

– bnd.bnd

– src/main/java/com/liferay/blade/reluctant/vs/greedy/svc/HigherRankedService.java →
Service implementation with service ranking value of 100

How does this sample leverage the API(s) and/or code component?

Here are the things you can learn using the sample modules:

1. Binding a component’s service reference to thehighest ranked service instance that’s available
initially.

2. Deploying a module with a higher ranked service instance for binding to greedy references
immediately.

3. Configuring a component to reference a different service instance dynamically.

Let’s walk through the demonstration.

Binding a newly deployed component's service reference to the highest ranking service instance that's available
initially

On deploying a component that references a service, it binds to the highest ranking service instance
that matches its target filter (if specified).

The portlet classes refer to instances of interface SomeService. The doSomethingmethod returns
a String.

public interface SomeService {

public String doSomething();

}

Class DefaultSomeService implements SomeService. Its doSomethingmethod returns the String “I
am Default!”.

@Component

public class DefaultSomeService implements SomeService {

@Override

public String doSomething() {

return "I am Default!";

}

}

2108

When module’s portlets refer to DefaultSomeService, they display the String “I am Default!”.
The ReluctantPortlet class’s SomeService reference’s policy option is the default: static and

reluctant. This policy option keeps the reference bound to its current service instance unless that
instance stops or the reference is reconfigured to refer to a different service instance.

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.display-name=Reluctant Portlet",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.name=" + ReluctantVsGreedyPortletKeys.Reluctant,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

public class ReluctantPortlet extends MVCPortlet {

@Override

public void doView(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

renderRequest.setAttribute("doSomething", _someService.doSomething());

super.doView(renderRequest, renderResponse);

}

@Reference

private SomeService _someService;

}

The ReluctantPortlet’s method doView sets render request attribute doSomething to the value
returned from the SomeService instance’s doSomething method (e.g., DefaultService returns “I am
default!”).

The GreedyPortlet class is similar to ReluctantPortlet, except its SomeService reference’s policy
option is static and greedy (i.e., ReferencePolicyOption.GREEDY).

public class GreedyPortlet extends MVCPortlet {

@Override

public void doView(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

renderRequest.setAttribute("doSomething", _someService.doSomething());

super.doView(renderRequest, renderResponse);

}

@Reference (policyOption = ReferencePolicyOption.GREEDY)

private SomeService _someService;

}

The greedy policy option lets the component switch to using a higher ranked SomeService

instance if one becomes active in the system. The section Deploying a module with a higher ranked
service instance for binding to greedy references immediately demonstrates this portlet switching to a
higher ranked service.

2109

It’s time to see this module’s portlets and service in action.

1. Stop module higher-ranked-service if it’s active.

2. Deploy the service-referencemodule.

3. Add the Reluctant Portlet from the Add → Applications → Sample category to a site page.

The portlet displays the message “SomeService says I am default!”–whose latter part comes
from the render request attribute set by the DefaultService instance.

Figure 171.6: Reluctant Portlet displays the message “SomeService says I am default!”

4. Add the Greedy Portlet from the Add → Applications → Sample category to a site page.

The portlet displays the message “SomeService says I am better, use me!”. Both portlets are
referencing a DefaultService instance.

Figure 171.7: Greedy Portlet displays the message “SomeService says I am better, use me!”

Since DefaultService is the only active SomeService instance in the system, the portlets refer to
it for their SomeService fields.

The DefaultService and portlets Reluctant Portlet and Greedy Portlet are active. Let’s activate a
higher ranked SomeService instance and see how the portlets react to it.

2110

Deploying a module with a higher ranked service instance for binding to greedy references immediately

Module higher-ranked-service provides a SomeService implementation called HigherRankedService.
HigherRankedService’s service ranking is 100–that’s 100 more than DefaultService’s ranking 0. Its
doSomethingmethod returns the String “I am better, use me!”.

1. Deploy the higher-ranked-servicemodule.
2. Refresh your page that has the portlets Reluctant Portlet and Greedy Portlet.

Reluctant Portlet continues displaying message “SomeService says I am better, use me!”.
It’s “reluctant” to unbind from the DefaultService instance and bind to the newly activated
HigherRankedService service.

Greedy Portlet displays a new message “SomeService says I am better, use me!”. The part of the
message “I am better, use me!” comes from the HigherRankedService instance to which it refers.

Figure 171.8: The Greedy Portlet is using a HigherRankedService instance

Next, learn how to bind the Reluctant Portlet to a HigherRankedService instance.

Configuring a component to reference a different service instance dynamically

The Reluctant Portlet is currently bound to a DefaultService instance. It’s “reluctant” to unbind
from it and bind to a different service. OSGi Configuration Administration lets you reconfigure
service references to filter on and bind to different service instances.

The service-referencemodule’s configurationfiles and com.liferay.blade.reluctant.vs.greedy.portlet.portlet.ReluctantPortlet.config

and com.liferay.blade.reluctant.vs.greedy.portlet.portlet.ReluctantPortlet.cfg configure the
ReluctantPortlet component to use a HigherRankedService instance.

_someService.target=(component.name=com.liferay.blade.reluctant.vs.greedy.service.HigherRankedService)

The service configurationfilters ona servicewhose component.name is com.liferay.blade.reluctant.vs.greedy.service.HigherRankedService.
Note: For deploying to 7.0, use file with suffix .config. For earlier versions (i.e., Liferay DXP 7.0

Fix Packs earlier than Fix Pack 8 and Liferay CE Portal 7.0 GA3 or earlier), use the file with suffix
.cfg.

Here are the steps to reconfigure ReluctantPortlet to use HigherRankedService:

1. Copy the configuration file to [Liferay-Home]/osgi/configs.
2. Refresh your browser.

2111

Figure 171.9: Reluctant Portlet is using the HigherRankedService instance instead of a DefaultService instance.

Reluctant Portlet displays a new message “SomeService says I am better, use me!”.
Reluctant Portlet is using HigherRankedService instance instead of a DefaultService instance.

You’ve configured Reluctant Portlet to use a HigherRankedService instance!

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

171.5 Kotlin Portlet

The Kotlin Portlet sample provides an input form that accepts a name. Once submitting a name,
the portlet renders a greeting message.

What API(s) and/or code components does this sample highlight?

This sample highlights the use of the Kotlin programming language in conjunction with Liferay’s
MVC framework. Specifically, this sample leverages the MVCActionCommand interface.

How does this sample leverage the API(s) and/or code component?

This sample uses the MVC Action Command’s processAction(...) method to process the inputted
text (i.e., name). The text is set as an attribute in the KotlinGreeterActionCommandKt.kt class using
an ActionRequest and then is retrieved in the JSP using a RenderRequest.

Where Is This Sample?

This sample is built with the following build tools:

• Gradle
• LiferayWorkspace

2112

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/greedy-policy-option-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/greedy-policy-option-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/apps/greedy-policy-option-portlet
https://kotlinlang.org/
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCActionCommand.html
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/kotlin-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/kotlin-portlet

Figure 171.10: After saving the inputted name, it’s displayed as a greeting on the portlet page.

171.6 Shared Language Keys

The Shared Language Keys sample provides a JSP portlet that displays language keys.

Figure 171.11: The sample JSP portlet displays three language keys.

The language keys displayed in the portlet come from two different modules.

What API(s) and/or code components does this sample highlight?

This sample is broken into two modules:

2113

• language

• language-web

The language-webmodule provides a JSP portlet with unique language keys that it displays. The
languagemodule provides a resource module which only holds language keys. Its sole purpose is to
share language keys with the JSP portlet provided in language-web. This sample conveys Liferay’s
recommended approach to sharing language keys through OSGi services.

How does this sample leverage the API(s) and/or code component?

Youmust deploy both language-web and languagemodules to simulate this sample’s targeted demon-
stration.

First, note the language keys provided by each module:

• language-web

– blade_language_web_LanguageWebPortlet.caption=Hello from BLADE Language Web!

– blade_language_web_override_LanguageWebPortlet.caption=I have overridden the key

from BLADE Language Module!

• language

– blade_language_LanguageWebPortlet.caption=Hello from the BLADE Language Module!

– blade_language_web_override_LanguageWebPortlet.caption=Hello from the BLADE

Language Module but you won't see me!

When you place the sample BLADE LanguageWeb portlet on a Liferay DXP page, you’re pre-
sented with three language keys:

Figure 171.12: The Language Web portlet displays three phrases, two of which are shared from a different module.

The first message is provided by the language-web module. The second message is from the
languagemodule. The thirdmessage is provided by bothmodules; as you can see, the language-web’s
message is used, overriding the languagemodule’s identically named language key.

This sample shows what takes precedence when displaying language keys. The order for this
example goes

1. language-webmodule language keys
2. languagemodule language keys
3. Liferay DXP language keys

So how does sharing language keys work?
Bydefault, the ResourceBundleLoaderAnalyzerPlugin expandsmoduleswith /content/Language.properties

files to add provided capabilities:

2114

• bundle.symbolic.name

• resource.bundle.base.name

Then the deployed LanguageExtender scans modules with those capabilities to automatically
register an associated ResourceBundleLoader.

You can leverage this functionality to use keys from common languagemodules by republishing
an aggregate ResourceBundleLoader. This can be done two ways:

1. Via Components

You can get a reference to the registered service in your components as detailed in the
Overriding a Module’s Language Keys tutorial. The main disadvantage of this approach is
that it forces you to provide a specific implementation of the ResourceBundleLoader, making it
harder to modularize in the future.

2. Via Provide Capability

The same LanguageExtender that registers the services supports an extended syntax that lets
you register an aggregate of a collection of bundles:

-liferay-aggregate-resource-bundles: \

blade.language

This approach has the advantage of easier extensibility. When language keys change, only
the common language modules must be built and redeployed for the modules referencing
them to recognize their updates.

For more information on sharing language keys, visit the Internationalization tutorials.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

171.7 Simulation Panel App

The Simulation Panel App provides new functionality in Liferay DXP’s Simulation Menu. When
deploying this sample with no customizations, the Simulation Sample feature is provided in the
Simulation Menu with four options.

What API(s) and/or code components does this sample highlight?

This sample leverages the PanelApp API.

2115

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/shared-language-keys
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/shared-language-keys
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/apps/shared-language-keys
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/application/list/PanelApp.html

How does this sample leverage the API(s) and/or code component?

This sample leverages the PanelApp interface as an OSGi service via the @Component annotation:
@Component(

immediate = true,

property = {

"panel.app.order:Integer=500",

"panel.category.key=" + SimulationPanelCategory.SIMULATION

},

service = PanelApp.class

)

There are also two properties provided via the @Component annotation:

• panel.app.order: the order in which the panel app is displayed among other panel apps in the
chosen category. Entries are ordered from top to bottom. For example, an entry with order 1
will be listed above an entry with order 2. If the order is not specified, it’s chosen at random
based on which service was registered first in the OSGi container.

• panel.category.key: the host panel category for your panel app, which should be the Simula-
tion Menu category.

The simulation panel app extends the BaseJSPPanelApp, which provides a skeletal implementa-
tion of the PanelApp interface with JSP support. JSPs, however, are not the only way to provide
frontend functionality to your panel categories/apps. You can create your own class implementing
PanelApp to use other technologies, such as FreeMarker.

To learn more about Liferay Portal’s product navigation using panel categories and panel apps,
see the Customizing the Product Menu tutorial. For more information on extending the Simulation
Menu, see the Extending the Simulation Menu tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

171.8 Spring MVC Portlet

The Spring MVC portlet provides a way to add various different fields into the database and display
them in a table. This project is a Spring MVC based portletWAR that implements the same func-
tionality as the apps/service-builder/basic-web sample project. It manages JSP pages for display,
uses a Spring-annotated portlet class, and invokes the apps/service-builder/basic-apimodule to
call services.

Note: If you’re planning to package this sample usingMaven, youmust complete a fewadditional
steps to avoid build errors. This sample relies on the service-builder/basic-apimodule. Since the
basic-api bundle is not available on Liferay’s CDN repo or Maven Central, this sample can not
reference it, resulting in build failures.

To satisfy this dependency, you must install the bundle dependency to your local ~/.m2 repo,
along with the parent BND plugin and root Maven project. Here are the steps to accomplish this:

2116

https://docs.liferay.com/ce/apps/web-experience/latest/javadocs/com/liferay/application/list/BaseJSPPanelApp.html
https://docs.liferay.com/ce/apps/web-experience/latest/javadocs/com/liferay/application/list/PanelApp.html
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/simulation-panel-app
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/apps/simulation-panel-app
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/apps/simulation-panel-app

1. Run mvn clean install on maven/apps/service-builder/basic-api.
2. Run mvn clean install on maven/parent.bnd.bundle.plugin.
3. Run mvn clean install -N in the root liferay-blade-samples/maven folder.

Now you can build this sample successfully.

Figure 171.13: Click Add and fill out the sample fields to generate a custom entry in the portlet’s table.

Unlike the service-builder/basic-webmodule, Spring MVC portlets must be delivered as portlet
WAR projects. This project builds to aWAR file but leverages all of the LiferayWorkspace tools and
Gradle to build the WAR. You must build and deploy the service-builder/basic-api and service-

builder/basic-servicemodules for this sample to work properly. For more information on using
Spring MVC portlets in Liferay DXP, visit the Spring MVC tutorial.

What API(s) and/or code components does this sample highlight?

This sample demonstrates a Liferay DXP portlet built using the SpringWeb MVC framework.

How does this sample leverage the API(s) and/or code component?

You can easily modify this sample by customizing its SpringMVCPortletViewController Java class
or any of its JSPs stored in the src/main/webapp/WEB-INF/jsp folder. For more information on cus-
tomizing this sample, see the Javadoc listed in this sample’s SpringMVCPortletViewController Java
class.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

2117

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html

• Gradle
• LiferayWorkspace
• Maven

2118

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/apps/springmvc-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/wars/springmvc-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/apps/springmvc-portlet

CHAPTER 172

EXTENSIONS

This section focuses on Liferay sample extensions. You can view these sample extensions by visiting
the extensions folder corresponding to your preferred build tool:

• Gradle sample extensions
• LiferayWorkspace sample extensions
• Maven sample extensions

Visit a particular sample page to learn more!

172.1 Control Menu Entry

The Control Menu Entry sample provides a customizable button that is added to Liferay Portal’s
default Control Menu. When deploying this sample with no customizations, an additional button
is added to the User (right side) portion of the Control Menu.

Figure 172.1: The User area of the Control Menu is provided an additional link button when the Control Menu Entry sample is deployed to Liferay DXP.

The button navigates the user to Liferay’s website: https://www.liferay.com.

What API(s) and/or code components does this sample highlight?

This sample leverages the ProductNavigationControlMenuEntry API.

How does this sample leverage the API(s) and/or code component?

This sample first leverages the ProductNavigationControlMenuEntry interface as an OSGi service via
the @Component annotation:

2119

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/extensions
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/extensions
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/ProductNavigationControlMenuEntry.html

@Component(

immediate = true,

property = {

"product.navigation.control.menu.category.key=" + ProductNavigationControlMenuCategoryKeys.USER,

"product.navigation.control.menu.entry.order:Integer=1"

},

service = ProductNavigationControlMenuEntry.class

)

There are also two properties provided via the @Component annotation:

• product.navigation.control.menu.category.key: the category in which your entry should re-
side. The default Control Menu provides three categories: SITES (left portion), TOOLS (middle
portion), and USER (right portion).

• product.navigation.control.menu.entry.order:Integer: the order in which your entry will be
displayed in the category. Entries are ordered from left to right. For example, an entry with
order 1 will be listed to the left of an entry with order 2. If the order is not specified, it’s
chosen at random based on which service was registered first in the OSGi container.

This sample also implements the ProductNavigationControlMenuEntry interface. The following
methods are implemented:

• getIcon(HttpServletRequest)

• getLabel(Locale)

• getURL(HttpServletRequest)

• isShow(HttpServletRequest)

Refer to this sample’s BladeProductNavigationControlMenuEntry class for Javadocs describing
these methods. For more information on how to customize Liferay Portal’s Control Menu, visit the
Customizing the Control Menu tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

172.2 Document Action

TheDocument Action sample shows how to add a contextmenu option to an entry in theDocuments
andMedia portlet. When deploying this sample with no customizations, an additional menu option
is available in the Documents andMedia Admin portlet and the Documents andMedia portlet. This
sample creates a Blade Basic Info option that displays basic information about the entry (e.g., file
name, type, version, etc.). For example, the Admin portlet provides the new option as illustrated in
the images below:

Likewise, the Documents and Media portlet provides the same option after selecting Show
Actions from the portlet’s Configuration menu.

2120

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions/control-menu-entry
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/extensions/control-menu-entry
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/extensions/control-menu-entry

Figure 172.2: The new Blade Basic Info option is available from the entry’s Options menu.

Figure 172.3: The new option is also available from the portlet’s Document Details.

2121

Figure 172.4: You can access the new Blade Basic Info option from the Documents and Media portlet added to a page.

What API(s) and/or code components does this sample highlight?

This sample leverages the PortletConfigurationIcon API.

How does this sample leverage the API(s) and/or code component?

There are four Java classes used in this sample:

• BladeActionConfigurationIcon: Adds the new context menu option to the Document Detail
screen options () (top right corner) of the Documents and Media Admin portlet. See the
Configuring Your Admin App’s Actions Menu tutorial for more details.

• BladeActionDisplayContext: Adds the Display Context for the document action. More about
Display Contexts are described later.

• BladeActionDisplayContextFactory: Adds the Display Context factory for the document action.
• BladeDocumentActionPortlet: Provides the portlet class, which extends the GenericPortlet.
This class generates what is shown when the context menu option is selected.

2122

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/configuration/icon/PortletConfigurationIcon.html
https://portals.apache.org/pluto/portlet-2.0-apidocs/javax/portlet/GenericPortlet.html

Figure 172.5: The Documents And Media portlet provides the option from its Document Detail too.

A Display Context is a Java class that controls access to a portlet screen’s UI elements. For
example, the Document Library would use Display Contexts to provide its screens all their UI
elements. It would use one Display Context for its document edit screen, another for its document
view screen, etc. A portlet ideally uses a different Display Context for each of its screens.

A screen’s JSP calls on the Display Context (DC) to get elements to render and to decide whether
to render certain types of elements. Some of the DC methods return a collection of UI elements
(e.g., a menu object of menu items), while other DC methods return booleans that determine
whether to show particular element types. The DC decides which objects to display, while the JSP
organizes the rendered objects and implements the screen’s look and feel. You don’t have to decide
which elements to display in your JSP; simply call the DC methods to populate UI components with
objects to render.

To customize or extend a portlet screen that uses a DC, you can extend the DC and override
the methods that control access to the elements that interest you. For example, you can turn off
displaying certain types of elements (e.g., actions) by overriding the DC method that makes that
decision. You can add new custom elements (e.g., new actions) or remove existing elements (e.g., a
delete action) from a collection of elements a DC method returns. The beauty of customizing via a
DC is that you don’t have to modify the JSP. You only modify the particular methods that are related
to the UI customization goals. And JSP updates won’t break the DC customizations. Replacing a JSP,
on the other hand, can lead to missing an important JSP modification that a new Liferay version
introduces.

As you create custom portlets, you may want to implement DCs. You can benefit from the

2123

separation of concerns that DCs provide and customers can extend your portlet DCs to specify
which UI elements to display. And they don’t need to worry about missing out on the updates you
make to the JSPs.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

172.3 Gogo Shell Command

The Gogo Shell Command sample demonstrates adding a custom command to Liferay DXP’s Gogo
shell environment. All Liferay DXP installations have a Gogo shell environment, which lets system
administrators interact with Liferay DXP’s module framework on a local server machine.

This example adds a new custom Gogo shell command called usercount under the blade scope.
It prints out the number of registered users on your Liferay DXP installation.

To test this sample, follow the instructions below:

1. Start a Liferay DXP installation.

2. Navigate to the Control Panel → Configuration → Gogo Shell.

3. Execute help to view all the available commands. The sample Gogo shell command is listed.

Figure 172.6: The sample Gogo shell command is listed with all the available commands.

2124

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions/document-action
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/extensions/document-action
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/extensions/document-action

4. Execute usercount to execute the new custom command. The number of users on your
running Liferay Portal installation is printed.

Figure 172.7: The outcome of executing the usercount command.

What API(s) and/or code components does this sample highlight?

This sample demonstrates creating a new Gogo shell command by leveraging osgi.command.* prop-
erties in a Java class.

How does this sample leverage the API(s) and/or code component?

To add this new Gogo shell command, you must implement the logic in a Java class with the
following two properties:

• osgi.command.function: the command’s name, which must match the method name in the
registered service implementation.

• osgi.command.scope: the general scope or namespace for the command.

These properties are set in your class’s @Component annotation like this:

@Component(

property = {"osgi.command.function=usercount", "osgi.command.scope=blade"},

service = Object.class

)

The logic for the usercount command is specified in the method with the same name:

public void usercount() {

System.out.println(

"# of users: " + getUserLocalService().getUsersCount());

}

2125

This method uses Declarative Services to get a reference for the UserLocalService to invoke the
getUsersCountmethod. This lets you find the number of users currently in the system.

For more information on using the Gogo shell, see the Using the Felix Gogo Shell tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

172.4 Index Settings Contributor

The Index Settings Contributor sample demonstrates how to add a custom type mapping to Liferay
DXP. You can demo this sample by completing the following steps:

1. Navigate to the Control Panel → Configuration → Search menu.

2. Click Execute for the Reindex all search indexes action.

All properties defined in your .json file are added to Liferay DXP’s search engine. This sample
adds the following index properties:

• sampleDate

• sampleDouble

• sampleLong

• sampleText

You’ll verify this next.

3. Find your Liferay DXP’s instance ID. This can be found in the Control Panel → Configuration →
Virtual Instances menu.

4. Navigate to the following URL:

http://localhost:9200/liferay-[INSTANCE_ID]/_mapping/LiferayDocumentType?pretty

Be sure to insert your instance ID into the URL.

5. Verify the added properties are listed.

What API(s) and/or code components does this sample highlight?

This sample leverages the IndexSettingsContributor API.

2126

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions/gogo
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/extensions/gogo
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/extensions/gogo
https://docs.liferay.com/dxp/apps/foundation/latest/javadocs/com/liferay/portal/search/elasticsearch/settings/IndexSettingsContributor.html

Figure 172.8: This sample added four new index properties.

How does this sample leverage the API(s) and/or code component?

Liferay’s search engine provides an API to define custommappings. To use it, follow these funda-
mental steps:

1. Define the new mapping. In this sample, the mapping is defined in the META-

INF/mappings/resources/index-type-mappings.json file. Notice that the default document
for Liferay DXP is called LiferayDocumentType. The mapping’s features can be found in
Elasticsearch’s docs.

2. Inject the mapping into Elasticsearch. The IndexSettingsContributor class’ components are
invoked during the reindexing stage and receive a TypeMappingsHelper as a hook to add new
mappings.

This sample has two classes:

• ResourceUtil: reads the .json file.

• IndexSettingsContributor: allows the addition of type mappings on Liferay DXP’s search
engine.

The IndexSettingsContributor’s contributemethod adds the type mappings:

@Override

public void contribute(

String indexName, TypeMappingsHelper typeMappingsHelper) {

try {

String mappings = ResourceUtil.readResouceAsString(

"META-INF/resources/mappings/index-type-mappings.json");

typeMappingsHelper.addTypeMappings(indexName, mappings);

}

catch (Exception e) {

e.printStackTrace();

}

}

For the ResourceUtil.readResouceAsString parameter, you should pass the path for the .json file
that contains the properties to be added.

2127

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

Also, it is important to highlight the IndexSettingsContributor’s @Component annotation that reg-
isters a new service to the OSGi container:

@Component(

immediate = true,

service = com.liferay.portal.search.elasticsearch6.settings.IndexSettingsContributor.class

)

This sample demonstrates the essentials needed to contribute your own index settings.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

172.5 Indexer Post Processor

The Indexer Post Processor sample demonstrates using the IndexerPostProcessor interface, which
is provided to customize search queries and documents before they’re sent to the search engine,
and/or customize result summaries when they’re returned to end users. This basic demonstration
prints a message in the log when one of the *IndexerPostProcessormethods is called.

To see this sample’s messages in Liferay DXP’s log, you must add a logging category to the
portal. Navigate to Control Panel → Configuration → Server Administration and click on Log Levels →
Add Category. Then fill out the form:

• Logger Name: com.liferay.blade.samples.indexerpostprocessor
• Log Level: INFO

Once you save the new logging category, you can witness the sample indexer post processor
in action. For example, you can test the sample’s BlogsIndexerPostProcessor implementation by
creating a blog entry. When you publish the blog, the following message is logged in the console:

18:27:30,737 INFO [http-nio-8080-exec-8][BlogsIndexerPostProcessor:76] postProcessDocument

What API(s) and/or code components does this sample highlight?

This sample leverages the IndexerPostProcessor API.

How does this sample leverage the API(s) and/or code component?

This sample contains four implementations of the IndexerPostProcessor interface:

• BlogsIndexerPostProcessor

• MultipleEntityIndexerPostProcessor

• MultipleIndexerPostProcessor

• UserEntityIndexerPostProcessor

2128

https://github.com/liferay/liferay-blade-samples/blob/7.1/gradle/extensions/index-settings-contributor
https://github.com/liferay/liferay-blade-samples/blob/7.1/liferay-workspace/extensions/index-settings-contributor
https://github.com/liferay/liferay-blade-samples/blob/7.1/maven/extensions/index-settings-contributor
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/search/IndexerPostProcessor.html

All these classes leverage the interface as an OSGi service via the @Component annotation. For
example, the @Component annotation of the UserEntityIndexerPostProcessor looks like this:

@Component(

immediate = true,

property = {

"indexer.class.name=com.liferay.portal.kernel.model.User",

"indexer.class.name=com.liferay.portal.kernel.model.UserGroup"

},

service = IndexerPostProcessor.class

)

There’s one property type provided via the @Component annotation:

• indexer.class.name: the fully qualified class name of the indexed entity or an Indexer class
itself.

This sample’s implementations of the IndexerPostProcessor interface override the following
methods:

• postProcessContextBooleanFilter

• postProcessContextQuery

• postProcessDocument

• postProcessFullQuery

• postProcessSearchQuery(BooleanQuery, BooleanFilter)

• postProcessSearchQuery(BooleanQuery, SearchContext)

• postProcessSummary

For more information on Liferay’s Search API, refer to the Introduction to Liferay Search
tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

172.6 Model Listener

The Model Listener sample demonstrates adding a custommodel listener to a Liferay Portal out-of-
the-box entity. When deploying this sample with no customizations, a custommodel listener is
added to the portal’s layouts, listening for onBeforeCreate events. This means that any page creation
will trigger this listener, which will execute before the new page is created.

For example, if a new page is added with the name My Test Page, the following message is
printed to the console:

You can also verify that the model listener sample was executed by navigating to the new page’s
Options → Configure Page → SEO option. The HTML Title field looks like this:

2129

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions/indexer-post-processor
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/extensions/indexer-post-processor
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/extensions/indexer-post-processor

Figure 172.9: The sample model listener’s message in the console.

Figure 172.10: The page’s HTML title updated by the model listener sample.

What API(s) and/or code components does this sample highlight?

This sample leverages the ModelListener API.

How does this sample leverage the API(s) and/or code component?

Model Listeners are used to listen for persistence events on models and take actions as a result
of those events. Actions can be executed on an entity’s database table before or after a create,
remove, update, addAssociation, or removeAssociation event. It’s possible to have more than one
model listener on a single model too; the execution order is not guaranteed.

There are two steps to create a new model listener:

• Implement a Model Listener class
• Register the new service in Liferay’s OSGi runtime

2130

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/ModelListener.html

This sample adds the model listener logic in a new Java class named CustomLayoutListener that
extends BaseModelListener.

public class CustomLayoutListener extends BaseModelListener<Layout> {

@Override

public void onBeforeCreate(Layout model) throws ModelListenerException {

System.out.println(

"About to create layout: " + model.getNameCurrentValue());

model.setTitle("Title generated by model listener!");

}

}

Important things to note in this code snippet are

• The entity to be targeted by this model listener is specified as the parameterized type (e.g.,
Layout).

• The overriddenmethods dictate the type of event(s) that are listened for (e.g., onBeforeCreate);
they also trigger the logic execution.

The final step is registering the service in Liferay’s OSGi runtime, which is accomplished by the
following annotation (if using Declarative Services):

@Component(immediate = true, service = ModelListener.class)

For more information on model listeners, see the Creating Model Listeners tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

172.7 Screen Name Validator

The ScreenNameValidator sample provides away to validate a user’s inputted screen name. During
validation, the screen name is tested client-side and server-side.

This sample checks if a user’s screen name contains reserved words that are configured in the
Control Panel → Configuration → System Settings → Foundation → ScreenName Validator menu. The
default values for the screen name validator’s reserved words are admin and user.

You can test this sample by following the following steps:

1. Deploy the Screen Name Validator to your portal installation.
2. Navigate to the Control Panel → Users → Users and Organizations menu.
3. Create a new user by selecting the Add User () button.
4. Adding a screen name that contains the word admin or user.

2131

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/BaseModelListener.html
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions/model-listener
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/extensions/model-listener
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/extensions/model-listener

Figure 172.11: Enter reserved words for the screen name validator.

Figure 172.12: The error message displays when inputting a reserved word for the screen name.

2132

What API(s) and/or code components does this sample highlight?

This sample leverages the ScreenNameValidator API.

How does this sample leverage the API(s) and/or code component?

Tocustomize this sample,modify its com.liferay.blade.samples.screenname.validator.internal.CustomScreenNameValidator
class.

You can also customize this sample’s configuration by adding more properties in its
com.liferay.blade.samples.screenname.validator.CustomScreenNameConfiguration class.

For more information on customizing the Validation sample to fit your needs, see the Javadoc
provided in this sample’s Java classes.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

172.8 Servlet

The Servlet sample provides an OSGi Whiteboard Servlet in Liferay DXP. When deploying this
sample and configuring the servlet, a Hello World message is displayed when accessing the servlet
page URL. Log info is also outputted to your console.

Figure 172.13: The servlet displays Hello World from the configured servlet page URL.

Figure 172.14: The servlet also logs info in the console.

To configure the servlet in Liferay DXP, complete the following steps:

2133

https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/security/auth/ScreenNameValidator.html
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions/screen-name-validator
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/extensions/screen-name-validator
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/extensions/screen-name-validator

1. Navigate to the Control Panel → Configuration → Server Administration → Log Levels.

2. Select Add Category.

3. Insert com.liferay.blade.samples.servlet.BladeServlet for the Logger Name and INFO for the Log
Level.

4. Navigate to the http://localhost:8080/o/blade/servlet URL.

What API(s) and/or code components does this sample highlight?

This sample leverages the HttpServlet API.

How does this sample leverage the API(s) and/or code component?

To customize this sample, modify its com.liferay.blade.samples.servlet.BladeServlet class. This
class extends the HttpServlet class. Creating your own servlet for Liferay DXP is useful when you
need to implement servlet actions. For example, if you wanted to implement the CMIS server
by yourself with Apache Chemistry, you would need to implement your own servlet, managing
requests at a low level.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

2134

https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServlet.html
https://chemistry.apache.org/
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/extensions/servlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/extensions/servlet
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/extensions/servlet

CHAPTER 173

OVERRIDES

This section focuses on Liferay sample overrides. You can view these sample overrides by visiting
the overrides folder corresponding to your preferred build tool:

• Gradle sample overrides
• LiferayWorkspace sample overrides
• Maven sample overrides

Visit a particular sample page to learn more!

173.1 Module JSP Override

The Module JSP Override sample conveys Liferay’s recommended approach to override an applica-
tion’s JSP by leveraging OSGi fragment modules. This example overrides the default login.jsp file
in the com.liferay.login.web bundle by adding the red text changed to the Sign In form.

What API(s) and/or code components does this sample highlight?

This sample demonstrates how to create a fragment host module and configure it to override an
existing module’s JSP.

How does this sample leverage the API(s) and/or code component?

You can create your own JSP override by

• Declaring the fragment host.
• Providing the JSP that will override the original one.

To properly declare the fragment host in the bnd.bnd file, you must specify the host module’s
(where the original JSP is located) Bundle Symbolic Name and the host module’s exact version to
which the fragment belongs. In this example, this is configured like this:

Fragment-Host: com.liferay.login.web;bundle-version="1.0.0"

2135

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/overrides
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/overrides
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/overrides

Figure 173.1: The customized Sign In formwith the new changed text.

Then you must provide the new JSP intended to override the original one. Be sure to
mimic the host module’s folder structure when overriding its JAR. For this example, since the
original JSP is in the folder /META-INF/resources/login.jsp, the new JSP file resides in the folder
src/main/resources/META-INF/resources/login.jsp.

If needed, you can also target the original JSP following one of the two possible naming conven-
tions: original or portal. This pattern looks like

<liferay-util:include

page="/login.original.jsp"

servletContext="<%= application %>"

/>

or

<liferay-util:include

page="/login.portal.jsp"

servletContext="<%= application %>"

/>

This approach can be used to override any application JSP (i.e., JSPs residing in a module). You
can also add new JSPs to an existing module with this technique. If you need to override a core JSP,
see the JSP Overrides Using Custom JSP Bag tutorial.

For more information on other ways to customize JSPs, see the Customizing JSPs tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

2136

• Gradle
• LiferayWorkspace
• Maven

173.2 Resource Bundle Override

This example overrides thedefault javax.portlet.title.com_liferay_login_web_portlet_LoginPortlet
language key for Liferay DXP’s default Login portlet. After deploying this sample to Liferay DXP,
the Login portlet’s Sign In title is modified to display Login Portlet Override.

Figure 173.2: The customized Login portlet displays the new language key.

For reference, the Login portlet’s language keys are stored in the liferay-portal Github repo’s
modules/apps/login/login-web/src/main/resources/content folder.

What API(s) and/or code components does this sample highlight?

This sample leverages the Provide-Capability OSGi manifest header.

How does this sample leverage the API(s) and/or code component?

This sample conveys the recommended approach to override a portlet’s language keys file for
any module that is deployed to Liferay DXP’s OSGi runtime (not applicable to Liferay DXP’s core
language keys).

The steps to override a portlet’s language keys are

• Provide the new language keys that will override the original ones.
• Prioritize the new module’s resource bundle.

This sample’s src/main/resources/content folder holds the language properties file to override.
Since this example’s goal is to override only the English keys, the Language_en.properties is added.
You can addmore language properties files for additional language key locales you want to override
(e.g., Language_en.properties for Spanish).

Once your language keys are in place, you must use OSGi manifest headers to specify your
custom language keys are for the target module. To compliment the target module’s resource
bundle, you must aggregate your resource bundle with the target module’s resource bundle. This is
done by ranking your module first to prioritize its resource bundle over the target module resource
bundle. See this sample’s bnd.bnd as an example for setting the Provide-Capability OSGi header:

2137

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/overrides/module-jsp-override
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/overrides/module-jsp-override
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/overrides/module-jsp-override
https://github.com/liferay/liferay-portal
https://bnd.bndtools.org/chapters/220-contracts.html

Provide-Capability:\

liferay.resource.bundle;\

resource.bundle.base.name="content.Language",\

liferay.resource.bundle;\

bundle.symbolic.name=com.liferay.login.web;\

resource.bundle.aggregate:String="(bundle.symbolic.name=com.liferay.blade.login.web.resource.bundle.override),(bundle.symbolic.name=com.liferay.login.web)";\

resource.bundle.base.name="content.Language";\

service.ranking:Long="2";\

servlet.context.name=login-web

For more information on the Provide-Capability header and its parts, see the Prioritze Your
Module’s Resource Bundle section.

This approach can be used to override any portlet’s language keys (i.e., language.properties
files that are inside a module deployed to Liferay DXP’s OSGi runtime). If you need to override
Liferay DXP’s core language keys, see the Overriding Global Language Keys tutorial.

For more information on using a resource bundle to override a module’s language keys, see the
Overriding a Module’s Language Keys tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

2138

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/overrides/login-web-resource-bundle-override
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/overrides/login-web-resource-bundle-override
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/overrides/login-web-resource-bundle-override

CHAPTER 174

THEMES

This section focuses on Liferay sample themes. You can view these sample themes by visiting the
themes folder corresponding to your preferred build tool:

• Gradle sample themes
• LiferayWorkspace sample themes
• Maven sample themes

Visit a particular sample page to learn more!

174.1 Simple Theme

The Simple Theme sample provides the base files for a theme, using the Theme Builder Gradle
plugin. When deploying this sample with no customizations, a theme based off of the _styled base
theme is created.

For more information on themes, visit the Introduction to Themes tutorial.

What API(s) and/or code components does this sample highlight?

This sample demonstrates a way to create a simple theme in Liferay DXP.

How does this sample leverage the API(s) and/or code component?

To modify this sample, add the images, js, or templates folder, along with your modified files, to the
src/main/webapp folder. The sample already provides the src/main/resources/resources-importer,
src/main/webapp/WEB-INF, and src/main/webapp/css folders for you. Add your style modifications to
the provided css/_custom.scss file. For a complete explanation of a theme’s files, see the Theme
Reference Guide.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle

2139

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/themes
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/themes
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/themes
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/themes/simple-theme

Figure 174.1: A theme based off of the Styled base theme is created when the Theme Blade sample is deployed to Liferay Portal.

• LiferayWorkspace
• Maven

174.2 Template Context Contributor

The Template Context Contributor sample injects a new variable into Liferay DXP’s theme context.
When deploying this sample with no customizations, you can use the ${sample_text} variable from
any theme.

What API(s) and/or code components does this sample highlight?

Many developers prefer using templating frameworks like FreeMarker and Velocity, but don’t have
access to the common objects offered to those working with JSPs. Context contributors allow
non-JSP developers an easy way to inject variables into their Liferay templates.

This sample leverages the TemplateContextContributor API.

2140

https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/wars/simple-theme
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/themes/simple-theme
https://docs.liferay.com/dxp/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/template/TemplateContextContributor.html

How does this sample leverage the API(s) and/or code component?

You can easily modify this sample by customizing its BladeTemplateContextContributor.java Java
class. For example, the default context contributor sample provides the ${sample_text} variable
by injecting it into Liferay’s contextObjects, which is a map provided by default to offer com-
mon variables to non-JSP template developers. You can easily inject your own variables into the
contextObjectsmap usable by any theme deployed to Liferay DXP.

Are you working with templates that aren’t themes (e.g., ADTs, DDM templates, etc.)? You can
change the context in which your variables are injected by modifying the property attribute in the
@Component annotation. If you want your variable available for all templates, change it to

property = {"type=" + TemplateContextContributor.TYPE_GLOBAL}

Formore information on customizing theTemplate Context Contributor sample to fit your needs,
see the Javadoc listed in this sample’s com.liferay.blade.samples.theme.contributorBladeTemplateContextContributor
class. For more information on context contributors and how to create them in Liferay DXP, visit
the Context Contributors tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

174.3 Theme Contributor

The Theme Contributor sample contributes updates to the UI of the theme body, Control Menu,
Product Menu, and Simulation Panel. When deploying this sample with no customizations, the
colors of the theme and aforementioned menus are updated.

Also, there’s a simple JavaScript update that is provided, which logs a message to the browser’s
console window that states Hello Blade Theme Contributor!.

What API(s) and/or code components does this sample highlight?

This sample demonstrates a way to contribute updates to a Liferay DXP theme. Theme Contributors
let you package UI resources (e.g., CSS and JS) independent of a theme to include on a Liferay DXP
page.

How does this sample leverage the API(s) and/or code component?

To modify this sample, replace the corresponding JS or SCSS file with the JavaScript or
styles that you want, or add your own JS or SCSS files. For example, this sample pro-
vides an update to the Control Menu’s background-color in its src/main/resources/META-

INF/resources/css/blade.theme.contributor/_control_menu.scss file:

2141

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/themes/template-context-contributor
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/themes/template-context-contributor
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/themes/template-context-contributor

Figure 174.2: Your Liferay DXP pages andmenu fonts now have a yellow tint.

Figure 174.3: The message is printed to your browser’s console window using JavaScript.

body {

.control-menu {

background-color: darkkhaki;

}

}

All of the SCSS files used in this sample are imported into themain blade.theme.contributor.scss

file:

@import "bourbon";

@import "mixins";

@import "blade.theme.contributor/body";

@import "blade.theme.contributor/control_menu";

@import "blade.theme.contributor/product_menu";

@import "blade.theme.contributor/simulation_panel";

If you addyour own SCSSfiles, youmust add them to the list of imports in the blade.theme.contributor.scss
file.

Likewise, the sample blade.theme.contributor.js logs a message to your browser’s console
window using the following JS logic:

console.log('Hello Blade Theme Contributor!');

For more information on Theme Contributors, visit the Theme Contributors tutorial.

2142

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

2143

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/themes/theme-contributor
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/themes/theme-contributor
https://github.com/liferay/liferay-blade-samples/tree/7.1/maven/themes/theme-contributor

CHAPTER 175

EXT

This section focuses on Liferay Ext modules. You can view these sample apps by visiting the ext

folder corresponding to your preferred build tool:

• Gradle sample apps
• LiferayWorkspace sample apps

Visit the sample page to learn more!

175.1 Login Web Ext

The Login Ext Module sample demonstrates how to customize a default Liferay module’s source
code. This example replaces the default login.jspfile in the com.liferay.login.web bundle by adding
the text Hello from com.liferay.login.web.ext module! 2 + 2 = 4 to the Sign In form.

It also prints the following text to the console when you select Forgot Password from the Sign In
form:

In com.liferay.login.web.internal.portlet.action.ForgotPasswordMVCRenderCommand render

Before deploying the sample, you must stop the original bundle you intend to override. This is
because the Ext sample’s generated JAR includes the original bundle source plus your modified
source files. Follow the instructions below to do this:

1. Connect to your portal instance using Gogo Shell.

2. Search for the bundle ID of the original bundle to override. To find the com.liferay.login.web

bundle, execute this command:

lb -s | grep com.liferay.login.web

This returns output similar to this:

423|Active | 10|com.liferay.login.web (3.0.4)

2145

https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/ext
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/ext

Figure 175.1: The Login Ext module customizes the original Login module.

Make note of the ID (e.g., 423).

3. Stop the bundle:

stop 423

Once the original bundle is stopped, deploy the Ext module. Note that you cannot leverage
Blade or Gradle’s deploy command to do this. The deploy command deploys the module to the
osgi\marketplace\override folder by default, which does not configure Ext modules properly for
usage. You should build and copy the Ext module’s JAR to the deploy folder manually, or leverage
Liferay Dev Studio’s drag-and-drop deployment feature.

What API(s) and/or code components does this sample highlight?

This sample demonstrates how to create an Ext module and configure it to replace a default module
bundle.

How does this sample leverage the API(s) and/or code component?

You can create your own Ext module project by

• Declaring the original module name and version.
• Providing the source code that will replace the original.

2146

To declare the original module in the build.gradle file properly (only supports Gradle), you
must specify the original module’s Bundle Symbolic Name and the original module’s exact version.
In this example, this is configured like this:

originalModule group: "com.liferay", name: "com.liferay.login.web", version: "3.0.4"

If you’re leveraging Liferay Workspace, you should put your Ext module project in the /ext

folder (default); you can specify a different Ext folder name in workspace’s gradle.properties by
adding

liferay.workspace.ext.dir=EXT_DIR

If you are developing an Ext module project in standalone mode (not associated with Liferay
Workspace), you must declare the Ext Gradle plugin in your build.gradle:

apply plugin: 'com.liferay.osgi.ext.plugin'

Then you must provide your own code intended to replace the original one. Be sure to mimic
the original module’s folder structure when overriding its JAR.

The following file types can be overlaid with an Ext module:

• CSS
• Java
• JavaScript
• Language files (Language.properties)
• Scss
• Soy
• etc.

The Ext Gradle Plugin helps compile your code into the JAR. For example, .scss files are
compiled into .css files, which are included in your module’s JAR file artifact. This is done by the
buildCSS task.

Where Is This Sample?

There are two different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace

175.2 Felix Gogo Shell

To interact with Liferay DXP’s module framework, you can leverage the Gogo shell portlet. You can
access this portlet in the Control Panel → Configuration → Gogo Shell.

Note: You can also interact with Liferay DXP’s module framework via a local telnet session. To
do this, you must have Developer Mode enabled.

To open the Gogo shell via telnet, execute the following command:

telnet localhost 11311

2147

https://github.com/liferay/liferay-portal/blob/master/modules/sdk/gradle-plugins/src/main/java/com/liferay/gradle/plugins/LiferayOSGiExtPlugin.java
https://github.com/liferay/liferay-blade-samples/tree/7.1/gradle/ext/login-web-ext
https://github.com/liferay/liferay-blade-samples/tree/7.1/liferay-workspace/ext/login-web-ext

Running this command requires a local running instance of Liferay DXP and your machine’s
telnet command line utilities enabled.

To disconnect the session, execute the disconnect command. Avoid using the following com-
mands, which stop the OSGi framework:

• close

• exit

• shutdown

If you have Blade CLI installed and the telnet capability enabled, you can run the Gogo shell via
Blade command too:
blade sh <gogoShellCommand>

Here are some useful Gogo shell commands:
b [BUNDLE_ID]: lists information about a specific bundle including the bundle’s symbolic name,

bundle ID, data root, registered (provided) and used services, imported and exported packages,
and more

diag [BUNDLE_ID]: lists information about why the specified bundle is not working (e.g., unre-
solved dependencies, etc.)

headers [BUNDLE_ID]: lists metadata about the bundle from the bundle’s MANIFEST.MF file
help: lists all the available Gogo shell commands. Notice that each command has two parts

to its name, separated by a colon. For example, the full name of the help command is felix:help.
The first part is the command scope while the second part is the command function. The scope
allows commands with the same name to be disambiguated. E.g., scope allows the felix:refresh

command to be distinguished from the equinox:refresh command.
help [COMMAND_NAME]: lists information about a specific command including a description of the

command, the scope of the command, and information about any flags or parameters that can be
supplied when invoking the command.

inspect capability service [BUNDLE_ID]: lists services exposed by a bundle
install [PATH_TO_JAR_FILE]: installs the specified bundle into Liferay’s module framework
lb: lists all of the bundles installed in Liferay’s module framework. Use the -s flag to list the

bundles using the bundles’ symbolic names.
packages [PACKAGE_NAME]: lists all of the named package’s dependencies
scr:list: lists all of the components registered in the module framework (scr stands for service

component runtime)
scr:info [COMPONENT_NAME]: lists information about a specific component including the compo-

nent’s description, services, properties, configuration, references, and more.
services: lists all of the services that have been registered in Liferay’s module framework
start [BUNDLE_ID]: starts the specified bundle
stop [BUNDLE_ID]: stops the specified bundle
system:getproperties: lists all of the system properties
uninstall [BUNDLE_ID]: uninstalls the specified bundle from Liferay’s module framework. This

does not remove the specified bundle from Liferay’s module framework; it’s hidden from Gogo’s
lb command, but is still present. Adding a new version of the uninstalled bundle, therefore, will
not reinstall it; it will update the currently hidden uninstalled version. To remove a bundle from
Liferay’s module framework permanently, manually delete it from the LIFERAY_HOME/osgi folder.
For more information on the uninstall command, see OSGi’s uninstall documentation.

For more information about the Gogo shell, visit Apache’s official documentation.

2148

https://osgi.org/javadoc/r6/core/org/osgi/framework/Bundle.html#uninstall()
http://felix.apache.org/documentation/subprojects/apache-felix-gogo.html

CHAPTER 176

LIFERAY FACES

Liferay Faces is an umbrella project that provides support for the JavaServer™ Faces (JSF) standard
within Liferay Portal. It encompasses the following projects:

• Liferay Faces Bridge enables you to deploy JSF web apps as portlets without writing portlet-
specific Java code. It also contains innovative features that make it possible to leverage the
power of JSF 2.x inside a portlet application. Liferay Faces Bridge implements the JSR 329
Portlet Bridge Standard.

• Liferay Faces Alloy enables you to use AlloyUI components in a way that is consistent with
JSF development.

• Liferay Faces Portal enables you to leverage Liferay-specific utilities and UI components in
JSF portlets.

In this section of reference documentation, you’ll learn more about each of these projects.
You’ll also learn about the Liferay Faces version scheme.

176.1 Liferay Faces Version Scheme

In this article, you’ll learnwhich Liferay Faces artifacts should be usedwith your portlet and explore
the Liferay Faces versioning scheme by discovering what each component of a version means.
Once you have the versioning scheme mastered, you can view several example configurations.

Using The Liferay Faces Archetype Portlet

The Liferay Faces Archetype portlet can be used to determine the Liferay Faces artifacts and
versions that you must include in your portlet. Select your preferred Liferay Portal version, JSF
version, component suite (optional), and build tool, and the portlet will provide you with both a
command to generate your portlet from a Maven archetype and a list of dependencies that can be
copied into your build files. In the next section, you’ll be provided with compatibility information
about each version of the Liferay Faces artifacts.

2149

http://liferayfaces.org

Liferay Faces Alloy

Provides a suite of JSF components that utilize AlloyUI.

Branch|Example Artifact|AlloyUI|JSF API|Additional Info| master (3.x)|com.liferay.faces.alloy-
3.0.1.jar|3.0.x|2.2+|AlloyUI 3.0.x is the version that comes bundled with Liferay Portal 7.0+.| 2.x|com.lif-
eray.faces.alloy-2.0.1.jar|2.0.x|2.1+|AlloyUI 2.0.x is the version that comes bundled with Liferay Portal
6.2.| 1.x|com.liferay.faces.alloy-1.0.1.jar|2.0.x|1.2|AlloyUI 2.0.x is the version that comes bundled with
Liferay Portal 6.2.|

Liferay Faces Bridge

Provides the ability to deploy JSF web applications as portlets within Apache Pluto, the reference
implementation for JSR 286 (Portlet 2.0) and JSR 362 (Portlet 3.0).

Branch|Example Artifacts|Portlet API|JSF API|JCP Specification|Additional Info| API: 5.xIMPL:
5.x|com.liferay.faces.bridge.api-5.0.0.jarcom.liferay.faces.bridge.impl-5.0.0.jar|3.0|2.2|JSR
378|The Expert Group began work in September 2015 and the Specification is currently under
development.| API: 4.xIMPL: 4.x|com.liferay.faces.bridge.api-4.1.0.jarcom.liferay.faces.bridge.impl-
4.0.0.jar|2.0|2.2|JSR 329|Includes non-standard bridge extensions for JSF 2.2.| API: 3.xIMPL: 3.x|com.lif-
eray.faces.bridge.api-3.1.0.jarcom.liferay.faces.bridge.impl-3.0.0.jar|2.0|2.1|JSR 329|Includes
non-standard bridge extensions for JSF 2.1.| API: 2.xIMPL: 2.x|com.liferay.faces.bridge.api-2.1.0.jar-
com.liferay.faces.bridge.impl-2.0.0.jar|2.0|1.2|JSR 329 (MR1)|Includes support for Maintenance
Release 1 (MR1).| 1.x|N/A|1.0|1.2|JSR 301|N/A (Not Applicable) since Liferay Faces Bridge has never
implemented JSR 301.|

Liferay Faces Bridge Ext

Extension to Liferay Faces Bridge that provides compatibility with Liferay Portal and also takes
advantage of Liferay-specific features such as friendly URLs.

Branch |Example Artifact | Liferay Portal API | Bridge API | Portlet API |JSF API|
8.x|com.liferay.faces.bridge.ext-8.0.0.jar|7.3.0+|5.x|3.0|2.3| 7.x|com.liferay.faces.bridge.ext-
7.0.0.jar|7.3.0+|5.x|3.0|2.2| 6.x|com.liferay.faces.bridge.ext-6.0.0.jar|7.3.0+|4.x|2.0|2.2| 5.x|com.lif-
eray.faces.bridge.ext-5.0.4.jar|7.0.x/7.1.x/7.2.x|4.x|2.0|2.2| 4.x|UNUSED|N/A|N/A|N/A|N/A|
3.x|com.liferay.faces.bridge.ext-3.0.1.jar|6.2.x|4.x|2.0|2.2| 2.x|com.liferay.faces.bridge.ext-
2.0.1.jar|6.2.x|3.x|2.0|2.1| 1.x|com.liferay.faces.bridge.ext-1.0.1.jar|6.2.x|2.x|2.0|1.2|

Liferay Faces Portal

Provides a suite of JSF components that are based on the JSP tags provided by Liferay Portal.

Branch|Example Artifact|Liferay Portal API | JSF API| 3.x|com.liferay.faces.portal-
3.0.1.jar|7.0.x+|2.2+| 2.x|com.liferay.faces.portal-2.0.1.jar|6.2.x|2.1+| 1.x|com.liferay.faces.portal-
1.0.1.jar|6.2.x|1.2|

2150

http://alloyui.com/
https://github.com/liferay/liferay-faces-alloy/tree/master
https://github.com/liferay/liferay-faces-alloy/tree/2.x
https://github.com/liferay/liferay-faces-alloy/tree/1.x
https://portals.apache.org/pluto/
https://github.com/liferay/liferay-faces-bridge-api/tree/5.x
https://github.com/liferay/liferay-faces-bridge-impl/tree/5.x
https://www.jcp.org/en/jsr/detail?id=378
https://www.jcp.org/en/jsr/detail?id=378
https://github.com/liferay/liferay-faces-bridge-api/tree/4.x
https://github.com/liferay/liferay-faces-bridge-impl/tree/4.x
https://www.jcp.org/en/jsr/detail?id=329
https://github.com/liferay/liferay-faces-bridge-api/tree/3.x
https://github.com/liferay/liferay-faces-bridge-impl/tree/3.x
https://www.jcp.org/en/jsr/detail?id=329
https://github.com/liferay/liferay-faces-bridge-api/tree/2.x
https://github.com/liferay/liferay-faces-bridge-impl/tree/2.x
https://www.jcp.org/en/jsr/detail?id=329
https://www.jcp.org/en/jsr/detail?id=301
https://liferay.dev/-/portal
https://github.com/liferay/liferay-faces-bridge-ext/tree/master
https://github.com/liferay/liferay-faces-bridge-ext/tree/7.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/6.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/5.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/4.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/3.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/2.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/1.x
https://liferay.dev/-/portal
https://github.com/liferay/liferay-faces-portal/tree/3.x
https://github.com/liferay/liferay-faces-portal/tree/2.x
https://github.com/liferay/liferay-faces-portal/tree/1.x

Liferay Faces Util

Library that contains general purpose JSF utilities to supportmany of the sub-projects that comprise
Liferay Faces.

Branch|Example Artifact| JSF API| 4.x|com.liferay.faces.util-3.1.0.jar|2.3| 3.x|com.lif-
eray.faces.util-3.1.0.jar|2.2| 2.x|com.liferay.faces.util-2.1.0.jar|2.1| 1.x|com.liferay.faces.util-
1.1.0.jar|1.2|

Now that you know all about the Liferay Faces versioning scheme, you may be curious as to
how these components interact with each other. Refer to the following figure to view the Liferay
Faces dependency diagram.

Figure 176.1: The Liferay Faces dependency diagram helps visualize how components interact and depend on each other.

Next, you can view some example configurations to see the new versioning scheme in action.

176.2 Understanding Liferay Faces Bridge

2151

https://github.com/liferay/liferay-faces-util/tree/4.x
https://github.com/liferay/liferay-faces-util/tree/3.x
https://github.com/liferay/liferay-faces-util/tree/2.x
https://github.com/liferay/liferay-faces-util/tree/1.x

The Liferay Faces Bridge enables you to deploy JSF web apps as portlets without writing portlet-
specific code. It also contains innovative features that make it possible to leverage the power of JSF
2.x inside a portlet application.

Liferay Faces Bridge is distributed in a .jar file. You can add Liferay Faces Bridge as a depen-
dency to your portlet projects, in order to deploy your JSF web applications as portlets within JSR
286 (Portlet 2.0) compliant portlet containers, like Liferay Portal 5.2, 6.0, 6.1, 6.2, and 7.0.

The Liferay Faces Bridge project home page can be found here.
To fully understand Liferay Faces Bridge, you must first understand the portlet bridge standard.

Because the Portlet 1.0 and JSF 1.0 specs were being created at essentially the same time, the
Expert Group (EG) for the JSF specification constructed the JSF framework to be compliant with
portlets. For example, the ExternalContext.getRequest() method returns an Object instead of an
javax.servlet.http.HttpServletRequest. When this method is used in a portal, the Object can be cast
to a javax.portlet.PortletRequest. Despite the EG’s consciousness of portlet compatibility within
the design of JSF, the gap between the portlet and JSF lifecycles had to be bridged.

Portlet bridge standards and implementations evolved over time.
Starting in 2004, several different JSF portlet bridge implementations were developed in order

to provide JSF developers with the ability to deploy their JSF web apps as portlets. In 2006, the
JCP formed the Portlet Bridge 1.0 (JSR 301) EG in order to define a standard bridge API, as well as
detailed requirements for bridge implementations. JSR 301 was released in 2010, targeting Portlet
1.0 and JSF 1.2.

When the Portlet 2.0 (JSR 286) standard was released in 2008, it became necessary for the JCP
to form the Portlet Bridge 2.0 (JSR 329) EG. JSR 329 was also released in 2010, targeting Portlet 2.0
and JSF 1.2.

After the JSR 314 EG released JSF 2.0 in 2009 and JSF 2.1 in 2010, it became evident that a Portlet
Bridge 3.0 standard would be beneficial. In 2015 the JCP formed JSR 378) which is defining a bridge
for Portlet 3.0 and JSF 2.2. There are also variants of Liferay Faces Bridge that support Portlet 2.0
and JSF 1.2/2.1/2.2.

Liferay Faces Bridge is the Reference Implementation (RI) of the Portlet Bridge Standard. It
also contains innovative features that make it possible to leverage the power of JSF 2.x inside a
portlet application.

Now that you’re familiar with some of the history of the Portlet Bridge standards, you’ll learn
about the responsibilities required of the portlet bridge.

A JSF portlet bridge aligns the correct phases of the JSF lifecycle with each phase of the portlet
lifecycle. For instance, if a browser sends an HTTP GET request to a portal page with a JSF portlet
in it, the RENDER_PHASE is perfomed in the portlet’s lifecycle. The JSF portlet bridge then initiates
the RESTORE_VIEW and RENDER_RESPONSE phases in the JSF lifecycle. Likewise, when an HTTP POST is
executed on a portlet and the portlet enters the ACTION_PHASE, then the full JSF lifecycle is initiated
by the bridge.

Besides ensuring that the two lifecycles connect correctly, the JSF portlet bridge also acts as a
mediator between the portal URL generator and JSF navigation rules. JSF portlet bridges ensure
that URLs created by the portal comply with JSF navigation rules, so that a JSF portlet is able to
switch to different views.

The JSR 329/378 standards defines several configuration options prefixed with the
javax.portlet.faces namespace. Liferay Faces Bridge defines additional implementation-
specific options prefixed with the com.liferay.faces.bridge namespace.

2152

https://community.liferay.com/-/faces
https://javaee.github.io/javaee-spec/javadocs/javax/faces/context/ExternalContext.html#getRequest--
https://javaee.github.io/javaee-spec/javadocs/javax/servlet/http/HttpServletRequest.html
http://portals.apache.org/pluto/portlet-2.0-apidocs/javax/portlet/PortletRequest.html
http://www.jcp.org/en/jsr/detail?id=301
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=329
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=378

Figure 176.2: The different phases of the JSF Lifecycle are executed depending on which phase of the Portlet lifecycle is being executed.

Liferay Faces Bridge is an essential part of the JSF development process for Liferay DXP. Visit
the JSF Portlets with Liferay Faces section of tutorials for more information on JSF development
for Liferay DXP.

Related Topics

Understanding Liferay Faces Alloy
Understanding Liferay Faces Portal
What is Service Builder?

176.3 Understanding Liferay Faces Alloy

Liferay Faces Alloy is distributed in a .jar file. You can add Liferay Faces Alloy as a dependency to
your portlet projects, in order to use AlloyUI in a way that is consistent with JSF development.

During the creation of a JSF portlet in Liferay IDE/Developer Studio, you have the option of
choosing the portlet’s JSF Component Suite. The options include JSF standard, ICEfaces, PrimeFaces,
RichFaces, and Liferay Faces Alloy.

2153

http://www.icesoft.org/java/projects/ICEfaces/overview.jsf
http://primefaces.org/
http://richfaces.jboss.org/

If you selected the Liferay Faces Alloy JSF Component Suite during your portlet’s setup, the
.jar file is included in your portlet project.

The Liferay Faces Alloy project provides a set of UI components that utilize AlloyUI. For example,
a brief list of some of the supported aui: tags are listed below:

• Input: alloy:inputText, alloy:inputDate, alloy:inputFile
• Panel: alloy:accordion, alloy:column, alloy:fieldset, alloy:row
• Select: alloy:selectOneMenu, alloy:selectOneRadio, alloy:selectStarRating

If you want to utilize Liferay’s AlloyUI technology based on YUI3, you must include the Liferay
Faces Alloy .jar file in your JSF portlet project. If you selected Liferay Faces Alloy during your JSF
portlet’s setup, you have Liferay Faces Alloy preconfigured in your project, so you’re automatically
able to use the alloy: tags.

As you can see, it’s extremely easy to configure your JSF application to use Liferay’s AlloyUI
tags.

Related Topics

Creating a JSF Project Manually
Understanding Liferay Faces Bridge
Understanding Liferay Faces Portal

176.4 Understanding Liferay Faces Portal

Liferay Faces Portal is distributed in a .jar file. You can add Liferay Faces Portal as a dependency
for your portlet projects to use its Liferay-specific utilities and UI components. When Liferay Faces
Portal is included in a JSF portlet project, the com.liferay.faces.portal.[version].jar file resides
in the portlet’s library.

Figure 176.3: The required .jar files are downloaded for your JSF portlet based on the JSF UI Component Suite you configured.

Some of the features included in Liferay Faces Portal are:

2154

• Utilities: Provides the LiferayPortletHelperUtil which contains a variety Portlet-API and
Liferay-specific convenience methods.

• JSF Components: Provides a set of JSF equivalents for popular Liferay DXP JSP tags (not
exhaustive):

– liferay-ui:captcha → portal:captcha

– liferay-ui:input-editor → portal:inputRichText

– liferay-ui:search → portal:inputSearch

– liferay-ui:header → portal:header

– aui:nav → portal:nav

– aui:nav-item → portal:navItem

– aui:nav-bar → portal:navBar

– liferay-security:permissionsURL → portal:permissionsURL

– liferay-portlet:runtime → portal:runtime

For more information, visit https://liferayfaces.org/web/guest/portal-showcase.

• Expression Language: Adds a set of EL keywords such as liferay for getting Liferay-specific
info, and i18n for integration with out-of-the-box Liferay internationalized messages.

Great! You now have an understanding of what Liferay Faces Portal is, and what it accomplishes
in your JSF application.

Related Topics

Creating a JSF Project Manually
Understanding Liferay Faces Bridge
Understanding Liferay Faces Alloy

176.5 Page Fragments

Page Fragments are templates made up of CSS, HTML, and JavaScript used to build Content Pages.
The HTML, CSS, and JavaScript are all completely standard, just like anywhere else on the web, but
are also enhanced with Liferay-specific features. The articles in this section provide additional
information about the Liferay-specific features of Page Fragments.

176.6 EmbeddingWidgets in Page Fragments

You can embed both a selection of Liferay widgets and your own customwidgets in Page Fragments.
For a more information on embedding custom widgets, see the Fragment Specific Tags tutorial.

2155

https://liferayfaces.org/web/guest/portal-showcase

Embedding Liferay Widgets

Many Liferay widgets can be embedded in Page Fragments. Each embeddable widget has a specific
tag for use in fragments which looks like <lfr-widget-[widget-name]>. When you embed the widget,
the complete opening and closing tags must be used like this:

<lfr-widget-[widget-name]>

</lfr-widget-[widget-name]>

Here is the full list of widgets that can be embedded:

Widget Name Tag

DDL Display <lfr-widget-dynamic-data-list>

Form <lfr-widget-form>

Asset Publisher <lfr-widget-asset-list>

Breadcrumb <lfr-widget-breadcrumb>

Categories Navigation <lfr-widget-categories-nav>

Flash <lfr-widget-flash>

Media Gallery <lfr-widget-media-gallery>

Navigation Menu <lfr-widget-nav>

Polls Display <lfr-widget-polls>

Related Assets <lfr-widget-related-assets>

Site Map <lfr-widget-site-map>

Tag Cloud <lfr-widget-tag-cloud>

Tags Navigation <lfr-widget-tags-nav>

Web Content Display <lfr-widget-web-content>

Rss Publisher (Deprecated) <lfr-widget-rss>

Iframe <lfr-widget-iframe>

176.7 JSONWeb Services Invocation Examples

This tutorial provides examples of invoking Liferay’s JSON web services via JavaScript, URL, and
cURL. To illustrate the differences between these, the same two use cases (getting a user and adding
a user) are shown in each example. This tutorial also includes an example of using JavaScript to
invoke Liferay’s JSON web services from a portlet.

Get User JSONWeb Service Invocation via JavaScript

Among the JavaScript objects that Liferay creates for each page is a Liferay object. This object
includes a Service function that you can use to invoke Liferay’s API.

Examine the following JSON web service invocation, written in JavaScript:

<script type="text/javascript">

Liferay.Service(

'/user/get-user-by-email-address',

2156

http://curl.haxx.se

{

companyId: Liferay.ThemeDisplay.getCompanyId(),

emailAddress: 'test@example.com'

},

function(obj) {

console.log(obj);

}

);

</script>

When you run this example, the test@example.com user (JSON object) is returned. You can
examine the returned object from your browser console.

The Liferay.Service(...) function takes three arguments:

1. A string representing the service to invoke

2. A parameters object

3. A callback function

The callback function takes the result of the service invocation as an argument.

Add User JSONWeb Service Invocation via JavaScript

Here’s an example JSON web service invocation, also written in JavaScript, that adds a new user. It
requires many more parameters than the one for retrieving a user!

Liferay.Service(

'/user/add-user',

{

companyId: Liferay.ThemeDisplay.getCompanyId(),

autoPassword: false,

password1: 'test',

password2: 'test',

autoScreenName: false,

screenName: 'joe.bloggs',

emailAddress: 'joe.bloggs@example.com',

facebookId: 0,

openId: '',

locale: 'en_US',

firstName: 'Joe',

middleName: 'T',

lastName: 'Bloggs',

prefixId: 0,

suffixId: 0,

male: true,

birthdayMonth: 1,

birthdayDay: 1,

birthdayYear: 1970,

jobTitle: 'Tester',

groupIds: null,

organizationIds: null,

roleIds: null,

userGroupIds: null,

sendEmail: false,

serviceContext: {assetTagNames: ['test']}

},

function(obj) {

console.log(obj);

}

);

2157

The serviceContext object assigns the test tag to the newly created user. Note that you can
use JSON syntax to supply values for objects and arrays. For example, to supply a value for the
serviceContext object, you use curly brackets: { and }. To supply a value for the assetTagNames

array, you use square brackets: [and]. Thus, the line serviceContext: {assetTagNames: ['test']}

indicates that serviceContext is an object containing an array named assetTagNames, which contains
the string test.

Invoking JSONWeb Services via JavaScript in an Application

You can adapt the example from the previous section for use in a Liferay app. For example, the JSP
page below creates a form that lets the user specify a first name, middle name, last name, screen
name, and email address. When the user clicks the Add User button, the app uses these values to
create a new user.

<%@ taglib uri="http://alloy.liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<portlet:defineObjects />

<portlet:renderURL var="successURL">

<portlet:param name="mvcPath" value="/success.jsp"/>

</portlet:renderURL>

<portlet:renderURL var="failureURL">

<portlet:param name="mvcPath" value="/failure.jsp"/>

</portlet:renderURL>

<aui:form method="GET" name="<portlet:namespace />fm">

<aui:fieldset>

<aui:input label="First Name" name="first-name"></aui:input>

<aui:input label="Middle Name" name="middle-name"></aui:input>

<aui:input label="Last Name" name="last-name"></aui:input>

<aui:input label="Screen Name" name="screen-name"></aui:input>

<aui:input label="Email Address" name="email-address"></aui:input>

</aui:fieldset>

<p>Click the button below to add a new user by invoking Liferay's JSON web services.</p>

<aui:button-row>

<aui:button id="add-user" value="Add User">

</aui:button>

</aui:button-row>

</aui:form>

<aui:script use="node, event">

var addUserButton = A.one('#add-user');

var firstNameNode = A.one('#<portlet:namespace />first-name');

var middleNameNode = A.one('#<portlet:namespace />middle-name');

var lastNameNode = A.one('#<portlet:namespace />last-name');

var screenNameNode = A.one('#<portlet:namespace />screen-name');

var emailAddressNode = A.one('#<portlet:namespace />email-address');

addUserButton.on('click', function(event) {

var firstName = firstNameNode.get('value');

var middleName = middleNameNode.get('value');

var lastName = lastNameNode.get('value');

var screenName = screenNameNode.get('value');

var emailAddress = emailAddressNode.get('value');

var user = Liferay.Service(

'/user/add-user',

{

2158

companyId: Liferay.ThemeDisplay.getCompanyId(),

autoPassword: false,

password1: 'test',

password2: 'test',

autoScreenName: false,

screenName: screenName,

emailAddress: emailAddress,

facebookId: 0,

openId: '',

locale: 'en_US',

firstName: firstName,

middleName: middleName,

lastName: lastName,

prefixId: 0,

suffixId: 0,

male: true,

birthdayMonth: 1,

birthdayDay: 1,

birthdayYear: 1970,

jobTitle: 'Tester',

groupIds: null,

organizationIds: null,

roleIds: null,

userGroupIds: null,

sendEmail: false,

serviceContext: {assetTagNames: ['test']}

},

function(obj) {

console.log(obj);

if (obj.hasOwnProperty('createDate')) {

window.open('<%= successURL %>', '_self');

}

else {

window.open('<%= failureURL %>', '_self');

}

}

);

});

</aui:script>

Get User JSONWeb Service Invocation via URL

Here’s a simple JSON web service invocation via URL that returns the user with the specified email
address:

http://localhost:8080/api/jsonws/user/get-user-by-email-address/company-id/20154/email-address/test%40liferay.com?p_auth=[value]

This web service invocation returns the test@example.com user. After invoking a service via
Liferay’s JSONWS API page, the URL provided when you click on the URL Example tab omits the
p_auth URL query parameter. It’s assumed that you’ll add this parameter yourself. Remember that
you must be logged in as a user with the required permission to invoke a web service. To find the
p_auth token that corresponds to your session, see the Invoking JSONWeb Services tutorial.

As explained in that tutorial, you can supply parameters as either URL path parameters or URL
query parameters. In the preceding example, the company ID and email address are supplied as
URL path parameters. Here’s an equivalent example using URL query parameters:

http://localhost:8080/api/jsonws/user/get-user-by-email-address?companyId=20154&emailAddress=test@example.com&p_auth=[value]

Next, you’ll consider an example that requires many more parameters!

2159

Add User JSONWeb Service Invocation via URL

Here’s an example JSON web service invocation via URL that adds a new user with the specified
attributes:

http://localhost:8080/api/jsonws/user/add-user/company-id/20154/auto-password/false/password1/test/password2/test/auto-

screen-name/false/screen-name/joe.bloggs/email-address/joe.bloggs%40liferay.com/facebook-id/0/-open-id/locale/en_US/first-

name/Joe/middle-name/T/last-name/Bloggs/prefix-id/0/suffix-id/0/male/true/birthday-month/1/birthday-day/1/birthday-year/1970/job-

title/Tester/-group-ids/-organization-ids/-role-ids/-user-group-ids/send-email/false?p_auth=[value]

And here’s the same example using URL query parameters instead of URL path parameters:

http://localhost:8080/api/jsonws/user/add-user?companyId=20154&autoPassword=false&password1=test&password2=test&autoScreenName=false&screenName=joe.bloggs&emailAddress=joe.bloggs@example.com&facebookId=0&-

openId&locale=en_US&firstName=Joe&middleName=T&lastName=Bloggs&prefixId=0&suffixId=0&male=true&birthdayMonth=1&birthdayDay=1&birthdayYear=1970&jobTitle=Tester&-

groupIds&-organizationIds&-roleIds&-userGroupIds&sendEmail=false&p_auth=[value]

Get User JSONWeb Service Invocation via cURL

Here’s an example JSON web service invocation via the cURL tool that returns the user with the
specified email address:

curl http://localhost:8080/api/jsonws/user/get-user-by-email-address \

-u test@example.com:test \

-d companyId=20154 \

-d emailAddress='test@example.com'

Note that cURL is a command line tool. You can execute this command from a terminal window.

Add User JSONWeb Service Invocation via cURL

Here’s an example JSON web service invocation via the cURL tool that adds the user with the
specified attributes:

curl http://localhost:8080/api/jsonws/user/add-user \

-u test@example.com:test \

-d companyId=20154 \

-d autoPassword=false \

-d password1='test' \

-d password2='test' \

-d autoScreenName=false \

-d screenName='joe.bloggs' \

-d emailAddress='joe.bloggs@example.com' \

-d facebookId=0 \

-d openId='0' \

-d locale=en_US \

-d firstName='Joe' \

-d middleName='T' \

-d lastName='Bloggs' \

-d prefixId=0 \

-d suffixId=0 \

-d male=true \

-d birthdayMonth=1 \

-d birthdayDay=1 \

-d birthdayYear=1970 \

-d jobTitle='Tester' \

-d groupIds= \

-d organizationIds= \

-d roleIds= \

-d userGroupIds= \

-d sendEmail=false

Great! Now you’ve seen how to invoke Liferay’s JSON web services from JavaScript, URL, and
cURL.

2160

Related Topics

Invoking JSONWeb Services
JSONWeb Services Invoker
Invoking Remote Services

2161

CHAPTER 177

CUSTOMIZING CORE FUNCTIONALITY WITH EXT

Ext plugins are deprecated for 7.0 and should only be used if absolutely necessary.
The following app servers should be used for Ext plugin development in Liferay DXP:

• Tomcat 9.0

In most cases, Ext plugins are not necessary. There are, however, certain cases that require the
use of an Ext plugin. Liferay only supports the following Ext plugin use cases:

• Providing custom implementations for any beans declared in Liferay DXP’s Spring files (when
possible, use service wrappers instead of an Ext plugin). 7.0 removed many beans, so make
sure your overridden beans are still relevant if converting your legacy Ext plugin (how to).

• Overwriting a class in a 7.0 core JAR. For a list of core JARs, see the Finding Core Artifacts
section (how to).

• Modifying Liferay DXP’s web.xml file (how to).
• Adding to Liferay DXP’s web.xml file (how to).

Note: In previous versions of Liferay Portal, you needed an Ext plugin to specify classes as portal
property values (e.g., global.starup.events.my.custom.MyStartupAction), since the custom class had
to be added to the portal class loader. This is no longer the case in 7.0 since all lifecycle events can
use OSGi services with no need to edit these legacy properties.

Ext plugins are used to customize Liferay DXP’s core functionality. You can learn more about
what the core encompasses in the Finding Core Artifacts article section. In this section, you’ll learn
how to

• Create an Ext plugin
• Develop an Ext plugin
• Deploy an Ext plugin
• Redeploy an Ext plugin

You can also dive into the Anatomy of an Ext Plugin to familiarize yourself with its structure.
You’ll start by creating an Ext plugin.

2163

177.1 Extending Core Classes Using Spring with Ext Plugins

A supported use case for using Ext plugins in Liferay DXP is extending its core classes (e.g., portal-
impl, portal-kernel, etc.) using Spring. You can reference the Finding Core Artifacts section for
help distinguishing core classes. Make sure you’ve reviewed the generalized Customization with
Ext Plugins section before creating an Ext plugin.

As an example, you’ll create a sample Ext plugin that extends the PortalImpl core class residing
in the portal-impl.jar. You’ll override the PortalImpl.getComputerName()method via Spring bean,
which returns your server’s node name. The Ext plugin will override this method and modify the
server’s returned node name.

1. Navigate to your LiferayWorkspace’s root folder and run the following command:

blade create -t war-core-ext portal-impl-extend-spring-ext

Your Ext plugin is generated and now resides in the workspace’s /ext folder with the name
you assigned.

2. Displaying the server node name in your Liferay DXP installation is set to false by default.
You’ll need to enable this property. To do this, navigate into your Liferay bundle’s root folder
and create a portal-ext.properties file. In that file, insert the following property:

web.server.display.node=true

Now your server’s node name will be displayed once your Liferay bundle is restarted.

3. In the /extImpl/java folder, create the folder structure representing the package name you
want your new class to reside in (e.g., com/liferay/portal/util). Then create your new Java
class:

package com.liferay.portal.util;

public class SamplePortalImpl extends PortalImpl {

@Override

public String getComputerName() {

return "SAMPLE_EXT_INSTALLED_" + super.getComputerName();

}

}

The method defined in the extension class overrides the PortalImpl.getComputerName()method.
The "SAMPLE_EXT_INSTALLED_" String is now prefixed to your server’s node name.

4. In your Ext plugin’s /extImpl/resources folder, create a META-INF/ext-spring.xml file. In this
file, insert the following code:

<?xml version="1.0"?>

<beans

default-destroy-method="destroy"

default-init-method="afterPropertiesSet"

2164

https://docs.liferay.com/ce/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/util/PortalImpl.html

xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-

beans-3.0.xsd"

>

<bean class="com.liferay.portal.util.SamplePortalImpl" id="com.liferay.portal.util.PortalImpl" />

</beans>

Since you plan on modifying a core service class, you can inject its extension class via a Spring
bean. This will ensure your new class is recognized. Assign your extension class’s fully defined
class name (e.g., com.liferay.portal.util.SamplePortalImpl) to the bean tag’s class attribute and
the fully defined original class name (e.g., com.liferay.portal.util.PortalImpl) to the bean tag’s id
attribute.

When your Ext plugin is deployed, your new service (e.g., SamplePortalImpl) will extend the
core PortalImpl class.

Awesome! You’ve created an Ext plugin that extends a core class in Liferay DXP! Follow the
instructions in the Deploy the Plugin article to deploy it to your server.

177.2 Overriding Core Classes with Ext Plugins

A supported use case for using Ext plugins in Liferay DXP is overriding its core classes (e.g.,
portal-impl, portal-kernel, etc.). You can reference the Finding Core Artifacts section for help
distinguishing core classes. Make sure you’ve reviewed the generalized Customization with Ext
Plugins section before creating an Ext plugin.

As an example, you’ll create a sample Ext plugin that overwrites the PortalImpl core class
residing in the portal-impl.jar. You’ll edit the PortalImpl.getComputerName()method, which returns
your server’s node name. The Ext plugin will override the entire PortalImpl class, adding the
method modifying the server’s returned node name.

1. Navigate to your LiferayWorkspace’s root folder and run the following command:

blade create -t war-core-ext portal-impl-override

Your Ext plugin is generated and now resides in the workspace’s /ext folder with the name
you assigned.

2. Displaying the server node name in your Liferay DXP installation is set to false by default.
You’ll need to enable this property. To do this, navigate into your Liferay bundle’s root folder
and create a portal-ext.properties file. In that file, insert the following property:

web.server.display.node=true

Now your server’s node name will be displayed once your Liferay bundle is restarted.

3. In the /extImpl/java folder, create the folder structure matching the class’s folder structure
you’d like to override (e.g., com/liferay/portal/util). Then create the new Java class that will
override the existing core class; your new class must have the same name as the original.

2165

https://docs.liferay.com/ce/portal/7.1-latest/javadocs/portal-impl/com/liferay/portal/util/PortalImpl.html

4. Copy all of the original class’s (e.g., PortalImpl) logic into your new class. Then modify the
method you want to customize. For this example, you want to edit the getComputerName()

method. Therefore, replace it with the method below:

@Override

public String getComputerName() {

return "sample_portalimpl_ext_installed_successfully_" + _computerName;

}

Themethod defined in the new class overrides the PortalImpl.getComputerName()method. The
sample_portalimpl_ext_installed_successfully_ String is now prefixed to your server’s node
name.

When your Ext plugin is deployed, your new Java class will override the core PortalImpl class.
Awesome! You’ve created an Ext plugin that overrides a core class in Liferay DXP! Follow the

instructions in the Deploy the Plugin article to deploy it to your server.

177.3 Adding to the web.xml with Ext Plugins

A supported use case for using Ext Plugins in Liferay DXP is adding additional functionality to its
web.xml file. Before beginning, make sure you’ve reviewed the generalized Customization with Ext
Plugins section.

As an example, you’ll create a sample Ext plugin that adds to your Liferay DXP’s existing web.xml

file (e.g., in the /tomcat-[version]/webapps/ROOT/WEB-INF folder). You’ll add a new printout in the
console during startup.

1. Navigate to your LiferayWorkspace’s root folder and run the following command:

blade create -t war-core-ext add-printout

Your Ext plugin is generated and now resides in the workspace’s /ext folder with the name
you assigned.

2. For your Liferay DXP installation to recognize new functionality in the web.xml, you must
create a class that implements the ServletContextListener interface. This class will initialize
a servlet context event for which you’ll add your new functionality. In the extImpl/java folder,
create the folder structure representing the package name you want your new class to reside
in (e.g., com/liferay/portal/servlet/context). Then create your new Java class:

package com.liferay.portal.servlet.context;

import javax.servlet.ServletContextEvent;

import javax.servlet.ServletContextListener;

public class ExtAddEntryWebXmlPortalContextLoaderListener

implements ServletContextListener {

public void contextDestroyed(ServletContextEvent servletContextEvent) {

}

public void contextInitialized(ServletContextEvent servletContextEvent) {

System.out.println("EXT_ADD_ENTRY_WEBXML_INSTALLED_SUCCESSFULLY");

2166

https://javaee.github.io/javaee-spec/javadocs/javax/servlet/ServletContextListener.html

}

}

The above class includes two methods that initialize and destroy your servlet context event.
Be sure to add the new web.xml’s functionality when the portal context is initializing. To add a
printout verifying the Ext plugins installation, a simple print statement was defined in the
contextInitialized(...) method:

System.out.println("EXT_ADD_ENTRY_WEBXML_INSTALLED_SUCCESSFULLY");

3. Now that you’ve defined a servlet context event, you should add a listener to your web.xml that
listens for it. In the ext-web/docroot/WEB-INF folder, open the web.xml file, whichwas generated
for you by default.

4. Add the following tag between the tags:

<listener>

<listener-class>com.liferay.portal.servlet.context.ExtAddEntryWebXmlPortalContextLoaderListener</listener-class>

</listener>

Excellent! Now when your Ext plugin is deployed, your Liferay DXP installation will create a
ServletContextListener instance, which will initialize a custom servlet context event. This event
will be recognized by the web.xml file, which will add the new functionality to your Liferay DXP
installation. Follow the instructions in the Deploy the Plugin article for help deploying the Ext
plugin to your server.

177.4 Modifying the web.xml with Ext Plugins

A supported use case for using Ext Plugins in Liferay DXP is modifying its web.xml file. Before
beginning, make sure you’ve reviewed the generalized Customization with Ext Plugins section.

As an example, you’ll create a sample Ext plugin that modifies Liferay DXP’s existing web.xml

file (e.g., in the /tomcat-[version]/webapps/ROOT/WEB-INF folder). You’ll modify the session timeout
configuration, which is set to 30 (minutes) by default:

<session-config>

<session-timeout>30</session-timeout>

<cookie-config>

<http-only>true</http-only>

</cookie-config>

</session-config>

The Ext plugin will update the session timeout to one minute.

1. Navigate into your LiferayWorkspace’s /ext folder and run the following command:

blade create -t war-core-ext modify-session-timeout

Your Ext plugin is generated and now resides in the workspace’s /ext folder with the name
you assigned.

2167

2. In the ext-web/docroot/WEB-INF folder, open the web.xml file, which was generated for you by
default.

3. Insert the following logic between the <web-app> tags:

<session-config>

<session-timeout>1</session-timeout>

<cookie-config>

<http-only>true</http-only>

</cookie-config>

</session-config>

Notice that the <session-timeout> tag has been updated to 1.
That’s it! Now when your Ext plugin is deployed, your Liferay DXP installation will timeout after

one minute of inactivity. Follow the instructions in the Deploy the Plugin article for help deploying
the Ext plugin to your server.

177.5 Item Selector Criterion and Return Types

Liferay DXP bundles have apps and app suites containing ItemSelectorCriterion classes and
ItemSelectorReturnType classes developers can use.

Item Selector Criterion Classes

Collaboration App Suite Modules:

• com.liferay.item.selector.criteria.api:

– ImageItemSelectorCriterion: Image file entity type.

– AudioItemSelectorCriterion: Audio file entity type.

– FileItemSelectorCriterion: Document Library file entity type.

– UploadItemSelectorCriterion: Uploadable file entity type.

– URLItemSelectorCriterion: URL entity type.

– VideoItemSelectorCriterion: Video file entity type.

• com.liferay.wiki.api has wiki criterion.

Web Experience App Suite Modules:

• com.liferay.site.item.selector.api has site criterion.

• com.liferay.layout.item.selector.api has layout criterion.

• com.liferay.journal.item.selector.api has web content criterion.

If there’s no criterion class for your entity, you can create your own ItemSelectorCriterion class
(tutorial coming soon).

2168

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/image/criterion/ImageItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/audio/criterion/AudioItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/criteria/file/criterion/FileItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/upload/criterion/UploadItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/url/criterion/URLItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/video/criterion/VideoItemSelectorCriterion.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/wiki/item/selector/criterion/package-summary.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/site/item/selector/criterion/package-summary.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/layout/item/selector/criterion/package-summary.html
https://docs.liferay.com/dxp/apps/web-experience/latest/javadocs/com/liferay/journal/item/selector/criterion/package-summary.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorCriterion.html

Item Selector Return Type Classes

The Liferay Collaboration app suite’s com.liferay.item.selector.criteria.apimodule includes the
following return types:

• Base64ItemSelectorReturnType: Base64 encoding of the entity as a String.

• FileEntryItemSelectorReturnType: File entry information as a JSON object.

• URLItemSelectorReturnType: URL of the entity as a String.

• UUIDItemSelectorReturnType: Universally Unique Identifier (UUID) of the entity as a String.

If there’s no return type class that meets your needs, you can implement your own
ItemSelectorReturnType class (tutorial coming soon).

177.6 Breaking Changes

This document presents a chronological list of changes that break existing functionality, APIs, or
contractswith third party Liferay developers or users. We try our best tominimize these disruptions,
but sometimes they are unavoidable.

Here are some of the types of changes documented in this file:

• Functionality that is removed or replaced
• API incompatibilities: Changes to public Java or JavaScript APIs
• Changes to context variables available to templates
• Changes in CSS classes available to Liferay themes and portlets
• Configuration changes: Changes in configurationfiles, like portal.properties, system.properties,
etc.

• Execution requirements: Java version, Java EE Version, browser versions, etc.
• Deprecations or end of support: For example, warning that a certain feature or API will be
dropped in an upcoming version.

Breaking Changes List

Standardized Data Attribute Names Passed into Selectors

• Date: 2016-Oct-26
• JIRA Ticket: LPS-66646

What changed? The data attributes passed into the event when someone uses a selector (e.g.,
asset selector, document selector, file selector, role selector, site selector, user group selector, etc.)
have been standardized from being selector specific (e.g., groupid, groupdescriptivename, teamid,
teamname, etc.) to being more generic (e.g., entityid and entityname).

Who is affected? This affects anyone passing selector specific data attributes to a selector.

2169

https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/package-summary.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/Base64ItemSelectorReturnType.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/FileEntryItemSelectorReturnType.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/URLItemSelectorReturnType.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/criteria/UUIDItemSelectorReturnType.html
https://docs.liferay.com/dxp/apps/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html
https://issues.liferay.com/browse/LPS-66646

How should I update my code? Instead of using selector specific data attributes, you should
change your data attributes to use entityid and entityname.

Example
Old way:

<portlet:namespace />selectFileEntryType(event.fileentrytypeid, event.fileentrytypename);

New way:

<portlet:namespace />selectFileEntryType(event.entityid, event.entityname);

Old way:

data.put("roleid", role.getRoleId());

data.put("roletitle", role.getTitle(locale));

New way:

data.put("entityid", role.getRoleId());

data.put("entityname", role.getTitle(locale));

Whywas this changemade? This change was made to standardize the data attribute names and
allow utility methods to accept standardized event parameters.

Removed URL Parameters p_p_col_id, p_p_col_pos, and p_p_col_count from Every Portlet URL.

• Date: 2016-Dec-12
• JIRA Ticket: LPS-69482

What changed? The parameters p_p_col_count, p_p_col_id, and p_p_col_pos are no longer present
in every portlet URL.

Who is affected? This affects developers who are reading these parameters in their custom code.

How should I update my code? You can no longer obtain these parameters from the portlet URL.
If you need to read them, you should do it from PortletDisplay.

• The parameter p_p_col_count can be obtained via the portletDisplay.getColumnCount()

method.
• The parameter p_p_col_id can be obtained via the portletDisplay.getColumnId()method.
• The parameter p_p_col_pos can be obtained via the portletDisplay.getColumnPos()method.

Whywas this changemade? This change simplifies portlet URLs so they only contain the required
parameters. This was done as a preliminary step of a bigger story to create portlet URLs without
passing the request as a necessary parameter.

Moved Users File Uploads Portlet Properties to OSGi Configuration

• Date: 2017-Feb-06
• JIRA Ticket: LPS-69211

2170

https://issues.liferay.com/browse/LPS-69482
https://issues.liferay.com/browse/LPS-69211

What changed? The Users File Uploads portlet properties have been moved from Server Admin-
istration to an OSGi configuration named UserFileUploadsConfiguration.java in the users-admin-api

module.

Who is affected? This affects anyone using the following portlet properties:

• users.image.check.token

• users.image.max.size

• users.image.max.height

• users.image.max.width

How should I update my code? Instead of overriding the portal.properties file, you can manage
the properties from Portal’s configuration administrator. This can be accessed by navigating to
Liferay Portal’s Control Panel → Configuration → System Settings → Foundation → User Images and
editing the settings there.

If you would like to include the new configuration in your application, follow the instructions
for making your applications configurable in Liferay 7.0.

Whywas this changemade? This change was made as part of the modularization efforts to ease
portal configuration changes.

Moved CAPTCHA Portal Properties to OSGi Configuration

• Date: 2017-Feb-13
• JIRA Ticket: LPS-67830

What changed? The CAPTCHA properties have been moved from portal.properties and Server
Administration to an OSGi configuration named CaptchaConfiguration.java in the captcha-apimod-
ule.

Who is affected? This affects anyone using the following portal properties:

• captcha.max.challenges

• captcha.check.portal.create_account

• captcha.check.portal.send_password

• captcha.check.portlet.message_boards.edit_category

• captcha.check.portlet.message_boards.edit_message

• captcha.engine.impl

• captcha.engine.recaptcha.key.private

• captcha.engine.recaptcha.key.public

• captcha.engine.recaptcha.url.script

• captcha.engine.recaptcha.url.noscript

• captcha.engine.recaptcha.url.verify

• captcha.engine.simplecaptcha.height

• captcha.engine.simplecaptcha.width

• captcha.engine.simplecaptcha.background.producers

• captcha.engine.simplecaptcha.gimpy.renderers

• captcha.engine.simplecaptcha.noise.producers

2171

https://dev.liferay.com/develop/tutorials/-/knowledge_base/7-0/making-your-applications-configurable
https://issues.liferay.com/browse/LPS-67830

• captcha.engine.simplecaptcha.text.producers

• captcha.engine.simplecaptcha.word.renderers

How should I update my code? Instead of overriding the portal.properties file, you can manage
the properties from Portal’s configuration administrator. This can be accessed by navigating to
Liferay Portal’s Control Panel → Configuration → System Settings → Captcha and editing the settings
there.

If you would like to include the new configuration in your application, follow the instructions
for making your applications configurable in Liferay 7.0.

Whywas this changemade? This change was made as part of the modularization efforts to ease
portal configuration changes.

Moved OpenOffice Properties to OSGi Configuration

• Date: 2017-Mar-24
• JIRA Ticket: LPS-71382

What changed? The OpenOffice properties have been moved from Server Administration to
an OSGi configuration named OpenOfficeConfiguration.java in the document-library-document-

conversionmodule.

Who is affected? This affects anyone using the following portal properties:

• openoffice.cache.enabled

• openoffice.server.enabled

• openoffice.server.host

• openoffice.server.port

How should I update my code? Instead of overriding the portal.properties file, you can manage
the properties from Portal’s configuration administrator. This can be accessed by navigating to
Liferay Portal’s Control Panel → Configuration → System Settings → Other → OpenOffice Integration and
editing the settings there.

If you would like to include the new configuration in your application, follow the instructions
for making your applications configurable in Liferay 7.0.

Whywas this changemade? This change was made as part of the modularization efforts to ease
portal configuration changes.

No More Exceptions Are Thrown When a DDMStructure Is Fetched

• Date: 2017-Mar-31
• JIRA Ticket: LPS-52675

2172

https://dev.liferay.com/develop/tutorials/-/knowledge_base/7-0/making-your-applications-configurable
https://issues.liferay.com/browse/LPS-71382
https://dev.liferay.com/develop/tutorials/-/knowledge_base/7-0/making-your-applications-configurable
https://issues.liferay.com/browse/LPS-52675

What changed? The following methods no longer throw PortalException:

public DDMStructure fetchStructure(

long groupId, long classNameId, String structureKey,

boolean includeAncestorStructures)

public DDMStructure fetchStructureByUuidAndGroupId(

String uuid, long groupId, boolean includeAncestorStructures)

Who is affected? This affects anyone using these methods.

How should I update my code? Keep using these methods, but be aware that they don’t throw
exceptions.

Whywas this changemade? Since the current method implementations don’t generate excep-
tions, there’s no need for the methods to declare throwing a PortalException.

Removed Indexation of Fields ratings and viewCount

• Date: 2017-May-16
• JIRA Ticket: LPS-70724

What changed? The fields ratings and viewCount are no longer indexed in the BaseIndexer class
for AssetEntry objects.

Who is affected? This affects any search-related custom code where the ratings and viewCount

fields are used in queries.

How should I update my code? To adapt to these changes, consider several alternatives:

• Use the Highest Rated Assets and Most Viewed Assets Liferay portlets.
• Replace the index query with a database query.
• Implement an IndexerPostProcessor to index these fields in certain documents.

Whywas this changemade? Keeping the Ratings and View Count options in the search index
in sync with the database has a negative impact on normal operations due to the significantly
increased number of indexWrite requests causing throughput issues and, therefore, performance
degradation.

In addition, the view count is not always up-to-date in the database. This behavior is con-
trolled by the Buffered Increment mechanism. You can find more information about this in the
portal.properties file.

Moved Upload Servlet Request Portal Properties to OSGi Configuration

• Date: 2017-May-30
• JIRA Ticket: LPS-69102

What changed? The Upload Servlet Request properties have been moved from the
portal.propertiesfile andServerAdministration to anOSGi configurationnamed UploadServletRequestConfiguration.java

in the portal-uploadmodule.

2173

https://issues.liferay.com/browse/LPS-70724
https://issues.liferay.com/browse/LPS-69102

Who is affected? This affects anyone using the following portal properties:

• com.liferay.portal.upload.UploadServletRequestImpl.max.size

• com.liferay.portal.upload.UploadServletRequestImpl.temp.dir

How should I update my code? Instead of overriding the portal.properties file, you can manage
the properties from Portal’s configuration administrator. This can be accessed by navigating to
Liferay Portal’s Control Panel → Configuration → System Settings → Upload Servlet Request and editing
the settings there.

If you would like to include the new configuration in your application, follow the instructions
for making your applications configurable in Liferay 7.0.

Whywas this changemade? This change was made as part of the modularization efforts to ease
portal configuration changes.

Moved Three DL File Properties to OSGi Configuration

• Date: 2017-Aug-01
• JIRA Ticket: LPS-69208

What changed? Two DL File properties have been moved from Server Administration to the
OSGi configuration DLConfiguration, and one to DLFileEntryConfiguration. Both configurations are
located in the document-library-apimodule.

Who is affected? This affects anyone who is using the following portal properties:

• dl.file.entry.previewable.processor.max.size

• dl.file.extensions

• dl.file.max.size

How should I update my code? Instead of overriding the portal.properties file, you can manage
the properties from Portal’s configuration administrator. This can be accessed by navigating to
Portal’s Control Panel → Configuration → System Settings → Collaboration → Documents & Media Service
or Documents & Media File Entries and editing the settings there.

If you would like to include the new configuration in your application, follow the instructions
for making your applications configurable.

Whywas this changemade? This change was made as part of the modularization efforts to ease
portal configuration changes.

Removed the soyutils Module

• Date: 2017-Aug-28
• JIRA Ticket: LPS-69102

What changed? The module frontend-js-soyutils-web is no longer available.

Who is affected? This affects anyone using the soyutilsmodule.

2174

https://dev.liferay.com/develop/tutorials/-/knowledge_base/7-0/making-your-applications-configurable
https://issues.liferay.com/browse/LPS-69208
https://dev.liferay.com/develop/tutorials/-/knowledge_base/7-0/making-your-applications-configurable
https://issues.liferay.com/browse/LPS-69102

How should I update my code? In the rare case that a component is affected, it is recommended
that the code is migrated to use the metal-soy module instead. You can do this by extending the
Metal.js provided Component classes.

Why was this change made? The removed module exposed a legacy version of soyutils. This
caused interoperability issues between applications using different versions of theClosureTemplate
library.

Converted liferay-ui Tags to Module-Specific Tags

• Date: 2017-Aug-28
• JIRA Ticket: LPS-74331

What changed? Several liferay-ui taglibs have been moved from the Portal’s kernel into OSGi
modules, resulting in taglib names being changed. The updated names are listed below:

• liferay-ui:asset-add-button → liferay-asset:asset-add-button

• liferay-ui:asset-addon-entry-display → liferay-asset:asset-addon-entry-display

• liferay-ui:asset-addon-entry-selector → liferay-asset:asset-addon-entry-selector

• liferay-ui:asset-categories-available → liferay-asset:asset-categories-available

• liferay-ui:asset-categories-error → liferay-asset:asset-categories-error

• liferay-ui:asset-display → liferay-asset:asset-display

• liferay-ui:asset-links → liferay-asset:asset-links

• liferay-ui:asset-metadata → liferay-asset:asset-metadata

• liferay-ui:asset-tags-available → liferay-asset:asset-tags-available

• liferay-ui:asset-tags-error → liferay-asset:asset-tags-error

• liferay-ui:asset-tags-navigation → liferay-asset:asset-tags-navigation

• liferay-ui:input-asset-links → liferay-asset:input-asset-links

• liferay-ui:journal-content-search → Removed (journal-content-search-web was deprecated)
• liferay-ui:restore-entry → Removed
• liferay-ui:rss →liferay-rss:rss
• liferay-ui:rss-settings → liferay-rss:rss-settings

Who is affected? This affects anyone who is using the taglibs listed above.

How should I update my code? You must update your liferay-ui tags to use the new names. If
you prefer keeping the old names temporarily, you can rely on the compatibility layer offered by
Liferay. To set this, add the com.liferay.portal.web.compat dependency to your project’s build file.

Use the updated tag names as soon as you’re able, as this compatibility layer is deprecated and
will not be available for future releases.

Why was this change made? This change was made to categorize taglibs properly by moving
them to their respective OSGi modules.

Changed Default Value for Browser Cache Properties

• Date: 2017-Sep-05
• JIRA Ticket: LPS-74452

2175

https://issues.liferay.com/browse/LPS-74331
https://issues.liferay.com/browse/LPS-74452

What changed? The default values for the portal properties browser.cache.disabled and
browser.cache.signed.in.disabled were changed to true.

Who is affected? This affects anyone relying on proxies and load balancers to cache HTML
content.

How should I update my code? You should set both properties browser.cache.disabled and
browser.cache.signed.in.disabled to false, as documented in portal-legacy-7.0.properties.

Whywas this changemade? The load balancer and web proxy’s behavior when Cache-Control
headers are missing is not defined. In the past, many preferred to not cache the content for
correctness; however, it is now common to cache the content for performance.

When an aggressive caching load balancer or web proxy appears in the network architecture,
the default value may result in security problems such as personalized content being mistakenly
shared, including names or other personally identifiable information. As Liferay shifts towards
use cases providing personalized experiences, this is becoming a serious problem.

While this is ultimately a load balancer or web proxy configuration issue, it is perceived as a
Liferay issue because it is Liferay content being cached, and is viewed negatively because leaking
sensitive information in a production environment is a very serious security issue.

A value of true will improve a portal administrator’s experience, and a value of false can be
considered during performance tuning, if needed.

Users Can Have Numeric Screen Names with No Limitations, and Sites Can No Longer Have Numeric Friendly
URLs

• Date: 2017-Oct-10
• JIRA Ticket: LPS-66460

What changed?

• The portal property users.screen.name.allow.numeric now defaults to true.
• Numeric screen names are no longer limited by whether they correspond to an existing group
ID.

• Sites can no longer set their group ID as their friendly URL.
• Sites can no longer be implicitly accessed by using their group ID in the URL (this used to be
available automatically, even if it wasn’t set that way).

• If the friendly URL of a site is already set to the group ID, it will continue to work as normal,
but you will be forced to change it if you update the site in the Site Settings portlet.

• If a site is updated and no friendly URL is provided, it will default to /group-<groupId>. If that
duplicates another friendly URL, the friendly URLwill be incremented until a unique friendly
URL is found (e.g., /group-<groupId>-1).

• The default friendly URL for new sites has not changed.

Who is affected? This affects anyone who

• has set the friendly URL of their site to the group ID.
• uses a group ID to navigate or direct to a site.

2176

https://issues.liferay.com/browse/LPS-66460

How should I update my code? No code updates should be required, but if you fall under one of
the scenarios in the previous section, you should consider the following changes:

• If you have set the friendly URL of a site to its group ID, you should update the friendly URL of
that site to something else. A site administrator can do this through the Site Settings portlet.

• If you have hard-coded the group ID in any links, youmust change them tomatch the updated
friendly URL.

Whywas this changemade? There were common complaints from customers who used LDAP to
import users — if users were given a numeric screen name during import, some imports would fail
because those screen names conflicted with an existing group ID.

This was because a site’s group ID could be used as its friendly URL, while a user’s screen
name is used as the friendly URL to their personal site. This could introduce a routing conflict, so
numeric screen names were disallowed if they conflicted with an existing group ID.

By removing sites’ ability to use their group ID as their friendly URL, the possible conflict with
numeric screen names is expunged, allowing users to have any number as their screen name. This
makes it much less likely for LDAP imports to fail when using numeric screen names for imported
users.

Since LDAP import is more commonly used than a site using the group ID as its friendly URL,
the less useful feature was removed to stabilize the more common one.

Removed Support for Velocity in Themes

• Date: 2017-Oct-19
• JIRA Ticket: LPS-74379

What changed?

• Themes can no longer use Velocity for templates.
• Somehelpermethodshavebeen removed from thepublicAPIs com.liferay.portal.kernel.util.ThemeHelper
and com.liferay.taglib.util.ThemeUtil.

Who is affected? This affects anyone who has themes using Velocity templates or is using the
removed methods.

How should I update my code? If you have a theme using Velocity, consider migrating it to
FreeMarker for better maintenance and improved security.

If you areusing the removedmethods, consider using the com.liferay.portal.kernel.template.Template
functionality directly to process templates.

Whywas this changemade? Velocity was deprecated in Liferay Portal 7.0 and the recommenda-
tion was to migrate to FreeMarker. Also, Velocity has had no new releases for a long time.

The removal of Velocity support for Liferay Portal 7.1 themes allows for an increased focus on
existing and new template engines.

Moved Organization Type Properties to OSGi Configuration

• Date: 2018-Jan-19
• JIRA Ticket: LPS-77183

2177

https://issues.liferay.com/browse/LPS-74379
https://issues.liferay.com/browse/LPS-77183

What changed? The organization type properties have been moved from portal.properties to an
OSGi configuration named OrganizationsTypesConfiguration.java in the users-admin-apimodule.

Who is affected? This affects anyone using the following portal properties:

• organizations.types

• organizations.rootable

• organizations.children.types

• organizations.country.enabled

• organizations.country.required

How should I update my code? Instead of overriding the portal.properties file, you can manage
the properties from Portal’s configuration administrator. This can be accessed by navigating to
Liferay Portal’s Control Panel → Configuration → System Settings → Foundation → Organization Type
and editing the settings there.

If you would like to include the new configuration in your application, follow the instructions
for making your applications configurable.

Whywas this changemade? This change was made as part of the modularization efforts to ease
portal configuration changes.

Updated jQuery and Lodash Bundled Versions

• Date: 2018-Feb-07
• JIRA Ticket: LPS-77764, LPS-77765

What changed? The bundled jQuery version has been updated from 2.1.4 to 3.3.1. The bundled
Lodash version has been updated from 3.10.1 to 4.17.4.

Who is affected? This affects anyone using the previous API versions in their code.

How should I update my code? Follow the changelogs on the jQuery and Lodash sites to update
any affected code.

Whywas this changemade? This change provides the latest jQuery and Lodash versions available.

Removed the VALIDATE_DDM_FORM_VALUES Constant from DDMWebKeys

• Date: 2018-Feb-22
• JIRA Ticket: LPS-77168

What changed? The VALIDATE_DDM_FORM_VALUES constant has been removed from DDMWebKeys.

Who is affected? This affects anyone using this constant.

How should I update my code? Use the String validateDDMFormValues, which was the constant’s
value.

2178

https://dev.liferay.com/develop/tutorials/-/knowledge_base/7-0/making-your-applications-configurable
https://issues.liferay.com/browse/LPS-77764
https://issues.liferay.com/browse/LPS-77765
http://jquery.com/upgrade-guide/3.0/
https://github.com/lodash/lodash/wiki/Changelog#v400
https://issues.liferay.com/browse/LPS-77168

Whywas this changemade? A constant is unnecessary for a value that’s not part of an API.

RemovedJavaScriptMinificationPropertiesminifier.javascript.impl and yui.compressor.* fromportal.properties

• Date: 2018-Feb-28
• JIRA Ticket: LPS-74375

What changed? The JavaScript minifiers have been extracted from portal-kernel and moved to
their own OSGi module. Thus, they are not configured in portal.properties any more, but rather,
through OSGi configuration.

Who is affected? This affects anyone who had the Yahoo JavaScript minifier active and configured
to override its default settings.

How should I updatemy code? If you are implementing your own JavaScript minifier, you should
extract it to its own OSGi module. See module frontend-js-minifier for an example of how to do
this.

Whywas this changemade? The JavaScript minifiers were not easy to customize. For example,
the Google minifier used an old version of the closure-compiler, which was difficult to upgrade
because it required portal-kernel dependency changes. This could create conflicts.

Having JavaScript minifiers in their own OSGi modules requires less dependency management
and makes it easier to provide new implementations of JavaScript minifiers. Also, configuration
can now be done using OSGi standards.

Changed Behavior of liferay-ui:input-date Taglib's showDisableCheckbox Argument

• Date: 2018-Mar-06
• JIRA Ticket: LPS-78475

What changed? Previously, when the liferay-ui:input-date taglib’s showDisableCheckbox argu-
ment was set to true, the disable checkbox was hidden. Now, the value true displays it, and false

hides it.

Who is affected? This affects anyone trying to hide the liferay-ui:input-date taglib’s disable
checkbox.

How should I update my code? If you are setting the showDisableCheckbox argument to true to
hide the liferay-ui:input-date taglib’s disable checkbox, you should now set it to false, and vice
versa.

Whywas this changemade? The behavior did not match with the name of the argument and was
counter-intuitive.

DDLExporterFactory Became an Interface

• Date: 2018-Apr-20
• JIRA Ticket: LPS-79221

2179

https://issues.liferay.com/browse/LPS-74375
https://github.com/liferay/liferay-portal/tree/master/modules/apps/frontend-js/frontend-js-minifier
https://issues.liferay.com/browse/LPS-78475
https://issues.liferay.com/browse/LPS-79221

What changed? DDLExporterFactory was renamed to DDLExporterFactoryImpl and moved to the
module dynamic-data-lists-service, once this class holds the logic associated to the DDL exporters
management. On the other hand, a new interface named DDLExporterFactory was created on the
module dynamic-data-lists-api and DDLExporterFactoryImpl is implementing it.

Who is affected? This affects anyone who is using DDLExporterFactory to manipulate (add, get and
remove) the DDL exporters.

How should I update my code? At a first moment, isn’t expected the developer use
DDLExporterFactory to manipulate the DDL exporters. Actually, there is just one extension
point dedicated to the DDL exporters, the possibility to export the data in formats not provided by
default. In order to export the data to a new format, the developer will need to create a new Java
class that extends the abstract class BaseDDLExporter.

Whywas this changemade? To encapsulate the default implementation of DDLExporterFactory,
which doesn’t need to be exposed, and also to keep on the module dynamic-data-lists-api only
interfaces.

Updated Liferay Portal's Portlet API Implementation

• Date: 2018-May-10
• JIRA Ticket: LPS-73282

What changed? Liferay Portal 7.1 CE GA1 provides the Portlet 3.0 API dependency in the runtime
classpath. Previous versions provided the Portlet 2.0 API.

Full support for Portlet 3.0 will not be available until Liferay Portal 7.1 CE GA4 is released. This
will serve as a developer preview for the technology until it’s officially promoted in Liferay Portal
7.2.

Who is affected? This affects developers planning to upgrade custom portlets from earlier ver-
sions of Liferay Portal.

How should I update my code? There are three development use-cases to plan for:

JSP Considerations Portlet 3.0 is a binary-backward-compatible upgrade. This means that
Java source that was built against portlet-api-2.0.0.jar is compatible at runtime. Since JSP files
are typically not compiled until the first request, however, they do not fall under the category of
pre-compiled source.

Specifically, if a JSP contains a Java scriptlet that calls MimeResponse.createActionURL() and
MimeResponse.createRenderURL(), then there is a possibility that the JSP will fail to compile or throw
a ClassCastException at runtime. This is because the return type of these methods has changed.

For example, a Liferay Portal sample portlet’s view.jsp had to be changed from

<aui:form action="<%= renderResponse.createActionURL() %>" method="post" name="fm">

to

<aui:form action="<%= (PortletURL)renderResponse.createActionURL() %>" method="post" name="fm">

2180

https://issues.liferay.com/browse/LPS-73282
https://docs.liferay.com/portlet-api/3.0/javadocs/javax/portlet/MimeResponse.html#createActionURL()
https://docs.liferay.com/portlet-api/3.0/javadocs/javax/portlet/MimeResponse.html#createRenderURL()

Upgrade Considerations To take advantage of new features in Portlet 3.0, you must rebuild
portlet projects against the portlet-api-3.0.0.jar dependency and opt-in by specifying version 3.0
in one of two ways:

1. Add the following tag in your portlet’s portlet.xml file:

<portlet-app version="3.0">

2. Add the following property in your portlet’s @Component tag:

@Component(

property = {

"javax.portlet.version=3.0"

},

service = Portlet.class

)

In addition, you must opt-in to new JSP features by specifying the Portlet 3.0 tag library in your
JSP views. For example,

<%@ taglib uri="http://xmlns.jcp.org/portlet_3_0" prefix="portlet" %>

JSPs that opt-in with the new tag library may encounter JSP compilation problems related to
the <portlet:defineObjects> tag. Specifically, if JSPs reference variables with the following names
in Java scriptlets, then a JSP compilation will occur:

• actionParams

• clientDataRequest

• cookies

• contextPath

• locale

• locales

• mutableRenderParams

• namespace

• portletContext

• portletMode

• portletRequest

• portletResponse

• resourceParams

• windowId

• windowState

• stateAwareResponse

With the Portlet API 3.0 implementation, these variables are already added to this context by
default, so attempting to initialize them in the JSP would duplicate them. Therefore, your JSP
scriptlets adding them should be removed.

For example, JSP scriptlets like the following had to be removed from several of Liferay Portal’s
out-of-the-box portlets’ view.jsp:

2181

<%=

PortletRequest portletRequest = (PortletRequest)request.getAttribute(JavaConstants.JAVAX_PORTLET_REQUEST);

PortletResponse portletResponse = (PortletResponse)request.getAttribute(JavaConstants.JAVAX_PORTLET_RESPONSE);

String namespace = AUIUtil.getNamespace(portletRequest, portletResponse);

if (Validator.isNull(namespace)) {

namespace = AUIUtil.getNamespace(request);

}

%>

JSF Considerations JSF Portlets must be upgraded to the latest version of Liferay Faces Bridge,
which is planned for release in Q4, 2018. Download and upgrade instructions will bemade available
at https://www.liferayfaces.org at that time.

Whywas this changemade? This change provides the latest features offered by the Portlet 3.0
Specification, which was released in early 2017.

Changed the From Last Publish Date Option in Staging

• Date: 2018-Jun-06
• JIRA Ticket: LPS-81695

What changed? The From Last Publish Date option used in the publication process has program-
matically changed.

Who is affected? This affects anyone who implemented Staging support for their custom entities.

How should I update my code? You must create a *StagingModelListener class for your custom
entity, which extends the com.liferay.portal.kernel.model.BaseModelListener. You can examine the
BlogsEntryStagingModelListener class as an example.

You must also update the doPrepareManifestSummarymethod in your custom *PortletDataHandler

to use the populateLastPublishDateCountsmethod from the com.liferay.exportimport.internal.staging.StagingImpl,
in case of a From Last Publish Date publication. See the BlogsPortletDataHandler as an example.

Whywas this changemade? It was hard to collect which entities should be published to the live
site. Instead of running queries to find the contents that were modified since the last publication,
now changesets are used to track this information.

Changed the Dependency for the liferay-util:html-top JSP tag

• Date: 2018-Jun-07
• JIRA Ticket: LPS-81983

What changed? The usage of portal-kernel’s StringBundler has been deprecated in favor of Lif-
eray’s Petra StringBundler.

Who is affected? This affects anyone using the <liferay-util:html-top> JSP tag.

2182

https://www.liferayfaces.org
https://issues.liferay.com/browse/LPS-81695
https://docs.liferay.com/ce/portal/7.1-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/BaseModelListener.html
https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/blogs/blogs-service/src/main/java/com/liferay/blogs/internal/model/listener/BlogsEntryStagingModelListener.java
https://docs.liferay.com/ce/apps/web-experience/latest/javadocs/com/liferay/exportimport/staging/StagingImpl.html
https://github.com/liferay/liferay-portal/blob/7.1.0-ga1/modules/apps/blogs/blogs-web/src/main/java/com/liferay/blogs/web/internal/exportimport/data/handler/BlogsPortletDataHandler.java
https://issues.liferay.com/browse/LPS-81983

How should I update my code? You must add the following dependency in your build file for
your JSPs to compile successfully:

build.gradle:

dependencies {

...

compileOnly group: "com.liferay", name: "com.liferay.petra.string", version: "1.2.0"

...

}

pom.xml:

<dependency>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.petra.string</artifactId>

<version>1.2.0</version>

<scope>provided</scope>

</dependency>

Whywas this changemade? This change helps stabilize the foundation of Liferay Portal’s utilities.

Decoupled Several Classes from PortletURLImpl

• Date: 2018-Jun-08
• JIRA Ticket: LPS-82119

What changed? All classes implementing javax.portlet.BaseURL have had their inheritance hier-
archy change. These classes include

• PortletURLImplWrapper

• LiferayStrutsPortletURLImpl

• StrutsActionPortletURL

Who is affected? This affects code that attempts to subclass or create a new instance of the classes
listed previously.

How should I update my code? You must refactor the constructors of your affected classes to re-
ceive com.liferay.portal.kernel.portlet.LiferayPortletResponse insteadof com.liferay.portlet.PortletResponseImpl.

In addition, their class hierarchiesmust be changed. For example, the com.liferay.portal.struts.StrutsActionPortletURL
class hierarchy was changed from

• com.liferay.portlet.PortletURLImpl

• com.liferay.portlet.PortletURLImplWrapper

• com.liferay.portal.struts.StrutsActionPortletURL

to

• javax.portlet.filter.RenderStateWrapper

• javax.portlet.filter.BaseURLWrapper

• javax.portlet.filter.PortletURLWrapper

• com.liferay.portal.kernel.portlet.LiferayPortletURLWrapper

• com.liferay.portlet.PortletURLImplWrapper

• com.liferay.portal.struts.StrutsActionPortletURL

2183

https://issues.liferay.com/browse/LPS-82119

Why was this change made? This change corrects a best practice violation regarding
implementation-specific details being included within an API.

Changed the Request Object in Web Content Templates

• Date: 2018-Jun-12
• JIRA Ticket: LPS-77766

What changed? The request object is no longer accessible as a map, but rather, as an object of
type javax.servlet.http.HttpServletRequest.

Who is affected? This affects users withWeb Content templates that access request parameters
as a map like this:

<#assign containerId = request["theme-display"]["portlet-display"]["instance-id"] >

How should I update my code? To keep retrieving the request parameter values as a map,
requestMapmust be used instead:

<#assign containerId = requestMap["theme-display"]["portlet-display"]["instance-id"] >

Whywas this changemade? This was done to allow template context contributors to work in
Web Content templates.

Disabled Access to Gogo Shell Using Telnet

• Date: 2018-Jun-25
• JIRA Ticket: LPS-82849

What changed? The ability to access and interact with Liferay Portal’s OSGi framework using the
Gogo shell via your system’s telnet client has been disabled.

Who is affected? This affects anyone who used their system’s telnet client to access the Gogo
shell, or leveraged the Gogo shell in external plugins/tooling using the telnet client.

How should I update my code? Liferay Portal now offers the Gogo Shell portlet, which you can
access in the Control Panel → Configuration → Gogo Shell.

If you prefer using your telnet client to access the Gogo shell, you must enable Developer Mode.
You can do this by creating a portal-ext.properties file in your Liferay home folder and adding the
following property:

include-and-override=portal-developer.properties

Developer Mode is enabled upon starting your app server.

Whywas this changemade? This was done to strengthen Liferay Portal’s security due to potential
XXE/SSRF vulnerabilities.

2184

https://issues.liferay.com/browse/LPS-77766
https://issues.liferay.com/browse/LPS-82849

Removed Description HTML Escaping in PortletDisplay

• Date: 2018-Jul-17
• JIRA Ticket: LPS-83185

What changed? The portlet description stored in PortletDisplay.java is no longer escaped auto-
matically.

Who is affected? This affects anyone who relied on the portlet description’s value already being
escaped and used it to generate HTML. In that case, a small UI change might be observed as some
characters could become unescaped.

How should I updatemy code? If you were using the portletDescription value to generate HTML,
you should escape it using the proper escape sequence using HtmlUtil.escape.

Why was this change made? This change corrects a best practice violation regarding content
escaping.

Changed modelName Attribute to be Mandatory in liferay-ui:input-permissions Taglib

• Date: 2018-Oct-04
• JIRA Ticket: LPS-85998

What changed? Previously, the taglib liferay-ui:input-permissions could be used without pro-
viding the attribute modelName. Now the attribute modelName is mandatory.

Who is affected? This affects any developer who used the taglib liferay-ui:input-permissions in
their own portlets and was not setting the modelName attribute of the taglib.

How should I update my code? You should invoke the taglib providing the model name to which
you are assigning the permissions.

Why was this change made? This change removes old logic that is no longer used in Liferay
Portal.

Liferay AssetEntries_AssetCategories Is No Longer Used

• Date: 2019-Sep-11
• JIRA Tickets: LPS-99973, LPS-76488

What changed? Previously, Liferay used a mapping table and a corresponding interface
for the relationship between AssetEntry and AssetCategory in AssetEntryLocalService and
AssetCategoryLocalService. Thismapping table and the corresponding interface have been replaced
by the table AssetEntryAssetCategoryRel and the service AssetEntryAssetCategoryRelLocalService.

Who is affected? This affects any content or code that relies on calling the old interfaces
for the AssetEntries_AssetCategories relationship, through the AssetEntryLocalService and
AssetCategoryLocalService.

2185

https://issues.liferay.com/browse/LPS-83185
https://issues.liferay.com/browse/LPS-85998
https://issues.liferay.com/browse/LPS-99973
https://issues.liferay.com/browse/LPS-76488

How should I update my code? Use the new methods in AssetEntryAssetCategoryRelLocalService

to retrieve the same data as before. The method signatures haven’t changed; they have just been
relocated to a different service.

Example
Old way:

List<AssetEntry> entries =

AssetEntryLocalServiceUtil.getAssetCategoryAssetEntries(categoryId);

for (AssetEntry entry: entries) {

...

}

New way:

long[] assetEntryPKs =

_assetEntryAssetCategoryRelLocalService.getAssetEntryPrimaryKeys(assetCategoryId);

for (long assetEntryPK: assetEntryPKs) {

AssetEntry = _assetEntryLocalService.getEntry(assetEntryPK);

...

}

...

@Reference

private AssetEntryAssetCategoryRelLocalService _assetEntryAssetCategoryRelLocalService;

@Reference

private AssetEntryLocalService _assetEntryLocalService;

Whywas this changemade? This change was made due to changes resulting from LPS-76488,
which let developers control the order of a list of assets for a given category.

Removed Cache Bootstrap Feature

• Date: 2020-Jan-08
• JIRA Ticket: LPS-96563

What changed? The cache bootstrap feature has been removed. These properties can no longer
be used to enable/configure cache bootstrap:

• ehcache.bootstrap.cache.loader.enabled

• ehcache.bootstrap.cache.loader.properties.default

• ehcache.bootstrap.cache.loader.properties.${specific.cache.name}

Who is affected? This affects anyone using the properties listed above.

How should I update my code? There’s no direct replacement for the removed feature. If you
have code that depends on it, you must implement it yourself.

Whywas this changemade? This change was made to avoid security issues.

2186

https://issues.liferay.com/browse/LPS-76488
https://issues.liferay.com/browse/LPS-96563

Web Content Description Field Is Controlled by AlloyEditor

• Date: 2020-Apr-07
• JIRA Ticket: LPS-71850

What changed? Previously, theWeb Content description field was a plain text field. This field
is now managed by AlloyEditor, so any HTML characters entered into the field are escaped and
rendered as plain text instead of HTML.

Who is affected? This affects explicit HTML tags inWeb Content descriptions that a developer
expects to be rendered as regular HTML tags by the browser.

How should I update my code? If you want these values rendered as HTML, you must unescape
them using the proper unescape sequence: HtmlUtil.unescape.

For example, the FreeMarker expression ${.vars['reserved-article-description'].data} should
be unescaped like ${htmlUtil.unescape(.vars['reserved-article-description'].data)}

Whywas this changemade? This change was made to take advantage of the AlloyEditor’s styling
and formatting tools inWeb Content description fields.

2187

https://issues.liferay.com/browse/LPS-71850

	Contents
	Preface
	Conventions
	Publisher Notes

	Developer Tutorials
	Introduction to Liferay Development
	Leveraging a Suite of Products, Frameworks and Libraries
	Build Websites, Intranets, Collaborative Environments, Mobile Apps, and More
	Creating Your Own Applications and Extending the Existing Ones
	Fundamentals
	Liferay as a Development Platform
	Starting Module Development
	Configuring Dependencies
	Finding Extension Points

	Introduction to Front-End Development
	Lexicon and Clay
	Templates
	Themes
	Front-End Extensions

	From Liferay Portal 6 to 7
	What Hasn't Changed and What Has
	Benefits of 7.1 for Liferay Portal 6 Developers

	OSGi and Modularity for Liferay Portal 6 Developers
	Modules as an Improvement over Traditional Plugins
	Example: Building an OSGi Module
	More Ways OSGi Improves Development on Liferay

	Improved Developer Tooling: Liferay Workspace, Maven Plugins and More
	From the Plugins SDK to Liferay Workspace
	Developing Modules with Liferay Workspace
	What's New for Maven Users
	Using Other Build Systems and IDEs

	Planning Plugin Upgrades and Optimizations
	Upgrade and Optimization Phases
	Upgrading Code to 7.0
	Upgrading Your Development Environment
	Migrating Plugins SDK Projects to Liferay Workspace
	Upgrading Build Dependencies
	Fixing Upgrade Problems
	Resolving a Plugin's Dependencies
	Resolving Breaking Changes

	Upgrading Hook Plugins
	Upgrading Customization Modules
	Upgrading Core JSP Hooks
	Upgrading App JSP Hooks
	Upgrading Service Wrappers
	Upgrading Core Language Key Hooks
	Upgrading Portlet Language Key Hooks
	Upgrading Model Listener Hooks
	Upgrading Servlet Filter Hooks
	Upgrading Portal Property and Event Action Hooks
	Converting StrutsAction Wrappers to MVCCommands

	Upgrading 6.2 Themes
	Upgrading 6.2 Layout Templates
	Upgrading Frameworks and Features
	Upgrading JNDI Data Source Usage
	Upgrading Service Builder Service Invocation
	Upgrading Service Builder
	Migrating Off of Velocity Templates

	Upgrading Portlet Plugins
	Upgrading a GenericPortlet
	Upgrading a Liferay MVC Portlet
	Upgrading Portlets that use Service Builder
	Upgrading a Liferay JSF Portlet
	Upgrading a Servlet-based Portlet
	Upgrading a Spring MVC portlet
	Upgrading a Struts 1 Portlet
	Upgrading Web Plugins
	Upgrading Ext Plugins
	Upgrading the Liferay Maven Build

	Optimizing Plugins for 7.0
	Migrating Traditional Plugins to Workspace Web Applications

	Modularizing Plugins
	Modularizing an Existing Portlet
	Converting Your Application's Portlet Classes and UI
	Converting Your Application's Service Builder API and Implementation
	Building Your Application's Module JARs for Deployment
	Migrating Data Upgrade Processes to the New Framework for Modules

	From Liferay DXP 7.0 to 7.1
	Upgrading plugins from Liferay DXP 7.0 to 7.1
	Related Topics

	Upgrading 7.0 Themes
	Upgrading 7.0 Layout Templates

	Developing a Web Application
	Development Setup Overview

	Creating a Working Prototype
	Writing Your First Liferay DXP Application
	Creating an Add Entry Button
	Generating Portlet URLs
	Linking to Another Page
	Triggering Portlet Actions
	Creating a Form
	Implementing Portlet Actions
	Displaying Guestbook Entries

	Generating the Back-end
	What is Service Builder?
	Generating Model, Service, and Persistence Layers
	Implementing Service Methods

	Refactoring the Prototype
	Organizing Folders for Larger Applications
	Defining the Component Metadata Properties
	Creating Portlet Keys
	Integrating the New Back-end
	Updating the View
	Fitting it All Together

	Writing an Administrative Portlet
	Creating the Classes
	Adding Metadata
	Updating Your Service Layer
	Defining Portlet Actions
	Creating a User Interface

	Displaying Messages and Errors
	Creating Language Keys
	Adding Failure and Success Messages
	Adding Messages to JSPs

	Using Resources and Permissions
	Defining Permissions
	Registering Your Defined Permissions
	Assigning Permissions to Resources
	Checking for Permission in JSPs

	Search and Indexing
	Enabling Search and Indexing for Guestbooks
	Understanding Search and Indexing
	Registering Guestbooks with the Search Framework
	Indexing Guestbooks
	Querying for Guestbook Documents
	Generating Results Summaries
	Handling Indexing in the Guestbook Service Layer

	Enabling Search and Indexing for Entries
	Registering Entries with the Search Framework
	Indexing Entries
	Querying for Entry Documents
	Generating Results Summaries
	Handling Indexing in the Entry Service Layer

	Updating Your User Interface For Search
	Adding a Search Bar to the Guestbook Portlet
	Creating a Search Results JSP for the Guestbook Portlet

	Assets: Integrating with Liferay's Framework
	Enabling Assets at the Service Layer
	Handling Assets at the Guestbook Service Layer
	Handling Assets for Entry Service Layer

	Implementing Asset Renderers
	Implementing a Guestbook Asset Renderer
	Implementing an Entry Asset Renderer

	Adding Asset Features to Your User Interface
	Creating JSPs for Displaying Custom Assets in the Asset Publisher
	Enabling Tags, Categories, and Related Assets for Guestbooks
	Enabling Tags, Categories, and Related Assets for Guestbook Entries
	Enabling Comments and Ratings for Guestbook Entries

	Tooling
	Liferay Dev Studio DXP
	Installing Liferay Dev Studio DXP
	Creating a Liferay Workspace with Dev Studio
	Setting Proxy Requirements for Liferay Dev Studio
	Updating Liferay Dev Studio
	Creating Modules with Liferay Dev Studio
	Creating Themes with Liferay Dev Studio
	Deploying Projects with Liferay Dev Studio
	Managing Projects with Liferay Dev Studio
	Installing a Server in Liferay Dev Studio
	Searching Liferay DXP Source in Liferay Dev Studio
	Debugging Liferay DXP Source in Liferay Dev Studio
	Using Gradle in Liferay Dev Studio
	Using Maven in Liferay Dev Studio
	Enabling Code Assist Features in Your Project
	Using Front-End Code Assist Features in Dev Studio

	Blade CLI
	Installing Blade CLI
	Installing Blade CLI with Proxy Requirements
	Creating a Liferay Workspace with Blade CLI
	Creating Projects with Blade CLI
	Deploying Projects with Blade CLI
	Managing Your Liferay Server with Blade CLI
	Updating Blade CLI
	Converting Plugins SDK Projects with Blade CLI

	Liferay Workspace
	Installing Liferay Workspace
	Configuring a Liferay Workspace
	Setting Proxy Requirements for Liferay Workspace
	Development Lifecycle for a Liferay Workspace
	Managing the Target Platform for Liferay Workspace
	Managing Themes in Liferay Workspace

	Validating Modules Against the Target Platform
	Resolving Your Modules
	Modifying the Target Platform's Capabilities
	Including the Resolver in Your Gradle Build
	Validating Modules Outside of Workspace
	Leveraging Docker
	Updating Liferay Workspace
	Updating Default Plugins Provided by Liferay Workspace

	Maven
	Installing Liferay Maven Artifacts
	Generating New Projects Using Archetypes
	Creating a Module JAR Using Maven
	Deploying a Project Built with Maven to Liferay DXP
	Creating a Maven Repository
	Deploying Liferay Maven Artifacts to a Repository
	Using Service Builder in a Maven Project
	Compiling Sass Files in a Maven Project
	Building Themes in a Maven Project
	Maven Workspace

	IntelliJ IDEA
	Installing the Liferay IntelliJ Plugin
	Creating a Liferay Workspace with IntelliJ IDEA
	Creating Projects with IntelliJ IDEA
	Installing a Server in IntelliJ IDEA
	Deploying Projects with IntelliJ IDEA

	Liferay Sample Projects
	Liferay Upgrade Planner
	Using the Upgrade Planner with Proxy Requirements

	Portlets
	Related Topics

	Liferay MVC Portlet
	MVC Layers and Modularity
	Liferay MVC Command Classes
	Liferay MVC Portlet Component
	A Simpler MVC Portlet

	Creating an MVC Portlet
	Step 1: Configuring a Web Module
	Step 2: Specifying OSGi Metadata
	Step 3: Creating a Portlet Component
	Writing Controller Code
	Configuring the View Layer
	Beyond the Basics for Portlets
	MVC Action Command
	MVC Render Command
	MVC Resource Command

	Liferay Soy Portlet
	Creating a Soy Portlet

	The State Object
	Understanding The State Object's Architecture
	Configuring Portlet Template Parameter State Properties
	Configuring Soy Portlet Template Parameters on the Client Side

	Spring MVC
	Configuring a Spring MVC Portlet
	Deploying a Spring MVC Portlet

	JSF Portlets with Liferay Faces
	Generating a JSF Project from the Command Line
	Generating a JSF Project Using Dev Studio

	Creating a JSF Project Manually
	Packaging a JSF Application
	Defining a JSF Application's Structure and Dependencies
	Defining JSF Portlet Descriptors
	Defining Resources for a JSF Application
	Developing a JSF Application's Behavior and UI
	Services in JSF
	Making URLs Friendlier

	Using JavaScript in Your Portlets
	Preparing Your JavaScript Files for ES2015+
	Using ES2015 Modules in your Portlet

	Using npm in Your Portlets
	Formatting Your npm Modules for AMD
	Migrating a liferay-npm-bundler Project from 1.x to 2.x
	Migrating Your Project to Use liferay-npm-bundler's New Mode
	Creating Custom Loaders for the liferay-npm-bundler

	Using the NPMResolver API in Your Portlets
	Referencing an npm Module's Package to Improve Code Maintenance
	Obtaining an OSGi bundle's Dependency npm Package Descriptors

	Applying Clay Styles to your App
	Applying Clay Patterns to Navigation
	Configuring Your Application's Title and Back Link
	Setting Empty Results Messages

	Implementing the Management Toolbar
	Implementing the View Types
	Filtering and Sorting Items with the Management Toolbar
	Applying the Add Button Pattern
	Configuring Your Admin App's Actions Menu
	Automatic Single Page Applications
	Creating Layouts inside Custom Portlets

	Customizing
	Customizing JSPs
	Using Liferay's API to Override a JSP
	Overriding a JSP Without Using Liferay's API
	Customizing JSPs with Dynamic Includes
	JSP Overrides Using Portlet Filters
	JSP Overrides Using OSGi Fragments
	JSP Overrides Using Custom JSP Bag
	Overriding Inline Content Using JSPs

	Overriding Liferay Services (Service Wrappers)
	Related Topics

	Overriding OSGi Services
	Examining an OSGi Service to Override
	Creating a Custom OSGi Service
	Reconfiguring Components to Use Your OSGi Service

	Overriding Language Keys
	Overriding Global Language Keys
	Overriding a Module's Language Keys

	Overriding MVC Commands
	Adding Logic to MVC Commands
	Overriding MVCRenderCommands
	Overriding MVCActionCommands
	Overriding MVCResourceCommands
	Overriding Liferay DXP's Default YUI and AUI Modules
	Overriding lpkg files
	Creating Model Listeners

	Dynamic Includes
	WYSIWYG Editor Dynamic Includes
	Top Head JSP Dynamic Includes
	Top JS Dynamic Include
	Bottom JSP Dynamic Includes

	Service Builder
	What is Service Builder?

	Service Builder Persistence
	Defining an Object-Relational Map with Service Builder
	Creating the service.xml File
	Defining Global Service Information
	Defining Service Entities
	Defining the Columns (Attributes) for Each Service Entity
	Defining Relationships Between Service Entities
	Defining Ordering of Service Entity Instances
	Defining Service Entity Finder Methods
	Running Service Builder
	Understanding the Code Generated by Service Builder
	Iterative Development
	Understanding ServiceContext
	Customizing Model Entities With Model Hints
	Configuring service.properties
	Connecting Service Builder to External Databases
	Custom SQL

	Dynamic Query
	Defining a Custom Finder Method
	Implementing a Custom Finder Method Using Dynamic Query
	Accessing Your Custom Finder Method from the Service Layer
	Actionable Dynamic Queries

	Business Logic with Service Builder
	Creating Local Services
	Deciding to Create Local and Remote Services
	Implementing an Add Method
	Implementing update and delete Methods
	Implementing Methods to Get and Count Entities
	Implementing Any Other Business Logic
	Integrating with Liferay's Frameworks
	Invoking Local Services
	Invoking Services from Service Builder Code

	Application Security
	Defining Application Permissions
	Defining Resources and Permissions
	Registering Permissions
	Associating Permissions with Resources
	Checking Permissions
	Using JSR Roles in a Portlet

	Authentication Pipelines
	Auto Login
	Password-Based Authentication Pipelines
	Writing a Custom Login Portlet
	Service Access Policies

	Web Services
	Headless REST APIs
	Get Started: Discover the API
	Get Started: Invoke a Service
	Making Authenticated Requests
	Working with Collections of Data
	Getting Collections
	Pagination
	Navigating from a Collection to its Elements
	API Formats and Content Negotiation
	OpenAPI Profiles
	Filter, Sort, and Search
	Restrict Properties
	Multipart Requests

	Service Builder Web Services
	Creating Remote Services
	Invoking Remote Services
	Service Security Layers
	Registering JSON Web Services
	Invoking JSON Web Services
	JSON Web Services Invoker
	Configuring JSON Web Services
	SOAP Web Services

	JAX-RS and JAX-WS
	JAX-RS
	JAX-WS

	Search
	Basic Search Concepts
	Mapping Definitions
	Liferay Search Infrastructure
	Elasticsearch Logging
	Indexing Framework

	Asset Framework
	Related Topics
	Adding, Updating, and Deleting Assets
	Implementing Asset Categorization and Tagging
	Relating Assets
	Implementing Asset Priority

	Rendering an Asset
	Prerequisites for Asset Enabling and Application
	Creating an Asset Renderer
	Configuring JSP Templates for an Asset Renderer
	Creating a Factory for the Asset Renderer

	Themes and Layout Templates
	Themes
	Creating Themes
	Developing Themes
	Using Developer Mode with Themes
	Building Your Theme's Files
	Deploying Your Theme
	Changing Your Base Theme
	Copying an Existing Theme's Files
	Configuring Your Theme's App Server
	Listing Your Theme's Extensions
	Automatically Deploying Theme Changes
	Creating Reusable Pieces of Code for Your Themes
	Creating a Thumbnail Preview for Your Theme
	Creating Color Schemes for Your Theme
	Making Configurable Theme Settings
	Overwriting and Extending Liferay Theme Tasks
	Compiling and Building Themes with Ant, Gradle, and Maven
	Injecting Additional Context Variables and Functionality into Your Templates
	Packaging Independent UI Resources for Your Site
	Using Liferay DXP's Macros in Your Theme

	Importing Resources with a Theme
	Preparing and Organizing Web Content for the Resources Importer

	Creating a Sitemap for the Resources Importer
	Defining Layout Templates in a Sitemap
	Defining Pages in a Sitemap
	Defining Portlets in a Sitemap
	Retrieving Portlet IDs with the Gogo Shell
	Defining Assets for the Resources Importer
	Specifying Where to Import Your Theme's Resources
	Archiving Site Resources

	Upgrading Your Theme from Liferay Portal 6.2 to 7.1
	Running the Gulp Upgrade Task for 6.2 Themes
	Updating 6.2 Project Metadata

	Updating 6.2 CSS Code
	Updating CSS File Names for Clay and Sass
	Updating 6.2 CSS Rules and Imports
	Updating the Responsiveness
	Updating 6.2 Theme Templates
	Updating the Resources Importer
	Applying Clay Design Patterns

	Upgrading Your Theme from Liferay Portal 7.0 to 7.1
	Upgrading Themes Created With the Liferay Theme Generator
	Updating Project Metadata
	Updating CSS Code
	Updating Theme Templates
	Using the Bootstrap 3 Lexicon CSS Compatibility Layer

	Layout Templates
	Creating Layout Templates
	Creating Layout Templates Manually
	Creating Custom Layout Template Thumbnail Previews
	Including Layout Templates with a Theme
	Upgrading 6.2 Layout Templates to 7.1
	Upgrading 7.0 Layout Templates to 7.1

	Portlets and Themes
	Theming Portlets

	Creating Configurable Styles for Portlet Wrappers
	Adding Portlet Decorators to a Theme
	Applying Portlet Decorators to Embedded Portlets
	Embedding Portlets in Themes

	Clay CSS and Themes
	Importing Clay CSS into a Theme
	Integrating Third Party Themes with Clay

	Liferay JavaScript APIs
	Accessing ThemeDisplay Information
	Working with URLs in JavaScript
	Liferay DXP JavaScript Utilities
	Invoking Liferay Services

	JavaScript Module Loaders
	Loading AMD Modules in Liferay
	Using External JavaScript Libraries
	Loading Modules with AUI Script

	Using Front-End Frameworks in Your portlets
	Using React in Your Portlets
	Using Vue in Your Portlets
	Using Angular in Your Portlets
	Creating and Bundling JavaScript Widgets with JavaScript Tooling
	Installing the Bundle Generator and Generating a Bundle
	Configuring System Settings and Instance Settings for Your JavaScript Widget
	Localizing Your Widget
	Configuring Portlet Properties for Your JS Widget
	Using Translation Features in Your Widget

	Front-End Taglibs
	Using the Liferay UI Taglib
	Liferay UI Icons
	Liferay UI Icon Lists
	Liferay UI Icon Menus
	Liferay UI Tabs
	Liferay UI Icon Help

	Using Liferay Front-end Taglibs in Your Portlet
	Liferay Front-end Add Menu
	Liferay Front-end Cards
	Liferay Front-end Info Bar

	Liferay Front-end Management Bar
	Including Actions in the Management Bar
	Disabling All or Portions of the Management Bar

	Using the Liferay Util Taglib
	Using Liferay Util Body Bottom
	Using Liferay Util Body Top
	Using Liferay Util Buffer
	Using Liferay Util Dynamic Include
	Using Liferay Util Get URL
	Using Liferay Util HTML Bottom
	Using Liferay Util HTML Top
	Using Liferay Util Include
	Using Liferay Util Param
	Using Liferay Util Whitespace Remover

	Using the Clay Taglib in Your portlets
	Clay Alerts
	Clay Badges
	Clay Buttons
	Clay Cards
	Clay Dropdown Menus and Action Menus
	Clay Form Elements
	Clay Icons
	Clay Labels and Links
	Clay Management Toolbar
	Clay Navigation Bars
	Clay Progress Bars
	Clay Stickers

	Using the Chart Taglib in Your Portlets
	Bar Charts
	Line Charts
	Scatter Charts
	Spline Charts
	Step Charts
	Combination Charts
	Donut Charts
	Gauge Charts
	Pie Charts
	Geomap Charts
	Predictive Charts
	Refreshing Charts to Reflect Real Time Data

	Using AUI Taglibs
	Building Forms with AUI Tags

	Mobile
	Android Apps with Liferay Screens
	Preparing Android Projects for Liferay Screens
	Using Screenlets in Android Apps
	Using Views in Android Screenlets
	Using Offline Mode in Android

	Architecture of Liferay Screens for Android
	High-Level Architecture
	Core Layer
	Screenlet Layer
	View Layer
	Screenlet Lifecycle
	Architecture of Offline Mode in Liferay Screens

	Creating Android Screenlets
	Determining Your Screenlet's Location
	Creating the UI
	Creating the Interactor
	Defining the Attributes
	Creating the Screenlet Class
	Using Your Screenlet
	Packaging Your Screenlets

	Creating Android List Screenlets
	Pagination
	Creating the Model Class
	Creating the View
	Creating the Interactor
	Creating the Screenlet Class
	Using the List Screenlet

	Creating Android Views
	Determining Your View's Location
	Themed Views
	Child Views
	Extended Views
	Full Views
	Packaging Your Views

	Supporting Offline Mode
	Create or Update the Event Class
	Update the Listener
	Update the Interactor Class
	Update the Screenlet Class
	Sync the Cache with the Server
	Supporting Offline Mode in List Screenlets
	Using Liferay Push in Android Apps
	Accessing the Liferay Session in Android
	Adding Custom Interactors to Android Screenlets
	Rendering Web Content in Your Android App
	Rendering Web Pages in Your Android App
	Using Web Screenlet with Cordova in Your Android App
	Using OAuth 2 in Liferay Screens for Android
	Android Best Practices
	Liferay Screens for Android Troubleshooting and FAQs

	iOS Apps with Liferay Screens
	Preparing iOS Projects for Liferay Screens
	Using Screenlets in iOS Apps
	Using Themes in iOS Screenlets
	Using Offline Mode in iOS

	Architecture of Liferay Screens for iOS
	High Level Architecture of Liferay Screens for iOS
	Core Layer of Liferay Screens for iOS
	Screenlet Layer of Liferay Screens for iOS
	Theme Layer of Liferay Screens for iOS

	Creating iOS Screenlets
	Planning Your iOS Screenlet
	Creating the iOS Screenlet's UI
	Creating the iOS Screenlet's Interactor
	Creating the iOS Screenlet's Class

	Creating iOS List Screenlets
	Pagination
	Creating the Model Class
	Creating the iOS List Screenlet's Theme
	Creating the iOS List Screenlet's Connector
	Creating the iOS List Screenlet's Interactor
	Creating the iOS List Screenlet's Delegate
	Creating the iOS List Screenlet's Class

	Creating iOS Themes
	Determining Your Theme's Location
	Creating an iOS Child Theme
	Creating an iOS Extended Theme
	Creating an iOS Full Theme
	Packaging iOS Themes
	Supporting Multiple Themes in Your iOS Screenlet
	Adding Screenlet Actions
	Create and Use a Connector with Your Screenlet
	Add a Screenlet Delegate
	Using and Creating Progress Presenters
	Creating and Using Your Screenlet's Model Class
	Using Custom Cells with List Screenlets
	Sorting Your List Screenlet
	Creating Complex Lists in Your List Screenlet
	Accessing the Liferay Session in iOS
	Adding Custom Interactors to iOS Screenlets
	Rendering Web Content in Your iOS App
	Rendering Web Pages in Your iOS App
	Using Web Screenlet with Cordova in Your iOS App
	Using OAuth 2 in Liferay Screens for iOS
	iOS Best Practices

	Using Xamarin with Liferay Screens
	Preparing Xamarin Projects for Liferay Screens
	Using Screenlets in Xamarin Apps
	Using Views in Xamarin.Android
	Using Themes in Xamarin.iOS
	Creating Xamarin Views and Themes
	Liferay Screens for Xamarin Troubleshooting and FAQs

	Mobile SDK
	Creating Android Apps that Use the Mobile SDK
	Related Topics
	Making Liferay and Custom Portlet Services Available in Your Android App
	Invoking Liferay Services in Your Android App
	Invoking Services Asynchronously from Your Android App
	Sending Your Android App's Requests Using Batch Processing
	Using OAuth 2 in the Android Mobile SDK

	Creating iOS Apps that Use the Mobile SDK
	Related Topics
	Making Liferay and Custom Portlet Services Available in Your iOS App
	Invoking Liferay Services in Your iOS App
	Invoking Services Asynchronously from Your iOS App
	Sending Your iOS App's Requests Using Batch Processing
	Using OAuth 2 in the iOS Mobile SDK
	Building Mobile SDKs

	Tracking Custom Assets
	Asset Events
	Required Metadata
	Tracking Asset Events
	Related Topics

	Web Experience Management
	Developing Page Fragments
	Creating a Fragment
	Fragment Specific Tags
	Recommendations and Best Practices

	Screen Navigation Framework
	Using the Framework for Your Application
	Adding Custom Screens to Liferay Applications

	Product Navigation
	Customizing the Product Menu
	Adding Custom Panel Categories
	Adding Custom Panel Apps

	Customizing the Control Menu
	Creating Control Menu Entries
	Defining Icons and Tooltips
	Extending the Simulation Menu
	Providing the User Personal Bar

	Collaboration
	Item Selector
	Understanding the Item Selector API's Components
	Selecting Entities Using an Item Selector
	Creating Custom Item Selector Entities
	Creating Custom Item Selector Views

	Documents and Media API
	Getting Started with the Documents and Media API

	Creating Files, Folders, and Shortcuts
	Creating Files
	Creating Folders
	Creating File Shortcuts

	Deleting Entities
	Deleting Files
	Deleting File Versions
	Deleting File Shortcuts
	Deleting Folders
	Moving Entities to the Recycle Bin

	Updating Entities
	Updating Files
	Updating Folders
	Updating File Shortcuts

	File Check-out and Check-in
	File Check-out
	File Check-in
	Canceling a Check-out

	Copying and Moving Entities
	Copying Folders
	Moving Folders and Files

	Getting Entities
	Getting Files
	Getting Folders
	Getting Multiple Entity Types

	Adaptive Media
	Displaying Adapted Images in Your App
	Finding Adapted Images
	Changing Adaptive Media's Image Scaling

	Social API
	Applying Social Bookmarks
	Creating Social Bookmarks
	Adding Comments to Your App
	Rating Assets
	Implementing Ratings Type Selection and Value Transformation
	Flagging Inappropriate Asset Content

	Export/Import and Staging
	Decision to Implement Staging
	Understanding Staged Models
	Generating Staged Models Using Service Builder
	Creating Staged Models Manually
	Understanding Data Handlers
	Developing Portlet Data Handlers
	Developing Staged Model Data Handlers

	Providing Entity-Specific Local Services for Staging
	Implementing the Staged Model Repository Framework
	Using the Staged Model Repository Framework
	Using the Export/Import Lifecycle Listener Framework
	Initiating New Export/Import Processes

	Liferay Forms
	Form Field Types
	Anatomy of a Field Type Module
	Creating Form Field Types
	Rendering Field Types
	Adding Settings to Form Field Types
	Rendering Form Field Settings
	Forms Storage Adapters

	Workflow
	Crafting XML Workflow Definitions
	Existing Workflow Definitions
	Schema
	Metadata
	Workflow Definition Nodes
	Workflow Task Nodes
	Workflow Notifications
	Liferay's Workflow Framework

	Managing User-Associated Data Stored by Custom Applications
	Include Dependencies
	Choose Fields to Anonymize
	Run Service Builder!
	Provide Your App's Name to the UI

	Configurable Applications
	Making Applications Configurable
	Creating A Configuration Interface
	Categorizing the Configuration
	Scoping Configurations
	Reading Configuration Values from a Component
	Reading Configuration Values from a MVC Portlet
	Reading Configuration Values from a Configuration Provider
	Customizing the System Settings User Interface
	Configuration Form Renderer

	Internationalization
	Localizing Your Application
	Automatically Generating Language Files
	Using Liferay's Language Settings

	Application Display Templates
	Implementing Application Display Templates
	Recommendations for Using ADTs

	Audience Targeting
	Accessing the Content Targeting API

	Creating New Audience Targeting Rule Types
	Creating a Custom Rule Type
	Defining a Rule's View/Save Lifecycle
	Evaluating a Rule
	Defining the Rule's UI

	Tracking User Actions with Audience Targeting
	Related Topics
	Creating a Metric
	Defining a Metric's View/Save Lifecycle
	Using a Tracking Mechanism
	Defining the Metric's UI
	Best Practices for Audience Targeting

	WYSIWYG Editors
	Adding a WYSIWYG Editor to a Portlet
	Modifying an Editor's Configuration
	Adding New Behavior to an Editor

	AlloyEditor
	Adding Buttons to AlloyEditor's Toolbars
	Creating the OSGi Module and Configuring the EditorConfigContributor Class
	Adding a Button to the Add Toolbar
	Adding a Button to a Styles Toolbar

	Creating New Buttons for AlloyEditor
	Creating the AlloyEditor Button's OSGi Bundle
	Creating the Button's JSX File
	Contributing the Button to AlloyEditor
	Embedding Content in the AlloyEditor

	Servlets
	Servlets in a Module
	Servlet Filters

	Testing
	Injecting Service Components into Integration Tests

	Modularity and OSGi
	The Benefits of Modularity
	OSGi and Modularity
	Leveraging Dependencies
	OSGi Services and Dependency Injection with Declarative Services
	Dynamic Deployment
	Learning More about OSGi

	OSGi Basics for Liferay Development
	Liferay Portal Classloader Hierarchy
	Bundle Classloading Flow
	Importing Packages
	Exporting Packages
	Resolving Third Party Library Package Dependencies
	Waiting on Lifecycle Events
	Using the WAB Generator
	Service Trackers
	Semantic Versioning

	Troubleshooting FAQ
	Modules
	Services and Components
	Resolving Bundle Requirements
	Resolving Bundle-SymbolicName Syntax Issues
	Resolving ClassNotFoundException and NoClassDefFoundError in OSGi Bundles
	Identifying Liferay Artifact Versions for Dependencies
	Connecting to JNDI Data Sources
	Adjusting Module Logging
	Implementing Logging
	Declaring Optional Import Package Requirements
	Why Aren't my Module's JavaScript and CSS Changes Showing?
	Why Aren't JSP overrides I Made Using Fragments Showing?
	Why doesn't the package I use from the fragment host resolve?
	Sort Order Changed with a Different Database
	Disabling Cache for Table Mapper Tables
	Patching DXP Source Code
	Troubleshooting Front-End Development Issues
	System Check
	Detecting Unresolved OSGi Components
	Using Files to Configure Module Components
	Calling Non-OSGi Code that Uses OSGi Services
	Liferay DXP Failed to Initialize Because the Database Wasn't Ready
	Using OSGi Services from EXT Plugins

	Data Upgrades
	Creating Data Upgrade Processes for Modules
	Upgrade Processes for Former Service Builder Plugins
	Meaningful Schema Versioning
	Upgrading Data Schemas in Development

	Back-end Frameworks
	Portlet Providers
	Creating PortletProviders
	Retrieving Portlets for Desired Behaviors
	Related Topics

	Data Scopes
	Scoping Your Entities
	Enabling Scoping
	Accessing Your App's Scope
	Accessing the Site Scope Across Apps
	Related Topics

	Message Bus
	Messaging Destinations
	Message Listeners
	Sending Messages

	Developer Reference
	Development Reference
	Java APIs
	Taglibs
	JavaScript and CSS

	Back-End
	Classes Moved from portal-service.jar

	Front-End
	liferay-npm-bundler
	How the Liferay npm Bundler Works Internally
	Configuring liferay-npm-bundler
	How the Default Preset Configures the liferay-npm-bundler
	The Structure of OSGi Bundles Containing npm Packages
	How the Liferay npm Bundler Publishes npm Packages
	Understanding How liferay-npm-bundler Formats JavaScript Modules for AMD
	Understanding How Liferay AMD Loader Configuration is Exported
	What Changed Between Liferay npm Bundler 1.x and 2.x
	Understanding liferay-npm-bundler's Loaders
	Default liferay-npm-bundler Loaders
	CKEditor Plugin Reference Guide
	AlloyEditor Button Reference Guide
	Fully Qualified Portlet IDs
	FreeMarker Taglib Macros
	Setting up Your npm Environment
	Liferay JS Generator
	Understanding the JS Portlet Extender Configuration
	Liferay JS Generator Commands
	Configuring System Settings for OSGi Bundles Created with the liferay-npm-bundler

	Screenlets in Liferay Screens
	Screenlets in Liferay Screens for Android
	Login Screenlet for Android
	Sign Up Screenlet for Android
	Forgot Password Screenlet for Android
	User Portrait Screenlet for Android
	DDL Form Screenlet for Android
	DDL List Screenlet for Android
	Asset List Screenlet for Android
	Web Content Display Screenlet for Android
	Web Content List Screenlet for Android
	Image Gallery Screenlet for Android
	Rating Screenlet for Android
	Comment List Screenlet for Android
	Comment Display Screenlet for Android
	Comment Add Screenlet for Android
	Asset Display Screenlet for Android
	Blogs Entry Display Screenlet for Android
	Image Display Screenlet for Android
	Video Display Screenlet for Android
	Audio Display Screenlet for Android
	PDF Display Screenlet for Android
	Web Screenlet for Android
	DDM Form Screenlet for Android

	Screenlets in Liferay Screens for iOS
	Login Screenlet for iOS
	Sign Up Screenlet for iOS
	Forgot Password Screenlet for iOS
	User Portrait Screenlet for iOS
	DDL Form Screenlet for iOS
	DDL List Screenlet for iOS
	Asset List Screenlet for iOS
	Web Content Display Screenlet for iOS
	Web Content List Screenlet for iOS
	Image Gallery Screenlet for iOS
	Rating Screenlet for iOS
	Comment List Screenlet for iOS
	Comment Display Screenlet for iOS
	Comment Add Screenlet for iOS
	Asset Display Screenlet for iOS
	Blogs Entry Display Screenlet for iOS
	Image Display Screenlet for iOS
	Video Display Screenlet for iOS
	Audio Display Screenlet for iOS
	PDF Display Screenlet for iOS
	File Display Screenlet for iOS
	Web Screenlet for iOS
	SyncManagerDelegate

	Themes
	Theme Reference Guide
	Theme Components and Workflow
	Understanding the Page Layout

	Gradle
	Resolving Common Output Errors Reported by the resolve Task
	App Javadoc Builder Gradle Plugin
	Baseline Gradle Plugin
	Change Log Builder Gradle Plugin
	CSS Builder Gradle Plugin
	DB Support Gradle Plugin
	Dependency Checker Gradle Plugin
	Deployment Helper Gradle Plugin
	Go Gradle Plugin
	Gulp Gradle Plugin
	Jasper JSPC Gradle Plugin
	Javadoc Formatter Gradle Plugin
	JS Module Config Generator Gradle Plugin
	JS Transpiler Gradle Plugin
	JSDoc Gradle Plugin
	Lang Builder Gradle Plugin
	Maven Plugin Builder Gradle Plugin
	Node Gradle Plugin
	REST Builder Gradle Plugin
	Service Builder Gradle Plugin
	Source Formatter Gradle Plugin
	Soy Gradle Plugin
	Target Platform Gradle Plugin
	Theme Builder Gradle Plugin
	TLD Formatter Gradle Plugin
	TLDDoc Builder Gradle Plugin
	Whip Gradle Plugin
	WSDD Builder Gradle Plugin
	WSDL Builder Gradle Plugin
	XML Formatter Gradle Plugin
	XSD Builder Gradle Plugin

	Maven
	Bundle Support Plugin
	CSS Builder Plugin
	DB Support Plugin
	Deployment Helper Plugin
	Javadoc Formatter Plugin
	Lang Builder Plugin
	REST Builder Plugin
	Service Builder Plugin
	Source Formatter Plugin
	Theme Builder Plugin
	TLD Formatter Plugin
	WSDD Builder Plugin
	XML Formatter Plugin
	Content Targeting Report Template
	Content Targeting Rule Template
	Content Targeting Tracking Action Template

	Sample Projects
	Apps
	npm Samples
	Angular 6 npm Portlet
	Angular npm Deduplication Sample
	Angular npm Portlet
	Billboard.js npm Portlet
	jQuery npm Portlet
	Metal.js npm Portlet
	React npm Portlet
	Simple npm Portlet
	Vue.js npm Portlet

	Service Builder Samples
	Service Builder Application Demonstrating Actionable Dynamic Query
	Service Builder Application Using External Database via JDBC
	Service Builder Application Using External Database via JNDI
	Greedy Policy Option Application
	Kotlin Portlet
	Shared Language Keys
	Simulation Panel App
	Spring MVC Portlet

	Extensions
	Control Menu Entry
	Document Action
	Gogo Shell Command
	Index Settings Contributor
	Indexer Post Processor
	Model Listener
	Screen Name Validator
	Servlet

	Overrides
	Module JSP Override
	Resource Bundle Override

	Themes
	Simple Theme
	Template Context Contributor
	Theme Contributor

	Ext
	Login Web Ext
	Felix Gogo Shell

	Liferay Faces
	Liferay Faces Version Scheme
	Understanding Liferay Faces Bridge
	Understanding Liferay Faces Alloy
	Understanding Liferay Faces Portal
	Page Fragments
	Embedding Widgets in Page Fragments
	JSON Web Services Invocation Examples

	Customizing Core Functionality with Ext
	Extending Core Classes Using Spring with Ext Plugins
	Overriding Core Classes with Ext Plugins
	Adding to the web.xml with Ext Plugins
	Modifying the web.xml with Ext Plugins
	Item Selector Criterion and Return Types
	Breaking Changes

