
Developing

Liferay DXP

AComplete Guide

THE LIFERAY DOCUMENTATION TEAM
Richard Sezov, Jr.
JimHinkey
Stephen Kostas
Jesse Rao
Cody Hoag
Nicholas Gaskill
Michael Williams

Liferay Press

Using Liferay DXP 7.0
byThe Liferay Documentation Team
Copyright ©2016 by Liferay, Inc.

This work is offered under the following license:

Creative Commons Attribution-Share Alike Unported

You are free:

1. to share—to copy, distribute, and transmit the work

2. to remix—to adapt the work

Under the following conditions:

1. Attribution. Youmust attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

2. Share Alike. If you alter, transform, or build upon this work, youmay distribute the resulting work
only under the same, similar or a compatible license.

The full version of this license is here:
http://creativecommons.org/licenses/by-sa/3.0
This book was created out of material from the Liferay Docs repository. Where the content of this book

and the repository differ, the site is more up to date.

http://creativecommons.org/licenses/by-sa/3.0
https://github.com/liferay/liferay-docs

Contents

Contents i

Preface xxiii
Conventions . xxiii
Publisher Notes . xxiii

I Developer Tutorials 1

1 Introduction to Liferay Development 3
1.1 Leveraging a Suite of Products, Frameworks and Libraries 3
1.2 BuildWebsites, Intranets, Collaborative Environments,Mobile Apps, andMore 5
1.3 Creating Your Own Applications and Extending the Existing Ones 5
1.4 Fundamentals . 5
1.5 Liferay as a Development Platform . 13

2 Introduction to Front-EndDevelopment 21
2.1 JavaScript . 21
2.2 Lexicon . 21
2.3 Templates . 21
2.4 Themes . 21
2.5 Front-End Extensions . 22

3 JavaScript in Liferay DXP 23
3.1 MetalJS . 23
3.2 ES2015 . 23
3.3 AlloyUI . 23
3.4 jQuery . 25

4 Metal.js 27
4.1 Related Topics . 29

5 StartingModule Development 31
5.1 Setting up a LiferayWorkspace . 32

i

5.2 Creating a Module . 33
5.3 Building and Deploying a Module . 35
5.4 RedeployingModule Changes Automatically . 36
5.5 Related Articles . 38

6 ConfiguringDependencies 39
6.1 Finding Core Artifacts . 39
6.2 Finding Liferay App and Independent Artifacts . 40
6.3 Configuring Dependencies . 44
6.4 Related Topics . 45

7 Finding Extension Points 47
7.1 Locate the RelatedModule and Component . 47
7.2 Finding Extension Points in a Component . 49

8 FromLiferay Portal 6 to 7 51

9 WhatHasn’t Changed andWhatHas 53
9.1 Embracing a Modular Architecture . 54

10 Benefits of 7.0 for Liferay Portal 6 Developers 59
10.1 Simpler and Leaner . 59
10.2 Modular Development Paradigm . 60
10.3 Enhanced Reusability . 60
10.4 More Extensible, Easier to Maintain . 60
10.5 Optimized for Your Tooling of Choice . 61
10.6 Powerful Configurability . 61

11 OSGi andModularity for Liferay Portal 6 Developers 63
11.1 Modules as an Improvement over Traditional Plugins 64
11.2 Leveraging Dependencies . 66
11.3 OSGi Services and Dependency Injection with Declarative Services 69
11.4 Dynamic Deployment . 70
11.5 Example: Building an OSGi Module . 72
11.6 LearningMore about OSGi . 73

12 ImprovedDeveloper Tooling: LiferayWorkspace,Maven Plugins andMore 75
12.1 From the Plugins SDK to LiferayWorkspace . 75
12.2 DevelopingModules with LiferayWorkspace . 78
12.3 What’s New in 7.0 for Maven Users . 79
12.4 Using Other Build Systems and IDEs . 82

13 Planning Plugin Upgrades andOptimizations 85
13.1 Upgrade and Optimization Phases . 86
13.2 Upgrade and Optimization Paths . 86
13.3 Upgrading Plugins to 7.0 . 88
13.4 Upgrading Your Development Environment . 91
13.5 Migrating Plugins SDK Projects to LiferayWorkspace 93
13.6 Upgrading Build Dependencies . 94

ii

13.7 Fixing Upgrade Problems . 95
13.8 Resolving a Plugin’s Dependencies . 96
13.9 Resolving Breaking Changes . 102

14 UpgradingHook Plugins 105
14.1 Upgrading CustomizationModules . 105
14.2 Upgrading Core JSP Hooks . 106
14.3 Upgrading App JSP Hooks . 106
14.4 Upgrading ServiceWrappers . 108
14.5 Upgrading Core Language Key Hooks . 108
14.6 Upgrading Portlet Language Key Hooks . 109
14.7 UpgradingModel Listener Hooks . 109
14.8 Upgrading Servlet Filter Hooks . 110
14.9 Upgrading Portal Property and Event Action Hooks 110
14.10 Converting StrutsActionWrappers to MVCCommands 111

15 UpgradingThemes 113
15.1 Upgrading YourTheme from Liferay Portal 6.1 to 7.0 113
15.2 Upgrading YourTheme from Liferay Portal 6.2 to 7.0 123
15.3 Upgrading Layout Templates . 140
15.4 Upgrading Frameworks and Features . 141
15.5 Upgrading JNDI Data Source Usage . 141
15.6 Upgrading Service Builder Service Invocation . 141
15.7 Upgrading Service Builder . 142
15.8 Migrating Off of Velocity Templates . 143

16 Upgrading Portlet Plugins 145
16.1 Upgrading a GenericPortlet . 145
16.2 Upgrading a Servlet-based Portlet . 148
16.3 Upgrading a Liferay MVC Portlet . 150
16.4 Upgrading Portlets that use Service Builder . 150
16.5 Upgrading a Liferay JSF Portlet . 153
16.6 Upgrading a Struts Portlet . 155
16.7 Upgrading a SpringMVC portlet . 160
16.8 UpgradingWeb Plugins . 163
16.9 Upgrading Ext Plugins . 164
16.10 Upgrading the Liferay Maven Build . 164

17 Optimizing Plugins for 7.0 167
17.1 Migrating Traditional Plugins toWorkspaceWeb Applications 167

18 Modularizing Plugins 171
18.1 Modularizing an Existing Portlet . 172
18.2 Migrating Data Upgrade Processes to the New Framework for Modules 179
18.3 Migrating aTheme from the Plugins SDK to the LiferayTheme Generator 183
18.4 Migrating aTheme from the Plugins SDK toWorkspace 185
18.5 Customization with Ext Plugins . 186

19 Developing aWebApplication 199

iii

19.1 Development Setup Overview . 199

20 Creating aWorking Prototype 203
20.1 Writing Your First Liferay DXP Application . 203
20.2 Creating an Add Entry Button . 207
20.3 Generating Portlet URLs . 208
20.4 Linking to Another Page . 209
20.5 Triggering Portlet Actions . 210
20.6 Creating a Form . 210
20.7 Implementing Portlet Actions . 211
20.8 Displaying Guestbook Entries . 213

21 Generating the Back-end 217
21.1 What is Service Builder? . 218
21.2 Generating Model, Service, and Persistence Layers 218
21.3 Implementing Service Methods . 222

22 Refactoring the Prototype 229
22.1 Organizing Folders for Larger Applications . 229
22.2 Defining the Component Metadata Properties . 230
22.3 Creating Portlet Keys . 231
22.4 Integrating the New Back-end . 232
22.5 Updating the View . 235
22.6 Fitting it All Together . 237

23 Writing an Administrative Portlet 241
23.1 Creating the Classes . 241
23.2 AddingMetadata . 242
23.3 Updating Your Service Layer . 245
23.4 Defining Portlet Actions . 246
23.5 Creating a User Interface . 249

24 Using Resources and Permissions 255
24.1 Configuring Your Permissions Scheme . 255
24.2 Permissions in the Service Layer . 260
24.3 Creating Permissions Helper Classes . 261
24.4 Permissions in JSPs . 265

25 DisplayingMessages and Errors 271
25.1 Creating Language Keys . 271
25.2 Adding Failure and Success Messages . 272
25.3 AddingMessages to JSPs . 273

26 Leveraging Search 275

27 Enabling Search and Indexing for Guestbooks 277
27.1 Understanding Search and Indexing . 277
27.2 Creating a Guestbook Indexer . 278
27.3 Handling Indexing in the Guestbook Service Layer 282

iv

28 Enabling Search and Indexing for Guestbook Entries 285
28.1 Creating an Entry Indexer . 285
28.2 Handling Indexing in the Entry Service Layer . 288

29 Updating Your User Interface For Search 291
29.1 Adding a Search Bar to the Guestbook Portlet . 291
29.2 Creating a Search Results JSP for the Guestbook Portlet 292

30 Assets: Integratingwith Liferay’s Framework 297

31 Enabling Assets at the Service Layer 299
31.1 Handling Assets at the Guestbook Service Layer . 300
31.2 Handling Assets at the Entry Service Layer . 301

32 Implementing Asset Renderers 303
32.1 Implementing a Guestbook Asset Renderer . 303
32.2 Implementing an Entry Asset Renderer . 309

33 Adding Asset Features to Your User Interface 317
33.1 Creating JSPs for Displaying Custom Assets in the Asset Publisher 317
33.2 Enabling Tags, Categories, and Related Assets for Guestbooks 319
33.3 Enabling Tags, Categories, and Related Assets for Guestbook Entries 320
33.4 Enabling Comments and Ratings for Guestbook Entries 322

34 GeneratingWeb Services 327
34.1 Creating Remote Services with Service Builder . 327

35 Implementing Permission Checks 335
35.1 Implementing Permission Checks at the Service Layer 335
35.2 Securing Service Calls at the Portlet Layer . 338

36 UsingWorkflow 345

37 SupportingWorkflow at the Service Layer 347
37.1 Setting the Guestbook Status . 347
37.2 Setting the EntryWorkflow Status . 349
37.3 Retrieving Guestbooks and Entries by Status . 350

38 HandlingWorkflow 353
38.1 Creating aWorkflow Handler for Guestbooks . 353
38.2 Creating aWorkflow Handler for Guestbook Entries 355

39 Displaying ApprovedWorkflow Items 357
39.1 Displaying Guestbook Status . 357
39.2 Displaying Approved Entries . 358

40 Enabling Staging and Export/Import 361
40.1 Creating StagedModels . 361
40.2 Creating the Entry StagedModel Data Handler . 365
40.3 Creating the Guestbook StagedModel Data Handler 369

v

40.4 Updating Permissions to Support Staging . 372
40.5 Configuring XStream . 375
40.6 Defining System Events for Deletions . 377
40.7 Creating the Portlet Data Handler . 379

41 Writing an Android App for Liferay DXP 387

42 Beginning AndroidDevelopment for Your Liferay DXP Instance 389
42.1 Setting up the Guestbook Portlet . 389
42.2 Building the GuestbookMobile SDK . 391
42.3 Creating the Android Project . 394
42.4 Installing the GuestbookMobile SDK and Liferay Screens for Android 395
42.5 Designing Your App . 401
42.6 Using Login Screenlet for Authentication . 403

43 Creating Guestbook List Screenlet 409
43.1 Getting Started with Guestbook List Screenlet . 410
43.2 Creating Guestbook List Screenlet’s UI . 413
43.3 Creating Guestbook List Screenlet’s Interactor . 416
43.4 Creating Guestbook List Screenlet’s Screenlet Class 420

44 Creating Entry List Screenlet 425
44.1 Getting Started with Entry List Screenlet . 425
44.2 Creating Entry List Screenlet’s UI . 428
44.3 Creating Entry List Screenlet’s Interactor . 431
44.4 Creating Entry List Screenlet’s Screenlet Class . 433

45 Using the Guestbook List and Entry List Screenlets 437
45.1 Understanding GuestbooksActivity’s UI . 437
45.2 Preparing GuestbooksActivity for Guestbook List Screenlet 440
45.3 Using Guestbook List Screenlet . 444
45.4 Creating a Fragment for Entry List Screenlet . 447
45.5 Using Entry List Screenlet . 450

46 Writing an iOSAppwith Liferay Screens 455

47 Beginning iOSDevelopment for Your Portal 457
47.1 Setting up the Guestbook Portlet . 457
47.2 Building the GuestbookMobile SDK . 460
47.3 Creating the iOS Project . 463
47.4 Installing Liferay Screens and the GuestbookMobile SDK 463
47.5 Designing Your App . 473
47.6 Using Login Screenlet for Authentication . 474
47.7 Creating the Guestbooks Scene . 479

48 Creating Guestbook List Screenlet 485
48.1 Getting Started with Guestbook List Screenlet . 486
48.2 Creating Guestbook List Screenlet’s UI . 490
48.3 Creating Guestbook List Screenlet’s Connector . 494

vi

48.4 Creating Guestbook List Screenlet’s Interactor . 496
48.5 Creating Guestbook List Screenlet’s Delegate . 498
48.6 Creating the Screenlet Class . 499

49 Creating Entry List Screenlet 503
49.1 Getting Started with Entry List Screenlet . 503
49.2 Creating Entry List Screenlet’s UI . 505
49.3 Creating Entry List Screenlet’s Connector . 509
49.4 Creating Entry List Screenlet’s Interactor . 510
49.5 Creating Entry List Screenlet’s Delegate . 512
49.6 Creating the Screenlet Class . 513

50 Using Your Screenlets 517
50.1 Creating the Entries Scene . 517
50.2 Using Guestbook List Screenlet . 519
50.3 Using Entry List Screenlet . 522

51 Tooling 527

52 Liferay@ide@ 529
52.1 Installing Liferay @ide@ . 529
52.2 Creating a LiferayWorkspace with Liferay @ide@ . 534
52.3 Setting Proxy Requirements for Liferay @ide@ . 537
52.4 Updating Liferay @ide@ . 539
52.5 Creating Modules with Liferay @ide@ . 540
52.6 CreatingThemes with Liferay @ide@ . 544
52.7 DeployingModules with Liferay @ide@ . 545
52.8 ManagingModule Projects with Liferay @ide@ . 546
52.9 Installing a Server in Liferay @ide@ . 548
52.10 Searching Liferay DXP Source in Liferay @ide@ . 553
52.11 Debugging Liferay DXP Source in Liferay @ide@ . 555
52.12 Enabling Code Assist Features in Your Project . 556
52.13 Using Gradle in Liferay @ide@ . 557
52.14 UsingMaven in Liferay @ide@ . 560
52.15 Using Front-End Code Assist Features in @ide@ . 567

53 Blade CLI 577
53.1 Installing Blade CLI . 577
53.2 Installing Blade CLI with Proxy Requirements . 580
53.3 Creating a LiferayWorkspace with Blade CLI . 580
53.4 Creating Projects with Blade CLI . 581
53.5 DeployingModules with Blade CLI . 584
53.6 Managing Your Liferay Server with Blade CLI . 585
53.7 Updating Blade CLI . 586
53.8 Converting Plugins SDK Projects with Blade CLI . 587

54 LiferayWorkspace 589
54.1 Installing LiferayWorkspace . 589
54.2 Configuring a LiferayWorkspace . 591

vii

54.3 Setting Proxy Requirements for LiferayWorkspace 594
54.4 Development Lifecycle for a LiferayWorkspace . 595
54.5 Managing the Target Platform for LiferayWorkspace 599

55 ValidatingModules Against the Target Platform 603
55.1 Resolving Your Modules . 603
55.2 Modifying the Target Platform’s Capabilities . 604
55.3 Including the Resolver in Your Gradle Build . 607
55.4 Validating Modules Outside ofWorkspace . 608
55.5 Updating LiferayWorkspace . 608

56 Maven 609
56.1 Installing Liferay Maven Artifacts . 609
56.2 Generating New Projects Using Archetypes . 611
56.3 Creating a Module JAR UsingMaven . 612
56.4 Deploying a Module Built with Maven to Liferay DXP 614
56.5 Creating a Maven Repository . 615
56.6 Deploying Liferay Maven Artifacts to a Repository . 617
56.7 Using Service Builder in a Maven Project . 619
56.8 Compiling Sass Files in a Maven Project . 621
56.9 BuildingThemes in a Maven Project . 623
56.10 MavenWorkspace . 626

57 IntelliJ IDEA 631
57.1 Installing the Liferay IntelliJ Plugin . 631
57.2 Creating a LiferayWorkspace with IntelliJ IDEA . 631
57.3 Creating Projects with IntelliJ IDEA . 633
57.4 Installing a Server in IntelliJ IDEA . 635
57.5 Deploying Projects with IntelliJ IDEA . 636

58 Liferay Sample Projects 639
58.1 Liferay Upgrade Planner . 640
58.2 Using the Upgrade Planner with Proxy Requirements 642

59 Portlets 645

60 LiferayMVCPortlet 649
60.1 MVC Layers andModularity . 649
60.2 Liferay MVC Command Classes . 650
60.3 Liferay MVC Portlet Component . 650
60.4 A Simpler MVC Portlet . 651
60.5 Creating anMVC Portlet . 651
60.6 MVC Action Command . 658
60.7 MVC Render Command . 659
60.8 MVC Resource Command . 661

61 Liferay Soy Portlet 665
61.1 Creating a Soy Portlet . 665

viii

62 The State Object 673
62.1 UnderstandingThe State Object’s Architecture . 673
62.2 Configuring Portlet Template Parameter State Properties 674
62.3 Configuring Soy Portlet Template Parameters on the Client Side 674

63 SpringMVC 679
63.1 Packaging a SpringMVC Portlet . 679
63.2 SpringMVC Portlets in Liferay . 681
63.3 Calling Services from SpringMVC . 684
63.4 Related Topics . 685

64 JSF Portlets with Liferay Faces 687
64.1 Generating a JSF Project from the Command Line . 688
64.2 Generating a JSF Project Using @ide@ . 690
64.3 Creating a JSF Project Manually . 691
64.4 Services in JSF . 700

65 Making URLs Friendlier 703
65.1 Creating Friendly URL Routes . 703
65.2 Implementing a Friendly URLMapper . 705
65.3 Friendly URLs in Action . 705
65.4 Automatic Single Page Applications . 706
65.5 Creating Layouts inside Custom Portlets . 711

66 Using JavaScript in Your Portlets 715

67 Using ES2015 in Your Portlets 717
67.1 Preparing Your JavaScript Files for ES2015 . 717
67.2 Using ES2015 Modules in your Portlet . 718

68 Using npm in Your Portlets 719
68.1 liferay-npm-bundler . 719
68.2 Adding liferay-npm-bundler to Your Portlet . 720
68.3 Configuring liferay-npm-bundler . 722
68.4 The Structure of OSGi Bundles Containing npm Packages 726
68.5 Understanding How liferay-npm-bundler Formats JavaScript Modules for AMD 727
68.6 How Liferay DXP Publishes npm Packages . 730
68.7 Understanding How Liferay DXP Exposes Configuration For Liferay AMD Loader 736
68.8 Related Topics . 738

69 Using theNPMResolver API in Your Portlets 739
69.1 Referencing an npmModule’s Package to Improve CodeMaintenance 739
69.2 Obtaining an OSGi bundle’s Dependency npm Package Descriptors 741

70 Applying Lexicon Styles to your App 743
70.1 Configuring Your Application’s Title and Back Link 743
70.2 Applying Lexicon Patterns to Your Forms, Navigation, and Search 744
70.3 Applying the Add Button Pattern . 748

ix

71 Adding theManagement Bar 751
71.1 Implementing the Management Bar Display Styles 753
71.2 Implementing a Management Bar Navigation Filter 759
71.3 Implementing a Management Bar Sort Filter . 761
71.4 Disabling the Management Bar . 765
71.5 Configuring Your Admin App’s Actions Menu . 765
71.6 Setting Search Container Animations . 768
71.7 Using Lexicon Icons in Your App . 773

72 Customizing 775

73 Customizing JSPs 777
73.1 Using Liferay’s API to Override a JSP . 777
73.2 Overriding a JSPWithout Using Liferay’s API . 777
73.3 Customizing JSPs with Dynamic Includes . 778
73.4 JSP Overrides Using Portlet Filters . 780
73.5 JSP Overrides Using OSGi Fragments . 783
73.6 JSP Overrides Using Custom JSP Bag . 786
73.7 Overriding Liferay DXP’s Default YUI and AUIModules 788
73.8 Overriding Liferay Services (ServiceWrappers) . 789
73.9 Overriding Language Keys . 791
73.10 Overriding Portal Properties using a Hook . 797
73.11 OverridingMVC Commands . 798
73.12 Overriding lpkg files . 802
73.13 Creating Model Listeners . 803

74 ApplicationDisplay Templates 807
74.1 Implementing Application Display Templates . 807

75 Mobile 813

76 Android Appswith Liferay Screens 815
76.1 Preparing Android Projects for Liferay Screens . 815
76.2 Using Screenlets in Android Apps . 821
76.3 Using Views in Android Screenlets . 823
76.4 Using Offline Mode in Android . 825
76.5 Architecture of Liferay Screens for Android . 826
76.6 Architecture of Offline Mode in Liferay Screens . 831
76.7 Creating Android Screenlets . 837
76.8 Creating Android List Screenlets . 848
76.9 Creating Android Views . 860
76.10 Packaging Your Android Screenlets . 865
76.11 Using Liferay Push in Android Apps . 866
76.12 Accessing the Liferay Session in Android . 869
76.13 Adding Custom Interactors to Android Screenlets . 872
76.14 RenderingWeb Content in Your Android App . 874
76.15 RenderingWeb Pages in Your Android App . 877
76.16 UsingWeb Screenlet with Cordova in Your Android App 881

x

76.17 Adding Offline Mode Support to Your Android Screenlet 883
76.18 Android Best Practices . 889
76.19 Liferay Screens for Android Troubleshooting and FAQs 891

77 iOS Appswith Liferay Screens 895
77.1 Preparing iOS Projects for Liferay Screens . 895
77.2 Using Screenlets in iOS Apps . 898
77.3 UsingThemes in iOS Screenlets . 905
77.4 Using Offline Mode in iOS . 907
77.5 Architecture of Liferay Screens for iOS . 907
77.6 Creating iOS Screenlets . 914
77.7 Supporting MultipleThemes in Your Screenlet . 920
77.8 Adding Screenlet Actions . 922
77.9 Create and Use a Connector with Your Screenlet . 925
77.10 Add a Screenlet Delegate . 930
77.11 Using and Creating Progress Presenters . 931
77.12 Creating and Using Your Screenlet’s Model Class . 934
77.13 Creating iOS List Screenlets . 938
77.14 Using Custom Cells with List Screenlets . 945
77.15 Sorting Your List Screenlet . 947
77.16 Creating Complex Lists in Your List Screenlet . 949
77.17 Creating iOSThemes . 952
77.18 Packaging iOSThemes . 955
77.19 Accessing the Liferay Session in iOS . 958
77.20Adding Custom Interactors to iOS Screenlets . 960
77.21 RenderingWeb Content in Your iOS App . 961
77.22 RenderingWeb Pages in Your iOS App . 964
77.23 UsingWeb Screenlet with Cordova in Your iOS App 967
77.24 iOS Best Practices . 969

78 UsingXamarinwith Liferay Screens 973
78.1 Preparing Xamarin Projects for Liferay Screens . 973
78.2 Using Screenlets in Xamarin Apps . 976
78.3 Using Views in Xamarin.Android . 979
78.4 UsingThemes in Xamarin.iOS . 981
78.5 Creating Xamarin Views andThemes . 982
78.6 Liferay Screens for Xamarin Troubleshooting and FAQs 986

79 Mobile SDK 991
79.1 Creating Android Apps that Use the Mobile SDK . 993
79.2 Making Liferay and Custom Portlet Services Available in Your Android App 993
79.3 Invoking Liferay Services in Your Android App . 996
79.4 Invoking Services Asynchronously from Your Android App 1000
79.5 Sending Your Android App’s Requests Using Batch Processing 1003
79.6 Creating iOS Apps that Use the Mobile SDK . 1004
79.7 Making Liferay and Custom Portlet Services Available in Your iOS App 1004
79.8 Invoking Liferay Services in Your iOS App . 1007
79.9 Invoking Services Asynchronously from Your iOS App 1012

xi

79.10 Sending Your iOS App’s Requests Using Batch Processing 1014
79.11 BuildingMobile SDKs . 1015

80 Service Builder 1019
80.1 What is Service Builder? . 1019

81 Service Builder Persistence 1023
81.1 Defining an Object-Relational Map with Service Builder 1023
81.2 Running Service Builder and Understanding the Generated Code 1031
81.3 Iterative Development . 1036
81.4 Understanding ServiceContext . 1038
81.5 CustomizingModel EntitiesWith Model Hints . 1043
81.6 Custom SQL . 1047
81.7 Dynamic Query . 1050
81.8 Configuring service.properties . 1057
81.9 Connecting Service Builder to External Data Sources 1058

82 Business Logic with Service Builder 1061
82.1 Creating Local Services . 1061
82.2 Invoking Local Services . 1063
82.3 Finding and Invoking Liferay Services . 1064

83 Data Access 1067
83.1 Data Scopes . 1067

84 Web Services 1071

85 Service BuilderWeb Services 1073
85.1 Creating Remote Services . 1074
85.2 Invoking Remote Services . 1079
85.3 Service Security Layers . 1082
85.4 Registering JSONWeb Services . 1084
85.5 Invoking JSONWeb Services . 1087
85.6 JSONWeb Services Invoker . 1096
85.7 JSONWeb Services Invocation Examples . 1100
85.8 Configuring JSONWeb Services . 1104
85.9 SOAPWeb Services . 1106
85.10 JAX-WS and JAX-RS . 1112
85.11 LiferayWebSocketWhiteboard . 1118

86 Asset Framework 1125
86.1 Related Topics . 1126
86.2 Adding, Updating, and Deleting Assets for Custom Entities 1126
86.3 Implementing Asset Categorization and Tagging . 1128
86.4 Relating Assets . 1130
86.5 Implementing Asset Priority . 1134
86.6 Rendering an Asset . 1135

87 Liferay’sWorkflow Framework 1151

xii

87.1 Creating aWorkflow Handler . 1151
87.2 Updating the Service Layer . 1152
87.3 Workflow Status and the View Layer . 1154

88 Export/Import and Staging 1157
88.1 Decision to Implement Staging . 1158
88.2 Understanding StagedModels . 1159
88.3 Generating StagedModels Using Service Builder . 1162
88.4 Creating StagedModels Manually . 1164
88.5 Understanding Data Handlers . 1166
88.6 Developing Data Handlers . 1170
88.7 Initiating New Processes with ExportImportConfiguration Objects 1180
88.8 Using the Export/Import Lifecycle Listener Framework 1182

89 Configuration 1185
89.1 Making Your Applications Configurable . 1185
89.2 Implementing Configuration Actions . 1194
89.3 Transitioning from Portlet Preferences to the Configuration API 1201

90 Social 1205
90.1 Applying Social Bookmarks . 1205
90.2 Adding Comments to your App . 1207
90.3 Rating Assets . 1210
90.4 Implementing Ratings Type Selection and Value Transformation 1211
90.5 Flagging Inappropriate Asset Content . 1213

91 ItemSelector 1215
91.1 Selecting Entities Using the Item Selector . 1216
91.2 Creating Custom Item Selector Entities . 1220
91.3 Creating Custom Item Selector Views . 1223

92 AdaptiveMedia 1235
92.1 Displaying Adapted Images in Your App . 1235
92.2 Finding Adapted Images . 1236
92.3 Changing Adaptive Media’s Image Scaling . 1240

93 Liferay Forms 1245

94 FormField Types 1247
94.1 Anatomy of a Field Type Module . 1248
94.2 Creating Form Field Types . 1249
94.3 Adding Settings to Form Field Types . 1256

95 Search 1263
95.1 Basic Search Concepts . 1263
95.2 Liferay Search API . 1264
95.3 Search Adapter API . 1269
95.4 Transactional Search . 1269
95.5 Customizing Liferay Search . 1269

xiii

96 Application Security 1271
96.1 Adding Permissions to Resources . 1271

97 Authentication Pipelines 1279
97.1 Auto Login . 1280
97.2 Password-Based Authentication Pipelines . 1281
97.3 Writing a Custom Login Portlet . 1287
97.4 Service Access Policies . 1289
97.5 Using JSR Roles in a Portlet . 1293

98 Internationalization 1297
98.1 Localizing Your Application . 1297
98.2 Automatically Generating Language Files . 1302
98.3 Using Liferay’s Language Settings . 1304

99 WYSIWYGEditors 1309
99.1 Adding aWYSIWYG Editor to a Portlet . 1309
99.2 Modifying an Editor’s Configuration . 1311
99.3 Adding New Behavior to an Editor . 1314

100AlloyEditor 1319
100.1 Creating and Contributing new Buttons to AlloyEditor 1319
100.2Using the Default CKEditor Plugins Bundled with AlloyEditor 1324

101 JavaScriptModule Loaders 1329
101.1 ConfiguringModules for Liferay DXP’s Loaders . 1329
101.2 Using External Libraries . 1333
101.3 Liferay AMDModule Loader . 1335
101.4 LoadingModules with AUI Script in Liferay DXP . 1337

102 Liferay JavaScript APIs 1341
102.1 LiferayThemeDisplay . 1341
102.2Working with URLs in JavaScript . 1343
102.3 Liferay DXP JavaScript Utilities . 1344
102.4 Invoking Liferay Services . 1345

103 Front-End Taglibs 1351
103.1 Using the Liferay UI Taglib . 1351
103.2 Using the Liferay Util Taglib . 1352

104HTML Forms 1357
104.1 Forms and Validation . 1357
104.2 Creating Forms with Liferay’s Taglibs . 1362
104.3 FormNavigator Extensions . 1366
104.4 Creating FormNavigator Contexts . 1375

105Themes and Layout Templates 1379

106Themes 1381

xiv

106.1 LiferayTheme Generator . 1381
106.2Themelets . 1386
106.3 Importing Resources with aTheme . 1388
106.4 Using Developer Mode withThemes . 1397
106.5 Theme Contributors . 1400
106.6 Context Contributors . 1402
106.7 Macros . 1405
106.8Theme Builder . 1407
106.9 Creating aThemeThumbnail . 1408
106.10Specifying Color Schemes in yourTheme . 1409
106.11MakingThemes Configurable with Settings . 1412

107 Layout Templates 1417
107.1 Layout Templates with the LiferayTheme Generator 1417
107.2 Creating Layout Templates Manually . 1421

108 Portlets andThemes 1425

109 Portlet Decorators 1427
109.1 Adding Portlet Decorators to aTheme . 1428
109.2 Applying Portlet Decorators to Embedded Portlets . 1432
109.3 Theming Portlets . 1433
109.4 Embedding Portlets inThemes . 1435

110 Lexicon CSS andThemes 1439
110.1 Importing Lexicon CSS into aTheme . 1439

111 Product Navigation 1443
111.1 Customizing the Product Menu . 1444
111.2 Customizing the Control Menu . 1449
111.3 Extending the SimulationMenu . 1454
111.4 Providing the User Personal Bar . 1456

112 Testing 1459
112.1 Unit Testing with JUnit . 1459

113 Arquillian Extension for Liferay Example 1469
113.1 Arquillian Example Sample Portlet . 1469
113.2 Arquillian Integration Test Example . 1470
113.3 Arquillian Functional Test Example . 1473
113.4 JaCoCo Code Coverage Example . 1478
113.5 Running the Arquillian Example . 1480
113.6 Liferay Slim Runtime . 1481
113.7 Injecting Service Components into Tests . 1485

114 Modularity andOSGi 1489
114.1 The Benefits of Modularity . 1489
114.2 OSGi andModularity . 1492

xv

115 OSGi Basics for Liferay Development 1499
115.1 Liferay Portal Classloader Hierarchy . 1499
115.2 Bundle Classloading Flow . 1502
115.3 ResolvingThird Party Library Package Dependencies 1503
115.4 Overriding Reluctant Service References . 1506
115.5 Using theWAB Generator . 1511
115.6 Importing Packages . 1513
115.7 Exporting Packages . 1515
115.8 Semantic Versioning . 1516
115.9 Service Trackers . 1518
115.10Waiting on Lifecycle Events . 1521

116 Troubleshooting FAQ 1525
116.1 Modules . 1525
116.2 Services and Components . 1526
116.3 Resolving Bundle Requirements . 1527
116.4 Resolving Bundle-SymbolicName Syntax Issues . 1528
116.5 Resolving ClassNotFoundException and NoClassDefFoundError in OSGi Bundles 1529
116.6 Identifying Liferay Artifact Versions for Dependencies 1531
116.7 Connecting to JNDI Data Sources . 1532
116.8 Adjusting Module Logging . 1533
116.9 Implementing Logging . 1534
116.10Declaring Optional Import Package Requirements 1535
116.11Why Aren’t myModule’s JavaScript and CSS Changes Showing? 1536
116.12Why Aren’t JSP overrides I Made Using Fragments Showing? 1537
116.13Detecting Unresolved OSGi Components . 1538
116.14Using Files to Configure Module Components . 1541
116.15Calling Non-OSGi Code that Uses OSGi Services . 1544
116.16Patching DXP Source Code . 1544
116.17Liferay DXP Failed to Initialize Because the DatabaseWasn’t Ready 1547
116.18Using OSGi Services from EXT Plugins . 1548
116.19Sort Order Changed with a Different Database . 1548

117 Data Upgrades 1551
117.1 Creating Data Upgrade Processes for Modules . 1551
117.2 Upgrade Processes for Former Service Builder Plugins 1558
117.3 Upgrading Data Schemas in Development . 1561

118 Back-end Frameworks 1563
118.1 Device Recognition API . 1563

119 Message Bus 1565
119.1 Messaging Destinations . 1566
119.2 Message Listeners . 1571
119.3 SendingMessages . 1573

120Audience Targeting 1579
120.1 Accessing the Content Targeting API . 1579

xvi

120.2 Creating New Audience Targeting Rule Types . 1582
120.3 Tracking User Actions with Audience Targeting . 1592
120.4 Best Practices for Metrics . 1600
120.5 Best Practices for Rules . 1602

121 CustomizableWebApplications 1605
121.1 Providing Portlets to Manage Requests . 1605

II Developer Reference 1609

122 Development Reference 1611
122.1 Java APIs . 1611
122.2 Taglibs . 1613

123 Liferay APIModules 1615
123.1 API Modules Table . 1615

124 Portlet Descriptor to OSGi Service PropertyMap 1619

125 ClassesMoved fromportal-service.jar 1623

126ThemeGulp Tasks 1669

127 ThemeReference Guide 1671
127.1 Theme Files . 1673

128 Screenlets in Liferay Screens for Android 1677
128.1 Login Screenlet for Android . 1678
128.2 Sign Up Screenlet for Android . 1683
128.3 Forgot Password Screenlet for Android . 1686
128.4 User Portrait Screenlet for Android . 1689
128.5 DDL Form Screenlet for Android . 1693
128.6 DDL List Screenlet for Android . 1700
128.7 Asset List Screenlet for Android . 1704
128.8Web Content Display Screenlet for Android . 1708
128.9Web Content List Screenlet for Android . 1712
128.10Image Gallery Screenlet for Android . 1715
128.11Rating Screenlet for Android . 1719
128.12Comment List Screenlet for Android . 1723
128.13Comment Display Screenlet for Android . 1726
128.14Comment Add Screenlet for Android . 1729
128.15Asset Display Screenlet for Android . 1732
128.16Blogs Entry Display Screenlet for Android . 1737
128.17Image Display Screenlet for Android . 1740
128.18Video Display Screenlet for Android . 1743
128.19Audio Display Screenlet for Android . 1746
128.20PDF Display Screenlet for Android . 1749
128.21Web Screenlet for Android . 1752

xvii

128.22Android Breaking Changes . 1755

129 Screenlets in Liferay Screens for iOS 1761
129.1 Login Screenlet for iOS . 1762
129.2 Sign Up Screenlet for iOS . 1767
129.3 Forgot Password Screenlet for iOS . 1770
129.4 User Portrait Screenlet for iOS . 1773
129.5 DDL Form Screenlet for iOS . 1776
129.6 DDL List Screenlet for iOS . 1783
129.7 Asset List Screenlet for iOS . 1787
129.8Web Content Display Screenlet for iOS . 1791
129.9 Web Content List Screenlet for iOS . 1794
129.10Image Gallery Screenlet for iOS . 1798
129.11Rating Screenlet for iOS . 1802
129.12Comment List Screenlet for iOS . 1805
129.13Comment Display Screenlet for iOS . 1809
129.14Comment Add Screenlet for iOS . 1812
129.15Asset Display Screenlet for iOS . 1815
129.16Blogs Entry Display Screenlet for iOS . 1819
129.17Image Display Screenlet for iOS . 1822
129.18Video Display Screenlet for iOS . 1826
129.19Audio Display Screenlet for iOS . 1829
129.20PDF Display Screenlet for iOS . 1832
129.21File Display Screenlet for iOS . 1835
129.22Web Screenlet for iOS . 1838
129.23SyncManagerDelegate . 1841

130 Liferay Faces 1843
130.1 Liferay Faces Version Scheme . 1843
130.2 Understanding Liferay Faces Bridge . 1845
130.3 Understanding Liferay Faces Alloy . 1846
130.4 Understanding Liferay Faces Portal . 1848

131 Gradle 1851
131.1 App Javadoc Builder Gradle Plugin . 1851
131.2 Baseline Gradle Plugin . 1853
131.3 Change Log Builder Gradle Plugin . 1855
131.4 CSS Builder Gradle Plugin . 1857
131.5 DB Support Gradle Plugin . 1860
131.6 Dependency Checker Gradle Plugin . 1861
131.7 Deployment Helper Gradle Plugin . 1862
131.8 Go Gradle Plugin . 1864
131.9 Gulp Gradle Plugin . 1865
131.10Jasper JSPC Gradle Plugin . 1866
131.11 Javadoc Formatter Gradle Plugin . 1868
131.12JS Module Config Generator Gradle Plugin . 1870
131.13 JS Transpiler Gradle Plugin . 1872
131.14JSDoc Gradle Plugin . 1874

xviii

131.15Lang Builder Gradle Plugin . 1876
131.16Maven Plugin Builder Gradle Plugin . 1878
131.17Node Gradle Plugin . 1881
131.18Service Builder Gradle Plugin . 1886
131.19Source Formatter Gradle Plugin . 1889
131.20Soy Gradle Plugin . 1892
131.21Target Platform Gradle Plugin . 1894
131.22Theme Builder Gradle Plugin . 1898
131.23TLDDoc Builder Gradle Plugin . 1900
131.24TLD Formatter Gradle Plugin . 1903
131.25Whip Gradle Plugin . 1904
131.26WSDD Builder Gradle Plugin . 1906
131.27WSDL Builder Gradle Plugin . 1907
131.28XML Formatter Gradle Plugin . 1909
131.29XSD Builder Gradle Plugin . 1910
131.30Felix Gogo Shell . 1912

132 Maven 1915
132.1 Bundle Support Plugin . 1915
132.2 CSS Builder Plugin . 1918
132.3 DB Support Plugin . 1919
132.4 Deployment Helper Plugin . 1920
132.5 Javadoc Formatter Plugin . 1921
132.6 Lang Builder Plugin . 1922
132.7 Service Builder Plugin . 1922
132.8 Source Formatter Plugin . 1924
132.9 Theme Builder Plugin . 1925
132.10TLD Formatter Plugin . 1926
132.11WSDD Builder Plugin . 1927
132.12XML Formatter Plugin . 1927

133 Project Templates 1929
133.1 Activator Template . 1929
133.2 API Template . 1931
133.3 Control Menu Entry Template . 1932
133.4 Form Field Template . 1933
133.5 Fragment Template . 1935
133.6 FreeMarker Portlet Template . 1936
133.7 Layout Template . 1937
133.8 MVC Portlet Template . 1939
133.9 npm Angular Portlet Template . 1940
133.10npm Billboard.js Portlet Template . 1942
133.11 npm Isomorphic Portlet Template . 1944
133.12npm jQuery Portlet Template . 1945
133.13npmMetal.js Portlet Template . 1947
133.14npm Portlet Template . 1949
133.15npm React Portlet Template . 1951
133.16npm Vue.js Portlet Template . 1953

xix

133.17Panel App Template . 1954
133.18Portlet Configuration Icon . 1956
133.19Portlet Template . 1957
133.20Portlet Provider Template . 1959
133.21Portlet Toolbar Contributor Template . 1960
133.22REST Template . 1961
133.23Service Template . 1963
133.24Service Builder Template . 1964
133.25ServiceWrapper Template . 1966
133.26Simulation Panel Entry Template . 1967
133.27Soy Portlet Template . 1968
133.28SpringMVC Portlet Template . 1970
133.29Template Context Contributor Template . 1972
133.30Theme Template . 1973
133.31Theme Contributor Template . 1974
133.32WARHook Template . 1976
133.33WARMVC Portlet Template . 1977

134 Sample Projects 1981

135 Apps 1983
135.1 Greedy Policy Option Application . 1983
135.2 Kotlin Portlet . 1988

136 npmSamples 1991
136.1 Angular npm Portlet . 1991
136.2 Billboard.js npm Portlet . 1992
136.3 Isomorphic npm Portlet . 1994
136.4 jQuery npm Portlet . 1995
136.5 Metal.js npm Portlet . 1996
136.6 React npm Portlet . 1997
136.7 Simple npm Portlet . 1998
136.8 Vue.js npm Portlet . 1999

137 Service Builder Samples 2001
137.1 Service Builder Application Demonstrating Actionable Dynamic Query 2001
137.2 Service Builder Application Using External Database via JDBC 2003
137.3 Service Builder Application Using External Database via JNDI 2005
137.4 Shared Language Keys . 2008
137.5 Simulation Panel App . 2010
137.6 SpringMVC Portlet . 2011

138 Extensions 2013
138.1 Control Menu Entry . 2013
138.2 Document Action . 2015
138.3 Gogo Shell Command . 2018
138.4 Indexer Post Processor . 2020
138.5 Model Listener . 2021

xx

138.6 Screen Name Validator . 2023
138.7 Servlet . 2024

139 Overrides 2027
139.1 Core JSP Override . 2027
139.2 Module JSP Override . 2029
139.3 Resource Bundle Override . 2030

140Themes 2033
140.1 SimpleTheme . 2033
140.2 Template Context Contributor . 2034
140.3 Theme Contributor . 2035
140.4 Third Party Packages Portal Exports . 2036
140.5 Resolving Common Output Errors Reported by the resolve Task 2037
140.6 CKEditor Plugin Reference Guide . 2039
140.7 Item Selector Criterion and Return Types . 2040
140.8 Breaking Changes . 2041
140.9What Changed Between Liferay npm Bundler 1.x and 2.x 2104

xxi

Preface

Welcome to the world of the Liferay DXP development platform! This book was written for anyone who
wants to create applications built on Liferay DXP. It contains everything you need to know about Liferay’s
development tools and projects. You’ll learn all you need to know about plugins, OSGi, the LiferayWorkspace,
Service Builder, andmore. Use this book as a handbook for everything you need to do to get your application
running on Liferay DXP, and then keep it by your side as you update and add features to help your users work
more effectively.

Conventions

The information contained herein has been organized in a way that makes it easy to locate information. The
book has two parts. The first part,Developer Tutorials, shows you how to work step-by-step with Liferay’s
technology. The second part,Developer Reference, shows exhaustively the options and APIs you need.

Sections are broken up into multiple levels of headings, and these are designed to make it easy to find
information.

Source code and configuration file directives are presented monospaced, as below.

Source code appears in a non-proportional font.

Italics represent links or buttons to be clicked on in a user interface.
Monospaced type denotes Java classes, code, or properties within the text.
Bold describes field labels and portlets.
Page headers denote the chapters and the section within the chapter.

Publisher Notes

It is our hope that this book is valuable to you, and that it becomes an indispensable resource as youworkwith
Liferay DXP. If you need assistance beyond what is covered in this book, Liferay offers training1, consulting2,
and support3 services to fill any need that youmight have.

1https://learn.liferay.com
2https://www.liferay.com/consulting
3https://help.liferay.com

xxiii

For up-to-date documentation on the latest versions of Liferay, please see the documentation pages on
Liferay Learn.4

As always, we welcome feedback. If there is any way you think we could make this book better, please
feel free to mention it on our forums or in the feedback on Liferay Learn. You can also use any of the email
addresses on our Contact Us page.5 We are here to serve you, our users and customers, and to help make
your experience using Liferay DXP the best it can be.

4https://learn.liferay.com
5https://www.liferay.com/contact-us

xxiv

http://www.liferay.com/contact-us

Part I

Developer Tutorials

Chapter 1

Introduction to Liferay Development

Howmany times have you had to start over from scratch? Probably almost as many times as you’ve started a
newproject, because each time you have towrite not only the code to build the project, but also the underlying
code that supports the project. It’s never a good feeling to have to write the same kind of code over and over
again. But each new project that you do after a while can feel like that: you’re writing a new set of database
tables, a new API, a new set of CSS classes and HTML, a new set of JavaScript functions.

Wouldn’t it be great if there were a platform that provided a baseline set of features that gave you a head
start on all that repetitive code? Something that lets you get right to the features of your app or site, rather
thanmaking you start over every time with the basic building blocks? There is such a thing, and it’s called
Liferay DXP.

Figure 1.1: With Liferay DXP, you never have to start from scratch.

1.1 Leveraging a Suite of Products, Frameworks and Libraries
Liferay DXP offers developers a complete platform for building web apps,mobile apps, and web services
quickly, using features and frameworks designed for rapid development, good performance, and ease of
use. The base platform is already there, and it’s built as a robust container for applications that you can put
together in far less time than you would from scratch.

It also ships with a default set of common applications you canmake use of right away: web experience
management, collaboration applications such as forums and wikis, documents andmedia, blogs, andmore.
All of these applications are designed to be customized, as is the system itself. You can also extend them to
include your own functionality, and this is no hack: because of Liferay’s extensible design, customization is
by design.

3

Figure 1.2: Liferay DXP ships with suites of applications to get you started building your site quickly.

4

In short, Liferay was written by developers for developers, to help you get your work done faster and
more easily, to take the drudgery out of web andmobile app development, so that writing code becomes
enjoyable again.

1.2 Build Websites, Intranets, Collaborative Environments, Mobile
Apps, and More

One of themost often cited best characteristics of Liferay is how versatile it is. It can be used to buildwebsites
of all sorts, from very large websites with hundreds of thousands of articles, to smaller, highly dynamic
and interactive sites. This includes public sites, internal sites like intranets, or mixed environments like
collaboration platforms.

Developers often choose Liferay for one of these cases and quickly find that Liferay is a great fit for
completely different projects.

1.3 Creating Your Own Applications and Extending the Existing
Ones

Liferay DXP is based on the Java platform and can be extended by adding new applications, customizing
existing applications,modifying its behavior, or creating new themes. You can do thiswith any programming
language supported by the JVM, such as Java itself, Scala, jRuby, Jython, Groovy, and others. Liferay DXP is
lightweight, can be deployed to a variety of Java EE containers and app servers, and it supports a variety of
databases. Because of its ability to be customized, you can add support for more app servers or databases
without modifying its source code: just develop and deploy a module with the features you need.

Speaking of code and deploying, here are some of the most common ways of expanding or customizing
Liferay DXP’s features:

1. Developing a new full-blown web application. Themost common way to develop web applications for
Liferay DXP is with portlets, because they integrate well with other existing applications. You are not,
however, limited to portlets if you don’t need to integrate your apps with others.

2. Customizing an existing web application or feature. Liferay DXP is designed to be extended. Many
extension points can be leveraged to modify existing behavior, andmost of these can be developed
through a single Java class with some annotations (more details later).

3. Creating a new web service for an external system, a mobile app, an IoT device, or anything else.
4. Developing amobile app that leverages Liferay as its back-end, which you can write in a fraction of
the normal time thanks to Liferay Screens and Liferay Mobile SDK.

5. Developing a custom theme that adapts the look and feel of the platform to the visual needs of your
project.

TheLiferay platformcanbeused as aheadless platform todevelopwebormobile appswith any technology
of your choice (Angular, React, Backbone, Cocoa, Android’s Material Design components, Apache Cordova,
etc). It can also be used as a web integration layer, leveraging technologies such as portlets to allow several
applications to coexist on the same web page.

1.4 Fundamentals

What are the fundamentals that every Liferay developer should know?

5

Figure 1.3: Liferay DXP can be used by developers in many ways.

6

1. It’s Open Source and puts a strong emphasis on following standards, instead of reinventing the wheel.
2. It’s based on JavaEE and heavily leverages OSGi and several other popular technologies for the Java
Platform.

3. It is based on a modular architecture and facilitates following a modular development paradigm for
your own projects.

4. You can build your own web applications, portlets, or mobile apps on top of it.
5. It provides mature development tools, while staying agnostic so each developer can use his or her
preferred tools.

6. It’s all about reusing, providing reusable frameworks and libraries and allowing you to create your
own.

Interested? More details below.

Open Source and based on Standards

Liferay DXP is both open source and built in the open, following a collaborative development model. That
means that you can follow new development as it’s happening,make comments on it, and contribute! Here
are some tools that you can use to do all this:

1. Our ticketing system. All the changes made to the product, including all bug fixes, improvements,
and new features start with a ticket created in JIRA.We have several projects there, but the main one
for tracking the work of Liferay DXP or for reporting bugs you have found (with as many details as you
can and steps to reproduce, of course) is LPS

2. GitHub: The home of our source code. You can use it to see the code changes as they happen and also
to send pull requests for improvements. There are also many repos, but the main one is liferay-portal

3. Forums: It’s where our community gets together to share ideas, discuss, and collaborate. Go ahead
and ask your questions and help others ask theirs.

4. Blogs: Read the latest news, advice, and best practices from key core developers and our most active
community members.

5. Participate: Learn how to get started participating. You will find options for all levels of expertise and
time available.

In addition to being Open Source, Liferay is also heavily based on standards. This is great news for your
project, since it significantly reduces the lock-in on Liferay. That also encourages us to improve constantly.

Here are some key standards supported by Liferay DXP:

• Portlets 1.0 (JSR-168) and Portlets 2.0 (JSR-286): Liferay DXP can run any portlets that follow these two
versions of the specification. Liferay is also heavily involved in the upcoming Portlets 3.0 specification.

• JSF (JSR-127, JSR-314, JSR-344): The Java standard for building component based web applications.
Liferay is an active contributor to the standard and lead of the JSF-Portlet Bridge specification.

• EcmaScript 2015: The latest incarnation of the JavaScript standard. Liferay’s tooling provides the
ability to use it in all modern browsers thanks to the integration of Babel JS.

• Content Management Interoperability Services (CMIS): Liferay’s Documents andMedia can behave as
an interface for any external Documents Repository that supports this widely adopted standard.

7

https://issues.liferay.com/browse/LPS
http://github.com/liferay
http://github.com/liferay/liferay-portal
http://forums.liferay.com
http://blogs.liferay.com
https://portal.liferay.dev/participate/
https://jcp.org/en/jsr/detail?id=168
https://jcp.org/en/jsr/detail?id=286
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.ecma-international.org/ecma-262/6.0/
https://www.oasis-open.org/committees/cmis

• Java Content Repository (JSR-170): Files stored in the internal repository of Liferay’s Documents and
Media can be configured to be stored in a JSR-170 compatible repository if desired.

• WebDAV: Any Documents &Media folder can bemounted anywhereWebDAV is supported, such as
Windows explorer orWebDAV-specific clients.

• SAML and OAuth 1.1: These are the most widely adopted security protocols for SSO and application
sign in, supported through specific Apps that can be installed from Liferay’s Marketplace.

• JAX-RS and JAX-WS: Incorporated since Liferay 7 as the preferred tooling to create web services.

• WSRP 1 and 2: Allows execution of portlets running in a remote container.

• OSGi r6: Liferay supports a wide range of the OSGi family of standards through its own implementa-
tions and also integrates the high quality implementations of the Apache Felix and Eclipse Equinox
projects (which we also collaborate). Here are some of the most relevant supported standards:

– OSGi runtime: Allowing any OSGi module to run in Liferay DXP
– Declarative Services: Supports a dynamic component model for Liferay development.
– Configuration Admin: Lets you create highly configurable applications that can be reconfigured
on the fly. Liferay provides an auto-generated UI to change the configuration of any component
that leverages this standard.

Technologies

Like any open source application, Liferay is built on the shoulders of giants. When we choose the technology
on which to build our platform, it must have the following characteristics:

• It must balance being modern and beingmature enough for demanding and critical enterprise envi-
ronments.

• It should be widely adopted and have a mature community.
• It should be as easy as possible to contribute back, since we love to contribute to the open source
projects we use.

• It should be possible to use only the piece of the project we need if we don’t need the whole thing. That
way, it’s easier to replace that piece in the future if we find something that works better.

The goal, of course, is to give our developers and users the most up to date, easy-to-use, and stable
platform to build your services on.

At its base, Liferay is a JavaEE application that also includes an OSGi container. This offers the best of
both worlds: access to the world’s most robust and fully featured enterprise platform, along with the benefits
of the world’s most fully featured and stable modular container. Now developers can develop and deploy
enterprise-ready, scalable web andmobile-based applications in a dynamic, component-based environment.

With JavaEE and OSGi at the bottom of the stack, we build the rest of our core on well known or widely
used products:

• Spring for transactions (and Dependency Injection in the core)
• Hibernate for database access (along with direct JDBC access for optimized queries)
• Elasticsearch for indexing and searching
• Ehcache for caching.

8

https://jcp.org/en/jsr/detail?id=170
http://www.webdav.org
http://saml.xml.org
http://oauth.net/core/1.1
http://marketplace.liferay.com
https://www.oasis-open.org/committees/wsrp
https://www.osgi.org

Figure 1.4: Liferay is based on popular, well known, and well supported technologies.

9

In the application layer, developers have access to many of the libraries they’re familiar with and have
been using for years:

• Xalan
• Xerces
• Apache Commons
• Tika
• dom4j

If you’re approaching Liferay DXP with the intention of customizing it, you can know that most if not all
of the tools you’re familiar with are there. If you’re writing applications on Liferay’s platform, the sky’s the
limit: you can use any web framework you like, and you can write both servlet and portlet-based applications.
If you’re looking for a recommendation, though, we’re happy to point you to either our MVCPortlet or our
JSF-based LiferayFaces frameworks.

On the front-end, Liferay has kept pace with the most recent progressions in that space. If you’ve used
Liferay in the past, you can of course continue to use Liferay’s venerable Alloy UI, but you are also free to use
the front-end technologies you love the most:

• Bootstrap
• SaSS
• EcmaScript 2015 (using Babel.js)

You can also use any JavaScript library, including

• Metal.js (developed by Liferay)
• jQuery (included)
• Lodash (included)
• Angular 1 or 2
• React
• Your library of choice

Liferay DXP follows a design language created by our designers at Liferay called Lexicon Experience
Language, which has been implemented for use of the web as Lexicon.

Lexicon is automatically made available to application developers through a set of CSS classes and
markup, although it’s even easier to use our tag library.

For templating, JavaEE’s JSP is there as expected aswell as FreeMarker, but themodularity of the platform
allows you to use Google’s Soy (aka Closure Templates) or whatever else you like.

Liferay has also chosen build tools that give you freedom to use any development environment. Gradle
along with bnd powers the product’s build, but project layouts are dynamic, which means you can use
anything fromMaven to Ant/Ivy to build applications for Liferay.

In short, Liferay has done a lot to make sure its users and developers have access to themost widely used,
robust tools possible–as well as the freedom to use the tools they like the most. Know that Liferay has your
back andwill do everythingwe can to provide youwith themost flexible technology platform possible, so that
you have the freedom to go and build great things on it–things we never could have expected or imagined.

Architecture

Liferay’s design goals have from the beginning been to give you all the tools to create exactly the web presence
you have in mind. To achieve this, the product must do these things:

10

https://lexicondesign.io/
https://lexicondesign.io/
https://liferay.github.io/clay/

• Provide a usable default configuration and interface
• Ship with best-of-breed apps that can be used to build sites quickly
• Make the UI customizable at any level of detail from small tweaks to a complete replacement
• Make the apps customizable at any level of detail
• Provide a robust development platform upon which new best-of-breed apps can be built and shared

These goals are now achieved to the furthest extent ever in Liferay’s history, and it’s all because of our new
modular architecture.

Imagine an environment where every piece of functionality is an independent module. Themodules
declare three important things:

• The functionality they implement or define
• Their dependency on other modules
• Their priority relative to their functionality

Using this information, the container can start all the modules that fulfill their definitions, implementa-
tions, dependencies, and priorities.

Anything a developer wants to do is implemented as one or more modules. If it’s a new application,
that application can depend on existing modules and define a dependency on them. This enables you to
use functionality that’s already there without rewriting it yourself for your app. If it’s a customization, in
many cases it’s just a simple matter of defining your customization with a higher priority than the existing
functionality.

This is the power of a modular architecture.

11

Modules

All new applications, extensions, and customizations built on Liferay are built in a modular way. A module is
the single unit of distribution and deployment in a modular architecture.

In the spirit of following existing standards, Liferay has leveraged a set of very powerful standards known
as OSGi. OSGi defines, among other things, howmodules can depend on each other and communicate. It
also defines the packaging format for modules: OSGi bundles. An OSGi module is just a typical JAR file,
familiar to Java developers as a ZIP file containing compiled code, templates, resources, and some meta
information.

Services

One aspect of modern software architecture is the notion of services. These are independently running
pieces of code that provide specific functionality when called. They operate just like services in the real world
do. For example, youmight call a service to comemow your lawn. You know how to call the service and to
give it what it needs (money) in order to receive the service (a mown lawn). Software-based services work
the same way.

Liferay’s services are standard services as defined by the OSGi Alliance. Writing anything, whether it be
an application, an interface to a database, or even a “service” as you define it, is easy to implement as an OSGi
service, because they’re both incredibly powerful and easy to develop. If you understand Java interfaces and
how they are implemented–which is introductory Java material–you already understandmore than 90% of
what you need to know. First, you define the interface, or contract for the service: what it returns, and what
it needs to return what it returns. Next, you define an implementation class that implements the contract.

In the services model, a class requests the service that provides the functionality it needs. This func-
tionality is provided (often injected) with the right implementation automatically. It’s similar to Spring
or EJBs with one important addition: implementations can be changed at runtime, without restarting the
system. This is achieved because when a service is deployed, it becomes part of a service registry maintained
by Liferay’s OSGi container. The container dynamically manages the lifecycle of the service and can start and
stop services when appropriate.

The real power of services shines when they are extended. You can replace existing implementations
or in advanced use cases have several implementations of a service. The developer can then choose to
invoke all implementations or just the one with the highest priority (specified with what is called the service
ranking).This means that if Liferay has a service that does something, you can customize or override that
service by implementing its interface yourself and then deploying it with a higher ranking than the original
service. The container then instantiates your implementation when the service is called by existing code.
This simple, clean method is howmost customizations are made to Liferay 7.

Components

In OSGi, possibly the best and certainly the easiest way to create services is through Declarative Services.
In Declarative Services (aka DS), you create Components. A Component is a Java class (marked with an
@Component annotation) that provides an implementation of a Service (as described above) and whose instan-
tiation is handled automatically by DS.This is similar to what youmight be used to if you have used Spring
Beans or EJBs. DS also provides dependency injection using annotations (@Reference). This is convenient
because the “wiring” of components is done by the container but can be changed while the server is running
(unlike Spring).

Modules may contain as many service declarations and as many components as desired (or zero, of
course).

12

In software engineering terms, a component is the smallest building block of a larger application, and
that application is itself made up of many small components. This makes it easier to develop an application
because you only have to deal with small, well-defined, bite-sized chunks of code at a time.

Real Life Benefits of Modular Development

The next question then becomes, so what? Why is this a big deal? Why should I have components, and what
do I need them for?

It helps to examine two common development scenarios: a customization task and a full-blown ap-
plication. Picture this: you have a system that generates a report in PDF format from data in a database.
The data is captured from a web application running in Liferay. You come in to work in the morning and
something’s happened (it doesn’t matter what it is; it could be corrupt data, the company has been bought,
or a national emergency). You need to change that report as fast as possible, either to insert a new title page,
add a warning to the existing title page, or whatever.

In themonolithic model you’d have to modify the application to change the report and then you’d have to
redeploy the complete application. If this was a temporary change, to restore the application to its original
state you’d again have to modify the application and redeploy it.

With a modular and component-based application, you’d fix a simple, small component–probably one
Java class–that provides the functionality you need. You’d then deploy its module to the server. If you need to
roll back that change in the future, you’d just do the same thing in reverse. In each case, you’re only changing
and redeploying the small piece of functionality that needs to change, not the whole application. At no time
would you ever have to redeploy the whole application or take the server down.

For a full-blown application, the benefits are even greater. Modular development helps developers be
more efficient in three important ways:

• An application made up of components can be written in parallel by multiple developers working on
different components.

• An existing application can be extended bywriting new components to implement features in different
ways.

• Components can be enabled and disabled, allowing administrators to choose which features to enable
in production.

For example, Liferay’s Documents andMedia library is a file repository that supports many back-ends.
Each back-end is a component that can be maintained by different developers. They can be added and
removed on the fly while the server is running.

Similarly, the services provided by the application are independent of the front-end technology. In fact,
there can bemultiple front-ends, from the web-based front-end Liferay provides out of the box, to a new
front-end youmight develop for either the web or mobile.

As you can see,many components running inside Liferay’s OSGi container form something of an ecosys-
tem of complementary services. Much of Liferay’s functionality is in components, and when you deploy your
code, it sits in the same ecosystem as Liferay’s, with the same extension points. You can write components
to provide new services or to override existing services with your own implementation, and the container
manages it all. Liferay is an exciting platform that empowers developers to be more productive.

1.5 Liferay as a Development Platform

If you’ve been reading everything up to this point, you’ve heard all about Liferay DXP’s architecture,modu-
larity, and technologies. What’s left is to tell you what it’s like to use Liferay’s platform as a basis for your

13

site by customizing it or by developing applications on it. The platform is designed to make this easy and
pleasant, and to integrate with the tools developers use every day.

But you’re likely not interested in a bunch of prolegomena about it. Read on to learn the details.

Web Applications and Portlets

Liferay as a development platform has always provided flexibility for both administrators and developers
by making it easy to have more than one application on a single page. Applications written this way are
called portlets, and are a mainstay of Liferay’s platform. You can use Liferay’s MVC Portlet framework or
common frameworks such as Spring MVC or JSF to write portlets. If you plan to have a web-based interface
to your application, and want its administrator to have a lot of flexibility configuring it, portlets provide a
very powerful model. In this model you can create several portlets instead of a larger application and let the
administrator choose how to combine themwith other pre-existing portlets into a larger interface.

That’s not to say you don’t have other choices. Since Liferay decouples its business logic from its UI
(which is provided in separate modules), you have freedom to implement the UI in any other technology.

Because of this, you can use Liferay as a headless platform, because it’s easy to create web services based
on Service Builder, JAX-RS, and JAX-WS.Then you can build standaloneweb applications using any front-end
technology or mobile technology you like.

Extensibility

As youmight imagine, the system described above contains all the tools necessary to make a well designed
system that allows developers not only to create applications based on modules, but also to extend the
existing functionality of the system. Liferay can benefit from this now because the platform on which it rests
is designed for both application development and customization.

Components make developing extensions and customizations convenient. If you compare this model to
other products that aren’t designed for customization, you’ll see just how convenient it can be.

To customize an existing service, the only thing you need to do is deploy a component that extends the
existing implementation. If youwant to remove your implementation and revert back to the default behavior,
you simply un-deploy your component.

Compare that with the traditional way of customizing software by downloading its source andmain-
taining a set of patches against it. Each time the software is updated, you have to re-download the source,
re-apply your patches, and recompile the software.

With Liferay, your custom code is kept in your ownmodules, which the container takes care of applying
based onmetadata you supply.

Developer Tools

As you learned above, Liferay’s OSGi container gives you these benefits:

• The container can start and stop components.
• A component implements an OSGi service.
• A component may use or consume OSGi services.
• The framework manages the binding of the services a component consumes (just like Spring or EJBs,
but dynamically).

If all of this sounds great to you (as it does to us), there’s only one thing left: how do you get started
developing components? We believe in providing an easy path for new developers while at the same time
preserving flexibility for experienced developers with strong tooling preferences. To achieve that, Liferay

14

provides some great tools, and if you’re an experienced developer, these also integrate into what you likely
already use. If you use any of the standard build tools like Gradle or Maven, any text editor or common Java
IDEs like Eclipse, intelliJ, or NetBeans, or any testing framework like Spock or JUnit, you can use themwith
Liferay to develop components.

Liferay’s tools add some important enhancements:

• Blade CLI speeds you up by creating Gradle-based Liferay projects from templates.
• LiferayWorkspace is an opinionatedSDKbased onGradle that usesBladeCLI to integrate your projects
and your runtime into one convenient, distributable and sharable place.

• Liferay IDE is an Eclipse-based development environment that integrates all the convenience of Blade
CLI and LiferayWorkspace into a best-of-breed graphical environment with all the bells and whistles
you’d expect.

• Liferay Developer Studio provides all that Liferay IDE provides, plus additional tools that enterprise
developers need.

• Liferay Service Builder helps you create your back-end faster by generating all your database tables,
local services, and web services from a single XML file.

You can choose to use or ignore Liferay’s tools. The point is you have the freedom to do that, because
Liferay provides an open development framework that’s designed to meet you where you are. We hate
proprietary lock-in asmuch as you do, so our tools are designed to complement the tools you’re using already
instead of replacing them.

Beyond build tools and IDEs are the frameworks you’ll use to build applications. Liferay’s development
frameworks include a lot of functionality–comments, social relationships, user management, and lots
more–to speed up development of your applications. They help you build applications out of well-tested,
modern, scalable, skinnable building blocks. You wind up not only with a great, functional application, but
also with one that took less time to develop, looks the way you want it to, and performs well. This doesn’t
mean you’re limited only to what Liferay provides; again, you can use third-party frameworks if that’s what
you like to use.

To develop portlets, Liferay provides a convenient and easy-to-use framework called MVCPortlet to
make writing portlets easy, but developers are free to use any other framework, such as Spring MVC, to
create portlets. MVCPortlet uses components to handle requests, benefiting from all the characteristics
described above (lifecycle, extensibility, ease of composition, etc.). If you don’t have a strong opinion on
which framework to use, we recommend that you try it out.

Liferay also includes a utility called Service Builder that makes it easy to create back-end database tables,
an object-relational map in Java for accessing them, and a place to put your business logic. It can also
generate JSON or SOAPweb services, giving developers a full stack for storing and retrieving data using web
or mobile clients. But that doesn’t prevent you from using Java Persistence (JPA) and generating JAX-WSweb
services.

In addition to the tooling, Liferay also provides many reusable frameworks.

Frameworks and APIs

Liferay’s development platform provides a great framework for application development and also offers APIs.
Lots of them. Applications can be created by leveraging Liferay’s many frameworks that encapsulate features
that are commonly needed by today’s applications. For example, a commenting system allows developers
to attach comments to any asset that they define, whether they be assets they develop or assets that ship
with the system. Assets are shared by the system and are used to represent many common elements, such as
Users, Organizations, Sites, User Groups, blog entries, and even folders and files.

15

Liferay also includesmany frameworks for operating on assets. Aworkflow systemmakes it easy to create
applications that require an approval process for users to follow. The recycle bin stores deleted assets for a
specified period of time,making it easy for users to restore data without the intervention of an administrator.
A file storage API with multiple available back-ends makes storing and sharing files trivial. Search is built
into the system as well, and it is designed for developers to integrate it with their applications. Many of the
frameworks youmight need when developing complex applications are already there; you just need to take
advantage of them: a Social Networking API, user-generated forms with data lists, a message bus, an audit
system, andmuchmore.

Example Liferay Projects

Enough theory. It’s time for practice. A good way to get the flavor of developing on Liferay’s platform across
is to show you some projects. First, you’ll see a portlet developed withMVCPortlet, showcasing the use of
components as well. Once you’ve seen that, the next best thing is to see an extension. Both of these examples
serve to show you how easy it is to build functionality following a modular paradigm.

It would be nice to show you the standard HelloWorld project, Liferay style, but that would be too easy:
the default template that Blade or Liferay IDE creates already does that by default. Instead, you’ll see the
Hello You portlet. This does the same thing as HelloWorld, except it adds the first name of the user to the
message. If your name therefore is John, it’ll return Hello, John.

Here’s what the project layout looks like:

Figure 1.5: The Hello You portlet has a simple project structure.

No new files were created after this project was generated by Liferay’s Blade CLI tool, so this is as simple
as it gets. You have your portlet class, which is in the .java file. You also have two different kinds of resources:
language properties and JSP files. Finally, the bnd.bnd file describes the application’s metadata for the OSGi
container, and the build.gradle file builds the project.

Any web developer that’s familiar with Java can understand the JSPs, but some explanation is in order
because of the style. Liferay’s coding style defines a single init.jsp that contains all the imports and tag
library initializations necessary for the front-end. This way, any JSP can simply include init.jsp, and all of
its imports are satisfied. The init.jsp for this project was not modified from the generated project, and it
looks like this:

16

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://liferay.com/tld/portlet" prefix="liferay-portlet" %>

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme" %>

<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>

<liferay-theme:defineObjects />

<portlet:defineObjects />

As you can see, all it does is declare the tag libraries you probably want to use, and then it calls a couple of
tags that makes objects from the portlet framework available. Since there’s nothing really interesting here,
you’ll want to look at view.jsp next:

<%@ include file="/init.jsp" %>

<jsp:useBean id="userName" type="java.lang.String" scope="request" />

<p>

Hello, <%=userName %>!

</p>

Nowwe’ve got something. The portlet class (the Controller, in MVC terms) has made a userName string
available in the request, and this JSP retrieves it and uses it to say hello to the user. The real functionality,
therefore is in the portlet class:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.display-name=hello-you Portlet",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

public class HelloYouPortlet extends MVCPortlet {

@Override

public void render(RenderRequest renderRequest,

RenderResponse renderResponse)

throws IOException, PortletException

{

ThemeDisplay themeDisplay = (ThemeDisplay)

renderRequest.getAttribute(WebKeys.THEME_DISPLAY);

User user = themeDisplay.getUser();

renderRequest.setAttribute("userName",

user.getFirstName());

super.render(renderRequest, renderResponse);

17

}

}

Now we’re talking; here’s the real stuff. At the top is the @Component annotation, which tells the OSGi
container how it should treat thismodule. By specifying immediate=true, you’re saying that when thismodule
is deployed and all of its dependencies are satisfied, it should be started immediately instead of being lazy-
loaded. Next are several properties specific to portlets: the category in which it should appear in Liferay’s
UI, its display name, its default view, andmore. Finally, the service–which is just a Java Interface–that it
implements is defined, which is the portlet class.

Next, you have the class itself, which extends Liferay’s MVCPortlet class (that extends GenericPortlet,
that implements Portlet). The only method overridden is the render()method, and Liferay’s API is used to
get the user’s first name and put it in a request attribute called userName.

So you can see how this works: the portlet runs and retrieves the user’s first name, puts that in the
request, and then by the use of the template path and view template properties specified in the @Component
annotation, forwards processing to view.jsp, where the user’s first name is retrieved and displayed.

The only other item of interest is the bnd.bnd file:

Bundle-SymbolicName: com.liferay.docs.hello.you

Bundle-Version: 1.0.0

This declares the name of the module (sometimes also called a bundle). It’s a good practice to namespace
it properly to avoid name conflicts in the container. The version is also declared, which allows the container
to manage dependencies down to the version level of a module. This is called Semantic Versioning, and is a
discussion by itself.

That’s all there is to this portlet. Next, you’ll see an extension, which in many cases is even simpler than a
portlet.

Liferay’s UI is divided up into several areas. There’s the control menu and the product menu, which
contains the addmenu and the simulation menu. If you want to extend the UI, you can do that by deploying
amodule that adds what you want. In this example, you’ll add a link to the product menu, which is the menu
that by default sits in the top right of the browser:

Figure 1.6: The product menu appears beneath the user’s profile link.

To this, you’ll add a link to this website:
As with the portlet project, this project’s layout contains only a few items that are easy to understand.
As before, you have a build script, a bnd.bnd file that declares the module’s name and version, and this

time, only a Java class and a language properties file.

18

Figure 1.7: You can add links to the product menu by deploying a component.

Figure 1.8: The product menu project is simpler than the portlet was.

The Java class defines only four methods:

@Component(

immediate = true,

property = {

"product.navigation.control.menu.category.key=" +

ProductNavigationControlMenuCategoryKeys.USER,

"product.navigation.control.menu.entry.order:Integer=1"

},

service = ProductNavigationControlMenuEntry.class

)

public class DevProductNavigationControlMenuEntry

extends BaseProductNavigationControlMenuEntry

implements ProductNavigationControlMenuEntry {

@Override

public String getIcon(HttpServletRequest request) {

return "link";

}

@Override

public String getLabel(Locale locale) {

ResourceBundle resourceBundle = ResourceBundleUtil.getBundle(

"content.Language", locale, getClass());

return LanguageUtil.get(resourceBundle, "custom-message");

}

@Override

19

public String getURL(HttpServletRequest request) {

return "https://portal.liferay.dev";

}

@Override

public boolean isShow(HttpServletRequest request) throws

PortalException {

return true;

}

}

As before, this project was generated using a template from Blade CLI.The source code is part of the
template; the only thing you’ll need to do is provide the link.

The first method gets the Font Awesome icon you want to use in the menu. The next gets the “label,” the
text that appears when a user hovers the mouse over the link. This text is the value of the only property in the
Language.properties file:

custom-message=Liferay Developer Network

The next method returns the URL that’s the destination for this link, and the final method returns a
boolean for showing or hiding the link.

When you deploy this module, the link is added to the menu when the module starts. You don’t have to
mess around looking in Liferay’s JSP or JavaScript files to customize the menu: it’s an extension point, and it
is designed to be customized.

This is themodular paradigm for development. It helps you keep a clean separation of your code,whether
it be applications or extensions, from the code that ships by default, and it gives you the power to customize
the system dynamically, while it’s running, to avoid downtime. It is a different way of doing things, but we
believe it’s a better way. When you start working with modules and see the benefits you can gain, we think
you’ll agree.

Now you’re ready to explore somemore about Liferay. We’re not planning to leave you here, as though
this were a dead site. Please feel free to use the suggestions link at the bottom of every article you’ll encounter
if you think something could be improved about that article. If you have feedback about the site itself, the
feedback button is always floating at the bottom right. There are living, breathing people behind all the
content on this site, and we stand ready to assist you on your Liferay journey.

20

Chapter 2

Introduction to Front-End Development

When approaching the development of your application’s front-end, Liferay DXP offers a wide range of
approaches, frameworks, utilities, andmechanisms to make your life easier.

2.1 JavaScript

If you’ve used Liferay in the past, you can of course continue to use Liferay’s venerable Alloy UI, but you are
also free to use the front-end technologies you love the most:

• ECMAScript 2015
• Metal.js (developed by Liferay)
• AlloyUI (developed by Liferay)
• jQuery (included)
• Lodash (included)

2.2 Lexicon

LiferayDXP follows adesign language createdbyourdesigners at Liferay calledLexiconExperienceLanguage,
which has been implemented for use of the web as Lexicon.

Lexicon is automatically made available to application developers through a set of CSS classes and
markup, although it’s even easier to use our tag library.

2.3 Templates

For templating, Java EE’s JSP is there as expected aswell as FreeMarker, but the platform’smodularity enables
using Google’s Soy (aka Closure Templates) or whatever else you like.

2.4 Themes

A LiferayTheme is the overall look and feel for a site. Themes are a combination of CSS, JavaScript, HTML,
and FreeMarker templates. Although the default themes are nice, you may wish to create your own look and
feel for your site.

21

https://lexicondesign.io/
https://liferay.github.io/clay/

In Liferay DXP, Liferay provides an easy-to-use tool called the Liferay Theme Generator that helps
automate the theme development process.

Themes created with the LiferayTheme Generator give you access to theme gulp tasks that offer basic
functions, such as build and deploy, along with more complex interactions, such as auto deploying when a
change is made and setting the base theme.

2.5 Front-End Extensions
Liferay DXP’s modularity has many benefits for the front-end developer, in the form of development cus-
tomizations and extension points. These extensions assure the stability, conformity, and future evolution of
your applications.

Below are some of the available front-end extensions:

• Theme Contributors
• Context Contributors
• Portlet Decorators
• Editor Config Contributors

22

Chapter 3

JavaScript in Liferay DXP

Liferay DXP’s front-end is extendable, flexible, and future ready.
Like previous versions,many components are written using AlloyUI. AlloyUI is based on YUI, and is no

longer under active development. Because of this, we have included jQuery and also have developed a new
framework called MetalJS.

3.1 MetalJS

Metal.js is a JavaScript library for building UI components in a solid and flexible way. Metal is built from
the ground up with performance in mind and is flexible enough to be built as global objects, AMDmodules,
or jQuery plugins. Metal is cutting edge JavaScript, using ECMAScript 6 (ES6)/ ECMAScript 2015 (ES2015),
which provides you with clean code that’s easy-to-read.

For more information see the Metal.js docs.

3.2 ES2015

ECMAScript 6 (ES6)/ ECMAScript 2015 (ES2015) is enabled by default in your plugins, so you can write your
ownmodules using the latest improvements to the language.

You can learn more about how to leverage ES6 in your modules in the Preparing Your JavaScript Files for
ES2015 and Using ES2015 Modules in your Portlet tutorials.

3.3 AlloyUI

AlloyUI is an open source front-end framework built on top of Yahoo! User Interface Library (YUI). It
leverages all of YUI’s modules and adds evenmore cutting edge components and features to help you build
terrific UIs. AlloyUI provides the following key benefits:

• Create modern UI components that provide a consistent look & feel across Liferay DXP.
• Server-agnostic, so you can use it with any technology.

As of 7.0, AlloyUI has been officially sunsetted. Thismeans that we are no longer developing new features
for it, but it is still included in the product and actively maintained.

23

http://alloyui.com
http://yuilibrary.com/
https://jquery.com
http://metaljs.com
http://www.ecma-international.org/ecma-262/6.0/
http://metaljs.com/docs/
http://www.ecma-international.org/ecma-262/6.0/
http://yuilibrary.com

Figure 3.1: Metal.js is a new framework for building UI components.

Figure 3.2: AlloyUI is sunsetted as of 7.0.

24

3.4 jQuery
jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML. It is the
most popular JavaScript library in use today. The syntax is designed tomake it easier to navigate a document,
select DOM elements, create animations, handle events, and develop Ajax applications.

While jQuery is great for small websites, once you start creating highly scalable applications like Java
portals, you’ll need amore robust solution. That being the case, we strongly recommend you to use one of
our other provided solutions mentioned above.

Figure 3.3: jQuery is a fast, small, and feature-rich JavaScript library.

25

Chapter 4

Metal.js

Metal.js is a lightweight, easy-to-use JavaScript framework that lets you create UI Components with ease,
thanks to its integration with templating languages.

Figure 4.1: You can create UI’s easily, thanks to Metal.js.

Metal.js is built with you in mind, offering flexibility with how your rendering logic is handled. You can
use template languages to write your rendering logic or keep your rendering logic and business logic within
the same file if you prefer.

By default, Metal.js offers integration points with Google closure templates and Facebook JSX templates.
The rendering layer is completely customizable though, so you can addmore rendering options if needed.

Below is an example of a closure(Soy) template written for Metal.js:

{template .render}

// ...

27

<button onClick="{$close}" type="button" class="close">

// ...

{/template}

Metal.js has twomain classes: State, and Componentwhich extends from State. The Component class adds
additional rendering features for your Component. If your Component doesn’t require rendering, you can
just use State.

The figure below illustrates the architecture for Metal.js:

Metal.js takes full advantage of the ECMAScript 6 (AKA ECMAScript 2015) language, so you can use the
latest features that the language has to offer. Below is a list of some of the great features that you get with
ES6:

• Class syntax like other OO languages. Classes support prototype-based inheritance, super calls,
instance and static methods and constructors.

28

http://www.ecma-international.org/ecma-262/6.0/

• Arrowmethod syntax. var odds = numbers.map(v => v + 1);

• Language-level support for modules for Component definition. Codifies patterns from popular
JavaScript module loaders like AMD (as shown below):

export function sum(x, y) {

return x + y;

}

export var pi = 3.141593;

These are just a few of the ES6 features available that you can use in your Metal.js components.

4.1 Related Topics
Creating a Soy Portlet

JavaScript Module Loaders

29

Chapter 5

Starting Module Development

Developing modules for Liferay DXP requires:

• Creating a folder structure: A good folder structure facilitates evolving andmaintaining code, espe-
cially in collaboration. Popular tools use pre-defined folder structures familiar to developers.

• Writing code and configuration files: A manifest, Java classes, and resources. Modules stubbed out
with them let developers focus on implementing logic.

• Compilation: Acquiring dependencies and building the module. Common build tools that manage
dependencies include Gradle,Maven, and Ant/Ivy.

• Deployment: Interacting with the runtime environment to install, monitor, andmodify modules.

There are several good build tools for developingmodules on Liferay DXP.This tutorial demonstrates
starting a new module using Liferay Workspace. It’s Liferay’s opinionated build environment based on
Gradle and BndTools that simplifies module development and automates much of it.

Note: Liferay supports developers using their build tool of choice. In addition to providing Liferay
Workspace for those who don’t already have a preferred build environment, Liferay provides good support
for Maven and Gradle. The following tutorials and samples demonstrate developing in these environments.

• Maven tutorials and samples

• Gradle in Liferay @ide@ and samples

Note: Themes and Layout Templates are not built as modules. To learn how to create them, see the
Themes and Layout Templates tutorials.

Here are the steps for starting module development:

1. Set up a LiferayWorkspace

2. Create a module

31

3. Build and deploy the module

On completing this tutorial you’ll have created a module and deployed it to a local Liferay DXP bundle.

5.1 Setting up a Liferay Workspace

Creating and configuring a LiferayWorkspace (Workspace) is straightforward using a tool called Blade CLI
(Blade). Blade is a command line tool that createsWorkspaces and performs common tasks.

Follow the steps in this tutorial to install Blade if you don’t already have it.
The blade executable is now in the system path.
You can create aWorkspace in the current directory by executing this command:

blade init <workspaceName>

You’ve created aWorkspace! Its directory structure looks like the one shown in the figure below.

Figure 5.1: Liferay Workspace aggregates projects so they can leverage the Gradle build environment.

Workspace can be configured to use a Liferay DXP installation bundle anywhere on the local file system.
The liferay.workspace.home.dir property in gradle.properties sets the default bundle location to a folder
<workspace>/bundles (not yet created). For convenience it’s suggested to install a Liferay DXP bundle there.
If you install it to a different location, uncomment the liferay.workspace.home.dir property and set it to
that location.

Note: User interfaces in Liferay @ide@ lets developers create and import LiferayWorkspace projects.
To create a project, follow the tutorial Creating a LiferayWorkspace Project with Liferay @ide@.
To import a project, use the wizard from File → Import → Liferay → LiferayWorkspace Project.

TheWorkspace is ready for creating modules.

32

5.2 Creating a Module

Blade provides module templates and module samples. The templates stub out files for different types of
modules. The samples can be generated in aWorkspace and demonstrate manymodule types. Developers
can use templates and samples to develop modules.

Using Module Templates

The Blade command blade create -l lists the module templates.

Figure 5.2: Blade’s create command generates a module based on a template. Executing create -l lists the template names.

Note: Liferay @ide@’s module wizard lets developers select a template for their module project. For
details, see the tutorial Creating a Module with Liferay @ide@.

Here’s the command syntax for creating a module:

blade create [options] moduleName

Module templates and their options are described here.
Here’s an example of creating a Liferay MVC Portlet module:

33

blade create -t mvc-portlet -p com.liferay.docs.mymodule -c MyMvcPortlet my-module

Module projects are created in the modules folder by default.
Here’s the module project anatomy:

• src/main/java/ → Java package root

• src/main/resources/content/ (optional) → Language resource bundle root

• src/main/resources/META-INF/resources/ (optional) → Root for UI templates, such as JSPs

• bnd.bnd → Specifies essential OSGi module manifest headers

• build.gradle → Configures dependencies andmore using Gradle

The figure below shows anMVC portlet module project.

Figure 5.3: Liferay modules use the standard Maven directory structure.

Sample modules are another helpful development resource.

34

Using Module Samples

An alternative to creating a module from a template is to generate a samplemodule. Developers can examine
or modify sample modules as desired.

This command lists the sample names:

blade samples

The figure below shows the listing.

Figure 5.4: The blade samples command lists the names of sample modules developers can create, examine, and modify to meet their needs.

Here’s the Blade samples command syntax:

blade samples <sampleName>

It creates the sample project in a subfolder of the current folder.
Building a module and deploying it to Liferay DXP is easy.

5.3 Building and Deploying a Module

LiferayWorkspace provides Gradle tasks for building and deployingmodules. Blade’s blade gw command
solves a common need in Gradle projects: invoking the Gradle wrapper from any project directory. You can
use blade gw just as you would invoke gradlew, without having to specify the wrapper path.

Note: For an even simpler Gradle wrapper command, install gw.
(sudo) jpm install gw@1.0.1

Usage: gw <task>

In a module folder, execute this command to list the Gradle tasks available:

blade gw tasks

35

Workspace uses BndTools to generate the module’s OSGi MANIFEST.MF file and package it in the module
JAR. To compile the module and generate the module JAR, execute the jarGradle task:

blade gw jar

The generated JAR is in the module project’s build/libs folder and ready for deployment to Liferay DXP.
Start your Liferay DXP server, if you haven’t already started it.

Tip: To open a new terminal window and theWorkspace’s Liferay DXP server (bundled with Tomcat or
JBoss/Wildfly), execute this command:

blade server start -b

Blade can deploy modules to any local Liferay DXP server. It communicates with Liferay DXP’s OSGi
framework using Felix Gogo shell and deploys modules directly to the OSGi container using Felix File Install
commands. The command uses the default port 11311.

To deploy the module, execute this command:

blade deploy

Also Blade lets developers deploy all modules in the current folder tree. To deploy all modules in a
Workspace’s modules folder, for example, execute blade deploy in the <workspace>/modules folder.

If you’re using Liferay @ide@, you can deploy modules by dragging them from the Package Explorer
onto the Liferay DXP server. @ide@ provides access to LiferayWorkspace Gradle tasks too.

Note:When deploying amodule to Liferay DXP using Blade CLI, the module is directly installed into
Liferay DXP’s OSGi container. This means that the module is stored differently in Liferay DXP than if it were
copied into the LIFERAY_HOME/deploy folder. See the Deploying Modules with Blade CLI tutorial for more
information.

Once you’ve deployed a portlet module, it’s available in the Liferay DXP UI under the application
category and name you specified via the portlet component’s com.liferay.portlet.display-category and
javax.portlet.display-name properties in the @Component annotation.

5.4 Redeploying Module Changes Automatically

Blade lets developers set a watch on changes to a module project’s output files. If they’re modified, Blade
redeploys the module automatically. To set a watch on amodule at deployment, execute this command in
the module project:

blade deploy -w

Here’s output from deploying (and watching) a module named com.liferay.docs.mymodule:

E:\workspaces\my-liferay-workspace\modules\my-module-project>blade deploy -w

:modules:my-module-project:compileJava UP-TO-DATE

:modules:my-module-project:buildCSS UP-TO-DATE

:modules:my-module-project:processResources UP-TO-DATE

:modules:my-module-project:transpileJS SKIPPED

:modules:my-module-project:configJSModules SKIPPED

:modules:my-module-project:classes UP-TO-DATE

:modules:my-module-project:jar UP-TO-DATE

36

Figure 5.5: Liferay @ide@ lets developers deploy modules using drag-and-drop.

Figure 5.6: Here’s a bare-bones portlet based on one of Liferay’s module templates.

37

:modules:my-module-project:assemble UP-TO-DATE

:modules:my-module-project:build

BUILD SUCCESSFUL

Total time: 2.962 secs

install file:/E:/workspaces/my-liferay-workspace/modules/my-module-project/build/libs/com.liferay.docs.mymodule-1.0.0.jar

Bundle ID: 505

start 505

Scanning E:\workspaces\my-liferay-workspace\modules\my-module-project

...

Waiting for changes to input files of tasks... (ctrl-d then enter to exit)

Output from the blade deploy -w command indicates that the module is installed and started, reports
the module’s OSGi bundle ID, and stands ready to redeploy the module if its output files change.

Congratulations on a great start to developing your module!

5.5 Related Articles
Configuring Dependencies

LiferayWorkspace
Tooling
OSGi Basics for Liferay Development
Portlets

38

Chapter 6

Configuring Dependencies

Using external artifacts in your project requires configuring their dependencies. To do this, look up the
artifact’s attributes and plug them into dependency entries for your build system (either Gradle,Maven, or
Ant/Ivy). Your build system downloads the dependency artifacts your project needs to compile successfully.

Before specifying an artifact as a dependency, you must first find its attributes. Artifacts have these
attributes:

• Group ID: Authoring organization
• Artifact ID: Name/identifier
• Version: Release number

This tutorial shows you how to make sure your projects have the right dependencies:

• Find Core artifacts
• Find Liferay app and independent artifacts
• Configure dependencies

6.1 Finding Core Artifacts
Each Liferay artifact is a JAR file whose META-INF/MANIFEST.MF file contains the artifact’s OSGi metadata. The
manifest also specifies the artifact’s attributes. For example, these two OSGi headers specify the artifact ID
and version:

Bundle-SymbolicName: [artifact ID]

Bundle-Version: [version]

Important: Artifacts in Liferay DXP fix packs override Liferay DXP installation artifacts. Subfolders of a
fix pack ZIP file’s binaries folder hold the artifacts. If an installed fix pack provides an artifact you depend
on, specify the version of that fix pack artifact in your dependency.

This table lists the group ID, artifact ID, version, and origin for each core Liferay DXP artifact:
Core Liferay DXP Artifacts:

39

https://gradle.org/
https://maven.apache.org/
http://ant.apache.org/ivy/

File Group ID Artifact ID Version Origin

portal-kernel.jar com.liferay.portal com.liferay.portal.kernel(see JAR’s
MANIFEST.MF)

fix pack ZIP,
Liferay DXP
installation,
or Liferay
DXP depen-
dencies ZIP

portal-impl.jar com.liferay.portal com.liferay.portal.impl(see JAR’s
MANIFEST.MF)

fix pack ZIP
or Liferay
DXP .war

portal-test.jar com.liferay.portal com.liferay.portal.test(see JAR’s
MANIFEST.MF)

fix pack ZIP
or Liferay
DXP .war

portal-test-

integration.jar

com.liferay.portal com.liferay.portal.test.integration(see JAR’s
MANIFEST.MF)

fix pack ZIP
or Liferay
DXP .war

util-bridges.jar com.liferay.portal com.liferay.util.bridges(see JAR’s
MANIFEST.MF)

fix pack ZIP
or Liferay
DXP .war

util-java.jar com.liferay.portal com.liferay.util.java(see JAR’s
MANIFEST.MF)

fix pack ZIP
or Liferay
DXP .war

util-slf4j.jar com.liferay.portal com.liferay.util.slf4j(see JAR’s
MANIFEST.MF)

fix pack ZIP
or Liferay
DXP .war

util-taglibs.jar com.liferay.portal com.liferay.util.taglib(see JAR’s
MANIFEST.MF)

fix pack ZIP
or Liferay
DXP .war

com.liferay.* JAR
files

com.liferay (see JAR’s
MANIFEST.MF)

(see JAR’s
MANIFEST.MF)

fix pack ZIP,
Liferay DXP
installation,
Liferay DXP
dependen-
cies ZIP, or
the OSGi
ZIP

Next, you’ll learn how to find artifacts for Liferay DXP apps and independent modules.

6.2 Finding Liferay App and Independent Artifacts
Independent modules andmodules that make up Liferay DXP’s apps aren’t part of the Liferay DXP core. You
must still, however, find their artifact attributes if you want to declare dependencies on them. The resources
below provide the artifact details for Liferay DXP’s apps and independent modules:

40

Resource Artifact Type

AppManager Deployedmodules
Reference Docs Liferay DXPmodules (per release)
Maven Central All artifact types: Liferay DXP and third party,module and

non-module

Important: com.liferay is the group ID for all Liferay DXP’s apps and independent modules.

The AppManager is the best source for information on deployedmodules. You’ll learn about it next.

App Manager

TheAppManager knowswhat’s deployed on your LiferayDXP server. You can use it to findwhatevermodules
you’re looking for.

Follow these steps to get a deployedmodule’s information:

1. In Liferay DXP, navigate to Control Panel → Apps → AppManager.

2. Search for the module by its display name, symbolic name, or related keywords. You can also browse
for the module in its app. Whether browsing or searching, the App Manager shows the module’s
artifact ID and version number.

Figure 6.1: You can inspect deployed module artifact IDs and version numbers.

If you don’t know a deployedmodule’s group, use the Felix Gogo Shell to find it:

1. Open a Gogo Shell session by entering the following into a command prompt:

telnet localhost 11311

41

Figure 6.2: The App Manager aggregates Liferay and independent modules.

This results in a g!: the Felix Gogo Shell command prompt.

2. Search for the module by its display name (e.g., Liferay Bookmarks API) or a keyword. In the results,
note the module’s number. You can use it in the next step. For example, these results show the Liferay
Bookmarks API module’s number is 52:

g! lb | grep "Liferay Bookmarks API"

52|Active | 10|Liferay Bookmarks API (2.0.1)

3. To list themodule’smanifest headers, pass themodule number to the headers command. In the results,
note the Bundle-Vendor value: you’ll match it with an artifact group in a later step:

g! headers 52

Liferay Bookmarks API (52)

Manifest-Version = 1.0

Bnd-LastModified = 1464725366614

Bundle-ManifestVersion = 2

Bundle-Name = Liferay Bookmarks API

Bundle-SymbolicName = com.liferay.bookmarks.api

Bundle-Vendor = Liferay, Inc.

Bundle-Version = 2.0.1

...

4. Disconnect from the Gogo Shell session:

g! disconnect

5. OnMaven Central or MVNRepository, search for the module by its artifact ID.

6. Determine the group ID by matching the Bundle-Vendor value from step 3 with a group listed that
provides the artifact.

Next, you’ll learn how to use Liferay DXP’s reference documentation to find a Liferay DXP appmodule’s
attributes.

42

https://search.maven.org/
https://mvnrepository.com

Reference Docs

Liferay DXP’s app Javadoc lists each app module’s artifact ID, version number, and display name. This is the
best place to look up Liferay DXP appmodules that aren’t yet deployed to your Liferay DXP instance.

Note: To find artifact information on a Core Liferay DXP artifact, refer to the previous section Finding
Core artifacts.

Follow these steps to find a Liferay DXP appmodule’s attributes in the Javadoc:

1. Navigate to Javadoc for an appmodule class. If you don’t have a link to the class’s Javadoc, find it by
browsing @app-ref@.

2. Copy the class’s package name.

3. Navigate to theOverview page.

4. On theOverview page, search for the package name you copied in step 2.

The heading above the package name shows the module’s artifact ID, version number, and display name.
Remember, the group ID for all appmodules is com.liferay.

Figure 6.3: Liferay DXP app Javadoc overviews list each app module’s display name, followed by its group ID, artifact ID, and version number in a colon-separated string.
It’s a Gradle artifact syntax.

Note: Module version numbers aren’t currently included in any tag library reference docs.

Next, you’ll learn how to look up artifacts onMVNRepository andMaven Central.

43

Maven Central

Most artifacts, regardless of type or origin, are onMVNRepository andMaven Central. These sites can help
you find artifacts based on class packages. It’s common to include an artifact’s ID in the start of an artifact’s
package names. For example, if you depend on the class org.osgi.service.component.annotations.Component,
search for the package name org.osgi.service.component.annotations on one of the Maven sites.

Note: Make sure to follow the instructions listed earlier to determine the version of Liferay artifacts you
need.

Now that you have your artifact’s attribute values, you’re ready to configure a dependency on it.

6.3 Configuring Dependencies

Specifying dependencies to build systems is straightforward. Edit your project’s build file, specifying a
dependency entry that includes the group ID, artifact ID, and version number.

Note: To configure third-party libraries in a module, see the tutorial AddingThird Party Libraries to a
Module.

Note that different build systems use different artifact attribute names, as shown below:
Artifact Terminology

Framework Group ID Artifact ID Version

Gradle group name version

Maven groupId artifactId version

Ivy org name rev

The following examples demonstrate configuring a dependency on Liferay’s Journal API module for
Gradle,Maven, and Ivy.

Gradle

Here’s the dependency configured in a build.gradle file:

dependencies {

compileOnly group: "com.liferay", name: "com.liferay.journal.api", version: "1.0.1"

...

}

Maven

Here’s the dependency configured in a pom.xml file:

<dependency>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.journal.api</artifactId>

<version>1.0.1</version>

</dependency>

44

https://mvnrepository.com/
https://search.maven.org/

Ivy

Here’s the dependency configured in an ivy.xml file:

<dependency name="com.liferay.journal.api" org="com.liferay" rev="1.0.1" />

Important: Liferay DXP exports many third-party packages. If you’re developing aWAR, deploy it to
check if the packages you’re using are in the OSGi runtime container already. If they are already in there,
specify their corresponding artifacts as being “provided”. Here’s how to specify a provided dependency:

Maven: <scope>provided</scope>
Gradle: providedCompile
Don’t deploy a provided package’s JAR again or embed the JAR in your project. Exporting the same

package from different JARs leads to “split package” issues, whose side affects differ from case to case. If the
package is in a third-party library (not an OSGi module), refer to [ResolvingThird

Party Library
Dependencies](/docs/7-0/tutorials/-/knowledge_base/t/adding-third-party-libraries-to-a-module).

If you’re developing aWAR that requires a different version of a third-party package that Liferay DXP
or another module exports, specify that package in your Import-Package: list. If the package provider is an
OSGi module, publish its exported packages by deploying that module. Otherwise, follow the instructions
for adding a third-party library (not an OSGi module).

Nice! Now you know how to find artifacts and configure them as dependencies. Now that’s a skill you
can depend on!

6.4 Related Topics
Importing Packages

Reference
Liferay API Modules
AddingThird Party Libraries to a Module
Third Party Packages Portal Exports
Classes Moved from portal-service.jar
Tooling
Portlets

45

Chapter 7

Finding Extension Points

Liferay DXP provides many features that help users accomplish their tasks. Sometimes, however, you
may find it necessary to customize a built-in feature. It’s easy to find an area you want to customize, but
it may seem like a daunting task to figure out how to customize it. Liferay DXP was developed for easy
customization,meaning there are many extension points you can use to add your own flavor.

There’s a process you can follow that makes finding an extension point a breeze.

1. Locate the bundle (module) that provides the functionality you want to change.
2. Find the components available in the module.
3. Discover the extension points for the chosen component.

In this tutorial, you’ll learn how to find an extension point. You’ll step through a simple example that
locates an extension point for importing LDAP users. This will require the use of Liferay DXP’s Application
Manager and Felix Gogo Shell.

7.1 Locate the Related Module and Component

You must first think of words that describe the application behavior you want to change. With the right
keywords, you can easily track down the desired module and its component. Consider the example for
importing LDAP users. Some candidate keywords for finding the component are import, user, and LDAP.

The easiest way to discover the module responsible for a particular feature in Liferay DXP is to use the
ApplicationManager. The ApplicationManager lists app suites and their includedmodules/components
in an easy-to-use interface. It even lists third party apps! You’ll use your keywords to target the applicable
component.

1. Open the App Manager by navigating to Control Panel → Apps → AppManager. The top level lists app
suites, independent apps, and independent modules.

2. Navigate the app suites, apps, andmodules, or use Search to find components that might provide your
desired extension point. Remember to check for your keywords in element names and descriptions.
The keyword LDAP resides under the Liferay Foundation app suite; select it.

3. Select the LDAP application from the app listing.

47

Figure 7.1: The Liferay Foundation app suite contains the LDAP Authentication application.

4. The LDAP application only has one module, but typically, applications have more than one module to
inspect. Select the Liferay Portal Security LDAPmodule.

Figure 7.2: The App Manager lists the module, package name, version, and status.

5. Search through the components, applying your keywords as a guide. Copy the component name you
think best fits the functionality you want to customize; you’ll inspect it later using the Gogo shell.

Note: When using the Gogo shell later, understand that it can take

several tries to find the component for which you're looking; naming

conventions should allow you to find your desired extension point in a

manageable time frame.

Next, you’ll begin using the Gogo shell to inspect the component for extension points.

48

Figure 7.3: The component name can be found using the App Manager.

7.2 Finding Extension Points in a Component
Once you have the component that relates to the functionality you want to extend, you can use the Gogo
shell’s Service Component Runtime (SCR) commands to inspect it. You can execute SCR commands using
Liferay Blade CLI or in Gogo shell via telnet. This tutorial assumes you’re using the Gogo shell via telnet.

Execute the following command:

scr:info [COMPONENT_NAME]

For the LDAP example component you copied previously, the command would look like this:

scr:info com.liferay.portal.security.ldap.internal.messaging.UserImportMessageListener

Theoutput includes a lot of information. For this exercise, you’re interested in the services the component
references. These are extension points. For example, here’s the reference for the service that imports LDAP
users:

...

Reference: LdapUserImporter

Interface Name: com.liferay.portal.security.ldap.exportimport.LDAPUserImporter

Cardinality: 1..1

Policy: static

Policy option: reluctant

Reference Scope: bundle

...

The LDAPUserImporter is the extension point needed to customize the process of importing users with
LDAP! If none of the references satisfy what you’re looking for, search other components from the App
Manager.

If you plan on overriding the referenced service, you’ll need to understand the reference’s policy and
policy option. If the policy is static and the policy option is reluctant, binding a new higher ranking service
in place of a bound service requires reactivating the component or changing the target. For information on
the other policies and policy options, visit the OSGi specification, in particular, sections 112.3.5 and 112.3.6.
If you want to learn how to override a component’s service reference, visit the following tutorial.

Important Not all Extension points in Liferay DXP are available as referenced services. Referenced
services are common extension points when using Declarative Services (DS), but there are extension points
not exposed this way. If your project does not use the DS component framework, you’d need to look for
the API that describes its service consumption from the OSGi registry. Here’s a brief list of other potential
extension points in Liferay DXP:

49

https://osgi.org/download/r6/osgi.enterprise-6.0.0.pdf

• Instances of org.osgi.util.tracker.ServiceTracker<S, T>

• Uses of Liferay’s Registry.getServiceTracker
• Uses of Liferay’s ServiceTrackerMap or ServiceTrackerCollection
• Any other component framework or whiteboard implementation (e.g., HTTP, JAX-RS) that supports
tracking services; Blueprint, Apache Dependency Manager, etc. could also introduce extension points.

There you have it! You successfully formulated keywords that described the functionality you wanted to
customize, used those keywords in the AppManager to target the applicable module component, and used
the Gogo shell to inspect the component for extension points.

50

Chapter 8

From Liferay Portal 6 to 7

Becoming familiar with a platform as large and fully featured as Liferay is a big task. You learn the ins and
outs of what it can do, the tips and best practices of the experts, and you work your way through the APIs.
As you do this, you becomemore andmore familiar with how things work, becomemore proficient with
the platform as youmultiply successes on it, and start to think in terms of how you’d solve problemsmost
effectively using the tools the platform gives you. Eventually, if you use it long enough, it can seem like an
old friend that’s ready to stand by you and help you succeed in your projects.

7.0 was designed as an enhancement that builds off of what you already know. Its Upgrade Planner
and this tutorial series–or Learning Path–help get your existing plugins running on 7.0 right away. The
tool automates much of the process. After you upgrade your plugins, you can build and deploy them as you
always have.

7.0 has exciting improvements for developers too. This Learning Path shows you how to leverage them.
Since you already know previous versions of Liferay Portal, you’re several steps ahead of everybody else.

This Learning Path describes the benefits of 7.0 for developers compared to previous versions, the
architectural improvements, the benefits that modularity brings, and how to develop modules and how they
differ from traditional plugins. You’ll see all the options for leveraging new developer features, learn the pros
and cons of each, and examine steps for optimizing your existing plugins for 7.0.

In the end, we believe you’ll both want to adopt 7.0, and you’ll see how you can thrive using it.

Note: If you want to learn about 7.0’s architectural improvements, OSGi andmodularity, and tooling
improvements, read on. If you’re more interested in upgrading your plugins first, skip to Planning Plugin
Upgrades and Optimizations.

You’ll start by seeing the familiar, good things that remain the same and then examine what’s changed
the most since Liferay Portal 6.

51

Chapter 9

What Hasn’t Changed and What Has

7.0 is a newmajor version of the Liferay platform and as such it includes many improvements over previous
versions. Having said that, most of the characteristics from Liferay Portal 6 that you have learned to love are
preserved, having been changed only slightly or not at all. Any experienced Liferay developer will be able to
reuse most of his/her existing knowledge to developing for 7.0.

What has not changed? Even though there are many improvements in 7.0, there are also many great
familiar aspects from previous versions that have been preserved. Here are some of the most relevant ones:

1. ThePortal Core and each Liferay app continue to use the three layer architecture: presentation, services,
and persistence. The presentation layer is now always provided as an independent module, facilitating
replacing it with a different presentation, if desired.

2. Support remains for previously supported standards such as Portlets (JSR-168, JSR-286), CMIS,Web-
DAV, LDAP, JCP (JSR-170), etc.

3. Most Liferay APIs have remained functionally similar to those of 6.2, even if many of their classes have
moved to new packages, as part of the modularization effort.

4. Liferay@ide@ is still the preferred tool to develop for Liferay, even though you are still free to use tools
that best fit your needs.

5. Service Builder and other developer tools and libraries continue to work as they have in 6.2.

6. Traditional plugins for portlets and hooks still work (once they’re adapted to 7.0’s API) through a
compatibility layer.

7. The Plugins SDK can also still be used and transition to the new LiferayWorkspace, if desired, is easy.

Here are some key changes of interest to existing Liferay developers:

1. Extraction of many features as modules: So far you have been used to working with Liferay as a large
web application, of which all of it had to be deployed or none of it. In 7.0,many out of the box portlets,
features, and associated APIs have been extracted as OSGi modules. You can choose which ones to
deploy and use.

53

2. Adoption of modern OSGi standards: OSGi is a set of standards for buildingmodular systems. It’s
very powerful. Although it was previously difficult to learn and use, its modernized standards, such as
Declarative Services, have made learning and using it much easier.

3. Core Public APIs are provided through portal-kernel (previously known as portal-service); all other
public APIs are provided by their ownmodules.

4. You can reuse modules and libraries, andmanage the dependencies among them.

5. Registrationof classes implementingextensionpoints isnowsimpler andmore consistent; it’s basedon
the standard @Component annotation instead of declarations in portal.properties or portlet.xml. Note,
previous registration mechanisms have been preserved where possible. See the Breaking Changes
article to examine where extensions and configurations that have not kept backwards compatibility.

6. Third party extensions and applications are now first-class citizens. Traditional plugins had some
limitations that developments done in the core (or done as Ext Plugins) did not have. Modules don’t
have these limitations and are muchmore powerful than plugins ever were.

7. Complete integration of Liferay specific tools (such as Service Builder) within Maven and Gradle.
Additionally we’ve adopted some new tools such as Bnd.

Since themodularization of the Liferay web application is the changemost relevant to you as a developer,
let’s dig deeper into that change and how it affects Liferay’s architecture.

9.1 Embracing a Modular Architecture

The largest improvement in Liferay’s architecture is the adoption of a modular development paradigm.
Within each Liferay module (or group of modules that form an app), as well as within what remains as
Liferay’s core, the existing great characteristics of previous versions of Liferay prevail.

Tiered Architecture

Liferay Portal 6’s architecture diagrams often focused on the tiers for the frontend, services layer (for the
business logic), and persistence layer (mostly auto-generated by Service Builder). These layers still exist and
have been embraced throughout the modularization effort.

Themost significant change (and improvement) over this architecture is that the portal is no longer a
single large Java EEWeb Application. Liferay has been broken down into manymodules to benefit from the
Modular Development Paradigm. Those benefits are described in the next section. Themodules are often
grouped into apps (such asWiki or Message Boards) and the main apps are grouped into suites (such asWeb
Experience, Collaboration, and Forms &Workflow).

Modular Architecture

The figure below represents 7.0’s architecture from a structural perspective.

Liferay Core

As its name implies, it’s 7.0’s central andmost important part. The Liferay Core is a Java EE application in
charge of bootstrapping the system and receiving and delegating all requests. It also contains Liferay’s OSGi
Engine on top of which all applications run.

54

Figure 9.1: Liferay Portal 6’s architecture, shown in this figure, is still generally valid in 7.0.

Foundation

The Foundation suite sits on top of the core, providing administrative interfaces and familiar development
building blocks. It includes modules for user and role administration, LDAP integration, authentication,
licensing, upgrades, clustering, DAO, and front-endmainstays for themes, CSS, taglibs, and JavaScript. The
Foundation suite’s modules depend on Liferay Core, as do all the App Suites and non-core modules.

Most of the apps, frameworks, and APIs you’ve come to know and love have been aggregated in App
Suites. The suites are available in Liferay bundles and are also available on the Marketplace. Here are the
different App Suites:

Liferay Web Experience

Contains apps such as Web Content and Site management, Web Content Display, Asset Publisher, and
Breadcrumbs and features and frameworks such as Application Display Templates, Tags, and Recycle Bin.

Liferay Collaboration

Comprises Liferay’s social apps and collaboration apps, such asMessage Boards,Wiki, and Blogs. It also
contains Liferay’s Documents &Media Library.

Liferay Forms and Workflow

Provides apps such as Forms (New!), Dynamic Data Lists, KaleoWorkflow, and Calendar. It also contains the
Dynamic Data Mapping framework used byWeb Content and Documents &Media to provide custom form
and templating capabilities.

55

Figure 9.2: 7.0 is composed of the Liferay Core, independent application modules, and App Suites, each with their own set of application and framework modules.

56

Independent Apps

Last but not least, Liferay’s independent apps andmodules also play a part. They provide unique functionality
and stand on their own; it would be unnatural to add any one of them to a particular suite. Apps such as
Liferay Sync, theMarketplace Client, Knowledge Base, andmanymore apps available on theMarketplace are
independent Liferay apps.

The beauty of the 7.0 ecosystem is that it is made up of simple easy-to-use modules that depend on and
communicate with each other. And you as a third-party developer can create and deploy your ownmodules
into the mix.

You can continue developing traditional WAR-style apps for 7.0 too. Liferay DXP’s Portlet Compatibility
Layer converts each pluginWAR to aWeb Application Bundle (WAB), which is a module.

Let’s consider the structure of a 7.0 modular app.

The Structure of a Modular App

Asmentioned, each app can be formed by one or moremodules. This section explains themost commonway
to structure an app.

The best practice for structuring an app is in several modules. In particular the followingmodules are
the often the best way of structuring an app:

• Service: Contains the service (business logic) and persistence implementations.

• API: Contains the public API of the application. By being separate from the service it’s simpler and
faster to deploy new versions of the implementation without affecting anymodule using the API. It
also allows changing the versioning of the implementation independent from the versioning of the
API.

• Web: Contains the presentation tier, very often the portlets provided by this app.

• Test: Contains the tests. These are not included in the app for production.

• Specific purposemodules: Other modules are also often created for specific purposes or to provide
alternative implementations of some of the app’s features. For example theWiki app has one module
for each of the supportedWiki Engines.

All themodules in an app usually sit in directories next to each other in the source to facilitate referencing
them.

For deployment to production Liferay provides the LPKG packaging format that allows bundling a set of
modules into a single file and add additional metadata about it. This format can also be used to upload apps
to Liferay’s Marketplace.

Now you have a basic understanding of the architectural changes introduced in 7.0 and have become
acquainted with the new structure used in Liferay’s apps. You have learned some key concepts that are new
for Liferay Portal 6 developers and have been assured about developer features you’ve used in previous Liferay
releases that have been carried into 7.0.

Next, you’ll explore how these new concepts and the newmodular architecture benefit you as a developer.

57

http://marketplace.liferay.com

Chapter 10

Benefits of 7.0 for Liferay Portal 6
Developers

More than in any other Liferay release, 7.0 centers on you, the developer. Liferay’s platform has been rebuilt,
making it easier to build on andmaintain, and providingmore new developer features than any previous
Liferay release.

Here are some key benefits of this release for developers:

1. Simpler and Leaner

2. Modular Development Paradigm

3. Enhanced Reusability

4. More extensible, easier tomaintain

5. Optimized for your tooling of choice

6. Powerful Configurability

Let’s consider how they make development easier for you.

10.1 Simpler and Leaner

Liferay has always been simple and lean, compared to the proprietary alternatives; this version widens the
gap evenmore.

7.0 is simpler than its predecessors, thanks to a streamlined and modular architecture. In addition,
many Liferay specific ways of creating extensions and applications have evolved to follow official or de-facto
standards. As a result, developers can nowmore easily reuse their existing knowledge and use what they
learn developing for Liferay outside of it.

7.0 is also leaner. Its modularized core allows developers and system administrators to remove parts
they don’t need or don’t want; this facilitates deployment, reduces startup times andmemory footprints,
and results in more efficiencies and performance improvements.

59

10.2 Modular Development Paradigm

If you have been using Liferay, you’ve already experienced some of the benefits of modular development,
thanks to plugins. 7.0 takes these benefits to a whole new level.

In addition to building plugins as you have previously, you can take advantage of a complete module
development and runtime system based on OSGi standards. 7.0 facilitates creating applications of all types
by composing and reusing modules.

And don’t worry, modules are easy to understand. A module is distributed as a JAR file and can be as
small as one Java class or as large as any application you can think of. An application for Liferay can comprise
one single module or as manymodules as you want. The cool thing is that modules can cooperate, allowing
you to build applications by combining smaller pieces that are easier to develop, deploy,maintain, and reuse.

10.3 Enhanced Reusability

If you have worked on large developments on top of Liferay you have probably experienced situations in
which you wanted to share a subset of classes from from one plugin with another.

Java EE does not provide any standard way to achieve this, but Liferay provided certain capabilities to
achieve it with a mechanism known as CLP that used class loadermagic to allow plugins to invoke services in
other plugins created with Service Builder. This mechanism, however, is still a bit limited (Java EE’s class
loader doesn’t allow for muchmore) and doesn’t give you the freedom to specify any or all classes from one
module to use fromwithin another module.

7.0 enables greater reusability, both in code and runtimememory, several folds. For any desired reusable
functionality you just create amodule (remember, it’s just a JAR file with somemetadata) with the classes you
want and deploy it. Other modules need only declare that they use the classes in that module (by specifying
their packages) and 7.0 automatically wires them together. All invocations are regular Java calls! Try it out;
it’s beautiful. :)

This mechanism eliminates the dreaded “JAR/classpath hell” issue. No longer do you have to jockey JAR
files in classpaths; nor do you have to implement intricate class loaders. The runtime environment uses
separate class spaces per module; it even accommodates using multiple versions of libraries in the same
application (as long as they can coexist).

10.4 More Extensible, Easier to Maintain

Whenever we ask Liferay developers what is their favorite characteristic of Liferay, “Great extensibility” is
one of the top three most popular responses. You can customize almost every detail and add your own
functionality on top.

Is 7.0 more extensible? You bet! Manymore extension points have been added. But not only that, all new
extension points and many existing ones which have been upgraded, use a new extension mechanism based
on OSGi’s service model. Here are some of the mechanism’s benefits:

1. Simpler: An implementation of an extension point is now always a Java class that implements an
interface and has one annotation (@Component). That’s it; it couldn’t be any easier.

2. Easier tomaintain: Extension points are nowmore strictly defined through a Java interface that uses
Semantic Versioning rules. This means that your extensions can work without changes, even across
several Liferay versions, as long as the specific extension API is backwards compatible.

3. Dynamic: Extensions can be loaded and removed at any time during development or in production.

60

But that is not all. Your own developments can now also leverage this model and become extensible. You
can create simple extension points by just creating an interface and annotating a setter method with an
annotation (@Reference). Implementing extensibility has never been easier.

10.5 Optimized for Your Tooling of Choice
7.0 empowers you to use the tools you like.

If you don’t have strong preferences and are open to our suggestions, we offer Liferay Workspace. It
provides an opinionated directory structure and build system based on Gradle and Bnd. LiferayWorkspace
can be used standalone through the command line or with Liferay @ide@, which runs on Eclipse.

And if youwant to continue using the Plugins SDK,we’ve got you covered. The Plugins SDK is available to
facilitate your transition to 7.0. In fact, a Plugins SDK structure can reside in a LiferayWorkspace alongside
new developments that use the new build environment; you can switch between traditional projects and new
projects at your own pace.

Finally, we have also developed a lightweight tool called Blade CLI, which facilitates starting new projects
from templates – it’s especially useful for Gradle which doesn’t have Maven’s concept of archetypes. Blade
CLI also offers commands to start/stop the server and deploy and administer modules.

10.6 Powerful Configurability
Creating configurable code is a breeze with 7.0. And applications that use Liferay’s new Configuration API
allow administrators to change the configuration on the fly, through an auto-generated user interface called
System Settings.

Now you understand how 7.0 enriches your experience as a developer andmakes developing apps and
customizations fun.

Next, we’ll take a look at OSGi andmodularity to discuss key concepts and demonstrate how easy and
gratifying it is to build modules.

61

Chapter 11

OSGi and Modularity for Liferay Portal 6
Developers

To create a powerful, reliable platform for developingmodular applications, Liferay sought best-of-breed
standards-based frameworks and technologies. It was imperative not only to meet demands for enterprise
digital experiences but also to offer developers, both experienced with Liferay and new to Liferay, a clear and
elegant way to create apps.

Here were some of the key goals:

• Allow breaking down a large system into smaller pieces of code, whose boundaries and relationships
could be clearly defined.

• Explicitly differentiate public APIs from private APIs.

• Facilitate extensibility of existing code.

• Modernize the development environment, leveragingmore state-of-the-art tools to provide a great
developer experience.

It wasn’t long before Liferay discovered that OSGi and its supporting tools/technologies fit the bill!
In this tutorial, you’ll learn how 7.0 uses OSGi to meet these objectives. And equally important, you’ll

find out how easy and funmodular development can be.
Here are the topics you’ll dig into:

1. Modules as an Improvement over Traditional Plugins: Development and customization of applications
for Liferay has been done traditionally in WAR-style plugins (Portlet, Hook, Ext, andWeb). In 7.0,
traditional Liferay plugins can be replaced with (or can be automatically converted to) modules. You’ll
see the similarities and differences of plugins and modules, and you’ll learn the benefits of using
modules.

2. Leveraging Dependencies: In 7.0, you can both declare dependencies amongmodules and combine
modules to create applications. Since leveraging dependencies provides huge benefits, it’s important
to devote a large section for it.

63

3. OSGi Services and Dependency Injection: OSGi provides a powerful concept called OSGi Services
(also known as microservices). OSGi’s Declarative Services standard provides a clean way to inject
dependencies in a dynamic environment. This is similar to Spring DI, except the changes happen
while the system is running. It also offers an elegant extensibility model that 7.0 leverages extensively.

4. Dynamic Deployment: Module deployment ismanaged by 7.0 (not the application server). This section
demonstrates how to use dynamic deployment for better control and efficiency.

After investigating these topics, you’ll get hands-on experience creating and deploying an OSGi module.
Let’s start with learning howmodules are better than traditional plugins.

11.1 Modules as an Improvement over Traditional Plugins
In 7.0, you can develop applications using OSGi modules or using traditional Liferay plugins (WAR-style
portlets, hooks, EXT, and web applications). Liferay’s Plugin Compatibility Layer (explained later) makes
it possible to deploy traditional plugins to the OSGi runtime framework. To benefit from all 7.0 and OSGi
offer, however, you should use OSGi modules.

Modules offer these benefits:

• Better Encapsulation -The only classes a module exposes publicly are those it exports explicitly. This
lets you define internal public classes transparent to external clients.

• Dependencies by Package - Dependencies are specified by Java package, not by JAR file. In traditional
plugins, you had to add all of a JAR file’s classes to the classpath to use any of its classes. With OSGi,
you need only import packages containing the classes you need. Only the classes in those packages are
added to the module’s classpath.

• Lightweight - A module can be as small as you want it to be. In contrast to a traditional plugin, which
may require several descriptor files, a module requires only a single descriptor file–a standard JAR
manifest. Also, traditional plugins are typically larger than modules and deployed on app server
startup, which can slow down that process considerably. Modules deploy more quickly and require
minimal overhead cost.

• Easy Reuse - Modules lend themselves well to developing small, highly cohesive chunks of code.
They can be combined to create applications that are easier to test and maintain. Modules can be
distributed publicly (e.g., onMaven Central) or privately. And since modules are versioned, you can
specify precisely the modules you want to use.

• In-Context Descriptors -Where plugins use descriptor files (e.g., web.xml, portlet.xml, etc.) to de-
scribe classes,module classes use OSGi annotations to describe themselves. For example, a module
portlet class can use OSGi Service annotation properties to specify its name, display name, resource
bundle, public render parameters, andmuchmore. Instead of specifying that information in descrip-
tor files separate from the code, you specify them in context in the code.

These are just a few ways modules outshine traditional plugins. Note, however, that developers expe-
rienced with Liferay plugins have the best of both worlds. 7.0 supports traditional plugins andmodules.
Existing Liferay developers can find comfort in the simplicity of modules and their similarities with plugins.

Here are some fundamental characteristics modules share with plugins:

• Developers use them to create applications (portlets for Liferay)

64

• They’re zipped up packages of classes and resources

• They’re packaged as a standard Java JARs

Now that you’ve compared and contrasted modules with plugins, it’s time to tour the module anatomy.

Module Structure: A JAR File with a Manifest

Amodule’s structure is extremely simple. It has one mandatory file: META-INF/MANIFEST.MF. You add code
and resources to the module and organize them as desired.

Here’s the essential structure of a module JAR file:

- [Module's files]

_ META-INF

_ MANIFEST.MF

The MANIFEST.MFfile describes themodule to the system. Themanifest’s OSGi headers identify themodule
and its relationship to other modules.

Here are some of the most commonly used headers:

• Bundle-Name: User friendly name of the module.

• Bundle-SymbolicName: Globally unique identifier for the module. Java package conventions (e.g.,
com.liferay.journal.api) are commonly used.

• Bundle-Version: Version of the module.

• Export-Package: Packages from this module to make accessible to other modules.

• Import-Package: Packages this module requires that other modules provide.

Otherheaders canbeused to specifymore characteristics, suchashow themodulewasbuilt, development
tools used, etc.

For example, here are some headers from the Liferay Journal Webmodule manifest:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Liferay Journal Web

Bundle-SymbolicName: com.liferay.journal.web

Bundle-Vendor: Liferay, Inc.

Bundle-Version: 1.1.2

Export-Package:\

com.liferay.journal.web.asset,\

com.liferay.dynamic.data.mapping.util,\

com.liferay.journal.model,

com.liferay.journal.service,com.liferay.journal.util, [..]

Import-Package:\

aQute.bnd.annotation.metatype,\

com.liferay.announcements.kernel.model,

com.liferay.application.list,\

com.liferay.asset.kernel,\

com.liferay.asset.kernel.exception, [..]

65

https://www.osgi.org/bundle-headers-reference/

Note: to remove unnecessary “noise” from this example, some headers have been abbreviated ([..]) and
some have been removed.

You can organize and build a module’s Java code and resources however you like. You’re free to use any
directory structure conventions, such as those used inMaven or by your development team. And you can use
any build tool, such as Gradle or Maven, to manage dependencies.

Liferay Workspace is an environment for managing module projects (and theme projects). A default
Workspace provides Gradle build scripts and a Workspace created from the Liferay Project Templates
Workspace archetype provides Maven build scripts for developing on Liferay. Workspace can be used from
the command line or fromwithin Liferay @ide@. Note also that Liferay @ide@ provides plugins for Gradle,
Maven, and BndTools. Tooling details are covered later in this series.

Now that you’re familiar with the module structure and manifest, it’s time to explore how to build
modules.

Building Modules with Bnd

Themost common way to build modules is with a little tool called Bnd. It’s an engine that, among other
things, simplifies generatingmanifest metadata. Instead of manually creating a MANIFEST.MF file, developers
use Bnd to generate it. Bnd can be used on its own or along with other build tools, such as Gradle or Maven.
LiferayWorkspace uses Bnd together with Gradle or Maven.

One of Bnd’s best features is that it automatically transverses a module’s code to identify external classes
the module uses and adds them to the manifest’s list of packages to import. Bnd also provides several
OSGi-specific operations that simplify module development.

Bnd generates the manifest based on a file called bnd.bnd in the project root. This file’s header list is
similar to (but shorter than) that of the MANIFEST.MF. Compare the Liferay Journal Webmodule’s bnd.bnd file
content (simplified a bit) below to its MANIFEST.MF file content that was listed earlier:

Bundle-Name: Liferay Journal Web

Bundle-SymbolicName: com.liferay.journal.web

Bundle-Version: 1.1.2

Export-Package:\

com.liferay.journal.web.asset,\

com.liferay.journal.web.dynamic.data.mapping.util,\

com.liferay.journal.web.social,\

com.liferay.journal.web.util

Themain difference is that the bnd.bnd file doesn’t specify an Import-Package header. It’s unnecessary
because Bnd generates it in the MANIFEST.MF file automatically. It’s metadata made easy!

Bnd plugins are available to use with Gradle and Maven. And since Liferay Workspace includes Bnd,
developers can use Bnd from the command line and from Liferay @ide@.

Now that you’re familiar with Bnd and the Export-Package and Import-Packagemanifest headers, let’s
explore how to use them to leverage dependencies.

11.2 Leveraging Dependencies
Using anOSGimanifest, amodule declares the Java packages it consumes and shares. Themanifest’s Import-
Package and Export-Package settings expose this information. As you determine whether to use a particular
module, you know up-front what it offers and what it depends on. As an improvement over Java EE, OSGi
takes away dependency guesswork.

This part of the tutorial explains:

• Howdependencies work

66

http://bnd.bndtools.org/

• How to developmodular apps using dependencies

Let’s start by learning how dependencies operate in 7.0.

How Dependencies Work

Since all of 7.0 leverages dependencies, it also demonstrates how to use them. As mentioned previously, all
of what was in Liferay Portal 6 and its apps has been refactored into OSGi modules. The portal-service API
(the main API in Liferay Portal 6) has been replaced by the portal-kernelmodule (7.0’s kernel API) and many
small, highly-cohesive modules that provide frameworks, utilities, apps, andmore.

Not only do Liferay DXPmodules depend on third-party modules but they also depend on each other.
You can likewise leverage dependencies in your projects. Whether you’re developing new OSGi modules or
continuing to develop traditional apps, you need only set dependencies on modules whose packages you
need.

Eachmodule’s manifest lists the packages the module depends on. Using a build environment such as
Gradle,Maven, or Ant/Ivy, you can set dependencies on each package’smodule. At build time, the dependency
framework verifies the entire dependency chain, downloading all newly specified modules. The same thing
happens at runtime: theOSGi runtime knows exactlywhichmodules depend onwhich othermodules (failing
fast if any dependency is unmet). Dependency management is explicit and enforced automatically upfront.

Versioning is independent for each Liferay module and its exported packages. You can use a specific
package version by depending on the version of the module that exports it. And you’re free to use a mix of
Liferay modules in the versions you want (but remember, “With great power comes great responsibility,” so
unless you really know what you’re doing, use the same version of each module you depend on).

For all its modules, Liferay DXP uses Semantic Versioning. It’s a standard that enables API authors to
communicate programmatic compatibility of a package or module automatically as it relates to dependent
consumers and API implementations. If a package is programmatically (i.e., semantically) incompatible
with a project, Bnd (used in LiferayWorkspace) fails that project’s build immediately. Developers not using
Bnd can check package versions manually in each dependency module’s manifest.

Semantic Versioning also gives module developers flexibility to specify a version range of packages
andmodules to depend on. In other words, if several versions of a package work for an app, the developer
can configure the app to use any of them. What’s more, Bnd automatically determines the semantically
compatible range of each package a module depends on and records the range to the module’s manifest.

On testing your project, you might find a new version of a dependency package has bugs or behaves
differently than you’d like. No problem. You can adjust the package version range to include versions up to,
but not including, the one you don’t want.

Next you want to consider when to modularize existing apps and when to combinemodules to create
apps.

Dependencies Facilitate Modular Development

7.0’s support of dependencies and semantic versioning facilitates modular development. The dependency
frameworks enable you to use modules and link them together. You can use these modules throughout your
organization and distribute them to others. 7.0’s integration with dependency management frees you to
modularize existing apps and develop apps that combine modules. It’s a powerful and fun way to develop
apps on Liferay DXP.

Here are some general steps to consider whenmodularizing an existing app:

67

http://semver.org

1. Start by putting the entire app in a single module: This is a minimal first step that acquaints you
with 7.0’s module framework. You’ll gain confidence as you build, deploy, and test your app in an
environment of your choice, such as a LiferayWorkspace, Gradle, or Maven project.

2. Split the front-end from the back-end: Modularizing front-end portlets and servlets and back-end
implementations (e.g., Service Builder or OSGi component) is a logical next step. This enables each
code area to evolve separately and allows for varying implementations.

3. Extract non-essential features tomodules: Youmay have functionality or API extensions that need
not be tied to an app’s core codebase. They can be refactored as independent modules that implement
APIs you provide. Examples might be connectors to third-party systems or support for various data
export/import formats.

The principles listed above also apply to developing newmodular-based apps. As you design an app, con-
sider possible implementation variations with respect to its features, front-end, and back-end. Encapsulate
the variations using APIs. Then develop the APIs and implementations as separate modules. You can wire
them together using dependencies.

Liferay’s Blogs application exemplifies modularization in the manner we’ve described:
API:

• blogs-api - Encapsulates the core implementation

Back-end:

• blogs-service - Implements blogs-api

Front-end:

• blogs-web - Provides the app’s UI

Non-essential features and extensions:

• blogs-editor-configuration - Extends the portal-kernelmodule for extending editors

• blogs-recent-bloggers-web - Provides the Recent Bloggers app

• blogs-item-selector-api - Encapsulates the item-selector implementation

• blogs-item-selector-web - Renders the Blogs app’s item-selector

• blogs-layout-prototype - Creates a Page Template showcasing blog entries

The Blogs app, like manymodular apps, separates concerns into modules. In this way, front-end devel-
opers concentrate on front-end code, back-end developers concentrate on that code, and so on. These logical
boundaries free developers to design, implement, and test the modules independently.

As you develop app-centered modules, you can consider bundling themwith your app (e.g., as part of a
Liferay Marketplace app). Including them as part of the app is convenient for the consumer. By bundling a
module with an app, however, you’re committing to the app’s release schedule. In other words, you can’t
directly deploy a new version of a module for the app–youmust release it as part of the app’s next release.

So far, you’ve learned how dependencies and Semantic Versioning work. You’ve considered guidelines
formodularizing existing apps and creating newmodular apps. Now, to add to themomentum aroundOSGi
andmodularity, you’ll explore OSGi Services and dependency injection using OSGi Declarative Services.

68

11.3 OSGi Services and Dependency Injection with Declarative Ser-
vices

In 7.0, the OSGi framework registers objects as services. Each service offers functionality and can leverage
functionality other services provide. The OSGi Services model supports a collaborative environment for
objects.

Declarative Services (DS) provides a service component model on top of OSGi Services. DS service
components are marked with the @Component annotation and implement or extend a service class. Service
component can refer to and use each other’s services. The Service Component Runtime (SCR) registers
component services and handles binding them to other components that reference them.

Here’s how the “magic” happens:

1. Service registration: On installing a module that contains a service component, the SCR creates a
component configuration that associates the component with its specified service type and stores it in
a service registry.

2. Service reference handling: On installing a module whose service component references another
service type, the SCR searches the registry for a component configuration that matches the service
type and on finding a match binds an instance of that service to the referring component.

It’s publish, find, and bind at its best!
How does a developer use DS to register and bind services? Does it involve creating XML files? No, it’s

much easier than that. The developer uses two annotations: @Component and @Reference.

• @Component: Add this annotation to a class definition tomake the class a component–a service provider.

• @Reference: Add this annotation to a field to inject it with a service that matches the field’s type.

The @Component annotationmakes the class anOSGi component. Setting a serviceproperty to a particular
service type in the annotation, allows other components to reference the service component by the specified
service type.

For example, the following class is a service component of type SomeApi.class.

@Component(

service = SomeApi.class

)

public class Service1 implements SomeApi {

...

}

On deploying this class’s module, the SCR creates a component configuration that associates the class
with the service type SomeApi.

Specifying a service reference is easy too. Applying the @Reference annotation to a field marks it to be
injected with a service matching the field’s type.

@Reference

SomeApi _someApi;

On deploying this class’s module, the SCR finds a component configuration of the class type SomeApi and
binds the service to this referencing component class.

69

At build time, Bnd creates a component description file for each module’s components automatically. The
file specifies the component’s services, dependencies, and activation characteristics. Onmodule deployment,
the OSGi framework reads the component description to create the component and manage its dependency
on other components.

The SCR stands ready to pair service components with each other. For each referencing component, the
SCR binds an instance of the targeted service to it.

As an improvement over dependency injection with Spring, OSGi Declarative Services supports dynamic
dependency injection. Developers can create and publish service components for other classes to use.
Developers can update the components and even publish alternative component implementations for a
service. This kind of dynamism is a powerful part of 7.0.

11.4 Dynamic Deployment

In OSGi, all components, Java classes, resources, and descriptors are deployed via modules. The MANIFEST.MF
file describes themodule’s physical characteristics, such as the packages it exports and imports. Themodule’s
component description files specify its functional characteristics (i.e., the services its components offer and
consume). Alsomodules and their components have their own lifecycles and administrative APIs. Declarative
Services and shell tools give you fine-grained control over module and component deployment.

Since a module’s contents depend on its activation, consider the activation steps:

1. Installation: Copying the module JAR into Liferay DXP’s deploy folder installs the module to the OSGi
framework,marking the module INSTALLED.

2. Resolution: Once all the module’s requirements are met (e.g., all packages it imports are available), the
framework publishes the module’s exported packages andmarks it RESOLVED.

3. Activation: Modules are activated eagerly by default. That is, they’re started in the framework and
marked ACTIVE on resolution. An active module’s components are enabled. If a module specifies a
lazy activation policy, as shown in the manifest header below, it’s activated only after another module
requests one of its classes.

Bundle-ActivationPolicy: lazy

The figure below illustrates the module lifecycle.
The Apache Felix Gogo Shell lets developers manage the module lifecycle. They can install/uninstall

modules and start/stop them. Developers can update a module and notify dependent modules to use the
update. Liferay’s tools, including Liferay @ide@, Liferay Workspace, and Blade CLI offer similar shell
commands that use the OSGi Admin API.

On activating a module, its components are enabled. But only activated components can be used. Com-
ponent activation requires all its referenced services be satisfied. That is, all services it references must
be registered. The highest ranked service that matches a reference is bound to the component. When the
container finds and binds all the services the component references, it registers the component. It’s now
ready for activation.

Components can use delayed (default) or immediate activation policies. To specify immediate activation,
the developer adds the attribute immediate=true to the @Component annotation.

@Component(

immediate = true,

...)

70

Figure 11.1: This state diagram illustrates the module lifecycle.

Unless immediate activation is specified, the component’s activation is delayed. That is, the component’s
object is created and its classes are loaded once the component is requested. In this way delayed activation
can improve startup times and conserve resources.

Gogo Shell’s Service Component Runtime commands let youmanage components:

• scr:list [bundleID]: Lists the module’s (bundle’s) components.

• scr:info [componentID|fullClassName]: Describes the component, including its status and the ser-
vices it provides.

• scr:enable [componentID|fullClassName]: Enables the component.

• scr:disable [componentID|fullClassName]: Disables the component. It’s disabled on the server (or
current server node in a cluster) until the server is restarted.

Service references are static and reluctant by default. That is, an injected service remains bound to the
referencing component until the service is disabled. Alternatively, developers can specify greedy service
policies for references. Every time a higher rankedmatching service is registered, the framework unbinds
the lower ranked service from the component and binds the new service in its place automatically. Here’s a
@Reference annotation that uses a greedy policy:

71

http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html#shell-command

@Reference(policyOption = ReferencePolicyOption.GREEDY)

Declarative Services annotations let you specify component activation and service policies. Gogo Shell
commands let you controlmodules and components. Next, you’ll create and deploy amodule and component
to Liferay DXP.

11.5 Example: Building an OSGi Module
The previous sections explained some of the most important concepts for Liferay Portal 6 developers to
understand about OSGi and modularity. Now it’s time to put this knowledge to practice by creating and
deploying a module.

Themodule includes a Java class that implements an OSGi service using Declarative Services. The project
uses Gradle and Bnd, and can be built and deployed fromwithin a LiferayWorkspace.

Here’s the module project’s anatomy:

• bnd.bnd

• build.gradle

• src/main/java/com/liferay/docs/service/MyService.java

On building the module JAR, Bnd generates the module manifest automatically.
Here’s the Java class:

package com.liferay.docs.service;

import org.osgi.service.component.annotations.Activate;

import org.osgi.service.component.annotations.Component;

@Component(

immediate = true,

service = MyService.class

)

public class MyService {

@Activate

void activate() throws Exception {

System.out.println("Activating " + this.getDescription());

}

public String getDescription() {

return this.getClass().getSimpleName();

}

}

It contains these methods:

• getDescription - returns the class’s name

• activate - prints the console message ActivatingMyService. The @Activate annotation signals the OSGi
runtime environment to invoke this method on component activation.

The @Component annotation defines the class as an OSGi service component. The following properties
specify its details:

72

• service=MyService.class - designates the component to be a service component for registering under
the type MyService. In this example, the class implements a service of itself. Note, service components
typically implement services for interface classes.

• immediate=true - signals the Service Component Runtime to activate the component immediately after
the component’s dependencies are resolved.

The bnd.bnd file is next:

Bundle-SymbolicName: my.service.project

Bundle-Version: 1.0.0

The Bundle-SymbolicName is the arbitrary name for the module. The module’s version value 1.0.0 is
appropriate.

Bnd generates the module’s OSGi manifest to the file META-INF/MANIFEST.MF in the module’s JAR. In this
project, the JAR is created in the build/libs folder.

The last file to examine is the Gradle build file build.gradle:

dependencies {

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

Since the MyService class uses the @Component annotation, the project depends on theOSGi service compo-
nent annotations module. The build script is so simple because LiferayWorkspace module projects leverage
theWorkspace’s Gradle build infrastructure.

Although thismodule project was created in a LiferayWorkspace, it can easily bemodified to use in other
build environments. To keep the focus on what’s most important, it was created in a LiferayWorkspace.

Place theprojectfiles ina folderunder the modules folder (e.g., [Liferay_Workspace]/modules/my.service.project).
To build the module JAR and deploy it to Liferay DXP, execute the deployGradle task:

../../gradlew deploy

Note: If Blade is installed (recommended), Gradle can be executed by entering blade gw followed by a
task name (e.g., blade gw deploy). For details on Blade commands, see Blade CLI.

On deploying the module, the followingmessage is printed to the server console:
Activating MyService

Congratulations! You’ve successfully built and deployed an OSGi module to Liferay DXP.

11.6 Learning More about OSGi

There is muchmore to learn about developing apps using OSGi. Several resources are listed below andmany
more abound. Tomake the best of your time, however, avoid OSGi service articles that explain techniques
that are older andmore complicated than Declarative Services.

Developers new to OSGi should check out these resources:

• Introduction to Liferay Development: For using OSGi to develop on Liferay DXP.

• OSGi enRoute is a site the OSGi Alliance provides to the OSGi community. Its Tutorials provide
hands-on experience with OSGi modules and Declarative Services.

73

http://enroute.osgi.org/
https://enroute.osgi.org/Tutorial/

• OSGi Alliance’s Developer section explains OSGi’s architecture andmodularity.

Developers ready to dive deep into OSGi should read the OSGi specifications. They’re well-written and
provide comprehensive details on all that OSGi offers.TheOSGi Alliance OSGi Compendium: Release 6 specifies
the following services that 7.0 leverages extensively.

• Declarative Services Specification

• Configuration Admin Service Specification: For modifying deployed bundles. Since Configuration Admin
services are already integrated with Declarative Services, however, Liferay developers need not use the
low-level API.

• Metatype Service Specification: For describing attribute types as metadata.

74

https://www.osgi.org/developer
https://osgi.org/download/r6/osgi.cmpn-6.0.0.pdf

Chapter 12

Improved Developer Tooling: Liferay
Workspace, Maven Plugins and More

Creating applications is fun when you have the right tools. Here are some key ingredients:

• Rich templates for stubbing out projects
• Extensible build environments that offer state-of-the-art plugins
• Deployment and runtimemanagement tools
• Application upgrade automation

LiferayWorkspace (Workspace) boils over with all these things! It’s a Gradle-based development environ-
ment that integrates with Liferay @ide@ and can be used in conjunction with other IDEs, such as a “vanilla”
Eclipse, IntelliJ, and NetBeans. You can extendWorkspace’s Gradle environment with community-developed
(or home-grown) plugins for testing, code coverage analysis, andmore.

Workspace comes with Blade CLI: a command line tool for creating and deploying modules, managing
the runtime environment, and more. It provides all kinds of module templates, to create modules for
developing in any Gradle environment.

Liferay’s tools also streamline the application upgrade process. Liferay @ide@’s Upgrade Planner adapts
traditional plugins to 7.0 APIs. Liferay’s LiferayTheme Generator migrates themes and layout templates to
the new NodeJS-based environment and adapts them to 7.0.

Liferay DXP offers youmore with Maven too. The archetype Liferay Project TemplatesWorkspace lets
you develop in LiferayWorkspace usingMaven. 7.0’s’ lean artifacts and new project archetypes andMaven
plugins make Liferay DXP development with Maven easier than ever.

Here are the tooling improvement topics:

• Moving from the Plugins SDK to LiferayWorkspace
• Developing modules with LiferayWorkspace
• What’s new in Liferay DXP for Maven Users
• Using other build systems and IDEs

12.1 From the Plugins SDK to Liferay Workspace
The Liferay Plugins SDK is deprecated as of 7.0. You can continue developing on it, but should plan to
eventuallymove to a new environment. LiferayWorkspace succeeds the Plugins SDK as Liferay’s opinionated

75

development environment. You should use it if you’re not using an alternative build system like Gradle or
Maven.

Here areWorkspace’s key features:

• Module and component templates
• Sample projects
• Portal server configurations
• Folder structure flexibility
• Commands to migrate plugins, install Liferay DXP bundles, and start/stop Portal instances

Thepluginupgrade tutorials later in this series showhowLiferay 7.0 automatically adapts existingplugins
to @product-ver@. There’s also a tutorial that demonstrates how you can optionally migrate traditional
plugins toWorkspace.

Figure 12.1: Liferay @ide@’s Upgrade Planner automates many aspects of the plugin upgrade process.

Here’s an exampleWorkspace folder structure:
Here’s theWorkspace anatomy:

76

Figure 12.2: Liferay Workspace aggregates projects to use the same server configurations and Gradle build environment.

• bundles/ (generated) → default folder for Liferay DXP bundles
• configs/ → holds Portal server configurations
• gradle/ → holds the Gradle wrapper files
• modules/ → holds module projects
• plugins-sdk/ (generated) → holds plugins from previous releases
• themes/ → holds NodeJS-based theme projects
• wars/ (generated) → holds traditional web application projects
• build.gradle → common Gradle build file
• gradle.properties → specifies the Portal server configuration and project locations
• gradlew / gradlew.bat → executes the Gradle command wrapper
• pom.xml (only inWorkspaces generated by Maven) → commonMaven build file
• settings.gradle → applies plugins to theWorkspace and configures its dependencies

Workspace module, theme, and war projects use the same Portal server configurations. Developers can
create configurations for module development, user acceptance testing, production, andmore.

Each subfolder under configs holds a Portal server configuration defined by its portal-ext.properties
file. Gradle property liferay.workspace.environment in Workspace’s gradle.properties file specifies the
configuration to use.

Other Gradle properties let you set root locations for the Liferay DXP bundle,modules, themes, and a
Plugins SDK.

Workspace Folder Structure Properties

Property Description

liferay.workspace.environment Name of a configs subfolder holding the Portal server
configuration to use

liferay.workspace.home.dir Liferay DXP bundle root folder
liferay.workspace.modules.dir Module projects root folder
liferay.workspace.plugins.sdk.dir Plugins SDK root folder
liferay.workspace.themes.dir Theme projects root folder

Workspace has Gradle tasks equivalent to the Plugins SDK Ant targets.

77

Plugins SDK to Workspace Task Map

Plugins SDK Ant Target Workspace Gradle Task Task Description

build-css buildCSS Builds CSS files
build-lang buildLang Translates language

keys using Language
Builder

build-service buildService Runs Service Builder
clean clean Deletes all build outputs
compile classes Compiles classes
deploy deploy (or blade deploy) Installs the current

module to Liferay DXP’s
module framework

jar jar Compiles the project
and packages it as a JAR
file

war assemble Assembles project
output

OtherWorkspace Gradle tasks provide additional functionality.

Workspace Gradle Task Task Description

buildSoy Compiles Closure Templates in JavaScript functions
components Lists the project’s components
dependencies Lists the project’s declared dependencies
initBundle Downloads and installs a Liferay DXP bundle
model Lists the project’s configuration model
transpileJS Transpiles the project’s JavaScript files

Next, learn howWorkspace facilitates module development.

12.2 Developing Modules with Liferay Workspace
Workspace is a great Liferay module development environment because of these features:

• Templates that bootstrap module creation
• Gradle andMaven build systems for managing dependencies and assembling modules
• Module deployment and runtimemanagement capabilities

Blade CLI (Blade), which is a part of Workspace, has over twenty templates for Gradle-based module
projects–andmore are being added. The templates stub out classes and resource files for you to fill in with
business logic and key information.

Here are some of the template’s names:

• Activator
• API

78

• Content Targeting Report
• Content Targeting Rule
• Content Targeting Tracking Action
• Control Menu Entry
• MVC Portlet
• Panel App
• Portlet
• Portlet Configuration Icon
• Portlet Provider
• Portlet Toolbar Contributor
• Service
• Service Builder
• ServiceWrapper
• Simulation Panel Entry
• Template Context Contributor

Blade creates modules based on these templates.
For example, the following Blade command creates a Liferay MVC Portlet module called my-module:

blade create -t mvc-portlet -p com.liferay.docs.mymodule -c MyMvcPortlet my-module

Liferay @ide@’s module project wizard createsWorkspace modules from the templates too.
Liferay @ide@’s component wizard facilitates creating component classes for portlets, service wrappers,

Struts actions, andmore.
Building and deploying modules in aWorkspace is a snap using Liferay @ide@ and Blade. Workspace

uses BndTools to generate each module’s OSGi headers in a META-INF/MANIFEST.MF file. Workspace deploy
modules to the OSGi container using Felix File Install commands.

Liferay @ide@ lets you deploy modules by dragging them onto your Portal server.
In a terminal, you can deploy modules using Blade’s deploy command. For example, the following

command deploys the current module and “watches” for module changes to redeploy automatically.

blade deploy -w

To learn more aboutWorkspace and using it in Liferay @ide@, see these tutorials:

• Workspace
• Blade CLI
• Liferay @ide@

Andmake sure to check out the tutorial Starting Module Development.
Next, you’ll learn new features for developing on Liferay DXP usingMaven.

12.3 What's New in 7.0 for Maven Users

7.0 fully supports Maven development and offers several new and improved features:

• LiferayWorkspace for Maven
• New archetypes
• NewMaven plugins

79

Figure 12.3: Liferay @ide@ lets developers select templates to stub out modules.

• More granular dependency management

The new archetype Liferay Project TemplatesWorkspace generates a LiferayWorkspace that includes a
POM file for developing inWorkspace using Maven. You can develop modules and themes in theWorkspace
subfolders.

7.0 provides many newMaven archetypes for various Liferay module projects. There are over twenty-five
Maven archetypes for 7.0, andmore are in development. Here are some popular ones:

• Portlets
• Themes
• Configuration Icons
• Menu Buttons
• Service Builder

Liferay’s Maven archetypes cover many different Liferay frameworks and service types. These make
Maven a first-class tool for creating Liferay modules and themes. Visit the Generating New Projects Using
Archetypes tutorial to learn more about Liferay’s Maven archetypes and how to use them.

80

Figure 12.4: Liferay @ide@’s component wizard facilitates creating component classes.

Liferay also provides several new and updated Maven plugins that simplify the build process. The
following plugins build style sheets, services, and themes respectively:

• CSS Builder
• Service Builder
• Theme Builder

7.0’s modularity provides a more granular dependency management experience. You no longer need to
depend on portal-impl or portal-service (now portal-kernel) for everything. For example, to use Liferay’s
Wiki framework, you need only depend on theWiki module. You set dependencies on concise modules that
provide the functionality you want without inheriting extra baggage.

Liferay’s newWorkspace environment,Maven archetypes,Maven plugins, and streamlined modules
make developing on Liferay DXP easier than ever. To learn more, see the Maven tutorials.

81

Figure 12.5: Liferay @ide@ lets you deploy modules using drag-and-drop.

12.4 Using Other Build Systems and IDEs

Liferay DXP is tool agnostic–you can use whatever tools you like to develop on it. You can use any IDE
and even use Gradle, Bnd, or BndTools if you don’t want to use Workspace. The drawback is you lose the
Liferay-specific project templates that you get with Blade andWorkspace.

Blade lets you create modules to develop anywhere, not only in LiferayWorkspace.
Here are some new Gradle features Liferay provides that are independent ofWorkspace:

• Liferay’s Gradle plugins
• Buildship plugins in Liferay @ide@
• Liferay @ide@’s new Gradle views for developing modules and working with Gradle tasks

Liferay has worked hard to make Liferay DXP IDE-agnostic. There are Liferay module developers who
use IntelliJ and some enjoy using NetBeans.

Finally, you can copy and modify Liferay sample projects to serve as templates in place of the Blade
templates. They’re available for these build systems:

• Maven

82

• Gradle
• Liferay’s Gradle environment based on the com.liferay.plugin plugin

Liferay’s approach to tooling has vastly improved for 7.0. Our tools help you upgrade to 7.0, continue
developing traditional plugins the way you have been, andmigrate to optimal development environments.
Liferay Workspace and the improved Maven support facilitate module development. And developing on
Liferay DXP using other tools is easier than ever. Your tool options are wide open.

83

Chapter 13

Planning Plugin Upgrades and Optimizations

If you’ve explored 7.0’s features and possibly created new portlet modules themes with Liferay’s new tooling
and techniques, youmay be wondering how you’d upgrade existing plugins. The great thing is that Liferay
has automatedmuch of the upgrade process. In addition, you can continue developing plugins in traditional
ways and adopt new development tooling and techniques when you’re ready.

This tutorial guides you through phases of upgrading plugins and optionally optimizing them.
Upgrade: A process for deploying an existing plugin on 7.0 with minimal changes.
Optimization: An optional but recommended process for modifying a plugin or migrating it to a new

environment to improve the plugin or facilitate developing it.
Importantly, you should upgrade a plugin before applying any optimizations to it.
The good news is that upgrading plugins to 7.0 is straightforward. For Plugins SDK andMaven projects,

Liferay @ide@’s Upgrade Planner automates much of the process. In addition, the upgrade tutorials demon-
strate any remaining upgrade steps.

You can deploy plugins to 7.0 as you have for previous releases (e.g., ant clean deploy). Since everything
in 7.0 runs as OSGi modules, however, youmight wonder how traditional WAR-style plugins can run on it.
The answer: Liferay’s Plugin Compatibility Layer.

The Plugin Compatibility Layer converts standardWARs toWeb Application Bundles (WABs). WABs are
full-fledged OSGi modules. The Plugin Compatibility Layer’s WAB Generator supports deploying traditional
plugins and web applications that contain Servlets, JSPs, and other Java web technologies without making
any OSGi specific changes to them.

Note, you can still use an application server’s mechanisms to deploy regular web applications along with
Liferay DXP, without using the Plugin Compatibility Layer.

After upgrading your plugins you can consider optimizations such as these:

• Migrating plugins toGradle orMaven to leverage their development commands and rich Liferay plugin
templates.

• Migrating themes to the LiferayTheme Generator to addThemelets (new) and to leverage Node.js,
Yeoman, and Gulp.

• Converting plugins to modules to leverage Declarative Services, extendability, andmore modularity
benefits.

• Using the Lexicon, to apply a clean consistent application user experience.

See the optimization tutorials for more options and details.

85

You can continue using the Plugins SDK to develop plugins. But the Plugins SDK is deprecated as of 7.0.
In light of the deprecation, you should consider migrating plugins from the Plugins SDK to one of the new
environments:

• LiferayWorkspace is a Gradle environment that supports developing modules and traditional plugins.
Blade’s migrateWar commandmoves Plugins SDK portlets to LiferayWorkspace (Workspace) in a snap.

• Liferay’s Maven plugins and archetypes support developing modules and traditional plugins. There’s
also a LiferayWorkspace archetype for generating aWorkspace that uses Maven.

Liferay @ide@ supports developing inWorkspaces using Gradle or Maven.
In short, there’s plenty of time to move plugins out of the Plugins SDK, but you should at least plan for

migrating to a new environment that works best for you.
Speaking of planning, properly planned upgrades and optimizations reduce the time and effort they

take. To help guide you through the upgrade and optimization tutorials, you get these things:

• Upgrade and optimization phase descriptions
• Upgrade and optimization paths

13.1 Upgrade and Optimization Phases
Follow these upgrade and optimization phases:

1. Read the applicable upgrade tutorials for your plugin. Examine the upgrade and optimization paths.

2. Upgrade the plugin,making only the minimal changes necessary for it to work on 7.0.

3. (Optional) Identify and apply only the most beneficial optimizations for your plugin.

4. (Optional) Apply additional optimizations as desired.

13.2 Upgrade and Optimization Paths
The following tables provide upgrade and optimization paths for 6.2 plugins and features.

Plugin Upgrade and Optimization Paths

Plugin Upgrade path Optimizations (optional)

Ext Customization with
Ext Plugins

None

Hook - Language files - Upgrading Core
Language Key Hooks-
Upgrading Portlet
Language Key Hooks

Same

Hook - Override a Liferay DXP
Core JSP

Upgrading Core JSP
Hooks

Same

Hook - Override an app’s JSP Upgrading App JSP
Hooks

Same

86

Plugin Upgrade path Optimizations (optional)

Hook - Event Actions
(Portal/Session/Servlet
Service/Shutdown/Startup)

Upgrading Portal
Property and Event
Action Hooks

None

Hook -Model Listeners UpgradingModel
Listener Hooks

Same

Hook - Portal Properties Upgrading Portal
Property and Event
Action Hooks

Same

Hook - Properties - If the property is
now a System Setting,
edit it there and/or
use a .config file- If
the property is in the
liferay-hook.xml’s
DTD, then adapt code
to API and resolve
dependencies

None

Hook - ServiceWrappers Upgrading Service
Wrappers

None

Hook - Servlet Filter Upgrading Servlet
Filter Hooks

None

Hook - Struts actions - StrutsAction →
StrutsActionWrapper -
processAction →
MVCActionCommand
- render → MVCRender-
Command -
serveResource →
MVCResourceCom-
mand

Same

Layout Template 1. Adapt code to API2.
Resolve
dependencies3.
Update Layout
Template

-Migrate to LiferayTheme Generator
(Node.js/Gulp/Yeoman)

Portlet - GenericPortlet Upgrading a
GenericPortlet

-Migrate toWorkspace/Gradle- Apply
Lexicon- Convert to OSGi modules

Portlet - Liferay MVC Upgrading a Liferay
MVC Portlet

-Migrate toWorkspace/Gradle- Apply
Lexicon- Convert to OSGi modules

Portlet - JSF Upgrading a Liferay
JSF Portlet

None

Portlet - Servlet/JSP Upgrading a
Servlet-based Portlet

None

Portlet - SpringMVC Upgrading a Spring
MVC Portlet

None

87

@platform-ref@/7.0-latest/definitions/liferay-hook_7_0_0.dtd.html
@platform-ref@/7.0-latest/definitions/liferay-hook_7_0_0.dtd.html

Plugin Upgrade path Optimizations (optional)

Portlet - Struts 1 Upgrading a Struts
Portlet

None

Theme 1. Adapt code to API2.
Resolve
dependencies3.
UpgradeTheme

-Migrate to LiferayTheme Generator
(Node.js/Gulp/Yeoman)- UseThemelets

Web plugin 1. Adapt code to API2.
Resolve dependencies

Convert to OSGi module, e.g., portlet-x-web

Feature Upgrade and Optimization Paths

Feature Upgrade path Optimizations (optional)

JNDI data source Use Liferay DXP’s
classloader to access
the app server’s JNDI
API

None

Resources Importer Update the Resources
Importer

None

Services - Invoke a service from
Liferay DXP Core or another
portlet or module

Implement a Service
Tracker

Invoke Liferay services from amodule

Services -Module dependency Copy x-service.jar to
WEB-INF/lib

-Migrate to Gradle/Maven and add
dependency on the OSGi service

Services - Service Builder Upgrading Portlets
that use Service
Builder

Convert to OSGi modules, e.g., x-api and
x-service

Services -Web services 1. Adapt code to API2.
Resolve dependencies

Use a Service Builder service with JAX-RS
with a REST service in front

Template - FreeMarker - Adapt code to API-
AdaptTheme
templates

None

Template - Velocity (deprecated) Adapt code to API Convert to FreeMarker

Now you have a game plan and a cheat sheet for upgrading and optimizing plugins with confidence.

13.3 Upgrading Plugins to 7.0
Upgrading to 7.0 involves migrating your installation and code (your custom apps) to the new version. You’ll
learn how to upgrade your code in this section.

The first upgrade process step is to adapt your existing plugin’s code to 7.0’s APIs. The great news is that
Liferay’s Upgrade Planner makes this easier than ever. It identifies Liferay API changes affecting your code,
explains the API changes, and offers resolution steps. And the tool offers auto-correction where it can.

Youmight be tempted to optimize your existing plugins right away to benefit from the new things Liferay
DXP offers, but you shouldn’t. It’s much better to upgrade your plugins according to these tutorials. In this

88

way, you’ll get your plugins running in Liferay as fast as possible, and at the same time you’ll have prepared
the plugins for the optimizations you can implement later.

These tutorials assume you’re using the Liferay Upgrade Planner. To follow alongwith this section, install
the planner and step through the upgrade instructions.

For convenience, this tutorial section also references documentation and outlined steps to aid those
opting to upgrade their code manually.

Here are the code upgrade steps:

1. Upgrade Your Development Environment

Legacy project environments should be upgraded to the latest version of LiferayWorkspace to ensure
you leverage all available features.

1. Set Up LiferayWorkspace
A LiferayWorkspace is a generated environment that is built to hold andmanage your Liferay
projects. Create/import a workspace to get started.

1. Create New LiferayWorkspace
If you don’t have an existing 7.x LiferayWorkspace, youmust create one. Skip to the next
step if you have an existing workspace.

2. Import Existing LiferayWorkspace
Import an existing LiferayWorkspace. If you don’t have one, revisit the previous step.

2. Configure LiferayWorkspace Settings
Set the Liferay DXP version in workspace’s configuration you intend to upgrade to.

1. Configure Bundle URL
Configure your bundle URL that the Liferay DXP bundle is downloaded from.

2. Configure Target Platform Version
Configure your Target Platform version, which provides the specific artifacts associated
with a Liferay DXP release.

3. Initialize Server Bundle
Download the Liferay DXP bundle you’re upgrading to.

2. Migrate Plugins SDK Projects

Copy your Plugins SDK projects into workspace and convert them to Gradle/Maven projects.

1. Import Existing Plugins SDK Projects
Import your existing Plugins SDK projects.

2. Migrate Existing Plugins toWorkspace
Migrate your existing plugins to workspace. This involves moving the plugin to workspace and
converting it to the workspace’s build environment.

3. Upgrade Build Dependencies

Optimize your workspace’s build environment for the most efficient code upgrade experience.

1. Update Repository URL
Update your repository URL to Liferay’s frequently updated CDN repository.

89

2. UpdateWorkspace Plugin Version
Update yourWorkspace plugin version to leverage the latest features of LiferayWorkspace.

3. Remove Dependency Versions
Remove the project’s dependency versions since it’s leveraging target platform.

4. Fix Upgrade Problems

Fix common upgrade problems dealing with your project’s dependencies and breaking changes.

1. Auto-Correct Upgrade Problems
Auto-correct straightforward upgrade problems.

2. Find Upgrade Problems
Find upgrade problems. These are problems that cannot be auto-corrected; you can update them
manually according to the breaking changes documentation.

3. Resolve Upgrade Problems
Mark upgrade problems as resolved after addressing them.

4. Remove ProblemMarkers
After fixing your upgrade problems, remove the problemmarkers.

5. Resolving a Plugin’s Dependencies

6. Resolving Breaking Changes

5. Upgrade Customization Plugins

Upgrade your customization plugins so they’re deployable to 7.0.

1. Upgrade CustomizationModules

2. Upgrade Core JSP Hooks

3. Upgrade Portlet JSP Hooks

4. Upgrade ServiceWrapper Hooks

5. Upgrade Core Language Key Hooks

6. Upgrade Portlet Language Key Hooks

7. Upgrade Model Listener Hooks

8. Upgrade Event Action Hooks

9. Upgrade Servlet Filter Hooks

10. Upgrade Portal Properties Hooks

11. Upgrade Struts Action Hooks

6. UpgradeThemes

Upgrade your themes so they’re deployable to 7.0.

1. Upgrading YourTheme from Liferay Portal 6.1 to 7.0

2. Upgrading YourTheme from Liferay Portal 6.2 to 7.0

90

7. Upgrade Layout Templates

Upgrade your layout templates so they’re deployable to 7.0.

8. Upgrade Frameworks & Features

1. Upgrade JNDI Data Source Usage
Use Liferay DXP’s class loader to access the app server’s JNDI API.

2. Upgrade Service Builder Service Invocation
For Service Builder logic remaining in a WAR, you must implement a service tracker to call
services. For logic divided into OSGi modules, you can leverage Declarative Services.

3. Upgrade Service Builder
Adapt your app to account for Service Builder-specific changes.

4. Migrate Off of Velocity Templates
Velocity template usage is deprecated for 7.0. You should convert your template to FreeMarker.

9. Upgrade Portlets

Upgrade your portlets so they’re deployable to 7.0.

1. Upgrade Generic Portlets

2. Upgrade Liferay MVC Portlets

3. Upgrade JSF Portlets

4. Upgrade Servlet-based Portlets

5. Upgrading SpringMVC Portlets

6. Upgrade Struts Portlets

10. UpgradeWeb Plugins

Upgrade web plugins previously stored in the webs folder of your legacy Plugins SDK.

11. Upgrade Ext Plugins

Attempt to leverage an extension point instead of upgrading your Ext plugin. If an Ext plugin is
necessary, youmust review all changes between the previous Liferay Portal instance you were using
and 7.0, and thenmanually modify your Ext plugin to merge your changes with Liferay DXP’s.

Once you’ve finished the code upgrade steps, your custom apps will be compatible with 7.0!

13.4 Upgrading Your Development Environment

A LiferayWorkspace is a generated environment that is built to hold andmanage your Liferay projects. It is
intended to aid in the management of Liferay projects by providing various build scripts and configured
properties.

LiferayWorkspace is the recommended environment for your codemigration; therefore, it will be the
assumed development environment in this section.

Continue on to set up a workspace.

91

Setting Up Liferay Workspace

Youmust set up your workspace development environment before you begin upgrading your custom apps.
If you don’t have an existing workspace, follow the step for creating one. If you have an existing workspace,
follow the step on importing it into the Upgrade Planner.

Creating New Liferay Workspace

Initiating this step in the Upgrade Planner loads the LiferayWorkspace Project wizard.

1. Give your new workspace a name.

2. Choose the build type (Gradle orMaven) you prefer for your workspace environment and future Liferay
projects.

3. Click Finish.

You now have a new LiferayWorkspace available in the Upgrade Planner!
For more information on creating a LiferayWorkspace outside the planner, see the Creating a Liferay

Workspace section.

Importing Existing Liferay Workspace

If you already have an existing 7.x LiferayWorkspace, you should import it into the planner. Once you initiate
this step, you’re given a File Explorer/Manager to select your existing workspace. After selecting it, the
workspace is imported into the Project Explorer.

For more information importing a workspace into your IDE, see this article.

Configuring Liferay Workspace Settings

Youmust configure your workspace with the Liferay DXP version you intend to upgrade to. You should verify
the workspace’s

• Bundle URL
• Target Platform Version

The bundle URL version and target platform version must match.
Visit these steps to begin.

Configuring Bundle URL

The bundle URL points to the Liferay DXP version you want workspace to download. When initiating this
step, your workspace’s Bundle URL property is updated to the latest release of 7.0.

For more information on configuring a workspace’s bundle URL, see the Adding a Liferay Bundle to
LiferayWorkspace article.

Configuring Target Platform Version

The target platform is the Liferay DXP version you intend to develop for in your workspace. This is used to
specifydependencies associatedwith a specific release. You set the target platform,defineyourdependencies,
and workspace automatically assigns the dependency versions based on the set Liferay DXP version. When
initiating this step, your workspace’s Target Platform property is updated to the latest release of 7.0.

For more information on this, see the Managing the Target Platform article.

92

Initializing Server Bundle

Once your workspace is configured for the Liferay DXP version you’re upgrading to, you can initialize the
server bundle. This involves downloading the bundle and extracting it into its folder (e.g., bundles). If you
have an existing workspace already equipped with an older Liferay bundle, this deletes the old bundle and
initializes the new one.

If you’re upgrading your code manually and working in Dev Studio, you can do this by right-clicking the
workspace project and selecting Liferay → Initialize Server Bundle. See the Installing a Server in IntelliJ article
if you use IntelliJ instead. Visit the Managing Your Liferay Server with Blade CLI article for information on
how to do this via the command line.

13.5 Migrating Plugins SDK Projects to Liferay Workspace
The Plugins SDK was deprecated for Liferay DXP 7.0. Therefore, to upgrade your custom apps to 7.0, it’s
recommended to migrate them to a new environment. LiferayWorkspace is the recommended environment
for your code migration and will be the assumed choice in this section.

There are two steps youmust follow to migrate your custom code to workspace:

1. Import the Plugins SDK project into the Upgrade Planner.

2. Convert the Plugins SDK project to a supported workspace build type.

You’ll step through importing a Plugins SDK project first.

Importing Existing Plugins SDK Projects

Initiating this step in the Upgrade Planner imports your Plugins SDK projects into the Upgrade Planner.
These projects originate from the Plugins SDK you set when the Upgrade Planner process was started.

If you’re manually upgrading your code, you can skip this step.
You’re now ready to migrate your Plugins SDK projects to your new workspace!

Migrating Existing Plugins to Workspace

LiferayWorkspace can be generated as a Gradle or Maven environment, but it does not support the Plugins
SDK’s Ant build. Because of this, youmust convert your projects to one of the supported build tools:

• Gradle
• Maven

When initiating this step for a Gradle-based workspace, your Ant-based Plugins SDK project is copied to
the applicable workspace folder based on its project type (e.g., wars) and is converted to a Gradle project.
There is also a Blade CLI command that completes this via the command line. Visit the Converting Plugins
SDK Projects with Blade CLI article for more information.

If you’re migrating your Ant project to a Maven workspace, youmust manually copy the project to the
applicable folder based on the project type (e.g., wars). Themajority of Plugins SDK projects belong in the
workspace’s wars folder. You can consult theWorkspace Anatomy section for a full overview of a workspace’s
folder structure and choose where your custom app should reside. Once you’ve made the decision, copy your
custom app to the applicable workspace folder.

Then youmust convert your project from Ant to Maven. You’ll have to complete this conversion manually.
Once you’re finished, you should have your project(s) residing in the applicable workspace folders as

Gradle/Maven projects.

93

13.6 Upgrading Build Dependencies

Now that your projects are readily available in a workspace, youmust ensure your project build dependencies
are upgraded. Your workspace streamlines the build dependency upgrade process by only requiring three
modifications:

• Update the repository URL (Gradle only)
• Update the workspace plugin version
• Remove your project’s build dependency versions (Gradle only)

If you’re upgrading a recently created workspace, only a subset of these tasks may be required.
You’ll start by updating the repository URL.

Updating the Repository URL

Initiating this step in the Upgrade Planner updates the repository URL used to download artifacts for your
workspace.

If you’re using a Gradle-based workspace, the repository URL is updated to point to the latest Liferay
CDN repository. This is set in your workspace’s settings.gradle file within the buildscript block like this:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Once the repositoryURL is set to the proper CDN repository, your build dependencieswill be downloaded
from Liferay’s ownmanaged repo.

For Maven-based workspaces,Maven Central is the default repository, so no action is required.

Updating the Workspace Plugin Version

For the best upgrade experience, you should ensure you’re leveraging the latest LiferayWorkspace version so
all the latest features are available to you. Initiate this step to upgrade the appropriate plugin.

See the Updating LiferayWorkspace article to do this for Gradle-based workspaces manually. ForMaven-
based workspaces,make sure you set the latest Bundle Support plugin version in your root pom.xml file.

Removing Your Project's Build Dependency Versions

Note:This step only applies to Gradle-basedworkspaces since the target platform feature is only available
for Gradle projects at this time.

Since your workspace is leveraging the target platform feature, there is no need to set your plugin’s
dependency versions in its build.gradle file. This is because the target platform version you set already
defines the artifact versions your project uses. Therefore, if dependency versions are present in any of your
projects’ build.gradle files, youmust remove them.

Initiate this step to remove your dependency versions from your project’s build.gradle file
As an example of what a build.gradle’s dependencies block should look like, see the below snippet:

94

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib"

compileOnly group: "javax.portlet", name: "portlet-api"

compileOnly group: "javax.servlet", name: "javax.servlet-api"

compileOnly group: "jstl", name: "jstl"

compileOnly group: "org.osgi", name: "osgi.cmpn"

}

If you have not set the target platform feature in your workspace, see the Managing the Target Platform
article for more information.

Great! You’ve successfully upgraded your build dependencies! You likely have compile errors in your
project; this is because your dependencies may have changed. You’ll learn how to update that and more next.

13.7 Fixing Upgrade Problems

Now that your development environment build configuration is settled, you can start upgrading your
project(s). The twomost common upgrade problems are

• Broken project dependencies
• Breaking changes

Visit these upgrade problem tutorials for tips on how to fix them.
This tutorial is heavily focused on the Liferay Upgrade Planner. If you’re upgrading your code manually,

continue to the listed tutorials above to fix your code upgrade problems.
You’ll begin auto-correcting upgrade problems first.

Auto-Correcting Upgrade Problems

Initiate this step to auto-correct straightforward updates like

• package imports
• JSP tag names
• Liferay descriptor versions
• XML descriptor content
• etc.

If you choose to preview the auto-correct upgrade problems first, you can view them in the Project
Explorer under the Liferay Upgrade Problems dropdown. If you click one of the upgrade problems listed with
the preview, you’re offered documentation in the Liferay Upgrade Plan Infowindow on the proposed change.

Once you’ve performed this step, the result list is removed.

Finding Upgrade Problems

Initiating this step finds the upgrade problems that were not eligible for auto-correction. The problems are
listed under the Liferay Upgrade Problems dropdown. If you click one of the upgrade problems listed with the
preview, you’re offered documentation in the Liferay Upgrade Plan Infowindow on the proposed change.

These upgrade problems are available in the breaking changes for the version upgrade you’re performing.
The next step is resolving the reported upgrade problems.

95

Resolving Upgrade Problems

Now that the upgrade problems have been located, you must resolve them. As you select each upgrade
problem, the documentation for how to adapt your code is displayed in the Liferay Upgrade Plan Infowindow.

For each upgrade problem node, you’re also given the version the upgrade problem applies to (e.g., when
upgrading to Liferay DXP 7.2 from Liferay Portal 6.2, you could have upgrade problems from the 7.0, 7.1, or
7.2 upgrade). As you step through the reported problems,mark them as resolved/skipped using the context
menu. You can right-click on the problem in the Project Explorer and choose from four options:

• Mark done
• Mark undone
• Ignore
• Ignore all problems of this type

Leave this step marked as Incomplete until you have resolved all upgrade problems accordingly.

Removing Problem Markers

After resolving all the reported upgrade problems, youmust remove all previously foundmarkers because,
in most cases, the line number and other accompanyingmarker information are out of date andmust be
removed before continuing. Initiate this step to remove all the problemmarkers.

Great! You’ve fixed all the upgrade problems that could be automatically detected by the Upgrade Planner.
Next, you’ll take a deeper look at resolving project dependency errors.

13.8 Resolving a Plugin's Dependencies

Now that you’ve imported your plugin project to Liferay @ide@, you probably see compile errors for some
of the Liferay classes it uses. These classes are listed as undefined classes or unresolved symbols because
they’ve beenmoved, renamed, or removed. As a part of modularization in Liferay DXP,many of these classes
reside in newmodules.

Youmust resolve all of these Liferay classes for your plugin. Some of the class changes are quick and easy
to fix. Changes involving the newmodules requiremore effort to resolve, but doing so is still straightforward.

Liferay class changes and required adaptations are described here:

1. Classmoved to a package that’s in the classpath: This change is common and easy to fix. Since the
module is already on your classpath, you need only update the class import. You can do this by using
the Liferay Code Upgrade Tool or by organizing imports in @ide@. The Upgrade Planner reports
each moved class for you to address one by one. Organizing imports in @ide@ automatically resolves
multiple classes at once.

It’s typically faster to resolve moved classes using the mentioned Eclipse feature. Since Liferay @ide@
is based on Eclipse, you can generate imports of classes in your classpath with theOrganize Imports
keyboard sequence Ctrl-Shift-o. Comment out or remove any imports marked as errors, then press Ctrl-
Shift-o. If there’s only one match for the import, @ide@ automatically generates its import statement.
Otherwise, a wizard appears that lets you select the correct import.

2. Classmoved to amodule that’snot in the classpath: Youmust resolve the newmodule as a dependency
for your project. This requires identifying the module and specifying your project’s dependency on it.

96

3. Class replaced or removed: The class has been replaced by another class or removed from the product.
The Upgrade Planner (discussed later) explains what happened to the class, how to handle the change,
and why the change was made.

Resolving a class that’s moved within your classpath is straightforward. Consider resolving such classes
first. The remainder of this tutorial explains how to resolve the last two cases and starts with configuring
your plugin project to declare the modules it needs.

Identifying Module Dependencies

Before 7.0, all the platform APIs were in portal-service.jar. Many of these APIs are now in independent
modules. Modularization has resulted in many benefits, as described in the article Benefits of 7.0 for Liferay
Portal 6 Developers. One such advantage is that these API modules can evolve separately from the platform
kernel. They also simplify future upgrades. For example, instead of having to check all of Liferay’s APIs, each
module’s Semantic Versioning indicates whether the module contains any backwards-incompatible changes.
You need only adapt your code to suchmodules (if any).

As part of themodularization, portal-service.jarhas been renamedappropriately to portal-kernel.jar,
as it continues to hold the portal kernel’s APIs.

Figure 13.1: Liferay refactored the portal-service JAR for 7.0. Application APIs now exist in their own modules, and the portal-service JAR is now portal-kernel.

Each appmodule consists of a set of classes that are highly cohesive and have a specific purpose, such as
providing the app’s API, implementation, or UI.The appmodules are therefore much easier to understand.
Next, you’ll track down the modules that now hold the classes referenced by your plugin.

The reference article ClassesMoved from portal-service.jar contains a table thatmaps each classmoved
from portal-service.jar to its newmodule. The table includes each class’s new package and symbolic name
(artifact ID). You’ll use this information to configure your plugin’s dependencies on these modules.

97

http://semver.org

Your plugin might reference classes that are in Liferay utility modules such as util-java, util-bridges,
util-taglib, or util-slf4j.

The following table shows each Liferay utility module’s symbolic name.

Liferay Utility Symbolic Name (Artifact ID)

util-bridges com.liferay.util.bridges

util-java com.liferay.util.java

util-slf4j com.liferay.util.slf4j

util-taglib com.liferay.util.taglib

You can use Liferay DXP’s AppManager, Felix Gogo Shell, or module JAR file manifests to find versions
of modules deployed on your Liferay DXP instance.

Note: Previous versions of the Plugins SDK made portal-service.jar available to projects. The 7.0
Plugins SDK similarly makes portal-kernel.jar available. If you’re using a Liferay DXP bundle (Liferay DXP
pre-installed on an app server), the Liferay utility modules are already on your classpath. If youmanually
installed Liferay DXP on your app server, the Liferay utility modules might not be on your classpath. If a
utility module you need is not on your classpath, note its symbolic name (artifact ID) and version.

Resolving Dependencies

Now that you have the module artifact IDs and versions, you canmake the modules available to your plugin
project. Themodules your plugin uses must be available to it at compile time and run time. Here are two
options for resolving module dependencies in your traditional plugin project:

Option 1: Use a dependencymanagement tool
Option 2: Manage dependenciesmanually
The next sections explain and demonstrate these options.

Using a Dependency Management Tool

Dependency management tools such as Ant/Ivy,Maven, and Gradle facilitate acquiring Java artifacts that
provide packages your plugins need. They can download artifacts from public repositories or from internal
repositories you configure as a proxies. From internal repositories you can audit dependencies.

The following links provide proxy details:

• Ant/Ivy - See documentation on proxy configuration, the Setproxy task, and resolvers
• Maven
• LiferayWorkspace (Gradle)
• Setting proxies in Liferay @ide@

The Liferay Plugins SDK provides an Ant/Ivy infrastructure. You declare your dependencies in an ivy.xml

file in your plugin project’s root folder. The Plugins SDK’s Ant tasks leverage the ivy.xml file and the Plugins
SDK’s Ivy scripts to download the specifiedmodules and their dependencies andmake them available to
your plugin.

98

http://ant.apache.org/ivy/
https://gradle.org/
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html

Note: You can use Gradle or Maven in place of Ivy for dependency management, but this isn’t in this
tutorial’s scope. Liferay’s Maven and LiferayWorkspace tutorials demonstrate using these tools.

Additionally, LiferayWorkspace provides a command for migrating Ant/Ivy projects to Gradle-based
LiferayWorkspace projects. See the tutorial Migrating Traditional Plugins toWorkspaceWeb Applications.

Here’s an example dependency element for the Liferay Journal API module, version 2.0.1:

<dependency name="com.liferay.journal.api" org="com.liferay" rev="2.0.1" />

Each dependency includes the module’s name (name), organization (org), and revision number (rev). The
Configuring Dependencies tutorial explains how to determine the module’s organization (org).

At compile time, Ivy downloads the dependency JAR files to a cache folder so you can compile against
them.

At deployment, Liferay DXP’sWAB Generator creates an OSGiWeb Application Bundle (WAB) for the
plugin. TheWAB generator detects the Java packages your plugin uses and declares dependencies on them.
Your plugin can use the packages once a registered OSGi service provides them.

If your project doesn’t already have an ivy.xml file, you can get one by creating a new plugin project in
Liferay @ide@ and copying the ivy.xml file it generates.

Here’s an example of an ivy.xml file from the Liferay Portal 6.2 Knowledge Base portlet:

<?xml version="1.0"?>

<ivy-module

version="2.0"

xmlns:m2="http://ant.apache.org/ivy/maven"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="http://ant.apache.org/ivy/schemas/ivy.xsd"

>

<info module="knowledge-base-portlet" organisation="com.liferay">

<extends extendType="configurations,description,info" location="${sdk.dir}/ivy.xml" module="com.liferay.sdk" organisation="com.liferay" revision="latest.integration" />

</info>

<dependencies defaultconf="default">

<dependency org="com.liferay" name="com.liferay.markdown.converter" rev="1.0.2" />

</dependencies>

</ivy-module>

The Plugins SDK works with project Ivy files to store artifacts andmake them accessible to your plugin
projects.

If youdon’twant touse Ivy or someother dependencymanagement framework, you can storedependency
JARs within your plugin project manually. You’ll learn about this next.

Managing Dependencies Manually

Plugins rely on their dependencies’ availability at compile time and run time. To compile your plugin, you
must make sure the dependencies are available in the plugin’s WEB-INF/lib folder. To run your plugin, the
container must be able to find them: either 1) the dependency Java packages must already be active in Liferay
DXP’s OSGi framework or 2) the dependency JARsmust be included in theWAB generated for the plugin.
Your plugin can use both the JARs it currently has and the packages Liferay DXP exports.

Using Packages Liferay DXP Exports The Plugins SDK for Liferay Portal 6 provided a way to compile
against JARs it had. You’d specify these JARs in the portal-dependency-jars property in your liferay-plugin-
package.properties file. On seeing a plugin’s portal-dependency-jars list, the Liferay Plugins SDK copied
the JARs into the plugin’s WEB-INF/lib. The Plugins SDK refrained from adding the JARs to the pluginWAR.

99

@platform-ref@/7.0-latest/propertiesdoc/liferay-plugin-package_7_0_0.properties.html
@platform-ref@/7.0-latest/propertiesdoc/liferay-plugin-package_7_0_0.properties.html

This kept theWARs small for deploying faster. It was especially useful for deployingWARs remotely or to
cluster nodes.

In 7.0, the portal-dependency-jarsproperty is deprecated and behaves differently fromprevious versions.
Because importing and exporting Java packages has replaced wholesale use of JARs,modules andWABs can
import packages without concerning themselves with JARs. Liferay DXP exports many third party packages
for plugins can use.

If you’re still using the portal-dependency-jars property, you may run into one of the scenarios below.
Follow the instructions below the scenario to fix the issue.

1. I’ve specified a JAR, but in 7.0 none of the classes are available tomy plugin.

Some JARs that Liferay Portal 6.2 used were removed in 7.0. If you specify them in your portal-
dependency-jars, Liferay DXP can’t provide them. If you still need them, remove them from the
portal-dependency-jars property and add the JARs you need to your plugin’s WEB-INF/lib folder.

2. I’ve specified JARs, and 7.0 also exports all the JAR’s packagesmy plugin imports

Keep the JAR in your portal-dependency-jars list. The Plugins SDK copies the JAR to your plugin’s
WEB-INF/lib folder at compile time but refrains from adding the JAR to the plugin WAB.TheWAB
generated for the plugin imports the packages from a registered provider at run time.

3. 7.0 provides the JAR but doesn’t export a packagemy plugin imports

Keep the JAR in your portal-dependency-jars property. The Plugins SDK copies the JAR to your plugin’s
WEB-INF/lib folder at compile time and adds the JAR to the pluginWAB at deployment.

Understanding Excluded JARs Portal property module.framework.web.generator.excluded.paths declares
JARs that are stripped from all Liferay DXP generatedWABs. These JARs are excluded fromWABs because
Liferay DXP provides them already. All JARs listed for this property are excluded from theWABs, even if the
plugins listed the JAR in their portal-dependency-jars property.

If your plugin requires different versions of the packages Liferay DXP exports, you must include them in
JARs named differently from the ones module.framework.web.generator.excluded.paths excludes.

For example, Liferay DXP’s system.packages.extra.bnd file exports Spring Framework version 4.1.9 pack-
ages:

Export-Package:\

...

org.springframework.*;version='4.1.9',\

...

Liferay DXP uses the module.framework.web.generator.excluded.paths portal property to exclude their
JARs.

module.framework.web.generator.excluded.paths=\

...

WEB-INF/lib/spring-aop.jar,\

WEB-INF/lib/spring-aspects.jar,\

WEB-INF/lib/spring-beans.jar,\

WEB-INF/lib/spring-context.jar,\

WEB-INF/lib/spring-context-support.jar,\

WEB-INF/lib/spring-core.jar,\

WEB-INF/lib/spring-expression.jar,\

WEB-INF/lib/spring-jdbc.jar,\

WEB-INF/lib/spring-jms.jar,\

WEB-INF/lib/spring-orm.jar,\

WEB-INF/lib/spring-oxm.jar,\

100

http://docs.liferay.com/ce/portal/7.0-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://github.com/liferay/liferay-portal/blob/7.0.3-ga4/modules/core/portal-bootstrap/system.packages.extra.bnd

WEB-INF/lib/spring-tx.jar,\

WEB-INF/lib/spring-web.jar,\

WEB-INF/lib/spring-webmvc.jar,\

WEB-INF/lib/spring-webmvc-portlet.jar,\

...

To use a different Spring Framework version in yourWAB, youmust name the corresponding Spring
Framework JARs differently from the glob-patterned JARs module.framework.web.generator.excluded.paths
lists.

For example, to use Spring Framework version 3.0.7’s Spring AOP JAR, include it in your plugin’s WEB-
INF/lib but name it something other than spring-aop.jar. Adding the version to the JAR name (i.e., spring-
aop-3.0.7.RELEASE.jar) differentiates it from the excluded JAR and prevents it from being stripped from the
WAB.

Using Packages Liferay DXPDoesn’t Export Youmust download and install to your plugin’s WEB-INF/lib
folder JARs that provide packages Liferay DXP doesn’t export that your plugin requires.

Follow these steps to do this:

1. Go to Maven Central at https://search.maven.org/.

2. Search for the module by its artifact ID and group ID.

3. Navigate the search results to find the version of the module you want.

4. Click the jar link to download the module’s JAR file.

5. Add the JAR to your project’s WEB-INF/lib folder.

Figure 13.2: After searching Maven Central, download an artifact’s JAR file by clicking the jar link.

As youmanage module JARs,make sure not to deploy any OSGi framework JARs or Liferay module JARs
(e.g., com.liferay.journal.api.jar). If you deploy these, they’ll conflict with the JARs already installed in
the OSGi framework. Identical JARs in two different classloaders can cause class cast exceptions. The easiest
way to exclude such JARs from your plugin’s deployment is to list them in a deploy-excludes property in your
plugin’s liferay-plugin-package.properties. Youmust otherwise remove the JARsmanually from the plugin
WAR file. To exclude JARs in your plugin’s liferay-plugin-package.properties file, add an entry like the one
below, replacing the square-bracketed items with the names of JAR files to exclude:

101

https://search.maven.org/

deploy-excludes=\

⁎⁎/WEB-INF/lib/[module-artifact.jar],\

⁎⁎/WEB-INF/lib/[another-module-artifact.jar]

For example, here’s an example property that excludes the OSGi framework JAR osgi.core.jar and the
Liferay appmodule JAR com.liferay.journal.api.jar:

deploy-excludes=\

⁎⁎/WEB-INF/lib/com.liferay.portal.journal.api.jar,\

⁎⁎/WEB-INF/lib/org.osgi.core.jar

How do you knowwhat modules are already installed in Liferay DXP? If your Liferay DXP instance has
a particular Liferay app suite installed, then don’t deploy module JARs you know are in that app suite. For
example, if theWeb Experience Management App Suite is already installed (which is the case for a Liferay
DXP bundle), then don’t deployWeb Content module JARs such as com.liferay.journal.api.jar. Searching
for a module in Liferay DXP’s AppManager is a sure-fire way to verify existing module installations.

Using Liferay DXP's Tag Library Definitions

Before adding Tag Library Definition (TLD) files to your plugin, check Liferay DXP for them. The Liferay
DXP web application folder WEB-INF/TLD has over twenty TLDs, including Struts TLDs.

You can use Liferay DXP’s TLDs in a traditional plugin by adding them to the portal-dependency-tlds
property in the plugin’s liferay-plugin-package.properties file.

Way to go! You’ve fixed class imports and resolved dependencies on all the modules and tag libraries
your plugin uses.

Related Topics

Importing Packages
Exporting Packages
Development Reference
Modularizing an Existing Portlet
Invoking Local Services
Finding and Invoking Liferay Services
Tooling

13.9 Resolving Breaking Changes

Liferay goes to great lengths to maintain backwards compatibility. Sometimes, breaking changes are
necessary to improve Liferay DXP.There may be cases where breaking changes affect your code upgrade
process andmust be resolved. A breaking change can include

• Functionality that is removed or replaced
• API incompatibilities: Changes to public Java or JavaScript APIs
• Changes to context variables available to templates
• Changes in CSS classes available to Liferay themes and portlets
• Configuration changes: Changes in configuration files, like portal.properties, system.properties,
etc.

• Execution requirements: Java version, J2EE Version, browser versions, etc.

102

• Deprecations or end of support: For example, warning that a certain feature or API will be dropped in
an upcoming version.

• Recommendations: For example, recommending using a newly introduced API that replaces an old
API, in spite of the old API being kept in Liferay Portal for backwards compatibility.

Liferay provides a list of breaking changes for every major release to ensure you can easily adapt your
code during the upgrade process.

• 7.0 Breaking Changes
• Liferay DXP 7.1 Breaking Changes
• Liferay DXP 7.2 Breaking Changes

The easiest way to resolve breaking changes is by using the Liferay Upgrade Planner. It automatically
finds all documented breaking changes and can automatically resolve some of them on its own.

If you’re resolving breaking changes manually, make sure to investigate each breaking change document
if you’re upgrading code across multiple versions. For example, if you’re upgrading from Liferay Portal 6.2 to
7.0, youmust resolve all the breaking changes listed in the three documents listed above.

Now that you’ve resolved your breaking changes, you’ll learn how to upgrade service builder services
next.

103

Chapter 14

Upgrading Hook Plugins

Liferay DXP has more extension points than ever, and connecting existing hook plugins to them takes very
few steps. In most cases, after you upgrade your hook using the Liferay Upgrade Planner, it’s ready to run on
Liferay DXP.The following tutorials show you how to upgrade each type of hook plugin.

• Override/ExtensionModules
• Core JSP Hooks
• App JSP Hooks
• ServiceWrapper Hooks
• Core Language Key Hooks
• Portlet Language Key Hooks
• Model Listener Hooks
• Servlet Filter Hooks
• Portal Property and Event Action Hooks
• Struts Action Hooks

Continue on to get started!

14.1 Upgrading Customization Modules
Customization modules include any module extension or override used to customize another module. For
examples of these types of modules, visit the extensions and overrides sample projects.

Getting a customization module running on 7.0 takes two steps:

1. Adapt your code to 7.0’s API using the LiferayUpgrade Planner. When you ran the planner’s FixUpgrade
Problems step,many of the existing issues were autocorrected or flagged. For any remaining errors,
consult the Resolving a Plugin’s Dependencies article.

2. Deploy your module.

Note: A fragment was a common customization module in past versions of Liferay DXP. Fragments are
no longer recommended; you should upgrade a fragment to a dynamic include or portlet filter. For more
information on recommended ways of customizing JSPs in 7.0, see the Customizing JSPs section.

105

https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/extensions
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/overrides

Great! Your customization module is upgraded for 7.0!

14.2 Upgrading Core JSP Hooks

Getting a core JSP hook running on 7.0 takes two steps:

1. Adapt your code to 7.0’s API using the LiferayUpgrade Planner. When you ran the planner’s FixUpgrade
Problems step,many of the existing issues were autocorrected or flagged. For any remaining errors,
consult the Resolving a Plugin’s Dependencies article.

2. Deploy your hook plugin.

Liferay DXP’s Plugin Compatibility Layer converts the pluginWAR to aWeb Application Bundle (WAB)
and installs it to Liferay’s OSGi Runtime.

It’s just that easy!

Related Topics

JSP Overrides Using Custom JSP Bags
Upgrading App JSP Hooks
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

14.3 Upgrading App JSP Hooks

JSPs in OSGi modules are customized using module fragments. Themodule fragment attaches to the host
module to alter the JSPs. To the OSGi runtime, the fragment is part of the host module. Section 3.14 of the
OSGi Alliance’s core specification document explains module fragments in detail. This tutorial shows you
how to upgrade your app JSP hooks to 7.0.

Liferay @ide@’s Upgrade Planner’s Fixing Upgrade Problems step generates module fragments from app
JSP hook plugins. The tool creates module fragments in the same folder as your Plugins SDK root if your
hook is in a Plugins SDK or in the [liferay_workspace]/modules folder if your hook is in a LiferayWorkspace.

Module fragments follow this name convention: [plugin_name]-[app]-fragment. For example, if the
plugin’s name is app-jsp-hook and it modifies a JSP in the Blogs app, the Upgrade Planner generates a
module fragment named app-jsp-hook-blogs-fragment.

Here are the steps for upgrading app JSP hook plugins:

1. Declare the Fragment Host
2. Update the JSP

Declare the Fragment Host

Themodule fragment’s bnd.bnd file must specify an OSGi header Fragment-Host set to the host module name
and version.

If the host module belongs to one of Liferay DXP’s app suites, the Code Upgrade Tool generates a bnd.bnd
file that specifies an appropriate Fragment-Host header automatically.

For example, here’s a Fragment-Host that attaches a module fragment to the BlogsWebmodule.

106

https://www.osgi.org/developer/downloads/release-6/

Fragment-Host: com.liferay.blogs.web;bundle-version="1.1.9"

Updating the JSP is straightforward too.

Update the JSP

TheUpgrade Planner creates a module fragment that contains an upgraded version of your custom app JSP.
The following table shows the old and new JSP paths.
Liferay Portal version | JSP File Path | 6.2 | docroot/META-INF/custom_jsps/html/portlet/[jsp_file_path]

7.0 | src/main/resources/META-INF/resources/[jsp_file_path]
For example, the Upgrade Planner generates a customized version of the Blogs app’s init-ext.jsp file

here:

src/main/resources/META-INF/resources/blogs/init-ext.jsp

The tool’s Fixing Upgrade Problems step lets you compare custom JSPs with originals:

• Compare your custom 6.2 JSP with the original 6.2 JSP.
• Compare your custom 7.0 JSP with your custom 6.2 JSP.

Figure 14.1: The Upgrade Planner lets you compare custom JSPs with originals.

Make any additional needed changes in your 7.0 custom JSP.Then deploy your module fragment. This
stops the host module momentarily, attaches the fragment to the host, and then restarts the host module.
The console output reflects this process.

Here’s output from deploying a module fragment that attaches to the Blogs webmodule.

107

19:23:11,740 INFO [Refresh Thread: Equinox Container: 00ce6547-2355-0017-1884-846599e789c4][BundleStartStopLogger:38] STOPPED com.liferay.blogs.web_1.1.9 [535]

19:23:12,910 INFO [Refresh Thread: Equinox Container: 00ce6547-2355-0017-1884-846599e789c4][BundleStartStopLogger:35] STARTED com.liferay.blogs.web_1.1.9 [535]

Your custom JSP is live.

Related Topics

JSP Overrides Using OSGi Fragments
Upgrading Core JSP Hooks
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

14.4 Upgrading Service Wrappers
Upgrading traditional service wrapper hook plugins to 7.0 is quick and easy.

1. Adapt your code to 7.0’s API using the LiferayUpgrade Planner. When you ran the planner’s FixUpgrade
Problems step,many of the existing issues were autocorrected or flagged. For any remaining errors,
consult the Resolving a Plugin’s Dependencies article.

2. Deploy the plugin.

Liferay DXP’s Plugin Compatibility Layer converts the pluginWAR to aWeb Application Bundle (WAB)
and installs it to Liferay’s OSGi Runtime.

Related Articles

Overriding Liferay Services (ServiceWrappers)
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

14.5 Upgrading Core Language Key Hooks
Here are the steps for upgrading a core language key hook to 7.0.

1. Create a newmodule based on the Blade sample resource-bundle in Gradle or Maven.

Here are the main parts of the module folder structure:

• src/main/java/[resource bundle path] → Custom resource bundle class goes here
• src/main/resources/content

– Language.properties

– Language_xx.properties

– …

2. Copy all your plugin’s language properties files into the module folder src/main/resources/content/.

3. Create a resource bundle loader.

4. Deploy your module.

Your core language key customizations are deployed to 7.0.

108

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/resource-bundle
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/extensions/resource-bundle

Related Topics

Overriding Global Language Keys
Upgrading Portlet Language Key Hooks
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

14.6 Upgrading Portlet Language Key Hooks
You can upgrade your portlet language key hooks to 7.0 by following these steps:

1. Create a newmodule based on the Blade sample resource-bundle (Gradle or Maven project).

Here are the module folder structure’s main files:

• src/main/java/[resource bundle path] → ResourceBundleLoader extension goes here
• src/main/resources/content

– Language.properties

– Language_xx.properties

– …

2. Copy your language properties files into module folder src/main/resources/content/.

3. In your bnd.bnd file, specify OSGi manifest headers that target the portlet module’s resource bundle,
but prioritize yours.

4. Deploy your module.

Your portlet language key customizations are deployed in your newmodule on 7.0.

Related Topics

Overriding a Module’s Language Keys
Upgrading Core Language Key Hooks
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

14.7 Upgrading Model Listener Hooks
Developers have been creating model listeners for several Liferay Portal versions. Upgrading Model Listener
Hooks from previous portal versions has never been easier.

1. Adapt your code to 7.0’s API using the LiferayUpgrade Planner. When you ran the planner’s FixUpgrade
Problems step,many of the existing issues were autocorrected or flagged. For any remaining errors,
consult the Resolving a Plugin’s Dependencies article.

2. Deploy the plugin.

Liferay DXP’s Plugin Compatibility Layer converts the pluginWAR to aWeb Application Bundle (WAB)
and installs it to Liferay’s OSGi Runtime.

Your model listener hook is “all ears” and ready to act.

109

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/resource-bundle
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/extensions/resource-bundle

Related Topics

Creating Model Listeners
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

14.8 Upgrading Servlet Filter Hooks

If you have Servlet Filter Hooks ready to be upgraded, this tutorial’s for you. The process is quite simple:

1. Adapt your code to 7.0’s API using the LiferayUpgrade Planner. When you ran the planner’s FixUpgrade
Problems step,many of the existing issues were autocorrected or flagged. For any remaining errors,
consult the Resolving a Plugin’s Dependencies article.

2. Deploy the plugin.

Liferay DXP’s Plugin Compatibility Layer converts the pluginWAR to aWeb Application Bundle (WAB)
and installs it to Liferay’s OSGi Runtime.

Your Servlet Filter is running on 7.0!

Related Topics

Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

14.9 Upgrading Portal Property and Event Action Hooks

All portal properties in Liferay Portal 6.2 that are also used in 7.0 can be overridden. Portal property and
portal event action hooks that use these properties can be upgraded to 7.0 by following these steps:

1. Adapt your code to 7.0’s API using the LiferayUpgrade Planner. When you ran the planner’s FixUpgrade
Problems step,many of the existing issues were autocorrected or flagged. For any remaining errors,
consult the Resolving a Plugin’s Dependencies article.

2. Deploy your hook plugin.

Liferay DXP’s Plugin Compatibility Layer converts the pluginWAR to aWeb Application Bundle (WAB)
and installs it to Liferay’s OSGi Runtime.

Your custom property values and actions are live.

Related Topics

Liferay @ide@
Resolving a Plugin’s Dependencies
Upgrading the Liferay Maven Build

110

14.10 Converting StrutsActionWrappers to MVCCommands

Since Liferay Portal 6.1, developers could customize the Portal and Portlet Struts Actions using a Hook and
StrutsActionWrappers. For example, the liferay-hook.xml file for a hook that overrode the login portlet’s
login action had this entry:

<struts-action>

 <struts-action-path>/login/login</struts-action-path>

 <struts-action-impl>

 com.liferay.sample.hook.action.ExampleStrutsPortletAction

 </struts-action-impl>

</struts-action>

The liferay-hook.xml contains the struts mapping and the new class that overrides the default login
action.

The wrapper could extend either BaseStrutsAction or BaseStrutsPortletAction, depending on whether
the struts action was a portal or portlet action respectively.

Starting in 7.0, this mechanism no longer applies for most of the portal portlets because they are no
longer using Struts Actions, but instead use MVCCommands.

This tutorial demonstrates how to convert your existing StrutsActionWrappers to MVCCommands.

Converting Your old wrapper to MVCCommands

Converting StrutsActionWrappers to MVCCommands is easier than youmay think.
As a review, legacy StrutsActionWrappers needed to implement all the methods, such as processAction,

render, and serveResource, even if only one method was being customized. Each of these methods can now
be customized independently, using different classes, making the logic simpler and easier to maintain.
Depending on the method you customized in your StrutsActionWrapper, you need to use the matching
MVCCommand shown below:

• processAction → MVCActionCommand
• render →MVCRenderCommand
• serveResource →MVCResourceCommand

Look at the ExampleStrutsPortletAction class for a StrutsActionWrapper example. Depending on the
actions overridden, the user must use different MVCCommands. In this example, the action and render were
overridden, so in order tomigrate to the newpattern, youwould need to create two classes: MVCActionCommand
and MVCRenderCommand.

Next you’ll need to determine the associated mapping that is used by the MVCCommand.

Mapping Your MVCCommand URLs

For most cases, the MVCCommandmapping is the samemapping defined in the legacy struts action.
Using the beginning login example once again, the struts-action-pathmapping, /login/login, remains

the same for the MVCCommandmapping in 7.0, but some of the mappings may have changed. It’s best to check
Liferay’s source code to determine the correct mapping.

Depending on the URL it is a different parameter:

• RenderURLs contain a parameter named mvcRenderCommandName. For example:

111

<portlet:renderURL var="editEntryURL">

<portlet:param name="mvcRenderCommandName" value="/hello/edit_entry"

/>

<portlet:param name="entryId" value="<%= String.valueOf(

entry.getEntryId()) %>" />

</portlet:renderURL>

• ActionURLs are contained in the attribute name of the tag library or with the parameter
ActionRequest.ACTION_NAME. For example:

<portlet:actionURL name="/blogs/edit_entry" var="editEntryURL" />

• ResourceURLs are contained as the attribute id. For example:

<portlet:resourceURL id="/login/captcha" var="captchaURL" />

Once you have this information, you can override the MVCCommand by following the instructions found in
these sections of the OverridingMVC Commands tutorial:

• OverridingMVCActionCommands
• OverridingMVCResourceCommands
• OverridingMVCRenderCommands

Now you know how to convert your StrutsActionWrappers to MVCCommands!

Related Topics

OverridingMVC Commands

112

Chapter 15

Upgrading Themes

If you’ve developed themes in Liferay Portal 6.1 or Liferay Portal 6.2, as part of your upgrade you’ll want to
use them in 7.0. The upgrade process requires several modifications. To help automate this process you’ll
use the LiferayTheme Generator.

The following tutorials show you how to upgrade your Liferay Portal 6.1 and Liferay Portal 6.2 themes to
7.0.

15.1 Upgrading Your Theme from Liferay Portal 6.1 to 7.0

This tutorial guides you through the process of upgrading your 6.1 theme to run on 7.0.
For a more in depth tutorial that covers upgrading 6.2 themes, please see the UpgradingThemes tutorial.

Setting Up Your Theme With Liferay Theme Generator

You’ll use LiferayTheme Generator to get the upgrade process started. LiferayTheme Generator supplies
your theme with the necessary tools to deploy andmake quick modifications.

In this tutorial, you’ll use LiferayTheme Generator’s Import feature to help set up the upgrade process.

Preparing Your Theme

Before you import your theme, you need to make somemodifications to your theme to ensure LiferayTheme
Generator sets up the correct version and template language.

Make sure these settings are present in your theme:

1. Open your liferay-look-and-feel.xml file and make sure the template language (vm, ftl, jsp) is de-
fined:

<look-and-feel>

...

<theme id="my-theme-name" name="My Theme Name">

<template-extension>vm</template-extension>

...

2. Also in liferay-look-and-feel.xml, set the theme version to 6.2+:

113

<look-and-feel>

<compatibility>

<version>6.2+</version>

</compatibility>

...

3. Finally, open your liferay-plugin-package.properties file and update the Liferay Portal version to
6.2+, as well:

liferay-versions=6.2+

Note: LiferayTheme Generator’s importer only recognizes 6.2 themes. Therefore, 6.1 themes must be
versioned as 6.2+ to be recognized by the importer.

The importer only supports importing 6.2 themes generated with the Plugins SDK. If your theme was
not generated with the Plugins SDK, such as those created with Maven, you must modify your theme to
match the Plugins SDK structure before importing.

Now that your theme is prepped, you can start the import process next.

Importing Your Theme

Follow these steps to import your theme:

1. Install Liferay Theme Generator and its required dependencies, as explained in the Liferay Theme
Generator tutorial.

2. Navigate to the folder where you want your theme imported:

$ cd /where/i/want/my-theme/imported

3. Import your theme by running this command:

$ yo liferay-theme:import

4. Follow the prompts to complete your theme import.

Your theme has been imported into a folder named after your original theme. For example, a theme
named my-awesome-theme-for-61would be imported into a folder called my-awesome-theme-for-61-theme.

Next, you can learn how to update your theme for 7.0.

Updating Your Theme For 7.0

Now that you’ve successfully imported your theme, you have the tools necessary to develop your theme for
7.0. These tools are provided by the LiferayTheme Tasks, part of the Liferay JSTheme Toolkit.

The first of these tools you’ll use is the Upgrade task. This task does a few things:

• Backs up your files so you can revert them later if needed.

• Modifies and renames some files for compatibility.

114

https://github.com/liferay/liferay-themes-sdk/tree/master/packages

• Creates a css.diff file under /_backup, so you can easily see what’s been changed.

• Updates NPM dependencies.

• Creates a “compatibility” file for Compass mixins, which may have been used in your 6.1 theme.

Important: Before you run the Update task, read the section below titled An Important Note About Core
Stylesheets for advice on renaming (effectively overriding) “core” stylesheets.

Upgrade your theme, by running these commands:

$ cd my-awesome-theme-for-62-theme

$ gulp upgrade

If the Upgrade task didn’t update your files like you expected, you can easily revert them back using the
Upgrade Revert task:

$ gulp upgrade:revert

TheUpgrade task automates some of the steps for you, but somemanual changes are still required. These
are covered next.

Additional Manual Changes To Your Theme

When the Upgrade task finishes, the console may output additional manual changes youmay need to make
to your theme.

Note: Because Liferay Portal 7.0 uses Bootstrap 3, the default box model has been changed to box-sizing:
border-box. If you were using width or height and padding together on an element, youmay need to make
changes, or those elements may have unexpected sizes.

There are likely changes that you still need to make, which these tools and this guide can’t realistically
cover. Therefore, it’s recommended that you make changes gradually, rather than all at once. This allows you
to more easily identify any issues your thememay have.

Please refer to the Appendix below for ways on how to update your thememanually.
Follow the instructions in the next section to build and deploy your theme.

Building And Deploying Your Theme

Follow these steps to build and deploy your theme:

1. To check that everything is running smoothly, run this command:

$ gulp build

2. If all goes well, you can now deploy your theme by running this command:

$ gulp deploy

115

https://css-tricks.com/box-sizing/

If you’re using Velocity as your template language, you’ll notice this message on your server console when
deploying your theme:

Support of Velocity is deprecated. Update your theme to use FreeMarker for forward compatibility.
It’s recommended that youmigrate to using Freemarker for your theme templates. For more details,

please see the UpgradingTheme Templates section in the Appendix.
Additional tasks and info can be found in the Liferay Gulp Tasks reference guide.
Congratulations! You’ve now completed a major step in upgrading your theme.

Appendix: Making Manual Compatibility Adjustments To Your Theme

This appendix covers the changes you need tomake to your theme if youmanually update your files, or if you
need to make additional changes after using the Liferay JSTheme Toolkit’s Upgrade task.

Upgrading Theme Metadata

Your theme contains metadata about its capabilities and requirements. This metadata needs to be updated
to ensure your theme is available for use in Liferay DXP.

Liferay Portal Version Your thememust target the proper Liferay DXP version: in your case, 7.0.0+. You
must update the theme version in two places:

1. In the file liferay-plugin-package.properties, add the following property to ensure Liferay DXP de-
ploys your theme:

liferay-versions=7.0.0+

2. Add the following version information to your liferay-look-and-feel.xml to ensure LiferayDXPmakes
your theme available for use:

<look-and-feel>

<compatibility>

<version>7.0.0+</version>

</compatibility>

...

Template Extension If you’re not using the defaultTheme Template language, Freemarker (.ftl), you must
add a template-extension tag to your liferay-look-and-feel.xml file:

<look-and-feel>

...

<theme id="my-theme-name" name="My Theme Name">

<template-extension>vm</template-extension>

...

RequiredDeployment Contexts If you have any Required Deployment Contexts listed in your liferay-
plugin-package.properties file, these will likely need to be removed.

• resources-importer-web: Portal Compatibility Hook is for previous versions of Liferay Portal.

• portal-compat-hook: Because this tutorial is focused on upgrading a theme rather than importing
content and assets, it does not cover the Resources Importer. You can learn more about the Resources
Importer in the Importing Resources with aTheme tutorial.

116

Upgrading Stylesheets

An Important Note About “Core” Stylesheets If you’ve made customizations to “core” Liferay DXP
stylesheets, it’s recommended that you not use these customizations right away. Liferay DXP’s UI has
changed significantly since version 6.1, and any customizations youmay have are either not likely to work,
or will cause problems in the UI.

These “core” files would be:

• application.css

• aui.css

• base.css

• dockbar.css

• extras.css

• layout.css

• main.css

• navigation.css

• portal.css

• portlet.css

• taglib.css

Important: Rename thesefiles to something like my_application.css, my_aui.css, etc. If youdon’t rename
these files, youmay get an error when building your theme. This is because Sass is importing ambiguous
names like application, aui, etc.

It’s recommended that you get your theme working in 7.0 first, and then audit the styles in these “core”
CSS files to see if they’re still necessary and don’t cause any issues.

Renaming CSS Files 7.0 now uses the .scss extension for Sass stylesheets.

1. Under my-imported-theme/src/css, rename your custom.css file to _custom.scss.

2. If you have any additional CSS files that need to take advantage of Sass and Bourbon, youmust rename
those as well.

For example, my-feature.css becomes _my-feature.scss, and fonts.css becomes _fonts.scss.

Imported Stylesheet References If you’ve imported any renamed stylesheets into another, you’ll want to
update those references.

For example _my-fonts.scss needs to be updated from:

@import url(my-fonts.css);

to:

@import "my-fonts";

117

http://bourbon.io/

Sass Framework Import Beginning with version 7.0, Liferay Portal now uses Bourbon for mixins, rather
than Compass. Bourbon is being imported in a core stylesheet, _imports.scss, so you shouldn’t need to
import it yourself.

Also, files with the .scss extension are processed by Sass automatically. But you must still import or link
to these to use them.

Remove @import "compass" from all your Sass files, and don’t worry about importing Bourbon.

Mixins When Liferay Portal switched from using Compass to Bourbon, some mixins changed syntax,
became unsupported, or became unnecessary in modern browsers. These mixins should be updated or
removed.

For example:

.my-component {

@include border-radius(8px);

@include opaque;

@include scale(0.9);

}

input[type="text"] {

@include input-placeholder {

color: #bfbfbf;

}

}

becomes:

.my-component {

border-radius: 8px;

opacity: 1;

@include transform(scale(0.9));

input[type="text"] {

@include placeholder {

color: #bfbfbf;

}

}

Please refer to Compass and Bourbon documentation for more details.

Bootstrap 3 If you’ve used Bootstrap 2.3.2 in your theme, a migration guide is available.

118

http://bourbon.io/
https://github.com/liferay/liferay-portal/blob/7.0.2-ga3/modules/apps/foundation/frontend-theme/frontend-theme-styled/src/main/resources/META-INF/resources/_styled/css/_imports.scss
http://bourbon.io/
http://compass-style.org/index/mixins/
http://bourbon.io/docs/#mixins
http://getbootstrap.com/migration/

Remove .auiClass Used InDescendant Selectors The class .aui is no longer in use. Selectors that contain
.aui as a parent qualifier must be modified, or those selectors will not match the expected elements.

For example:

.aui{

my-component {

// ...

}

}

.aui my-other-component {

// ...

}

becomes:

html {

my-component {

// ...

}

}

html my-other-component {

// ...

}

or maybe:

my-component {

// ...

}

my-other-component {

// ...

}

Upgrading JavaScript

In August 2014 Yahoo stopped all new development of YUI, which AlloyUI was built on. Because of this
announcement, Liferay has decided to sunset AlloyUI and deprecate it as of Liferay Portal 7.

Although AlloyUI is deprecated, it’s still available by default, and existing AlloyUI 3 based code continues
to work.

To further research changes to an AlloyUImodule, you can find a HISTORY.md file under each component’s
directory.

Moving forward, it’s recommended tomigrate your AlloyUI/YUI code to eitherMetal.js or the framework
of your choice. Below, you’ll find some libraries used in Liferay DXP. Feel free to use them as well.

119

https://yahooeng.tumblr.com/post/96098168666/important-announcement-regarding-yui

jQuery jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML document
traversal andmanipulation, event handling, animation, and Ajax much simpler. It’s also popular among
front-end developers, making it ideal for getting started quickly.

For more in depth coverage, see jQuery’s documentation.

Lodash Lodash is a modern JavaScript utility library delivering modularity, performance & extras. It’s
used in Liferay DXP to fill the void left by YUI’s utility modules.

For more in depth coverage, see Lodash’s documentation.

Metal.js Written by Liferay to specifically to meet the needs of Liferay DXP,Metal.js is a JavaScript library
for building UI components in a solid, flexible way.

For more in depth coverage, see Metal.js’s documentation

Upgrading Theme Templates

In prior versions of Liferay Portal, Velocity templates (.vm files) were the default template language for
writing thememarkup. But Velocity had limitations. In 7.0, Freemarker templates (.ftl files) are the default
template language, and Velocity templates are deprecated.

With that in mind, if your themes are written in .vm files, they should still work, but you’re missing out
on additional theme features. In a future release, support for Velocity templates will be removed.

Migrating to Freemarker Templates For a typical theme,migrating to Freemarker should be simple. The
syntaxes of both languages are relatively similar.

Here’s a comparison:
Velocity:

$theme.include($my_template_include)

#if ($show_site_name)

$site_name

#end

#parse ("$full_templates_path/navigation.vm")

#breadcrumbs()

$theme.wrapPortlet("portlet.vm", $content_include)

#foreach ($nav_item in $nav_items)

$nav_item.getName()

#end

Freemarker:

<@liferay_util["include"] page=my_template_include />

<#if show_site_name>

<span title="<@liferay.language_format arguments="${site_name}" key="go-to-x" />">

120

https://jquery.com/
http://api.jquery.com/
https://lodash.com/
http://lodash.com/docs/
http://www.metaljs.com/
http://metaljs.com/docs/

${site_name}

</#if>

<#include "${full_templates_path}/navigation.ftl" />

<@liferay.breadcrumbs />

<@liferay_theme["wrap-portlet"] page="portlet.ftl">

<@liferay_util["include"] page=content_include />

</@>

<#list nav_items as nav_item>

${nav_item.getName()}

</#list>

Whichever language you decide to use, there are several convenient macros included with Liferay DXP:

• Freemarker macros on LDN

• Freemarker macros source

• Velocity macros source

Noteworthy Breaking Changes

There are many changes since Liferay Portal 6.1 which break in version 7.0. Some of these changes are
documented in Liferay DXP’s Breaking Changes. Below are some notable ones.

Dockbar Is Now Called Control Menu In portal_normal.vm, admin controls are now called using
#control_menu().

Liferay Portal 6.1:

#if ($is_signed_in)

#dockbar()

#end

7.0:

#control_menu()

Portlet ConfigurationOptions In portlet.vm, portlet menu icons have been condensed into a single call
and are now controlled using the PortletConfigurationIcon classes.

Liferay Portal 6.1:

$theme.iconOptions()

$theme.iconMinimize()

$theme.iconMaximize()

$theme.iconClose()

121

https://github.com/liferay/liferay-portal/blob/7.0.2-ga3/modules/apps/foundation/portal-template/portal-template-freemarker/src/main/resources/FTL_liferay.ftl
https://github.com/liferay/liferay-portal/blob/7.0.2-ga3/modules/apps/foundation/portal-template/portal-template-velocity/src/main/resources/VM_liferay.vm

7.0:

$theme.portletIconOptions()

See Liferay Portal’s Breaking Changes for more details:

• Removed the Tags that Start with portlet:icon-
• Portlet Configuration Options May Not Always Be Displayed

Navigation Item Icons In navigation.vm, access to icons have been changed, to minimize dependency on
taglibs.

Liferay Portal 6.1:

nav_item.icon()

7.0:

$theme.layoutIcon($nav_item.getLayout())

See Liferay Portal’s Breaking Changes for more details.

Upgrading Layout Templates

The only significant change to Layout Templates has been the addition of Bootstrap’s Grid system.
If you’re using any custom Layout Templates, you’ll want to integrate Bootstrap into them.
A comparison between Layout Templates in Liferay Portal 6.1 and Liferay Portal 7.0 is shown in the

example below:
Liferay Portal 6.1:

<div class="portlet-layout">

<div class="portlet-column portlet-column-only" id="column-1">

$processor.processColumn("column-1", "portlet-column-content portlet-column-content-only")

</div>

</div>

Liferay Portal 7.0:

<div class="portlet-layout row">

<div class="col-md-12 portlet-column portlet-column-only" id="column-1">

$processor.processColumn("column-1", "portlet-column-content portlet-column-content-only")

</div>

</div>

Related Topics

Themes Generator
Themelets
Importing Resources with aTheme

122

https://getbootstrap.com/docs/3.3/css/#grid

15.2 Upgrading Your Theme from Liferay Portal 6.2 to 7.0

This tutorial guides you through the process of upgrading your 6.2 theme to run on 7.0. While you’re at it,
you should leverage theme improvements, including support for Sass, Bootstrap 3, and Lexicon (Liferay’s UI
design language). This tutorial demonstrates upgrading a Liferay Portal 6.2 theme to 7.0.

Theme upgrades involve these steps:

• Updating project metadata
• Updating CSS
• Updating theme templates
• Updating resources importer configuration and content
• Applying Lexicon design patterns

As an example, this tutorial applies the steps to a Liferay Portal 6.2 theme called the Lunar Resort
theme—developed in the Liferay Portal 6.2 Learning Path Developing a LiferayTheme. It’s similar to many
Liferay Portal 6.2 themes as it extends the _styled theme, adding configurable settings and incorporating a
responsive design that leverages Font Awesome icons and Bootstrap. The theme ZIP file contains its original
source code.

Before upgrading a theme, consider migrating the theme to use the Liferay JSTheme Toolkit, such as
those created with the LiferayTheme Generator. 7.0 doesn’t require this migration, but the Liferay JSTheme
Toolkit’s Gulp upgrade task automates many upgrade steps. Themes that use the Liferay JSTheme Toolkit can
also leverage exclusive new features, such as the LiferayTheme Generator’s sub-generators, andThemelets.
If youmigrate your theme, return here afterward to upgrade it.

No matter the environment in which you’re developing your theme, this tutorial explains everything
required to upgrade it. The easiest option is to use the Liferay JSTheme Toolkit’s Gulp upgrade task, so you’ll
see that first. Then you’ll see all upgrade steps, in case you want to run themmanually.

Running the Upgrade Task for Themes that Use Liferay JS Theme Toolkit

A Liferay Portal 6.2 theme can be upgraded to 7.0, regardless of its project environment (Liferay JSTheme
Toolkit, Plugins SDK,Maven, etc.). But a theme that’s been migrated to use the Liferay JSTheme Toolkit can
leverage the Gulp upgrade task. If you’re not going to leverage Liferay JSTheme Toolkit, skip to the Updating
ProjectMetadata section.

Here’s what the Upgrade task does:

• Updates the theme’s Liferay version
• Updates the CSS
• Suggests specific code updates

The Upgrade task automatically upgrades CSS code that it can identify. For everything else, it suggests
manual upgrades that you canmake.

Here are the steps for using the theme gulp upgrade task:

1. In your theme’s root directory, run this command:

gulp upgrade

Here’s what it does initially:

123

https://github.com/liferay/liferay-portal/tree/6.2.x/portal-web/docroot/html/themes/_styled
/documents/10184/656312/lunar-resort-theme-migration-6.2.zip
https://github.com/liferay/liferay-themes-sdk/tree/master/packages

Figure 15.1: The Lunar Resort example theme upgraded in this tutorial uses a clean, minimal design.

124

• Copies the existing theme to a folder called backup

• Creates core code for generating theme base files
• Updates Liferay version references

Note: An upgraded theme can be restored to its original state by

executing `gulp upgrade:revert`.

The task continues upgrading CSS files, prompting you to update CSS file

names.

2. For 7.0, Sass files should use the .scss extension and file names for Sass partials should start with an
underscore (e.g., _custom.scss). The upgrade task prompts you for each CSS file to rename.

The Upgrade task makes a best effort to upgrade the theme’s Bootstrap code from version 2 to 3. For
other areas of the code it suspects might need updates, it logs suggestions (covered later). The task also
reports changes that may affect theme templates.

A breaking change is a codemodification between versions of Liferay DXP thatmight be incompatible with
existing plugins, including themes. Liferay minimized the number of breaking changes, but couldn’t avoid
some. The Breaking Changes reference document describes them. The theme’s gulp upgrade command and
the Upgrade Planner, in Liferay @ide@ identify and address these changes.

The Gulp upgrade task jump-starts the upgrade process, but it doesn’t complete it. Manual updates are
required.

The rest of this tutorial explains all the theme upgrade steps, regardless of whether the Gulp upgrade task
performs them. Steps the Upgrade task performs are noted in context. Even if you’ve already executed the
Upgrade task, it’s best to learn all the steps andmake sure they’re applied to your theme.

The next step is to update the theme’s metadata.

Updating Project Metadata

If you’re developing your theme in an environment other than the Plugins SDK, skip this section.
A theme’s Liferay version must be updated to 7.0.0+ for the theme to run on 7.0.
If you’re using the Plugins SDK, open the liferay-plugin-package.properties file and change the

liferay-versions property value to 7.0.0+:

liferay-versions=7.0.0+

If you’re using the Liferay JSThemeToolkit, open the liferay-look-and-feel.xmlfile and specify liferay-
look-and-feel_7_0_0.dtd as the DTD and 7.0.0+ as the compatibility version:

<?xml version="1.0"?>

<!DOCTYPE look-and-feel PUBLIC "-//Liferay//DTD Look and Feel 7.0.0//EN"

"http://www.liferay.com/dtd/liferay-look-and-feel_7_0_0.dtd">

<look-and-feel>

<compatibility>

<version>7.0.0+</version>

</compatibility>

...

</look-and-feel>

125

3. If your theme uses the Liferay JSTheme Toolkit and has a package.json file, update the file’s Liferay
version references to 7.0.

Your theme’s Liferay version references are updated for 7.0. Next, you’ll update the CSS.

Updating CSS Code

7.0’s UI improvements required these CSS-related changes:

• Adding new CSS files
• Removing unneeded CSS files
• Class variable changes (required by Bootstrap 3)
• Modifications to CSS responsiveness tokens

The theme upgrade process involves conforming to these changes.
In this section, you’ll update your theme’s CSS to leverage the styling improvements. Start with updating

CSS file names for Sass.

Updating CSS File Names for Sass

Although Sass was available in Liferay Portal 6.2, only Sass partial files followed the Sass naming convention
(using file suffix .scss). In 7.0 themes, all Sass files must end in scss.

Note: The Gulp upgrade task renames Sass files automatically.

For each CSS file you’ve modified in your theme, except main.scss and aui.scss, change its suffix from
.css to .scss.

Then prepend an underscore (_) to all Sass partial file names.
For example, rename custom.css to _custom.scss.
Here are the Lunar Resort theme’s renamed CSS files:

• css/

– _aui_variables.scss

– _custom.scss

Refer to theTheme Reference Guide for a complete list of expected theme CSS files.
Next, the CSS rules must be updated to use Bootstrap 3 syntax.

Updating CSS Rules

7.0 uses Bootstrap 3’s CSS rule syntax. The new syntax lets developers leverage Bootstrap 3 features and
improvements.

If your theme does not use the Liferay JSTheme Toolkit, you can refer to the Migrating from 2.x to 3.0
guide for updating CSS rules to Bootstrap 3.

If your theme uses the Liferay JSTheme Toolkit, the Gulp upgrade task reports automatic CSS updates
and suggested manual updates. For example, here is part of the task log for the Lunar Resort theme:

126

http://getbootstrap.com/migration/#migrating-from-2x-to-30
http://getbootstrap.com/migration/#migrating-from-2x-to-30

--

Bootstrap Upgrade (2 to 3)

--

File: src/css/_aui_variables.scss

Line 5: "$white" has been removed

Line 11: "$baseBorderRadius" has changed to "$border-radius-base"

Line 15: "$btnBackground" has changed to "$btn-default-bg"

Line 16: "$btnBackgroundHighlight" has been removed

Line 17: "$btnBorder" has changed to "$btn-default-border"

Line 18: "$btnDangerBackground" has changed to "$btn-danger-bg"

Line 19: "$btnDangerBackgroundHighlight" has been removed

Line 21: "$btnInfoBackgroundHighlight" has been removed

Line 21: "$btnInfoBackground" has changed to "$btn-info-bg"

Line 22: "$btnPrimaryBackground" has changed to "$btn-primary-bg"

Line 23: "$btnPrimaryBackgroundHighlight" has been removed

Line 24: "$btnSuccessBackground" has changed to "$btn-success-bg"

Line 25: "$btnSuccessBackgroundHighlight" has been removed

Line 26: "$btnWarningBackground" has changed to "$btn-warning-bg"

Line 27: "$btnWarningBackgroundHighlight" has been removed

Line 29: "$dropdownLinkBackgroundActive" has changed to

"$dropdown-link-active-bg"

Line 30: "$dropdownLinkBackgroundHover" has changed to

"$dropdown-link-hover-bg"

Line 31: "$dropdownLinkColorActive" has changed to

"$dropdown-link-active-color"

Line 31: "$white" has been removed

Line 34: "$navbarBackgroundHighlight" has been removed

Line 35: "$navbarBorder" has changed to "$navbar-default-border"

Line 36: "$navbarBackground" has changed to "$navbar-default-bg"

Line 36: "$navbarLinkBackgroundActive" has changed to

"$navbar-default-link-active-bg"

Line 38: "$linkColorHover" has changed to "$link-hover-color"

Line 38: "$navbarLinkColorHover" has changed to

"$navbar-default-link-hover-color"

Line 39: "$navbarLinkColor" has changed to

"$navbar-default-link-color"

Line 39: "$navbarText" has changed to "$navbar-default-color"

Line 41: "$errorBackground" has changed to "$error-bg"

Line 45: "$infoBackground" has changed to "$info-bg"

Line 47: "$successBackground" has changed to "$success-bg"

Line 50: "$warningBackground" has changed to "$warning-bg"

File: src/css/custom.css

Line 201: Padding no longer affects width or height, you may need to

change your rule (lines 201-227)

Line 207: Padding no longer affects width or height, you may need to

change your rule (lines 207-226)

Line 212: You would change height from "62px" to "82px"

Line 305: Padding no longer affects width or height, you may need to

change your rule (lines 305-314)

Line 308: You would change height from "39px" to "46px"

Line 403: "nav-collapse" has changed to "navbar-collapse"

Line 409: Padding no longer affects width or height, you may need to

change your rule (lines 409-418)

Line 490: "btn-navbar" has changed to "navbar-btn"

Line 490: "btn" has changed to "btn btn-default"

Line 586: "nav-collapse" has changed to "navbar-collapse"

For each update performed and suggested, the task reports a file name and line number range.
Since Bootstrap 3 adopts the box-sizing: border-box property for all elements and pseudo-elements

(e.g., :before and :after), padding no longer affects dimensions. Bootstrap’s documentation describes the
box sizing changes. Consider the padding updates the upgrade task reports for CSS rules.

Note: For individual elements, you can overwrite the box-sizing: border-box rule with box-sizing:

content-box.

127

https://getbootstrap.com/docs/3.3/css/#less-mixins-box-sizing

In all CSS rules that use padding,make sure to update the width and height.
For example, examine the height value change in this CSS rule from the Lunar Resort theme’s

_custom.scss file.
Old way:

#reserveBtn {

background-color: #00C4FB;

border-radius: 10px;

color: #FFF;

font-size: 1.5em;

height: 62px;

margin: 30px;

padding: 10px 0;

...

}

Newway:

#reserveBtn {

background-color: #00C4FB;

border-radius: 10px;

color: #FFF;

font-size: 1.5em;

height: 82px;

margin: 30px;

padding: 10px 0;

...

}

After updating your theme’s CSS rules, you should update its CSS responsiveness.

Updating the Responsiveness

In 7.0, Bootstrap 3 explicit media queries replace Bootstrap 2 respond-tomixins for CSS responsiveness.
Follow these steps to update CSS responsiveness:

1. Open your _custom.scss file.

2. Replace all respond-tomixins with correspondingmedia queries shown below:

Media Query Replacements

Liferay Portal 6.2 Mixin | 7.0 Media Query |

————————————– |:———————————————————- | @include respond-to(phone)

| @include media-query(null, $screen-xs-max) | @include respond-to(tablet) | @include media-query(sm,

$screen-sm-max) | @include respond-to(phone, tablet) | @include media-query(null, $breakpoint_tablet

- 1) | @include respond-to(desktop, tablet) | @include sm | @include respond-to(desktop) | @include

media-query($breakpoint_tablet, null) |
For example, here is a responsiveness update to the Lunar Resort’s _custom.scss file:
Old:

128

@include respond-to(phone, tablet) {

html #wrapper #banner #navigation {

...

}

...

}

New:

@include media-query(null, $breakpoint_tablet - 1) {

html #wrapper #banner #navigation {

...

}

...

}

The new media query @include media-query(null, $breakpoint_tablet - 1) replaces the old mixin
@include respond-to(phone, tablet).

The Liferay JSTheme Toolkit’s Gulp upgrade task generates a file _deprecated_mixins.scss. The file pro-
vides deprecated compass mixins that your migrated thememight be using. Consider upgrading your use
of these mixins. Keep the _deprecated_mixins.scss file if you’re using any of its mixins, but delete all unused
mixins. If you’re not using any of the mixins, delete the _deprecated_mixins.scss file.

You’ve updated the theme’s responsiveness. Next, you’ll update its Font Awesome settings.

Updating Font Awesome Icons

LiferayDXPuses Font Awesome icons extensively. For example, the Lunar Resort theme’s design incorporates
Font Awesome icons in its social media links.

Figure 15.2: Font Awesome icons facilitate creating social media links.

The icons are easy to use in themes too.
In Liferay Portal 6.2, the CSS file aui.css defined the Font Awesome icon paths. In 7.0, the Sass file

_aui_variables.scss defines them.

Note: In 7.0, the aui.css file holds the lexicon-base style import. TheTheme Reference Guide describes
all the Liferay DXP theme files.

The top of the _aui_variables.scss filemust start with the Font Awesome Icons imports. If youmodified
the _aui_variables.scss file in your Liferay Portal 6.2 theme, add these Font Awesome imports to the top of
it:

129

// Icon paths

$FontAwesomePath: "aui/lexicon/fonts/alloy-font-awesome/font";

$font-awesome-path: "aui/lexicon/fonts/alloy-font-awesome/font";

$icon-font-path: "aui/lexicon/fonts/";

Next, you’ll update the theme templates.

Updating Theme Templates

7.0 theme templates are essentially the same as Liferay Portal 6.2 theme templates. Here are the main
changes:

• Velocity templates are now deprecated in favor of FreeMarker templates.

• The Dockbar has been replaced and reorganized into a set of three distinct menus.

Key reasons for using FreeMarker templates and deprecating Velocity templates are these:

• FreeMarker is developed andmaintained regularly,while Velocity is no longer actively being developed.

• FreeMarker is faster and supports more sophisticated macros.

• FreeMarker supports using taglibs directly rather than requiring a method to represent them. You
can pass body content to them, parameters, etc.

Themenus that replace the Dockbar supports a more flexible and responsive design for creating better
user experiences.

You should start by addressing the Velocity templates. Since Velocity templates have been deprecated,
you should convert your Velocity theme templates to FreeMarker.

If you’re using the Liferay JS Theme Toolkit, the gulp upgrade command reports the required theme
template changes in the log.

For example, here is the command’s output for the Lunar Resort theme:

--

Liferay Upgrade (6.2 to 7)

--

File: portal_normal.ftl

Warning: <@liferay.dockbar /> is deprecated, replace with

<@liferay.control_menu /> for new admin controls.

Warning: not all admin controls will be visible without

<@liferay.control_menu />

Warning: ${theme} variable is no longer available in FreeMarker

templates, see https://goo.gl/9fXzYt for more information.

For all the theme’s templates, it suggests replacement code for deprecated code.
Next, you’ll learn how to update various theme templates to 7.0. If you didn’tmodify any theme templates,

you can skip these sections.

130

Updating Portal Normal FTL

The first one to update is the portal_normal.ftl theme template. If you didn’t customize portal_normal.ftl,
you can skip this section.

In FreeMarker templates, the new syntax for including taglibs lets you use them directly rather than
accessing them via the theme variable. The change is described in the Breaking Changes reference document.
All modified portal_normal.ftl theme templates must be updated to use the new syntax.

1. Open your modified portal_normal.ftl file and replace the following 6.2 directives with the corre-
sponding 7.0 directives:

FreeMarkerThemeVariable Replacements

6.2 7.0

${theme.include(top_head_include)}<@liferay_util["include"] page=top_head_include />

${theme.include(body_top_include)}<@liferay_util["include"] page=body_top_include />

${theme.include(content_include)}<@liferay_util["include"] page=content_include />

${theme.wrapPortlet("portlet.ftl",

content_include)}

<@liferay_theme["wrap-portlet"] page="portlet.ftl">

<@liferay_util["include"] page=content_include /> </@>

${theme.include(body_bottom_include)}<@liferay_util["include"] page=body_bottom_include />

${theme.include(bottom_include)}<@liferay_util["include"] page=bottom_include />

${theme.getSetting("my-

theme-setting")}

${theme_settings["my-theme-setting"]}

${theme.runtime("56",

"articleId=" +

my_article_id)}

<@liferay_portlet["runtime"]

portletName="com_liferay_journal_content_web_portlet_JournalContentPortlet"

queryString="articleId=" + my_article_id />

2. Replace the following link type.

Old:

<@liferay.language key="skip-to-content" />

New:

<@liferay_ui["quick-access"] contentId="#main-content" />.

The liferay-ui:quick-access tag provides a keyboard shortcut to the page’s main content.

3. Replace all Dockbar references with Control Menu references.

Old:

<#if is_signed_in>

<@liferay.dockbar />

</#if>

New:

<@liferay.control_menu />

TheDockbar was an all-in-one component that contained the page administration menus and the
user/portal administration menus. This UI has since been split and reorganized into three menus:

131

• TheProductMenu: Manage site and page navigation, content, settings and pages for the current
site, and navigate to user account settings, etc.

• The Control Menu: Configure and add content to the page and view the page in a simulation
window.

• TheUser Personal Bar: Display notifications and the user’s avatar and name.

Figure 15.3: The Dockbar was removed in 7.0 and must be replaced with the new Control Menu.

The new design enhances the user experience by providing clear and purposeful menus.

4. If you used the split Dockbar in your Liferay Portal 6.2 theme, remove dockbar-split from the body
element’s class value.

For example, remove dockbar-split from <body class="... dockbar-split">. .

5. Remove the page title code shown below:

<h2 class="page-title">

${the_title}

</h2>

Rather than include the page title on every page, it was decided that this decision should be left up to
developers. With the introduction ofmodularization in themes, this feature can easily be implemented
however you like.

6. Toensurenavigation is only renderedwhen therearepages,wrap the <#include "${full_templates_path}/navigation.ftl"

/> include with an if statement as demonstrated below:

<#if has_navigation && is_setup_complete>

<#include "${full_templates_path}/navigation.ftl" />

</#if>

7. Finally, replace content div elements (e.g., <div id="content">...<div>) with HTML 5 section
elements.

The div element works but the section element is more accurate and provides better accessibility for
screen readers.

For example, here’s a new content section element:

132

<section id="content">

<h1 class="hide-accessible">${the_title}</h1>

...

</section>

To support accessibility, consider adding an h1 element like the one above.

Note: The Liferay JSTheme Toolkit’s gulp upgrade command reports suggested theme template changes.

If youmodified the navigation template for your theme, follow the steps in the next section.

Updating Navigation FTL

Follow these steps to update your modified navigation.ftl file:

1. Below the <nav class="${nav_css_class}" id="navigation" role="navigation"> element, add the fol-
lowing hidden heading for accessibility screen readers:

<h1 class="hide-accessible">

<@liferay.language key="navigation" />

</h1>

2. To access the layout, add the following variable declaration below the <#assign nav_item_css_class =

"" /> variable declaration:

<#assign nav_item_layout = nav_item.getLayout() />

This variable grabs the layout for navigation. You can use this variable to retrieve an icon for the
navigation menu next.

3. To retrieve an icon for the navigationmenu, replace the ${nav_item.icon()} variable in the <a aria-

labelledby="layout_${nav_item.getLayoutId()}"... anchor with the following element:

<@liferay_theme["layout-icon"] layout=nav_item_layout />

The navigation template is updated.
That coversmost, if not all, of the required theme template changes. If youmodifiedanyother FreeMarker

theme templates, you can compare themwith templates in the _unstyled theme. And if your theme uses the
Liferay JSTheme Toolkit, refer to the suggested changes that the gulp upgrade command reports.

After updating the theme templates, you can update your theme’s resources importer code.

Updating the Resources Importer

Liferay’s resources importer is now an OSGi module in Liferay’s Web Experience application suite. Since the
suite is bundled with Liferay DXP, developers no longer need to download the resources importer separately.

API changes and upgrades to Bootstrap 3 affect the following resources importer components:

• Plugin properties
• Web content article files and directory structure
• Sitemap

133

https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/foundation/frontend-theme/frontend-theme-unstyled/src/main/resources/META-INF/resources/_unstyled/templates

This section shows you how to update these components.

Note:The example Lunar Resort theme’s resources importer web content articles have been modified to
avoid known issue LPS-64859. Articles in the Liferay Portal 6.2 theme link to pages in the site’s layout. Due
to the page and article import order, the links cause a null pointer exception. To avoid this issue with the
example theme, the offending links have been removed from its articles.

Start updating the plugin properties for the resources importer.

Updating liferay-plugin-package.properties

If you’re upgrading a Plugins SDK theme, follow these instructions to update resources importer properties.
Otherwise, skip this section.

Make the following updates to the theme’s liferay-plugin-package.properties file:

1. Remove the required-deployment-contexts property.

The plugin no longer needs this property as the resources importer is now an OSGi module built-in
and deployed with 7.0.

2. Since the groupmodel class’s fully-qualified class name has changed, replace the resources-importer-
target-class-name property’s value with the following class name:

com.liferay.portal.kernel.model.Group

Now that the resources importer’s properties are configured properly, you can update your theme’s web
content.

Updating Web Content

All 7.0 web content articles must be written in XML and have a structure and template. Article creation
requires a structure and article content rendering requires a template. Follow these steps to update your
web content:

1. In the /resources-importer/journal/articles/ folder, create a subfolder, for example BASIC_WEB_CONTENT,
to hold the basic HTML articles.

2. Move all basic HTML articles into the folder you just created in step 1.

3. In the /resources-importer/journal/templates/ and /resources-importer/journal/structures/ fold-
ers, create a subfolder with the same name as the folder you created in step 1.

For the web content to work properly, the articles, structure, and template folder names must match.

4. In previous Liferay versions, article structures were written in XML. Now they’re written in JSON.

Create a file [structure-name].json, for example BASIC_WEB_CONTENT.json, in the structure subfolder
you created in the previous step.

For web content articles that use complicated structures and templates, create the structures and
templates in Liferay DXP.

5. In the JSON file you just created, add a JSON structure for the web content. For example, you can use
a JSON structure like the one below for basic web content articles.

134

https://issues.liferay.com/browse/LPS-64859
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/web-experience/export-import/export-import-resources-importer

{

"availableLanguageIds": [

"en_US"

],

"defaultLanguageId": "en_US",

"fields": [

{

"label": {

"en_US": "Content"

},

"predefinedValue": {

"en_US": ""

},

"style": {

"en_US": ""

},

"tip": {

"en_US": ""

},

"dataType": "html",

"fieldNamespace": "ddm",

"indexType": "keyword",

"localizable": true,

"name": "content",

"readOnly": false,

"repeatable": false,

"required": false,

"showLabel": true,

"type": "ddm-text-html"

}

]

}

This structure identifies the articles’ language and field settings and specifies a name value to identify
the content. This example structure’s content is named content.

6. In the template subfolder youcreated in step 3 (e.g., /resources-importer/journal/templates/[template-
folder-name]/), create a FreeMarker template file (e.g., [template-folder-name].ftl) and add a
method in it to get the article’s data.

For example, this method accesses content from the variable named content and renders it as HTML:

${content.getData()}

You’ve created the basic web content structure and template.

7. Follow this pattern for basic web content articles you convert fromHTML to XML:

<?xml version="1.0"?>

<root available-locales="en_US" default-locale="en_US">

<dynamic-element name="content" type="text_area"

index-type="keyword" index="0">

<dynamic-content language-id="en_US">

<![CDATA[

HTML CONTENT GOES HERE

]]>

</dynamic-content>

</dynamic-element>

</root>

135

For example, the 2 column description.html Lunar Resort article’s HTML content should be converted
to an XML file (e.g., 2 column description.xml) whose content looks like this:

<?xml version="1.0"?>

<root available-locales="en_US" default-locale="en_US">

<dynamic-element name="content" type="text_area"

index-type="keyword" index="0">

<dynamic-content language-id="en_US">

<![CDATA[

<div class="container-fluid">

<div class="span4" id="columnLeft">Out of This World</div>

<div class="span8" id="columnRight">Come to the Lunar Resort and

live out your childhood dream of being an astronaut on the Moon. If

that's not enough incentive, you'll enjoy a luxurious 3 day 2 night

stay in our fabulous Lunar accommodations. Enjoy a round of Lunar

Golf on our one of a kind course. Have a blast on our Rover Racing

track. Make your reservation now. The rest of your life starts

today!</div>

</div>

]]>

</dynamic-content>

</dynamic-element>

</root>

8. 7.0’smigration fromBootstrap 2 to Bootstrap 3 requires that you replace all div element class attribute
values of Bootstrap 2 format span[number]with values that use the Bootstrap 3 format:

col-[device-size]-[number]

device-size can be xs, sm, md, or lg. mdworks for most cases. Bootstrap’s site at https://getbootstrap.c
om/docs/3.3/css/#grid explains the Bootstrap 3 grid system

Continuing with the 2 column description.xml article example, here is its updated content:

<?xml version="1.0"?>

<root available-locales="en_US" default-locale="en_US">

<dynamic-element name="content" type="text_area"

index-type="keyword" index="0">

<dynamic-content language-id="en_US">

<![CDATA[

<div class="container-fluid">

<div class="col-md-4" id="columnLeft">Out of This World</div>

<div class="col-md-8" id="columnRight">Come to the Lunar Resort and

live out your childhood dream of being an astronaut on the Moon. If

that's not enough incentive, you'll enjoy a luxurious 3 day 2 night

stay in our fabulous Lunar accommodations. Enjoy a round of Lunar

Golf on our one of a kind course. Have a blast on our Rover Racing

track. Make your reservation now. The rest of your life starts

today!</div>

</div>

]]>

</dynamic-content>

</dynamic-element>

</root>

That’s all that is needed for most basic web content articles. If you’re following along with the Lunar
Resort example, the updated XML articles are in the ZIP file’s /resources-importer/journal/articles/Basic
Web Content/ folder.

136

https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid

Note: Although Liferay Portal 6.2 used AlloyUI 2.0.x, 7.0 uses AlloyUI 3.0.x. As a result, you may need to
update your code that uses AlloyUI. Refer to AlloyUI’s examples and API docs for details.

Next, youmust update your resources importer’s sitemap file.

Updating the Sitemap

In Liferay Portal 6.2, portlet IDs were incremental numbers. In 7.0, they’re explicit class names. The new
IDs are intuitive and unique. But youmust update your sitemap.json file with the new portlet IDs.

Some of common portlet IDs are specified in the sitemap.json example in the Importing Resources with
aTheme tutorial.

You can also retrieve a portlet’s ID from the UI:

1. In the portlet’sOptionsmenu, select Look and Feel Configuration.

Figure 15.4: You can find the portlet ID in the the Look and Feel Configuration menu.

2. Select the Advanced Styling tab.

The Portlet ID value is listed in the blue box.

The Portlet ID quick reference lists all the default portlet IDs.
Next, you can learn how to update your theme’s UI to follow Lexicon design patterns.

137

http://alloyui.com/examples/
http://alloyui.com/api/

Figure 15.5: The portlet ID is listed within the blue box in the Advanced Styling tab.

Applying Lexicon Design Patterns

7.0 uses Lexicon, a web implementation of Liferay’s Lexicon Experience Language. The Lexicon Experience
Language provides styling guidelines and best practices for application UIs. While Lexicon’s CSS,HTML,
and JavaScript components enable developers to build fully-realized UIs quickly and effectively. This section
demonstrates how to apply Lexicon to a form.

For example, this is the Liferay Portal 6.2 Lunar Resort’s reservation form:

<p>

Thanks for choosing to stay at the Liferay Lunar Resort! Please fill out the

form below to book your stay. We know you have a choice in where to stay on

the

Moon... oh wait no you don't. Thanks for picking us anyways. We'll see you

soon on the Moon!

</p>

<form class="form-horizontal">

<fieldset>

<legend>Reservation Form</legend>

<div class="control-group">

<label class="control-label" for="inputName">Name</label>

<div class="controls">

<input type="text" id="inputName"

placeholder="Enter your Name here" required="required">

</div>

</div>

<div class="control-group">

<label class="control-label" for="inputEmail">Email</label>

<div class="controls">

<input type="email" id="inputEmail"

placeholder="Enter your E-Mail here" required="required">

</div>

</div>

<div class="control-group">

<div class="controls">

<button type="submit" class="btn">Submit</button>

</div>

</div>

</fieldset>

</form>

<p style="padding-bottom:25px;">

Thanks again for booking with Liferay. When you book with Liferay, you

remember your stay. Please take a moment to fill out our guestbook below.

</p>

138

https://liferay.github.io/clay/
https://lexicondesign.io/

TheHTML code above uses Bootstrap 2’s markup and CSS classes.
Lexicon extends Bootstrap 3. Here’s the Lunar Resort form updated to Lexicon:

<?xml version="1.0"?>

<root available-locales="en_US" default-locale="en_US">

<dynamic-element name="content" type="text_area"

index-type="keyword" index="0">

<dynamic-content language-id="en_US">

<![CDATA[

<p>Thanks for choosing to stay at the

Liferay Lunar Resort! Please fill out the

form below to book your stay. We know you

have a choice in where to stay on the Moon...

oh wait no you don't. Thanks for picking us

anyways. We'll see you soon on the Moon!</p>

<form role="form-horizontal">

<fieldset>

<legend>Reservation Form</legend>

<div class="form-group">

<label for="inputName">Name</label>

<input type="text" id="inputName" class="form-control"

placeholder="Enter your Name here" required="required">

</div>

<div class="form-group">

<label for="inputEmail">Email</label>

<input type="email" id="inputEmail" class="form-control"

placeholder="Enter your E-Mail here" required="required">

</div>

<div class="form-group">

<button type="submit" class="btn btn-primary">Submit

</button>

</div>

</fieldset>

</form>

<p style="padding-bottom:25px;">Thanks again for booking with Liferay. When

you book with Liferay, you remember your stay. Please take a moment to fill

out our guestbook below.</p>

]]>

</dynamic-content>

</dynamic-element>

</root>

The Lexicon updates applied to the form are as follows:

• The control-group classes were updated to form-group classes.
• The control-label classes were removed from the label elements.
• The <div class=""controls> elements were removed.
• The form-control class was added to each input element.
• To emphasize the form’s submit button, the btn-primary class was added to it.

You can apply similar Lexicon design patterns to your theme’s HTML files.
You’ve updated your theme to 7.0! You can deploy it from your theme project.
Liferay JSTheme Toolkit-based project:

gulp deploy

Plugins SDK project:

ant deploy

Now your users can continue enjoying the visual styles you’ve created in your upgraded themes.

139

Related Topics

LiferayTheme Generator
Migrating a theme to 7.0
[Upgrading to 7.0] (/docs/7-0/deploy/-/knowledge_base/d/upgrading-to-liferay-7)

15.3 Upgrading Layout Templates
Layout templates for 7.0 differ slightly from layout templates for Liferay Portal 6. The layout template’s rows
and columns are affected by Bootstrap’s new grid system syntax.

This tutorial demonstrates the following:

• How to upgrade your layout template to 7.0

Upgrading a layout template involves updating its Liferay version and updating the class syntax for its
rows and columns.

Follow these steps to upgrade your layout template:

1. Open your liferay-plugin-package.properties file and update the liferay-versions property to
7.0.0+:

liferay-versions=7.0.0+

2. Open your layout template’s .tpl file and replace row-fluidwith row, in each row’s class value.

3. Previously, column size was denoted using a class value of format span[number]. The new Bootstrap
grid system uses the format col-[device-size]-[number].

The [device-size] value must be xs, sm, md, or lg. In most cases, an md device size works well. You can
read more about the Bootstrap grid system on their site at https://getbootstrap.com/docs/3.3/css/#gri
d.

The [number] valuemust be an integer from 1 to 12. A row’swidth is divisible by twelve; so the combined
width of a row’s columnsmust equal 12.

Inside the .tpl file, replace each span-[number] class value with col-[device-size]-[number], where
[device-size] is xs, sm, md, or lg and [number] is an integeter from 1 to 12.

Here’s an example column that uses the md device size and a column that is a third (4/12) of the row’s
total width:

<div class="portlet-column portlet-column-last col-md-4" id="column-3">

As an example, here’s Liferay Portal 6 layout template 1_2_1_columns.tpl upgraded to 7.0:

<div class="columns-1-2-1" id="main-content" role="main">

<div class="portlet-layout row">

<div class="col-md-12 portlet-column portlet-column-only"

id="column-1">

$processor.processColumn("column-1",

"portlet-column-content portlet-column-content-only")

</div>

</div>

<div class="portlet-layout row">

140

https://getbootstrap.com/docs/3.3/css/#grid
https://getbootstrap.com/docs/3.3/css/#grid
https://github.com/liferay/liferay-portal/blob/Portal%206.2.x/portal-web/docroot/layouttpl/custom/1_2_1_columns.tpl

<div class="col-md-6 portlet-column portlet-column-first"

id="column-2">

$processor.processColumn("column-2",

"portlet-column-content portlet-column-content-first")

</div>

<div class="col-md-6 portlet-column portlet-column-last"

id="column-3">

$processor.processColumn("column-3",

"portlet-column-content portlet-column-content-last")

</div>

</div>

<div class="portlet-layout row">

<div class="col-md-12 portlet-column portlet-column-only"

id="column-4">

$processor.processColumn("column-4",

"portlet-column-content portlet-column-content-only")

</div>

</div>

</div>

Your layout template is ready to use in 7.0!

Related Topics

Planning Plugin Upgrades and Optimizations
Benefits of 7.0 for Liferay Portal 6 Developers
Liferay Upgrade Planner

15.4 Upgrading Frameworks and Features
Your upgrade process not only relies on portlet technology, themes, and customization plugins, but also the
frameworks your project leverages. The following frameworks and their upgrade processes are discussed in
this section:

• JNDI data source usage
• Service Builder service invocation
• Service Builder
• Velocity templates

Continue on to learn more about upgrading these frameworks.

15.5 Upgrading JNDI Data Source Usage
In Liferay DXP’s OSGi environment, youmust use the portal’s class loader to load the application server’s
JNDI classes. An OSGi bundle’s attempt to connect to a JNDI data source without using Liferay DXP’s class
loader results in a java.lang.ClassNotFoundException.

For more information on how to do this, see the Connecting to JNDI Data Sources article.

15.6 Upgrading Service Builder Service Invocation
When upgrading a portlet leveraging Service Builder, youmust first decide if you’re building your Service
Builder logic as aWAR or modularizing it.

141

Note: Service Builder portlets automatically migrated to Liferay Workspace using the Upgrade Plan-
ner or Blade CLI’s convert command automatically have its Service Builder logic converted to API and
implementation modules. This is a best practice for 7.0.

If you prefer keeping your Service Builder logic as aWAR, youmust implement a service tracker to call
services. See the Service Trackers article for more information.

If you’re optimizing your Service Builder logic to invoke Liferay services from amodule, see the Invoking
Local Services article for more information.

15.7 Upgrading Service Builder
7.0 continues to use Service Builder, so you can focus on your application’s business logic instead of its
persistence details. It still generates model classes, local and remote services, and persistence.

Upgrading most Service Builder portlets involves these steps:

1. Adapt the code to 7.0’s API
2. Resolve dependencies
3. Build the services

Start by adapting the code.

Step 1: Adapt the Code to 7.0's API

Adapt the portlet to 7.0’s API using the Upgrade Planner. When running the planner’s Fix Upgrade Problems
step,many of the existing issues are autocorrected. For remaining issues, the planner identifies code affected
by the new API and ways to adapt it.

For example, consider an example portlet with the following compilation error:

/html/guestbook/view.jsp(58,1) PWC6131: Attribute total invalid for tag search-container-results according to TLD

The view.jsp file specifies a tag library attribute total that doesn’t exist in 7.0’s liferay-ui tag library.
Notice the second attribute total.

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId,

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>"

total="<%=EntryLocalServiceUtil.getEntriesCount(scopeGroupId,

guestbookId)%>" />

Remove the total attribute assignment to make the tag like this:

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId,

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>" />

Resolve these error types and others until your code is adapted to the new API.

Step 2: Resolve Dependencies

To adapt your app’s dependencies, refer to the Resolving a Plugin’s Dependencies tutorial. Once your
dependencies are upgraded, rebuild your services!

142

Step 3: Build the Services

To rebuild your portlet’s services, see the Running Service Builder article.
An example change where upgrading legacy Service Builder code can produce differing results is ex-

plained below.
A Liferay Portal 6.2 portlet’s service.xml file specifies exception class names in exception elements like

this:

<service-builder package-path="com.liferay.docs.guestbook">

...

<exceptions>

<exception>GuestbookName</exception>

<exception>EntryName</exception>

<exception>EntryMessage</exception>

<exception>EntryEmail</exception>

</exceptions>

</service-builder>

In Liferay Portal 6.2, Service Builder generates exception classes to the path attribute package-path

specifies. In 7.0, Service Builder generates them to [package-path]/exception.
Old path:

[package-path]

New path:

[package-path]/exception

For example, the example portlet’s package path is com.liferay.docs.guestbook. Its exception class for
exception element GuestbookName is generated to docroot/WEB-INF/service/com/liferay/docs/guestbook/exception.
Classes that use the exceptionmust import com.liferay.docs.guestbook.exception.GuestbookNameException.
If this upgrade is required in your Service Builder project, youmust update the references to your portlet’s
exception classes.

Once your Service Builder portlet is upgraded, deploy it.

Note: Service Builder portlets automatically migrated to LiferayWorkspace using the Upgrade Planner
or Blade CLI’s convert command automatically has its Service Builder logic converted to API and implemen-
tation modules. This is a best practice for 7.0.

The portlet is now available on Liferay DXP. Congratulations on upgrading a portlet that uses Service
Builder!

15.8 Migrating Off of Velocity Templates

Velocity templates were deprecated in Liferay Portal 7.0 and are now removed in favor of FreeMarker tem-
plates in 7.0. Below are the key reasons for this move:

• FreeMarker is developed andmaintained regularly,while Velocity is no longer actively being developed.

• FreeMarker is faster and supports more sophisticated macros.

• FreeMarker supports using taglibs directly rather than requiring a method to represent them. You
can pass body content to them, parameters, etc.

143

Although Velocity templates still work in 7.0, we highly recommendmigrating to FreeMarker templates.
For more information on this topic, see the Upgrading Layout Templates section.

144

Chapter 16

Upgrading Portlet Plugins

All portlet plugin types developed for Liferay Portal 6 can be upgraded and deployed to 7.0.
Upgrading most portlets involves these steps:

1. Adapt the code to 7.0’s API
2. Resolve dependencies

Liferay’s Upgrade Planner helps you adapt your code to 7.0’s API. And resolving a portlet’s dependencies
is straightforward. In most cases, after you finish the above steps, you can deploy your portlet to Liferay
DXP.

The portlet upgrade tutorials show you how to upgrade the following common portlets:

• GenericPortlet
• Servlet-based portlet
• Liferay MVC Portlet
• Portlet that uses Service Builder
• Liferay JSF Portlet
• Struts Portlet
• SpringMVC Portlet

The tutorials provide example portlet source code from before and after upgrading the example portlet.
Each tutorial’s steps were applied to the example portlet. You can refer to example code as you upgrade your
portlet.

Let’s get your portlet running on 7.0!

16.1 Upgrading a GenericPortlet

It’s common to create portlets that extend javax.portlet.GenericPortlet. After all, GenericPortlet provides
a default javax.portlet.Portlet interface implementation. Upgrading a GenericPortlet is straightforward
and takes only two steps:

1. Adapt the portlet to 7.0’s API using the Upgrade Planner.

2. Resolve its dependencies.

145

This tutorial demonstrates upgrading a Liferay Plugins SDK 6.2 sample portlet called SampleDAO (project
sample-dao-portlet).

Figure 16.1: The sample-dao-portlet lets users manage food items.

The sample portlet lets users view, add, edit, and delete food items from a listing. For reference, you can
download the pre-upgraded portlet code and the upgraded code.

The sample portlet has the following characteristics:

• Extends GenericPortlet
• View layer implemented by JSPs
• Persists models using the Data Access Object (DAO) design pattern
• Specifies database connection information in a properties file
• Manages dependencies via Ant/Ivy
• Developed in a Liferay Plugins SDK 6.2

The portlet uses a traditional Plugins SDK portlet project folder structure.
Upgrading most GenericPortlet portlets involves these steps:

1. Adapt the code to 7.0’s API
2. Resolve dependencies

Since the sample portlet’s dependencies haven’t changed, upgrading it involves only adapting the code to
7.0’s API.The Upgrade Planner facilitates updating the code and resolving compilation issues quickly.

Note: Refer to tutorial Resolving a Plugin’s Dependencies if you need to adapt to dependency changes.

You deploy a GenericPortlet to 7.0 in the same way you deploy to Portal 6.x. When the pluginWAR file
lands in the [Liferay_Home]/deploy folder, Liferay DXP’s Plugin Compatibility Layer converts theWAR to a
Web Application Bundle (WAB) and installs the portlet as aWAB to Liferay DXP’s OSGi runtime.

On deploying an upgraded portlet, the server prints messages that indicate the following portlet status:

• WAR processing
• WAB startup
• Availability to users

Deploying the sample portlet produces messages like these:

146

https://portal.liferay.dev/documents/113763090/114000186/sample-dao-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000186/sample-json-portlet-post-7-0-upgrade.zip

Figure 16.2: The sample-dao-portlet project uses a typical Plugins SDK portlet folder structure

147

20:57:02,571 INFO ... [com.liferay.portal.kernel.deploy.auto.AutoDeployScanner][AutoDeployDir:252] Processing sample-dao-portlet-

7.0.0.1.war

...

20:57:12,639 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][BundleStartStopLogger:35] STARTED sample-

dao-portlet_7.0.0.1 [996]

...

20:57:13,480 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][PortletHotDeployListener:313] 1 portlet for sample-

dao-portlet is available for use

The portlet is now available on Liferay DXP.
You’ve learned how to upgrade and deploy a portlet that extends GenericPortlet. You adapt the code,

resolve dependencies, and deploy the portlet as you always have. It’s just that easy!
Related Topics
Migrating Plugins SDK Projects toWorkspace and Gradle
Using Dependency Management Tools
Using theWAB Generator
Migrating Data Upgrade Processes

16.2 Upgrading a Servlet-based Portlet

Servlet-based portlets have little overhead and are easy to upgrade. This tutorial shows you how to upgrade
them and refers to code from before and after upgrading a sample servlet-based portlet called Sample JSON
(project sample-json-portlet). The portlet shows a Clickme link. When users click the link, the Liferay logo
appears.

Figure 16.3: The Sample JSON portlet displays text stating Click me that you can click to initiate an action.

To get the most from this tutorial, you can download and refer to the original sample portlet source code
and the upgraded source code.

Here are the sample portlet’s characteristics:

• Processes requests using a servlet that extends javax.servlet.HttpServlet
• View layer implemented by JSPs
• Processes data using JSON objects
• Relies onmanual dependency management
• Depends on third-party libraries that Liferay Portal 6.2 provides
• Embeds additional dependencies in its WEB-INF/lib folder
• Developed in a Liferay Plugins SDK 6.2

Follow these steps to upgrade a servlet-based portlet:

1. Adapt the code to 7.0’s API

148

https://portal.liferay.dev/documents/113763090/114000186/sample-json-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000186/sample-json-portlet-post-7-0-upgrade.zip

2. Resolve dependencies

The Upgrade Planner makes adapting a portlet’s code straightforward, and it automates much of the
process.

The sample portlet relied on Liferay Portal to provide several dependency JAR files. Here’s the portal-
dependency-jars property from the portlet’s liferay-plugin-package.properties file:

portal-dependency-jars=\

dom4j.jar,\

jabsorb.jar,\

json-java.jar

Instructions for using packages that Liferay DXP exports are found here. 7.0’s core system exports the
package this portlet needs from each of the above dependency JARs.

The upgraded sample portlet continues to specify these JARs in the portal-dependency-jars property.
They’re made available to the portlet at compile time. But to avoid packages from compile time conflicting
with the core system’s exported packages, the Liferay Plugins SDK 7.0 excludes the JARs from the plugin
WAR.

Next, deploy your portlet as you always have.
The server prints messages that indicate the following portlet status:

• WAR processing
• WAB startup
• Availability to users

Note: On deploying the sample upgraded portlet, theWAB processor warns that the portal-dependency-
jars property is deprecated.

21:40:25,347 WARN [fileinstall-...][WabProcessor:564] The property "portal-dependency-jars" is deprecated. Specified JARs may not be included in the class path.

For running on 7.0, it’s fine to specify theportal-dependency-jars property per the instructions for using
packages that @portal@ exports. After upgrading, consider using a dependency management tool in your
project. This helps prepare it for future Liferay DXP versions and facilitates managing dependencies.

The portlet is installed to Liferay DXP’s OSGi runtime and is available to users.

Figure 16.4: Clicking on the sample portlet’s Click me link shows the Liferay logo.

Congratulations! You’ve upgraded and deployed your servlet-based portlet to 7.0.
Related Topics
Migrating Plugins SDK Projects toWorkspace and Gradle

149

Using Dependency Management Tools
Using theWAB Generator
Migrating Data Upgrade Processes

16.3 Upgrading a Liferay MVC Portlet

Liferay’s MVC Portlet framework is used extensively in Liferay’s portlets and is a popular choice for Liferay
Portal 6.2portlet developers. The MVCPortlet class is a lightweight extensionof javax.portlet.GenericPortlet.
Its initmethod saves you fromwriting a lot of boilerplate code. MVC portlets can upgraded to 7.0 without a
hitch.

Upgrading a Liferay MVC Portlet involves these steps:

1. Adapt the code to 7.0’s API

2. Resolve dependencies

Liferay’s Upgrade Planner identifies code affected by the new API, explains the API changes and how to
adapt to them, and in many cases, provides options for adapting the code automatically.

After upgrading your portlet, deploy it the same way you always do.
The server prints messages that indicate the following portlet status:

• WAR processing
• WAB startup
• Availability to users

You’ve upgraded and deployed your Liferay MVC Portlet on your 7.0 instance. Have fun showing off your
upgraded portlet!

Related Topics
Migrating Plugins SDK Projects toWorkspace and Gradle
Using Dependency Management Tools
Using theWAB Generator
Migrating Data Upgrade Processes

16.4 Upgrading Portlets that use Service Builder

7.0 continues to use Service Builder, so you can focus on your application’s business logic instead of its
persistence details. It still generates model classes, local and remote services, and persistence.

This tutorial demonstrates upgrading a Liferay Plugins SDK 6.2 portlet called Guestbook portlet (project
guestbook-portlet). It’s from theWriting aData-DrivenApplication section of the Liferay Portal 6.2 Learning
PathWriting a Liferay MVC Application.

To get the most from this tutorial, you can download and refer to the original portlet source code and the
upgraded source code.

The Guestbook portlet has the following characteristics:

• Extends MVCPortlet
• Separate Model, View, and Controller layers
• Persistence by Hibernate under Service Builder
• View layer implemented by JSPs

150

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html
https://portal.liferay.dev/documents/113763090/114000186/guestbook-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000186/guestbook-portlet-post-7-0-upgrade.zip

Figure 16.5: The Guestbook portlet to model guestbooks and guestbook entries.

• Relies onmanual dependency management
• Developed in a Liferay Plugins SDK 6.2

Upgrading most Service Builder Portlets involves these steps:

1. Adapt the code to 7.0’s API
2. Resolve dependencies
3. Build the services

Start by adapting the code.

1. Adapt the code to 7.0's API

Use the Upgrade Planner to update the code and resolve compilation issues quickly. Then fix any remaining
compilation errors manually.

The Guestbook portlet has the following compilation error:

/html/guestbook/view.jsp(58,1) PWC6131: Attribute total invalid for tag search-container-results according to TLD

The view.jsp file specifies a tag library attribute total that doesn’t exist in 7.0’s liferay-ui tag library.
Notice the second attribute total.

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId,

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>"

total="<%=EntryLocalServiceUtil.getEntriesCount(scopeGroupId,

guestbookId)%>" />

Remove the total attribute assignment to make the tag like this:

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId,

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>" />

That’s the Guestbook portlet’s only compilation error you need to fixmanually.

151

2. Resolve dependencies

Since the Guestbook portlet’s dependencies haven’t changed, there aren’t any dependencies to resolve.
If you need to adapt a portlet’s dependencies, refer to tutorial Resolving a Plugin’s Dependencies.

3. Build the services

Build the services as you did in Liferay Portal 6.2.
The Guestbook portlet’s service.xml file specifies exception class names in exception elements.

<service-builder package-path="com.liferay.docs.guestbook">

...

<exceptions>

<exception>GuestbookName</exception>

<exception>EntryName</exception>

<exception>EntryMessage</exception>

<exception>EntryEmail</exception>

</exceptions>

</service-builder>

In Liferay Portal 6.2, Service Builder generates exception classes to the path attribute package-path

specifies. In 7.0, Service Builder generates them to [package-path]/exception.
Old path:

[package-path]

New path:

[package-path]/exception

For example, the Guestbook portlet’s package path is com.liferay.docs.guestbook. Its exception class for
exception element GuestbookName is generated to docroot/WEB-INF/service/com/liferay/docs/guestbook/exception.
Classes that use the exceptionmust import com.liferay.docs.guestbook.exception.GuestbookNameException.

Update references to your portlet’s exception classes.
Deploy the portlet as you normally would. The server prints messages indicating the following portlet

status:

• WAR processing
• WAB startup
• Availability to users

Deploying the Guestbook portlet produces these messages:

19:36:27,591 INFO [RMI TCP Connection(27)-192.168.1.110][BaseAutoDeployListener:42] Copying portlets for C:\portals\liferay-ce-portal-

7.0-ga3-upgrading-portlets\tomcat-8.0.32\temp\20170710193627556LFQNRFGO\guestbook-portlet-7.0.0.1.war

19:36:27,973 INFO [RMI TCP Connection(27)-192.168.1.110][BaseDeployer:873] Deploying guestbook-portlet-7.0.0.1.war

19:36:29,449 INFO [RMI TCP Connection(27)-192.168.1.110][BaseAutoDeployListener:50] Portlets for C:\portals\liferay-ce-portal-7.0-ga3-

upgrading-portlets\tomcat-8.0.32\temp\20170710193627556LFQNRFGO\guestbook-portlet-7.0.0.1.war copied successfully

19:36:31,231 INFO [pool-23-thread-2][BundleStartStopLogger:35] STARTED guestbook-portlet_7.0.0.1 [496]

19:36:31,459 INFO [pool-23-thread-2][HotDeployImpl:226] Deploying guestbook-portlet from queue

19:36:31,459 INFO [pool-23-thread-2][PluginPackageUtil:1006] Reading plugin package for guestbook-portlet

10-Jul-2017 19:36:31.470 INFO [pool-23-thread-2] org.apache.catalina.core.ApplicationContext.log Initializing Spring root WebApplicationContext

19:36:31,934 INFO [pool-23-thread-2][PortletHotDeployListener:202] Registering portlets for guestbook-portlet

19:36:32,008 INFO [pool-23-thread-2][PortletHotDeployListener:331] 1 portlet for guestbook-portlet is available for use

The portlet is now available on Liferay DXP.
Congratulations on upgrading and deploying a portlet that uses Service Builder.

152

Related Topics

Migrating Plugins SDK Projects toWorkspace and Gradle
Using Dependency Management Tools
Using theWAB Generator
Migrating Data Upgrade Processes

16.5 Upgrading a Liferay JSF Portlet
Liferay JSF portlets are easy to upgrade and require few changes. They interfacewith the Liferay Faces project,
which encapsulates Liferay DXP’s Java API and JavaScript code. Because of this, upgrading JSF portlets to
7.0 requires only updating dependencies.

There are two ways to find a JSF portlet’s dependencies for 7.0:

• The http://liferayfaces.org/ home page lets you look up the dependencies (Gradle or Maven) by Liferay
DXP version, JSF version, and component suites.

• The Liferay Faces Version Scheme article’s tables list artifacts by Liferay DXP version, JSF version,
portlet version, and AlloyUI andMetal component suite version.

In this tutorial, you’ll see how easy it is to upgrade a Liferay Portal 6.2 JSF portlet (JSF 2.2) to 7.0 by
upgrading the sample JSF Applicant portlet. This portlet provides a job application users can submit.

Figure 16.6: The JSF Applicant portlet provides a job application for users to submit.

For reference, you can download the pre-upgraded portlet code and the upgrade portlet code. This
sample project uses Maven.

153

http://liferayfaces.org/

Follow these steps to upgrade your Liferay JSF portlet.

1. Open your Liferay JSF portlet’s build file (e.g., pom.xml, build.gradle) to where the dependencies are
configured.

2. Navigate to the http://liferayfaces.org/ site and generate a dependency list by choosing the environ-
ment to which you want to upgrade your portlet.

Figure 16.7: The Liferay Faces site gives you options to generate dependencies for many environments.

154

http://liferayfaces.org/

3. Compare the generated dependencies with your portlet’s dependencies and make any necessary
updates. For the sample JSF Applicant portlet, only one Liferay Faces dependency requires updating:

<dependency>

<groupId>com.liferay.faces</groupId>

<artifactId>com.liferay.faces.bridge.ext</artifactId>

<version>3.0.0</version>

</dependency>

The Liferay Faces Bridge EXT dependency must be updated to version 5.0.0 for 7.0. The updated
dependency should look like this:

<dependency>

<groupId>com.liferay.faces</groupId>

<artifactId>com.liferay.faces.bridge.ext</artifactId>

<version>5.0.0</version>

</dependency>

That’s it! Your Liferay JSF portlet is upgraded and deployable to 7.0!
You deploy a Liferay JSF portlet to 7.0 the same way you deploy to Portal 6.x. When the pluginWAR file

lands in the [Liferay_Home]/deploy folder, Liferay DXP’s Plugin Compatibility Layer converts theWAR to a
Web Application Bundle (WAB) and installs the portlet as aWAB to Liferay DXP’s OSGi runtime.

On deploying an upgraded portlet, the server prints messages that indicate the following portlet status:

• WAR processing
• WAB startup
• Availability to users

Deploying a Liferay JSF portlet produces messages like these:

13:41:43,690 INFO ... [com.liferay.portal.kernel.deploy.auto.AutoDeployScanner][AutoDeployDir:252] Processing com.liferay.faces.demo.jsf.applicant.portlet-

1.0.war

...

13:42:03,522 INFO [fileinstall-C:/liferay-ce-portal-7.0-ga4/osgi/war][BundleStartStopLogger:35] STARTED com.liferay.faces.demo.jsf.applicant.portlet-

1.0_4.1.0 [503]

...

13:42:05,169 INFO [fileinstall-C:/liferay-ce-portal-7.0-ga4/osgi/war][PortletHotDeployListener:293] 1 portlet for com.liferay.faces.demo.jsf.applicant.portlet-

1.0 is available for use

After the portlet deployment is complete, it’s available on Liferay DXP.
You’ve learned how to upgrade and deploy a Liferay JSF portlet. You resolved dependencies and deployed

the portlet as you always have. It’s just that easy!

16.6 Upgrading a Struts Portlet

Struts is a stable, widely adopted framework that implements the Model View Controller (MVC) design
pattern. If you have a Struts portlet for Liferay Portal 6.2, you can upgrade it to 7.0.

Upgrading Struts portlets to 7.0 is easier than youmight think. Liferay DXP lets you continue working
with Struts portlets as Java EE web applications. On deploying a Struts portlet Web Application aRchive
(WAR), Liferay DXP’sWeb Application Bundle (WAB) Generator creates an OSGi module (bundle) for the
portlet and installs it to Liferay’s OSGi framework. The Struts portlet behaves just as it did in 6.2 on your 7.0
site.

155

Figure 16.8: The Sample Struts portlet’s charts compare fictitious soft drink survey results.

This tutorial demonstrates how to upgrade a portlet that uses the Struts 1 Framework and refers to
Liferay’s Sample Struts portlet (Sample Struts) as an example. Sample Struts uses several Struts features to
show page navigation, Action and ActionForm Controller classes, exceptions, andmore.

Here are the sample portlet’s characteristics:

• Model class (Book)
• View comprised of JSPs that leverage Struts tag libraries
• Action classes (Controllers) for handling requests and responses
• ActionForm classes for interacting with models and forwarding requests to Actions
• Visual component reuse with Tiles
• Internationalization using ActionMessages and resource bundles
• Form validation using the Validator Framework
• Error management through Action Errors

You can follow this tutorial to upgrade your Struts portlet. Along the way, you can examine the Sample
Struts portlet source code from before and after its upgrade:

• Liferay Portal 6.2 Sample Struts portlet code

• 7.0 Sample Struts portlet code

Here’s the Sample Struts portlet’s folder structure:

• sample-struts-portlet

– docroot/

* html/portlet/sample_struts_portlet/ → JSPs

* WEB-INF/

· lib/ → Required third-party libraries unavailable in the Liferay DXP system

156

https://portal.liferay.dev/documents/113763090/114000186/sample-struts-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000186/sample-struts-portlet-post-7-0-upgrade.zip

· src/

· com/liferay/samplestruts/model/ →Model classes
· com/liferay/samplestruts/servlet/ → Test servlet and servlet context listener
· com/liferay/samplestruts/struts/

· action/ → Action classes that return View pages to the client
· form/ → ActionForm classes for model interaction
· render/ → Action classes that present additional pages and handle input
· SampleException.java → Exception class
· content/test/ → Resource bundles
· META-INF/ → Javadoc
· tld/ → Tag library definitions
· liferay-display.xml → Sets the application category
· liferay-plugin-package.properties → Sets metadata and portal dependencies
· liferay-portlet.xml →Maps descriptive role names to roles
· liferay-releng.properties → (internal) Release properties
· portlet.xml → Defines the portlet and its initialization parameters and security roles
· struts-config.xml → Struts configuration
· tiles-defs.xml → Struts Tile definitions
· validation.xml → Defines form inputs for validation
· validation-rules.xml → Struts validation rules
· web.xml →Web application descriptor

– build.xml → Apache Ant build file

Upgrading a Struts portlet involves these steps:

1. Adapt the code to Liferay 7.0’s API

2. Resolve dependencies

Adapting the code to Liferay 7.0's API

Liferay’s Upgrade Planner identifies code affected by the new API, explains the API changes and how to
adapt to them, and in many cases, provides options for adapting the code automatically.

Adapting the Sample Struts portlet’s code is straightforward. Resolving its dependencies is more in-
volved.

Resolving dependencies

TheLiferay Portal 6.2 Sample Struts portlet depends on Liferay Portal to provide required third-party libraries
and tag library definitions (TLDs). The portal-dependency-jars and portal-dependency-tlds properties in
the portlet’s liferay-plugin-package.properties specifies them:

portal-dependency-jars=\

antlr2.jar,\

commons-beanutils.jar,\

commons-collections.jar,\

commons-digester.jar,\

commons-fileupload.jar,\

commons-io.jar,\

commons-lang.jar,\

commons-validator.jar,\

jcommon.jar,\

157

jfreechart.jar,\

oro.jar,\

portals-bridges.jar,\

struts.jar

portal-dependency-tlds=\

struts-bean.tld,\

struts-bean-el.tld,\

struts-html.tld,\

struts-html-el.tld,\

struts-logic.tld,\

struts-logic-el.tld,\

struts-nested.tld,\

struts-tiles.tld,\

struts-tiles-el.tld

Resolving the tag libraries is easy.

Resolving Tag Library Definitions

7.0 continues to provide many of the same TLDs Liferay Portal 6.2 provided.
If the 7.0 application’s WEB-INF/tld folder contains a TLD you need, add it to your portlet’s portal-

dependency-tlds property in the liferay-plugin-package.properties file. If the folder doesn’t contain the
TLD, find the TLD on the web, download it, and add it to your portlet’s WEB-INF/tld folder.

Resolving Third-Party Libraries

Third-party libraries listed as portal-dependency-jars in a 6.x portlet’s liferay-plugin-package.properties
filemight not be provided by 7.0. Providing fewer libraries streamlines LiferayDXP. LiferayDXPhas replaced
some of its libraries with newer ones.

7.0 exposes (exports) Java packages instead of sharing JAR content wholesale. If you need packages
Liferay DXP doesn’t export, you can find and download the artifact (JAR) that provides them and add it to
your portlet’s docroot/WEB-INF/lib folder.

Here are steps for resolving the Sample Struts portlet’s Java package dependencies:

1. Liferay DXP doesn’t export Antlr packages. Replace the portlet’s JAR file antlr2.jarwith newer JAR
antlr.jar fromMaven Central.

2. Liferay DXP doesn’t export packages from portals-bridges.jar. Replace the portlet’s JAR file portals-
bridges.jarwith these JARs fromMaven Central:

• portals-bridges-common.jar

• portals-bridges-struts.jar

3. Liferay DXP doesn’t export packages from struts.jar. Replace the portlet’s JAR file struts.jarwith
the following ones fromMaven Central:

• struts-taglib.jar

• struts-tiles.jar

4. The Import-Packagesheading in the com.liferay.portal.bootstrapmodule’s system.packages.extra.bnd
file lists the following JAR files Sample Struts requires. Since the bootstrap module exports pack-
ages from these JARs, add their names to the portal-dependency-jars property in the portlet’s
liferay-plugin-package.properties file. :

158

https://search.maven.org/
https://search.maven.org/
https://search.maven.org/
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/core/portal-bootstrap/system.packages.extra.bnd
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/core/portal-bootstrap/system.packages.extra.bnd

• commons-beanutils.jar

• commons-collections.jar

• commons-lang.jar

5. Add all the rest of the JARs the Sample Struts portlet depends on to the portlet’s WEB-INF/lib folder.

The following table summarizes the sample portlet’s Java dependency resolution.
Sample Struts Portlet’s Dependency Resolution:
JAR | System exports the packages theportletneeds from this JAR? | Resolution | antlr.jar | No | add to

WEB-INF/lib commons-beanutils.jar | Yes | List in portal-dependency-jars | commons-collections.jar | Yes |
List in portal-dependency-jars | commons-digester.jar | No | add to WEB-INF/lib | commons-fileupload.jar |
No | add to WEB-INF/lib | commons-io.jar | No | add to WEB-INF/lib | commons-lang.jar | Yes | List in portal-

dependency-jars | commons-validator.jar | No | Add to WEB-INF/lib | jcommon.jar | No | Add to WEB-INF/lib |
jfreechart.jar | No | Add to WEB-INF/lib | oro.jar | No | Add to WEB-INF/lib | portals-bridges-common.jar |
No | Add to WEB-INF/lib | portals-bridges-struts.jar | No | Add to WEB-INF/lib | struts-core.jar | No | Add
to WEB-INF/lib | struts-extras.jar | No | Add to WEB-INF/lib | struts-taglib.jar | No | Add to WEB-INF/lib
| struts-tiles.jar | No | Add to WEB-INF/lib |

Note: The official Sample Struts portlet for 7.0 uses Apache Ant/Ivy to manage dependencies.

For more details on resolving dependencies, see the tutorial Resolving a Plugin’s Dependencies.
You’ve resolved the Sample Struts portlet’s dependencies. It’s ready to deploy.

Important: Setting Portal property jsp.page.context.force.get.attribute (described in the JSP section)
to true (default) forces calls to com.liferay.taglib.servlet. PageContextWrapper#findAttribute(String)

to use getAttribute(String). Although this improves performance by avoiding unnecessary fall-backs, it
can cause attribute lookup problems in Struts portlets. To use Struts portlets in your sites, makes sure
to set the Portal property jsp.page.context.force.get.attribute to false in a file [Liferay-Home]/portal-
ext.properties.

jsp.page.context.force.get.attribute=false

Deploy the Struts portlet as you normally would. The server prints messages indicating the following
portlet status:

• WAR processing
• WAB startup
• Availability to users

Deploying the Sample Struts portlet produces these messages:

00:15:20,344 INFO [com.liferay.portal.kernel.deploy.auto.AutoDeployScanner][AutoDeployDir:252] Processing sample-struts-portlet-

7.0.0.1.war

00:15:26,871 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][BaseAutoDeployListener:42] Copying portlets for C:\portals\liferay-

dxp-digital-enterprise-7.0-sp1\tomcat-8.0.32\temp\20170727241526847GURDCOLU\sample-struts-portlet-7.0.0.1.war

00:15:27,282 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][BaseDeployer:863] Deploying sample-struts-

portlet-7.0.0.1.war

00:15:29,627 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][BaseAutoDeployListener:50] Portlets for C:\portals\liferay-

dxp-digital-enterprise-7.0-sp1\tomcat-8.0.32\temp\20170727241526847GURDCOLU\sample-struts-portlet-7.0.0.1.war copied successfully

00:15:29,644 WARN [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][WabProcessor:564] The property "portal-

dependency-jars" is deprecated. Specified JARs may not be included in the class path.

159

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/core/portal-bootstrap/system.packages.extra.bnd
https://github.com/liferay/liferay-plugins/tree/master/portlets/sample-struts-portlet
@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#JSP

00:15:33,123 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][BundleStartStopLogger:35] STARTED sample-

struts-portlet_7.0.0.1 [1230]

00:15:34,063 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][HotDeployImpl:226] Deploying sample-struts-

portlet from queue

00:15:34,065 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][PluginPackageUtil:1007] Reading plugin package for sample-

struts-portlet

00:15:34,106 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][PortletHotDeployListener:201] Registering portlets for sample-

struts-portlet

00:15:34,424 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][PortletHotDeployListener:313] 1 portlet for sample-

struts-portlet is available for use

The Struts portlet is available on your Liferay DXP instance.
Congratulations on upgrading your Struts portlet to 7.0!

Related Topics

Using theWAB Generator
Using Dependency Management Tools

16.7 Upgrading a Spring MVC portlet
The Spring Portlet MVC framework facilitates injecting dependencies and implementing theModel View
Controller pattern in portlets. If you use this framework in a portlet for Liferay Portal 6.x, you can upgrade it
to 7.0.

This tutorial demonstrates upgrading a SpringMVC portlet called My SpringMVC (project my-spring-
mvc-portlet). It’s a bare-bones portlet created from the Plugins SDK’s spring_mvc template.

Figure 16.9: My Spring MVC portlet shows its name and Liferay DXP’s information.

To follow along, download and refer to the original source code and the upgraded source code.
The figure below shows the my-spring-mvc-portlet project.
These files have Spring-related content:

• view.jsp → Shows the portlet’s name and Liferay DXP’s release information.
• my-spring-mvc-portlet.xml → Liferay DXP uses this context file for the portlet.
• portlet-applications-context.xml → Spring’s SpringContextLoaderListener class uses this context file.
• MySpringMVCPortletviewController →Maps VIEW requests to the view.jsp and assigns Liferay DXP re-
lease information to a model attribute.

• portlet.xml → References context configuration file my-spring-mvc-portlet.xml and specifies a dis-
patcher for registered portlet request handlers.

• web.xml → References context configuration file portlet-application-context.xml and specifies
a ViewRendererServlet to convert portlet requests and responses to HTTP servlet requests and
responses.

Here are the SpringMVC portlet upgrade steps:

160

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/portlet.html
https://portal.liferay.dev/documents/113763090/114000186/my-spring-mvc-portlet-pre-7-0-upgrade.zip
https://portal.liferay.dev/documents/113763090/114000186/my-spring-mvc-portlet-post-7-0-upgrade.zip

Figure 16.10: The my-spring-mvc-portlet project has traditional Liferay plugin files, Spring Portlet MVC application contexts (in spring-context/), and a controller class
MySpringMVCPortletviewController.

1. Adapt the code to Liferay 7.0’s API

2. Resolve dependencies

Adapt the code to Liferay 7.0's API

TheUpgrade Planner facilitates updating the code and resolving compilation issues quickly.
The Upgrade Planner detects if the value of the liferay-versions property in your plugin’s liferay-

plugin-package.properties file needs updating and it provides an option to fix it automatically. This is the
only code adaptation required by my-spring-mvc-portlet.

Resolve Dependencies

In LiferayPortal 6.2, my-spring-mvc-portlet leveragedPortal’s JARs by specifying them in the liferay-plugin-
package.properties file’s portal-dependency-jars property. Since the property is deprecated in 7.0, you
should acquire dependencies using a dependency management framework, such as Gradle, Maven, or
Apache Ant/Ivy.

Converting the sample portlet plugin from a traditional plugin to a LiferayWorkspace web application
facilitated resolving its dependencies.

Here’s the updated my-spring-mvc-portlet’s build.gradle file:

dependencies {

compileOnly group: 'aopalliance', name: 'aopalliance', version: '1.0'

compileOnly group: 'commons-logging', name: 'commons-logging', version: '1.2'

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compile group: 'org.jboss.arquillian.junit', name: 'arquillian-junit-container', version: '1.1.3.Final'

compile group: 'org.jboss.arquillian.container', name: 'arquillian-tomcat-remote-7', version: '1.0.0.CR6'

compile group: 'com.liferay', name: 'com.liferay.ant.arquillian', version: '1.0.0-SNAPSHOT'

161

compile group: 'org.springframework', name: 'spring-aop', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-beans', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-context', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-core', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-expression', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-web', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-webmvc', version: '4.1.9.RELEASE'

compile group: 'org.springframework', name: 'spring-webmvc-portlet', version: '4.1.9.RELEASE'

}

Some of my-spring-mvc-portlet’s dependency artifacts have new names.

Old name New name

spring-web-portlet spring-webmvc-portlet

spring-web-servlet spring-webmvc

Maven Central provides artifact dependency information.

Note: If the Spring Framework version you’re using differs from the version Liferay DXP uses, you must
name your Spring Framework JARs differently from Liferay DXP’s Spring Framework JARs. If you don’t
rename your JARs, Liferay DXP assumes you’re using its Spring Framework JARs and excludes yours from the
generatedWAB (Web Application Bundle). Portal property module.framework.web.generator.excluded.paths
lists Liferay DXP’s Spring Framework JARs. Understanding Excluded JARs explains how to detect the Spring
Framework version Liferay DXP uses.

Note: If a dependency is an OSGi module JAR and Liferay DXP already exports your plugin’s required
packages, exclude the JAR from your plugin’s WAR file. This prevents your plugin from exporting the same
package(s) that Liferay is already exporting. This prevents class loader collisions. To exclude a JAR from
deployment, add its name to the your project’s liferay-plugin-package.properties file’s deploy-excludes
property.

deploy-excludes=\

⁎⁎/WEB-INF/lib/module-a.jar,\

⁎⁎/WEB-INF/lib/module-b.jar

Since my-spring-mvc-portlet’s dependencies aren’t OSGi modules, no JARs must be excluded.

To import class packages referenced by your portlet’s descriptor files, add the packages to an Import-

Package header in the liferay-plugin-package.properties file. See Packaging a Spring MVC Portlet for
details.

If you depend on a package from Java’s rt.jar other than its java.* packages, override portal property
org.osgi.framework.bootdelegation and add it to the property’s list. Go here for details.

Note: Spring MVC portlets whose embedded JARs contain properties files (e.g., spring.handlers,
spring.schemas, spring.tooling) might be affected by issue LPS-75212. The last JAR that has properties files
is the only JAR whose properties are added to the resultingWAB’s classpath. Properties in other JARs aren’t
added.

Packaging a SpringMVC Portlet explains how to add all the embedded JAR properties.

The portlet is ready to deploy. Deploy it as you always have.

162

https://search.maven.org/
https://docs.liferay.com/ce/portal/7.0-latest/propertiesdoc/portal.properties.html#Module%20Framework
@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#Module%20Framework
@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://issues.liferay.com/browse/LPS-75212

Liferay DXP’s WAB Generator converts the portlet WAR to aWeb Application Bundle (WAB) and installs
theWAB to Liferay’s OSGi Runtime Framework.

21:12:23,775 INFO [com.liferay.portal.kernel.deploy.auto.AutoDeployScanner][AutoDeployDir:252] Processing my-spring-mvc-portlet-

7.0.0.1.war

...

21:12:36,159 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][PluginPackageUtil:1007] Reading plugin package for my-

spring-mvc-portlet

07-Aug-2017 21:12:36.170 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war] org.apache.catalina.core.ApplicationContext.log Initializing Spring root WebApplicationContext

07-Aug-2017 21:12:36.181 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war] org.apache.catalina.core.ApplicationContext.log Initializing Spring root WebApplicationContext

21:12:36,365 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][PortletHotDeployListener:201] Registering portlets for my-

spring-mvc-portlet

21:12:36,707 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][PortletHotDeployListener:313] 1 portlet for my-

spring-mvc-portlet is available for use

21:12:36,868 INFO [fileinstall-C:/portals/liferay-dxp-digital-enterprise-7.0-sp1/osgi/war][BundleStartStopLogger:35] STARTED my-

spring-mvc-portlet_7.0.0.1 [1309]

You’ve upgraded a SpringMVC portlet to 7.0. Way to go!

Related Topics

SpringMVC
Migrating Plugins SDK Projects toWorkspace and Gradle
Using Dependency Management Tools
Using theWAB Generator

16.8 Upgrading Web Plugins

Web plugins are regular Java EE webmodules designed to work with Liferay DXP.These plugins were stored
in the webs folder of the legacy Plugins SDK.

Upgrading a Liferay web plugin involves these steps:

1. Adapt the plugin to 7.0’s API using the Liferay Upgrade Planner. When running the planner’s Fix
Upgrade Problems step,many of the existing issues are autocorrected. For remaining issues, the planner
identifies code affected by the new API and ways to adapt it.

2. Resolve its dependencies

3. Deploy it.

After deploying the upgraded portlet, the server prints messages that indicate the following portlet
status:

• WAR processing
• WAB startup
• Availability to users

You’ve upgraded and deployed your Liferay web plugin on your 7.0 instance. Great job!

163

https://docs.oracle.com/cd/E19226-01/820-7627/bnadx/index.html

16.9 Upgrading Ext Plugins

Ext plugins let you use internal APIs and even let you overwrite Liferay DXP core files. This puts your
deployment at risk of being incompatible with security, performance, or feature updates released by Liferay.
When upgrading to a new version of Liferay DXP, youmust review all changes andmanually modify your
Ext projects to merge your changes with Liferay DXP’s.

During your upgrade to 7.0, it’s highly recommended to leverage an extension point to customize Liferay
DXP instead of using you existing Ext plugin, if possible. 7.0 provides many extension points that let you
customize almost every detail of Liferay DXP. If there’s a way to customize what you want with an extension
point, do it that way instead. See theMore Extensible, Easier to Maintain section for more details on the
advantages of using Liferay DXP’s extension points.

For more information on Ext projects, how to decide if you need one, and how to manage them, see the
Customization with Ext section.

16.10 Upgrading the Liferay Maven Build

If you’re an avid Maven user and have been using it for Liferay Portal 6.2 project development, you must
upgrade your Maven build to be compatible with 7.0 development. There are twomain parts of the Maven
environment upgrade process that youmust address:

• Upgrading to new 7.0 Maven plugins
• Updating Liferay Maven artifact dependencies

For more information on using Maven with 7.0, see the Maven tutorial section. For a guided and
expedited upgrade process for your Maven build, try the Upgrade Planner.

You’ll start off by upgrading your Maven environment’s Liferay Maven plugins.

Upgrading to New 7.0 Maven Plugins

The biggest change for your project’s build plugins is the removal of the liferay-maven-plugin. Liferay now
provides several individual Maven plugins that accomplish specific tasks. For example, you can configure
Maven plugins for Liferay’s CSS Builder, Service Builder,Theme Builder, etc. With smaller plugins available
to accomplish specific tasks in your project, you no longer have to rely on one large plugin that provides
many things youmay not want.

For example, suppose your Liferay Portal 6.2 project was using the liferay-maven-plugin for Liferay
CSS Builder only. First, you should remove the legacy liferay-maven-plugin plugin dependency from your
project’s pom.xml file:

<plugin>

<groupId>com.liferay.maven.plugins</groupId>

<artifactId>liferay-maven-plugin</artifactId>

<version>${liferay.version}</version>

<configuration>

<autoDeployDir>${liferay.auto.deploy.dir}</autoDeployDir>

<liferayVersion>${liferay.version}</liferayVersion>

<pluginType>portlet</pluginType>

</configuration>

</plugin>

Then, add the CSS Builder plugin dependency to your project’s pom.xml file:

164

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.css.builder</artifactId>

<version>1.0.21</version>

<executions>

<execution>

<id>default-build</id>

<phase>generate-sources</phase>

<goals>

<goal>build</goal>

</goals>

</execution>

</executions>

<configuration>

<docrootDirName>src/main/webapp</docrootDirName>

</configuration>

</plugin>

Some common LiferayMaven plugins are listed below,with their corresponding artifact IDs and tutorials
explaining how to configure them:

Common LiferayMaven Plugins

Name Artifact ID Tutorial

CSS Builder com.liferay.css.builder Compiling SASS Files in a Maven
Project

Lang Builder com.liferay.lang.builder Coming Soon
Service Builder com.liferay.portal.tools.service.builder Using Service Builder in a Maven

Project
Theme Builder com.liferay.portal.tools.theme.builder BuildingThemes in a Maven

Project

In Liferay Portal 6.2, you were also required to specify all your app server configuration settings. For
example, your parent POM probably contained settings similar to these:

<properties>

<liferay.app.server.deploy.dir>

E:\liferay-portal-6.2.0-ce-ga1\tomcat-7.0.42\webapps

</liferay.app.server.deploy.dir>

<liferay.app.server.lib.global.dir>

E:\liferay-portal-6.2.0-ce-ga1\tomcat-7.0.42\lib\ext

</liferay.app.server.lib.global.dir>

<liferay.app.server.portal.dir>

E:\liferay-portal-6.2.0-ce-ga1\tomcat-7.0.42\webapps\root

</liferay.app.server.portal.dir>

<liferay.auto.deploy.dir>

E:\liferay-portal-6.2.0-ce-ga1\deploy

</liferay.auto.deploy.dir>

<liferay.version>

6.2.0

</liferay.version>

<liferay.maven.plugin.version>

6.2.0

</liferay.maven.plugin.version

</properties>

165

https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.css.builder
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.lang.builder
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.portal.tools.service.builder
https://search.maven.org/#search%7Cga%7C1%7Ccom.liferay.portal.tools.theme.builder

This is no longer required in 7.0 because Liferay’s Maven tools no longer rely on your Liferay DXP
installation’s specific versions. You should remove them from your POM file.

Awesome! You’ve learned about the newMaven plugins available to you for 7.0 development. Next, you’ll
learn about updating your Liferay Maven artifacts.

Updating Liferay Maven Artifact Dependencies

Many Liferay Portal 6.2 artifact dependencies you were using have changed in 7.0. See the table below for
popular Liferay Maven artifacts that have changed:

Liferay Portal 6.2 Artifact ID 7.0 Artifact ID

portal-service com.liferay.portal.kernel

util-bridges com.liferay.util.bridges

util-java com.liferay.util.java

util-slf4j com.liferay.util.slf4j

util-taglib com.liferay.util.taglib

For more information on resolving dependencies in 7.0, see the Resolving a Plugin’s Dependencies
tutorial.

Of course, you must also update the artifacts you’re referencing for your projects. If you’re using the
Central Repository to install Liferay Maven artifacts, you won’t need to do anythingmore than update the
artifacts in your POMs. If, however, you’re working behind a proxy or don’t have Internet access, youmust
update your company-shared or local repository with the latest 7.0Maven artifacts. See the Installing Liferay
Maven Artifacts tutorial for instructions.

With these updates, you can easily upgrade your Liferay Maven build so you can begin developing
traditional plugin projects for 7.0.

166

Chapter 17

Optimizing Plugins for 7.0

Once you’ve upgraded your plugin to 7.0, you can optimize it to take advantage of all @product-ver@
offers. If you haven’t yet familiarized yourself with what’s changed from Liferay Portal 6, the new benefits
for developers, OSGi and modularity, and the improved tooling, make sure to do so as they’ll help you
understand and appreciate the optional improvements for plugins and plugin development the optimization
tutorials demonstrate.

Here are some common optimizations to consider:

• Migrating to environments that help you develop and test more quickly, such as the LiferayTheme
Generator for themes and LiferayWorkspace for modules and web applications.

• Adapting plugins to 7.0’s modular architecture and updated frameworks, such as Service Builder.
• Styling your app consistently using Lexicon –the web implementation of Liferay’s Lexicon Experience
Language.

• Modularizing apps to reap the benefits of modularity and all that 7.0 offers.

Several optimization tutorials are here andmore are coming soon.

17.1 Migrating Traditional Plugins to Workspace Web Applications

After you’ve adapted your traditional plugin to Liferay DXP’s API, you can continue maintaining it in the
Plugins SDK.The Plugins SDK, however, is deprecated as of 7.0. Maintaining plugins in the SDKwill become
increasingly difficult. Liferay Workspace replaces the Plugins SDK, providing a comprehensive Gradle
development environment andmore. A simple commandmigrates traditional plugins (such as portlets) to
Gradle-based web application projects. From there you can build and deploy them to 7.0 asWeb ARchives
(WARs).

Running the Migration Command

Blade CLI’s convert commandmigrates Plugins SDK plugins to web application projects inWorkspace’s wars
folder. Plugin files are re-organized to follow the standard web application folder structure.

StandardWebApplication Anatomy:

• [project root]

167

– src

* main

· webapp

· WEB-INF

· classes

· lib → Libraries
· descriptor files

· css → CSS files
· js → JavaScript files
· icons

· JSP files

* java → Java source

– build files

In a terminal, navigate to the LiferayWorkspace root folder. Then pass your Plugins SDK project’s name
to Blade’s convert command:

blade convert [PLUGIN_PROJECT_NAME]

Blade extracts the plugin from the Plugins SDK and reorganizes it in a standard web application project
inWorkspace’s wars folder.

Note: You can execute blade convert -l to show a list of projects that can be migrated in your Plugins
SDK. Run blade convert --all to migrate all plugin projects in your Plugins SDK toWorkspace.

The image below shows the plugin files before and after they’re migrated toWorkspace.
The following table maps traditional plugin source files to the standard web application folder structure

Workspace uses.
Plugins SDK folders toweb application folders:

Files Plugins SDK folder (old) Web app folder (new)

Java docroot/WEB-INF/src src/main/java

JSPs docroot src/main/webapp

icons docroot src/main/webapp

CSS docroot/css src/main/webapp/css

JS docroot/js src/main/webapp/js

descriptors docroot/WEB-INF src/main/webapp/WEB-INF

libraries docroot/WEB-INF/lib src/main/webapp/lib

From your plugin’s new location, you can invokeWorkspace Gradle tasks on it and build its .war file.

blade gw war

To deploy the .war, copy it from the plugin’s build/libs folder to the [LIFERAY_HOME]/deploy folder.
Welcome to your plugin’s new home inWorkspace!

Related Topics

Workspace Development lifecycle
Workspace Gradle Tasks

168

Figure 17.1: The convert command migrates a Plugins SDK project to a Workspace web application project. It moves Java source files to src/main/java and all other
files/folders to src/main/webapp.

169

Chapter 18

Modularizing Plugins

As described in Benefits of Liferay 7 for Liferay 6 Developers, applications that comprise OSGi modules offer
considerable advantages over monolithic applications.

Themain benefit is that modular development practices structure code in ways that reduce maintenance
costs. These practices involve, for example, defining contracts (such as APIs) more clearly, hiding internal
classes, and handling dependenciesmore carefully. Related to this,module dependencies are explicitly listed
within a module. Modules run only when all their dependencies are met–this can eliminate many obscure
run time errors.

Splitting large applications into small independent modules lets you focus on smaller release cycles for
those modules. Individual modules can be updated independently of the others. For instance, you might fix
a JSP’s security issue in an application’s web (client) module. The issue only affects that module–none of the
application’s other modules need change.

The scenarios described below can help you decide whether to convert an application to modules.
When not to convert?

• You have a portlet that’s JSR-168/286 compatible and you still want to be able to deploy it to another
portlet container. In this case, it’s best to stay with the traditional WAR model. (To eliminate this
reason for not converting, Liferay is discussing with other vendors the possibility of making modular
portlets a standard.)

• You’re using a complex web framework that is heavily tied to the Java EE programmingmodel and the
amount of effort necessary to make it work with OSGi is more than you feel is necessary or warranted.

• You want to minimize effort to get your application to working on 7.0.

When to convert?

• You have a very large application with many lines of code. If you’ve got lots of developers making
changes, separating the code into modules canmake it easier and faster to get releases out.

• Your application has reusable parts that you want to consume outside of it. For instance, you have
business logic that you’re reusing in different projects. Modules let you consume their services from
other modules.

• In general, you want to start reaping the benefits of modular development.

You can nowmake an informed decision on whether to stick with your upgraded traditional application
as is or modularize it to leverage 7.0’s modularity features.

171

18.1 Modularizing an Existing Portlet

An application with properly modularized plugins offers several benefits. You can release individually its
plugins without releasing the entire application. External clients can consume services from particular
plugins, without having to depend on an entire application. And by splitting up large amounts of code into
concise modules, teams canmore easily focus on particular areas of the application. These are just a few
reasons to modularize application plugins.

In this tutorial, you’ll learn how to convert your traditional application into modules. Before getting
started, it’s important to reiterate that the module structure shown in this tutorial is just one of many ways
for structuring your application’s modules. It’s also important to remember that applications come in all
different shapes and sizes. Theremay be special actions that some applications require. This tutorial provides
the general process for converting to modules using Liferay’s module structure.

Here’s what’s involved:

• Converting portlet classes and the UI
• Converting Service Builder interfaces and implementations
• Building and deploying modules

The instructions covered in this tutorial apply to both the commercial and open source versions of Liferay.
The first thing you’ll do is create your application’s web (client) module.

Converting Your Application's Portlet Classes and UI

The first thing you’ll do is create your application’s parent directory and the directory structure for your
application’s web client module. This module holds your application’s portlet classes and is responsible for
its UI. Before you start creating a skeleton structure for your application’s modules, you should determine
whichmodules will comprise this version of your application. If your application provides service and API
classes (which is the case for all Liferay Service Builder applications), you should create separate modules
for your service implementation and service API classes. This tutorial assumes the Maven project model,
although any build tools or directory setup is permissible.

Note: It’s recommended that you use the build plugin versions that support the latest OSGi features. The
following Gradle or Maven build plugin versions should be used in their respective build frameworks:

Gradle - biz.aQute.bnd:biz.aQute.bnd.gradle:3.1.0 or - org.dm.gradle:gradle-bundle-plugin:0.8.1
Maven - biz.aQute.bnd:bnd-maven-plugin:3.1.0 or - org.apache.felix:maven-bundle-plugin:3.0.1

1. Create your application’s parent folder. It is home for your application’s independent modules and
configuration files. For example, if your application’s name is Tasks, then your parent folder could be
tasks.

If your application uses Liferay Service Builder, use the following Blade CLI command to generate the
parent folder and service implementation and service API modules in it. If the parent folder already
exists, it must be empty. This command names the parent folder after the APPLICATION_NAME:

blade create -t service-builder -p [ROOT_PACKAGE] [APPLICATION_NAME]

The *-service and *-apimodule folders are described later in this tutorial.

172

2. Create the folder structure for your web client module. You can do this automatically by using Blade
CLI.The portlet tutorials demonstrate creating all different kinds of portlets.

Navigate to your parent directory (e.g., tasks) and run the following Blade CLI command to generate
a generic web client module structure:

blade create -t mvc-portlet -p [ROOT_PACKAGE] [APPLICATION_NAME]-web

3. Replace the /src/main/java/[APPLICATION_NAME] folder with your root package. For instance, if
your application’s root package name is com.liferay.tasks.web, your class’s directory should be
/src/main/java/com/liferay/tasks/web. Also, remove the init.jsp and view.jsp files located in the
src/main/resources/META-INF/resources folder. You’ll insert your traditional application’s Java code
and JSPs, so the generated default code is not necessary.

4. Verify that your current directory structure for your application’s *-webmodule matches the structure
listed below:

• tasks

– tasks-web

* src

· main

· java

· [ROOT_PACKAGE]

· resources

· content

· Language.properties

· META-INF

· resources

* bnd.bnd

* build.gradle

The instructions in the rest of this sub-section only affect your application’s web client module.

5. Open the bnd.bndfile. This is used to generate yourmodule’s MANIFEST.MFfile that is generatedwhen you
build your project. Edit your module’s bnd.bnd file to fit your application. For more information about
configuring your module’s bnd.bnd, visit http://bnd.bndtools.org/. You can view the dictionary-web
module’s bnd.bnd for a simple example below:

Bundle-Name: Liferay Dictionary Web

Bundle-SymbolicName: com.liferay.dictionary.web

Bundle-Version: 1.0.6

For a more advanced example, examine the journal-webmodule’s bnd.bnd:

173

http://bnd.bndtools.org/

Bundle-Name: Liferay Journal Web

Bundle-SymbolicName: com.liferay.journal.web

Bundle-Version: 2.0.0

Export-Package:\

com.liferay.journal.web.asset,\

com.liferay.journal.web.dynamic.data.mapping.util,\

com.liferay.journal.web.social,\

com.liferay.journal.web.util

Liferay-JS-Config: /META-INF/resources/js/config.js

Liferay-Releng-Module-Group-Description:

Liferay-Releng-Module-Group-Title: Web Content

Web-ContextPath: /journal-web

6. Open the build.gradlefile. This is used to specify all yourmodule’s dependencies. The build.gradlefile
thatwas generated for you is pre-populatedwith content anddefault dependencies related toOSGi and
Liferay DXP. In the dependencies {...} block, you need to add the web client module’s dependencies.
To learn how to find and specify dependencies on Liferay APImodules, refer to the reference document
Finding Liferay API Modules. When deploying your module into the OSGi container, OSGi checks if
the dependencies are available in the container. If the dependencies are not available in the container,
your module will be unavailable. Therefore, your dependencies are not bundled with your module.
Instead, they’re available from Liferay’s OSGi container.

7. Copy your traditional application’s JSP files into the /src/main/resources/META-INF/resources direc-
tory. In most cases, all of your application’s JSP files should reside in the web client module.

8. Your next task is to add your portlet classes, non-service classes, and non-implementation classes
into your client module. Copy your portlet classes into their respective directories and ensure their
package names within the class are specified correctly. Your client module can hold one class or many
classes, depending on how large your application is. It’s a good practice to organize your classes
into sub-packages of the main package, to more easily manage them. You’ll examine the journal-web
module for an example of a client module holding many different Java classes:

• journal-web

– …
– src/main/java/com/liferay/journal/web/

* asset

· [classes]

* configuration

· [classes]

* dynamic/data/mapping/util

· [classes]

* internal

· application/list

· [classes]

174

· custom/attributes

· [classes]

· dao/search

· [classes]

· …

* social

· [classes]

* util

· [classes]

– …

Note: Many applications have service and API classes. These classes

need to live in separate implementation and API modules. You'll learn more

about creating these later in this tutorial.

9. Now that you have the necessary classes in your client module, you need to edit these classes to be
compliant with OSGi. First, you need to choose a component framework to work with. Using a
component framework lets you easily harness the power of OSGi. Liferay DXP uses the Declarative
Services component framework and recommends that Liferay developers use it too. This tutorial
assumes that you’re using Declarative Services. You can, however, use any other OSGi component
framework in Liferay DXP.

Review your traditional application’s XML files andmigrate the configuration andmetadata informa-
tion to the portlet class as properties. You can do this by adding the @Component annotation to your
portlet class and adding the necessary properties to that annotation. The end result should look similar
to the following example:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.icon=/icon.png",

"javax.portlet.name=1",

"javax.portlet.display-name=Tasks Portlet",

"javax.portlet.security-role-ref=administrator,guest,power-user",

"javax.portlet.init-param.clear-request-parameters=true",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.expiration-cache=0",

"javax.portlet.supports.mime-type=text/html",

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.info.title=Tasks Portlet",

"javax.portlet.info.short-title=Tasks",

"javax.portlet.info.keywords=Tasks",

},

service = Portlet.class

)

public class TasksPortlet extends MVCPortlet {

175

http://wiki.osgi.org/wiki/Declarative_Services
http://wiki.osgi.org/wiki/Declarative_Services

10. Convert all references of the portletId (e.g., 58_INSTANCE_4gtH) to the class name of the portlet, replac-
ing all periods with underscores (e.g., com_liferay_web_proxy_portlet_WebProxyPortlet).

11. If your traditional application has resource actions, you’ll need tomigrate those into your clientmodule.
Create the /src/main/resources/resource-actions/default.xml file, and copy your resource actions
there. Make sure to create the src/portlet.properties file and add the following property:

resource.actions.configs=resource-actions/default.xml

As an example, you can view the Directory application’s default.xml file.

12. Addany languagekeys that yourapplicationuses to the src/main/resources/content/Language.properties
file. You should only include the language keys that are unique to your application. Your application
will use the default language keys in Liferay when it is deployed.

Awesome! You’ve created your application’s web client module and navigated through some of the most
common tasks necessary tomodularize your portlet classes andUI.There are certain parts of your application
that may not be covered in this tutorial that you must account for. Liferay’s Developer Network provides
developer tutorials divided into popular areas so you can easily find the correct way to transform your legacy
code to use Liferay DXP’s updated best practices.

The table below serves as a quick reference guide. It summarizes the migration process for many of your
application’s directories, packages, and files. This is a sample table for a fictitious tasks applications.

Plugin Package | Module Package | tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.asset |
tasks-web/src/main/java/com.liferay.tasks.asset | tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.portlet
| tasks-web/src/main/java/com.liferay.tasks.portlet | tasks-portlet/docroot/WEB-INF/src/content |
tasks-web/src/main/resources/content | tasks-portlet/docroot/WEB-INF/src/resource-actions | tasks-

web/src/main/resources/resource-actions | tasks-portlet/docroot/WEB-INF/src/portlet.properties |
tasks-web/src/main/resources/portlet.properties | tasks-portlet/docroot/init.jsp | tasks-web/src/main/resources/META-
INF/resources/init.jsp | tasks-portlet/docroot/tasks | tasks-web/src/main/resources/META-INF/resources/tasks
| tasks-portlet/docroot/upcoming_tasks | tasks-web/src/main/resources/META-INF/resources/upcoming_tasks
|

Many applications only have a web client module. Larger,more complex applications, such as Liferay
ServiceBuilder applications, require additionalmodules to hold their serviceAPI and service implementation
logic. You’ll learn how to create these modules next.

Converting Your Application's Service Builder API and Implementation

In this section, you’ll learn about converting a Liferay Portal 6 Service Builder application to a 7.0 style
application. In the previous section, you learned how to generate your implementation and API modules.
If you haven’t yet run the service-builder Blade CLI command outlined in step 2 of the previous section,
run it now. The API module holds your application’s Service Builder generated API and the implementation
module holds your application’s Service Builder implementation.

Before you begin editing the API and implementationmodules, you’ll need to configure your root project
(e.g., tasks) to recognize the multiple modules residing there. A multi-module Gradle project must have
a settings.gradle file in the root project for building purposes. Luckily, when you generated your Service
Builder project’s modules using Blade CLI, the settings.gradle file was inserted and pre-configured for the
api and servicemodules. You should add your webmodule into the Service Builder project’s generated parent

176

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/directory/directory-web/src/main/resources/resource-actions/default.xml

folder and define it in the settings.gradle file too. You’ll configure your webmodule via Gradle settings later,
but for now, go ahead and copy the module into the project generated by the service-builder template. For
example, an example tasks project’s root folder would look like this:

• tasks

– gradle

– tasks-api

– tasks-service

– tasks-web

– build.gradle

– gradlew

– settings.gradle

Your root project directory should now be in good shape. Next, you’ll learn how to use Service Builder to
generate your application’s service API and service implementation code.

1. Copy your traditional application’s service.xml file and paste it into the implementationmodule’s root
directory (e.g., tasks/tasks-service).

2. Blade CLI generated a bnd.bnd file for your service implementation module. Make sure to edit this
bnd.bnd file to fit your application. For an example of a service implementation module’s BND file,
examine the export-import-servicemodule’s BND below:

Bundle-Name: Liferay Export Import Service

Bundle-SymbolicName: com.liferay.exportimport.service

Bundle-Version: 4.0.0

Export-Package:\

com.liferay.exportimport.content.processor.base,\

com.liferay.exportimport.controller,\

com.liferay.exportimport.data.handler.base,\

com.liferay.exportimport.lar,\

com.liferay.exportimport.lifecycle,\

com.liferay.exportimport.messaging,\

com.liferay.exportimport.portlet.preferences.processor.base,\

com.liferay.exportimport.portlet.preferences.processor.capability,\

com.liferay.exportimport.search,\

com.liferay.exportimport.staged.model.repository.base,\

com.liferay.exportimport.staging,\

com.liferay.exportimport.xstream

Liferay-Releng-Module-Group-Description:

Liferay-Releng-Module-Group-Title: Data Management

Liferay-Require-SchemaVersion: 1.0.0

-includeresource: content=../../staging/staging-lang/src/main/resources/content

3. Blade CLI also generated your service implementation module’s build.gradle file. In this file, Service
Builder is already configured to generate code both in this module and in your service API module.
When you run Service Builder, Java classes, interfaces, and related files are generated in your *api and
*servicemodules. Open your service implementationmodule’s build.gradle file to view the default
configuration.

As you’ve learned already, you don’t have to accept the generated build files’ defaults. Blade CLI simply
generated some standard OSGi and Liferay configurations.

For example, Service Builder is already available for you by default. Blade CLI applies the Service
Builder plugin automatically when a project contains the service.xml file. With the Service Builder
plugin already available, you don’t have to worry about configuring it in your project.

177

4. Another important part of your service implementation module’s build.gradle file is the
buildService{...} block. This block configures how Service Builder runs for your project.
The current configuration will generate your API module successfully, but extra configuration might
be necessary in certain cases.

5. Open a terminal and navigate to your root project folder. Then run gradlew buildService.

Your service.xml file’s configuration is used to generate your application’s service API and service
implementation classes in their respective modules. You’ve also generated other custom files (related
to SQL, Hibernate, Spring, etc.), depending on your buildService {...) block’s configuration. For
more information on configuration options for the Service Builder plugin, see the Service Builder
Gradle Plugin reference article.

6. Now that you’ve run Service Builder, continue copying custom classes into your implementation
module. The table below highlights popular Liferay Portal 6 classes and packages and where they
should be placed in your application. This table is intended to aid in the organization of your classes
and configuration files; however, remember to follow the organizational methodologies that make the
most sense for your application. One size does not fit all with your modules’ directory schemes.

Plugin Package | Module Package |

----------------|----------------|

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.model.impl` | `tasks-service/src/main/java/com.liferay.tasks.model.impl` |

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.service.impl` | `tasks-service/src/main/java/com.liferay.tasks.service.impl` |

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.service.permission` | `tasks-service/src/main/java/com.liferay.tasks.service.permission` |

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.service.persistence.impl` | `tasks-service/src/main/java/com.liferay.tasks.service.persistence.impl` |

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.social` | `tasks-service/src/main/java/com.liferay.tasks.social` |

`tasks-portlet/docroot/WEB-INF/src/com.liferay.tasks.util` | `tasks-service/src/main/java/com.liferay.tasks.util` |

`tasks-portlet/docroot/WEB-INF/src/custom-sql` | `tasks-service/src/main/resources/META-INF/custom-sql` |

7. Once you’ve copied all of your custom classes over, run gradlew buildService again to generate
the remaining services.

Now that your services are generated, you’ll need to wire up your modules so they can reference each
other when deployed to Liferay’s OSGi container. Blade CLI has already partially completed this task. For
example, it assumes that the service implementation module depends on the service API module.

You still need to associate the clientmodule with the api and servicemodules, since they were generated
separately. To do this, follow the steps below:

1. In your project’s settings.gradle file, you must add the webmodule with the api and servicemodules
so it’s included in the Gradle build lifecycle:

include "tasks-api", "tasks-service", "tasks-web"

2. Add the api and servicemodules as dependencies in you client module:

dependencies {

compileOnly project(':tasks-api')

compileOnly project(':tasks-service')

}

Excellent! You’ve successfully generated your application’s services using Service Builder. They now
reside in modules, and can be deployed to 7.0.

178

Building Your Module JARs for Deployment

Now it’s time to build your modules and deploy them to your Liferay DXP instance. To build your project,
run gradlew build from your project’s root directory.

Once your project successfully builds, check all of your modules’ /build/libs folders. There should be a
newly generated JAR file in each, which is the file you’ll need to deploy to Liferay DXP. You can deploy each
JAR by running blade deploy from eachmodule’s root directory.

Note: If you deploy your modules out of order, you might receive error messages. For instance, if you try
deploying your web client module first, you’ll receive errors if it relies on the service implementation and
service API modules. Once each module’s dependencies are met, they will successfully be deployed for use in
Liferay. For more information on checking eachmodule’s dependencies, see the Using the Felix Gogo Shell
article.

Once you’ve successfully deployed your modules, you can list them from the Gogo shell as shown below.

Figure 18.1: Once you’ve connected to your Liferay instance in your Gogo shell prompt, run lb to list your new converted modules.

This tutorial explained how to convert your traditional application into the modular format of a 7.0 style
applicaton. Specifically, you learned how to

• Create a web client (*-web) module that holds your application’s portlet classes and UI.
• Create a service implementation module (*-service) and a service API module (*-api).
• Run Service Builder to generate code for your application’s service and API modules.
• Wire your modules together by declaring their dependencies on each another.
• Build your modules and deploy them to your Liferay DXP installation.

Great job!

Related Topics

Portlets
Service Builder

18.2 Migrating Data Upgrade Processes to the New Framework for
Modules

When youmake changes to your plugin that affect the database, you can use a data upgrade process to upgrade
data to the new database schema. 7.0 has a new data upgrade framework for modules. While the old
framework required several classes, the new framework lets you orchestrate the upgrade steps from a
single class. Managing the steps from one class facilitates developing upgrade processes. The data upgrade
framework you use depends on your development framework.

179

• If your upgraded plugin is a traditional WAR, you don’t need to do anything special; existing upgrade
processes adapted to 7.0’s API work as is. The new data upgrade framework is for modules only.

• If you converted your upgraded plugin to amodule or you have an upgradedmodule, youmustmigrate
any upgrade processes you want to continue using to the new data upgrade framework.

You canmigrate any number of old upgrade processes (starting with the most recent ones) to the new
framework. For example, if your module has versions 1.0, 1.1, 1.2, and 1.3, but you only expect customers on
versions 1.2 and newer to upgrade, youmight migrate upgrade processes for versions 1.2 and 1.3 only. This
tutorial shows you how to migrate to the new framework.

Before beginning,make sure you know how to create an upgrade process that uses the new framework.
Click here to read the tutorial on creating these upgrade processes.

Note: Liferay Portal 6 plugins may also include verify processes. Although you can migrate the verify
processes to 7.0 without any changes, it’s a best practice to perform verification in your upgrade processes
instead.

First, you’ll review how Liferay Portal 6 upgrade processes work.

Understanding Liferay Portal 6 Upgrade Processes

Before getting started, it’s important to understand how Liferay Portal 6 upgrade processes are structured.
As an example, you’ll use the Liferay Portal 6.2 upgrade process for the Knowledge Base Portlet. Click here to
access it in GitHub.

In Liferay Portal 6 upgrade processes, the upgrade step classes for each schema version are in folders
named after their schema version. For example, the Knowledge Base Portlet’s upgrade step classes are
in folders named v1_0_0, v1_1_0, v1_2_0, and so on. Each upgrade step class extends UpgradeProcess and
overrides the doUpgrademethod. The code in doUpgrade performs the upgrade. For example, the Knowledge
Base Portlet’s v1_0_0/UpgradeRatingsEntry upgrade step extends UpgradeProcess and performs the upgrade
via the updateRatingsEntries() call in its doUpgrademethod:

public class UpgradeRatingsEntry extends UpgradeProcess {

@Override

protected void doUpgrade() throws Exception {

updateRatingsEntries();

}

...

protected void updateRatingsEntries() throws Exception {

// Upgrade code

}

...

}

The upgrade process classes are on the same level as the folders containing the upgrade steps and
are also named after their schema version. For example, the Knowledge Base Portlet’s upgrade process
classes are named UpgradeProcess_1_0_0, UpgradeProcess_1_1_0, UpgradeProcess_1_2_0, and so on. Each
upgrade process class also extends UpgradeProcess and runs the upgrade process in the doUpgrademethod.
It runs the upgrade process by passing the appropriate upgrade step to the upgrademethod. For example,

180

https://github.com/liferay/liferay-plugins/tree/6.2.x/portlets/knowledge-base-portlet/docroot/WEB-INF/src/com/liferay/knowledgebase/hook/upgrade
https://github.com/liferay/liferay-plugins/blob/6.2.x/portlets/knowledge-base-portlet/docroot/WEB-INF/src/com/liferay/knowledgebase/hook/upgrade/v1_0_0/UpgradeRatingsEntry.java

Figure 18.2: The Knowledge Base Portlet’s Liferay Portal 6.2 upgrade process.

181

the doUpgrademethod in the Knowledge Base Portlet’s UpgradeProcess_1_0_0 class runs the upgrade steps
UpgradeRatingsEntry and UpgradeRatingsStats via the upgrademethod:

@Override

protected void doUpgrade() throws Exception {

upgrade(UpgradeRatingsEntry.class);

upgrade(UpgradeRatingsStats.class);

}

Now that you know how Liferay Portal 6 upgrade processes are defined, you’ll learn how to convert them
to the new upgrade process framework in 7.0.

Converting your Liferay Portal 6 Upgrade Process to 7.0

So how do Liferay Portal 6 upgrade processes compare to those that use the new upgrade process framework
in 7.0? First, the upgrade step classes are the same, so you can leave them unchanged. The big change in
7.0’s new upgrade processes is that upgrade process classes no longer exist. Instead, youmust combine your
upgrade process classes’ functionality into a single registrator class. Recall from the data upgrade process
tutorial that registrators define an upgrade process that the upgrade process framework executes. Each
registry.register call in the registrator registers the appropriate upgrade steps for each schema version.
Youmust therefore transfer the functionality of your old upgrade process classes’ doUpgrademethods into a
registrator’s registry.register calls.

For example, click here to see the Knowledge Base Portlet’s new 7.0 upgrade process in GitHub.
Besides some additional upgrade step classes to handle changes made to the portlet for 7.0, the only

difference in this upgrade process is that it contains a single registrator class, KnowledgeBaseServiceUpgrade,
instead ofmultiple upgrade process classes. The KnowledgeBaseServiceUpgrade class, like all registrators, calls
the appropriate upgrade steps for each schema version in its registry.register calls. For example, the first
registry.register call registers the upgrade process for the 1.0.0 schema version:

registry.register(

"com.liferay.knowledge.base.service", "0.0.1", "1.0.0",

new com.liferay.knowledge.base.internal.upgrade.v1_0_0.

UpgradeRatingsEntry(),

new com.liferay.knowledge.base.internal.upgrade.v1_0_0.

UpgradeRatingsStats());

Compare this to the above doUpgrade method from the corresponding Liferay Portal 6 upgrade
process class UpgradeProcess_1_0_0. Both call the same upgrade steps. Click here to see the complete
KnowledgeBaseServiceUpgrade registrator class and all its registry.register calls.

That’s it! For instructions on creating new upgrade processes for 7.0, including complete steps on
creating a registrator, click here.

Related Topics

Creating Data Upgrade Processes for Modules
Upgrading Plugins to 7.0
From Liferay Portal 6 to 7

182

https://github.com/liferay/liferay-plugins/blob/6.2.x/portlets/knowledge-base-portlet/docroot/WEB-INF/src/com/liferay/knowledgebase/hook/upgrade/UpgradeProcess_1_0_0.java
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/knowledge-base/knowledge-base-service/src/main/java/com/liferay/knowledge/base/internal/upgrade
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/knowledge-base/knowledge-base-service/src/main/java/com/liferay/knowledge/base/internal/upgrade/KnowledgeBaseServiceUpgrade.java
https://github.com/liferay/liferay-plugins/blob/6.2.x/portlets/knowledge-base-portlet/docroot/WEB-INF/src/com/liferay/knowledgebase/hook/upgrade/UpgradeProcess_1_0_0.java
https://github.com/liferay/liferay-plugins/blob/6.2.x/portlets/knowledge-base-portlet/docroot/WEB-INF/src/com/liferay/knowledgebase/hook/upgrade/UpgradeProcess_1_0_0.java
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/knowledge-base/knowledge-base-service/src/main/java/com/liferay/knowledge/base/internal/upgrade/KnowledgeBaseServiceUpgrade.java

Figure 18.3: The Knowledge Base Portlet’s new 7.0 upgrade process.

18.3 Migrating a Theme from the Plugins SDK to the Liferay Theme
Generator

After you’ve upgraded your Liferay Portal 6 theme to 7.0, theThemes Generator offers enhanced development
features and tools for optimizing your theme and streamlining thememanagement. To introduce one of its
most powerful features, we’ll pose some questions.

Questions:

• Do you want to make a temporary change to your theme’s UI?
• Do you want to add the same UI modification to all of your themes without duplicating code?
• Do you want to share your new theme designs with a colleague?
• Do you want to test a new design concept in your theme without altering its code?

Answer: Themelets are the answer! Themelets are small, extendable, reusable modular pieces of code
that let youmake changes to your theme quickly. Because they are modular, you can use the same themelet
for multiple themes!

183

Themelets are just one of the features you gain frommigrating your existing Ant-based theme project
to a LiferayTheme Generator project. The LiferayTheme Generator is a Node.js-based tool that gives you
access to an array of theme Gulp tasks that facilitate developing andmanaging themes.

The upgradeGulp task upgrades Liferay Portal 6 themes to 7.0. For details, refer to the UpgradingThemes
tutorial.

In addition to the upgrade task, there are tasks for building and deploying themes and for interacting
with deployed themes. For instance, you can automatically redeploy your theme as youmake changes to it.

Do you periodically need to make changes to your theme’s settings? No problem. You can configure your
theme’s settings through the command-line wizard that the LiferayTheme Generator provides. All you have
to do is answer a few questions about the settings.

As you can see, the LiferayTheme Generator, Node.js, and Gulp development tools offer a lot to a Liferay
theme developer.

This tutorial assumes that you have already installed the LiferayThemeGenerator and that your upgraded
theme was developed with the Plugins SDK.There are two ways you canmigrate your Plugins SDK theme to
theTheme Generator: importing your thememanually into theTheme Generator or converting it to aTheme
Generator project from a LiferayWorkspace. You’ll learn how to import it manually first.

Importing Your Theme

The LiferayTheme Generator uses Yeoman to equip theme projects with the new development tools. Follow
the steps below to set up your existing theme in such a project:

1. Navigate to the directory you want to import your theme into and run the following command:

yo liferay-theme:import

This runs the import sub-generator for the themes generator.

2. Enter the absolute path of the theme you want to import and press Enter.

Note: you must specify an absolute path, as the themes import

sub-generator does not support relative paths.

The theme's modified files (the files it modified from the base theme) are

copied and reorganized in a newly created `src` directory. A `gulpfile.js`,

`liferay-theme.json`, `package.json` file and a `node_modules` directory

are also added.

Next, the `gulp init` task runs and prompts you with a couple questions.

3. Enter the path to your app server.

4. Enter your site’s URL (this can be your production site, development site, etc.), or press Enter to accept
the default http://localhost:8080.

Your theme is now set up to use the Node.js build tools and theme Gulp tasks!

184

http://yeoman.io/

Migrating Themes to the Theme Generator Using Workspace

If you’re a theme developer who wants to use LiferayWorkspace to migrate your Plugins SDK theme to the
Theme Generator, you can execute a single command to convert the theme project. Before beginning,make
sure your Plugins SDK has been converted to a LiferayWorkspace.

1. Using a command line tool, navigate to the root folder of your workspace.

2. Execute the following command to migrate your Plugins SDK theme to aTheme Generator theme:

blade convert [PLUGINS_SDK_THEME_NAME]

Blade CLI extracts the theme from the nested Plugins SDK folder and reorganizes it into a standard
Theme Generator project. The converted theme is available in the workspace’s themes folder.

That’s it! Your Plugins SDK theme is now available as a Liferay Theme Generator project residing in
LiferayWorkspace.

Related Articles

Introduction toThemes
LiferayTheme Generator
Themelets
UpgradingThemes

18.4 Migrating a Theme from the Plugins SDK to Workspace
After you’ve adapted your Plugins SDK theme to Liferay DXP’s API, you can continue maintaining it in
the Plugins SDK.The Plugins SDK, however, is deprecated as of 7.0. Maintaining plugins in the SDKwill
become increasingly difficult. Liferay Workspace replaces the Plugins SDK, providing a comprehensive
Gradle development environment andmore. A simple commandmigrates Plugins SDK (Ant-based) themes
toWorkspace (Gradle-based) themes. From there you can build and deploy them to 7.0 asWeb ARchives
(WARs).

Running the Migration Command

Blade CLI’s convert command migrates Plugins SDK themes to Workspace themes in Workspace’s wars
folder. Theme files are re-organized to follow the standard 7.0 theme folder structure.

In a terminal, navigate to the LiferayWorkspace root folder. Then pass your Plugins SDK theme’s name
to Blade CLI’s convert command:

blade convert --themebuilder [THEME_PROJECT_NAME]

Blade CLI extracts the plugin from the Plugins SDK and reorganizes it in a standard web application
project in Workspace’s wars folder. Blade CLI uses the Theme Builder plugin to migrate your theme to a
workspace. You can also migrate your Plugins SDK theme to a LiferayTheme Generator theme using Blade
CLI. Follow theMigratingThemes to theTheme Generator UsingWorkspace tutorial for more information.

The image below shows the theme files before and after they’re migrated toWorkspace.
From your theme’s new location, you can deploy it to 7.0 andmaintain it usingWorkspace Gradle tasks.

Welcome to your theme’s new home inWorkspace!

185

Figure 18.4: The convert command migrates a Plugins SDK theme project to a Workspace theme project.

Related Topics

Migrating aTheme from the Plugins SDK to theTheme Generator
Workspace Development lifecycle
Workspace Gradle Tasks

18.5 Customization with Ext Plugins

Ext plugins are deprecated for 7.0 and should only be used if absolutely necessary. They are deployable
to Liferay Portal 7.0 CEGA4+.

The following app servers should be used for Ext plugin development in Liferay DXP:

• Tomcat 8.0

In most cases, Ext plugins are no longer necessary. There are, however, certain cases that require the use
of an Ext plugin. Liferay only supports the following Ext plugin use cases:

186

• Providing custom implementations for any beans declared in LiferayDXP’s Spring files (when possible,
use servicewrappers instead of an Ext plugin). 7.0 removedmany beans, somake sure your overridden
beans are still relevant if converting your legacy Ext plugin.

• Overwriting a class in a 7.0 core JAR. For a list of core JARs, see the Finding Core Liferay DXP Artifacts
section.

• Modifying Liferay DXP’s web.xml file.
• Adding to Liferay DXP’s web.xml file.

Ext plugins are powerful tools used to extend Liferay DXP.They, however, increase the complexity of your
Liferay DXP instance and are not recommended unless there is absolutely no other way to accomplish your
task. 7.0 provides many extension points that let you customize almost every detail of Liferay DXP. If there’s
a way to customize what you want with an extension point, do it that way instead. See the More Extensible,
Easier to Maintain section for more details on the advantages of using Liferay DXP’s extension points.

Before deciding to use an Ext plugin, weigh the cost. Ext plugins let you use internal APIs and even let
you overwrite Liferay DXP core files. This puts your deployment at risk of being incompatible with security,
performance, or feature updates released by Liferay. When upgrading to a new version of Liferay DXP (even
if it’s a maintenance version or a service pack), you have to review all changes andmanually modify your
Ext plugin to merge your changes with Liferay DXP’s. Additionally, Ext plugins aren’t hot deployable. To
deploy an Ext plugin, youmust restart your server. Additional steps are also required to deploy or redeploy
to production systems.

In this tutorial, you’ll learn how to

• Create an Ext plugin
• Develop an Ext plugin
• Deploy an Ext plugin in Production

Before diving into creating an Ext plugin, however, first consider if an Ext plugin is even necessary at all.

Making the Decision to Use Ext Plugins

There aremany parts of Liferay DXP that now provide an extension point via OSGi bundle. You should follow
this three step process to decide whether an Ext plugin is necessary:

1. Find the OSGi extension point that you need. You can follow the Finding Extension Points tutorial as a
guide.

2. If an OSGi extension point does not exist, use an Ext plugin.

3. Research new extension points after every release of Liferay DXP.When a new version of Liferay DXP
provides the extension point you need, always use the extension point to replace the existing Ext
plugin.

So how do you find an OSGi extension point?
Yourfirst step is to examine the custommodule projects that extendpopular LiferayDXPextensionpoints

stored in the LiferayBlade Samples repository. Formore information on these sample projects, see the Liferay
Sample Projects tutorial. Usable extension points are also documented throughout Liferay’s Developer
Network categorized by the Liferay DXP section involved. For example, OverridingMVC Commands and
Customizing the Product Menu are articles describing how to extend a Liferay DXP extension point. Want
to learn how to override module JSPs or Liferay DXP core JSPs? Those processes are documented too!

187

https://github.com/liferay/liferay-blade-samples

There are a few corner cases where youmay need an Ext plugin to customize a part of Liferay DXP that
does not provide an extension point. Refer to the top of this tutorial for Ext plugin use cases supported by
Liferay.

Note: In previous versions of Liferay Portal, you needed an Ext plugin to specify classes as portal property
values (e.g., global.starup.events.my.custom.MyStartupAction), since the custom class had to be added to
the portal class loader. This is no longer the case in 7.0 since all lifecycle events can use OSGi services with no
need to edit these legacy properties.

Now that you know how tomake an informed decision on using Ext plugins, you’ll learn how to create
one next.

Creating an Ext Plugin

An Ext plugin is a powerful tool for extending Liferay DXP.Because it increases the complexity of your Liferay
DXP installation, you should only use an Ext plugin if you’re sure you can’t accomplish your goal in a different
way. You can only create Ext plugins from a Plugins SDK. If you’re using a LiferayWorkspace to create your
@project@ projects, you canmerge a Plugins SDK instance into the workspace.

Creating an Ext Plugin Using Liferay @ide@

Follow the steps below, replacing the project name with your own, to create a custom Ext plugin:

1. Go to File →New → Liferay Plugin Project.

2. Enter your project’s name and its display name. In the figure below, example is used for both. Note
that the Display name field is automatically filled in with the capitalized version of the Project name.

3. Select the Ant (liferay-plugins-sdk) option for your build type.

4. Select the Ext plugin type. Then clickNext.

5. If you have not yet configured a Plugins SDK, selectNext and choose the Plugins SDK for which you
want to generate the Ext plugin. Once you have your Plugins SDK configured, click Finish.

The Plugins SDK automatically appends -ext to the plugin project namewhen it creates your Ext plugin’s
project folder. Your Ext plugin project is added to your configured Plugins SDK instance and is also available
via @ide@’s Package Explorer for further development.

Creating an Ext Plugin Using the Command Line

To create a new Ext plugin from the command line, navigate to the ext folder in your Liferay Plugins SDK
and enter the command below appropriate for your operating system. The two arguments after the create
command are the project name and display name, respectively. The examples below use the project name
example and the display name Example. Make sure to specify values you want to use for your Ext plugin’s
project name and display name.

In Linux or Mac OS, enter:

./create.sh example "Example"

InWindows, enter:

188

Figure 18.5: You can create an Ext plugin project with Liferay @ide@.

create.bat example "Example"

A BUILD SUCCESSFULmessage from Ant tells you there’s a new folder (e.g., folder example-ext for a project
named example) inside your Plugins SDK’s ext folder. The Plugins SDK automatically appends -ext to the
project name.

Anatomy of an Ext Plugin

There are a few things to note about an Ext plugin’s folder structure. Below is a listing of an Ext folder
structure:

• [project name]-ext/

– docroot/

* WEB-INF/

· ext-impl/

· src/

· ext-lib/

· global/

189

· portal/

· ext-service/

· src/

· ext-util-bridges/

· src/

· ext-util-java/

· src/

· ext-util-taglib/

· src/

· ext-web/

· docroot/

Here are detailed explanations of the /docroot/WEB-INF/ subfolders:

• ext-impl/src: Contains the custom implementation classes and classes that override core classes from
portal-impl.jar.

• ext-lib/global: Contains libraries to be copied to the application server’s global classloader upon
deployment of the Ext plugin.

• ext-lib/portal: Contains libraries to be copied inside Liferay’s main application. These libraries are
usually necessary because they’re invoked from classes you add in ext-impl/src.

• ext-kernel/src: Contains classes that should be available to other plugins. In advanced scenarios, this
folder can be used to hold classes that overwrite classes from portal-kernel.jar.

• ext-web/docroot: Contains theweb application’s configuration files, including WEB-INF/struts-config-
ext.xml, which lets you customize Liferay’s core struts classes. Note that for 7.0, there are very few
entities left to override in the struts-config.xml file. Any JSPs that you’re customizing also belong
here.

• ext-util-bridges, ext-util-java and ext-util-taglib: These folders are needed only in scenarios
where you must customize these Liferay libraries: util-bridges.jar, util-java.jar and util-

taglib.jar, respectively. If you’re not customizing any of these libraries, you can ignore these
folders.

By default, several files are also added to the plugin. Here are the most significant files:

• build.xml: The Ant build file for the Ext plugin project.

• docroot/WEB-INF/liferay-plugin-package.properties: Contains plugin-specific properties, including
the plugin’s display name, version, author, and license type.

• docroot/WEB-INF/ext-web/docroot/WEB-INF files:

190

@platform-ref@/7.0-latest/propertiesdoc/liferay-plugin-package_7_0_0.properties.html

– portlet-ext.xml: Used to overwrite the definition of a build-in portlet. The portlet.xml file
contains very few portlet configurations in 7.0 because portlets were modularized andmoved
out of core. To override this file, copy the complete definition of the desired portlet from portlet-

custom.xml in Liferay’s source code, then apply the necessary changes.
– liferay-portlet-ext.xml: This file is similar to portlet-ext.xml, but is for additional definition
elements specific to Liferay. The liferay-portlet.xml file contains very few definition elements
in 7.0 because portlets were modularized andmoved out of core. To override the remaining def-
inition elements, copy the complete definition of the desired portlet from liferay-portlet.xml

in Liferay’s source code, then apply the necessary changes.
– struts-config-ext.xml and tiles-defs-ext.xml: These files are used to customize the struts
actions used by core portlets. Since most portlets were modularized andmoved out of core in
7.0, the struts-config.xml and tiles-defs.xml files are sparsely used.

– web.xml: Used to overwrite web application configurations and servlet information for 7.0.

Note: After creating an Ext plugin, remove the files from docroot/WEB-INF/ext-web/docroot/WEB-INF that
you don’t need to customize. Removing files you’re not customizing prevents incompatibilities that could
manifest from Liferay DXP updates.

Great! You’ve now created an Ext plugin and are familiar with its folder structure and itsmost significant
files. Next, you’ll use your Ext plugin to customize Liferay DXP.

Developing an Ext Plugin

An Ext plugin changes Liferay DXP itself when the plugin is deployed; it’s not a separate component that you
can easily remove at any time. For this reason, the Ext plugin development process is different from other
plugin types. It’s important to remember that once an Ext plugin is deployed, some of its files are copied
inside the Liferay installation; the only way to remove the changes is by redeploying an unmodified Liferay
application. You’re also responsible for checking that patches and fix packs do not conflict with your Ext
plugin.

The 7.0 compatible Plugins SDK is designed to only develop/deploy one Ext plugin. This means that all
your customizations should live inside one Ext plugin. The Plugins SDK does not check for conflicts among
multiple Ext plugins stored in the /ext folder, so do not develop/deploy multiple Ext plugins at once.

The Plugins SDK lets you deploy and redeploy your Ext plugin during your development phase. Redeploy-
ment involves cleaning (i.e., removing) your application server and unzipping your specified Liferay bundle to
start from scratch. That way, any changes made to the Ext plugin during development are properly applied,
and files removed from your plugin by previous changes aren’t left behind in the Liferay DXP application.
Because of this added complexity, you should use another plugin type to accomplish your goals whenever
possible.

Before digging in to the details, here’s an overview of the Ext plugin development processes described
below:

• Configure your Plugins SDK environment to develop Ext plugins for Liferay DXP on your application
server.

• Deploy and publish your Ext plugins for the first time.
• Redeploy normally or use a clean redeployment process after making changes to your Ext plugins.
• Package your Ext plugins for distribution.
• A list of advanced customization techniques.

191

It’s time to learn each step of the development process.

Set Up the Build Environment

Before deploying an Ext plugin, you must edit the build.[username].properties file in the root folder of
your Plugins SDK. If the file doesn’t yet exist, create it now. Substitute [username] with your user ID on
your computer. Once you’ve opened your build properties file, add the following properties–make sure the
individual paths reflect the right locations on your system:

ext.work.dir=[work]

app.server.dir=[work]/liferay-ce-portal-[version]/[app server]

app.server.zip.name=[...]/liferay-ce-portal-[app server].zip

Your app.server.zip.namepropertymust specify thepath to yourLiferayDXP .zipfile. The work folder you
specify for the ext.work.dirproperty iswhere you’ve unzipped your LiferayDXP runtime. The app.server.dir
property must point to your application server’s directory in your work folder. Look in your Liferay DXP
bundle at the path to the application server to determine the value to use for your app.server.dir property.

For example, if your work folder is C:/work, specify it as your ext.work.dir property’s value. If your
Liferay DXP bundle .zip file is C:/downloads/liferay-ce-portal-tomcat-7.0-ga4-[timestamp].zip, set the
app.server.zip.name property to that file’s path. If the relative path to the application server within the Liferay
DXP bundle .zip file is liferay-ce-portal-7.0-ga4\tomcat-8.0.32, specify an app.server.dir property value
C:/work/liferay-ce-portal-7.0-ga4/tomcat-8.0.32.

Next you’ll modify the Ext plugin you created and deploy it.

Initial Deployment

Your environment is set up and you’re ready to start customizing. Once you’re finished, you can deploy the
plugin.

Deploy the Plugin Now you’ll learn how to deploy your plugin using Liferay @ide@ or the command line.

Deploying in Liferay@ide@ Drag your Ext plugin project from your Package Explorer onto your server
to deploy your plugin. Liferay @ide@ automatically restarts the server for the server to detect and publish
your Ext plugin.

After deploying, if you don’t see your customizations in the portal, your Ext plugin may not have success-
fully deployed. To confirmwhether the Ext plugin deploys successfully, try deploying from the command
line; the Ant deployment targets report success or failure.

Deploying via the Command Line

1. Open a command line window in your Ext plugin project folder and enter one of these commands:

ant deploy

ant direct-deploy

The direct-deploy target deploys all changes directly to the appropriate folders in the Liferay appli-
cation. The deploy target creates a .war file with your changes and then deploys it to your server.
Either way, your server must be restarted after the deployment. Using direct-deploy is preferred for

192

deploying an Ext plugin during development if your application server supports it. Direct deploy
doesn’t work inWebLogic orWebSphere application server environments.

A BUILD SUCCESSFUL message indicates your plugin is now being deployed. Your console window
running Liferay DXP shows a message like this:

Extension environment for [your project]-ext has been applied. You must

reboot the server and redeploy all other plugins

If any changes applied through the Ext plugin affect the deployment process itself, you must redeploy
all other plugins. Even if the Ext plugin doesn’t affect the deployment process, it’s a best practice to
redeploy all your other plugins following initial deployment of the Ext plugin.

The ant deploy target builds a .war file with your changes and copies them to the auto-deploy folder
inside the Liferay DXP installation. When the server starts, it detects the .war file, inspects it, and
copies its contents to the appropriate destinations inside the deployed and running Liferay application.

2. Restart the server so that it detects and publishes your Ext plugin.

Once your server restarts, open Liferay DXP to see the customizations youmade with your Ext plugin.

Frequently, you’ll want to add further customizations to your original Ext plugin. You canmake unlimited
customizations to an Ext plugin that has already been deployed, but the redeployment process is different
from other project types. You’ll learn more on redeploying your Ext plugin next.

Redeployment

So far, Ext plugin development has been similar to the development of other plugin types. You’ve now
reached the point of divergence. When the plugin is first deployed, some of its files are copied into the
Liferay DXP installation. After changing an Ext plugin, you’ll either clean redeploy or redeploy, depending
on the modifications you made to your plugin following the initial deployment. You’ll learn about each
redeployment method and when to use each one.

CleanRedeployment If you removed part(s) of your plugin, if there are changes to your plugin that can
affect plugin deployment, or if you want to start with a clean Liferay DXP environment, undeploy your plugin
and clean your application server before redeploying your Ext plugin. By cleaning the application server, the
existing Liferay DXP installation is removed and the bundle specified in your Plugins SDK environment is
unzipped in its place. See the instructions below to learn more about this process.

Using Liferay@ide@

1. Remove the plugin from the server. While selecting the Ext plugin in the Servers view, select the plugin’s
Remove option.

2. Clean the application server. Remember to shut down the application server before cleaning it. This is
required onWindows because the server process locks the installed Liferay bundle’s files.

While selecting the Ext plugin project in the Package Explorer view, select the plugin’s Liferay → Clean
App Server… option.

3. Start the Liferay server.

4. Drag the Ext plugin and drop it onto the Liferay server.

5. While selecting the Liferay server in the Servers view, click the Publish option.

193

Figure 18.6: How to clean your app server

Using the Command Line

1. Stop the Liferay DXP server.

2. To deploy your Ext plugin, enter the following commands into your console:

cd [your-plugin-ext]

ant clean-app-server

ant direct-deploy

3. Start the Liferay DXP server.

Redeployment If you only added to your plugin or made modifications that don’t affect the plugin deploy-
ment process, you can redeploy the Ext plugin. Follow the steps based on the tool you’re using.

Using Liferay@ide@ Right-click your plugin located underneath your server and select Redeploy.

Using the Command Line Using the same procedure as for initial deployment. Open a command line
window in your Ext plugin project’s directory and execute either ant deploy or ant direct-deploy.

After your plugin is published to Liferay DXP, verify that your customizations are available.
Next you’ll learn how to package an Ext plugin for distribution and production.

Distribution

Once you’re finisheddeveloping anExt plugin, you canpackage it in a .warfile for distribution andproduction
deployment.

Using Liferay@ide@ With your Ext plugin project selected in the Package Explorer view, select the project’s
Liferay → SDK → war option.

194

Using the Command Line From your Ext plugin’s directory execute

ant war

The .war file is written to your [liferay-plugins]/dist directory.
Now that you’ve learned the basics of Ext plugin development, you’ll look at some advanced customiza-

tions.

Using Advanced Configuration Files

Liferay DXP uses several internal configuration files for its own architecture; in addition, there are configu-
ration files for the libraries and frameworks Liferay DXP depends on, like Struts and Spring. Configuration
could be accomplished using fewer files with more properties in each, but maintenance and use is made
easier by splitting up the configuration properties into several files. For advanced customization needs, it
may be useful to override the configuration specified in multiple configuration files. Liferay DXP provides a
clean way to do this from an Ext plugin without modifying the original files.

All the configuration files in Liferay DXP are listed below by their path in an Ext plugin folder. Here are
descriptions of what each file is for and the path to the original file in Liferay DXP:

• ext-impl/src/META-INF/ext-model-hints.xml

– Description: Overrides the default properties of the fields of the data models used by Liferay
DXP’s core portlets. These properties determine how the formfields for eachmodel are rendered.

– Original file in Liferay DXP: portal-impl/src/META-INF/portal-model-hints.xml

• ext-impl/src/META-INF/ext-spring.xml

– Description: Overrides the Spring configuration used by LiferayDXP and any of its core portlets.
It’s most commonly used to configure specific data sources or swap the implementation of a
default service with a custom one.

– Original file in Liferay DXP: portal-impl/src/META-INF/*-spring.xml

• ext-impl/src/META-INF/portal-log4j-ext.xml

– Description: Allows overriding the Log4j configuration. It can be used to configure appenders
for log file location, naming, and rotation. See the Log4j XML Configuration Primer. Increasing
or decreasing the log level of a class or class hierarchy is best done outside of an Ext plugin, in
Liferay DXP’s’ UI or a Log4j XML file in a module or the osgi/log4j folder.

– Original file in Liferay: portal-impl/src/META-INF/portal-log4j.xml

• ext-web/docroot/WEB-INF/portlet-ext.xml

– Description: Overrides the core portlets’ declarations. It’s most commonly used to change the
init parameters or the roles specified.

– Original file in Liferay DXP: portal-web/docroot/WEB-INF/portlet-custom.xml

• ext-web/docroot/WEB-INF/liferay-portlet-ext.xml

– Description: Overrides the Liferay-specific core portlets’ declarations. It core portlets included
in Liferay DXP. Refer to the liferay-portlet-app_7_0_0.dtd file for details on all the available
options. Use this file with care; the code of the portlets may be assuming some of these options
to be set to certain values.

195

https://wiki.apache.org/logging-log4j/Log4jXmlFormat
@platform-ref@/7.0-latest/definitions/liferay-portlet-app_7_0_0.dtd.html

– Original file in Liferay DXP: portal-web/docroot/WEB-INF/liferay-portlet.xml

• ext-web/docroot/WEB-INF/liferay-display.xml

– Description: Overrides the portlets that are shown in the interface for adding applications and
the categories in which they’re organized.

– Original file in Liferay DXP: portal-web/docroot/WEB-INF/liferay-display.xml

You’ll learn how to deploy your Ext plugin in production next.

Deploying in Production

Often, you can’t use Ant to deploy web applications in production or pre-production environments. Addi-
tionally, some application servers such asWebSphere or WebLogic have their own deployment tools and
don’t work with Liferay DXP’s auto-deployment process. Here are twomethods to consider for deploying
and redeploying an Ext plugin in production.

Method 1: Redeploying Liferay's Web Application

You can use this method in any application server that supports auto-deployment; What’s the benefit? The
only artifact that needs to be transferred to the production system is your Ext plugin’s .war file, produced
using the ant war target. This .war file is usually small and easy to transport. Execute these steps on the
server:

1. Redeploy Liferay DXP:

If this is your first time deploying your Ext plugin to this server, skip this step. Otherwise, start by
executing the same steps you first used to deploy Liferay DXP on your app server. If you’re using a
bundle, unzip it again. If you installed Liferay DXPmanually on an existing application server, you
must redeploy the Liferay DXP .war file and copy both the libraries required globally by Liferay DXP
and your Ext plugin to the appropriate folder within the application server.

2. Copy the Ext plugin .war into the auto-deploy folder. For a bundled Liferay DXP distribution, the
deploy folder is in Liferay’s root folder of your bundle (e.g., liferay-ce-portal-[version]/).

3. Once the Ext plugin is detected and deployed by Liferay DXP, restart your Liferay DXP server.

Method 2: Generate an Aggregated WAR File

Some application servers don’t support auto-deploy; WebSphere and WebLogic are two examples. With
an aggregated .war file, the Ext plugin is merged before deployment to production. A single .war file then
contains Liferay DXP plus the changes from your Ext plugin. Before you deploy the aggregated Liferay DXP
.war file, copy the dependency .jar files for Liferay DXP and your Ext plugin to the global application server
class loader in the production server. The precise location varies from server to server; refer to Deployment
to get the details for your application server.

To create the aggregated .war file, deploy the Ext plugin first to the Liferay DXP bundle you are using in
your development environment. Once it’s deployed, restart the server so that the plugin is fully deployed
and shut it down again. Now the aggregated file is ready.

Create a .war file by zipping the Liferay web application folder from within the app server. Copy into
your application server’s global classpath all of the libraries on which your Ext plugin depends.

Now, perform these actions on your server:

196

1. Redeploy Liferay DXP using the aggregated .war file.

2. Stop the server and copy the new version of the global libraries to the appropriate directory in the
application server.

Next, you’ll learn about Liferay’s licensing and contributing standards.

Licensing and Contributing

Liferay DXP is Open Source software licensed under the LGPL 2.1 license. If you reuse any code snippet
and redistribute it, whether publicly or to a specific customer,make sure your modifications are compliant
with the license. One common way is to make the source code of your modifications are available to the
community under the same license. Make sure you read the license text yourself to find the option that best
fits your needs.

If your goal inmaking changes is fixing a bug or improving LiferayDXP, it could be of interest to a broader
audience. Consider contributing it back to the project. That benefits all users of the product including you,
since you won’t have to maintain the changes with each newly released version of Liferay DXP. You can notify
Liferay of bugs or improvements at issues.liferay.com. Check out the Participate section of portal.liferay.dev,
to learn all the ways that you can contribute to the Liferay Portal project.

In summary, an Ext plugin is a powerful way to extend Liferay DXP.There are no limits to what you can
customize, so use it carefully. Before using an Ext plugin, see if you can implement all or part of the desired
functionality through Application Display Templates or a different plugin type. OSGi modules offer you a lot
of extension capabilities themselves, without introducing the complexity that’s inherent with Ext plugins. If
you need to use an Ext plugin,make your customization as small as possible and follow the instructions in
this tutorial carefully to avoid issues.

197

http://www.gnu.org/licenses/lgpl-2.1.html
http://issues.liferay.com
https://portal.liferay.dev/participate/
https://portal.liferay.dev

Chapter 19

Developing a Web Application

In this LearningPath, you’ll create the LiferayGuestbookWebApplication fromscratch using tools like Liferay
@ide@ and BLADE tools. As you create this application, you’ll learn how to create a back-end database,
web services, a security model, UI, and more using all the best practices and standards for Liferay DXP.
Completing this Learning Path will prepare you to write your own application and further explore Liferay’s
APIs.

To develop a web application with Liferay, start at the beginning: setting up a Liferay development
environment. Though you can use anything from a text editor and the command line, to your Java IDE of
choice, Liferay provides Liferay@ide@ to optimize development on Liferay’s platform. It integrates Liferay’s
BLADE tools for modular development.

Once your development environment is set up, you’ll begin creating the application. Frommodeling data
to Service Builder, you’ll learn everything you need to know to create and run your application.

From there you’ll see everything from UI standards to providing remote services. Once everything is
completed and wrapped up with a bow, you can distribute the application onMarketplace.

Let’s Go!

19.1 Development Setup Overview

<p>Development Setup Overview
Step 1 of 1</p>

Liferay’s development tools aim to help you get started fast. The basic steps for installing Liferay @ide@
are

• Download a Liferay @ide@ bundle.

• Unzip the downloaded package to a location on your system.

• Start @ide@.

You’ll follow these steps, and then generate an environment for developing your first Liferay DXP appli-
cation.

199

Installing a Liferay @ide@ Bundle

To install Liferay @ide@, follow these steps:

1. Download and install the Java Development Kit (JDK). Liferay DXP runs on Java. The JDK is required
because you’ll be developing Liferay DXP apps in Liferay @ide@. The JDK is an enhanced version of
the Java Environment used for developing new Java technology.

2. Download Liferay @ide@. Installing it is easy: unzip it to a convenient location on your system.

3. To run Liferay @ide@, execute the eclipse executable.

The first time you start Liferay @ide@, it prompts you to select an Eclipse workspace. If you specify a
folder where no workspace currently exists, Liferay @ide@ creates a new workspace in that folder. Follow
these steps to create a new workspace:

1. When prompted, indicate your workspace’s path. Name your new workspace guestbook-workspace
and clickOK.

2. When Liferay @ide@ first launches, it presents a welcome page. Click theWorkbench icon to continue.

Nice job! Your development environment is installed and your workspace is set up.

Creating a Liferay Workspace

Now you’ll create another kind of workspace–a LiferayWorkspace. By holding andmanaging your Liferay
DXP projects, a Liferay Workspace provides a simplified, straightforward way to develop Liferay DXP
applications. In the background, a LiferayWorkspace uses Blade CLI and Gradle to manage dependencies
and organize your build environment. Note that to avoid configuration issues, you can only create one
LiferayWorkspace for each EclipseWorkspace.

Follow these steps to create a LiferayWorkspace in Liferay @ide@:

1. Select File →New → LiferayWorkspace Project. Note: youmay have to select File →New →Other, then choose
LiferayWorkspace Project in the Liferay category.

ANew LiferayWorkspace dialog appears, which presents several configuration options.

2. Give your workspace the name com-liferay-docs-guestbook.

3. Next, choose your workspace’s location. Leave the default setting checked. This places your Liferay
Workspace inside your Eclipse workspace.

4. Check the Download Liferay bundle checkbox to automatically download and unzip a Liferay DXP
instance in your workspace. When prompted, name the server liferay-tomcat-bundle.

5. Click Finish to create your Liferay Workspace. This may take a while because Liferay Liferay DXP
downloads the Liferay DXP bundle in the background.

A dialog appears prompting you to open the LiferayWorkspace perspective. Click Yes, and your perspec-
tive switches to LiferayWorkspace.

Congratulations! Your development environment is ready! Next, you’ll get started developing your first
Liferay DXP application.

200

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.liferay.com/downloads/liferay-projects/liferay-ide
https://gradle.org/

Figure 19.1: By selecting Liferay Workspace, you begin the process of creating a new workspace for your Liferay DXP projects.

201

Figure 19.2: Liferay @ide@ provides an easy-to-follow menu to create your Liferay Workspace.

202

Chapter 20

Creating a Working Prototype

So far, you’ve installed and set up Liferay @ide@, and created a LiferayWorkspace. Next, you’ll create your
application and start adding basic features to it. Here’s what you’ll do:

• Create your application and deploy it to your Liferay DXP instance.
• Create a functional button for adding and removing guestbook entries.
• Create a form for users to create and edit guestbook entries.
• Create a UI for displaying guestbook entries.
• Implement a prototype storage system (to be replaced later) for storing guestbook entries.

At the end, you’ll have a fully functional prototype application ready to be enhanced later! There’s no time
like now to get started.

Let’s Go!

20.1 Writing Your First Liferay DXP Application
<p>Developing Your First Portlet
Step 1 of 8</p>

It’s easy to get started developing your first Liferay DXP application. Here, you’ll learn step-by-step
how to create your project and deploy your application to Liferay DXP. Before you know it, you’ll have your
application deployed alongside those that come with Liferay DXP.

Your first application is simple: you’ll build a guestbook application that looks like this:
By default, it shows guestbookmessages that various users leave on your website. To add amessage, you

click the Add Entry button to show a form that lets you enter and save a message.
Ready to write your first Liferay DXP application?

Creating Your First Liferay DXP Application

Your first step is to create a Liferay Module Project. Modules are the core building blocks of Liferay DXP
applications. Every application is made from one or more modules. Each module encapsulates a functional
piece of an application, and thenmultiple modules form a complete application. There’s good reason for
this: modules let you swap out code implementations more or less at will. This makes your applications easy
to maintain and upgrade.

203

Figure 20.1: You’ll create this simple application.

Thesemodules are OSGi modules. The OSGi container in Liferay DXP can run any OSGi module. Each
module is packaged as a JAR file that contains a manifest file. Themanifest is needed for the container to
recognize the module. Technically, a module that contains only a manifest is still valid. Of course, such a
module wouldn’t be very interesting.

Now you’ll create your first module. For the purpose of this Learning Path, you’ll create your modules
inside your LiferayWorkspace. Follow these instructions to create your first Liferay Module Project:

1. In the Project Explorer in Liferay@ide@, right click on your LiferayWorkspace and selectNew → Liferay
Module Project.

2. Complete the first screen of the wizard with the following information:

• Enter guestbook-web for the Project name.
• Use the Gradle Build type.
• Select mvc-portlet for the Project Template.

ClickNext.

3. On the second screen of the wizard, enter Guestbook for the component class name, and
com.liferay.docs.guestbook.portlet for the package name. Click Finish.

Note that it may take a while for @ide@ to create your project, because Gradle downloads your project’s
dependencies for you during project creation. Once this is done, you have amodule project named guestbook-
web. The mvc-portlet template configured the project with the proper dependencies and generated all the
files you need to get started:

• The portlet class (in the package you specified)
• JSP files (in /src/main/resources)
• Language properties (also in /src/main/resources)

Your newmodule project is a portlet application. Next, you’ll learn exactly what a portlet is.

204

https://www.osgi.org/

Figure 20.2: Your new module project appears in your Liferay Workspace’s modules folder.

What is a Portlet?

When you access a web site, you interact with an application. That application could be simple: it might only
show you one piece of information, such as an article. The application might be complex: you could be doing
your taxes, entering lots of data into an application that calculates whether you owe or are due a refund.
These applications run on a platform that provides application developers the building blocks they need to
make applications.

LiferayDXPprovides aplatform that contains common featuresneededby today’s applications, including
user management, security, user interfaces, services, and more. Portlets are one of those basic building
blocks. Often a web application takes up the entire page. If you want, you can do this with applications in
Liferay DXP as well. Portlets, however, allow Liferay DXP to serve many applications on the same page at
the same time. Liferay DXP’s framework takes this into account at every step. For example, features like
platform-generated URLs exist to support Liferay’s ability to serve multiple applications on the same page.

What is a Component?

Portlets created in Liferay Module Projects are generated as Components. If the module (sometimes also
called a bundle) encapsulates pieces of your application, the component is the object that contains the
core functionality. A Component is an object that is managed by a component framework or container.

205

Figure 20.3: Many Liferay applications can run at the same time on the same page.

Components are deployed inside modules, and they’re created, started, stopped, and destroyed as needed
by the container. What a perfect model for a web application! It can bemade available only when needed,
and when it’s not, the container canmake sure it doesn’t use any resources needed by other components.

In this case, you created a Declarative Services (DS) component. With Declarative Services, you declare
that an object is a component, and you define some data about the component so the container knows how
to manage it. A default configuration was created for you; you’ll examine it later.

Deploying the Application

Even though all you’ve done is generate it, the guestbook-web project is ready to be built and deployed to
Liferay DXP.Make sure that your server is running, and if it isn’t, select it in @ide@’s Servers pane and click
the start button. After it starts, drag and drop the guestbook-web project from the Project Explorer to the
server. If this is your first time starting Liferay DXP, you’ll go through a short wizard to set up your server. In
this wizard,make sure you use the default database (Hypersonic). Although this database isn’t intended for
production use, it works fine for development and testing.

206

Next, check that your application is available in Liferay DXP. Open a browser, navigate to your portal
(http://localhost:8080 by default), and add your application to a page. To add an application to a page, click
the Add button in the upper right hand corner (it looks like a plus sign), and then select Applications. In the
Applications list, your application should appear in the Sample category. Its name should be guestbook-web-
module Portlet.

Figure 20.4: This is the default Liferay homepage. It contains several portlets, including the initial version of the Guestbook application that you created.

Now you’re ready to jump in and start developing your Guestbook portlet.

20.2 Creating an Add Entry Button
<p>Developing Your First Portlet
Step 2 of 8</p>

A guestbook application is pretty simple, right? People come to your site and post their names and brief
messages. Other users can read these entries and post their own.

Whenyoucreatedyourproject, it generatedafilenamed view.jsp in yourproject’s src/main/resources/META-
INF/resources folder. This file creates the default view for users when the portlet is added to the page. Right
now it only contains some sample content:

<%@ include file="/init.jsp" %>

<p>

<liferay-ui:message key="guestbook-web.caption"/>

</p>

First, view.jsp imports init.jsp. By convention, imports and tag library declarations in Liferay DXP
portlet applications should be in an init.jsp file. The other JSP files in the application import init.jsp. This
lets you handle JSP dependency management in a single file.

207

http://localhost:8080

Besides importing init.jsp, view.jsp displays a message defined by a language key. This key and its
value are declared in your project’s src/main/resources/content/Language.properties file.

It’s time to start developing the Guestbook application. First, users need a way to add a guestbook entry.
In view.jsp, follow these steps to add this button:

1. Remove everything under the include for init.jsp.

2. Below the include, add the following AlloyUI tags to display an Add Entry button inside of a button
row:

<aui:button-row>

<aui:button value="Add Entry"></aui:button>

</aui:button-row>

You can use aui tags in view.jsp since init.jsp declares the AlloyUI tag library by default (as well as other
important imports and tags):

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://liferay.com/tld/portlet" prefix="liferay-portlet" %>

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme" %>

<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>

<portlet:defineObjects />

<liferay-theme:defineObjects />

Your application now displays a button instead of a message, but the button doesn’t do anything. Next,
you’ll create a URL for your button.

Figure 20.5: Your new button is awesome, but it doesn’t work yet.

20.3 Generating Portlet URLs
<p>Developing Your First Portlet
Step 3 of 8</p>

Recall that users can place multiple portlets on a single page. As a developer, you have no idea what other
portlets will share a page with yours. This means that you can’t define URLs for various functions in your
application like youmay be used to.

For example, consider a Calendar application that a user puts on the same page as a Blog application. To
implement the functionality for deleting calendar events and blog entries in the respective application, both

208

http://alloyui.com/

applicationdevelopers append the delparameter to theURL,andgive it a primary key value so the application
can look up and delete the calendar event or blog entry. Since both applications read this parameter, their
delete functionality clashes.

System-generated URLs are Liferay DXP’s solution to this. By generating a unique URL parameter for
each piece of functionality, Liferay DXP lets multiple applications with the same or similar functionality
coexist in perfect harmony. Unfortunately, for this to work in your portlet youmust manually add support
for it. Fortunately, doing so is very straightforward.

In view.jsp, follow these steps to enable system-generated URLs in your portlet:

1. Add these tags below <%@ include file="/init.jsp" %>, but above the <aui:button-row> tag:

<portlet:renderURL var="addEntryURL">

<portlet:param name="mvcPath" value="/edit_entry.jsp"></portlet:param>

</portlet:renderURL>

2. Add this attribute to the <aui:button> tag, before value="Add Entry":

onClick="<%= addEntryURL.toString() %>"

Your view.jsp page should now look like this:

<%@ include file="/init.jsp" %>

<portlet:renderURL var="addEntryURL">

<portlet:param name="mvcPath" value="/edit_entry.jsp"></portlet:param>

</portlet:renderURL>

<aui:button-row>

<aui:button onClick="<%= addEntryURL.toString() %>" value="Add Entry"></aui:button>

</aui:button-row>

The <portlet:renderURL> tag’s var attribute creates the addEntryURL variable to hold the system-generated
URL. The <portlet:param> tag defines a URL parameter to append to the URL. In this example, a URL
parameter named mvcPathwith a value of /edit_entry is appended to the URL.

Note that your GuestbookPortlet class (located inyour guestbook-webmodule’s com.liferay.docs.guestbook.portlet
package) extends Liferay’s MVCPortlet class. In a Liferay MVC portlet, the mvcPathURL parameter indicates a
page within your portlet. To navigate to another page in your portlet, use a portal URL with the parameter
mvcPath to link to the specific page.

In the example above, you created a renderURL that points to your application’s edit_entry.jsp page,
which you haven’t yet created. Note that using an AlloyUI button to follow the generated URL isn’t required.
You can use any HTML construct that contains a link. Users can click your button to access your applica-
tion’s edit_entry.jsp page. This currently produces an error since no edit_entry.jsp exists yet. Creating
edit_entry.jsp is your next step.

20.4 Linking to Another Page
<p>Developing Your First Portlet
Step 4 of 8</p>

In the same folder your view.jsp is in, create the edit_entry.jsp file:

1. Right-click your project’s src/main/resources/META-INF/resources folder and chooseNew → File.

209

2. Name the file edit_entry.jsp and click Finish.

3. Add this line to the top of the file:

<%@ include file="init.jsp" %>

Remember, it’s a best practice to add all JSP imports and tag library declarations to a single file that’s
imported by your application’s other JSP files. For edit_entry.jsp, you need these imports to access
the portlet tags that create URLs and the Alloy tags that create the form.

4. You’ll create two URLs: one to submit the form and one to go back to the view.jsp. To create the URL
to go back to view.jsp, add the following tag below the first line you added:

<portlet:renderURL var="viewURL">

<portlet:param name="mvcPath" value="/view.jsp"></portlet:param>

</portlet:renderURL>

Next, youmust create a new URL for submitting the form. Before you do, some explanation is in order.

20.5 Triggering Portlet Actions
<p>Developing Your First Portlet
Step 5 of 8</p>

Recall that portlets run in a portion of a page, and a page can contain multiple portlets. Because of this,
portlets have phases of operation. Here, you’ll learn about the most important two. The first phase is the one
you’ve already used: the render phase. All this means is that the portlet draws itself, using the JSPs you write
for it.

The other phase is called the action phase. This phase runs once, when a user triggers a portlet action.
The portlet performs whatever action the user triggered, such as performing a search or adding a record
to a database. Then, based on what happened in the action, the portlet goes back to the render phase and
re-renders itself according to its new state.

To save a guestbook entry, youmust trigger a portlet action. For this, you’ll create an action URL.
Add the following tag in edit_entry.jsp after the closing </portlet:renderURL> tag:

<portlet:actionURL name="addEntry" var="addEntryURL"></portlet:actionURL>

You now have the two required URLs for your form.

20.6 Creating a Form
<p>Developing Your First Portlet
Step 6 of 8</p>

The form for creating guestbook entries is pretty simple. All you need are two fields: one for the name of
the person submitting the entry, and one for the entry itself.

Add the following tags to the end of your edit_entry.jsp file:

210

<aui:form action="<%= addEntryURL %>" name="<portlet:namespace />fm">

<aui:fieldset>

<aui:input name="name"></aui:input>

<aui:input name="message"></aui:input>

</aui:fieldset>

<aui:button-row>

<aui:button type="submit"></aui:button>

<aui:button type="cancel" onClick="<%= viewURL.toString() %>"></aui:button>

</aui:button-row>

</aui:form>

Save edit_entry.jsp and redeploy your application. If you refresh the page and click the AddEntry button,
your form appears. If you click the Cancel button, it works! However, don’t try the Save button yet. You
haven’t yet created the action that saves a guestbook entry, so clicking Save produces an error.

Figure 20.6: This is the Guestbook application’s form for adding entries.

Implementing the portlet action (what happens when the user clicks Save) is your next task.

20.7 Implementing Portlet Actions
<p>Developing Your First Portlet
Step 7 of 8</p>

When users submit the form, your application stores the form data for display in the guestbook. To keep
this first application simple, you’ll implement this using a part of the Portlet API called Portlet Preferences.
Normally, of course, you’d use a database. Liferay DXP’s Service Builder tool eliminates a great deal of
complexity when working with databases. For now, however, you can create the first iteration of your
guestbook application using portlet preferences.

Tomake your portlet do anything other than re-render itself, youmust implement portlet actions. An
action defines some processing, usually based on user input, that the portlet must perform before it renders
itself. In the case of the guestbook portlet, the action you’ll implement next saves a guestbook entry that a
user typed into the form. Saved guestbook entries can be retrieved and displayed later.

Since you’re using Liferay’s MVC Portlet framework, you have an easy way to implement actions. Portlet
actions are implemented in the portlet class, which acts as the controller. In the form you just created, you
made an action URL, and you called it addEntry. To create a portlet action, you create a method in the portlet
class with the same name. MVCPortlet calls that method when a user triggers its matching URL.

211

1. Open GuestbookPortlet. The project template generated this class when you created the portlet project.

2. Create a method with the following signature:

public void addEntry(ActionRequest request, ActionResponse response) {

}

3. Press [CTRL]+[SHIFT]+O to organize imports and import the required javax.portlet.ActionRequest

and javax.portlet.ActionResponse classes.

You’ve now created a portlet action. It doesn’t do anything, but at least you won’t get an error now if you
submit your form. Next, you should make the action save the form data.

Because of the limitations of the portlet preferences API, youmust store each guestbook entry as a String
in a string array. Since your form has two fields, youmust use a delimiter to determine where the user name
ends and the guestbook entry begins. The caret symbol (^) makes a good delimiter because users are highly
unlikely to use that symbol in a guestbook entry.

Note:The portlet preferences API is used here for prototyping purposes only. In most cases, you’ll need
a more robust solution for storing data. You’ll learn how to implement such a solution later in the Service
Builder section.

The followingmethod implements adding a guestbook entry to a portlet preference called guestbook-

entries:

public void addEntry(ActionRequest request, ActionResponse response) {

try {

PortletPreferences prefs = request.getPreferences();

String[] guestbookEntries = prefs.getValues("guestbook-entries",

new String[1]);

ArrayList<String> entries = new ArrayList<String>();

if (guestbookEntries[0] != null) {

entries = new ArrayList<String>(Arrays.asList(prefs.getValues(

"guestbook-entries", new String[1])));

}

String userName = ParamUtil.getString(request, "name");

String message = ParamUtil.getString(request, "message");

String entry = userName + "^" + message;

entries.add(entry);

String[] array = entries.toArray(new String[entries.size()]);

prefs.setValues("guestbook-entries", array);

try {

prefs.store();

}

catch (IOException ex) {

Logger.getLogger(GuestbookPortlet.class.getName()).log(

Level.SEVERE, null, ex);

}

catch (ValidatorException ex) {

Logger.getLogger(GuestbookPortlet.class.getName()).log(

Level.SEVERE, null, ex);

212

}

}

catch (ReadOnlyException ex) {

Logger.getLogger(GuestbookPortlet.class.getName()).log(

Level.SEVERE, null, ex);

}

}

1. Replace your existing addEntrymethod with the above method.

2. Press [CTRL]+[SHIFT]+O to organize imports and select the javax.portlet.PortletPreferences and
java.util.logging.Loggerwhen prompted (not their Liferay equivalents).

First, the preferences are retrieved. Then the guestbook-entries preference is retrieved and converted to
an ArrayList so that you can add an entry without worrying about exceeding the size of the array. Next, the
name andmessage fields from your form are retrieved. Note that Liferay’s ParamUtil class makes it very easy
to retrieve URL parameters.

Finally, the fields are combined into a String delimited by a caret, and the new entry is added to the
ArrayList, which is then converted back to an array so it can be stored as a preference. The try/catch blocks
are required by the portlet preferences API.

This isn’t the normal way to use portlet preferences, but it provides a quick and easy way for you to store
guestbook entries in this first version of your application. In a later step, you’ll implement a robust way to
store guestbook entries in a database.

The next and final feature to implement is a mechanism for viewing guestbook entries.

20.8 Displaying Guestbook Entries
<p>Developing Your First Portlet
Step 8 of 8</p>

To display guestbook entries, you must do the reverse of what you did to store them: retrieve them from
portlet preferences, loop through them, and present them on the page. The best way to do this withMVC
Portlet is to use theModel-View-Controller paradigm. You already have the view (your JSP files) and your
controller (your portlet class). Now you need your model.

Creating Your Model

1. Create a new package called com.liferay.docs.guestbook.model. To do this, right-click your
src/main/java folder and select New → Package. Then enter the package name in the dialog box that
appears.

2. Next, create your model class. This is a simple class that models a guestbook entry. To do this, right-
click your new package and selectNew → Class. Name the class Entry, and click Finish.

You now have a Java class for your guestbook entries. Next, you’ll give it the fields you need to store
entries.

3. Create two private String variables: name and message.

private String name;

private String message;

213

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

4. Right-click a blank area of the editor and select Source → Generate Getters and Setters. Click Select All in
the dialog that pops up, and then clickOK.

5. Next, provide two constructors: one that initializes the class with no values for the two fields, and one
that takes the two fields as parameters and sets their values:

public Entry() {

this.name = null;

this.message = null;

}

public Entry(String name, String message) {

setName(name);

setMessage(message);

}

Your completed model class looks like this:

package com.liferay.docs.guestbook.model;

public class Entry {

private String name;

private String message;

public Entry() {

this.name = null;

this.message = null;

}

public Entry(String name, String message) {

setName(name);

setMessage(message);

}

public String getName() {

return name;

}

public String getMessage() {

return message;

}

public void setName(String name) {

this.name = name;

}

public void setMessage(String message) {

this.message = message;

}

}

Now that you have your model, you have an easy way of encapsulating guestbook entries so they can be
processed by the controller layer and displayed by the view layer. Your next step is to enhance the controller
(your portlet class) so that guestbook entries are processed and ready to display when users see the guestbook
application.

Customizing How Your Application is Rendered

Asmentioned earlier, your application is using two portlet phases: render and action. Tomake the guestbook
show the saved guestbook entries when users view the application, you need to customize your portlet’s
render functionality, which it’s currently inheriting from its parent class, MVCPortlet.

214

1. Open GuestbookPortlet and add the followingmethod below your addEntrymethod:

@Override

public void render(RenderRequest renderRequest, RenderResponse renderResponse)

throws PortletException, IOException {

PortletPreferences prefs = renderRequest.getPreferences();

String[] guestbookEntries = prefs.getValues("guestbook-entries", new String[1]);

if (guestbookEntries[0] != null) {

List<Entry> entries = parseEntries(guestbookEntries);

renderRequest.setAttribute("entries", entries);

}

super.render(renderRequest, renderResponse);

}

This method retrieves the guestbook entries from the configuration, converts it to a List of Entry
objects, and places that List into the request object. It then calls the parent class’s rendermethod.

2. Beneath the rendermethod, add the following method that converts the array to a List of your model
objects:

private List<Entry> parseEntries(String[] guestbookEntries) {

List<Entry> entries = new ArrayList<Entry>();

for (String entry : guestbookEntries) {

String[] parts = entry.split("\\^", 2);

Entry gbEntry = new Entry(parts[0], parts[1]);

entries.add(gbEntry);

}

return entries;

}

3. Press [CTRL]+[SHIFT]+O to organize imports.

Note: When you are prompted to choose imports, here are some guidelines:

• Always use org.osgi... packages instead of aQute.bnd...

• Generally use java.util... or javax.portlet... packages.

• You never use java.awt... in this project.

• Only use com.liferay... when it is for a Liferay specific implementation or your custom implementa-
tion of a concept.

For example:

• If you are given the choice between javax.portlet.Portlet and com.liferay.portlet.Portlet choose
javax.portlet.Portlet.

• If you are given the choice between org.osgi.component and aQute.bnd.annotation.component choose
org.osgi.component

215

• However, if youaregiven the choicebetween java.util.Map.Entryand com.liferay.docs.guestbook.model.Entry
(the custom class you created) choose com.liferay.docs.guestbook.model.Entry

If at some point you think you chose an incorrect import, but you’re not sure what it might be, you can
erase all of the imports from the file and press [CTRL]+[SHIFT]+O again and see if you can identify where
you went wrong.

As you can see, this method splits the entries in the String array into two parts based on the caret (^)
character.

Now that you have your controller preparing your data for display, your next step is to implement the
view so users can see guestbook entries.

Displaying Guestbook Entries

Liferay’s development frameworkmakes it easy to loop through data and display it nicely to the end user.
You’ll use a Liferay UI construct called Search Container to make this happen.

1. Add these tags to your view.jsp in between the </portlet:renderURL> and <aui:button-row> tags:

<jsp:useBean id="entries" class="java.util.ArrayList" scope="request"/>

<liferay-ui:search-container>

<liferay-ui:search-container-results results="<%= entries %>" />

<liferay-ui:search-container-row

className="com.liferay.docs.guestbook.model.Entry"

modelVar="entry"

>

<liferay-ui:search-container-column-text property="message" />

<liferay-ui:search-container-column-text property="name" />

</liferay-ui:search-container-row>

<liferay-ui:search-iterator />

</liferay-ui:search-container>

Save your work, deploy your application, and try adding some guestbook entries.
Awesome! You’ve finished your working prototype! You have a working application that adds and saves

guestbook entries.
The way you’re saving the entries isn’t the best way to persist data in your application. Next, you’ll use

Service Builder to generate your persistence classes and the methods you need to store your application data
in the database.

216

Chapter 21

Generating the Back-end

So far, you have a prototype application that uses Liferay’s Model-View-Controller (MVC) portlet framework.
MVC is a great design pattern for web applications because it splits your application into three parts (the
model, the view, and the controller). This lets you swap out those parts if necessary.

A persistence layer and a service layer are added to these three parts of your application. To get the prototype
working, you used Portlet Properties to create a rudimentary persistence layer. Since this isn’t a long-term
solution, you’ll now replace that layer by persisting your guestbooks and their entries to a database.

Figure 21.1: Service Builder generates the shaded layers of your application.

Service Builder is Liferay’s code generation tool for defining object models andmapping those models to

217

SQL databases. By defining your model in a single XML file, you can generate your object model (the M in
MVC), your service layer, and your persistence layer all in one shot. At the same time, you can generate web
services (more on that later) and support every database Liferay DXP supports.

Ready to begin?
Let’s Go!

21.1 What is Service Builder?
<p>Generating the Back-end
Step 1 of 3</p>

Now you’ll use Service Builder to generate create, read, update, delete, and find operations for your
application. You’ll also use Service Builder to generate the necessary model, persistence, and service layers
for your application. Then you can add your application’s necessary business logic.

Guestbook Application Design

In the prototype application, you defined a single guestbook’s entries and displayed them in a list. The full
application will handle multiple Guestbooks and their entries. To make this work, you’ll create two tables in
the database: one for guestbooks, and one for guestbook entries.

Service Layer

This application is data-driven. It uses services for storing and retrieving data. The application asks for data,
and the service fetches it. The application can then display this data to the user, who reads or modifies it. If
the data is modified, the application passes it back to the service, and the service stores it. The application
doesn’t need to know anything about how the service does what it does.

To get started, you’ll create a ServiceBuilder project andpopulate its service.xmlfilewith all the necessary
entities to generate this code:

1. In Liferay @ide@, click File →New → LiferayModule Project.

2. Name the project guestbook.

3. Select service-builder for the Project Template Name.

4. ClickNext.

5. Enter com.liferay.docs.guestbook for the Package Name.

6. Click Finish.

This creates two modules: an API module (guestbook-api) and a service module (guestbook-service).
Next, you’ll learn how to use them.

21.2 Generating Model, Service, and Persistence Layers
<p>Generating the Back-end
Step 2 of 3</p>

218

Figure 21.2: Your current project structure.

Thepersistence layer saves and retrieves yourmodel data. The service layer is a buffer between your appli-
cation andpersistence layers: having it lets you swapout your persistence layer for a different implementation
without modifying anything but the calls in the service layer.

To model the guestbooks and entries, you’ll create guestbook and entry model classes. But you won’t do
this directly in Java. Instead, you’ll define them in Service Builder, which generates your object model and
maps it to all the SQL databases Liferay DXP supports.

This application’s design lets you create multiple guestbooks, each containing different sets of entries.
All users with permission to access the application can add entries, but only administrative users can add
guestbooks.

It’s time to get started. You’ll create the Guestbook entity first:

1. In your guestbook-service project, open service.xml.

2. When Liferay@ide@ generated your project, it filled this file with dummy entities, which you’ll replace.
First replace the file’s opening contents (below the DOCTYPE) with the following code:

<service-builder auto-namespace-tables="true" package-path="com.liferay.docs.guestbook">

<author>liferay</author>

<namespace>GB</namespace>

<entity name="Guestbook" local-service="true" uuid="true">

This defines the author, namespace, and the entity name. The namespace keeps the database field
names from conflicting. The last tag is the opening tag for the Guestbook entity definition. In this tag,

219

you enable local services for the entity, define its name, and specify that it should have a universally
unique identifier (UUID).

3. Next, replace the PK fields section:

<column name="guestbookId" primary="true" type="long" />

This defines guestbookId as the entity’s primary key, of the type long.

4. The group instance can be left alone.

<column name="groupId" type="long" />

This defines the ID of the site in Liferay DXP that the entity instance belongs to (more on this in a
moment).

5. Leave the Audit Fields section alone. Add status fields:

<!-- Status fields -->

<column name="status" type="int" />

<column name="statusByUserId" type="long" />

<column name="statusByUserName" type="String" />

<column name="statusDate" type="Date" />

The Audit section defines Liferay DXPmetadata. The companyId is the primary key of a portal instance.
The userId is the primary key of a user. The createDate and modifiedDate store the respective dates
on which the entity instance is created andmodified. The Status section is used later to implement
workflow.

6. In the Other fields section, remove all the generated fields and put this one in their place:

<column name="name" type="String" />

7. Next, remove everything else from the Guestbook entity. Before the closing </entity> tag, add this
finder definition:

<finder name="GroupId" return-type="Collection">

<finder-column name="groupId" />

</finder>

This defines a finder that generates a getmethod you’ll use to retrieve Guestbook entities. The fields
used by the finder define the scope of the data retrieved. This finder gets all Guestbooks by their
groupId, which corresponds to the site the application is on. This lets administrators put Guestbooks
onmultiple sites, and each Guestbook has its own data scoped to its site.

The Guestbook entity is finished for now. Next, you’ll create the Entry entity:

1. Add the opening entity tag:

<entity name="Entry" local-service="true" uuid="true">

220

https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

As with the Guestbook entity, you enable local services, define the entity’s name, and specify that it
should have a UUID.

2. Add the tag to define the primary key and the groupId:

<column name="entryId" primary="true" type="long" />

<column name="groupId" type="long" />

3. Add the audit fields as you did with the Guestbook entity:

<column name="companyId" type="long" />

<column name="userId" type="long" />

<column name="userName" type="String" />

<column name="createDate" type="Date" />

<column name="modifiedDate" type="Date" />

4. Add status fields like you did for the guestbook:

<!-- Status fields -->

<column name="status" type="int" />

<column name="statusByUserId" type="long" />

<column name="statusByUserName" type="String" />

<column name="statusDate" type="Date" />

5. Add the fields that define an Entry:

<column name="name" type="String" />

<column name="email" type="String" />

<column name="message" type="String" />

<column name="guestbookId" type="long" />

The name, email, and message fields comprise an Entry. These fields define the name of the person
creating the entry, their email address, and the Guestbook message, respectively. The guestbookId
is assigned automatically by code you’ll write, and is a Guestbook foreign key. This ties the Entry to a
specific Guestbook.

6. Add your finder and closing entity tag:

<finder name="G_G" return-type="Collection">

<finder-column name="groupId" />

<finder-column name="guestbookId" />

</finder>

</entity>

Here, youdefine afinder that gets guestbook entries by groupId and guestbookId. As before, the groupId
corresponds to the site the application is on. The guestbookId defines the guestbook the entries come
from. This finder returns a Collection of entries.

7. Define your exception types outside the <entity> tags, just before the closing </service-builder> tag:

221

<exceptions>

<exception>EntryEmail</exception>

<exception>EntryMessage</exception>

<exception>EntryName</exception>

<exception>GuestbookName</exception>

</exceptions>

These generate exception classes you’ll use later in try/catch statements.

8. Save your service.xml file.

Now you’re ready to run Service Builder to generate your model, service, and persistence layers!

1. In the Gradle Tasks pane on the right side of @ide@, open guestbook-service → build.

2. Run buildService by right-clicking it and selecting RunGradle Tasks. Make sure you’re connected to
the Internet, as Gradle downloads dependencies the first time you run it.

3. In the Project Explorer, right-click the guestbook-servicemodule and select Refresh. Repeat this step
for the guestbook-apimodule. This ensures that the new classes and interfaces generated by Service
Builder show up in @ide@.

4. In the Project Explorer, right-click the guestbook-servicemodule and select Gradle → Refresh Gradle
Project. Repeat this step for the guestbook-apimodule. This ensures that your modules’ Gradle depen-
dencies are up to date.

Service Builder is based on a design philosophy called loose coupling. It generates three layers of your
application: the model, the service, and the persistence layers. Loose coupling means you can swap out the
persistence layer with little to no change in the model and service layers. Themodel is in the -apimodule,
and the service and persistence layers are in the -servicemodule.

Each layer is implemented using Java Interfaces and implementations of those interfaces. Rather than
have one Entry class that represents your model, Service Builder generates a system of classes that include a
Guestbook interface, a GuestbookBaseImpl abstract class that Service Builder manages, and a GuestbookImpl
class that you can customize. This design lets you customize your model, while Service Builder generates
code that’s tedious to write. That’s why Service Builder is a code generator for code generator haters.

Next, you’ll create the service implementations.

21.3 Implementing Service Methods
<p>Generating the Back-end
Step 3 of 3</p>

When you use Service Builder, you implement the services in the service module. Because your applica-
tion’s projects are components, you can reference your service layer from your webmodule.

You’ll implement services forguestbooksandentries in the guestbook-servicemodule’s GuestbookLocalServiceImpl
and EntryLocalServiceImpl, respectively.

Follow these steps to implement services for guestbooks in GuestbookLocalServiceImpl:

1. In the com.liferay.docs.guestbook.service.impl package, open GuestbookLocalServiceImpl. Then add
this addGuestbookmethod:

222

Figure 21.3: The Model, Service, and Persistence Layer.

223

public Guestbook addGuestbook(

long userId, String name, ServiceContext serviceContext)

throws PortalException {

long groupId = serviceContext.getScopeGroupId();

User user = userLocalService.getUserById(userId);

Date now = new Date();

validate(name);

long guestbookId = counterLocalService.increment();

Guestbook guestbook = guestbookPersistence.create(guestbookId);

guestbook.setUuid(serviceContext.getUuid());

guestbook.setUserId(userId);

guestbook.setGroupId(groupId);

guestbook.setCompanyId(user.getCompanyId());

guestbook.setUserName(user.getFullName());

guestbook.setCreateDate(serviceContext.getCreateDate(now));

guestbook.setModifiedDate(serviceContext.getModifiedDate(now));

guestbook.setName(name);

guestbook.setExpandoBridgeAttributes(serviceContext);

guestbookPersistence.update(guestbook);

return guestbook;

}

This method adds a guestbook to the database. It retrieves metadata from the environment (such
as the current user’s ID, the group ID, etc.), along with data passed from the user. It validates this
data and uses it to construct a Guestbook object. Themethod then persists this object to the database
and returns the object. You only implement the business logic here because Service Builder already
generated the model and all the code that maps that model to the database.

2. Add the methods for getting Guestbook objects:

public List<Guestbook> getGuestbooks(long groupId) {

return guestbookPersistence.findByGroupId(groupId);

}

public List<Guestbook> getGuestbooks(long groupId, int start, int end,

OrderByComparator<Guestbook> obc) {

return guestbookPersistence.findByGroupId(groupId, start, end, obc);

}

public List<Guestbook> getGuestbooks(long groupId, int start, int end) {

return guestbookPersistence.findByGroupId(groupId, start, end);

}

public int getGuestbooksCount(long groupId) {

return guestbookPersistence.countByGroupId(groupId);

}

These call the finders you generatedwith Service Builder. Thefirstmethod retrieves a list of guestbooks
from the site specified by groupId. The next twomethods get paginated lists, optionally in a particular
order. The final method gives you the total number of guestbooks for a given site.

224

3. Finally, add the guestbook validator method:

protected void validate(String name) throws PortalException {

if (Validator.isNull(name)) {

throw new GuestbookNameException();

}

}

Thismethod uses Liferay DXP’s Validator to make sure the user entered text for the guestbook name.

4. Press [CTRL]+[SHIFT]+O to organize imports and select the following when prompted:

• java.util.Date

• com.liferay.portal.kernel.service.ServiceContext

• com.liferay.docs.guestbook.model.Entry

• com.liferay.portal.kernel.util.Validator

Now you’re ready to implement services for entries in EntryLocalServiceImpl. Do so now by following
these steps:

1. In the com.liferay.docs.guestbook.service.impl package, open EntryLocalServiceImpl. Add this
addEntrymethod:

public Entry addEntry(

long userId, long guestbookId, String name, String email,

String message, ServiceContext serviceContext)

throws PortalException {

long groupId = serviceContext.getScopeGroupId();

User user = userLocalService.getUserById(userId);

Date now = new Date();

validate(name, email, message);

long entryId = counterLocalService.increment();

Entry entry = entryPersistence.create(entryId);

entry.setUuid(serviceContext.getUuid());

entry.setUserId(userId);

entry.setGroupId(groupId);

entry.setCompanyId(user.getCompanyId());

entry.setUserName(user.getFullName());

entry.setCreateDate(serviceContext.getCreateDate(now));

entry.setModifiedDate(serviceContext.getModifiedDate(now));

entry.setExpandoBridgeAttributes(serviceContext);

entry.setGuestbookId(guestbookId);

entry.setName(name);

entry.setEmail(email);

entry.setMessage(message);

entryPersistence.update(entry);

return entry;

}

225

Like the addGuestbookmethod, addEntry takes data from the current context along with data the user
entered, validates it, and creates a model object. That object is then persisted to the database and
returned.

2. Add this updateEntrymethod:

public Entry updateEntry (

long userId, long guestbookId, long entryId, String name, String email,

String message, ServiceContext serviceContext)

throws PortalException, SystemException {

Date now = new Date();

validate(name, email, message);

Entry entry = getEntry(entryId);

User user = userLocalService.getUserById(userId);

entry.setUserId(userId);

entry.setUserName(user.getFullName());

entry.setModifiedDate(serviceContext.getModifiedDate(now));

entry.setName(name);

entry.setEmail(email);

entry.setMessage(message);

entry.setExpandoBridgeAttributes(serviceContext);

entryPersistence.update(entry);

return entry;

}

Thismethod first retrieves the entry and updates its data to reflect what the user submitted, including
its date modified.

3. Add this deleteEntrymethod:

public Entry deleteEntry (long entryId, ServiceContext serviceContext)

throws PortalException {

Entry entry = getEntry(entryId);

entry = deleteEntry(entryId);

return entry;

}

This method retrieves the entry object defined by entryId, deletes it from the database, and then
returns the deleted object.

4. Add the methods for getting Entry objects:

public List<Entry> getEntries(long groupId, long guestbookId) {

return entryPersistence.findByG_G(groupId, guestbookId);

}

public List<Entry> getEntries(long groupId, long guestbookId, int start, int end)

throws SystemException {

return entryPersistence.findByG_G(groupId, guestbookId, start, end);

}

226

public List<Entry> getEntries(

long groupId, long guestbookId, int start, int end, OrderByComparator<Entry> obc) {

return entryPersistence.findByG_G(groupId, guestbookId, start, end, obc);

}

public int getEntriesCount(long groupId, long guestbookId) {

return entryPersistence.countByG_G(groupId, guestbookId);

}

These methods, like the getters in GuestbookLocalServiceImpl, call the finders you generated with
Service Builder. These getEntries*methods, however, retrieve entries from a specified guestbook and
site. The first method gets a list of entries. The next method gets a paginated list. The third method
sorts the paginated list, and the last method gets the total number of entries as an integer.

5. Add the validatemethod:

protected void validate(String name, String email, String entry)

throws PortalException {

if (Validator.isNull(name)) {

throw new EntryNameException();

}

if (!Validator.isEmailAddress(email)) {

throw new EntryEmailException();

}

if (Validator.isNull(entry)) {

throw new EntryMessageException();

}

}

Thismethodmakes sure the user entered relevant data when creating an entry.

6. Press [CTRL]+[SHIFT]+O to organize imports and select the following when prompted:

• java.util.Date

• com.liferay.portal.kernel.service.ServiceContext

• com.liferay.docs.guestbook.model.Entry

• com.liferay.portal.kernel.util.Validator

Nice work! These local service methods implement the services that are referenced in the portlet class.

Updating Generated Classes

Now that you’ve implemented the service methods, youmust make them available to the rest of your applica-
tion. To do this, run buildService again:

1. In Gradle Tasks → guestbook-service → build, right-click buildService and select RunGradle Tasks. In the
utility classes, Service Builder populates calls to your newly created service methods.

2. In the Project Explorer, right-click the guestbook-servicemodule and select Refresh. Repeat this step
for the guestbook-apimodule. This ensures that the changes made by Service Builder show up in
Liferay @ide@.

227

3. In the Project Explorer, right-click the guestbook-servicemodule and select Gradle → Refresh Gradle
Project. Repeat this step for the guestbook-apimodule. This ensures that your modules’ Gradle depen-
dencies are up to date.

Tip: If something goes awrywhenworkingwith Service Builder, repeat these steps to run Service Builder
again and refresh your api and service modules.

Excellent! Your new back-end has been generated. Now it’s time to refactor your prototype to use it.

228

Chapter 22

Refactoring the Prototype

In an earlier section of this Learning Path, you created a Guestbook portlet prototype. Then you wrote a
service.xml file to define your application’s data model, and used Service Builder to generate the back-end
code (the model, service, and persistence layers). You also added service methods using the appropriate
extension points: your entities’ *LocalServiceImpl classes. Now you need to integrate the original prototype
with the new back-end to create a fully functional application.

There are many differences between the prototype and the application you’ll create. In the back-end,
you’ve already accounted for onebigdifference: users can createmultipleGuestbooks that eachhave their own
entries. In the front-end, however, only site administrators should be able to create guestbooks. Therefore,
you’ll create another portlet called Guestbook Admin and place it in the Content menu for sites.

To turn this application from a prototype into a full-fledged Liferay web application, you’ll make these
changes:

• Modify your view layer’s folder structure to account for the administrative portlet
• Set the Display Category so users can find the application more easily
• Create a file to store the application’s text keys
• Change the controller to call your new Service Builder-based back-end
• Update the view so it can display multiple Guestbooks in tabs

Ready to begin?
Let’s Go!

22.1 Organizing Folders for Larger Applications
<p>Refactoring the Prototype
Step 1 of 6</p>

Currently, all your JSPs sit in your webmodule’s src/main/resources/META-INF/resources folder, which
serves as the context root folder. Tomake a clear separation between theGuestbookportlet and theGuestbook
Admin portlet, youmust place the files that make up their view layers in separate folders:

1. In the guestbook-web project, right click the src/main/resources/META-INF/resources folder and select
New → Folder. Name the new folder guestbookwebportlet and click Finish.

2. Copy view.jsp and edit_entry.jsp into the new folder by dragging and dropping them there.

229

3. Open both files and change the init.jsp location at the top of the file:

<%@include file="../init.jsp"%>

4. Check the other references to JSPs within the files to make sure that they point to the new locations.

As you update your view layer to take full advantage of the new back-end, you’ll update any references to
the old paths. In addition, you must update the resource location in your component properties. In the next
step, you’ll update all of those properties, including the one that defines the resource location.

22.2 Defining the Component Metadata Properties
<p>Refactoring the Prototype
Step 2 of 6</p>

When users add applications to a page, they pick them from a list of display categories.

Figure 22.1: Users choose applications from a list of display categories.

A portlet’s display category is defined in its component class as ametadata property. Since the Guestbook
portlet lets users communicate with each other, you’ll add it to the Social category. Only one Guestbook

230

portlet should be added to a page, so you’ll also define it as a non-instanceable portlet. Such a portlet can
appear only once on a page or site, depending on its scope.

Open the GuestbookPortlet class and update the component class metadata properties to match this
configuration:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.social",

"com.liferay.portlet.instanceable=false",

"com.liferay.portlet.scopeable=true",

"javax.portlet.display-name=Guestbook",

"javax.portlet.expiration-cache=0",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/guestbookwebportlet/view.jsp",

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user",

"javax.portlet.supports.mime-type=text/html"

},

service = Portlet.class

)

The com.liferay.portlet.display-category=category.social property sets the Guestbook portlet’s dis-
play category to Social. The com.liferay.portlet.instanceable=false property specifies that the Guestbook
portlet is non-instanceable, so only one instance of the portlet can be added to a page. In the property
javax.portlet.init-param.view-template, you also update the location of the main view.jsp to its new loca-
tion in /guestbookwebportlet.

Since you edited the portlet’s metadata, you must remove and re-add the portlet to the page before
continuing:

1. Go to localhost:8080 in your web browser.

2. Sign in to your administrative account.

3. The Guestbook portlet now shows an error on the page. Click its portlet menu (at the top-right of the
portlet), then select Remove and clickOK to confirm.

4. Open the Addmenu and select Applications.

5. Open the Social category and drag and drop the Guestbook application onto the page.

Great! Now the Guestbook portlet appears in an appropriate category. Though you were able to add it to
the page before, the user experience is better.

22.3 Creating Portlet Keys
<p>Refactoring the Prototype
Step 3 of 6</p>

PortletKeys let you manage important things like the portlet name or other repeatable, commonly used
variables in one place. This way, if you need to change the portlet’s name, you can do it in one place, and then
reference it in every class that needs it. Keys must be referenced first as a component property, and then as a
class.

Follow these steps to create your application’s PortletKeys:

231

1. In your guestbook-webmodule, open the GuestbookPortlet class and update the component class meta-
data properties by adding one new property:

"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK,

Note that you need the trailing comma if you’ve added the property to the middle of the list. If you’ve
added it to the end of the last, leave it off.

2. Save GuestbookPortlet. It now shows an error because you haven’t added the key to the class.

3. Open the com.liferay.docs.guestbook.constants package.

4. Open GuestbookPortletKeys and create a public, static, final String called GUESTBOOK with a value of
com_liferay_docs_guestbook_portlet_GuestbookPortlet:

public static final String GUESTBOOK =

"com_liferay_docs_guestbook_portlet_GuestbookPortlet";

5. Save the file.

Now GuestbookPortlet’s error has disappeared, and your application can be deployed again. Nice job!
Next, you’ll integrate your application with the new back-end you generated with Service Builder.

22.4 Integrating the New Back-end
<p>Refactoring the Prototype
Step 4 of 6</p>

It’s a good practice to start with a working prototype as a proof of concept, but eventually that prototype
must transform into a real application. Up to this point, you’ve made all the preparations to do that, and
now it’s time to replace the prototype back-end with the real, database-driven back-end you created with
Service Builder.

For the prototype, youmanually created the application’s model. The first thing you want to do is remove
it, because Service Builder generated a new one:

1. Find the com.liferay.docs.guestbook.model package in the guestbook-webmodule.

2. Delete it. You’ll see errors in your project, but that’s because you haven’t replaced the model yet.

Now you get to do some dependency management. For the webmodule to access the generated services,
you must make it aware of the API and service modules. Then you can update the addEntry method in
GuestbookPortlet to use the new services:

1. First, open guestbook-web’s build.gradle file and add these dependencies:

compileOnly project(":modules:guestbook:guestbook-api")

compileOnly project(":modules:guestbook:guestbook-service")

2. Right-click on the guestbook-web project and select Gradle → Refresh Gradle Project.

232

3. Now youmust add references to the Service Builder services you need. To do this, add them as class
variables with @Reference annotations on their setter methods. Open GuestbookPortlet and add these
references to the bottom of the file:

@Reference(unbind = "-")

protected void setEntryService(EntryLocalService entryLocalService) {

_entryLocalService = entryLocalService;

}

@Reference(unbind = "-")

protected void setGuestbookService(GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

private EntryLocalService _entryLocalService;

private GuestbookLocalService _guestbookLocalService;

Note that it’s Liferay’s code style to add class variables this way. The @Reference annotation on the
setters allows Liferay’s OSGi container to inject references to your generated services so you can use
them. The unbind parameter tells the container there’s nomethod for unbinding these services: the
references can die with the class during garbage collection when they’re no longer needed.

4. Now you canmodify the addEntrymethod to use these service references:

public void addEntry(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Entry.class.getName(), request);

String userName = ParamUtil.getString(request, "name");

String email = ParamUtil.getString(request, "email");

String message = ParamUtil.getString(request, "message");

long guestbookId = ParamUtil.getLong(request, "guestbookId");

long entryId = ParamUtil.getLong(request, "entryId");

if (entryId > 0) {

try {

_entryLocalService.updateEntry(

serviceContext.getUserId(), guestbookId, entryId, userName,

email, message, serviceContext);

SessionMessages.add(request, "entryAdded");

response.setRenderParameter(

"guestbookId", Long.toString(guestbookId));

}

catch (Exception e) {

System.out.println(e);

SessionErrors.add(request, e.getClass().getName());

PortalUtil.copyRequestParameters(request, response);

response.setRenderParameter(

"mvcPath", "/guestbookwebportlet/edit_entry.jsp");

}

}

else {

233

try {

_entryLocalService.addEntry(

serviceContext.getUserId(), guestbookId, userName, email,

message, serviceContext);

SessionMessages.add(request, "entryAdded");

response.setRenderParameter(

"guestbookId", Long.toString(guestbookId));

}

catch (Exception e) {

SessionErrors.add(request, e.getClass().getName());

PortalUtil.copyRequestParameters(request, response);

response.setRenderParameter(

"mvcPath", "/guestbookwebportlet/edit_entry.jsp");

}

}

}

This addEntrymethod gets the name,message, and email fields that the user submits in the JSP and
passes them to the service to be stored as entry data. The if-else logic checks whether there’s an
existing entryId. If there is, the update service method is called, and if not, the add service method is
called. In both cases, it sets a render parameter with the Guestbook ID so the application can display
the guestbook’s entries after this one has been added. This is all done in try...catch statements.

5. Now add deleteEntry, which you didn’t have before:

public void deleteEntry(ActionRequest request, ActionResponse response) throws PortalException {

long entryId = ParamUtil.getLong(request, "entryId");

long guestbookId = ParamUtil.getLong(request, "guestbookId");

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Entry.class.getName(), request);

try {

response.setRenderParameter(

"guestbookId", Long.toString(guestbookId));

_entryLocalService.deleteEntry(entryId, serviceContext);

}

catch (Exception e) {

Logger.getLogger(GuestbookPortlet.class.getName()).log(

Level.SEVERE, null, e);

}

}

Thismethod retrieves the entry object (using its ID from the request) and calls the service to delete it.

6. Next youmust replace the rendermethod:

@Override

public void render(RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

try {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

234

Guestbook.class.getName(), renderRequest);

long groupId = serviceContext.getScopeGroupId();

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

List<Guestbook> guestbooks = _guestbookLocalService.getGuestbooks(

groupId);

if (guestbooks.isEmpty()) {

Guestbook guestbook = _guestbookLocalService.addGuestbook(

serviceContext.getUserId(), "Main", serviceContext);

guestbookId = guestbook.getGuestbookId();

}

if (guestbookId == 0) {

guestbookId = guestbooks.get(0).getGuestbookId();

}

renderRequest.setAttribute("guestbookId", guestbookId);

}

catch (Exception e) {

throw new PortletException(e);

}

super.render(renderRequest, renderResponse);

}

This new rendermethod checks for any guestbooks in the current site. If there aren’t any, it creates
one. Either way, it grabs the first guestbook so its entries can be displayed by your view layer.

7. Remove the parseEntriesmethod. It’s a remnant of the prototype application.

8. Hit Ctrl-Shift-O to organize your imports.

Awesome! You’ve updated your controller to use services. Next, you’ll tackle the view.

22.5 Updating the View
<p>Refactoring the Prototype
Step 5 of 6</p>

You updated more than just the basic mechanism behind creating the entry–you completely changed its
method and structure. Youmust, therefore, update the UI as well. To do that, you must create a new JSP for
managing guestbooks, and update the existing JSPs.

1. First, you must update your dependencies. In your guestbook-web module, open init.jsp from
/src/main/resources/META-INF/resources/. In this file, add the following additional dependencies:

<%@ taglib uri="http://liferay.com/tld/frontend" prefix="liferay-frontend" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://liferay.com/tld/security" prefix="liferay-security" %>

<%@ page import="java.util.List" %>

<%@ page import="com.liferay.portal.kernel.util.ParamUtil" %>

<%@ page import="com.liferay.portal.kernel.util.HtmlUtil" %>

<%@ page import="com.liferay.portal.kernel.util.StringPool" %>

<%@ page import="com.liferay.portal.kernel.model.PersistedModel" %>

<%@ page import="com.liferay.portal.kernel.dao.search.SearchEntry" %>

<%@ page import="com.liferay.portal.kernel.dao.search.ResultRow" %>

<%@ page import="com.liferay.docs.guestbook.model.Guestbook" %>

235

<%@ page import="com.liferay.docs.guestbook.service.EntryLocalServiceUtil" %>

<%@ page import="com.liferay.docs.guestbook.service.GuestbookLocalServiceUtil" %>

<%@ page import="com.liferay.docs.guestbook.model.Entry" %>

2. Open the view.jsp file found in /resources/META-INF/resources/guestbookwebportlet. Replace this
file’s contents with the following code:

<%@include file="../init.jsp"%>

<%

long guestbookId = Long.valueOf((Long) renderRequest

.getAttribute("guestbookId"));

%>

<aui:button-row cssClass="guestbook-buttons">

<portlet:renderURL var="addEntryURL">

<portlet:param name="mvcPath" value="/guestbookwebportlet/edit_entry.jsp" />

<portlet:param name="guestbookId"

value="<%=String.valueOf(guestbookId)%>" />

</portlet:renderURL>

<aui:button onClick="<%=addEntryURL.toString()%>" value="Add Entry"></aui:button>

</aui:button-row>

<liferay-ui:search-container total="<%=EntryLocalServiceUtil.getEntriesCount()%>">

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId.longValue(),

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>" />

<liferay-ui:search-container-row

className="com.liferay.docs.guestbook.model.Entry" modelVar="entry">

<liferay-ui:search-container-column-text property="message" />

<liferay-ui:search-container-column-text property="name" />

</liferay-ui:search-container-row>

<liferay-ui:search-iterator />

</liferay-ui:search-container>

This view.jsp now retrieves the entries from the guestbook it gets from the rendermethod. It does this
inside a Liferay DXP construct called a Search Container. This is a front-end component that makes it easy to
display data in rows and columns. The EntryLocalServiceUtil call retrieves the data from your new Service
Builder-based back-end. Otherwise, this JSP is much the same: you still have an Add Entry button with its
corresponding URL.

Next, you need to edit the edit_entry.jsp:

1. Open edit_entry.jsp and replace the existing code with this:

<%@include file="../init.jsp" %>

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

Entry entry = null;

236

if (entryId > 0) {

entry = EntryLocalServiceUtil.getEntry(entryId);

}

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

%>

<portlet:renderURL var="viewURL">

<portlet:param name="mvcPath" value="/guestbookwebportlet/view.jsp"></portlet:param>

</portlet:renderURL>

<portlet:actionURL name="addEntry" var="addEntryURL"></portlet:actionURL>

<aui:form action="<%= addEntryURL %>" name="<portlet:namespace />fm">

<aui:model-context bean="<%= entry %>" model="<%= Entry.class %>" />

<aui:fieldset>

<aui:input name="name" />

<aui:input name="email" />

<aui:input name="message" />

<aui:input name="entryId" type="hidden" />

<aui:input name="guestbookId" type="hidden" value='<%= entry == null ? guestbookId : entry.getGuestbookId() %>'/>

</aui:fieldset>

<aui:button-row>

<aui:button type="submit"></aui:button>

<aui:button type="cancel" onClick="<%= viewURL.toString() %>"></aui:button>

</aui:button-row>

</aui:form>

This is much the same form, though there are more fields now. Using some AlloyUI tags, the form
is linked to your Entry entity. The two hidden fields contain the new entryId and the guestbookId for
the guestbook the new entry belongs to. The submit button is an ActionURL that executes the addEntry
method in the controller (your portlet class).

Congratulations! You’ve now successfully replaced your prototype back-end with a real, database-driven
back-end. Next, you’ll do a quick review and deploy your application.

22.6 Fitting it All Together
<p>Refactoring the Prototype
Step 6 of 6</p>

You’ve created a complete data-driven application from the back-end to the display. It’s a great time to
review how everything connects together.

The Entry

First, you defined your model in Service Builder’s configuration file, service.xml. Themain part of this is
your Entry object:

237

<entity local-service="true" name="Entry" uuid="true">

<!-- PK fields -->

<column name="entryId" primary="true" type="long" />

<!-- Group instance -->

<column name="groupId" type="long" />

<!-- Audit fields -->

<column name="companyId" type="long" />

<column name="userId" type="long" />

<column name="userName" type="String" />

<column name="createDate" type="Date" />

<column name="modifiedDate" type="Date" />

<column name="name" type="String" />

<column name="email" type="String" />

<column name="message" type="String" />

<column name="guestbookId" type="long" />

<finder name="G_G" return-type="Collection">

<finder-column name="groupId" />

<finder-column name="guestbookId" />

</finder>

</entity>

Next, you created a service implementation in EntryLocalServiceImpl that defined how to get and store
the entry. Every field you defined was accounted for in the addEntrymethod.

public Entry addEntry(long userId, long guestbookId, String name, String email,

String message, ServiceContext serviceContext)

throws PortalException {

long groupId = serviceContext.getScopeGroupId();

User user = userLocalService.getUserById(userId);

Date now = new Date();

validate(name, email, message);

long entryId = counterLocalService.increment();

Entry entry = entryPersistence.create(entryId);

entry.setUuid(serviceContext.getUuid());

entry.setUserId(userId);

entry.setGroupId(groupId);

entry.setCompanyId(user.getCompanyId());

entry.setUserName(user.getFullName());

entry.setCreateDate(serviceContext.getCreateDate(now));

entry.setModifiedDate(serviceContext.getModifiedDate(now));

entry.setExpandoBridgeAttributes(serviceContext);

entry.setGuestbookId(guestbookId);

entry.setName(name);

entry.setEmail(email);

entry.setMessage(message);

entryPersistence.update(entry);

return entry;

}

Notice that all the fields you described in Service Builder (including things like the uuid) are present here.

238

You also added ways to get entries:

public List<Entry> getEntries(long groupId, long guestbookId) {

return entryPersistence.findByG_G(groupId, guestbookId);

}

public List<Entry> getEntries(

long groupId, long guestbookId, int start, int end, OrderByComparator<Entry> obc) {

return entryPersistence.findByG_G(groupId, guestbookId, start, end, obc);

}

public List<Entry> getEntries(long groupId, long guestbookId, int start, int end)

throws SystemException {

return entryPersistence.findByG_G(groupId, guestbookId, start, end);

}

In service.xml you defined groupId and guestbookId as the two finder fields, and in these methods you
called methods generated to the persistence layer.

After you implemented all that, Service Builder propagated your implementation to the interfaces, so
they could be called. Then, in the portlet class, you created references to the service classes that Service
Builder generated, and used those references to access the service to add an entry:

_entryLocalService.addEntry(serviceContext.getUserId(), guestbookId,

userName, email,message, serviceContext);

Finally, you wrapped all this up in a user interface that lets users enter the information they want, and
displays the data they’ve entered.

Now that you’ve built the application, and you can see a clear picture of how it all works, it’s time to test
it.

Deploying and Testing the Application

1. Drag and drop the guestbook-apimodule onto the server.

2. Drag and drop the guestbook-servicemodule onto the server.

3. Look for the STARTEDmessages from the console.

4. Go to your Liferay DXP instance at localhost:8080 in your browser to test your updated application.

5. Click Add Entry.

6. Enter aName,Message, and Email Address.

7. Click Submit.

8. Verify that your entry appears.

What's Next?

You’ve created a working web application and deployed it on Liferay DXP. If you’ve created web applications
before, though, you know that it’s missing some important features: security, front-end validation, and
an interface for administrators to create multiple guestbooks per portlet. In the next section, you’ll begin
adding these (andmore) features.

239

Figure 22.2: A new guestbook and entry.

240

Chapter 23

Writing an Administrative Portlet

Like the prototype, the real application lets users add and view guestbook entries. The application’s back-end,
however, is muchmore powerful. It can support many guestbooks and their associated entries. Despite this,
there’s no UI to support these added features. When you create this UI, youmust also make sure that only
administrators can add guestbooks.

To accomplish this, you must create a Guestbook Admin portlet and place it in Liferay DXP’s administra-
tive interface–specifically, within the Content menu. This way, the Guestbook Admin portlet is accessible
only to Site Administrators, and users can use the Guestbook portlet to create entries.

In short, this is a simple application with a simple interface:

Figure 23.1: The Guestbook Admin portlet lets administrators manage Guestbooks.

Are you ready to begin?
Let’s Go!

23.1 Creating the Classes
<p>Writing the Guestbook Admin App
Step 1 of 5</p>

Because the Guestbook and Guestbook Admin applications should be bundled together, you’ll create the
new applicationmanually inside the guestbook-web project, rather than by using a wizard. If you disagree
with this design decision, you can create a separate project for Guestbook Admin; the project template you’d
use is panel-app. For now, however, it’s better to go through the process manually to learn how it all works:

241

1. Right-click the com.liferay.docs.guestbook.portlet package in the guestbook-web project and select
New → Class.

2. Name the class GuestbookAdminPortlet.

3. Click Browse next to the Superclass and search for MVCPortlet. Click it and selectOK.

4. Click Finish.

You now have your Guestbook Admin application’s portlet class. For an administrative application,
however, you need at least one more component.

Panels and Categories

As described in the product menu tutorial, there are three sections of the product menu as illustrated below.
Each section is called a panel category. A panel category can hold various menu items called panel apps. In

the illustration above, the Sites menu is open to reveal its panel apps and categories (yes, you can nest them).
The most natural place for the Guestbook Admin portlet is in the Content panel category with Liferay

DXP’s other content-based apps. This integrates it nicely in the spot where site administrators expect it to
be. This also means you don’t have to create a new category for it: you can just create the panel entry, which
is what you’ll do next. If you’d like to learn more about panel categories and apps after this, see the product
menu tutorial and the control menu tutorial.

Follow these steps to create the panel entry for the Guestbook Admin portlet:

1. Add the dependency you need to extend Liferay DXP’s panel categories and apps. To do this, open
guestbook-web’s build.gradle file and add this dependency:

compileOnly group: "com.liferay", name: "com.liferay.application.list.api", version: "2.0.0"

2. Right-click guestbook-web and select Gradle → Refresh Gradle Project.

3. Right-click src/main/java in the guestbook-web project and selectNew → Package. Name the package
com.liferay.docs.guestbook.application.list and click Finish.

4. Right-click your new package and selectNew → Class. Name the class GuestbookAdminPanelApp. Click
Browse next to Superclass, search for BasePanelApp, select it, and clickOK.Then click Finish.

Great! You’ve created the classes you need, and you’re ready to begin working on them.

23.2 Adding Metadata
<p>Writing the Guestbook Admin App
Step 2 of 5</p>

Now that you’ve generated the classes, you must turn them into OSGi components. Remember that
because components are container-managed objects, youmust provide metadata that tells Liferay DXP’s
OSGi container how to manage their lifecycles.

Follow these steps:

1. Add the following portlet key to the GuestbookPortletKeys class:

242

Figure 23.2: The product menu is split into three sections: the Control Panel, the User menu, and the Sites menu.

243

public static final String GUESTBOOK_ADMIN =

"com_liferay_docs_guestbook_portlet_GuestbookAdminPortlet";

2. Open the GuestbookAdminPortlet class and add the @Component annotation immediately above the class
declaration:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.hidden",

"com.liferay.portlet.scopeable=true",

"javax.portlet.display-name=Guestbooks",

"javax.portlet.expiration-cache=0",

"javax.portlet.init-param.portlet-title-based-navigation=true",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/guestbookadminportlet/view.jsp",

"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK_ADMIN,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=administrator",

"javax.portlet.supports.mime-type=text/html",

"com.liferay.portlet.add-default-resource=true"

},

service = Portlet.class

)

3. Hit [CTRL]+[SHIFT]+O to add the javax.portlet.Portlet and other imports.

There are only a few new things here. Note the value of the javax.portlet.display-name property:
Guestbooks. This is the name that appears in the Site menu. Also note the value of the javax.portlet.name
property: + GuestbookPortletKeys.GUESTBOOK_ADMIN.This specifies the portlet’s title via the GUESTBOOK_ADMIN
portlet key that you just created.

Pay special attention to the followingmetadata property:

com.liferay.portlet.display-category=category.hidden

This is the same property you used before with the Guestbook portlet. You placed that portlet in the
Social category. The value category.hidden specifies a special category that doesn’t appear anywhere. You’re
putting the Guestbook Admin portlet here because it’ll be part of the Site menu, and you don’t want users
adding it to a page. This prevents them from doing that.

Next, you can configure the Panel app class. Follow these steps:

1. Open the GuestbookAdminPanelApp class and add the @Component annotation immediately above the class
declaration:

@Component(

immediate = true,

property = {

"panel.app.order:Integer=300",

"panel.category.key=" + PanelCategoryKeys.SITE_ADMINISTRATION_CONTENT

},

service = PanelApp.class

)

The panel.category.keymetadata property determines where to place the Guestbook Admin portlet
in the Product Menu. Remember that the Product Menu is divided into three main sections: the
Control Panel, the User Menu, and the Site Administration area. The value of the panel.category.key

244

property is PanelCategoryKeys.SITE_ADMINISTRATION_CONTENT, whichmeans Guestbook Admin is in Site
Administration → Content. The key is provided by the PanelCategoryKeys class. The panel.app.order value
determines the rank for the Guestbook Admin portlet in the list.

2. Finally, update the class to use the proper name and portlet keys:

public class GuestbookAdminPanelApp extends BasePanelApp {

@Override

public String getPortletId() {

return GuestbookPortletKeys.GUESTBOOK_ADMIN;

}

@Override

@Reference(

target = "(javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK_ADMIN + ")",

unbind = "-"

)

public void setPortlet(Portlet portlet) {

super.setPortlet(portlet);

}

}

3. Hit [CTRL]+[SHIFT]+Otoorganize imports. This time, import com.liferay.portal.kernel.model.Portlet
instead of javax.portlet.Portlet.

Now that the configuration is out of the way, you’re free to implement the app’s functionality: adding,
editing, and deleting guestbooks. That’s the next step.

23.3 Updating Your Service Layer
<p>Writing the Guestbook Admin App
Step 3 of 5</p>

In an earlier section, you wrote an addGuestbook service method in GuestbookLocalServiceImpl, but you
never used it. To have full functionality over guestbooks, you must also add methods for updating and
deleting guestbooks, as well as for returning the number of guestbooks in a site.

Adding Guestbook Service Methods

Remember that when working with Service Builder, you define your service in the *Impl classes. After you
add or remove amethod from an *Impl class, or change the signature of amethod in an *Impl class, youmust
run Service Builder. Service Builder updates the affected interfaces and any other generated code.

Follow these steps to add the required guestbook service methods:

1. Go to the guestbook-serviceproject andopen GuestbookLocalServiceImpl.java in the com.liferay.docs.guestbook.service.impl
package. Add the followingmethod for updating a guestbook:

public Guestbook updateGuestbook(long userId, long guestbookId,

String name, ServiceContext serviceContext) throws PortalException,

SystemException {

Date now = new Date();

validate(name);

245

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/web-experience/application-list/application-list-api/src/main/java/com/liferay/application/list/constants/PanelCategoryKeys.java

Guestbook guestbook = getGuestbook(guestbookId);

User user = userLocalService.getUser(userId);

guestbook.setUserId(userId);

guestbook.setUserName(user.getFullName());

guestbook.setModifiedDate(serviceContext.getModifiedDate(now));

guestbook.setName(name);

guestbook.setExpandoBridgeAttributes(serviceContext);

guestbookPersistence.update(guestbook);

return guestbook;

}

The updateGuestbookmethod retrieves the Guestbook by its ID, replaces its data with what the user
entered, and then calls the persistence layer to save it back to the database.

2. Next, add the followingmethod for deleting a guestbook:

public Guestbook deleteGuestbook(long guestbookId,

ServiceContext serviceContext) throws PortalException,

SystemException {

Guestbook guestbook = getGuestbook(guestbookId);

List<Entry> entries = entryLocalService.getEntries(

serviceContext.getScopeGroupId(), guestbookId);

for (Entry entry : entries) {

entryLocalService.deleteEntry(entry.getEntryId());

}

guestbook = deleteGuestbook(guestbook);

return guestbook;

}

It’s important to consider what should happen if you delete a guestbook that has existing entries. If
you just deleted the guestbook, the guestbook’s entries would still exist in the database, but they’d be
orphaned. Your deleteGuestbook service methodmakes a service call to delete a guestbook’s entries
before deleting that guestbook. This way, guestbook entries are never orphaned.

3. Use [CTRL]+[SHIFT]+O to update your imports, then save GuestbookLocalServiceImpl.java.

4. In the Gradle Tasks pane on the right side in Liferay @ide@, run Service Builder by opening the
guestbook-servicemodule and double-clicking buildService.

Now that you’ve finished updating the service layer, it’s time to work on the Guestbook Admin portlet
itself.

23.4 Defining Portlet Actions
<p>Writing the Guestbook Admin App
Step 4 of 5</p>

TheGuestbook Admin portlet now needs action methods for adding, updating, and deleting guestbooks.
As with the Guestbook portlet, action methods call the corresponding service methods. Note that since

246

your services and applications are all running in the same container, any application can call the Guestbook
services. This is an advantage of Liferay DXP’s OSGi-based architecture: different applications or modules
can call services published by other modules. If a service is published, it can be used via @Reference. You’ll
take advantage of this here in the Guestbook Admin portlet to consume one of the same services consumed
by the Guestbook portlet (the addGuestbook service).

Adding Three Portlet Actions

TheGuestbook Admin portletmust let administrators add, update, and delete Guestbook objects. You’ll create
portlet actions to meet these requirements. Open GuestbookAdminPortlet.java and follow these steps:

1. Add the following action method and instance variables needed for adding a new guestbook:

public void addGuestbook(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

String name = ParamUtil.getString(request, "name");

try {

_guestbookLocalService.addGuestbook(

serviceContext.getUserId(), name, serviceContext);

}

catch (PortalException pe) {

Logger.getLogger(GuestbookAdminPortlet.class.getName()).log(

Level.SEVERE, null, pe);

response.setRenderParameter(

"mvcPath", "/guestbookadminportlet/edit_guestbook.jsp");

}

}

private GuestbookLocalService _guestbookLocalService;

@Reference(unbind = "-")

protected void setGuestbookService(GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

Since addGuestbook is a portlet action method, it takes ActionRequest and ActionResponse parameters.
To make the service call to add a new guestbook, the guestbook’s namemust be retrieved from the
request. The serviceContextmust also be retrieved from the request and passed as an argument in
the service call. If an exception is thrown, you should display the Add Guestbook form and not the
default view. That’s why you add this line in the catch block:

response.setRenderParameter("mvcPath",

"/guestbookadminportlet/edit_guestbook.jsp");

Later, you’ll use this for field validation and to show error messages to the user. Note that
/guestbookadminportlet/edit_guestbook.jsp doesn’t exist yet; you’ll create it in the next section when
you’re designing the Guestbook Admin portlet’s user interface.

2. Add the following action method for updating an existing guestbook:

247

public void updateGuestbook(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

String name = ParamUtil.getString(request, "name");

long guestbookId = ParamUtil.getLong(request, "guestbookId");

try {

_guestbookLocalService.updateGuestbook(

serviceContext.getUserId(), guestbookId, name, serviceContext);

} catch (PortalException pe) {

Logger.getLogger(GuestbookAdminPortlet.class.getName()).log(

Level.SEVERE, null, pe);

response.setRenderParameter(

"mvcPath", "/guestbookadminportlet/edit_guestbook.jsp");

}

}

This method retrieves the guestbook name, ID, and the serviceContext from the request. The
updateGuestbook service call uses the guestbook’s ID to identify the guestbook to update. If there’s a
problem with the service call, the Guestbook Admin portlet displays the Edit Guestbook form again so
that the user can edit the form and resubmit:

response.setRenderParameter("mvcPath",

"/guestbookadminportlet/edit_guestbook.jsp");

Note that the Edit Guestbook form uses the same JSP as the Add Guestbook form to avoid duplication
of code.

3. Add the following action method for deleting a guestbook:

public void deleteGuestbook(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

long guestbookId = ParamUtil.getLong(request, "guestbookId");

try {

_guestbookLocalService.deleteGuestbook(guestbookId, serviceContext);

}

catch (PortalException pe) {

Logger.getLogger(GuestbookAdminPortlet.class.getName()).log(

Level.SEVERE, null, pe);

}

}

Thismethod uses the service layer to delete the guestbook by its ID. Since the deleteGuestbook action
is invoked from the Guestbook Admin portlet’s default view, there’s no need to set the mvcPath render
parameter to point to a particular JSP if there was a problemwith the deleteGuestbook service call.

4. Hit [CTRL]+[SHIFT]+O to organize imports. Save the file.

You now have your service methods and portlet action methods in place. Your last task is to implement
the Guestbook Admin portlet’s user interface.

248

23.5 Creating a User Interface
<p>Writing the Guestbook Admin App
Step 5 of 5</p>

It’s time to create the Guestbook Admin portlet’s user interface. The portlet’s default view has a button
for adding new guestbooks. It must also display the guestbooks that already exist.

Each guestbook’s name is displayed along with an Actions button. The Actions button reveals options for
editing the guestbook, configuring its permissions, or deleting it.

Creating JSPs for the Guestbook Admin Portlet's User Interface

TheGuestbook Admin portlet’s user interface is made up of three JSPs: the default view, the Actions button,
and the form for adding or editing a guestbook.

Create the default view first:

1. Create a folder for the Guestbook Admin portlet’s JSPs. In src/main/resources/META-INF/resources,
create a folder called guestbookadminportlet.

2. Create a file in this folder called view.jsp and fill it with this code:

<%@include file="../init.jsp"%>

<liferay-ui:search-container

total="<%= GuestbookLocalServiceUtil.getGuestbooksCount(scopeGroupId) %>">

<liferay-ui:search-container-results

results="<%= GuestbookLocalServiceUtil.getGuestbooks(scopeGroupId,

searchContainer.getStart(), searchContainer.getEnd()) %>" />

<liferay-ui:search-container-row

className="com.liferay.docs.guestbook.model.Guestbook" modelVar="guestbook">

<liferay-ui:search-container-column-text property="name" />

<liferay-ui:search-container-column-jsp

align="right"

path="/guestbookadminportlet/guestbook_actions.jsp" />

</liferay-ui:search-container-row>

<liferay-ui:search-iterator />

</liferay-ui:search-container>

<aui:button-row cssClass="guestbook-admin-buttons">

<portlet:renderURL var="addGuestbookURL">

<portlet:param name="mvcPath"

value="/guestbookadminportlet/edit_guestbook.jsp" />

<portlet:param name="redirect" value="<%= "currentURL" %>" />

</portlet:renderURL>

<aui:button onClick="<%= addGuestbookURL.toString() %>"

value="Add Guestbook" />

</aui:button-row>

First is the standard init.jsp include to gain access to the imports.

Next is a button row with a single button for adding new guestbooks: <aui:button-row

cssClass="guestbook-admin-buttons">. The cssClass attribute lets you specify a custom CSS
class for additional styling. The <portlet:renderURL> tag constructs a URL that points to the

249

edit_guestbook.jsp. You haven’t created this JSP yet, but you’ll use it for adding a new guestbook and
editing an existing one.

Finally, a Liferay search container is used to display the list of guestbooks. Three sub-tags define the
search container:

• <liferay-ui:search-container-results>

• <liferay-ui:search-container-row>

• <liferay-ui:search-iterator>

The <liferay-ui:search-container-results> tag’s results attribute uses a service call to retrieve the
guestbooks in the scope. The total attribute uses another service call to get a count of guestbooks.

The <liferay-ui:search-container-row> tag defines what rows contain. In this case, the className

attribute defines com.liferay.docs.guestbook.model.Guestbook". The modelVar attribute defines
guestbook as the variable for the currently iterated guestbook. In the search container row, two columns
are defined. The <liferay-ui:search-container-column-text property="name" /> tag specifies the
first column. This tag displays text. Its property="name" attribute specifies that the text to be displayed
is the current guestbook object’s name attribute. The tag <liferay-ui:search-container-column-jsp

path="/guestbookadminportlet/guestbook_actions.jsp" align="right" /> specifies the second (and
last) column. This tag includes another JSP file within a search container column. Its path attribute
specifies the path to the JSP file that should be displayed: guestbook_actions.jsp.

Finally, the <liferay-ui:search-iterator /> tag iterates through and displays the list of guestbooks.
Using Liferay’s search container makes the Guestbook Admin portlet look like a native Liferay DXP
portlet. It alsoprovidesbuilt-inpagination so that yourportlet canautomatically display largenumbers
of guestbooks on one site.

Your next step is to add the guestbook_actions.jsp file that’s responsible for displaying the list of
possible actions for each guestbook.

3. Create a new file called guestbook_actions.jsp in your project’s /guestbookadminportlet folder. Paste
in this code:

<%@include file="../init.jsp"%>

<%

String mvcPath = ParamUtil.getString(request, "mvcPath");

ResultRow row = (ResultRow) request

.getAttribute("SEARCH_CONTAINER_RESULT_ROW");

Guestbook guestbook = (Guestbook) row.getObject();

%>

<liferay-ui:icon-menu>

<portlet:renderURL var="editURL">

<portlet:param name="guestbookId"

value="<%=String.valueOf(guestbook.getGuestbookId()) %>" />

<portlet:param name="mvcPath"

value="/guestbookadminportlet/edit_guestbook.jsp" />

</portlet:renderURL>

<liferay-ui:icon image="edit" message="Edit"

url="<%=editURL.toString() %>" />

250

<portlet:actionURL name="deleteGuestbook" var="deleteURL">

<portlet:param name="guestbookId"

value="<%= String.valueOf(guestbook.getGuestbookId()) %>" />

</portlet:actionURL>

<liferay-ui:icon-delete url="<%=deleteURL.toString() %>" />

</liferay-ui:icon-menu>

This JSP comprises the pop-up actions menu that shows the possible actions users can perform on a
guestbook: editing it or deleting it. First, init.jsp is included because it contains all the JSP imports.
Because guestbook_actions.jsp is included for every Search Container row, it retrieves the guestbook
in the current iteration. The scriptlet grabs that guestbook so its ID can be supplied to the menu tags.

The <liferay-ui:icon-menu tag dominates guestbook_actions.jsp. It’s a container for menu items, of
which there are currently only two (you’ll addmore later). The Edit menu item displays the Edit icon
and the message Edit:

<liferay-ui:icon image="edit" message="Edit"

url="<%=editURL.toString() %>" />

The editURL variable comes from the <portlet:renderURL var="editURL"> tag with two parameters:
guestbookId and mvcPath. The guestbookId parameter specifies the guestbook to edit (it’s the one from
the selected search container result row), and the mvcPath parameter specifies the Edit Guestbook
form’s path.

The Delete menu item displays a delete icon and the default messageDelete:

<liferay-ui:icon-delete url="<%=deleteURL.toString() %>" />

Unlike the editURL, which is a render URL that links to the edit_guestbook.jsp, the deleteURL

is an action URL that invokes the portlet’s deleteGuestbook action. The tag <portlet:actionURL

name="deleteGuestbook" var="deleteURL"> creates this action URL, which only takes one parameter:
the guestbookId of the guestbook to be deleted.

Now there’s just one more JSP file left to create: the edit_guestbook.jsp that contains the form for
adding a new guestbook and editing an existing one.

4. Create a new file called edit_guestbook.jsp in your project’s /guestbookadminportlet directory. Then
add the following code to it:

<%@include file = "../init.jsp" %>

<%

long guestbookId = ParamUtil.getLong(request, "guestbookId");

Guestbook guestbook = null;

if (guestbookId > 0) {

guestbook = GuestbookLocalServiceUtil.getGuestbook(guestbookId);

}

%>

<portlet:renderURL var="viewURL">

<portlet:param name="mvcPath" value="/guestbookadminportlet/view.jsp" />

</portlet:renderURL>

251

<portlet:actionURL name='<%= guestbook == null ? "addGuestbook" : "updateGuestbook" %>' var="editGuestbookURL" />

<aui:form action="<%= editGuestbookURL %>" name="fm">

<aui:model-context bean="<%= guestbook %>" model="<%= Guestbook.class %>" />

<aui:input type="hidden" name="guestbookId"

value='<%= guestbook == null ? "" : guestbook.getGuestbookId() %>' />

<aui:fieldset>

<aui:input name="name" />

</aui:fieldset>

<aui:button-row>

<aui:button type="submit" />

<aui:button onClick="<%= viewURL %>" type="cancel" />

</aui:button-row>

</aui:form>

After the init.jsp import, you declare a null guestbook variable. If there’s a guestbookId parameter in
the request, then you know that you’re editing an existing guestbook, and you use the guestbookId to
retrieve the corresponding guestbook via a service call. Otherwise, you know that you’re adding a new
guestbook.

Next is a view URL that points to the Guestbook Admin portlet’s default view. This URL is invoked if
the user clicks Cancel on the Add Guestbook or Edit Guestbook form. After that, you create an action
URL that invokes either the Guestbook Admin portlet’s addGuestbookmethod or its updateGuestbook
method, depending on whether the guestbook variable is null.

If a guestbook is being edited, the current guestbook’s name should appear in the form’s name field.
You use the following tag to define a model of the guestbook that can be used in the AlloyUI form:

<aui:model-context bean="<%= guestbook %>" model="<%= Guestbook.class %>" />

The form itself is created with the following tag:

<aui:form action="<%= editGuestbookURL %>" name="<portlet:namespace />fm">

When the form is submitted, the editGuestbookURL is invoked, which calls the Guestbook Admin
portlet’s addGuestbook or updateGuestbookmethod, as discussed above.

The guestbookIdmust appear on the form so that it can be submitted. The user, however, doesn’t need
to see it. Thus, you specify type="hidden":

<aui:input type="hidden" name="guestbookId"

value='<%= guestbook == null ? "" : guestbook.getGuestbookId() %>' />

The name, of course, should be editable by the user so it’s not hidden.

The last item on the form is a button row with two buttons. The Submit button submits the form,
invoking the editGuestbookURL which, in turn, invokes either the addGuestbook or updateGuestbook
method. The Cancel button invokes the viewURLwhich displays the default view.

252

Figure 23.3: The Guestbook Admin portlet lets administrators add or edit guestbooks, configure their permissions, or delete them.

Excellent! You’ve now finished creating the UI for the Guestbook Admin portlet. It should nowmatch
the figure below:

Test out the Guestbook Admin portlet! Try adding, editing, and deleting guestbooks.
Now all the Guestbook application’s primary functions work. There are still many missing features,

however. For example, if there’s ever an error, users never see it: all the code written so far just prints
messages in the logs. Next, you’ll learn how to display those errors to the user.

253

Chapter 24

Using Resources and Permissions

You now have an application that uses the database for data storage. This is a great foundation to build on.
What comes next? What if users want a Guestbook that’s limited to certain trusted people? To do that, you
have to implement permissions.

Thankfully, with Liferay DXP you don’t have to write an entire permissions system from scratch: the
framework provides a robust and well-tested permissions system that you can implement quickly.

Ready to start?
Let’s Go!

24.1 Configuring Your Permissions Scheme
<p>Implementing Permissions
Step 1 of 4</p>

Liferay DXP’s permissions framework is configured declaratively, like Service Builder. You define all
your permissions in an XML file that by convention is called default.xml (but you could really call it whatever
you want). Then you implement permissions checks in the following places in your code:

• In the view layer, when showing links or buttons to protected functionality
• In the actions, before performing a protected action
• Later, in your service, before calling the local service

You should first define the permissions you want. To get started, think of your application’s use cases
and how access to that functionality should be controlled:

• The Add Guestbook button should be available only to administrators.

• The Guestbook tabs should be filtered by permissions so administrators can control who can see them.

• To prevent anonymous users from spamming the guestbook, the Add Entry button should be available
only to site members.

• Users should be able to set permissions on their own entries.

255

Now you’re ready to create the permissions configuration. Objects in your application (such as Guestbook
and Entry) are defined as resources, and resource actionsmanage how users can interact with those resources.
There are therefore two kinds of permissions: portlet permissions and resource (or model) permissions.
Portlet permissions protect access to global functions, such as Add Entry. If users don’t have permission to
access that global function, they’re missing a portlet permission. Resource permissions protect access to
objects, such as Guestbook and Entry. A user may have permission to view one Entry, view and edit another
Entry, andmay not be able to access another Entry at all. This is due to a resource permission.

Figure 24.1: Portlet permissions and resource permissions cover different parts of the application.

The first thing you must do is tell the framework where your permissions are defined. You’ll define
resource andmodel permissions in the module where your model is defined:

256

1. In guestbook-service’s src/main/resources folder, create a file called portlet.properties.

2. In this file, place the following property:

resource.actions.configs=META-INF/resource-actions/default.xml

This property defines the name and location of your permissions definition file.
Next, create the permissions file:

1. In the META-INF folder, create a subfolder called resource-actions.

2. Create a new file in this folder called default.xml.

3. Click the Source tab. Add the following DOCTYPE declaration to the top of the file:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action

Mapping 7.0.0//EN" "http://www.liferay.com/dtd/liferay-resource-action-mapping_7_0_0.dtd">

4. Place the following wrapper tags into your default.xml file, below the DOCTYPE declaration:

<resource-action-mapping>

</resource-action-mapping>

You’ll define your resource andmodel permissions inside these tags.

5. Next, place the permissions for your com.liferay.docs.guestbook package between the <resource-

action-mapping> tags:

<model-resource>

<model-name>com.liferay.docs.guestbook</model-name>

<portlet-ref>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookPortlet</portlet-name>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookAdminPortlet</portlet-name>

</portlet-ref>

<root>true</root>

<permissions>

<supports>

<action-key>ADD_GUESTBOOK</action-key>

<action-key>ADD_ENTRY</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>ADD_ENTRY</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ADD_GUESTBOOK</action-key>

<action-key>ADD_ENTRY</action-key>

</guest-unsupported>

</permissions>

</model-resource>

This defines the baseline configuration for the Guestbook and Entry entities. The supported actions are
ADD_GUESTBOOK, ADD_ENTRY, and VIEW. Sitemembers can ADD_ENTRY by default, while guests can’t perform
either add action (but they can view).

257

6. Below that, but above the closing </resource-action-mapping>, place the Guestbookmodel permissions:

<model-resource>

<model-name>com.liferay.docs.guestbook.model.Guestbook</model-name>

<portlet-ref>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookPortlet</portlet-name>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookAdminPortlet</portlet-name>

</portlet-ref>

<permissions>

<supports>

<action-key>ADD_ENTRY</action-key>

<action-key>DELETE</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>ADD_ENTRY</action-key>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>UPDATE</action-key>

</guest-unsupported>

</permissions>

</model-resource>

This defines the Guestbook specific actions, including adding, deleting, updating, and viewing. By
default, site members and guests can view guestbooks, but guests can’t update them.

7. Below the Guestbookmodel permissions, but still above the closing </resource-action-mapping>, place
the Entrymodel permissions:

<model-resource>

<model-name>com.liferay.docs.guestbook.model.Entry</model-name>

<portlet-ref>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookPortlet</portlet-name>

</portlet-ref>

<permissions>

<supports>

<action-key>DELETE</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>UPDATE</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>UPDATE</action-key>

</guest-unsupported>

</permissions>

</model-resource>

This defines Entry specific actions. By default, a site member can add or view an entry, and a guest
can only view an entry.

8. Save the file.

258

This defines permissions at the model level, but you must also define portlet permissions. These are
managed in the guestbook-webmodule, which contains the portlet class. Follow these steps to add the portlet
permissions in the guestbook-webmodule:

1. In guestbook-web’s src/main/resources folder, create a file called portlet.properties.

2. In this file, place the following property:

resource.actions.configs=META-INF/resource-actions/default.xml

3. Create a subfolder called resource-actions in the src/main/resources/META-INF folder.

4. Create a new file in this folder called default.xml.

5. Add the following DOCTYPE declaration to the top of the file:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action

Mapping 7.0.0//EN" "http://www.liferay.com/dtd/liferay-resource-action-mapping_7_0_0.dtd">

6. Below the DOCTYPE declaration, add the following resource-action-mapping tags:

<resource-action-mapping>

</resource-action-mapping>

You’ll define your portlet permissions inside these tags.

7. Insert this block of code inside the resource-action-mapping tags:

<portlet-resource>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookAdminPortlet</portlet-name>

<permissions>

<supports>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

</guest-unsupported>

</permissions>

</portlet-resource>

This defines the default permissions for the Guestbook Admin portlet. It supports the actions
ACCESS_IN_CONTROL_PANEL, CONFIGURATION, and VIEW. While anyone can view the app, guests and site
members can’t configure it or access it in the Control Panel. Since it’s a Control Panel portlet, this
effectively means that only administrators are able to access it.

8. Below the Guestbook Admin permissions, insert this block of code:

259

<portlet-resource>

<portlet-name>com_liferay_docs_guestbook_portlet_GuestbookPortlet</portlet-name>

<permissions>

<supports>

<action-key>ADD_TO_PAGE</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported />

</permissions>

</portlet-resource>

This defines permissions for theGuestbook portlet. It supports the actions ADD_TO_PAGE, CONFIGURATION,
and VIEW. Site members and guests get the VIEW permission by default.

9. Save the file.

Great job! You’ve now successfully designed and implemented a permissions scheme for your application.
Next, you’ll create the Java code to support permissions in the service layer.

24.2 Permissions in the Service Layer
<p>Implementing Permissions
Step 2 of 4</p>

The last step introduced the concept of resources. Resources are data stored with your entities that define
how they can be accessed. For example, when the configuration in your default.xml files is applied to your
application’s entities in the database, resources are created. These resources are then used in conjunction
with Liferay DXP’s permissions system to determine who can do what to the entities.

Liferay DXP provides a complete API for managing resources that’s integrated with Service Builder. This
API is injected into your implementation classes automatically. To manage the resources, all you must do is
call the API in the service’s add and delete methods. Follow these steps to do this in your application:

1. Inyour guestbook-servicemodule,open GuestbookLocalServiceImpl.java fromthe com.liferay.docs.guestbook.service.impl
package.

2. Just before the addGuestbookmethod’s return statement, add this code:

resourceLocalService.addResources(user.getCompanyId(), groupId, userId,

Guestbook.class.getName(), guestbookId, false, true, true);

Note that the resourceLocalService object is already there, ready for you to use. This is one of several
utilities that are injected automatically by Service Builder. You’ll see the rest in the future.

This code adds a resource to Liferay DXP’s database to correspond with your entity (note that the
guestbookId is included in the call). The three booleans at the end are settings. The first is whether to
add portlet action permissions. This should only be true if the permission is for a portlet resource.
Since this permission is for a model resource (an entity), it’s false. The other two are settings for
adding group and guest permissions. If you set these to true, you’ll add the default permissions you
defined in the permissions configuration file (default.xml) in the previous step. Since you definitely
want to do this, these booleans are set to true.

260

3. Next,go to the updateGuestbookmethod. Adda similarbit of code inbetween guestbookPersistence.update(guestbook);
and the return statement:

resourceLocalService.updateResources(serviceContext.getCompanyId(),

serviceContext.getScopeGroupId(),

Guestbook.class.getName(), guestbookId,

serviceContext.getGroupPermissions(),

serviceContext.getGuestPermissions());

4. Nowyou’ll do the same for deleteGuestbook. Add this code inbetween guestbook = deleteGuestbook(guestbook);

and the return statement:

resourceLocalService.deleteResource(serviceContext.getCompanyId(),

Guestbook.class.getName(), ResourceConstants.SCOPE_INDIVIDUAL,

guestbookId);

5. Hit [CTRL]+[SHIFT]+O to organize the imports and save the file.

6. Nowyou’ll add resources for the Entry entity. Open EntryLocalServiceImpl.java fromthe samepackage.
For addEntry, add a line of code that adds resources for this entity, just before the return statement:

resourceLocalService.addResources(user.getCompanyId(), groupId, userId,

Entry.class.getName(), entryId, false, true, true);

7. For deleteEntry, add this code just before the return statement:

resourceLocalService.deleteResource(

serviceContext.getCompanyId(), Entry.class.getName(),

ResourceConstants.SCOPE_INDIVIDUAL, entryId);

8. Finally, find updateEntry and add its resource action, also just before the return statement:

resourceLocalService.updateResources(

user.getCompanyId(), serviceContext.getScopeGroupId(),

Entry.class.getName(), entryId, serviceContext.getGroupPermissions(),

serviceContext.getGuestPermissions());

That’s all it takes to add permissions resources. Future entities added to the database are fully
permissions-enabled. Note, however, that any entities you’ve already added to your Guestbook application
in the portal don’t have resources and thus can’t be protected by permissions. You’ll fix this at the end of this
section.

Next, you’ll create helper classes to make it easier to check permissions.

24.3 Creating Permissions Helper Classes
<p>Implementing Permissions
Step 3 of 4</p>

You’ve now defined your permissions andmade sure resources are added to the database so permissions
can be checked. Now you’ll create the helper classes needed to check permissions.

Here’s how it works. You have a permission, such as ADD_ENTRY, and a resource, such as a Guestbook. For
a user to add an entry to a guestbook, youmust check whether that user has the ADD_ENTRY permission for
that guestbook. Creating helper classes to check permissions on particular models and entities makes these
checks more efficient. Creating such classes is therefore a best practice. Now you’ll create these classes for
the Guestbook application:

261

1. Right-click the guestbook-service module and select New → Package. Name the package
com.liferay.docs.guestbook.service.permission. This is where you’ll place your helper classes.

2. Right-click the new package and selectNew → Class. Name the class GuestbookModelPermission.

3. Replace this class’s contents with the following code:

package com.liferay.docs.guestbook.service.permission;

import org.osgi.service.component.annotations.Component;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.security.auth.PrincipalException;

import com.liferay.portal.kernel.security.permission.BaseResourcePermissionChecker;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import com.liferay.portal.kernel.security.permission.ResourcePermissionChecker;

@Component(immediate = true, property = {

"resource.name=" + GuestbookModelPermission.RESOURCE_NAME

}, service = ResourcePermissionChecker.class)

public class GuestbookModelPermission extends BaseResourcePermissionChecker {

public static final String RESOURCE_NAME = "com.liferay.docs.guestbook";

public static void check(

PermissionChecker permissionChecker, long groupId, String actionId)

throws PortalException {

if (!contains(permissionChecker, groupId, actionId)) {

throw new PrincipalException.MustHavePermission(

permissionChecker, RESOURCE_NAME, groupId, actionId);

}

}

public static boolean contains(

PermissionChecker permissionChecker, long groupId, String actionId) {

return permissionChecker.hasPermission(

groupId, RESOURCE_NAME, groupId, actionId);

}

@Override

public Boolean checkResource(

PermissionChecker permissionChecker, long classPK, String actionId) {

return contains(permissionChecker, classPK, actionId);

}

}

This class is a component that extends BaseResourcePermissionChecker and defines two static methods
(so you don’t have to instantiate the class) that encapsulate the model you’re checking permissions for. It also
contains a booleanmethod that checks your resources. Liferay’s PermissionChecker class does most of the
work: you only need feed it the proper resource and action, such as ADD_ENTRY, and it returns whether the
permission exists or not.

There are three implementations here: a checkmethod that throws an exception if the user doesn’t have
permission, a containsmethod that returns a boolean that’s true if the user has permission and false if not,
and a checkResourcemethod that calls the containsmethod.

Next, you’ll create helpers for your two entities. Follow these steps to do so:

1. Create a class in the same package called GuestbookPermission.java.

262

2. Replace this class’s contents with the following code:

package com.liferay.docs.guestbook.service.permission;

import com.liferay.docs.guestbook.model.Guestbook;

import com.liferay.docs.guestbook.service.GuestbookLocalService;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.exception.SystemException;

import com.liferay.portal.kernel.security.auth.PrincipalException;

import com.liferay.portal.kernel.security.permission.BaseModelPermissionChecker;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

@Component(

immediate = true,

property = {"model.class.name=com.liferay.docs.guestbook.model.Guestbook"}

)

public class GuestbookPermission implements BaseModelPermissionChecker {

public static void check(

PermissionChecker permissionChecker, long guestbookId, String actionId)

throws PortalException, SystemException {

if (!contains(permissionChecker, guestbookId, actionId)) {

throw new PrincipalException();

}

}

public static void check(

PermissionChecker permissionChecker, long groupId, long guestbookId,

String actionId)

throws PortalException {

if (!contains(permissionChecker, groupId, actionId)) {

throw new PrincipalException.MustHavePermission(

permissionChecker, Guestbook.class.getName(), guestbookId,

actionId);

}

}

public static boolean contains(

PermissionChecker permissionChecker, long groupId, long guestbookId, String actionId)

throws PortalException {

Guestbook guestbook = _guestbookLocalService.getGuestbook(guestbookId);

return GuestbookModelPermission.contains(permissionChecker, groupId, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, long guestbookId, String actionId)

throws PortalException, SystemException {

Guestbook guestbook

= _guestbookLocalService.getGuestbook(guestbookId);

return contains(permissionChecker, guestbook, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, Guestbook guestbook, String actionId)

throws PortalException, SystemException {

return permissionChecker.hasPermission(

guestbook.getGroupId(), Guestbook.class.getName(), guestbook.getGuestbookId(), actionId);

}

263

@Reference(unbind = "-")

protected void setGuestbookLocalService(GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

private static GuestbookLocalService _guestbookLocalService;

@Override

public void checkBaseModel(

PermissionChecker permissionChecker, long groupId, long guestbookId, String actionId) throws PortalException {

check(permissionChecker, guestbookId, actionId);

}

}

Asyoucansee, this class is similar to GuestbookModelPermission. Thedifference is that GuestbookPermission
is for themodel/resource permission, so you supply the primary key of the entity you’re checking permissions
for (guestbookId). The check and contains methods in GuestbookPermission are also similar to those in
GuestbookModelPermission. In both classes, the checkmethod throws an exception if there’s no permission,
while the contains method returns a boolean denoting whether the current user has permission. The
contains method in GuestbookPermission, however, also retrieves the entity to verify that it exists (if it
doesn’t, an exception is thrown).

Your final class is almost identical to GuestbookPermission, but it’s for the Entry entity. Follow these steps
to create it:

1. Create a class in the same package called EntryPermission.java.

2. Replace this class’s contents with the following code:

package com.liferay.docs.guestbook.service.permission;

import com.liferay.docs.guestbook.model.Entry;

import com.liferay.docs.guestbook.service.EntryLocalService;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.exception.SystemException;

import com.liferay.portal.kernel.security.auth.PrincipalException;

import com.liferay.portal.kernel.security.permission.BaseModelPermissionChecker;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

@Component(

immediate = true,

property = {"model.class.name=com.liferay.docs.guestbook.model.Entry"}

)

public class EntryPermission implements BaseModelPermissionChecker {

public static void check(

PermissionChecker permissionChecker, long entryId, String actionId)

throws PortalException, SystemException {

if (!contains(permissionChecker, entryId, actionId)) {

throw new PrincipalException();

}

}

public static boolean contains(

PermissionChecker permissionChecker, long entryId, String actionId)

throws PortalException, SystemException {

Entry entry = _entryLocalService.getEntry(entryId);

264

return contains (permissionChecker, entry, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, Entry entry, String actionId) throws

PortalException, SystemException {

return permissionChecker.hasPermission(entry.getGroupId(), Entry.class.getName(), entry.getEntryId(), actionId);

}

@Reference(unbind = "-")

protected void setEntryLocalService (EntryLocalService entryLocalService) {

_entryLocalService = entryLocalService;

}

private static EntryLocalService _entryLocalService;

@Override

public void checkBaseModel(

PermissionChecker permissionChecker, long groupId, long primaryKey, String actionId) throws PortalException {

check(permissionChecker, primaryKey, actionId);

}

}

This class is almost identical to GuestbookPermission. The only difference is that EntryPermission is for
the Entry entity.

Now that you have these classes, youmust build services and export the permissions package so that
other modules can access it. Follow these steps to do so:

1. Save the permissions helper classes you just created. From the Gradle Tasks panel on the right side of
Liferay @ide@, run buildService from the guestbook-servicemodule’s build folder.

2. In the Project Explorer, open the bnd.bnd file from the root folder of the guestbook-servicemodule.

3. In the graphical view, under the Export Packages section, click the plus button to add an export.

4. Select com.liferay.docs.guestbook.service.permission and click OK.

5. Save the file.

Congratulations! You’ve now created helper classes for your permissions. The only thing left is to
implement permission checks in the application’s view layer. You’ll do this next.

24.4 Permissions in JSPs
<p>Implementing Permissions
Step 4 of 4</p>

User interface components can be wrapped in permission checks pretty easily. In this step, you’ll learn
how.

First go to the init.jsp in your guestbook-web project. Add the following imports to the file:

<%@ page import="com.liferay.docs.guestbook.service.permission.GuestbookModelPermission" %>

<%@ page import="com.liferay.docs.guestbook.service.permission.GuestbookPermission" %>

<%@ page import="com.liferay.docs.guestbook.service.permission.EntryPermission" %>

<%@ page import="com.liferay.portal.kernel.util.WebKeys" %>

<%@ page import="com.liferay.portal.kernel.security.permission.ActionKeys" %>

265

Thefirst three are the permissions helper classes you just created. Now it’s time to implement permission
checks.

Checking Permissions in the UI

Recall that you want to restrict access to three areas in your application:

• The guestbook tabs across the top of your application
• The Add Guestbook button
• The Add Entry button

First, you’ll create the guestbook tabs and check permissions for them. Follow these steps to do so:

1. Open /guestbookwebportlet/view.jsp and find the scriptlet that gets the guestbookId from the request.
Just below this, add the following code:

<aui:nav cssClass="nav-tabs">

<%

List<Guestbook> guestbooks = GuestbookLocalServiceUtil.getGuestbooks(scopeGroupId);

for (int i = 0; i < guestbooks.size(); i++) {

Guestbook curGuestbook = (Guestbook) guestbooks.get(i);

String cssClass = StringPool.BLANK;

if (curGuestbook.getGuestbookId() == guestbookId) {

cssClass = "active";

}

if (GuestbookPermission.contains(

permissionChecker, curGuestbook.getGuestbookId(), "VIEW")) {

%>

<portlet:renderURL var="viewPageURL">

<portlet:param name="mvcPath" value="/guestbookwebportlet/view.jsp" />

<portlet:param name="guestbookId"

value="<%=String.valueOf(curGuestbook.getGuestbookId())%>" />

</portlet:renderURL>

<aui:nav-item cssClass="<%=cssClass%>" href="<%=viewPageURL%>"

label="<%=HtmlUtil.escape(curGuestbook.getName())%>" />

<%

}

}

%>

</aui:nav>

This code gets a list of guestbooks from the database, iterates through them, checks the permission
for each against the current user’s roles, and adds the guestbooks the user can access to a list of tabs.

You’ve now implemented your first permission check. As you can see, it’s relatively straightforward
thanks to the static methods in your helper classes. The code above shows the tab only if the current
user has the VIEW permission for the guestbook.

Next, you’ll add permission checks to the Add Entry button.

266

2. Scroll down to the line that reads <aui:button-row cssClass="guestbook-buttons">. Just below this
line, add the following line of code to check for the ADD_ENTRY permission:

<c:if test='<%= GuestbookPermission.contains(permissionChecker, guestbookId, "ADD_ENTRY") %>'>

3. After this is the code that creates the addEntryURL and the Add Entry button. After the aui:button tag
and above the </aui:button-row> tag, add the closing tag for the <c:if> statement:

</c:if>

You’ve now implemented your permission check for the Add Entry button by using JSTL tags.

Next, you’ll implement an entry_actions.jsp that’s much like the one in the Guestbook Admin portlet.
This will determine what options appear for logged in users who can see the actions menu in the portlet.
Just like before, you’ll wrap each renderURL in a if statement that checks the permissions against available
actions. To do this, follow these steps:

1. In src/main/resources/META-INF/resources/guestbookwebportlet, create afile called entry_actions.jsp.

2. In this file, add the following code:

<%@include file="../init.jsp"%>

<%

String mvcPath = ParamUtil.getString(request, "mvcPath");

ResultRow row = (ResultRow)request.getAttribute(WebKeys.SEARCH_CONTAINER_RESULT_ROW);

Entry entry = (Entry)row.getObject();

%>

<liferay-ui:icon-menu>

<portlet:renderURL var="viewEntryURL">

<portlet:param name="entryId" value="<%= String.valueOf(entry.getEntryId()) %>" />

<portlet:param name="mvcPath" value="/guestbookwebportlet/view_entry.jsp" />

</portlet:renderURL>

<liferay-ui:icon

message="View"

url="<%= viewEntryURL.toString() %>"

/>

<c:if

test="<%= EntryPermission.contains(permissionChecker, entry.getEntryId(), ActionKeys.UPDATE) %>">

<portlet:renderURL var="editURL">

<portlet:param name="entryId"

value="<%= String.valueOf(entry.getEntryId()) %>" />

<portlet:param name="mvcPath" value="/guestbookwebportlet/edit_entry.jsp" />

</portlet:renderURL>

<liferay-ui:icon image="edit" message="Edit"

url="<%=editURL.toString() %>" />

</c:if>

<c:if

test="<%=EntryPermission.contains(permissionChecker, entry.getEntryId(), ActionKeys.PERMISSIONS) %>">

<liferay-security:permissionsURL

modelResource="<%= Entry.class.getName() %>"

267

modelResourceDescription="<%= entry.getMessage() %>"

resourcePrimKey="<%= String.valueOf(entry.getEntryId()) %>"

var="permissionsURL" />

<liferay-ui:icon image="permissions" url="<%= permissionsURL %>" />

</c:if>

<c:if

test="<%=EntryPermission.contains(permissionChecker, entry.getEntryId(), ActionKeys.DELETE) %>">

<portlet:actionURL name="deleteEntry" var="deleteURL">

<portlet:param name="entryId"

value="<%= String.valueOf(entry.getEntryId()) %>" />

<portlet:param name="guestbookId"

value="<%= String.valueOf(entry.getGuestbookId()) %>" />

</portlet:actionURL>

<liferay-ui:icon-delete url="<%=deleteURL.toString() %>" />

</c:if>

</liferay-ui:icon-menu>

This code defines several action buttons for viewing, updating, setting permissions on, and deleting
entities. Each button is protected by a permissions check. If the current user can’t perform the given
action, the action doesn’t appear.

3. Finally, in view.jsp, youmust add the entry_actions.jsp as the last column in the Search Container.
Find the line defining the Search Container row. It looks like this:

<liferay-ui:search-container-row

className="com.liferay.docs.guestbook.model.Entry" modelVar="entry">

Below that line are two columns. After the second column, add a third:

<liferay-ui:search-container-column-jsp path="/guestbookwebportlet/entry_actions.jsp" align="right" />

4. Save all JSP files.

Excellent! You’ve now implemented all the permissions checks for the Guestbook portlet.
When testing the application, remember that any guestbook entries you created without resources

won’t work with permissions. Add new guestbooks and entries to test your application with different users.
Administrative users see all the buttons, regular users see the Add Entry button, and guests see no buttons
at all (but can navigate).

Note: Youmay see an error where the Guestbook portlet doesn’t appear at all, and you see this error in
the log:

Someone may be trying to circumvent the permission checker.

This is because any data you currently have in the Guestbook application doesn’t have resources. In this
case, youmust drop and re-create your database. To do this, find your LiferayWorkspace on your file system
(it should be inside your Eclipse workspace). Inside the bundles/data folder is a hypersonic folder. Shut down
Liferay DXP, remove everything from this folder, and then restart. After adding guestbook to a page, the
portlet will work normally.

268

Now see if you can do the same for the Guestbook Admin portlet. Don’t worry if you can’t: at the end of
this Learning Path is a link to the completed project for you to examine.

Great! You’re all done with permissions. The next step is to integrate search and indexing into your
application. This is a prerequisite for the muchmore powerful stuff to come.

269

Chapter 25

Displaying Messages and Errors

When users interact with your application, they perform tasks it defines, like saving or editing things.
The Guestbook application is no different. Your application should also provide feedback on these opera-
tions so users can know if they worked. Up to now, you’ve been placing this information in logs that only
administrators can access. Wouldn’t it be better to show users these messages?

That’s exactly what you’ll do next, in three steps:

1. Create language keys for your messages.
2. Add the error messages to your action methods.
3. Report those error messages in your JSPs.

Ready to get started?
Let’s Go!

25.1 Creating Language Keys
<p>Displaying Messages and Errors
Step 1 of 3</p>

Any modern application should place its messages and form field labels in a language keys file that
can be duplicated and then translated into multiple languages. Here, you’ll learn how to provide a default
set of English language keys for your application. For more information on language keys and providing
automatically translated language keys, see this tutorial.

Language keys are stored in the Language.properties file included in your guestbook-web module.
Language.properties is the default, but you can create a number of translations by appending the ISO-639
language code to the file name (e.g., Language_en.properties for English or Language_de.properties for
German). For now, stick to the default language keys.

Follow these steps to create your language keys:

1. Open /src/main/resources/content/Language.properties in your guestbook-webmodule. Remove the
default keys in this file.

2. Paste in the following keys:

271

entry-added=Entry added successfully.

entry-deleted=Entry deleted successfully.

guestbook-added=Guestbook added successfully.

guestbook-updated=Guestbook updated successfully.

guestbook-deleted=Guestbook deleted successfully.

3. Save the file.

Your messages are now in place, and your application can use them. Next, you’ll add them to your action
methods.

25.2 Adding Failure and Success Messages
<p>Displaying Messages and Errors
Step 2 of 3</p>

To display correct feedback to users properly, you must edit your portlet classes to use Liferay DXP’s
SessionMessages and SessionErrors classes. These classes collect messages that the view layer shows to the
user by using a simple tag.

You’ll add these messages to code that runs when the user triggers a system function that can succeed
or fail, such as creating, editing, or deleting an entry or guestbook. This generally happens in action
methods. Youmust update these methods to handle failure and success states in GuestbookPortlet.java and
GuestbookAdminPortlet.java. Start by updating addEntry and deleteEntry in GuestbookPortlet.java:

1. Find the addEntrymethod in GuestbookPortlet.java. In the first try...catch block’s try section, add a
success message just before the closing }:

SessionMessages.add(request, "entryAdded");

This uses Liferay’s SessionMessages API to add a successmessage whenever a Guestbook is successfully
added. It looks up the message you placed in the Language.properties file and inserts the message for
the key entry-added (it automatically converts the key to camel case).

2. Below that, in the catch block, find the following code:

System.out.println(e);

3. Beneath it, paste this line:

SessionErrors.add(request, e.getClass().getName());

Now you not only log the message to the console, you also use the SessionErrors object to show the
message to the user.

Next, do the same for the deleteEntrymethod:

1. After the logic to delete the entry, add a success message:

SessionMessages.add(request, "entryDeleted");

2. Find the same Logger... block of code in the deleteEntrymethod and after it, paste this line:

272

SessionErrors.add(request, e.getClass().getName());

3. Hit [CTRL]+[SHIFT]+O to import com.liferay.portal.kernel.servlet.SessionErrors and
com.liferay.portal.kernel.servlet.SessionMessages. Save the file.

Well done! You’ve added themessages to GuestbookPortlet. Nowyoumustupdate GuestbookAdminPortlet.java:

1. Open GuestbookAdminPortlet.java and look for the same cues.

2. Add the appropriate success messages to the try section of the try...catch in addGuestbook,
updateGuestbook, and deleteGuestbook, respectively:

SessionMessages.add(request, "guestbookAdded");

SessionMessages.add(request, "guestbookUpdated");

SessionMessages.add(request, "guestbookDeleted");

3. In the catch section of those same methods, find Logger.getlogger... and paste the SessionErrors
block beneath it:

SessionErrors.add(request, pe.getClass().getName());

4. Hit [CTRL]+[SHIFT]+O to import SessionErrors and SessionMessages. Save the file.

Great! The controller now makes relevant and detailed feedback available. Now all you need to do is
publish this feedback in the view layer.

25.3 Adding Messages to JSPs
<p>Displaying Messages and Errors
Step 3 of 3</p>

Anymessages the user should see are now stored in either SessionMessages or SessionErrors. Next, you’ll
make these messages appear in your JSPs.

1. In the guestbook-webmodule, open guestbookwebportlet/view.jsp. Add the following block of success
messages to the top of the file, just below the init.jsp include statement:

<liferay-ui:success key="entryAdded" message="entry-added" />

<liferay-ui:success key="guestbookAdded" message="guestbook-added" />

<liferay-ui:success key="entryDeleted" message="entry-deleted" />

This tag accesses what’s stored in SessionMessages. It has two attributes. The first is the
SessionMessages key that you provided in the GuestbookPortlet.java class’s add and delete methods.
The second looks up the specified key in the Language.properties file. You could have specified a
hard-codedmessage here, but it’s far better to provide a localized key.

2. Now open guestbookadminportlet/view.jsp. Add the following block of success messages in the same
spot below the include:

273

<liferay-ui:success key="guestbookAdded" message="guestbook-added" />

<liferay-ui:success key="guestbookUpdated" message="guestbook-updated" />

<liferay-ui:success key="guestbookDeleted" message="guestbook-deleted" />

Note that one of the message values is the same for both portlets. There’s no need to write redundant
messages–language keys are reusable.

Figure 25.1: Now the message will display the value you specified in Language.properties.

Congratulations! You’ve added useful feedback for operations in your application. Next, you’ll add
permission checking for your guestbooks and entries.

274

Chapter 26

Leveraging Search

Now you have working Guestbook and Guestbook Admin portlets. The Guestbook portlet lets users add, edit,
delete, and configure permissions for guestbook entries. The Guestbook Admin portlet lets site adminis-
trators create, edit, delete, and configure permissions for guestbooks. In the case of a very popular event
(maybe a Lunar Luau dinner at the Lunar Resort), there could be many guestbook entries in the portlet, and
users might want to search for entries that mentioned the delicious low-gravity ham that was served (melts
in your mouth). Searching for the word ham should display these entries. In short, guestbook entries must
be searchable via a search bar in the Guestbook portlet.

To enable search, you’ll add an indexer for guestbooks and their entries. Although you probably won’t
have enough guestbooks in a site to warrant searching the Guestbook Admin portlet, creating a guestbook
indexer has other benefits. In a later section, you’ll asset-enable guestbooks and guestbook entries so Liferay
DXP’s Asset Publisher can display them. Enabling search is a prerequisite for this–youmust index any entity
that you want to make an asset.

But assets are for later. Right now it’s time to create those indexers. Ready?
Let’s Go!

275

Figure 26.1: You’ll add a search bar to the Guestbook portlet so that users can search for guestbook entries. If a guestbook entry’s message or name matches the search
query, the entry is displayed in the search results.

276

Chapter 27

Enabling Search and Indexing for
Guestbooks

In this section, you first create an indexer for guestbooks. You then modify the service layer to use this
indexer to update the search index when a guestbook is persisted:

1. Create a GuestbookIndexer class that extends Liferay’s BaseIndexer abstract class.

2. Update GuestbookLocalServiceImpl’s addGuestbook, updateGuestbook, and deleteGuestbookmethods to
invoke the guestbook indexer.

Since there’s no reason to search for guestbooks in the UI, only the back-end work is necessary.
Let’s Go!

27.1 Understanding Search and Indexing
<p>Enabling Search and Indexing for Guestbooks
Step 1 of 3</p>

By default, Liferay DXP uses Elasticsearch, a search engine backed by the popular Lucene search library,
to implement its search and indexing functionality. To avoid the resource-hogging table merges necessary
to search the database, using a search engine like Elasticsearch lets you convert searchable entities into
documents. In Elasticsearch, documents are searchable database entities converted into JSON objects. After
you implement an indexer for guestbook entries, LiferayDXP creates a document for each entry. This indexer
specifies which guestbook entry fields to add to each guestbook entry document. All the guestbook entry
documents are then added to an index. When the index is searched, a hits object is returned that contains
pointers to the documents matching the search query. Searching for entities with a search engine via an
index is faster than searching for entities in the database. Elasticsearch provides some additional features
like relevancy scoring and fuzzy search queries.

Along with the search engine, Liferay DXP has its own search infrastructure. Liferay DXP adds to the
existing Elasticsearch API for a few reasons:

• To ensure indexed documents include the fields needed by Liferay DXP (e.g., entryClassName,
entryClassPK, assetTagNames, assetCategories, companyId, groupId, staging status).

277

• To ensure the scope of returned search results is appropriate by applying the right filters to search
requests.

• To provide permission checking and hit summaries to display in the search portlet.

Next, you’ll create the indexer for guestbooks.

27.2 Creating a Guestbook Indexer
<p>Enabling Search and Indexing for Guestbooks
Step 2 of 3</p>

First, update your build.gradle to have all of the necessary imports.

1. Open the build.gradle file in your guestbook-service project.

2. Add the following line below the other imports:

compileOnly group: "com.liferay", name: "com.liferay.registry.api", version: "1.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

3. Save the file and run Refresh Gradle Project.

Now that you have the additional dependencies configured, follow these steps to create the indexer for
guestbooks:

1. Create a new package in the guestbook-service module project’s src/main/java folder called
com.liferay.docs.guestbook.search. In this package, create a new class called GuestbookIndexer that
extends com.liferay.portal.kernel.search.BaseIndexerwith Guestbook as a type argument. Add an
@Component annotation to declare that the GuestbookIndexer class provides an implementation of the
Indexer service. Also, define the CLASS_NAME variable by getting the name of the Guestbook model
class. This is necessary to override the getClassNamemethod from BaseIndexer. Liferay DXP uses this
method to determine the object this Indexer indexes:

@Component(

immediate = true,

service = Indexer.class

)

public class GuestbookIndexer extends BaseIndexer<Guestbook> {

public static final String CLASS_NAME = Guestbook.class.getName();

}

2. Add the GuestbookIndexer constructor:

public GuestbookIndexer() {

setDefaultSelectedFieldNames(

Field.ASSET_TAG_NAMES, Field.COMPANY_ID, Field.CONTENT,

Field.ENTRY_CLASS_NAME, Field.ENTRY_CLASS_PK, Field.GROUP_ID,

Field.MODIFIED_DATE, Field.SCOPE_GROUP_ID, Field.TITLE, Field.UID);

setPermissionAware(true);

setFilterSearch(true);

}

This constructor does several things:

278

• Sets the default selected field names. These fields are used to retrieve results documents from
the search engine.

• Sets the default selected localized field names. This ensures that the localized version of the
field is searched and returned.

• Makes the search results permissions-aware at search time, as well as in the index. Without
this, a search query returns allmatching guestbooks regardless of the user’s permissions on the
resource.

• Sets filter search to true, enabling a document-by-document check of the search results’ VIEW
permissions. This is redundant most of the time, but safeguards against unexpected prob-
lems like the search index becoming stale, or if permission inheritance doesn’t happen fast
enough. Most of Liferay DXP’s internal apps use this setting. If not set, the indexer relies on the
permissions information indexed in the search engine.

3. Since you extend the abstract class BaseIndexer instead of implementing the Indexer interface directly,
youmust override its abstract methods. In the getClassNamemethod, return the CLASS_NAME constant
defined at the top of the class:

@Override

public String getClassName() {

return CLASS_NAME;

}

This returns com.liferay.docs.guestbook.model.Guestbook.

4. Next, youmust override hasPermission. Call the containsmethod of the GuestbookPermission helper
class that you created in an earlier Learning Path section:

@Override

public boolean hasPermission(

PermissionChecker permissionChecker, String entryClassName,

long entryClassPK, String actionId)

throws Exception {

return GuestbookPermission.contains(

permissionChecker, entryClassPK, ActionKeys.VIEW);

}

Here, you ensure that the VIEW permission on guestbooks can be used to find and display appropriate
search results.

5. Override the postProcessContextBooleanFiltermethod:

@Override

public void postProcessContextBooleanFilter(

BooleanFilter contextBooleanFilter, SearchContext searchContext)

throws Exception {

addStatus(contextBooleanFilter, searchContext);

}

Thismethod is invoked while the main search query is being constructed. The base implementation
of addStatus in BaseIndexer adds the workflow status to the filter. This ensures that entities with the
status STATUS_IN_TRASH aren’t added to the query. You’ll learn more about workflow later.

279

6. Override postProcessSearchQuery to add clauses to the ongoing search query. It’s best to add the local-
ized value of any full text fields that might contribute to search relevance. By specifying the localized
search term, you ensure that the regular search term has the locale appended (e.g., title_en_US). For
the guestbook entity, add the title field (Field.TITLE):

@Override

public void postProcessSearchQuery(

BooleanQuery searchQuery, BooleanFilter fullQueryBooleanFilter,

SearchContext searchContext)

throws Exception {

addSearchLocalizedTerm(searchQuery, searchContext, Field.TITLE, false);

}

7. Override the doDelete()method, which deletes the document corresponding to the Guestbook object
parameter. Call BaseIndexer’s deleteDocumentmethodwith the guestbook’s company ID andguestbook
ID:

@Override

protected void doDelete(Guestbook guestbook) throws Exception {

deleteDocument(guestbook.getCompanyId(), guestbook.getGuestbookId());

}

8. Implement the doGetDocumentmethod to select the entity’s fields to build a search document that’s
indexed by the search engine. Themain searchable field for guestbooks is the guestbook name, which
is stored in a guestbook search document’s title field:

@Override

protected Document doGetDocument(Guestbook guestbook)

throws Exception {

Document document = getBaseModelDocument(CLASS_NAME, guestbook);

document.addDate(Field.MODIFIED_DATE, guestbook.getModifiedDate());

Locale defaultLocale =

PortalUtil.getSiteDefaultLocale(guestbook.getGroupId());

String localizedField = LocalizationUtil.getLocalizedName(

Field.TITLE, defaultLocale.toString());

document.addText(localizedField, guestbook.getName());

return document;

}

Because Liferay DXP supports localization, you should too. The above code gets the default locale from
the site by passing the Guestbook’s group ID to the getSiteDefaultLocalemethod, then using it to get
the localized name of the guestbook’s title field. The retrieved site locale is appended to the field (e.g.,
title_en_US), so the field gets passed to the search engine and goes through the right analysis and
tokenization.

9. Implement the doGetSummarymethod to return a summary. A summary is a condensed, text-based
version of the entity that can be displayed generically. You create it by combining key parts of the
entity’s data so users can browse through search results to find the entity they want. Call BaseIndexer’s
createSummarymethod, then use summary.setMaxContentLength to set the summary content’smaximum
size. Most Liferay DXP applications use a value of 200, so it’s a good idea to use the same to ensure
uniform result summaries:

280

https://www.elastic.co/guide/en/elasticsearch/reference/2.4/analysis-tokenizers.html

@Override

protected Summary doGetSummary(

Document document, Locale locale, String snippet,

PortletRequest portletRequest, PortletResponse portletResponse) {

Summary summary = createSummary(document);

summary.setMaxContentLength(200);

return summary;

}

10. Override the overloaded doReindexmethod, which gets called when an entity is updated or a user
explicitly triggers a reindex. The first doReindexmethod takes a single object argument. Retrieve
the associated document with BaseIndexer’s getDocument method, then invoke IndexWriterHelper’s
updateDocumentmethod to update (reindex) the document:

@Override

protected void doReindex(Guestbook guestbook)

throws Exception {

Document document = getDocument(guestbook);

indexWriterHelper.updateDocument(

getSearchEngineId(), guestbook.getCompanyId(), document,

isCommitImmediately());

}

11. The second doReindex method takes two arguments: a className string, and a classPK long.
In this method, you retrieve the guestbook corresponding to the primary key by calling
GuestbookLocalService’s getGuestbook method, passing in the classPK parameter. Then pass
the guestbook to the first doReindexmethod (see above):

@Override

protected void doReindex(String className, long classPK)

throws Exception {

Guestbook guestbook = _guestbookLocalService.getGuestbook(classPK);

doReindex(guestbook);

}

12. The third (and final) doReindex method indexes all entities in the current Liferay DXP instance
(companyId). It takes a string array (ids) as an argument. GetterUtil.getLong(ids[0]) retrieves the
first string in the array, casts it to a long, stores it in a companyId variable, and passes it as an argument
to the reindexGuestbooks helper method:

@Override

protected void doReindex(String[] ids)

throws Exception {

long companyId = GetterUtil.getLong(ids[0]);

reindexGuestbooks(companyId);

}

13. To reindex guestbooks, provide the helper method reindexGuestbooks. In this method, use an action-
able dynamic query helper method to retrieve all the guestbooks in the Liferay DXP instance. Service
Builder generated this query method for you when you built the services. Each guestbook’s document
is then retrieved and added to a collection:

281

protected void reindexGuestbooks(long companyId)

throws PortalException {

final IndexableActionableDynamicQuery indexableActionableDynamicQuery =

_guestbookLocalService.getIndexableActionableDynamicQuery();

indexableActionableDynamicQuery.setCompanyId(companyId);

indexableActionableDynamicQuery.setPerformActionMethod(

new ActionableDynamicQuery.PerformActionMethod<Guestbook>() {

@Override

public void performAction(Guestbook guestbook) {

try {

Document document = getDocument(guestbook);

indexableActionableDynamicQuery.addDocuments(document);

}

catch (PortalException pe) {

if (_log.isWarnEnabled()) {

_log.warn(

"Unable to index guestbook " +

guestbook.getGuestbookId(),

pe);

}

}

}

});

indexableActionableDynamicQuery.setSearchEngineId(getSearchEngineId());

indexableActionableDynamicQuery.performActions();

}

14. Get the log for the guestbook model and add the necessary service references at the bottom of the file:

private static final Log _log =

LogFactoryUtil.getLog(GuestbookIndexer.class);

@Reference

protected IndexWriterHelper indexWriterHelper;

@Reference

private GuestbookLocalService _guestbookLocalService;

15. Organize your imports ([CTRL]+[SHIFT]+O), and save the file. It will have errors.

16. Export the com.liferay.docs.guestbook.searchpackage in the guestbook-servicemodule’s bnd.bndfile.
The export section should look like this:

Export-Package:

com.liferay.docs.guestbook.service.permission,\

com.liferay.docs.guestbook.search

The guestbook indexer class is complete! Next, you can update the service layer.

27.3 Handling Indexing in the Guestbook Service Layer
<p>Enabling Search and Indexing for Guestbooks
Step 3 of 3</p>

Whenever a guestbook database entity is added, updated, or deleted, the search index must be updated
accordingly. The Liferay DXP annotations @Indexable and @IndexableTypemark your service methods so doc-
uments can be updated or deleted. Youmust update the addGuestbook, updateGuestbook, and deleteGuestbook
service methods with these annotations.

282

1. Open GuestbookLocalServiceImpl in the guestbook-servicemodule’s com.liferay.docs.guestbook.service.impl
package, and add the following annotation above the method signature for the addGuestbook and
updateGuestbookmethods:

@Indexable(type = IndexableType.REINDEX)

public Guestbook addGuestbook(...)

@Indexable(type = IndexableType.REINDEX)

public Guestbook updateGuestbook(...)

The @Indexable annotation indicates that an index update is required following the method execution.
The GuestbookIndexer controls exactly how the indexing happens. Setting the @Indexable annotation
type to IndexableType.REINDEX updates the document in the index that corresponds to the updated
guestbook.

2. Add the following annotation above the method signature for the deleteGuestbookmethod:

@Indexable(type = IndexableType.DELETE)

public Guestbook deleteGuestbook(...)

When a guestbook is deleted from the database, its document shouldn’t remain in the search index.
This ensures that it is deleted.

3. Add the necessary imports:

import com.liferay.portal.kernel.search.Indexable;

import com.liferay.portal.kernel.search.IndexableType;

Save the file.

4. In the Gradle Tasks pane on the right-hand side of Liferay @ide@, double-click buildService

in guestbook-service → build. This re-runs Service Builder to incorporate your changes to
GuestbookLocalServiceImpl.

Great! Next, you’ll enable search and indexing for guestbook entries.

283

Chapter 28

Enabling Search and Indexing for Guestbook
Entries

Enabling search for guestbook entries in the Guestbook portlet takes two steps:

1. Create an EntryIndexer class that extends Liferay DXP’s BaseIndexer abstract class.

2. Update EntryLocalServiceImpl’s addEntry and deleteEntry methods to invoke the guestbook entry
indexer.

When you finish, all the back-end search and indexing work for both entities will be complete, leaving
only the UI changes to complete.

Let’s Go!

28.1 Creating an Entry Indexer
<p>Enabling Search and Indexing for Guestbook Entries
Step 1 of 2</p>

The EntryIndexer class you’ll complete here is very similar to the GuestbookIndexer class you completed
in the previous section. Therefore, the instructions here only point out differences between the indexing of
guestbooks and entries.

Follow these steps to create the entry indexer:

1. In the com.liferay.docs.guestbook.search package of your guestbook-service module project’s
src/main/java folder, create a new
class called EntryIndexer that extends com.liferay.portal.kernel.search.BaseIndexer. Replace the
default contents of EntryIndexer.javawith the following code:

package com.liferay.docs.guestbook.search;

@Component(immediate = true, service = Indexer.class)

public class EntryIndexer extends BaseIndexer<Entry> {

public static final String CLASS_NAME = Entry.class.getName();

public EntryIndexer() {

285

setDefaultSelectedFieldNames(

Field.COMPANY_ID, Field.ENTRY_CLASS_NAME, Field.ENTRY_CLASS_PK,

Field.UID, Field.SCOPE_GROUP_ID, Field.GROUP_ID);

setDefaultSelectedLocalizedFieldNames(Field.TITLE, Field.CONTENT);

setFilterSearch(true);

setPermissionAware(true);

}

@Override

public String getClassName() {

return CLASS_NAME;

}

@Override

public boolean hasPermission(

PermissionChecker permissionChecker, String entryClassName,

long entryClassPK, String actionId)

throws Exception {

return EntryPermission.contains(

permissionChecker, entryClassPK, ActionKeys.VIEW);

}

@Override

public void postProcessContextBooleanFilter(

BooleanFilter contextBooleanFilter, SearchContext searchContext)

throws Exception {

addStatus(contextBooleanFilter, searchContext);

}

@Override

public void postProcessSearchQuery(

BooleanQuery searchQuery, BooleanFilter fullQueryBooleanFilter,

SearchContext searchContext)

throws Exception {

addSearchLocalizedTerm(searchQuery, searchContext, "guestbookName", false);

addSearchLocalizedTerm(searchQuery, searchContext, Field.TITLE, false);

addSearchLocalizedTerm(searchQuery, searchContext, Field.CONTENT, false);

}

@Override

protected void doDelete(Entry entry)

throws Exception {

deleteDocument(entry.getCompanyId(), entry.getEntryId());

}

@Override

protected Document doGetDocument(Entry entry)

throws Exception {

Document document = getBaseModelDocument(CLASS_NAME, entry);

document.addDate(Field.MODIFIED_DATE, entry.getModifiedDate());

document.addText("email", entry.getEmail());

Locale defaultLocale =

PortalUtil.getSiteDefaultLocale(entry.getGroupId());

String localizedTitle = LocalizationUtil.getLocalizedName(

Field.TITLE, defaultLocale.toString());

String localizedMessage = LocalizationUtil.getLocalizedName(

Field.CONTENT, defaultLocale.toString());

document.addText(localizedTitle, entry.getName());

document.addText(localizedMessage, entry.getMessage());

286

long guestbookId = entry.getGuestbookId();

Guestbook guestbook = _guestbookLocalService.getGuestbook(guestbookId);

String guestbookName= guestbook.getName();

String localizedGbName = LocalizationUtil.getLocalizedName(

"guestbookName", defaultLocale.toString());

document.addText(localizedGbName, guestbookName);

return document;

}

This is not all the code, but it contains the heart of the functionality: the doGetDocumentmethod and its
helpermethods. Theemail, date, localized title, andmessagefields (basedon the site’s default language)
are indexed. Finally, you get the entry’s guestbook and index the localized version of the guestbookName
field. Always support localization where possible–this ensures your entities are searchable in any
language.

2. The rest of the code is very similar to the GuestbookIndexer. Paste in the following code to finish the
entry indexer class:

@Override

protected Summary doGetSummary(

Document document, Locale locale, String snippet,

PortletRequest portletRequest, PortletResponse portletResponse)

throws Exception {

Summary summary = createSummary(document);

summary.setMaxContentLength(200);

return summary;

}

@Override

protected void doReindex(Entry entry)

throws Exception {

Document document = getDocument(entry);

indexWriterHelper.updateDocument(

getSearchEngineId(), entry.getCompanyId(), document,

isCommitImmediately());

}

@Override

protected void doReindex(String className, long classPK)

throws Exception {

Entry entry = _entryLocalService.getEntry(classPK);

doReindex(entry);

}

@Override

protected void doReindex(String[] ids)

throws Exception {

long companyId = GetterUtil.getLong(ids[0]);

reindexEntries(companyId);

}

protected void reindexEntries(long companyId)

throws PortalException {

final IndexableActionableDynamicQuery indexableActionableDynamicQuery =

287

_entryLocalService.getIndexableActionableDynamicQuery();

indexableActionableDynamicQuery.setCompanyId(companyId);

indexableActionableDynamicQuery.setPerformActionMethod(

new ActionableDynamicQuery.PerformActionMethod<Entry>() {

@Override

public void performAction(Entry entry) {

try {

Document document = getDocument(entry);

indexableActionableDynamicQuery.addDocuments(document);

}

catch (PortalException pe) {

if (_log.isWarnEnabled()) {

_log.warn(

"Unable to index entry " + entry.getEntryId(),

pe);

}

}

}

});

indexableActionableDynamicQuery.setSearchEngineId(getSearchEngineId());

indexableActionableDynamicQuery.performActions();

}

private static final Log _log = LogFactoryUtil.getLog(EntryIndexer.class);

@Reference

protected IndexWriterHelper indexWriterHelper;

@Reference

private EntryLocalService _entryLocalService;

@Reference

private GuestbookLocalService _guestbookLocalService;

}

As with the guestbook, youmust update the entry’s service layer to support indexing when its service
methods are called. That’s your next step.

28.2 Handling Indexing in the Entry Service Layer
<p>Enabling Search and Indexing for Guestbook Entries
Step 2 of 2</p>

Whenever a guestbook entry is added, updated, or deleted, the corresponding document should also be
updated or deleted. A minor update to each of the addEntry, updateEntry, and deleteEntry service methods
for guestbook entries is all it takes.

Follow these steps to update the methods:

1. Open EntryLocalServiceImpl in the guestbook-servicemodule’s com.liferay.docs.guestbook.service.impl
package, and add the annotation @Indexable(type = IndexableType.REINDEX) above the signature for
the addEntry and updateEntrymethods:

@Indexable(type = IndexableType.REINDEX)

public Entry addEntry(...)

@Indexable(type = IndexableType.REINDEX)

public Entry updateEntry(...)

288

The @Indexable annotation indicates that an index update is required followingmethod execution. The
EntryIndexer controls exactly how the indexing happens. Setting the @Indexable annotation’s type to
IndexableType.REINDEX updates the document in the index that corresponds to the updated entry.

2. Add the @Indexable(type = IndexableType.DELETE) annotation above the signature for the deleteEntry
method. The indexable type IndexableType.DELETE ensures that the entry is deleted from the index:

@Indexable(type = IndexableType.DELETE)

public Entry deleteEntry(...)

3. Add the required imports:

import com.liferay.portal.kernel.search.Indexable;

import com.liferay.portal.kernel.search.IndexableType;

Save the file.

4. In the Gradle Tasks pane on the right-hand side of Liferay @ide@, double-click buildService

in guestbook-service → build. This re-runs Service Builder to incorporate your changes to
EntryLocalServiceImpl.

Awesome! Both guestbooks and their entries now have search and indexing support in the back-end.
Next, you’ll enable search in the Guestbook portlet’s front-end.

289

Chapter 29

Updating Your User Interface For Search

Updating the Guestbook portlet’s user interface for search takes two steps:

1. Update the Guestbook portlet’s default view JSP to display a search bar for submitting queries.

2. Create a new JSP for the Guestbook portlet to display search results.

You’ll start by updating the Guestbook portlet’s view JSP.
Let’s Go!

29.1 Adding a Search Bar to the Guestbook Portlet
<p>Updating Your UI for Search
Step 1 of 2</p>

Follow these steps to create the search bar UI for the Guestbook portlet:

1. In guestbook-web, open thefile src/main/resources/META-INF/resources/guestbookwebportlet/view.jsp.
Add a render URL near the top of the file, just after the scriptlet that gets the guestbookId from the
request:

<liferay-portlet:renderURL varImpl="searchURL">

<portlet:param name="mvcPath"

value="/guestbookwebportlet/view_search.jsp" />

</liferay-portlet:renderURL>

The render URL points to /guestbookwebportlet/view_search.jsp (created in the next step). You con-
struct the URL first because youmust specify what happens when the user submits a search query.

2. Right after the render URL, create an AUI form that directs the user to the view_search.jsp page for
viewing search results:

<aui:form action="<%= searchURL %>" method="get" name="fm">

<liferay-portlet:renderURLParams varImpl="searchURL" />

<div class="search-form">

<aui:input inlineField="<%= true %>" label=""

291

name="keywords" size="30" title="search-entries" type="text"

/>

<aui:button type="submit" value="search" />

</div>

</aui:form>

The tag <liferay-portlet:renderURLParams varImpl="searchURL" /> includes the URL parameters of
the searchURL as hidden input fields in the AUI form. This is important since the parameters of the
searchURL are overwritten when the search query is submitted as a URL parameter.

The body of the search form consists of a <div> containing a that contains two elements: the
search bar and the search button. The <aui:input> tag defines the search bar. Its name="keywords"
attribute specifies the name of the URL parameter that contains the search query. The <aui:button>
tag defines the search button. The type="submit" attribute specifies that when the button is clicked (or
the Enter key is pressed), the AUI form is submitted. The value="search" attribute specifies the name
that appears on the button.

That’s all there is to the search form! When the form is submitted, the mvcPath parameter pointing to
the view_search.jsp is included in the URL along with the keywords parameter containing the search query.
Now it’s time to create the view_search.jsp form to display the search results.

29.2 Creating a Search Results JSP for the Guestbook Portlet
<p>Updating Your UI for Search
Step 2 of 2</p>

There are several design goals to implement in the search results JSP:

• Use a search container to display guestbook entries matching a search query.
• Make the Actions button available for each guestbook entry in the results, like it is in the main view’s
search container.

• Include the search bar so that users can edit and resubmit their queries without having to click the
back link to go to the portlet’s default view.

Follow these steps to create the search results JSP:

1. Create a new file called view_search.jsp in your guestbook-webmodule’s /guestbookwebportlet folder.
In this file, include the init.jsp:

<%@include file="../init.jsp"%>

2. Extract the keywords and guestbookId parameters from the request. The keywords parameter contains
the search query, and the guestbookId parameter contains the ID of the guestbook being searched:

<%

String keywords = ParamUtil.getString(request, "keywords");

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

%>

3. Define the searchURL and viewURL as renderURLs. Both use the mvcPath parameter that’s available to
Liferay MVC Portlets:

292

Figure 29.1: The search results should appear in a search container, and the Actions button should appear for each entry. The search bar should also be displayed.

<liferay-portlet:renderURL varImpl="searchURL">

<portlet:param name="mvcPath"

value="/guestbookwebportlet/view_search.jsp" />

</liferay-portlet:renderURL>

<portlet:renderURL var="viewURL">

<portlet:param

name="mvcPath"

value="/guestbookwebportlet/view.jsp"

/>

</portlet:renderURL>

The searchURL points to the current JSP: view_search.jsp. The viewURL points back to the Guestbook
portlet’s main view. These URLs are used in the AUI form that you’ll create next.

4. Add this AUI form:

<aui:form action="<%= searchURL %>" method="get" name="fm">

<liferay-portlet:renderURLParams varImpl="searchURL" />

<liferay-ui:header

backURL="<%= viewURL.toString() %>"

title="search"

/>

<div class="search-form">

<aui:input inlineField="<%= true %>" label="" name="keywords"

size="30" title="search-entries" type="text" />

<aui:button type="submit" value="search" />

</div>

</aui:form>

This form is identical to the one that you added to theGuestbook portlet’s view.jsp, except that this one
contains a <liferay-ui:header> tag that displays the Back icon next to the word Search. The backURL

293

attribute in the header uses the viewURL defined above. Submitting the form invokes the searchURL
with the user’s search query added to the URL in the keywords parameter.

5. Start a scriptlet to get a search context and set some attributes in it:

<%

SearchContext searchContext = SearchContextFactory

.getInstance(request);

searchContext.setKeywords(keywords);

searchContext.setAttribute("paginationType", "more");

searchContext.setStart(0);

searchContext.setEnd(10);

To execute a search, you need a SearchContext object. SearchContextFactory lets you create a
SearchContext from the request object. Add the user’s search query to the SearchContext by passing
the keywordsURL parameter to the setKeywordsmethod. Then specify details about pagination and
how the search results should be displayed.

6. Still in the scriptlet, obtain an Indexer to run a search. Retrieve the entry indexer from the map in
Liferay DXP’s indexer registry by passing in the indexer’s class or class name:

Indexer indexer = IndexerRegistryUtil.getIndexer(Entry.class);

7. In the same scriptlet, use the indexer and the search context to run a search:

Hits hits = indexer.search(searchContext);

List<Entry> entries = new ArrayList<Entry>();

for (int i = 0; i < hits.getDocs().length; i++) {

Document doc = hits.doc(i);

long entryId = GetterUtil

.getLong(doc.get(Field.ENTRY_CLASS_PK));

Entry entry = null;

try {

entry = EntryLocalServiceUtil.getEntry(entryId);

} catch (PortalException pe) {

_log.error(pe.getLocalizedMessage());

} catch (SystemException se) {

_log.error(se.getLocalizedMessage());

}

entries.add(entry);

}

The search results return as Hits objects containing pointers to documents that correspond to guest-
book entries. You then loop through the hit documents, retrieving the corresponding guestbook
entries and adding them to a list.

8. Finish the scriptlet by retrieving a list of all the guestbooks that exist in the current site. Create a map
between the guestbook IDs and the guestbook names.

294

List<Guestbook> guestbooks = GuestbookLocalServiceUtil.getGuestbooks(scopeGroupId);

Map<String, String> guestbookMap = new HashMap<String, String>();

for (Guestbook guestbook : guestbooks) {

guestbookMap.put(Long.toString(guestbook.getGuestbookId()), guestbook.getName());

}

%>

Making this single service call and creating a map is more efficient than making separate service calls
for each guestbook.

9. Display the search results in a search container:

<liferay-ui:search-container delta="10"

emptyResultsMessage="no-entries-were-found"

total="<%= entries.size() %>">

<liferay-ui:search-container-results

results="<%= entries %>"

/>

This specifies three attributes for the <liferay-ui:search-container> tag:

• delta="10": specifies that at most, 10 entries can appear per page.
• emptyResultsMessage: specifies the message indicating there are no results.
• total: specifies the number of search results.

The results attribute of the tag <liferay-ui:search-container-results> specifies the search results.
This is easy since you stored the entries resulting from the search in the entries list.

10. Use the <liferay-ui:search-container-row> tag to set the name of the class whose properties are
displayed in each row:

<liferay-ui:search-container-row

className="com.liferay.docs.guestbook.model.Entry"

keyProperty="entryId" modelVar="entry" escapedModel="<%=true%>">

This uses the className attribute for the class name and specifies the entity’s primary key attribute
in the keyProperty attribute. The modelVar property specifies the name of the Entry variable that’s
available to each search container row. To ensure that each field of the Entry variable is escaped
(sanitized), the escapedModel is true. This prevents potential hacks that could occur if users submitted
malicious code into the Add Guestbook form, for example.

11. Inside the <liferay-ui:search-container-row> tag, specify the four columns to display: the guestbook
entry’s guestbook name,message, entry name, and the actions JSP.The guestbook name is retrieved
from the map created in the scriptlet:

<liferay-ui:search-container-column-text name="guestbook"

value="<%=guestbookMap.get(Long.toString(entry.getGuestbookId()))%>" />

<liferay-ui:search-container-column-text property="message" />

<liferay-ui:search-container-column-text property="name" />

<liferay-ui:search-container-column-jsp

path="/guestbookwebportlet/entry_actions.jsp"

align="right" />

</liferay-ui:search-container-row>

295

12. Use the <liferay-ui:search-iterator> tag to iterate through the search results and handle pagination.
Close the search container tag:

<liferay-ui:search-iterator />

</liferay-ui:search-container>

13. At the bottom of view_search.jsp, declare a Log object. You used this log in the catch clauses of the try
clause that calls the EntryLocalServiceUtil.getEntrymethod to retrieve the guestbook entries. If this
service call throws an exception, it’s best to log the error so a server administrator can determine what
went wrong. Liferay DXP’s convention is to declare custom logs for individual classes or JSPs at the
bottom of the file:

<%!

private static Log _log = LogFactoryUtil.getLog("html.guestbookwebportlet.view_search_jsp");

%>

14. Finally, your view_search.jsp requires some extra imports. Add the following imports to init.jsp:

<%@ page import="com.liferay.portal.kernel.dao.search.SearchContainer" %>

<%@ page import="com.liferay.portal.kernel.exception.PortalException" %>

<%@ page import="com.liferay.portal.kernel.exception.SystemException" %>

<%@ page import="com.liferay.portal.kernel.language.LanguageUtil" %>

<%@ page import="com.liferay.portal.kernel.log.Log" %>

<%@ page import="com.liferay.portal.kernel.log.LogFactoryUtil" %>

<%@ page import="com.liferay.portal.kernel.search.Indexer" %>

<%@ page import="com.liferay.portal.kernel.search.IndexerRegistryUtil" %>

<%@ page import="com.liferay.portal.kernel.search.SearchContext" %>

<%@ page import="com.liferay.portal.kernel.search.SearchContextFactory" %>

<%@ page import="com.liferay.portal.kernel.search.Hits" %>

<%@ page import="com.liferay.portal.kernel.search.Document" %>

<%@ page import="com.liferay.portal.kernel.search.Field" %>

<%@ page import="com.liferay.portal.kernel.util.StringPool" %>

<%@ page import="com.liferay.portal.kernel.util.GetterUtil" %>

<%@ page import="com.liferay.portal.kernel.util.Validator" %>

<%@ page import="com.liferay.portal.kernel.util.PortalUtil" %>

<%@ page import="java.util.ArrayList" %>

<%@ page import="java.util.Map" %>

<%@ page import="java.util.HashMap" %>

<%@ page import="javax.portlet.PortletURL" %>

Good work! The Guestbook portlet now supports search! Now your users can find those Guestbook
entries they were looking for.

The next section goes over Liferay DXP’s asset framework, which provides shared functionality across
different types of content like blog posts,message board posts, wiki articles, andmore. This is the heart of
integration with Liferay DXP’s development platform.

296

Chapter 30

Assets: Integrating with Liferay’s
Framework

Liferay DXP’s asset framework transforms entities into a common format that can be published anywhere in
your site. Web content articles, blog posts, wiki articles, and documents are some asset-enabled entities that
come out-of-the-box. By asset-enabling your own applications, you can take advantage of Liferay DXP’s
functionality for publishing your application’s data across your site in the form of asset publisher entries,
notifications, social activities, andmore.

Liferay DXP’s asset framework includes the following features:

• Tags and categories
• Comments and ratings
• Related assets (a.k.a. asset links)
• Faceted search
• Integration with Liferay DXP’s Asset Publisher portlet
• Integration with Liferay DXP’s Search portlet
• Integration with Liferay DXP’s Tags Navigation, Tag Cloud, and Categories Navigation portlets

In this section, you’ll asset-enable the guestbook and guestbook entry entities. You’ll implement tags,
categories, and related assets for guestbooks and guestbook entries. You’ll implement comments and ratings
in guestbook entries. You’ll also learn how asset-enabled guestbooks and guestbook entries integrate with
Liferay DXP core portlets like the Asset Publisher, Tags Navigation, Tag Cloud, and Categories Navigation
portlets. Ready to start?

Let’s Go!

297

Chapter 31

Enabling Assets at the Service Layer

<p>Enabling Assets at the Service Layer
Step 1 of 3</p>

Each row in the AssetEntry table represents an asset and has an entryId primary key, and classNameId

and classPK foreign keys. The classNameId specifies the asset’s type. For example, an asset with a classNameId
of JournalArticlemeans that the asset represents a web content article (in Liferay DXP, JournalArticle is
the back-end name for a web content article). An asset’s classPK is the primary key of the entity represented
by the asset.

Follow these steps to make Liferay DXP’s asset services available to your entities’ service layers:

1. In the guestbook-servicemodule’s service.xml file, add the following references directly above the
closing </entity> tags for Guestbook and Entry:

<reference package-path="com.liferay.portlet.asset" entity="AssetEntry" />

<reference package-path="com.liferay.portlet.asset" entity="AssetLink" />

As mentioned above, youmust use Liferay DXP’s AssetEntry service for your application to add asset
entries that correspond to guestbooks and guestbook entries. You also use Liferay DXP’s AssetLink
service for your application to support related assets. Asset links are Liferay DXP’s back-end term for
related assets.

2. You must add finders–two for Guestbooks and two for Entitys–so your assets show in Asset Publisher.
Add these below the existing finders for the Guestbook entity:

<finder name="Status" return-type="Collection">

<finder-column name="status" />

</finder>

<finder name="G_S" return-type="Collection">

<finder-column name="groupId" />

<finder-column name="status" />

</finder>

Add these below the existing finders for the Entry entity:

299

<finder name="Status" return-type="Collection">

<finder-column name="status" />

</finder>

<finder name="G_S" return-type="Collection">

<finder-column name="groupId" />

<finder-column name="status" />

</finder>

3. Right-click build.gradle and select Gradle → Refresh Gradle Project.

4. Run the buildService Gradle task. This task causes the objects referenced above to be injected into
your services for use.

Great! Next, you’ll handle assets in your service layer.

31.1 Handling Assets at the Guestbook Service Layer
<p>Enabling Assets at the Service Layer
Step 2 of 3</p>

In this section, you’ll update the guestbook service layer to use assets. Youmust update the add, update,
and delete methods of your project’s GuestbookLocalServiceImpl. Follow these steps to do so:

1. Open your project’s GuestbookLocalServiceImpl class and find the addGuestbookmethod. Add the call
to add the asset entries below the call that adds resources:

AssetEntry assetEntry = assetEntryLocalService.updateEntry(userId,

groupId, guestbook.getCreateDate(),

guestbook.getModifiedDate(), Guestbook.class.getName(),

guestbookId, guestbook.getUuid(), 0,

serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(), true, true, null, null, null, null,

ContentTypes.TEXT_HTML, guestbook.getName(), null, null, null,

null, 0, 0, null);

assetLinkLocalService.updateLinks(userId, assetEntry.getEntryId(),

serviceContext.getAssetLinkEntryIds(),

AssetLinkConstants.TYPE_RELATED);

Calling assetEntryLocalService.updateEntry adds a new row (corresponding to the guestbook
that’s being added) to the AssetEntry table in Liferay DXP’s database. AssetEntryLocalServiceImpl’s
updateEntrymethod both adds and updates asset entries because it checks to see whether the asset
entry already exists in the database and then takes the appropriate action. If you check the Javadoc
for Liferay DXP’s AssetEntryLocalServiceUtil.updateEntry, you’ll see that this method is overloaded.
Now,why did you use a version of this method with such a longmethod signature? Because there’s
only one version of updateEntry that takes a title parameter (to set the asset entry’s title). Since you
want to set the asset title to guestbook.getName(), that’s the version you use.

Later, you’ll update the Guestbook Admin portlet’s form for adding guestbooks to allow
the selection of related assets, which are stored in the database’s AssetLink table. The
assetLinkLocalService.updateLinks call adds the appropriate entries to the table so related as-
sets work for your guestbook entities. The updateEntrymethod adds and updates asset entries the
same way updateLink adds and updates asset links.

2. Next, add the asset calls to GuestbookLocalServiceImpl’s updateGuestbookmethod, directly after the
resource call:

300

@platform-ref@/7.0-latest/javadocs/portal-impl/com/liferay/portlet/asset/service/impl/AssetEntryLocalServiceImpl.html

AssetEntry assetEntry = assetEntryLocalService.updateEntry(guestbook.getUserId(),

guestbook.getGroupId(), guestbook.getCreateDate(),

guestbook.getModifiedDate(), Guestbook.class.getName(),

guestbookId, guestbook.getUuid(), 0,

serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(), true, true, guestbook.getCreateDate(),

null, null, null, ContentTypes.TEXT_HTML, guestbook.getName(), null, null,

null, null, 0, 0, serviceContext.getAssetPriority());

assetLinkLocalService.updateLinks(serviceContext.getUserId(),

assetEntry.getEntryId(), serviceContext.getAssetLinkEntryIds(),

AssetLinkConstants.TYPE_RELATED);

Here, assetEntryLocalService.updateEntryupdates anexistingasset entry and assetLinkLocalService.updateLinks
adds or updates that entry’s asset links (related assets).

3. Next, add the asset calls to the deleteGuestbookmethod, directly after the resource calls:

AssetEntry assetEntry = assetEntryLocalService.fetchEntry(

Guestbook.class.getName(), guestbookId);

assetLinkLocalService.deleteLinks(assetEntry.getEntryId());

assetEntryLocalService.deleteEntry(assetEntry);

Here, you use the guestbook’s class name and ID to retrieve the corresponding asset entry. Then you
delete that asset entry’s asset links and the asset entry itself.

4. Finally, organize your imports, save the file, and run Service Builder to apply the changes.

Next, you’ll do the same thing for guestbook entries.

31.2 Handling Assets at the Entry Service Layer
<p>Enabling Assets at the Service Layer
Step 3 of 3</p>

Now youmust update the guestbook entry entity’s service methods. In these methods, the calls you’ll
make to assetEntryLocalService and assetLinkLocalService are identical to the ones you made in the guest-
book entity’s service methods. Follow these steps:

1. Open EntryLocalServiceImpl and add the asset calls to the addEntrymethod after the resource calls:

AssetEntry assetEntry = assetEntryLocalService.updateEntry(userId,

groupId, entry.getCreateDate(), entry.getModifiedDate(),

Entry.class.getName(), entryId, entry.getUuid(), 0,

serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(), true, true, null, null, null, null,

ContentTypes.TEXT_HTML, entry.getMessage(), null, null, null,

null, 0, 0, null);

assetLinkLocalService.updateLinks(userId, assetEntry.getEntryId(),

serviceContext.getAssetLinkEntryIds(),

AssetLinkConstants.TYPE_RELATED);

2. Next, add the asset calls to the updateEntrymethod after the resource calls:

301

AssetEntry assetEntry = assetEntryLocalService.updateEntry(userId,

serviceContext.getScopeGroupId(),

entry.getCreateDate(), entry.getModifiedDate(),

Entry.class.getName(), entryId, entry.getUuid(),

0, serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(), true, true,

entry.getCreateDate(), null, null, null,

ContentTypes.TEXT_HTML, entry.getMessage(), null,

null, null, null, 0, 0,

serviceContext.getAssetPriority());

assetLinkLocalService.updateLinks(userId, assetEntry.getEntryId(),

serviceContext.getAssetLinkEntryIds(),

AssetLinkConstants.TYPE_RELATED);

3. Add the asset calls to the deleteEntrymethod after the resource calls:

AssetEntry assetEntry = assetEntryLocalService.fetchEntry(

Entry.class.getName(), entryId);

assetLinkLocalService.deleteLinks(assetEntry.getEntryId());

assetEntryLocalService.deleteEntry(assetEntry);

4. Organize your imports, save the file, and run Service Builder.

5. Finally, add these languagekeys to the guestbook-web/src/main/resource/content/Language.properties
file:

model.resource.com.liferay.docs.guestbook.model.Guestbook=Guestbook

model.resource.com.liferay.docs.guestbook.model.Entry=Guestbook Entry

Excellent! You’ve asset-enabled your guestbook and guestbook entry entities at the service layer. Your
next step is to implement asset renderers for these entities so they can be fully integrated into Liferay DXP’s
asset framework. Every asset needs an asset renderer class so the Asset Publisher portlet can display it.

302

Chapter 32

Implementing Asset Renderers

Assets are generic versions of entities, so they contain fields like title, description, and summary. Liferay
DXP uses these fields to display assets. Asset Renderers translate an entity into an asset via these fields.
For Liferay DXP to display your entities as assets, you must therefore create and register Asset Renderer
classes for your guestbook and guestbook entry entities. Without these classes, Liferay DXP can’t display
your entities in Asset Publisher, Notifications, Activities, or anywhere else that displays assets.

Your next task is to create these Asset Renderers. Ready to begin?
Let’s Go!

32.1 Implementing a Guestbook Asset Renderer
<p>Implementing Asset Renderers
Step 1 of 2</p>

LiferayDXP’s asset renderers follow the factorypattern, so youmust create a GuestbookAssetRendererFactory
that instantiates the GuestbookAssetRenderer’s private guestbook object. Here, you’ll create both classes.

Get started by creating the Asset Renderer class first.

Creating the AssetRenderer Class

Follow these steps to create the GuestbookAssetRenderer class:

1. Create a new package called com.liferay.docs.guestbook.asset in the guestbook-service module’s
src/main/java folder. In this package, create a GuestbookAssetRenderer class that extends Liferay
DXP’s BaseJSPAssetRenderer class. Extending this class gives you a head-start on implementing the
AssetRenderer interface. Start with this code:

package com.liferay.docs.guestbook.asset;

import com.liferay.asset.kernel.model.BaseJSPAssetRenderer;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.exception.SystemException;

import com.liferay.portal.kernel.model.LayoutConstants;

import com.liferay.portal.kernel.portlet.LiferayPortletRequest;

import com.liferay.portal.kernel.portlet.LiferayPortletResponse;

import com.liferay.portal.kernel.portlet.PortletURLFactoryUtil;

import com.liferay.portal.kernel.security.permission.ActionKeys;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

303

import com.liferay.portal.kernel.util.HtmlUtil;

import com.liferay.portal.kernel.util.PortalUtil;

import com.liferay.portal.kernel.util.StringUtil;

import com.liferay.docs.guestbook.portlet.constants.GuestbookPortletKeys;

import com.liferay.docs.guestbook.model.Guestbook;

import com.liferay.docs.guestbook.service.permission.GuestbookPermission;

import java.util.Locale;

import javax.portlet.PortletRequest;

import javax.portlet.PortletResponse;

import javax.portlet.PortletURL;

import javax.portlet.WindowState;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class GuestbookAssetRenderer extends BaseJSPAssetRenderer<Guestbook> {

}

2. Add the constructor and the guestbook class variable next. Most of themethods in this class are simply
getters that return fields from this private guestbook object:

public GuestbookAssetRenderer(Guestbook guestbook) {

_guestbook = guestbook;

}

private Guestbook _guestbook;

3. The BaseJSPAssetRenderer abstract class that you’re extending contains dummy implementations of
the hasEditPermission and hasViewPermissionmethods that youmust override. Override these dummy
implementations with actual permission checks using the GuestbookPermission class that you created
earlier:

@Override

public boolean hasEditPermission(PermissionChecker permissionChecker)

throws PortalException {

long guestbookId = _guestbook.getGuestbookId();

return GuestbookPermission.contains(permissionChecker, guestbookId,

ActionKeys.UPDATE);

}

@Override

public boolean hasViewPermission(PermissionChecker permissionChecker)

throws PortalException {

long guestbookId = _guestbook.getGuestbookId();

return GuestbookPermission.contains(permissionChecker, guestbookId,

ActionKeys.VIEW);

}

4. Add the following getter methods to retrieve information about the guestbook asset:

@Override

public Guestbook getAssetObject() {

return _guestbook;

}

@Override

public long getGroupId() {

return _guestbook.getGroupId();

304

}

@Override

public long getUserId() {

return _guestbook.getUserId();

}

@Override

public String getUserName() {

return _guestbook.getUserName();

}

@Override

public String getUuid() {

return _guestbook.getUuid();

}

@Override

public String getClassName() {

return Guestbook.class.getName();

}

@Override

public long getClassPK() {

return _guestbook.getGuestbookId();

}

@Override

public String getSummary(PortletRequest portletRequest, PortletResponse

portletResponse) {

return "Name: " + _guestbook.getName();

}

@Override

public String getTitle(Locale locale) {

return _guestbook.getName();

}

@Override

public boolean include(HttpServletRequest request, HttpServletResponse

response, String template) throws Exception {

request.setAttribute("GUESTBOOK", _guestbook);

request.setAttribute("HtmlUtil", HtmlUtil.getHtml());

request.setAttribute("StringUtil", new StringUtil());

return super.include(request, response, template);

}

The final method makes several utilities, as well as the Guestbook entity, available to Liferay DXP in the
HttpServletRequest object.

5. Override the getJspPathmethod. This method returns a string that represents the path to the JSP
that renders the guestbook asset. When the Asset Publisher displays an asset’s full content, it invokes
the asset renderer class’s getJspPath method and passes a template string parameter that equals
"full_content". This returns /asset/guestbook/full_content.jsp when the full_content template
string is passed as a parameter. You’ll create this JSP later when updating your application’s user
interface:

@Override

public String getJspPath(HttpServletRequest request, String template) {

if (template.equals(TEMPLATE_FULL_CONTENT)) {

request.setAttribute("gb_guestbook", _guestbook);

305

return "/asset/guestbook/" + template + ".jsp";

} else {

return null;

}

}

6. Override the getURLEditmethod. This method returns a URL for editing the asset:

@Override

public PortletURL getURLEdit(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse) throws Exception {

PortletURL portletURL = liferayPortletResponse.createLiferayPortletURL(

getControlPanelPlid(liferayPortletRequest), GuestbookPortletKeys.GUESTBOOK,

PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/edit_guestbook");

portletURL.setParameter("guestbookId", String.valueOf(_guestbook.getGuestbookId()));

portletURL.setParameter("showback", Boolean.FALSE.toString());

return portletURL;

}

7. Override the getURLViewInContextmethod. This method returns a URL to view the asset in its native
application:

@Override

public String getURLViewInContext(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse, String noSuchEntryRedirect) throws Exception {

try {

long plid = PortalUtil.getPlidFromPortletId(_guestbook.getGroupId(),

GuestbookPortletKeys.GUESTBOOK);

PortletURL portletURL;

if (plid == LayoutConstants.DEFAULT_PLID) {

portletURL = liferayPortletResponse.createLiferayPortletURL(getControlPanelPlid(liferayPortletRequest),

GuestbookPortletKeys.GUESTBOOK, PortletRequest.RENDER_PHASE);

} else {

portletURL = PortletURLFactoryUtil.create(liferayPortletRequest,

GuestbookPortletKeys.GUESTBOOK, plid, PortletRequest.RENDER_PHASE);

}

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/view");

portletURL.setParameter("guestbookId", String.valueOf(_guestbook.getGuestbookId()));

String currentUrl = PortalUtil.getCurrentURL(liferayPortletRequest);

portletURL.setParameter("redirect", currentUrl);

return portletURL.toString();

} catch (PortalException e) {

} catch (SystemException e) {

}

return noSuchEntryRedirect;

}

8. Override the getURLViewmethod. This method returns a URL to view the asset fromwithin the Asset
Publisher:

306

@Override

public String getURLView(LiferayPortletResponse liferayPortletResponse,

WindowState windowState) throws Exception {

return super.getURLView(liferayPortletResponse, windowState);

}

9. Save the class.

10. You have an error in your class, because the guestbook-service project doesn’t have access to the
GuestbookPortletKeys object that’s in the guestbook-web project.

It is logical to think this could be corrected by including the project as a dependency in guestbook-

service’s build.gradle file, but that creates a circular dependency. guestbook-web already depends on
guestbook-service, so you can’t make guestbook-service depend circularly on guestbook-web.

So now what do you do?

Make sure you’veopenedboth guestbook-apiand guestbook-webprojects. Drag the com.liferay.docs.guestbook.portlet.constants
package from the guestbook-web project and drop it on the guestbook-api project’s src/main/java

folder. Blamo! You fixed the problem. guestbook-service depends on guestbook-api and implements
its interfaces. guestbook-web depends on both. Now you have only linear dependencies.

Next you can create the AssetRendererFactory class.

Creating the GuestbookAssetRendererFactory Class

Follow these steps to create the GuestbookAssetRendererFactory:

1. In the com.liferay.docs.guestbook.assetpackage, create a class called GuestbookAssetRendererFactory
that extends Liferay DXP’s BaseAssetRendererFactory class. Replace its code with this starter code:

package com.liferay.docs.guestbook.asset;

import com.liferay.asset.kernel.model.AssetRenderer;

import com.liferay.asset.kernel.model.AssetRendererFactory;

import com.liferay.asset.kernel.model.BaseAssetRendererFactory;

import com.liferay.docs.guestbook.model.Guestbook;

import com.liferay.docs.guestbook.service.EntryLocalService;

import com.liferay.docs.guestbook.service.GuestbookLocalService;

import com.liferay.docs.guestbook.service.permission.GuestbookPermission;

import com.liferay.docs.guestbook.constants.GuestbookPortletKeys;

import com.liferay.portal.kernel.util.WebKeys;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.portlet.LiferayPortletRequest;

import com.liferay.portal.kernel.portlet.LiferayPortletResponse;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import com.liferay.portal.kernel.theme.ThemeDisplay;

import javax.portlet.PortletRequest;

import javax.portlet.PortletURL;

import javax.servlet.ServletContext;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

@Component(immediate = true,

property = {"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK},

service = AssetRendererFactory.class

)

307

public class GuestbookAssetRendererFactory extends

BaseAssetRendererFactory<Guestbook> {

public GuestbookAssetRendererFactory() {

setClassName(CLASS_NAME);

setLinkable(_LINKABLE);

setPortletId(GuestbookPortletKeys.GUESTBOOK);

setSearchable(true);

setSelectable(true);

}

This code contains the class declaration and the constructor. It sets the class name it creates an
AssetRenderer for, a portlet ID, and a boolean (_LINKABLE) set to true. The boolean denotes themethods
that provide URLs in the generated AssetRenderer are implemented.

2. Implement the getAssetRenderermethod, which constructs new GuestbookAssetRenderer instances
for specific guestbooks. It uses the classPK (primary key) parameter to retrieve the guestbook from
the database. It then calls the GuestbookAssetRenderer’s constructor, passing the retrieved guestbook
as an argument:

@Override

public AssetRenderer<Guestbook> getAssetRenderer(long classPK, int type)

throws PortalException {

Guestbook guestbook = _guestbookLocalService.getGuestbook(classPK);

GuestbookAssetRenderer guestbookAssetRenderer =

new GuestbookAssetRenderer(guestbook);

guestbookAssetRenderer.setAssetRendererType(type);

guestbookAssetRenderer.setServletContext(_servletContext);

return guestbookAssetRenderer;

}

3. You’re extending BaseAssetRendererFactory, anabstract class that implements the AssetRendererFactory
interface. To ensure that your custom asset is associated with the correct entity, each asset renderer
factory must implement the getClassName and getTypemethods (among others):

@Override

public String getClassName() {

return CLASS_NAME;

}

@Override

public String getType() {

return TYPE;

}

4. Implement the hasPermissionmethod via the GuestbookPermission class:

@Override

public boolean hasPermission(PermissionChecker permissionChecker,

long classPK, String actionId) throws Exception {

Guestbook guestbook = _guestbookLocalService.getGuestbook(classPK);

return GuestbookPermission.contains(permissionChecker, guestbook,

actionId);

}

308

5. Add the remaining code to create the portlet URL for the asset and specify whether it’s linkable:

@Override

public PortletURL getURLAdd(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse, long classTypeId) {

PortletURL portletURL = null;

try {

ThemeDisplay themeDisplay = (ThemeDisplay)

liferayPortletRequest.getAttribute(WebKeys.THEME_DISPLAY);

portletURL = liferayPortletResponse.createLiferayPortletURL(getControlPanelPlid(themeDisplay),

GuestbookPortletKeys.GUESTBOOK, PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/edit_guestbook");

portletURL.setParameter("showback", Boolean.FALSE.toString());

} catch (PortalException e) {

}

return portletURL;

}

@Override

public boolean isLinkable() {

return _LINKABLE;

}

@Override

public String getIconCssClass() {

return "bookmarks";

}

@Reference(target = "(osgi.web.symbolicname=com.liferay.docs.guestbook.portlet)",

unbind = "-")

public void setServletContext(ServletContext servletContext) {

_servletContext = servletContext;

}

private ServletContext _servletContext;

@Reference(unbind = "-")

protected void setGuestbookLocalService(GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

private GuestbookLocalService _guestbookLocalService;

private static final boolean _LINKABLE = true;

public static final String CLASS_NAME = Guestbook.class.getName();

public static final String TYPE = "guestbook";

}

6. Organize imports (Ctrl-Shift-O) and save the file.

Great! The guestbook asset renderer is complete. Next, you’ll create the entry asset renderer.

32.2 Implementing an Entry Asset Renderer
<p>Implementing Asset Renderers
Step 2 of 2</p>

Theclasses you’ll createherearenearly identical to the GuestbookAssetRendererand GuestbookAssetRendererFactory
classes you created for guestbooks in the previous step. This step provides the code needed for guestbook
entries. Please review the previous sections for more information on this code.

309

Creating the EntryAssetRenderer Class

In the com.liferay.docs.guestbook.asset package, create an EntryAssetRenderer class that extends Liferay
DXP’s BaseJSPAssetRenderer class. Replace the contents of your EntryAssetRenderer class with the following
code:

package com.liferay.docs.guestbook.asset;

import com.liferay.asset.kernel.model.BaseJSPAssetRenderer;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.exception.SystemException;

import com.liferay.portal.kernel.model.LayoutConstants;

import com.liferay.portal.kernel.portlet.LiferayPortletRequest;

import com.liferay.portal.kernel.portlet.LiferayPortletResponse;

import com.liferay.portal.kernel.portlet.PortletURLFactoryUtil;

import com.liferay.portal.kernel.security.permission.ActionKeys;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import com.liferay.portal.kernel.util.HtmlUtil;

import com.liferay.portal.kernel.util.PortalUtil;

import com.liferay.portal.kernel.util.StringUtil;

import com.liferay.docs.guestbook.portlet.constants.GuestbookPortletKeys;

import com.liferay.docs.guestbook.model.Entry;

import com.liferay.docs.guestbook.service.permission.EntryPermission;

import java.util.Locale;

import javax.portlet.PortletRequest;

import javax.portlet.PortletResponse;

import javax.portlet.PortletURL;

import javax.portlet.WindowState;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class EntryAssetRenderer extends BaseJSPAssetRenderer<Entry> {

public EntryAssetRenderer(Entry entry) {

_entry = entry;

}

@Override

public boolean hasViewPermission(PermissionChecker permissionChecker)

throws PortalException {

long entryId = _entry.getEntryId();

return EntryPermission.contains(permissionChecker, entryId,

ActionKeys.VIEW);

}

@Override

public Entry getAssetObject() {

return _entry;

}

@Override

public long getGroupId() {

return _entry.getGroupId();

}

@Override

public long getUserId() {

return _entry.getUserId();

}

@Override

public String getUserName() {

return _entry.getUserName();

}

310

@Override

public String getUuid() {

return _entry.getUuid();

}

@Override

public String getClassName() {

return Entry.class.getName();

}

@Override

public long getClassPK() {

return _entry.getEntryId();

}

@Override

public String getSummary(PortletRequest portletRequest,

PortletResponse portletResponse) {

return "Name: " + _entry.getName() + ". Message: " + _entry.getMessage();

}

@Override

public String getTitle(Locale locale) {

return _entry.getMessage();

}

@Override

public boolean include(HttpServletRequest request,

HttpServletResponse response, String template) throws Exception {

request.setAttribute("ENTRY", _entry);

request.setAttribute("HtmlUtil", HtmlUtil.getHtml());

request.setAttribute("StringUtil", new StringUtil());

return super.include(request, response, template);

}

@Override

public String getJspPath(HttpServletRequest request, String template) {

if (template.equals(TEMPLATE_FULL_CONTENT)) {

request.setAttribute("gb_entry", _entry);

return "/asset/entry/" + template + ".jsp";

} else {

return null;

}

}

@Override

public PortletURL getURLEdit(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse) throws Exception {

PortletURL portletURL = liferayPortletResponse.createLiferayPortletURL(

getControlPanelPlid(liferayPortletRequest), GuestbookPortletKeys.GUESTBOOK,

PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/edit_entry");

portletURL.setParameter("entryId", String.valueOf(_entry.getEntryId()));

portletURL.setParameter("showback", Boolean.FALSE.toString());

return portletURL;

}

@Override

public String getURLViewInContext(LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse, String noSuchEntryRedirect)

throws Exception {

try {

long plid = PortalUtil.getPlidFromPortletId(_entry.getGroupId(),

GuestbookPortletKeys.GUESTBOOK);

311

PortletURL portletURL;

if (plid == LayoutConstants.DEFAULT_PLID) {

portletURL = liferayPortletResponse.createLiferayPortletURL(getControlPanelPlid(liferayPortletRequest),

GuestbookPortletKeys.GUESTBOOK, PortletRequest.RENDER_PHASE);

} else {

portletURL = PortletURLFactoryUtil.create(liferayPortletRequest,

GuestbookPortletKeys.GUESTBOOK, plid, PortletRequest.RENDER_PHASE);

}

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/view");

portletURL.setParameter("entryId", String.valueOf(_entry.getEntryId()));

String currentUrl = PortalUtil.getCurrentURL(liferayPortletRequest);

portletURL.setParameter("redirect", currentUrl);

return portletURL.toString();

} catch (PortalException e) {

} catch (SystemException e) {

}

return noSuchEntryRedirect;

}

@Override

public String getURLView(LiferayPortletResponse liferayPortletResponse,

WindowState windowState) throws Exception {

return super.getURLView(liferayPortletResponse, windowState);

}

@Override

public boolean isPrintable() {

return true;

}

private Entry _entry;

}

This class is similar to the GuestbookAssetRenderer class. For the EntryAssetRenderer.getSummarymethod,
you return a summary that displays the entry name (the name of the user who created the entry) and the
entry message.

GuestbookAssetRenderer.getSummary returns a summary that displays the guestbook name.
EntryAssetRenderer.getTitle returns the entry message. GuestbookAssetRenderer.getTitle returns
the guestbook name. The rest of the methods of EntryAssetRenderer are nearly identical to those of
GuestbookAssetRenderer.

Creating the EntryAssetRendererFactory Class

Next, youmust create theguestbookentry asset renderer’s factory class. In the com.liferay.docs.guestbook.asset
package, create a class called EntryAssetRendererFactory that extendsLiferayDXP’s BaseAssetRendererFactory
class. Replace its contents with the following code:

package com.liferay.docs.guestbook.asset;

import com.liferay.asset.kernel.model.AssetRenderer;

import com.liferay.asset.kernel.model.AssetRendererFactory;

import com.liferay.asset.kernel.model.BaseAssetRendererFactory;

import com.liferay.docs.guestbook.model.Entry;

import com.liferay.docs.guestbook.service.EntryLocalService;

312

import com.liferay.docs.guestbook.service.permission.EntryPermission;

import com.liferay.docs.guestbook.portlet.constants.GuestbookPortletKeys;

import com.liferay.portal.kernel.util.WebKeys;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.portlet.LiferayPortletRequest;

import com.liferay.portal.kernel.portlet.LiferayPortletResponse;

import com.liferay.portal.kernel.portlet.LiferayPortletURL;

import com.liferay.portal.kernel.security.permission.PermissionChecker;

import com.liferay.portal.kernel.theme.ThemeDisplay;

import javax.portlet.PortletRequest;

import javax.portlet.PortletURL;

import javax.portlet.WindowState;

import javax.portlet.WindowStateException;

import javax.servlet.ServletContext;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

@Component(

immediate = true,

property = {"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK},

service = AssetRendererFactory.class

)

public class EntryAssetRendererFactory extends BaseAssetRendererFactory<Entry> {

public EntryAssetRendererFactory() {

setClassName(CLASS_NAME);

setLinkable(_LINKABLE);

setPortletId(GuestbookPortletKeys.GUESTBOOK);

setSearchable(true);

setSelectable(true);

}

@Override

public AssetRenderer<Entry> getAssetRenderer(long classPK, int type)

throws PortalException {

Entry entry = _entryLocalService.getEntry(classPK);

EntryAssetRenderer entryAssetRenderer = new EntryAssetRenderer(entry);

entryAssetRenderer.setAssetRendererType(type);

entryAssetRenderer.setServletContext(_servletContext);

return entryAssetRenderer;

}

@Override

public String getClassName() {

return CLASS_NAME;

}

@Override

public String getType() {

return TYPE;

}

@Override

public boolean hasPermission(PermissionChecker permissionChecker,

long classPK, String actionId) throws Exception {

Entry entry = _entryLocalService.getEntry(classPK);

return EntryPermission.contains(permissionChecker, entry, actionId);

}

@Override

public PortletURL getURLAdd(LiferayPortletRequest liferayPortletRequest,

313

LiferayPortletResponse liferayPortletResponse, long classTypeId) {

PortletURL portletURL = null;

try {

ThemeDisplay themeDisplay = (ThemeDisplay) liferayPortletRequest.getAttribute(WebKeys.THEME_DISPLAY);

portletURL = liferayPortletResponse.createLiferayPortletURL(getControlPanelPlid(themeDisplay),

GuestbookPortletKeys.GUESTBOOK, PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/guestbookwebportlet/edit_entry");

portletURL.setParameter("showback", Boolean.FALSE.toString());

} catch (PortalException e) {

}

return portletURL;

}

@Override

public PortletURL getURLView(LiferayPortletResponse liferayPortletResponse, WindowState windowState) {

LiferayPortletURL liferayPortletURL

= liferayPortletResponse.createLiferayPortletURL(

GuestbookPortletKeys.GUESTBOOK, PortletRequest.RENDER_PHASE);

try {

liferayPortletURL.setWindowState(windowState);

} catch (WindowStateException wse) {

}

return liferayPortletURL;

}

@Override

public boolean isLinkable() {

return _LINKABLE;

}

@Override

public String getIconCssClass() {

return "pencil";

}

@Reference(target = "(osgi.web.symbolicname=com.liferay.docs.guestbook.portlet)",

unbind = "-")

public void setServletContext (ServletContext servletContext) {

_servletContext = servletContext;

}

@Reference(unbind = "-")

protected void setEntryLocalService(EntryLocalService entryLocalService) {

_entryLocalService = entryLocalService;

}

private EntryLocalService _entryLocalService;

private ServletContext _servletContext;

private static final boolean _LINKABLE = true;

public static final String CLASS_NAME = Entry.class.getName();

public static final String TYPE = "entry";

}

Exporting the Asset Package

The container needs to make the asset renderers and their factories available to Liferay DXP when it needs
them. To do this, youmust export the package.

314

Open the guestbook-servicemodule’s bnd.bnd file and add the asset package to the Export-Package decla-
ration. When you’re finished, it should look like this:

Export-Package: com.liferay.docs.guestbook.asset,\

com.liferay.docs.guestbook.service.permission,\

com.liferay.docs.guestbook.search

Now your guestbook project’s entities are fully asset-enabled. To test the functionality, add the Asset
Publisher portlet to a page and add a few guestbooks and guestbook entries. Edit a few of them, too. Then,
check the Asset Publisher portlet. The Asset Publisher, by default, dynamically displays assets of any kind
from the current site.

Figure 32.1: After you’ve implemented and registered your asset renderers for your custom entities, the Asset Publisher can display your entities.

Confirm that the Asset Publisher displays the guestbooks and guestbook entries that you added.
Great! In the next section, you’ll update your portlets’ user interfaces to use several features of Liferay

DXP’s asset framework: comments, ratings, tags, categories, and related assets.

315

Chapter 33

Adding Asset Features to Your User
Interface

<p>Adding Asset Features to Your UI
Step 1 of 5</p>

Nowthat your guestbook andguestbook entry entities are asset-enabled, you’re ready touse LiferayDXP’s
asset functionality in your application. You’ll start by implementing comments, ratings, tags, categories,
and related assets for guestbooks. Then you’ll do the same for guestbook entries. All the back-end support
for these features is provided by Liferay DXP. Your only task is to update your applications’ user interfaces to
use these features.

In this section, you’ll create several new JSPs that need new imports. Add the following imports to the
guestbook-webmodule project’s init.jsp file:

<%@ page import="java.util.Map" %>

<%@ page import="java.util.HashMap" %>

<%@ page import="com.liferay.asset.kernel.service.AssetEntryLocalServiceUtil" %>

<%@ page import="com.liferay.asset.kernel.service.AssetTagLocalServiceUtil" %>

<%@ page import="com.liferay.asset.kernel.model.AssetEntry" %>

<%@ page import="com.liferay.asset.kernel.model.AssetTag" %>

<%@ page import="com.liferay.portal.kernel.util.ListUtil" %>

It’s simpler to add these imports now so you don’t run into errors as you’re working through this section.

33.1 Creating JSPs for Displaying Custom Assets in the Asset Pub-
lisher

<p>Adding Asset Features to Your UI
Step 2 of 5</p>

Before proceeding, youmust tie up a loose end from the previous step. Remember that you implemented
getJspPath methods in your GuestbookAssetRenderer and EntryAssetRenderer classes. These methods re-
turn paths to the JSPs the Asset Publisher uses to display the assets’ full content. The getJspPathmethod
of GuestbookAssetRenderer returns "/asset/guestbook/full_content.jsp", and the getJspPath method of
EntryAssetRenderer returns "/asset/entry/full_content.jsp". It’s time to create these JSPs.

Follow these steps:

317

1. In the guestbook-web module project, create a new folder called asset under the resources/META-

INF/resources folder. Add two folders to this new folder: entry and guestbook.

2. Create a new file called full_content.jsp in the /asset/guestbook folder. This JSP displays a guestbook
asset’s full content. Add the following code to this file:

<%@include file="../../init.jsp"%>

<%

Guestbook guestbook = (Guestbook)request.getAttribute("gb_guestbook");

guestbook = guestbook.toEscapedModel();

%>

<dl>

<dt>Name</dt>

<dd><%= guestbook.getName() %></dd>

</dl>

This JSP grabs the guestbook object from the request and displays the guestbook’s name. In
GuestbookAssetRenderer, the getJspPathmethod used the following to add the gb_guestbook request
attribute:

request.setAttribute("gb_guestbook", _guestbook);

Theguestbook’s toEscapedModelmethod belongs to the GuestbookModelImpl class, which was generated
by Service Builder. This method returns a safe guestbook object (a guestbook in which each field is
HTML-escaped). Calling guestbook = guestbook.toEscapedModel() before displaying the guestbook
name ensures that your JSP won’t display malicious code that’s masquerading as a guestbook name.

3. Next, in the /asset/entry folder, create a full_content.jsp for displaying a guestbook entry asset’s full
content. Add the following code to this file:

<%@include file="../../init.jsp"%>

<%

Entry entry = (Entry)request.getAttribute("gb_entry");

entry = entry.toEscapedModel();

%>

<dl>

<dt>Guestbook</dt>

<dd><%= GuestbookLocalServiceUtil.getGuestbook(entry.getGuestbookId()).getName() %></dd>

<dt>Name</dt>

<dd><%= entry.getName() %></dd>

<dt>Message</dt>

<dd><%= entry.getMessage() %></dd>

</dl>

This JSP is almost as simple as the one for guestbooks. The only difference is that you’re displaying three
fields of the guestbook entry entity as opposed to one field of the guestbook entity.

Test your new JSPs by clicking a guestbook’s or guestbook entry’s title in the Asset Publisher. The Asset
Publisher renders full_content.jsp:

By default, when displaying an asset’s full view, the Asset Publisher displays additional links for Twitter,
Facebook, and Google Plus. These links publicize your asset on social media. The Back icon and the View in
Context link return you to the Asset Publisher’s default view.

318

Figure 33.1: When you click the title for a guestbook or guestbook entry in the Asset Publisher, your full_content.jsp should be displayed.

33.2 Enabling Tags, Categories, and Related Assets for Guestbooks
<p>Adding Asset Features to Your UI
Step 3 of 5</p>

Since you already asset-enabled guestbooks at the service layer, guestbook entities can now use Liferay
DXP’s back-end support for tags and categories. All that’s left is to enable tags and categories in the UI.
In this step, you’ll update the Guestbook Admin portlet’s edit_guestbook.jsp so admins can add, edit, or
remove tags and categories when adding or updating a guestbook.

Enabling Asset Features

Follow these steps:

1. In the guestbook-web module’s /guestbookadminportlet/edit_guestbook.jsp, add the tags <liferay-
ui:asset-categories-error /> and <liferay-ui:asset-tags-error/> to the aui:form below the closing
</aui:fieldset> tag:

<liferay-ui:asset-categories-error />

<liferay-ui:asset-tags-error />

These tags display error messages if an error occurs with the tags or categories submitted in the form.

2. Below the error tags, add a <liferay-ui:panel> tag with the following attributes:

319

<liferay-ui:panel defaultState="closed" extended="<%= false %>"

id="guestbookCategorizationPanel" persistState="<%= true %>"

title="categorization">

</liferay-ui:panel>

The <liferay-ui:panel> tag generates a collapsible section.

3. Add input fields for tags and categories inside the panel section you just created. Specify the
assetCategories and assetTags types for the <aui:input /> tags to tell Liferay DXP that these input
tags represent asset categories and asset tags. You can group related input fields together with an
<aui:fieldset> tag. Liferay DXP shows the appropriate selectors for tags and categories and displays
the tags and categories that have already been added to the guestbook:

<aui:fieldset>

<aui:input name="categories" type="assetCategories" />

<aui:input name="tags" type="assetTags" />

</aui:fieldset>

4. Adda second <liferay-ui:panel> tagunder the existing one. In this new tag, add an <aui:fieldset> tag
containing a <liferay-ui:asset-links> tag. To display the correct asset links (the selected guestbook’s
related assets), set the className and classPK attributes:

<liferay-ui:panel defaultState="closed" extended="<%= false %>"

id="guestbookAssetLinksPanel" persistState="<%= true %>"

title="related-assets">

<aui:fieldset>

<liferay-ui:input-asset-links

className="<%= Guestbook.class.getName() %>"

classPK="<%= guestbookId %>" />

</aui:fieldset>

</liferay-ui:panel>

Test the updated edit_guestbook.jsp page by navigating to the Guestbook Admin portlet in the Control
Panel and clicking Add Guestbook. You’ll see a field for adding tags and a selector for selecting related assets.

Don’t do anything with these fields yet, because you’re not done implementing assets. Next, you’ll enable
tags and categories for guestbook entries.

33.3 Enabling Tags, Categories, and Related Assets for Guestbook
Entries

<p>Adding Asset Features to Your UI
Step 4 of 5</p>

Enabling tags, categories, and related assets for guestbook entries is similar to enabling them for guest-
books. It’s so similar, you can refer back to the previous step for a detailed explanation.

Open your guestbook-webmodule’s guestbookwebportlet/edit_entry.jsp file. Replace its content with
the following code:

<%@ include file="../init.jsp" %>

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

320

Figure 33.2: Once you’ve updated your Guestbook Admin portlet’s edit_guestbook.jsp page, you’ll see forms for adding tags and selecting related assets.

Entry entry = null;

if (entryId > 0) {

entry = EntryLocalServiceUtil.getEntry(entryId);

}

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

%>

<portlet:renderURL var="viewURL">

<portlet:param

name="mvcPath"

value="/guestbookwebportlet/view.jsp"

/>

</portlet:renderURL>

<liferay-ui:header

backURL="<%= viewURL.toString() %>"

title="<%= entry == null ? "Add Entry" : entry.getName() %>"

321

/>

<portlet:actionURL name="addEntry" var="addEntryURL" />

<aui:form action="<%= addEntryURL %>" name="fm">

<aui:model-context bean="<%= entry %>" model="<%= Entry.class %>" />

<aui:fieldset>

<aui:input name="name" />

<aui:input name="email" />

<aui:input name="message" />

<aui:input name="entryId" type="hidden" />

<aui:input name="guestbookId" type="hidden"

value=

"<%= entry == null ? guestbookId : entry.getGuestbookId() %>" />

</aui:fieldset>

<liferay-ui:asset-categories-error />

<liferay-ui:asset-tags-error />

<liferay-ui:panel defaultState="closed"

extended="<%= false %>" id="entryCategorizationPanel"

persistState="<%= true %>" title="categorization">

<aui:fieldset>

<aui:input name="categories"

type="assetCategories" />

<aui:input name="tags" type="assetTags" />

</aui:fieldset>

</liferay-ui:panel>

<liferay-ui:panel defaultState="closed"

extended="<%= false %>" id="entryAssetLinksPanel"

persistState="<%= true %>" title="related-assets">

<aui:fieldset>

<liferay-ui:input-asset-links

className=

"<%= Entry.class.getName() %>"

classPK="<%= entryId %>"

/>

</aui:fieldset>

</liferay-ui:panel>

<aui:button-row>

<aui:button type="submit" />

<aui:button onClick="<%= viewURL.toString() %>" type="cancel" />

</aui:button-row>

</aui:form>

Test your JSP by using the Guestbook portlet to add and update Guestbook entries. Try adding and
removing tags, categories, and related assets. All these operations should work.

Well done! Next, you’ll enable comments and ratings for guestbook entries.

33.4 Enabling Comments and Ratings for Guestbook Entries
<p>Adding Asset Features to Your UI
Step 5 of 5</p>

Liferay DXP’s asset framework lets users comment on and rate assets. As with tags, categories, and
related assets, you must update the user interface to expose these features. It’s best to separate the page

322

where users comment on and rate assets from the page where users edit assets. You shouldn’t have to edit an
entry to comment on it; that not only makes no sense, it’s a security problem. Comments and ratings should
be added in a viewmode only.

Follow these steps to enable comments and ratings on guestbook entries:

1. Create a new file called view_entry.jsp in your guestbook-webmodule project’s /guestbookwebportlet
folder.

2. Add a Java scriptlet to the file you just created. In this scriptlet, use an entryId request attribute to
get an entry object. For security reasons, convert this object to an escapedmodel as discussed in the
earlier step Creating JSPs for Displaying Customs Assets in the Asset Publisher:

<%@ include file="../init.jsp"%>

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

Entry entry = null;

if (entryId > 0) {

entry = EntryLocalServiceUtil.getEntry(entryId);

entryId = entry.getEntryId();

}

entry = EntryLocalServiceUtil.getEntry(entryId);

entry = entry.toEscapedModel();

AssetEntry assetEntry =

AssetEntryLocalServiceUtil.getEntry(Entry.class.getName(),

entry.getEntryId());

3. Next, update the breadcrumb entry with the the current entry’s name:

String currentURL = PortalUtil.getCurrentURL(request);

PortalUtil.addPortletBreadcrumbEntry(request, entry.getMessage(),

currentURL);

4. At the end of the scriptlet, add the names of the current entry’s existing asset tags as keywords
to the portal page. These tag names appear in a <meta content="[tag names here]" lang="en-US"

name="keywords" /> element in your portal page’s <head> section. These keywords can help search
engines find and index your page:

PortalUtil.setPageSubtitle(entry.getMessage(), request);

PortalUtil.setPageDescription(entry.getMessage(), request);

List<AssetTag> assetTags =

AssetTagLocalServiceUtil.getTags(Entry.class.getName(),

entry.getEntryId());

PortalUtil.setPageKeywords(ListUtil.toString(assetTags, "name"),

request);

%>

5. After the scriptlet, specify the URLs for the page and back link:

323

<liferay-portlet:renderURL varImpl="viewEntryURL">

<portlet:param name="mvcPath"

value="/guestbookwebportlet/view_entry.jsp" />

<portlet:param name="entryId" value="<%=String.valueOf(entryId)%>" />

</liferay-portlet:renderURL>

<liferay-portlet:renderURL varImpl="viewURL">

<portlet:param name="mvcPath"

value="/guestbookwebportlet/view.jsp" />

</liferay-portlet:renderURL>

<liferay-ui:header backURL="<%=viewURL.toString()%>"

title="<%=entry.getName()%>"

/>

6. Next, define the page’smain content. Display the guestbook’s name, and the entry’s nameandmessage
with the <dl>, <dt>, and <dd> tags:

<dl>

<dt>Guestbook</dt>

<dd><%=GuestbookLocalServiceUtil.getGuestbook(entry.getGuestbookId()).getName()%></dd>

<dt>Name</dt>

<dd><%=entry.getName()%></dd>

<dt>Message</dt>

<dd><%=entry.getMessage()%></dd>

</dl>

This is the same way you defined the page’s main content in /guestbookwebportlet/full_content.jsp.

7. Next, use a <liferay-ui:panel-container> tag to create a panel container. Inside this tag, use a
<liferay-ui:panel> tag to create a panel to display the comments and ratings components:

<liferay-ui:panel-container extended="<%=false%>"

id="guestbookCollaborationPanelContainer" persistState="<%=true%>">

<liferay-ui:panel collapsible="<%=true%>" extended="<%=true%>"

id="guestbookCollaborationPanel" persistState="<%=true%>"

title="Collaboration">

8. Add the ratings andcomments components via the <liferay-ui:ratings>and <liferay-ui:discussion>
tags, respectively. The latter tag needs an action URL (in this case, invokeTaglibDiscussion) for its
formAction attribute. The action URL adds the comment after the user enters a comment and clicks
Reply:

<liferay-ui:ratings className="<%=Entry.class.getName()%>"

classPK="<%=entry.getEntryId()%>" type="stars" />

<portlet:actionURL name="invokeTaglibDiscussion"

var="discussionURL" />

<liferay-ui:discussion className="<%=Entry.class.getName()%>"

classPK="<%=entry.getEntryId()%>"

formAction="<%=discussionURL%>" formName="fm2"

ratingsEnabled="<%=true%>" redirect="<%=currentURL%>"

userId="<%=entry.getUserId()%>" />

</liferay-ui:panel>

</liferay-ui:panel-container>

324

9. To restrict comments and ratings access to logged-in users, wrap the whole panel container in a <c:if>
tag that tests the expression themeDisplay.isSignedIn():

<c:if test="<%= themeDisplay.isSignedIn() %>">

... your panel container ...

</c:if>

Make sure you add the closing </c:if> tag after the closing </liferay-ui:panel-container> tag.

Note: Discussions (comments) are implemented as message board messages

in Liferay DXP. In the `MBMessage` table, there's a `classPK` column. This

`classPK` represents the `entryId` of the guestbook entry the comment

belongs to. Ratings are stored in the `RatingsEntry` table. Similarly, the

`RatingsEntry` table contains a `classPK` column. This `classPK` represents

the `entryId` of the guestbook entry the rating belongs to. Using a

`classPK` foreign key in one table to represent the primary key of another

table is a common pattern that's used throughout Liferay DXP.

Next, you’ll update the guestbook actions to use the new view.

Updating the Entry Actions JSP

Nothing links to your view_entry.jsp page–it’s currently orphaned. Fix this by adding the View option to the
Actions Menu. Open the /guestbookwebportlet/entry_actions.jsp and find the following line:

<liferay-ui:icon-menu>

Add the following lines below it:

<portlet:renderURL var="viewEntryURL">

<portlet:param name="entryId"

value="<%= String.valueOf(entry.getEntryId()) %>" />

<portlet:param name="mvcPath"

value="/guestbookwebportlet/view_entry.jsp" />

</portlet:renderURL>

<liferay-ui:icon message="View" url="<%= viewEntryURL.toString() %>" />

Here, you create a URL that points to view_entry.jsp. Test this link by selecting the View option in a
guestbook entry’s Actions Menu. Then test that comments and ratings work as expected.

Excellent! You’ve asset-enabled the guestbook and guestbook entry entities, and enabled tags, categories,
and related assets for both entities. You’ve also enabled comments and ratings for guestbook entry entities!
Great job!

Your next task is to generate web services. This makes it possible to write other clients (such as mobile
applications) for the Guestbook application.

325

Chapter 34

Generating Web Services

Assets opened the door to support many features of Liferay DXP’s development framework. There’s more to
cover, but the Guestbook app’s back-end is nowmature enough to widen its appeal.

Right now, the Guestbook app’s back-end services can only be accessed bymodules in the same OSGi
container. If you want to read or post Guestbook entries, you have to write and deploy native code on
the server. This is fine for some, but others want more: web clients on a different platform; standalone
applications using Electron or some other framework; or mobile apps for Android or iOS. Web services
power all of these.

You now have an application with back-end services and a front-end web client running in the same
container. Web services make it possible to have multiple front-end clients on multiple platforms that
access the same back-end. This makes it possible to build headless applications on Liferay DXP, with multiple
front-ends elsewhere.

Next, you’ll use Service Builder to create the Guestbook app’s web services. When you finish, authorized
clients can then consume these web services.

Ready to start?
Let’s Go!

34.1 Creating Remote Services with Service Builder
<p>Creating Remote Services
Step 1 of 1</p>

Earlier, you used Service Builder to generate the Guestbook’s model, persistence, and service layers.
Services generated by Service Builder can come in two flavors: local and remote. The local services you
already used can only be invoked locally from the same OSGi container. Remote services can be invoked by
any application with permission to access your server via the web. Remote services are published as JSON or
SOAP.

For more information, click here to see the Service BuilderWeb Services section of tutorials.
Creating web services for the Guestbook application takes two steps:

1. Generate the web services with Service Builder.

2. Expose the services you want and wrap them in permission checks.

327

Figure 34.1: Liferay DXP makes it easy to write multi-client applications.

328

There’s a level of security in the assumption that local services can only be called by other services in
the container. For example, the web app does permission and validation checks before calling services. To
access these services, developers must be able to deploy their modules on the server. You don’t have these
assurances when you expose services to the web, so youmust check for permission before calling a service.

But first youmust tell Service Builder to generate web services. Follow these steps:

1. Open service.xml from the guestbook-service module. Find the tags for the Guestbook and Entry

entities:

<entity name="Guestbook" local-service="true" uuid="true">

<entity name="Entry" local-service="true" uuid="true">

2. As described in the service.xmlDTD, local-service defaults to false and remote-service defaults to
true. It helps other developers who read your code to specify what services are generated. Therefore,
add remote-service="true" to the entity tags of the Guestbook and Entry entities:

<entity name="Guestbook" local-service="true" remote-service="true" uuid="true">

<entity name="Entry" local-service="true" remote-service="true" uuid="true">

3. In theGradle Taskswindow on the right-hand side of Liferay@ide@, expand the servicemodule’s build
folder. Run Service Builder by double-clicking buildService. When Service Builder finishes, refresh the
guestbook-api and guestbook-servicemodules in the Project Explorer.

Youmay be interested to know that Service Builder did absolutely nothing. Since remote services are
generated by default, you’ve always had their stubs in your project. All you did was make it explicit in the
code.

By implementing local services, you separated concerns. Local services can assume things like permission
checks have already been done before they’re called. This separates the business logic from the permissions
logic. If instead you implemented everything in the remote services, this separation wouldn’t exist.

Youmay see code from other developers, however, who didn’t implement the local service, and instead
elected to place all their business and permission logic in the remote service. This works, but makes the
code less readable. With the concerns separated, a business logic bug is contained in the local service, and a
permissions bug is contained in the remote service.

To expose remote services, you’ll implement methods in the -ServiceImpl classes instead of the
-LocalServiceImpl classes. Since the primary concern is permissions, however, first create a helper class to
hold the permissions:

1. In the src/main/java folder, create the new package com.liferay.docs.guestbook.util. In this new
package, create this ActionKeys class:

package com.liferay.docs.guestbook.util;

public class ActionKeys extends

com.liferay.portal.kernel.security.permission.ActionKeys {

public static final String ADD_ENTRY = "ADD_ENTRY";

public static final String ADD_GUESTBOOK = "ADD_GUESTBOOK";

}

329

https://docs.liferay.com/ce/portal/7.0-ga4/definitions/liferay-service-builder_7_0_0.dtd.html

The ADD_ENTRY and ADD_GUESTBOOK strings reference the permissions defined in the guestbook-service
module’s docroot/WEB-INF/src/resource-actions/default.xml file earlier in this Learning Path. It’s
a best practice to create strings to refer to permissions in a class called ActionKeys that extends
com.liferay.portal.kernel.security.permission.ActionKeys. The parent ActionKeys contains strings
that are used to refer to portal permissions. These include strings for common permissions such as
VIEW, UPDATE, DELETE, and so on.

2. Add the followingmethods to the GuestbookServiceImpl class; then organize the imports by selecting
Source →Organize Imports:

public Guestbook addGuestbook(long userId, String name,

ServiceContext serviceContext) throws SystemException,

PortalException {

return guestbookLocalService.addGuestbook(userId, name, serviceContext);

}

public Guestbook deleteGuestbook(long guestbookId,

ServiceContext serviceContext) throws PortalException,

SystemException {

return guestbookLocalService.deleteGuestbook(guestbookId, serviceContext);

}

public List<Guestbook> getGuestbooks(long groupId) throws SystemException {

return guestbookLocalService.getGuestbooks(groupId);

}

public List<Guestbook> getGuestbooks(long groupId, int start, int end)

throws SystemException {

return guestbookLocalService.getGuestbooks(groupId, start, end);

}

public int getGuestbooksCount(long groupId) throws SystemException {

return guestbookLocalService.getGuestbooksCount();

}

public Guestbook updateGuestbook(long userId, long guestbookId,

String name, ServiceContext serviceContext) throws PortalException,

SystemException {

return guestbookLocalService.updateGuestbook(userId, guestbookId,

name, serviceContext);

}

These are stub remote service methods that expose each guestbook local service method. For now,
the remote service method implementations call the local service implementations. Later, you’ll add
permission checks to these methods, to wrap them in the same permissions you created in the UI.
Service calls have no UI, so youmust check for permission to access them. For now, you’re exposing
the services to confirm they work and are accessible.

3. Add the following methods to the EntryServiceImpl class, then organize the imports as you did in step
2:

public Entry addEntry(long userId, long guestbookId, String name,

String email, String message, ServiceContext serviceContext)

throws PortalException, SystemException {

return entryLocalService.addEntry(userId, guestbookId, name, email,

message, serviceContext);

330

}

public Entry deleteEntry(long entryId, ServiceContext serviceContext)

throws PortalException, SystemException {

return entryLocalService.deleteEntry(entryId, serviceContext);

}

public List<Entry> getEntries(long groupId, long guestbookId)

throws SystemException {

return entryLocalService.getEntries(groupId, guestbookId);

}

public List<Entry> getEntries(long groupId, long guestbookId, int start,

int end) throws SystemException {

return entryLocalService.getEntries(groupId, guestbookId, start, end);

}

public int getEntriesCount(long groupId, long guestbookId)

throws SystemException {

return entryLocalService.getEntriesCount(groupId, guestbookId);

}

public Entry updateEntry(long userId, long guestbookId, long entryId,

String name, String email, String message,

ServiceContext serviceContext) throws PortalException,

SystemException {

return entryLocalService.updateEntry(userId, guestbookId, entryId,

name, email, message, serviceContext);

}

Like you did for guestbooks, you’ve now createdmethod stubs for guestbook entries. Eachmethod
implemented here exposes a service to the web. You’ll add permission checks in the next section.

4. Run Service Builder and refresh the API and service modules. Then redeploy the guestbook-*modules.

First, make sure you’re logged in as a user that can read guestbooks. Navigate to Liferay DXP’s JSONWS
page (http://[host name]:[port number]/api/jsonws) and click the Context Name selector. The Guestbook
app’s context, gb, appears as an option. Select it and confirm that your remote service methods appear in the
list.

To test that your remote services work, choose a method to invoke. Pick a simple method that doesn’t
require a Service Context parameter, like getGuestbooksCount(long groupId). To find the appropriate groupId
(the ID of the site containing theGuestbook app), navigate to that site in your browser and selectConfiguration
→ Site Settings from the Site Menu on the left. The site ID is listed at the top of the Site Settings page. Now
return to the JSONWS page and enter the site ID into the group ID field and click Invoke. Confirm that the
correct number of guestbooks is returned. Great! Your remote services work.

Next, you’ll build aWSDD (Web Service Deployment Descriptor) document for your remote services to
make them available via SOAP (Simple Object Access Protocol).

Follow these steps to do so:

1. In your Liferay workspace’s settings.gradle file, add imports for ServiceBuilderPlugin and
WSDDBuilderPlugin before the buildscript block. Then add the gradle.beforeProject closure at the
bottom of the file:

331

Figure 34.2: After you’ve added remote service methods to your project’s *ServiceImpl classes, run Service Builder and redeploy your modules. Then check that your
remote services are accessible. 332

import com.liferay.gradle.plugins.service.builder.ServiceBuilderPlugin

import com.liferay.gradle.plugins.wsdd.builder.WSDDBuilderPlugin

...

gradle.beforeProject {

project ->

project.plugins.withType(ServiceBuilderPlugin) {

project.apply plugin: WSDDBuilderPlugin

}

}

Refresh your workspace’s Gradle files: right click settings.gradle in the Project Explorer and select
Gradle → Refresh Gradle Project.

2. In the Gradle Taskswindow on the right-hand side of Liferay @ide@, expand the service module’s build
folder. Build theWSDD by double-clicking buildWSDD. If buildWSDD is missing, shut down your server
and then restart Liferay @ide@. The buildWSDD command appears as described.

TheWSDD builder generates aWSDD JAR file in the guestbook-servicemodule’s build/libs folder.
Because this folder isn’t visible in@ide@, youmust access it from thefile system. Theproject’smodules
are in the Eclipse workspace on the file system. Here’s the full file path to the WSDD JAR in your
Eclipse workspace:

com-liferay-docs-guestbook/modules/guestbook/guestbook-service/build/libs/com.liferay.docs.guestbook.service-wsdd-1.0.0.jar

If this file is missing, run buildWSDD again to generate it.

3. Deploy theWSDD JAR file to Liferay DXP, which is in the LiferayWorkspace’s bundles folder. To do
this, copy and paste theWSDD JAR file into this folder in your Eclipse workspace on your file system:

com-liferay-docs-guestbook/bundles/deploy

Return to Liferay @ide@ and check the console to make sure deployment completes successfully.

4. Go to http://[host name]:[port number]/o/com.liferay.docs.guestbook.service/api/axis in your
browser to view the Guestbook app’s SOAP web services. If you’re running Liferay DXP locally on port
8080, this is http://localhost:8080/o/com.liferay.docs.guestbook.service/api/axis.

This page contains links to theWSDL (Web Services Description Language) documents for the Guest-
book andEntry remote servicemethods. WSDLfiles describe details about the remote servicemethods,
including the type of data these methods require.

If you want to make your app’s services available for remote invocation via SOAP, generatingWSDD and
WSDL files is required. For example, the Liferay Mobile SDK relies on theWSDD andWSDL to discover your
Liferay DXP app’s remote services. For the Liferay Mobile SDK to create a mobile client that can access your
Liferay DXP app’s web services, youmust therefore generate aWSDD andWSDL for your app.

Next, you’ll learn how to secure your web services. Unless you secure your web services by implementing
permission checks, any user can add, update, or delete guestbooks or guestbook entries, and you certainly
don’t want that.

333

http://localhost:8080/o/com.liferay.docs.guestbook.service/api/axis
https://web.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview

Chapter 35

Implementing Permission Checks

Now that your guestbook and guestbook entry web services exist, you must implement permission
checks for them. Implementing permission checks for a web service ensures that only users with
the correct permissions can invoke the web service. To implement permission checks in your remote
services, you’ll use the GuestbookModelPermission, GuestbookPermission, and EntryPermission helper classes
that you created earlier. These classes provide helper methods for checking permissions. The helper
methods in GuestbookModelPermission check top-level model permissions. For example, you can use
GuestbookModelPermission’s helper methods to check if a user can add a new guestbook or guestbook entry.
If, on the other hand, you must check if a user can update or delete an existing guestbook or guestbook
entry, you’ll use GuestbookPermission or EntryPermission.

Once you’ve secured your remote services with permission checks, you’ll update your portlet classes to
call remote services instead of local services. This prevents attackers from trying to bypass your app’s UI by
playing with URL parameters to access sensitive portions of your app.

Let’s Go!

35.1 Implementing Permission Checks at the Service Layer
<p>Implementing Permission Checks
Step 1 of 2</p>

First, you’ll add permission checks to GuestbookServiceImpl:

1. In GuestbookServiceImpl, replace the addGuestbook, deleteGuestbook, and updateGuestbook methods
with these versions that contain the permission checks:

public Guestbook addGuestbook(long userId, String name,

ServiceContext serviceContext) throws SystemException,

PortalException {

GuestbookModelPermission.check(getPermissionChecker(),

serviceContext.getScopeGroupId(), ActionKeys.ADD_GUESTBOOK);

return guestbookLocalService.addGuestbook(userId, name, serviceContext);

}

public Guestbook deleteGuestbook(long guestbookId,

ServiceContext serviceContext) throws PortalException,

SystemException {

335

GuestbookPermission.check(getPermissionChecker(), guestbookId,

ActionKeys.DELETE);

return guestbookLocalService.deleteGuestbook(guestbookId, serviceContext);

}

public Guestbook updateGuestbook(long userId, long guestbookId,

String name, ServiceContext serviceContext) throws PortalException,

SystemException {

GuestbookPermission.check(getPermissionChecker(), guestbookId,

ActionKeys.UPDATE);

return guestbookLocalService.updateGuestbook(userId, guestbookId, name,

serviceContext);

}

Organize imports to add the imports for the *Permissions and ActionKeys classes.

These methods add permission checks to the remote service methods by calling the check helper
methods in GuestbookModelPermission and GuestbookPermission. Remember that thesemethods throw
exceptions, so if the user doesn’t have permission, processing stops at the permission check. The
GuestbookModelPermission.checkmethod takes three parameters:

• a PermissionChecker object
• a groupId
• an actionId string

The GuestbookModelPermission.check and EntryModelPermission.checkmethods take three parameters:

• a PermissionChecker object
• an entity ID (either guestbookId or entryId)
• an actionId string

BaseServiceImpl contains a getPermissionChecker method that returns a PermissionChecker object.
This is accessible since GuestbookServiceImpl extends GuestbookServiceBaseImpl, which extends
BaseServiceImpl. The serviceContextmethod getScopeGroupId returns a groupId. The actionId string
comes from your ActionKeys class. Using an ActionKeys field is less error prone than thanmanually
typing the string’s name every time you want to check a permission. Using an ActionKeys string also
avoids creating a duplicate string.

2. Open EntryServiceImpl and replace the addEntry, deleteEntry, and updateEntrymethods with ones
that contain permission checks:

public Entry addEntry(long userId, long guestbookId, String name,

String email, String message, ServiceContext serviceContext)

throws PortalException, SystemException {

GuestbookModelPermission.check(getPermissionChecker(),

serviceContext.getScopeGroupId(), ActionKeys.ADD_ENTRY);

return entryLocalService.addEntry(userId, guestbookId, name, email,

message, serviceContext);

}

336

public Entry deleteEntry(long entryId, ServiceContext serviceContext)

throws PortalException, SystemException {

EntryPermission.check(getPermissionChecker(), entryId, ActionKeys.DELETE);

return entryLocalService.deleteEntry(entryId, serviceContext);

}

public Entry updateEntry(long userId, long guestbookId, long entryId,

String name, String email, String message,

ServiceContext serviceContext) throws PortalException,

SystemException {

EntryPermission.check(getPermissionChecker(), entryId, ActionKeys.UPDATE);

return entryLocalService.updateEntry(userId, guestbookId, entryId,

name, email, message, serviceContext);

}

As in step 1, organize imports to add the imports for the *Permissions and ActionKeys classes.

Thepermission checks in thesemethodswork the same as those in GuestbookServiceImpl. For addEntry,
you use GuestbookModelPermission.check for the permission check, since adding a guestbook entry is
a top level model action. For deleteEntry and updateEntry, you use EntryPermission.check since these
operations each require a specific permission on a specific entity.

3. Open GuestbookServiceImpl and replace both getGuestbooksmethods (this method is overloaded) and
the getGuestbookCountmethod with these:

public List<Guestbook> getGuestbooks(long groupId) throws SystemException {

return guestbookPersistence.filterFindByGroupId(groupId);

}

public List<Guestbook> getGuestbooks(long groupId, int start, int end)

throws SystemException {

return guestbookPersistence.filterFindByGroupId(groupId, start, end);

}

public int getGuestbooksCount(long groupId) throws SystemException {

return guestbookPersistence.filterCountByGroupId(groupId);

}

4. Open EntryServiceImpl and replace the getEntries methods (this method is overloaded) and the
getGuestbookCountmethod with these:

public List<Entry> getEntries(long groupId, long guestbookId)

throws SystemException {

return entryPersistence.filterFindByG_G(groupId, guestbookId);

}

public List<Entry> getEntries(long groupId, long guestbookId, int start,

int end) throws SystemException {

return entryPersistence.filterFindByG_G(groupId, guestbookId, start,

end);

}

public int getEntriesCount(long groupId, long guestbookId)

throws SystemException {

return entryPersistence.filterCountByG_G(groupId, guestbookId);

}

337

5. Run Service Builder and refresh the API and service modules.

All remote service methods should include permission checks. In steps 1 and 2, you directly invoked
permission checks for the remote service methods addGuestbook, deleteGuestbook, updateGuestbook,
addEntry, deleteEntry, and updateEntry by using the check methods of the permissions utility classes:
GuestbookModelPermission, GuestbookPermission, and EntryPermission. In steps 3 and 4, you indirectly
invoked permission checks for the remote service methods getGuestbooks, getGuestbooksCount, getEntries,
and getEntriesCount by calling the filterFindBy* and *filterCountBy*methods of GuestbookPersistenceImpl
and EntryPersistenceImpl. The filterFindBy* and *filterCountBy* methods are generated by Service
Builder if the following conditions are met:

• The entity has a simple primitive primary key
• The entity has permission checks registered in an XML file in your project’s docroot/WEB-

INF/src/resource-actions directory
• The entity has userId and groupId fields
• The finder method has a groupId argument in its method signature

Since it would be a very expensive operation to retrieve a large list of guestbook or guestbook entry enti-
ties and run permission checks on each one, Service Builder generates the filterFindBy* and filterCountBy*

helper methods in the persistence layer to handle permission checks. The permission checking of these
helper methods is done in the database, resulting in a less expensive operation. The filterFindBy* and
filterCountBy*methods work just like the ordinary findBy* and countBy*methods in the *PersistenceImpl
classes, except that the filterFindBy* and filterCountBy*methods include permission checks. Instances of
the *PersistenceImpl classes are made available as Spring beans in the *ServiceImpl classes. These beans are
named guestbookPersistence and entryPersistence in GuestbookServiceImpl and EntryServiceImpl, respec-
tively.

Awesome! You’re almost done. The only thing left is to secure the service calls youmake in the web client.

35.2 Securing Service Calls at the Portlet Layer
<p>Implementing Permission Checks
Step 2 of 2</p>

Your remote services are now secure for direct use. Your web application, however, is another story–it’s
still calling local services. In a perfect world, that would be fine, but this isn’t a perfect world.

Previously, you implemented portlet actionmethods such as addGuestbook, addEntry, deleteEntry, and
so on in GuestbookPortlet and GuestbookAdminPortlet classes. Thesemethods call local services. For example,
in the addEntrymethod of GuestbookPortlet, you used the following call to add a new guestbook entry:

_entryLocalService.addEntry(serviceContext.getUserId(), guestbookId, userName,

email, message, serviceContext);

Calling local services froman app’s portlet layer isn’t recommendedbecause they don’t contain permission
checks. Nefarious individuals messing with URL parameters might be able to access protected areas of your
app. To secure your app, only call remote services from the portlet layer, because that’s the layer that has
permission checking. Thus, to secure service calls at the portlet layer, all you have to do is replace the local
service calls with remote service calls.

Note: An alternative approach to securing service calls at the portlet layer is to check permissions at the
portlet layer manually. To do this, get a ThemeDisplay from the ActionRequest (ThemeDisplay themeDisplay

338

= (ThemeDisplay) request.getAttribute(WebKeys.THEME_DISPLAY);) and get a PermissionChecker from the
ThemeDisplay (PermissionChecker permissionChecker = themeDisplay.getPermissionChecker();). If the
user passes the permission check, then call the local service method. However, it’s best to avoid rewriting
permission checks whenever possible. For this reason, if you must wrap a service call in a permission check,
implement that service method as a remote service and add the permission check to the remote service. This
is the pattern Liferay DXP uses and that you have followed in this Learning Path.

Use the following steps to secure the service calls in the GuestbookPortlet class:

1. Replace the _guestbookLocalService and _entryLocalService variable declarations with these:

private GuestbookService _guestbookService;

private EntryService _entryService;

2. Replace the GuestbookLocalService and EntryLocalService imports with the these:

import com.liferay.docs.guestbook.service.GuestbookService;

import com.liferay.docs.guestbook.service.EntryService;

3. Replace all instances of _guestbookLocalService and _entryLocalService with _guestbookService

and _entryService, respectively. Also make sure to replace any GuestbookLocalService and
EntryLocalServicemethod arguments with GuestbookService and EntryService, respectively.

Now follow the same steps to change guestbook services in GuestbookAdminPortlet. Note that service
calls and variables for guestbook entries aren’t necessary in GuestbookAdminPortlet.

To check that you haven’t made a mistake in your GuestbookPortlet class, refer to the following complete
class:

package com.liferay.docs.guestbook.portlet;

import java.io.IOException;

import java.util.List;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.portlet.ActionRequest;

import javax.portlet.ActionResponse;

import javax.portlet.Portlet;

import javax.portlet.PortletException;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import com.liferay.docs.guestbook.model.Entry;

import com.liferay.docs.guestbook.model.Guestbook;

import com.liferay.docs.guestbook.portlet.constants.GuestbookPortletKeys;

import com.liferay.docs.guestbook.service.GuestbookService;

import com.liferay.docs.guestbook.service.EntryService;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet;

import com.liferay.portal.kernel.service.ServiceContext;

import com.liferay.portal.kernel.service.ServiceContextFactory;

import com.liferay.portal.kernel.servlet.SessionErrors;

import com.liferay.portal.kernel.servlet.SessionMessages;

import com.liferay.portal.kernel.util.ParamUtil;

339

import com.liferay.portal.kernel.util.PortalUtil;

/**

* @author sezovr

⁎/

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.social",

"com.liferay.portlet.instanceable=false",

"com.liferay.portlet.scopeable=true",

"javax.portlet.display-name=Guestbook",

"javax.portlet.expiration-cache=0",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/guestbookwebportlet/view.jsp",

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user",

"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK,

"javax.portlet.supports.mime-type=text/html"

},

service = Portlet.class

)

public class GuestbookPortlet extends MVCPortlet {

public void addEntry(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Entry.class.getName(), request);

String userName = ParamUtil.getString(request, "name");

String email = ParamUtil.getString(request, "email");

String message = ParamUtil.getString(request, "message");

long guestbookId = ParamUtil.getLong(request, "guestbookId");

long entryId = ParamUtil.getLong(request, "entryId");

if (entryId > 0) {

try {

_entryService.updateEntry(

serviceContext.getUserId(), guestbookId, entryId, userName,

email, message, serviceContext);

SessionMessages.add(request, "entryAdded");

response.setRenderParameter(

"guestbookId", Long.toString(guestbookId));

}

catch (Exception e) {

System.out.println(e);

SessionErrors.add(request, e.getClass().getName());

PortalUtil.copyRequestParameters(request, response);

response.setRenderParameter(

"mvcPath", "/guestbookwebportlet/edit_entry.jsp");

}

}

else {

try {

_entryService.addEntry(

serviceContext.getUserId(), guestbookId, userName, email,

message, serviceContext);

340

SessionMessages.add(request, "entryAdded");

response.setRenderParameter(

"guestbookId", Long.toString(guestbookId));

}

catch (Exception e) {

SessionErrors.add(request, e.getClass().getName());

PortalUtil.copyRequestParameters(request, response);

response.setRenderParameter(

"mvcPath", "/guestbookwebportlet/edit_entry.jsp");

}

}

}

public void deleteEntry(ActionRequest request, ActionResponse response) throws PortalException {

long entryId = ParamUtil.getLong(request, "entryId");

long guestbookId = ParamUtil.getLong(request, "guestbookId");

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Entry.class.getName(), request);

try {

response.setRenderParameter(

"guestbookId", Long.toString(guestbookId));

_entryService.deleteEntry(entryId, serviceContext);

SessionMessages.add(request, "entryDeleted");

}

catch (Exception e) {

Logger.getLogger(GuestbookPortlet.class.getName()).log(

Level.SEVERE, null, e);

SessionErrors.add(request, e.getClass().getName());

}

}

@Override

public void render(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

try {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), renderRequest);

long groupId = serviceContext.getScopeGroupId();

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

List<Guestbook> guestbooks = _guestbookService.getGuestbooks(

groupId);

if (guestbooks.isEmpty()) {

Guestbook guestbook = _guestbookService.addGuestbook(

serviceContext.getUserId(), "Main", serviceContext);

guestbookId = guestbook.getGuestbookId();

}

341

if (guestbookId == 0) {

guestbookId = guestbooks.get(0).getGuestbookId();

}

renderRequest.setAttribute("guestbookId", guestbookId);

}

catch (Exception e) {

throw new PortletException(e);

}

super.render(renderRequest, renderResponse);

}

@Reference(unbind = "-")

protected void setEntryService(EntryService entryService) {

_entryService = entryService;

}

@Reference(unbind = "-")

protected void setGuestbookService(GuestbookService guestbookService) {

_guestbookService = guestbookService;

}

private GuestbookService _guestbookService;

private EntryService _entryService;

}

To check that you haven’t made a mistake in your GuestbookAdminPortlet class, refer to the following
complete class:

package com.liferay.docs.guestbook.portlet;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.portlet.ActionRequest;

import javax.portlet.ActionResponse;

import javax.portlet.Portlet;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import com.liferay.docs.guestbook.model.Guestbook;

import com.liferay.docs.guestbook.portlet.constants.GuestbookPortletKeys;

import com.liferay.docs.guestbook.service.GuestbookService;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet;

import com.liferay.portal.kernel.service.ServiceContext;

import com.liferay.portal.kernel.service.ServiceContextFactory;

import com.liferay.portal.kernel.servlet.SessionErrors;

import com.liferay.portal.kernel.servlet.SessionMessages;

import com.liferay.portal.kernel.util.ParamUtil;

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.hidden",

"com.liferay.portlet.scopeable=true",

"javax.portlet.display-name=Guestbooks",

"javax.portlet.expiration-cache=0",

"javax.portlet.init-param.portlet-title-based-navigation=true",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/guestbookadminportlet/view.jsp",

"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK_ADMIN,

342

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=administrator",

"javax.portlet.supports.mime-type=text/html",

"com.liferay.portlet.add-default-resource=true"

},

service = Portlet.class

)

public class GuestbookAdminPortlet extends MVCPortlet {

public void addGuestbook(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

String name = ParamUtil.getString(request, "name");

try {

_guestbookService.addGuestbook(

serviceContext.getUserId(), name, serviceContext);

SessionMessages.add(request, "guestbookAdded");

}

catch (PortalException e) {

Logger.getLogger(GuestbookAdminPortlet.class.getName()).log(

Level.SEVERE, null, e);

SessionErrors.add(request, e.getClass().getName());

response.setRenderParameter(

"mvcPath", "/guestbookadminportlet/edit_guestbook.jsp");

}

}

public void updateGuestbook(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

String name = ParamUtil.getString(request, "name");

long guestbookId = ParamUtil.getLong(request, "guestbookId");

try {

_guestbookService.updateGuestbook(

serviceContext.getUserId(), guestbookId, name, serviceContext);

SessionMessages.add(request, "guestbookUpdated");

} catch (PortalException e) {

Logger.getLogger(GuestbookAdminPortlet.class.getName()).log(

Level.SEVERE, null, e);

SessionErrors.add(request, e.getClass().getName());

response.setRenderParameter(

"mvcPath", "/guestbookadminportlet/edit_guestbook.jsp");

}

}

public void deleteGuestbook(ActionRequest request, ActionResponse response)

throws PortalException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

343

long guestbookId = ParamUtil.getLong(request, "guestbookId");

try {

_guestbookService.deleteGuestbook(guestbookId, serviceContext);

SessionMessages.add(request, "guestbookDeleted");

}

catch (PortalException e) {

Logger.getLogger(GuestbookAdminPortlet.class.getName()).log(

Level.SEVERE, null, e);

SessionErrors.add(request, e.getClass().getName());

}

}

private GuestbookService _guestbookService;

@Reference(unbind = "-")

protected void setGuestbookService(GuestbookService guestbookService) {

_guestbookService = guestbookService;

}

}

Now that you’ve implemented permission checks at the portlet layer, users without the proper permis-
sions can’t add, update, or delete a guestbook or guestbook entry entity. Even if a user manually entered
a URL pointing to one of your portlet action methods, the portlet action now calls a remote service. The
permission check in the remote service aborts the unauthorized user’s request. Excellent work on securing
your application’s services!

From here, you can diverge. The later steps of this Learning Path (some still in progress) introduce you to
other parts of Liferay DXP’s development framework: workflow, the Recycle Bin, Lexicon, Friendly URLs,
Staging and import/export, the Message Bus, and distributing your application onMarketplace. If you’re
interested in these topics, continue. But there’s also another option.

Now that you’ve implemented web services, you can create a mobile Guestbook app with Liferay Screens.
That Learning Path is available from the navigation on the left.

344

Chapter 36

Using Workflow

TheGuestbook application accepts submissions from any logged in user, so there’s no telling what people
could post. Illegal data, objectionable content, the entire contents of Don Quixote: all of these andmore are
possibilities. You canmake sure user posts don’t run afoul of the law or policy by enabling workflow in your
application.

Workflow is a review process that ensures a submitted entity isn’t published before it’s reviewed. To
prevent posting objectionable content, an initially submitted Guestbook entry should be marked as a draft
and sent through the workflow framework. It comes back to the application code ready to have any relevant
fields updated in the database based on its status. The view layer must filter entities by status to display only
reviewed entities.

Note:The exact review process is defined separately from the code that enables workflow. An XML file
provides the definition of a workflow in Liferay DXP. If you’re a Liferay Digital Enterprise subscriber, you
have access to the KaleoWorkflow Designer, which offers a convenient drag-and-drop user interface for
designing workflow definition files. You can readmore about this in Liferay DXP’s documentation. Liferay
DXP comes with a workflow definition called the Single Approver definition, but you can write your own
workflow definitions according to your organization’s requirements.

A few additional definitions are included in Liferay DXP’s source code, which you can use to see how
workflow definitions are defined. To discover how to access these files, see here.

This section instructs the reader in workflow-enabling the Guestbook App’s Guestbook and Entry entities
to ensure that only approved content is published after review.

Figure 36.1: Enable workflow in your assets, just like Liferay DXP’s own assets.

345

https://help.liferay.com/hc/en-us/articles/360017876972-Kaleo-Designer

There are five steps to enabling workflow:

1. Update the service layer to set each entity’s status fields.

2. Send the entity to Liferay DXP’s workflow framework.

3. Add gettermethods that account for an entity’s workflow status.

4. Handle the entity as it returns from the workflow framework.

5. Update the user interface to account for workflow status.

The first three steps happen in the service layer, so that’s a good place to start.
Let’s Go!

346

Chapter 37

Supporting Workflow at the Service Layer

When you asset enabled the Guestbook Application, you added four database columns in the Guestbook
entities (e.g., GB_Entry) that keep track of workflow status (they’re already added; celebrate!). The neces-
sary fields are status, statusByUserName, statusByUserId, and statusDate. The columns are defined in the
guestbook-servicemodule’s service.xml file.

<column name="status" type="int" />

<column name="statusByUserId" type="long" />

<column name="statusByUserName" type="String" />

<column name="statusDate" type="Date" />

The status field tells you the current status of the entity (it defaults to 0, which evaluates to approved).
The other status fields store the date of the last change (statusDate) along with the ID and name of the user
(statusByUserId and statusByUserName) whomade the update.

Although the status columns are in the Guestbook application’s entity tables, youmust update the local
service implementation’s addmethods to set them, and while you’re there, send the entity to the workflow
framework. You’ll also write a method to update the status fields when the entity returns from the workflow
framework, along with getters that take workflow status as a parameter. That sounds like a lot of work, but
thanks to Service Builder, you must change only three files: service.xml, GuestbookLocalServiceImpl, and
EntryLocalServiceImpl.

Let’s Go!

37.1 Setting the Guestbook Status
<p>Supporting Workflow at the Service Layer
Step 1 of 3</p>

Before now, you set the status of all added guestbooks to approved in the service layer. Now you’ll set it
to draft and pass it to the workflow framework.

1. From guestbook-service, open GuestbookLocalServiceImpl and add the status fields below the existing
setter methods in the addGuestbookmethod:

guestbook.setStatus(WorkflowConstants.STATUS_DRAFT);

guestbook.setStatusByUserId(userId);

guestbook.setStatusByUserName(user.getFullName());

guestbook.setStatusDate(serviceContext.getModifiedDate(null));

347

This manually populates the status fields and sets the workflow status as a draft in the GB_Entry

database table. At this point they’re identical to the similarly named non-status counterparts (like
setUserId and setStatusByUserId), but they’ll be updated independently in the updateStatusmethod
you write later.

2. Still in the addGuestbookmethod, place the following code right before the return statement:

WorkflowHandlerRegistryUtil.startWorkflowInstance(guestbook.getCompanyId(),

guestbook.getGroupId(), guestbook.getUserId(), Guestbook.class.getName(),

guestbook.getPrimaryKey(), guestbook, serviceContext);

The call to startWorkflowInstance detects whether workflow is installed and enabled. If it isn’t, the
added entity is automatically marked as approved. The startWorkflowInstance call also calls your
GuestbookWorkflowHandler class, which you’ll create later.

3. Organize imports ([CTRL]+[SHIFT]+O), and save your work.

The startWorkflowInstancemethod is where your entity enters the workflow framework, but you’re not
finished yet. Just like you wouldn’t drop your child off at college and then change your number andmove to a
new address, you’re not going to abandon your Guestbook entity (yet).

Exert control over how the status fields are updated in the database. Create an updateStatusmethod in
GuestbookLocalServiceImpl, immediately following the deleteGuestbookmethod. Here’s the first half of it:

public Guestbook updateStatus(long userId, long guestbookId, int status,

ServiceContext serviceContext) throws PortalException,

SystemException {

User user = userLocalService.getUser(userId);

Guestbook guestbook = getGuestbook(guestbookId);

guestbook.setStatus(status);

guestbook.setStatusByUserId(userId);

guestbook.setStatusByUserName(user.getFullName());

guestbook.setStatusDate(new Date());

guestbookPersistence.update(guestbook);

If this method is called, it’s because your entity is returning from the workflow framework, and it’s
time to update the status values in the database. Set the status fields, then persist the updated entity to the
database. Before saving, finish the method:

if (status == WorkflowConstants.STATUS_APPROVED) {

assetEntryLocalService.updateVisible(Guestbook.class.getName(),

guestbookId, true);

} else {

assetEntryLocalService.updateVisible(Guestbook.class.getName(),

guestbookId, false);

}

return guestbook;

}

This if statement determines the visibility of the asset based on its workflow status. If it’s approved, the
assetEntryLocalService.updateVisiblemethod sets the guestbook in question to true so it can be displayed

348

in the Asset Publisher and in the search results. Otherwise (else) it sets the visibility to false to ensure that
unapproved guestbooks aren’t displayed to users in the Asset Publisher or the Search portlet.

Organize imports ([CTRL]+[SHIFT]+O) and save your work. Then run the buildServiceGradle task.
There’s one more update to make in the deleteGuestbookmethod. When deleting, you must clean up

the workflow system’s database tables to avoid leaving orphaned entries when the backing entity is deleted.
Before making the method call, open service.xml and add the following tag below the existing <reference>
tags:

<reference entity="WorkflowInstanceLink" package-path="com.liferay.portal" />

Save and run Service Builder. It injects the WorkflowInstanceLinkLocalService service into a protected
variable in GuesbookLocalServiceBaseImpl. Since GuestbookLocalServiceImpl extends the base class, you can
use it directly. Back in GuesbookLocalServiceImpl, find the deleteGuestbookmethod and put this method call
right before the return statement:

workflowInstanceLinkLocalService.deleteWorkflowInstanceLinks(

guestbook.getCompanyId(), guestbook.getGroupId(),

Guestbook.class.getName(), guestbook.getGuestbookId());

Save the file and run Refresh Gradle Project. Now the guestbook entity’s service layer populates the status
fields in the database, sends the entity into the workflow framework, and cleans up when it’s deleted. You’ll
do the same thing for guestbook entries next.

37.2 Setting the Entry Workflow Status
<p>Supporting Workflow at the Service Layer
Step 2 of 3</p>

Now you’ll set the status fields, introduce entries to the workflow framework, and add the updateStatus
method to EntryLocalServiceImpl. It works the same as it did for guestbooks.

Add the following lines in the addEntry method, immediately after the current setter methods (e.g.,
entry.setMessage(message)):

entry.setStatus(WorkflowConstants.STATUS_DRAFT);

entry.setStatusByUserId(userId);

entry.setStatusByUserName(user.getFullName());

entry.setStatusDate(serviceContext.getModifiedDate(null));

Still in the addEntrymethod, place the following code right before the return statement:

WorkflowHandlerRegistryUtil.startWorkflowInstance(entry.getCompanyId(),

entry.getGroupId(), entry.getUserId(), Entry.class.getName(),

entry.getPrimaryKey(), entry, serviceContext);

The startWorkflowInstance call eventually directs the workflow processing to your EntryWorkflowHandler
class, which you’ll create later. That class is responsible for making sure the entity is updated in the database
(via an updateStatusmethod), but it’s best practice to make persistence calls in the service layer. Thus you’ll
need a corresponding updateStatusmethod here in EntryLocalServiceImpl. Add this method to the bottom
of the class:

349

public Entry updateStatus(long userId, long guestbookId, long entryId, int status,

ServiceContext serviceContext) throws PortalException,

SystemException {

User user = userLocalService.getUser(userId);

Entry entry = getEntry(entryId);

entry.setStatus(status);

entry.setStatusByUserId(userId);

entry.setStatusByUserName(user.getFullName());

entry.setStatusDate(new Date());

entryPersistence.update(entry);

if (status == WorkflowConstants.STATUS_APPROVED) {

assetEntryLocalService.updateVisible(Entry.class.getName(),

entryId, true);

} else {

assetEntryLocalService.updateVisible(Entry.class.getName(),

entryId, false);

}

return entry;

}

Organize imports ([CTRL]+[SHIFT]+O), save your work, and run Service Builder.
As with Guestbooks, you must add a call to deleteWorkflowInstanceLinks in the entry’s delete method

to avoid leaving orphaned database entries in the workflowinstancelinks table. First add the following
<reference> tag to service.xml, this time in the entry entity section, below the existing reference tags:

<reference entity="WorkflowInstanceLink" package-path="com.liferay.portal" />

Save, run Service Builder, and then add the following method call to the deleteEntry method in
EntryLocalServiceImpl, right before the return statement:

workflowInstanceLinkLocalService.deleteWorkflowInstanceLinks(

entry.getCompanyId(), entry.getGroupId(),

Entry.class.getName(), entry.getEntryId());

Now both entities support the status of the entity and can handle it as it enters the workflow framework
and as it returns from the workflow framework. There’s one more update to make in the local service
implementation classes: adding getter methods that take the status as a parameter. Later you’ll use these
methods in the view layer so you can display only approved guestbooks and entries.

37.3 Retrieving Guestbooks and Entries by Status
<p>Supporting Workflow at the Service Layer
Step 3 of 3</p>

The service implementation for both entities now supports adding the status fields to the database tables.
There’s one more update to make in the service layer, but to understand why, youmust think about the view
layer. When the Guestbook portlet displays entries, youmust make sure it doesn’t show entries that haven’t
been approved. Currently, the entry’s view layer shows all guestbooks:

List<Guestbook> guestbooks = GuestbookLocalServiceUtil

.getGuestbooks(scopeGroupId);

350

There’s a problem: the getter only takes the scopeGroupId as a parameter, so there’s no way to get guest-
books by their status.

Likewise, unapproved entries must not be displayed, but the view layer currently gets all entries:

<liferay-ui:search-container total="<%=EntryLocalServiceUtil.getEntriesCount()%>">

<liferay-ui:search-container-results

results="<%=EntryLocalServiceUtil.getEntries(scopeGroupId.longValue(),

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>" />

The solution is to implement for guestbooks and entries a getter that takes the statusfield as a parameter.
Thankfully, Service Builder makes it easy.

Open the guestbook-servicemodule’s service.xml file.

1. For the entry entity, remove the following finder:

<finder name="G_S" return-type="Collection">

<finder-column name="groupId" />

<finder-column name="status" />

</finder>

2. Add this finder in its place:

<finder name="G_G_S" return-type="Collection">

<finder-column name="groupId" />

<finder-column name="guestbookId" />

<finder-column name="status" />

</finder>

Run service builder (double-click guestbook-service/build/buildService in the Gradle Tasks pane of
IDE). Service Builder generates finder methods in the persistence layer that take the specified fields (for
example, status) as parameters.

Don’t call the persistence layer directly in the application code. Instead expose the new persistence
methods in the service layer.

Open GuesbookLocalServiceImpl and add this getter:

public List<Guestbook> getGuestbooks(long groupId, int status)

throws SystemException {

return guestbookPersistence.findByG_S(

groupId, WorkflowConstants.STATUS_APPROVED);

}

This getter gets only approved guestbooks. That’s why you hard code the workflow constant
STATUS_APPROVED into the statusparameterwhencalling thepersistencemethod. Nowopen EntryLocalServiceImpl
and add these two getters:

public List<Entry> getEntries(

long groupId, long guestbookId, int status, int start, int end)

throws SystemException {

return entryPersistence.findByG_G_S(

groupId, guestbookId, WorkflowConstants.STATUS_APPROVED);

}

public int getEntriesCount(

long groupId, long guestbookId, int status)

351

throws SystemException {

return entryPersistence.countByG_G_S(

groupId, guestbookId, WorkflowConstants.STATUS_APPROVED);

}

You’ll replace the existingmethods with these getEntries and getEntriesCountmethods in the view layer,
ensuring that only approved entries are displayed.

The work here relates to the UI updates you’ll make later. Next, implement workflow handlers so that
you can call the updateStatus service method when the entity returns from the workflow framework.

352

Chapter 38

Handling Workflow

The guestbook project’s service layer is now updated to handle workflow. It now properly sets the status
fields for guestbooks and guestbook entries, gets entities by their statuses, and sends entities to Liferay
DXP’s workflow framework whenever the addGuestbook or addEntrymethods are called. Recall that you still
have an uncalled service method, updateStatus, for both entities. In this section you’ll implement workflow
handlers, classes that interact with Liferay DXP’s workflow framework and your service layer (by calling
updateStatus on the appropriate entity).

There’s a handy abstract class you can extend to make the job easier, called BaseWorkflowHandler. You’ll
do this next for both entities of the guestbook project, starting with guestbooks.

Let’s Go!

38.1 Creating a Workflow Handler for Guestbooks
<p>Handling Workflow
Step 1 of 2</p>

Each workflow enabled entity needs a WorkflowHandler. Create a new package in the guestboook-service
module called com.liferay.docs.guestbook.workflow, then create the GuestbokWorkflowHandler class in it.
Extend BaseWorkflowHandler and pass in Guestbook as the type parameter:

public class GuestbookWorkflowHandler extends BaseWorkflowHandler<Guestbook> {

Make it a Component class:

@Component(immediate = true, service = WorkflowHandler.class)

There are three abstract methods to implement: getClassName, getType, and updateStatus.

@Override

public String getClassName() {

return Guestbook.class.getName();

}

getClassName returns theguestbookentity’s fully qualifiedclassname (com.liferay.docs.guestbook.model.Guestbook).

@Override

public String getType(Locale locale) {

return _resourceActions.getModelResource(locale, getClassName());

}

353

getType returns themodel resourcename (model.resource.com.liferay.docs.guestbook.model.Guestbook).
Themeat of the workflow handler is in the updateStatusmethod:

@Override

public Guestbook updateStatus(

int status, Map<String, Serializable> workflowContext)

throws PortalException {

long userId = GetterUtil.getLong(

(String)workflowContext.get(WorkflowConstants.CONTEXT_USER_ID));

long resourcePrimKey = GetterUtil.getLong(

(String)workflowContext.get(

WorkflowConstants.CONTEXT_ENTRY_CLASS_PK));

ServiceContext serviceContext = (ServiceContext)workflowContext.get(

"serviceContext");

return _guestbookLocalService.updateStatus(

userId, resourcePrimKey, status, serviceContext);

}

When you crafted the service layer’s updateStatusmethod (see the last section for more details), you
specified parameters that must be passed to the method. Here you’re making sure that those parameters are
available to pass to the service call. Get the userId and resourcePrimKey from GetterUtil. Its getLongmethod
takes a String, which you can get from the workflowContext Map using WorkflowConstants for the context user
ID and the context entry class PK.

Make sure you inject the ResourceActions service into a private variable at the end of the class, using the
@Reference annotation:

@Reference(unbind = "-")

protected void setResourceActions(ResourceActions resourceActions) {

_resourceActions = resourceActions;

}

private ResourceActions _resourceActions;

Inject a GuestbookLocalService into a private variable using the @Reference annotation.

@Reference(unbind = "-")

protected void setGuestbookLocalService(

GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

private GuestbookLocalService _guestbookLocalService;

}

Organize imports ([CTRL]+[SHIFT]+O) and save your work.
Now the Guestbook Application updates the database with the necessary status information, interacting

with Liferay’s workflow classes to make sure each entity is properly handled by Liferay DXP. At this point you
can enable workflow for the Guestbook inside Liferay DXP and see how it works. Navigate to Control Panel →
Workflow Configuration. The Guestbook entity appears among Liferay DXP’s native entities. Enable the Single
Approver Workflow for Guestbooks; then go to the Guestbook Admin portlet and add a new Guestbook.
A notification appears next to your user name in the product menu. You receive a notification from the
workflow that a task is ready for review. Click it, and you’re taken to the MyWorkflow Tasks portlet, where
you can complete the review task.

354

Figure 38.1: Click the workflow notification in the Notifications portlet to review the guestbook submitted to the workflow.

To complete the review, click the actions button () fromMyWorkflow Tasks and select Assign toMe.
Click the actions button again and select Approve.

Figure 38.2: Click the workflow notification in the Notifications portlet to review the guestbook submitted to the workflow.

Right now the workflow process for guestbooks is functional, but the UI isn’t adapted for it. You’ll write
theworkflowhandler for guestbook entries next, and thenupdate theUI to account for each entity’sworkflow
status.

38.2 Creating a Workflow Handler for Guestbook Entries
<p>Handling Workflow
Step 2 of 2</p>

The entry’s workflow handler is almost identical to the guestbook’s. Create a new class in the
com.liferay.docs.guestbook.workflowpackageof the guestbook-servicemodule. Name it EntryWorkflowHandler
and extend BaseWorkflowHandler. Decorate it with a Component annotation and implement the same three
methods you implemented in the GuestbookWorkflowHandler. Paste this in as the class body:

@Component(immediate = true, service = WorkflowHandler.class)

public class EntryWorkflowHandler extends BaseWorkflowHandler<Entry> {

@Override

public String getClassName() {

return Entry.class.getName();

}

@Override

public String getType(Locale locale) {

return _resourceActions.getModelResource(locale, getClassName());

355

}

@Override

public Entry updateStatus(

int status, Map<String, Serializable> workflowContext)

throws PortalException {

long userId = GetterUtil.getLong(

(String) workflowContext.get(WorkflowConstants.CONTEXT_USER_ID));

long resourcePrimKey = GetterUtil.getLong(

(String) workflowContext.get(

WorkflowConstants.CONTEXT_ENTRY_CLASS_PK));

ServiceContext serviceContext =

(ServiceContext) workflowContext.get("serviceContext");

long guestbookId =

_entryLocalService.getEntry(resourcePrimKey).getGuestbookId();

return _entryLocalService.updateStatus(

userId, guestbookId, resourcePrimKey, status, serviceContext);

}

@Reference(unbind = "-")

protected void setEntryLocalService(EntryLocalService entryLocalService) {

_entryLocalService = entryLocalService;

}

@Reference(unbind = "-")

protected void setResourceActions(ResourceActions resourceActions) {

_resourceActions = resourceActions;

}

private EntryLocalService _entryLocalService;

private ResourceActions _resourceActions;

}

There is nothing unique about this code as compared with the guestbook’s workflow handler, except that
weneed the gustbookId for the entry. That’s easily obtainedbygetting the Entryobjectwith entryLocalService,
then getting its guestbookId. See the last article for the rest of the handler’s implementation details.

Organize imports with CTRL+SHIFT+O and save the file.
The back-end of the guestbook project is fully workflow enabled. All that’s left is to update the Guestbook

Application’s UI to handle workflow status.

356

Chapter 39

Displaying Approved Workflow Items

There’s not much left to do. Both entities in the guestbook project’s back-end are workflow enabled, so it’s
time to update the UI.The Guestbook Admin portlet and the Guestbook portlet each requires its own display
strategy.

The Guestbook Admin application is accessed by administrators, so it can display all guestbooks that
have been submitted, even if they’re not marked as approved. However, adding a Status field to the search
container makes sense. That way admins can see which guestbooks are already approved, which are drafts,
which are pending, etc.

The Guestbook application is meant to be viewed by site members and even guests (unauthenticated
users of your site). Here it’s smart to display only approved guestbooks and approved entries.

Start by updating the Guestbook Admin UI.
Let’s Go!

39.1 Displaying Guestbook Status
<p>Displaying Approved Workflow Items
Step 1 of 2</p>

TheGuestbook Admin application’s main view currently has a search container with two columns: the
guestbook name and the guestbook actions button.

Figure 39.1: The Guestbook Admin’s main view currently shows the name of the guestbook and its actions button.

357

1. Add a third column between the two existing ones: call it Status. Open

guestbook-web/src/main/reosurces/META-INF/resources/guestbookadminportlet/view.jsp

2. Find the existing search-container-column definitions:

<liferay-ui:search-container-column-text property="name" />

<liferay-ui:search-container-column-jsp align="right"

path="/guestbookadminportlet/guestbook_actions.jsp" />

3. Put the following new column between the existing columns:

<liferay-ui:search-container-column-status property="status" />

Save the file and wait for the web module to redeploy. With the addition of one line in the JSP, the
Guestbook Admin application now displays the guestbook’s workflow status.

Figure 39.2: The Guestbook Admin’s main view, displaying the status of each guestbook.

Nowmove on to the Guestbook application’s view layer.

39.2 Displaying Approved Entries
<p>Displaying Approved Workflow Items
Step 2 of 2</p>

The Guestbook application needs to be updated so that only guestbooks and entries with a status of
approved appear in the UI.

Change the getters used to retrieve both entities in the view layer.

1. You need a new import, so first open

guestbook-web/src/main/resources/META-INF/resources/init.jsp

and add this line:

<%@ page import="com.liferay.portal.kernel.workflow.WorkflowConstants"%>

2. Now open

358

guestbook-web/src/main/resources/META-INF/resources/guestbookwebportlet/view.jsp

Find the scriptlet that retrieves guestbooks:

<%

List<Guestbook> guestbooks = GuestbookLocalServiceUtil

.getGuestbooks(scopeGroupId);

for (int i = 0; i < guestbooks.size(); i++) {

Guestbook curGuestbook = (Guestbook) guestbooks.get(i);

String cssClass = StringPool.BLANK;

if (curGuestbook.getGuestbookId() == guestbookId) {

cssClass = "active";

}

if (GuestbookPermission.contains(

permissionChecker, curGuestbook.getGuestbookId(), "VIEW")) {

%>

Change it so it calls the getter you added that takes workflow status into account. All you need to do is
change this method call

List<Guestbook> guestbooks = GuestbookLocalServiceUtil

.getGuestbooks(scopeGroupId);

to

List<Guestbook> guestbooks = GuestbookLocalServiceUtil

.getGuestbooks(scopeGroupId, WorkflowConstants.STATUS_APPROVED);

Save the file, and now only approved guestbooks are displayed in the Guestbook application.

3. Next, update the entry’s UI in the same view.jsp. Find the tags that set the search container’s total
and its results:

<liferay-ui:search-container total="<%=EntryLocalServiceUtil.

getEntriesCount()%>">

<liferay-ui:search-container-results results=

"<%=EntryLocalServiceUtil.getEntries

(scopeGroupId.longValue(),

guestbookId, searchContainer.getStart(),

searchContainer.getEnd())%>" />

Replace thegetters touse theones that takeworkflowstatusas aparameter, andpass WorkflowConstants.STATUS_APPROVED
as the status. Here’s what it looks like when you’re finished:

<liferay-ui:search-container total="<%=EntryLocalServiceUtil.

getEntriesCount(scopeGroupId.longValue(),

guestbookId, WorkflowConstants.STATUS_APPROVED)%>">

<liferay-ui:search-container-results results=

"<%=EntryLocalServiceUtil.getEntries(

scopeGroupId.longValue(), guestbookId,

WorkflowConstants.STATUS_APPROVED,

searchContainer.getStart(), searchContainer.getEnd())%>" />

359

Figure 39.3: If you don’t update the counter method to account for workflow status, it displays an incorrect count in the search container.

Now only approved entries are displayed, and the search container’s counter only counts the approved
entries. If you update the getEntries call but not the getEntriesCount call, the count that’s displayed includes
approved entries and entries with any other workflow status, and it won’t match the total that’s displayed at
the bottom of the search container.

Now Guestbooks and Entries are now fully workflow enabled, to the great relief of the Lunar Resort’s
site administrators. You’ve saved them a lot of headaches dealing with inappropriate content, primarily
submitted by visitors fromMars. Those Martians really need some lessons in netiquette.

360

Chapter 40

Enabling Staging and Export/Import

Your Guestbook application creates guestbooks and entries that are immediately published when they’re
saved. Sites constantly change, however, so it’s crucial to have an area where updates can be planned and
tested before publishing to your audience. Staging enables changing your Site behind the scenes without
affecting the live Site. When you’re done, you can publish all the changes at once.

Next, you’ll implement Staging support in your Guestbook app so its entries can be tracked during the
Staging phase of your publishing process.

Export/Import facilitates extracting data so it can be imported into another Liferay DXP installation.
Behind the scenes, Export/Import is used during the Staging process. When publishing your staged content
to the live Site, you’re essentially importing content from the staged Site and exporting it to the live Site.
Since the Export/Import framework is programmatically similar to Staging, you can implement it with
Staging.

Ready to support Staging in your Guestbook app?
Let’s Go!

40.1 Creating Staged Models
<p>Enabling Staging and Export/Import
Step 1 of 7</p>

To implement the Staging framework, you must first specify the entities you want to track. For the
Guestbook application, there are two: Guestbooks and Entrys. You can register these entities so they’re
recognizable to the Staging framework by implementing the StagedModel interface in your Guestbook’s
model classes.

Service Builder generates an app’s models as staged models when certain attributes are specified in the
app’s service.xml file. The Guestbook app already definesmany of the necessary attributes in its service.xml
file, so both your GuestbookModel and EntryModel interfaces already extend the StagedModel interface! For
example, your Guestbook app’s EntryModel interface’s declaration looks like this:

public interface EntryModel extends BaseModel<Entry>, GroupedModel, ShardedModel,

StagedAuditedModel, WorkflowedModel {

The StagedModel interface is implemented by the extension of the StagedAuditedModel interface. Service
Builder chose the StagedAuditedModel interface based on the columns you declared. You’ll update this later.

361

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedModel.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedAuditedModel.html

Figure 40.1: Once Staging is implemented in your Guestbook app, you can have its data tracked by the Staging framework.

362

Figure 40.2: A Staging-enabled Guestbook app can be modified on the staged site first without any users seeing it on the live Site.

The following Staging-specific attributes/columns are currently defined in the Guestbook app’s
service.xml file:

• uuid (required)
• groupId

• companyId (required)
• userId

• userName

• createDate (required)
• modifiedDate (required)

One of the most important attributes used by the Staging framework is the UUID (Universally Unique
Identifier). This attribute must be set to true in service.xml for Service Builder to recognize your model as
an eligible stagedmodel. The UUID can differentiate entities between environments, because it’s unique
across multiple systems.

The companyId, createDate, and modifiedDate columns track the current entity’s instance and
creation/modification dates.

363

The others leverage features of the Staging framework like automatic groupmapping or entity level Last
Publish Date handling. See the Understanding StagedModels tutorial for more information.

Before adding Staging features to your Guestbook app, youmust declare some necessary dependencies.

Declaring Staging Dependencies

There are two Staging-specific dependencies used by the Guestbook’s Staging functionality.

1. Open the guestbook-servicemodule’s build.gradle file.

2. Add the following dependencies within the dependencies block:

compileOnly group: "com.liferay", name: "com.liferay.exportimport.api", version: "2.1.0"

compileOnly group: "com.liferay", name: "com.liferay.xstream.configurator.api", version: "2.0.0"

3. Save the file, right-click the Guestbook project, and run Gradle → Refresh Gradle Project.

Now you’re ready to begin implementing staging in your app.

Updating the Extended Staged Model Interface

Stagedmodels that extend the StagedAuditedModel interface function independently from the group concept
(sometimes referred to as companymodels). This means that, for example, your guestbook and entry’s scope
would not be tracked by the Staging framework. Youmust add one more column to your service.xml file to
convert your models to StagedGroupedModels, so your entities’ scope is tracked correctly.

1. Open your guestbook-servicemodule’s service.xml file and add the lastPublishDate column for both
Guestbook and Entry entities:

<column name="lastPublishDate" type="Date" />

2. Run Service Builder. Do this by navigating to the Gradle Tasks pane on the right side of IDE and
selecting your project’s build → buildService task.

3. Run Gradle → Refresh Gradle Project to resolve any remaining errors.

Service Builder has updated yourmodels to extend the StagedGroupedModel. For example, your EntryModel
interface’s declaration now looks like this:

public interface EntryModel extends BaseModel<Entry>, ShardedModel,

StagedGroupedModel, WorkflowedModel {

For more information on the available stagedmodel interfaces, see this tutorial.
Excellent! Now it’s time to create your stagedmodel data handlers.

364

40.2 Creating the Entry Staged Model Data Handler
<p>Enabling Staging and Export/Import
Step 2 of 7</p>

A Staged Model Data Handler supplies information about a staged model (entity) to the Staging and
Export/Import framework. Data handlers replace the need to access the database directly and run queries
to export/import data.

Youmust create a staged model data handler for every entity you want Staging to track. This means you
must create a data handler for both your guestbook and entry entities.

First, you’ll create a stagedmodel data handler for guestbook entries.

1. Inyour guestbook-servicemodule, create apackagenamed com.liferay.docs.guestbook.exportimport.data.handler.

2. In thatpackage, create the EntryStagedModelDataHandler class andhave it extend the BaseStagedModelDataHandler<STAGED_MODEL>
class:

public class EntryStagedModelDataHandler

extends BaseStagedModelDataHandler<Entry> {

3. Addan @Componentannotationabove the classdeclaration todeclare that the EntryStagedModelDataHandler
class provides an implementation of the StagedModelDataHandler service:

@Component(

immediate = true,

service = StagedModelDataHandler.class

)

4. Set the stagedmodel’s local services you need in your data handler:

@Reference(unbind = "-")

protected void setEntryLocalService(EntryLocalService entryLocalService) {

_entryLocalService = entryLocalService;

}

@Reference(unbind = "-")

protected void setGuestbookLocalService(

GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

private EntryLocalService _entryLocalService;

private GuestbookLocalService _guestbookLocalService;

This injects the entry and guestbook’s local services.

5. Youmust provide the class names of the models the data handler tracks. You can do this by overriding
the StagedModelDataHandler’s getClassNames()method:

public static final String[] CLASS_NAMES = {Entry.class.getName()};

@Override

public String[] getClassNames() {

return CLASS_NAMES;

}

365

@platform-ref@/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/BaseStagedModelDataHandler.html
@platform-ref@/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/StagedModelDataHandler.html

As a best practice, you should have one stagedmodel data handler per stagedmodel. It’s possible to
use multiple class types, but this is not recommended.

6. Add amethod that retrieves the stagedmodel’s display name:

@Override

public String getDisplayName(Entry entry) {

return entry.getName();

}

The display name is presented with the progress bar during the export/import and publication pro-
cesses.

Figure 40.3: Your staged model data handler provides the display name in the Publish to Live UI.

7. A stagedmodel data handler should ensure everything required for its operation is also imported/ex-
ported. For example, an entry requires a guestbook. Therefore, the guestbook should be exported first
followed by the entry.

Addmethods that import and export your stagedmodel and its references.

@Override

protected void doExportStagedModel(

PortletDataContext portletDataContext, Entry entry)

throws Exception {

Guestbook guestbook =

_guestbookLocalService.getGuestbook(entry.getGuestbookId());

StagedModelDataHandlerUtil.exportReferenceStagedModel(

portletDataContext, entry, guestbook,

PortletDataContext.REFERENCE_TYPE_PARENT);

Element entryElement = portletDataContext.getExportDataElement(entry);

portletDataContext.addClassedModel(

entryElement, ExportImportPathUtil.getModelPath(entry), entry);

}

@Override

protected void doImportStagedModel(

PortletDataContext portletDataContext, Entry entry)

throws Exception {

long userId = portletDataContext.getUserId(entry.getUserUuid());

Map<Long, Long> guestbookIds =

(Map<Long, Long>) portletDataContext.getNewPrimaryKeysMap(

366

Guestbook.class);

long guestbookId = MapUtil.getLong(

guestbookIds, entry.getGuestbookId(), entry.getGuestbookId());

Entry importedEntry = null;

ServiceContext serviceContext =

portletDataContext.createServiceContext(entry);

if (portletDataContext.isDataStrategyMirror()) {

Entry existingEntry = fetchStagedModelByUuidAndGroupId(

entry.getUuid(), portletDataContext.getScopeGroupId());

if (existingEntry == null) {

serviceContext.setUuid(entry.getUuid());

importedEntry = _entryLocalService.addEntry(

userId, guestbookId, entry.getName(), entry.getEmail(),

entry.getMessage(), serviceContext);

}

else {

importedEntry = _entryLocalService.updateEntry(

userId, guestbookId, existingEntry.getEntryId(),

entry.getName(), entry.getEmail(), entry.getMessage(),

serviceContext);

}

}

else {

importedEntry = _entryLocalService.addEntry(

userId, guestbookId, entry.getName(), entry.getEmail(),

entry.getMessage(), serviceContext);

}

portletDataContext.importClassedModel(entry, importedEntry);

}

The doExportStagedModel method retrieves the entry’s data element from the PortletDataContext

and then adds the class model characterized by that data element to the PortletDataContext. The
PortletDataContext populates the LARfile with your application’s data during the export process. Note
that once an entity has been exported, subsequent calls to the export method don’t repeat the export
process multiple times, ensuring optimal performance.

An important feature of the import process is that all exported reference elements are automatically
imported when needed. The doImportStagedModel method does not need to import the reference
elements manually; it must only find the new assigned ID for the guestbook before importing the
entry.

The PortletDataContext keeps this information and a slew of other data up-to-date during the im-
port process. The code snippet shows how to access the old ID and new ID mapping, by using the
portletDataContext.getNewPrimaryKeysMap() method. The method proceeds with checking the im-
port mode (e.g., Copy As New orMirror) and depending on the process configuration and existing
environment, the entry is either added or updated.

8. When importing a LAR (i.e., publishing to the live Site), the import process expects all of an entity’s
references to be available and validates their existence.

For example, if you republish an updated guestbook to the live Site and did not include some of its
existing entries in the publication, these entries are considered missing references. A more practical
example of this would be an image included in a web content article. If the image included in the web

367

content lives on a different Site (i.e., the image is contained in a different group) or was not included
in the publication process, it’s considered a missing reference of the web content article.

Since you’re dealing with references on two separate Sites that have differing IDs, the system can’t
easily match them during publication. Consider this scenario for the Guestbook app; suppose you
export a guestbook entry as a missing reference with a primary key (ID) of 1. When importing that
information, the LAR only provides the ID but not the entry itself. Therefore, during the import
process, the Data Handler framework searches for the entry to replace by its UUID, but the entry
to replace has a different ID (primary key) of 2. You must provide a way to handle these missing
references.

To do this, you must add a method that maps the missing reference’s primary key from the export to
the existing primary key during import. Since the reference’s UUID is constant across systems, it’s
used to complete the mapping of differing primary keys. Note that a reference can only be missing on
the live Site if it has already been published previously. Therefore, when publishing a guestbook for
the first time, the system doesn’t check for missing references.

Add this method to your class:

@Override

protected void doImportMissingReference(

PortletDataContext portletDataContext, String uuid, long groupId,

long entryId)

throws Exception {

Entry existingEntry = fetchMissingReference(uuid, groupId);

if (existingEntry == null) {

return;

}

Map<Long, Long> entryIds =

(Map<Long, Long>) portletDataContext.getNewPrimaryKeysMap(

Entry.class);

entryIds.put(entryId, existingEntry.getEntryId());

}

Thismethodmaps the existing staged model to the old ID in the reference element. When a reference
is exported as missing, the Data Handler framework calls this method during the import process and
updates the new primary key map in the portlet data context.

9. Provide a way for the stagedmodel data handler to fetch your stagedmodels:

@Override

public Entry fetchStagedModelByUuidAndGroupId(String uuid, long groupId) {

return _entryLocalService.fetchEntryByUuidAndGroupId(uuid, groupId);

}

@Override

public List<Entry> fetchStagedModelsByUuidAndCompanyId(

String uuid, long companyId) {

return _entryLocalService.getEntriesByUuidAndCompanyId(

uuid, companyId, QueryUtil.ALL_POS, QueryUtil.ALL_POS,

new StagedModelModifiedDateComparator<Entry>());

}

368

Thesemethods use the entry’s local service to get the entries by UUID and company ID (i.e., portal
instance’s primary key) or group ID (i.e., Site, Organization, or User Group’s primary key).

10. Override the BaseStagedModelDataHandler’s delete methods to leverage your newly created fetch
method and custom local service:

@Override

public void deleteStagedModel(

String uuid, long groupId, String className, String extraData)

throws PortalException {

Entry entry = fetchStagedModelByUuidAndGroupId(uuid, groupId);

if (entry != null) {

deleteStagedModel(entry);

}

}

@Override

public void deleteStagedModel(Entry entry)

throws PortalException {

_entryLocalService.deleteEntry(entry);

}

Thesemethods are necessary for the Staging framework to properly delete your entry stagedmodels.

11. Organize your imports ([CTRL]+[SHIFT]+O), and save the file.

The entry’s stagedmodel data handler is complete! Next you can create the guestbook’s stagedmodel
data handler.

40.3 Creating the Guestbook Staged Model Data Handler
<p>Enabling Staging and Export/Import
Step 3 of 7</p>

The guestbook’s stagedmodel data handler is similar to the entry’s data handler. Refer to the previous
article for how this works.

1. In the guestbook-servicemodule’s com.liferay.docs.guestbook.exportimport.data.handler package,
create the GuestbookStagedModelDataHandler class.

2. Declare BaseStagedModelDataHandler<STAGED_MODEL> as your extension class and add the @Component
declaration to declare StagedModelDataHandler as your implemented service:

@Component(

immediate = true,

service = StagedModelDataHandler.class

)

public class GuestbookStagedModelDataHandler

extends BaseStagedModelDataHandler<Guestbook> {

3. Set the stagedmodel’s local service you want to leverage in your data handler:

369

@Reference(unbind = "-")

protected void setGuestbookLocalService(

GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

private GuestbookLocalService _guestbookLocalService;

4. Add the methods to retrieve the guestbook stagedmodel’s classes to track and display names:

public static final String[] CLASS_NAMES = {

Guestbook.class.getName()

};

@Override

public String[] getClassNames() {

return CLASS_NAMES;

}

@Override

public String getDisplayName(Guestbook guestbook) {

return guestbook.getName();

}

5. Addmethods to ensure all import/export information is provided to the Staging framework for your
guestbook entity:

@Override

protected void doExportStagedModel(

PortletDataContext portletDataContext, Guestbook guestbook)

throws Exception {

Element guestbookElement =

portletDataContext.getExportDataElement(guestbook);

portletDataContext.addClassedModel(

guestbookElement, ExportImportPathUtil.getModelPath(guestbook),

guestbook);

}

@Override

protected void doImportStagedModel(

PortletDataContext portletDataContext, Guestbook guestbook)

throws Exception {

long userId = portletDataContext.getUserId(guestbook.getUserUuid());

Map<Long, Long> guestbookIds =

(Map<Long, Long>) portletDataContext.getNewPrimaryKeysMap(

Guestbook.class);

long guestbookId = MapUtil.getLong(

guestbookIds, guestbook.getGuestbookId(),

guestbook.getGuestbookId());

Guestbook importedGuestbook = null;

ServiceContext serviceContext =

portletDataContext.createServiceContext(guestbook);

if (portletDataContext.isDataStrategyMirror()) {

370

Guestbook existingGuestbook = fetchStagedModelByUuidAndGroupId(

guestbook.getUuid(), portletDataContext.getScopeGroupId());

if (existingGuestbook == null) {

serviceContext.setUuid(guestbook.getUuid());

importedGuestbook = _guestbookLocalService.addGuestbook(

userId, guestbook.getName(), serviceContext);

}

else {

importedGuestbook = _guestbookLocalService.updateGuestbook(

userId, existingGuestbook.getGuestbookId(), guestbook.getName(), serviceContext);

}

}

else {

importedGuestbook = _guestbookLocalService.addGuestbook(

userId, guestbook.getName(), serviceContext);

}

portletDataContext.importClassedModel(guestbook, importedGuestbook);

}

Similar to theguestbookentry, thesemethodsaddexport/import information to the PortletDataContext.

6. Add amethod that maps the missing reference ID from the export to the existing ID during import:

@Override

protected void doImportMissingReference(

PortletDataContext portletDataContext, String uuid, long groupId,

long guestbookId)

throws Exception {

Guestbook existingGuestbook = fetchMissingReference(uuid, groupId);

if (existingGuestbook == null) {

return;

}

Map<Long, Long> guestbookIds =

(Map<Long, Long>) portletDataContext.getNewPrimaryKeysMap(

Guestbook.class);

guestbookIds.put(guestbookId, existingGuestbook.getGuestbookId());

}

Remember, this is not called for new entities being published/imported since all of an entity’s refer-
ences are new to the live Site.

7. Provide a way for the stagedmodel data handler to fetch your stagedmodels:

@Override

public Guestbook fetchStagedModelByUuidAndGroupId(

String uuid, long groupId) {

return _guestbookLocalService.fetchGuestbookByUuidAndGroupId(

uuid, groupId);

}

@Override

public List<Guestbook> fetchStagedModelsByUuidAndCompanyId(

String uuid, long companyId) {

371

return _guestbookLocalService.getGuestbooksByUuidAndCompanyId(

uuid, companyId, QueryUtil.ALL_POS, QueryUtil.ALL_POS,

new StagedModelModifiedDateComparator<Guestbook>());

}

8. Override the BaseStagedModelDataHandler’s delete methods to leverage your newly created fetch
method and custom local service:

@Override

public void deleteStagedModel(

String uuid, long groupId, String className, String extraData)

throws PortalException {

Guestbook guestbook = fetchStagedModelByUuidAndGroupId(uuid, groupId);

if (guestbook != null) {

deleteStagedModel(guestbook);

}

}

@Override

public void deleteStagedModel(Guestbook guestbook)

throws PortalException {

_guestbookLocalService.deleteGuestbook(guestbook);

}

9. Organize your imports ([CTRL]+[SHIFT]+O), and save the file.

Your guestbook stagedmodel data handler is ready to go! Next, you’ll begin updating your guestbook’s
permissions to account for Staging.

40.4 Updating Permissions to Support Staging
<p>Enabling Staging and Export/Import
Step 4 of 7</p>

The guestbook’s current permission handlers do not account for Staging. For example, the current
configuration would display the Add Guestbook and Add Entry buttons on the live Site while Staging was
enabled. These options should only be available on the staged Site when Staging is enabled.

First, edit the Guestbook app’s permissions helper classes to provide permission checks to leverage when
Staging is enabled.

1. Open the GuestbookModelPermission class residing in the guestbook-service’s com.liferay.docs.guestbook.service.permission
package. Replace the contains(...) methods with those below:

public static boolean contains(

PermissionChecker permissionChecker, long groupId, String actionId) {

return contains(

permissionChecker, RESOURCE_NAME, GuestbookPortletKeys.GUESTBOOK,

groupId, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, String name, long classPK,

String actionId) {

372

Group group = GroupLocalServiceUtil.fetchGroup(classPK);

if ((group != null) && group.isStagingGroup()) {

classPK = group.getLiveGroupId();

}

return permissionChecker.hasPermission(

classPK, name, classPK, actionId);

}

public static boolean contains(

PermissionChecker permissionChecker, String name, String portletId,

long classPK, String actionId) {

Boolean hasPermission = StagingPermissionUtil.hasPermission(

permissionChecker, classPK, name, classPK, portletId, actionId);

if (hasPermission != null) {

return hasPermission.booleanValue();

}

return contains(permissionChecker, name, classPK, actionId);

}

This adds two additional containsmethods. The original containsmethod now redirects to a new
method that instantiates a hasPermission field using the staging permission checker. If it returns as a
non-null value (i.e., the app is rendered on the staged Site), the appropriate boolean value is returned
based on the user’s permissions. If the hasPermission field is null (i.e., the app is rendered on the live
Site), the third containsmethod is invoked, which calls the permission checker with group info from
the live Site.

Now you’ll edit the permissions helper classes for your two entities. These are for the model/re-
source permissions, so you supply the primary key of the entity you’re checking permissions for (e.g.,
guestbookId).

2. Open the EntryPermission class residing in the guestbook-service’s com.liferay.docs.guestbook.service.permission
package. In the contains(PermissionChecker, Entry, String)method, add this logic:

Boolean hasPermission = StagingPermissionUtil.hasPermission(

permissionChecker, entry.getGroupId(), Entry.class.getName(),

entry.getEntryId(), GuestbookPortletKeys.GUESTBOOK, actionId);

if (hasPermission != null) {

return hasPermission.booleanValue();

}

If the new hasPermission field is returned as a non-null value (i.e., the app is rendered on the staged
Site), the appropriate boolean value is returned based on the staging context.

3. Open the GuestbookPermission class and add the following code in the contains(PermissionChecker,
Guestbook, String)method:

Boolean hasPermission = StagingPermissionUtil.hasPermission(

permissionChecker, guestbook.getGroupId(),

Guestbook.class.getName(), guestbook.getGuestbookId(),

GuestbookPortletKeys.GUESTBOOK, actionId);

if (hasPermission != null) {

return hasPermission.booleanValue();

}

373

This is similar to the logic added for the entry’s permissions.

4. Organize your imports ([CTRL]+[SHIFT]+O) for all three classes, and then save them.

Your Guestbook app can now display the proper functionality depending on its staging context (i.e.,
staged Site or live Site).

The Guestbook’s admin portlet requires additional modifications in its JSPs to display options correctly
based on staging context.

1. In your guestbook-webmodule,open the src/main/resources/META-INF/resources/guestbookadminportlet/guestbook_actions.jsp
file. Directly after the opening <liferay-ui:icon-menu> tag, add the following if statement:

<c:if test='<%= GuestbookPermission.contains(permissionChecker, guestbook.getGuestbookId(), ActionKeys.UPDATE) %>'>

Close the if statement directly after the <liferay-ui:icon /> tag. When completed, the if statement
should look like this:

<c:if test='<%= GuestbookPermission.contains(permissionChecker, guestbook.getGuestbookId(), ActionKeys.UPDATE) %>'>

<portlet:renderURL var="editURL">

<portlet:param name="guestbookId"

value="<%=String.valueOf(guestbook.getGuestbookId())%>" />

<portlet:param name="mvcPath"

value="/guestbookadminportlet/edit_guestbook.jsp" />

</portlet:renderURL>

<liferay-ui:icon image="edit" message="Edit"

url="<%=editURL.toString()%>" />

</c:if>

The new if statement hides the Guestbook’s editing functionality if the user does not have the permis-
sions to edit a guestbook. Since you added new staging permissions, those are verified too.

2. Below the </c:if> statement, add another if statement:

<c:if test='<%= GuestbookPermission.contains(permissionChecker, guestbook.getGuestbookId(), ActionKeys.DELETE) %>'>

Close the if statement directly after the <liferay-ui:icon-delete /> tag. When completed, the if
statement should look like this:

<c:if test='<%= GuestbookPermission.contains(permissionChecker, guestbook.getGuestbookId(), ActionKeys.DELETE) %>'>

<portlet:actionURL name="deleteGuestbook" var="deleteURL">

<portlet:param name="guestbookId"

value="<%=String.valueOf(guestbook.getGuestbookId())%>" />

</portlet:actionURL>

<liferay-ui:icon-delete url="<%=deleteURL.toString()%>" />

</c:if>

Similar to the previous if statement, this one hides the Guestbook’s delete functionality if the user
does not have the permissions to delete a guestbook.

3. Open the src/main/resources/META-INF/resources/guestbookadminportlet/view.jsp file and wrap the
<aui:button-row /> tag with the following if statement:

374

<c:if test='<%= GuestbookModelPermission.contains(permissionChecker, scopeGroupId, "ADD_GUESTBOOK") %>'>

...

</c:if>

When finished, it should look like this:

<c:if test='<%= GuestbookModelPermission.contains(permissionChecker, scopeGroupId, "ADD_GUESTBOOK") %>'>

<aui:button-row cssClass="guestbook-admin-buttons">

<portlet:renderURL var="addGuestbookURL">

<portlet:param name="mvcPath"

value="/guestbookadminportlet/edit_guestbook.jsp" />

<portlet:param name="redirect" value="<%="currentURL"%>" />

</portlet:renderURL>

<aui:button onClick="<%= addGuestbookURL.toString() %>"

value="Add Guestbook" />

</aui:button-row>

</c:if>

This if statement hides the Guestbook’s AddGuestbook button if the user does not have the permissions
to create a new guestbook.

Great! You’ve updated your Guestbook app’s permissions to support Staging!

40.5 Configuring XStream
<p>Enabling Staging and Export/Import
Step 5 of 7</p>

Configuring XStream for your Guestbook app provides an easy way to customize how entities are serial-
ized to XML and back again. You can use it to enhance the Guestbook’s Staging implementation; however,
it’s not required. There are three ways to leverage Liferay’s offering of XStream via the XStreamConfigurator:

• Allowed Types: whitelists entities so everything is forbidden except a certain set of items. All staged
models are allowed by default; this would be in addition to the default functionality. Liferay DXP
defines a default list of allowed types, which are available in the portlet data context.

• Aliases: helps with the readability and char length of LAR files by creating an alias for an otherwise
long winded entity name.

• Converters: converts configured objects to and fromXML.This is primarily used to protect sensitive
data; when serialized this way, sensitive data cannot be extracted from the generated LAR.

Since Allowed Types don’t make sense in this context (there are no additional entities to allow), you don’t
need them for Guestbook. Converters let you re-write the serialization process from scratch—for example,
to add encryption. This is a tutorial on Staging, not serialization, so the default serialization implementation
is fine. That leaves aliases.

In the Guestbook, you’ll leverage XStream by creating an alias that modifies the XML in the LAR file
produced by your app during the staging and export processes.

For example, by default your generated data has this structure:

<com.liferay.docs.guestbook.model.impl.GuestBookImpl>

<field1>...</field1>

...

</com.liferay.docs.guestbook.model.impl.GuestBookImpl>

With an XStream alias configured in your app, that same LAR content has this structure:

375

http://x-stream.github.io/index.html
@app-ref@/foundation/latest/javadocs/com/liferay/xstream/configurator/XStreamConfigurator.html

<GuestBook>

<field1>...</field1>

...

</GuestBook>

Follow the instructions below to create an XStream alias:

1. In the guestbook-servicemodule, create apackagenamed com.liferay.docs.guestbook.xstream.configurator.
In that package, create a class named GuestbookXStreamConfigurator.

2. Modify the class to implement the XStreamConfigurator interface and create an @Component annotation
declaring that same class as the implementation service:

@Component(

immediate = true,

service = XStreamConfigurator.class

)

public class GuestbookXStreamConfigurator implements XStreamConfigurator {

3. Since the Guestbook won’t leverage the Allowed Types and Converters XStream options, override their
associated methods and have them return null:

@Override

public List<XStreamType> getAllowedXStreamTypes() {

return null;

}

@Override

public List<XStreamConverter> getXStreamConverters() {

return null;

}

4. Override the getXStreamAliases()method to return a list of aliases you want to define. Also, define
the list field.

@Override

public List<XStreamAlias> getXStreamAliases() {

return ListUtil.toList(_xStreamAliases);

}

private XStreamAlias[] _xStreamAliases;

Next, you’ll define the list.

5. Create an activate()method that defines the aliases to use for Guestbook’s generated LAR file. You’ll
define an alias for the GuestbookImpl and EntryImpl classes to convert them from their full package
names to simple entity names:

@Activate

protected void activate() {

_xStreamAliases = new XStreamAlias[] {

new XStreamAlias(GuestbookImpl.class, "Guestbook"),

new XStreamAlias(EntryImpl.class, "Entry"),

};

}

376

@app-ref@/foundation/latest/javadocs/com/liferay/xstream/configurator/XStreamConfigurator.html

6. Organize your imports ([CTRL]+[SHIFT]+O), and save the file.

Awesome! You implemented an XStream Configurator for the Guestbook and created an alias for your
guestbook and entry entity declarations.

40.6 Defining System Events for Deletions
<p>Enabling Staging and Export/Import
Step 6 of 7</p>

TheStaging framework tracks entitymodifications ina fewdifferentways. Actions likeadding aguestbook
or editing an entry are tracked automatically by the framework with the configuration of staged models and
their data handlers. Entity deletions are handled slightly differently using system events.

For the Guestbook app, you must define system events for entity deletions so they’re appropriately
tracked by the Staging framework. If Staging can’t track your entity deletions, they can’t be managed on the
staged Site, which means you can only delete entities from the live Site.

Youmust define your system events in your local services.

1. Open the guestbook-servicemodule’s com.liferay.docs.guestbook.service.impl.GuestbookLocalServiceImpl
class and add the following deleteGuestbook methods. These override the default Service Builder
generated methods the application has been using:

@Indexable(type = IndexableType.DELETE)

@Override

public Guestbook deleteGuestbook(long guestbookId)

throws PortalException {

Guestbook guestbook =

guestbookPersistence.findByPrimaryKey(guestbookId);

return guestbookLocalService.deleteGuestbook(guestbook);

}

@Indexable(type = IndexableType.DELETE)

@Override

@SystemEvent(type = SystemEventConstants.TYPE_DELETE)

public Guestbook deleteGuestbook(Guestbook guestbook) {

return guestbookPersistence.remove(guestbook);

}

Thesemethods override the GuestbookLocalServiceBaseImpl’s deleteGuestbookmethods. Themajor ad-
dition is the @SystemEvent annotation added to the deleteGuestbook(Guestbook)method. This notifies
the Staging framework that a deletion system event occurs when the method is called.

The deleteGuestbook(long)method is rerouted to call the SystemEvent trackedmethod, so all deletions
are accounted for.

2. Ensure that the remaining deleteGuestbook method triggers the system event. Within the
deleteGuestbook(long, ServiceContext)method, change

guestbook = deleteGuestbook(guestbook);

to this

377

guestbook = guestbookLocalService.deleteGuestbook(guestbook);

Now all guestbook deletions are tracked via SystemEvent.

3. Add the import packages for the new SystemEvent annotation ([CTRL]+[SHIFT]+O) and then save the
file.

4. Youmust apply thedeletion systemevent tobothentities. Open the com.liferay.docs.guestbook.service.impl.EntryLocalServiceImpl
class and add similar delete methods:

@Indexable(type = IndexableType.DELETE)

@Override

public Entry deleteEntry(long entryId)

throws PortalException {

Entry entry = entryPersistence.findByPrimaryKey(entryId);

return entryLocalService.deleteEntry(entry);

}

@Indexable(type = IndexableType.DELETE)

@Override

@SystemEvent(type = SystemEventConstants.TYPE_DELETE)

public Entry deleteEntry(Entry entry) {

return entryPersistence.remove(entry);

}

This is the same logic as before, except the delete system event is now applied for the entry.

5. Make sure the remaining deleteEntrymethod triggers the systemevent. Within the deleteEntry(long,
ServiceContext)method, change

entry = deleteEntry(entryId);

to this

entry = entryLocalService.deleteEntry(entry);

Now all entry deletions are tracked via SystemEvent.

6. Add the import packages for the new SystemEvent annotation ([CTRL]+[SHIFT]+O) and then save the
file.

7. Run Service Builder by navigating to the Gradle Tasks pane on the right side of @ide@ and selecting
your project’s build → buildService task.

Your Guestbook app’s deletions are now properly tracked by the Staging framework.

378

40.7 Creating the Portlet Data Handler
<p>Enabling Staging and Export/Import
Step 7 of 7</p>

A Portlet Data Handler imports/exports portlet-specific data to a LAR file. Its primary role is to query
and coordinate between stagedmodel data handlers. It also configures the Export/Import UI options for the
application. For example, the Guestbook application’s portlet data handler should

• import/export portlet-specific data pertaining to the Guestbook app
• track actions dealing with guestbook and entry entities (stagedmodels)
• configure export/import UI options for the Guestbook app

Figure 40.4: The Guestbook’s portlet data handler must manage the portlet data, staged model data handlers, and UI configuration.

Follow the instructions below to create the Guestbook’s portlet data handler.

1. In your guestbook-servicemodule’s com.liferay.docs.guestbook.exportimport.data.handler package,
create the GuestbookPortletDataHandler class.

2. Extend the BasePortletDataHandler class and add the @Component annotation to the class declaration
with several configured properties like this:

379

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/BasePortletDataHandler.html

@Component(

immediate = true,

property = {

"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK,

"javax.portlet.name=" + GuestbookPortletKeys.GUESTBOOK_ADMIN

},

service = PortletDataHandler.class

)

public class GuestbookPortletDataHandler extends BasePortletDataHandler {

The three set annotation attributes are described below:

• The immediate element tells the container to activate the component immediately once its pro-
videdmodule has started.

• The property element sets various properties for the component service. You must associate
the portlets you wish to handle with this service so they function properly in the export/import
environment. For example, since the Guestbook data handler is used for two portlets, they’re
both configured using the javax.portlet.name property.

• The service element should point to the PortletDataHandler.class interface.

3. Set what the portlet data handler controls and the portlet’s Export/Import UI by adding an activate
method:

@Activate

protected void activate() {

setDeletionSystemEventStagedModelTypes(

new StagedModelType(Entry.class),

new StagedModelType(Guestbook.class));

setExportControls(

new PortletDataHandlerBoolean(

NAMESPACE, "entries", true, false, null,

Entry.class.getName()));

setImportControls(getExportControls());

}

Thismethod is called during initialization of the component by using the @Activate annotation. It’s
invoked after dependencies are set and before services are registered.

The three set methods called in the GuestbookPortletDataHandler’s activate method are described
below:

• setDeletionSystemEventStagedModelTypes: sets the stagedmodel deletions that the portlet data
handler should track. For the Guestbook application, guestbooks and entries are tracked.

• setExportControls: adds fine grained controls over export behavior that are rendered in the
Export UI. For the Guestbook application, a checkbox is added to select Guestbook content
(entries) to export.

• setImportControls: adds fine grained controls over import behavior that are rendered in the
Import UI. For the Guestbook application, a checkbox is added to select Guestbook content
(entries) to import.

4. Set the entity local services you want to leverage in your portlet data handler:

380

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataHandler.html
https://osgi.org/javadoc/r6/residential/org/osgi/service/component/annotations/Activate.html

Figure 40.5: You can select the content types you’d like to export/import in the UI.

@Reference(unbind = "-")

protected void setGuestbookLocalService(

GuestbookLocalService guestbookLocalService) {

_guestbookLocalService = guestbookLocalService;

}

@Reference(unbind = "-")

protected void setEntryLocalService(EntryLocalService entryLocalService) {

_entryLocalService = entryLocalService;

}

private GuestbookLocalService _guestbookLocalService;

private EntryLocalService _entryLocalService;

This provides access to the entry and guestbook’s local services.

5. Create a namespace for your entities so the Export/Import framework can tell your application’s
entities from other entities in Liferay DXP.

public static final String NAMESPACE = "guestbook";

6. Your portlet data handler should retrieve the data related to its stagedmodel entities so it can properly
export/import them. Add this functionality by inserting the followingmethods:

@Override

protected String doExportData(

final PortletDataContext portletDataContext, String portletId,

PortletPreferences portletPreferences)

throws Exception {

Element rootElement = addExportDataRootElement(portletDataContext);

if (!portletDataContext.getBooleanParameter(NAMESPACE, "entries")) {

return getExportDataRootElementString(rootElement);

381

}

portletDataContext.addPortletPermissions(

GuestbookModelPermission.RESOURCE_NAME);

rootElement.addAttribute(

"group-id", String.valueOf(portletDataContext.getScopeGroupId()));

ActionableDynamicQuery guestbookActionableDynamicQuery =

_guestbookLocalService.getExportActionableDynamicQuery(

portletDataContext);

guestbookActionableDynamicQuery.performActions();

ActionableDynamicQuery entryActionableDynamicQuery =

_entryLocalService.getExportActionableDynamicQuery(

portletDataContext);

entryActionableDynamicQuery.performActions();

return getExportDataRootElementString(rootElement);

}

@Override

protected PortletPreferences doImportData(

PortletDataContext portletDataContext, String portletId,

PortletPreferences portletPreferences, String data)

throws Exception {

if (!portletDataContext.getBooleanParameter(NAMESPACE, "entries")) {

return null;

}

portletDataContext.importPortletPermissions(

GuestbookModelPermission.RESOURCE_NAME);

Element guestbooksElement =

portletDataContext.getImportDataGroupElement(Guestbook.class);

List<Element> guestbookElements = guestbooksElement.elements();

for (Element guestbookElement : guestbookElements) {

StagedModelDataHandlerUtil.importStagedModel(

portletDataContext, guestbookElement);

}

Element entriesElement =

portletDataContext.getImportDataGroupElement(Entry.class);

List<Element> entryElements = entriesElement.elements();

for (Element entryElement : entryElements) {

StagedModelDataHandlerUtil.importStagedModel(

portletDataContext, entryElement);

}

return null;

}

The doExportDatamethodfirst checks if anything shouldbeexported. The portletDataContext.getBooleanParameter(...)
method checks if the user selected Guestbook entries for export. Later, the ActionableDynamicQuery
framework runs a query against guestbooks and entries to find ones which should be exported to the
LAR file.

The -ActionableDynamicQuery classes are automatically generated by Service Builder and are available
in your application’s local service. It queries the database searching for certain Staging-specific pa-

382

rameters (e.g., createDate and modifiedDate), and based on those parameters, finds a list of exportable
records from the stagedmodel data handler.

The doImportDatamethod queries for guestbook and entry data in the imported LAR file that should
be added to the database. This is done by extracting XML elements from the LAR file by using utility
methods from the StagedModelDataHandlerUtil class. The extracted elements tell Liferay DXP what
data to import from the LAR file.

7. Add a method that counts the number of affected entities based on the current export or staging
process:

@Override

protected void doPrepareManifestSummary(

PortletDataContext portletDataContext,

PortletPreferences portletPreferences)

throws Exception {

ActionableDynamicQuery entryExportActionableDynamicQuery =

_entryLocalService.getExportActionableDynamicQuery(

portletDataContext);

entryExportActionableDynamicQuery.performCount();

ActionableDynamicQuery guestbookExportActionableDynamicQuery =

_guestbookLocalService.getExportActionableDynamicQuery(

portletDataContext);

guestbookExportActionableDynamicQuery.performCount();

}

Thisnumber is displayed in theExport andStagingUI.Note that since the Staging framework traverses
the entity graph during export, the built-in components provide an approximate value in some cases.

8. Organize your imports ([CTRL]+[SHIFT]+O), and save the file. Hint: Be sure to choose the
javax.portlet.PortletPreferences import package.

Excellent! You’ve set up your Guestbook’s portlet data handler and can now handle your portlet’s data
and control its stagedmodel data handlers.

Your Guestbook app is now leveraging the Staging and Export/Import frameworks! To verify this, when
you go to enable Staging, you can now enable it for your Guestbook app.

You can also navigate to the Guestbook Admin portlet andmanage Staging from the Options menu. This
menu also offers a way to export and import Guestbook LAR files manually.

The Guestbook is ready for the staging process!

383

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/StagedModelDataHandlerUtil.html

Figure 40.6: The number of modified Guestbook entities are displayed in the Export UI.

384

Figure 40.7: Enable the Guestbook Staging functionality.

385

Figure 40.8: You can manually export and import Guestbook LAR files from the Guestbook Admin portlet.

386

Chapter 41

Writing an Android App for Liferay DXP

Users expect to access Liferay DXP content from their mobile devices. As an intrepid developer, you naturally
want to turn these expectations into reality. Thankfully, Liferay provides a way for your mobile apps to access
Liferay DXP content and applications with Liferay Screens! Screens contains native components called
Screenlets that can call LiferayDXP’s remote services and display the results in your app. Each Screenlet comes
complete with its own fully pluggable UI that you can customize to your liking. Although the Screenlets
included with Screens only work with Liferay DXP’s built-in remote services, you can write your own
Screenlets that work with your custom portlets’ remote services.

If you’re an experienced Android developer but need a start-to-finish guide on how to integrate Android
apps with Liferay DXP, you’re in the right place. This Learning Path walks you through the creation of
an Android app that interacts with the Guestbook portlet developed in the Developing aWeb Application
Learning Path. Since this is a custom portlet, you’ll write your own Screenlets that let your app retrieve and
display guestbooks and their entries.

You should note that although this Learning Path provides complete code snippets of the app, not every
aspect of Android development is explained in detail. Focus is instead placed on the code that leverages
Liferay Screens. Therefore, youmust have significant Android development experience before attempting
this Learning Path. Otherwise, you’ll likely be confused. Google provides extensive documentation of the
Android APIs as well as some basic tutorials on developer.android.com.

Experience in Android development is all you need to start working. You needn’t have completed the
LiferayMVCLearningPath to obtain aworkingGuestbook portlet. The completeGuestbook portlet’smodules
are provided for installation into your local Liferay DXP instance.

Now that you knowwhat you’ll be doing here, it’s time tomove on to the first series of articles: Beginning
Android Development for Liferay DXP.These articles walk you through the steps required to get started
developing an Android app that interacts with Liferay DXP.

387

https://www.liferay.com/supporting-products/liferay-screens
http://developer.android.com/index.html

Chapter 42

Beginning Android Development for Your
Liferay DXP Instance

Getting started with Liferay Screens for Android is a straightforward process. This series of Learning Path
articles walks you through creating an Android app and preparing it to work with the Guestbook portlet
developed in the Developing aWeb Application Learning Path.

Since Liferay Screens uses the Liferay Mobile SDK tomake remote service calls, you’ll build a Mobile SDK
capable of calling the Guestbook portlet’s remote services (the GuestbookMobile SDK). You’ll then install
this Mobile SDK and Screens into your Android project. You’ll also learn about the Android app’s design and
implement authentication with Login Screenlet.

This section of the Learning Path covers these topics:

1. Setting up the Guestbook portlet
2. Building the GuestbookMobile SDK
3. Creating the Android project
4. Installing the GuestbookMobile SDK and Liferay Screens in the Android project
5. Designing Your App
6. Using Login Screenlet for Authentication

When you finish, you’ll be ready to start developing your first Screenlet.

42.1 Setting up the Guestbook Portlet
Before you begin developing the Guestbook app for Android, you must set up the Guestbook portlet in a
Liferay DXP instance. To do this, follow these steps:

1. Install JDK 8
2. Install and Configure a Local Liferay DXP bundle
3. Deploy the Guestbook Portlet to the Local Liferay DXP Instance

Installing the JDK

To get started, youmust have JDK 8 installed. You can download and install the Java SE JDK from the Java
downloads page. This page also has links to the JDK installation instructions.

389

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing and Configuring a Local Liferay DXP Bundle

First, download a Liferay DXP Tomcat bundle from liferay.com. Then click here and follow the instructions
to install the bundle. To follow Liferay DXP best practices, you should create a bundles folder and unzip it
there. The bundle’s root folder is referred to as LiferayHome and is named according to the version, edition,
and specific Liferay DXP release. For example, if you downloaded Liferay Portal 7.0 CE GA4 and unzipped it
to a bundles folder on your machine, that bundle’s Liferay Home folder path is:

bundles/liferay-ce-portal-7.0-ga4

Now you’re ready to start Liferay DXP! Start the bundle as described in the link above. If you’re onMac
or Linux you should also run tail -f ../logs/catalina.out immediately after the ./startup.sh command
executes. This ensures that the server log prints to the terminal. This step isn’t necessary onWindows because
the server log automatically opens in another window.

After a minute or two, Liferay DXP starts up and automatically takes you to its initial setup page at
http://localhost:8080. On this page, you need to provide some basic information about how to set up your
Liferay DXP instance. Enter a name for your instance, select the default language, and then uncheck the
Add Sample Data box. Then enter the first name, last name, and email address of the default administrative
user. For the purposes of this Learning Path, these don’t have to be real. If you want to connect Liferay DXP
to a separate database such as MySQL or PostgreSQL, you can configure that connection here. Note that
although the default embedded database is fine for development on your local machine, it isn’t optimized for
production. Click Finish Configurationwhen you’re done. Then accept the terms of use and set a password
and a password reminder query for your administrative user. Your Liferay DXP instance then takes you to
its default site.

Great! Next, you’ll deploy the Guestbook portlet to your Liferay DXP instance.

Deploying the Guestbook Portlet

Now that your Liferay DXP instance is set up, you can deploy the Guestbook portlet to it. First, click here to
download the Guestbook portlet’s modules:

• com.liferay.docs.guestbook.api-1.0.0.jar

• com.liferay.docs.guestbook.portlet-1.0.0.jar

• com.liferay.docs.guestbook.service-1.0.0.jar

• com.liferay.docs.guestbook.service-wsdd-1.0.0.jar

Place these modules in your Liferay DXP instance’s [Liferay Home]/deploy folder. You should then see
console messages indicating that the modules have successfully deployed and started. On your Liferay DXP
instance’s default site, click the Add button () on the upper-right corner of the screen. Then click the
Applications → Sample category and drag Guestbook onto the page. The Guestbook portlet should now appear
with the default guestbook (Main). In the portlet, add a new guestbook and an entry or two each from the
Addmenu () that appears in the top right of the portlet’s border when youmouse over the portlet. When
you create the Guestbook Android app, this ensures there’s some content to display in it. The Guestbook
portlet on your site should now look like this:

Stupendous! You’ve successfully set up a Liferay DXP instance and added the Guestbook portlet to it.
Now you’re ready to get started with the Liferay Mobile SDK.

390

https://www.liferay.com/
http://localhost:8080
https://portal.liferay.dev/documents/113763090/114000186/guestbook-services.zip

Figure 42.1: The Guestbook portlet, with a new guestbook and some entries.

42.2 Building the Guestbook Mobile SDK

Once you’ve deployed the Guestbook portlet, you’re ready to build the GuestbookMobile SDK. Youmight be
asking yourself, “Why do I have to build a separate Mobile SDK? Can’t I just use the pre-built Mobile SDK
that Liferay already provides?” Fantastic question! The reason is that Liferay’s pre-built Mobile SDK doesn’t
have the classes it needs to call the Guestbook portlet’s remote services. The pre-built Mobile SDK includes
only the framework necessary to make server calls to the remote services of Liferay DXP’s core apps. Core
apps (also referred to as out-of-the-box apps) are those included with every Liferay DXP instance. Since you’re
calling services of an app the default Mobile SDK doesn’t know about (the Guestbook portlet), youmust build
a Mobile SDK that can call its services. Now put on your hard hat, because it’s time to get building!

Building the Mobile SDK

In theMobile SDK source code, Liferay provides a Mobile SDK Builder that you can use to build your own
Mobile SDKs. For the builder to generate the classes that can call a non-core app’s remote services, those
services must be available and accompanied by a Web Service Deployment Descriptor (WSDD). To learn
how the Guestbook portlet’s remote services andWSDDwere generated, see the section GeneratingWeb
Services in the web application Learning Path. Since the Guestbook portlet’s web services already exist, you
don’t need to generate them. Just remember that youmust generate web services when developing your own
portlets.

To build the GuestbookMobile SDK, first download theMobile SDK’s source code by clicking here. Unzip
the file to a location on your machine where you want the Mobile SDK to reside. This location is purely
personal preference; the builder works the same no matter where you put the Mobile SDK’s source code.
Once unzipped, the Mobile SDK’s source code is in the liferay-mobile-sdk-android-7.0.6 folder.

Now you’re ready to build the GuestbookMobile SDK.The builder contains a convenient command line
wizard to assist you in buildingMobile SDKs. To start it, navigate to the liferay-mobile-sdk-android-7.0.6
folder and run the following command:

391

https://github.com/liferay/liferay-mobile-sdk/archive/android-7.0.6.zip

./gradlew createModule

Thewizard launches and asks you to enter your project’s properties. Youmust first provide the Context
property. This is the context path of the remote services the builder will generate classes andmethods for.
To view your Liferay DXP instance’s remote service context paths, go to http://localhost:8080/api/jsonws.
On the page’s upper left, there’s a menu for selecting the context path. Select gb, which is the Guestbook
portlet’s context path. The UI updates to show only the remote services available in the selected context path.
Return to the terminal and enter gb for the Context property.

Next, thewizard needs the Package Name property. This is the package path for the classes the builder gen-
erates. Accept the default value of com.liferay.mobile.android. Thewizard then asks for the POM Description

property. Technically, you only need this if you want to publish your Mobile SDK to Maven. Since the builder
requires it, however, enter Guestbook SDK.The following screenshot shows these properties entered in the
wizard:

Once you enter the final property, the builder runs and generates a BUILD SUCCESSFULmessage. Now that
the builder contains a gbmodule, you must generate that module’s remote services. To do this, first navigate
to the following folder:

liferay-mobile-sdk-android-7.0.6/modules/gb

Then run the following command:

../../gradlew generate

As before, the builder runs and generates a BUILD SUCCESSFULmessage. Great! You’re probably wondering
what just happened, though. The builder generated the source classes you’ll use in your Android app to
interact with the Guestbook portlet. You can find these source classes in the following folder of the Mobile
SDK’s source code:

modules/gb/android/src/gen/java

Also note that the source classes are in the package path you specified when generating the module, with
an additional folder that denotes the Liferay DXP version they work with. The full path to the generated
source classes is therefore:

modules/gb/android/src/gen/java/com/liferay/mobile/android/v7

This folder has two subfolders that correspond to each entity in the Guestbook portlet: guestbook and
entry. Each subfolder contains that entity’s source class, GuestbookService and EntryService, respectively.

There’s one last thing to do before you can use these classes in your Android app: put them in a JAR file.
To do this,make sure you’re still in the modules/gb folder on the command line and run ../../gradlew jar.
This command does two things:

1. Generates a JAR file in modules/gb/build/libs that contains the Guestbook portlet’s service classes.
This JAR file is the GuestbookMobile SDK.

2. Generates a custom-built version of Liferay’s pre-built Mobile SDK in liferay-mobile-sdk-android-

7.0.6/android/build/libs.

Congratulations! You just built the GuestbookMobile SDK.Now that’s an accomplishmentworthwriting
in a guestbook. All you need now is an Android app in which to install this Mobile SDK.The next article
shows you how to create this.

392

http://localhost:8080/api/jsonws

Figure 42.2: The Guestbook Portlet’s context path (gb) on the server.

393

Figure 42.3: To build your Mobile SDK, you must enter values for the Context, Package Name, and POM Description properties. The blue values in square brackets are
defaults.

42.3 Creating the Android Project

Now that you’ve built the GuestbookMobile SDK, you’re ready to create the Guestbook Android app. This
article walks you through the steps required to create the app’s project in Android Studio. After this, you’ll be
ready to install the GuestbookMobile SDK and Liferay Screens. First though, you should make sure you’ve
installed Android’s development tools.

Installing Android Studio

This Learning Path uses Android Studio–Android’s official IDE–to develop the Guestbook app. As an Android
developer, you’re likely very familiar with Android Studio. If you need help setting up and using Android
Studio, see the following topics in Android Studio’s documentation:

• Android Studio Installation Instructions
• Meet Android Studio

Once Android Studio is up and running, you’re ready to create the Guestbook app!

Creating the Guestbook App

When you start Android Studio, it presents a welcome screen containing a Quick Start menu. Click Start
a new Android Studio project in this menu. This launches the Create New Project wizard, which asks you to
enter the app name, company domain, and project location. Enter Liferay Guestbook as the app name and
docs.liferay.com as the company domain. Android Studio uses these values to autofill your app’s package name
and project location. Accept the package name com.liferay.docs.liferayguestbook, and choose a project
location that’s convenient. ClickNext.

The next screen asks you to specify your app’s supported form factors andminimumAndroid SDK.Make
sure that only the Phone andTablet checkbox is selected. In theMinimumSDKmenu, selectAPI 15: Android 4.0.3
(IceCreamSandwich). Android Studio gives you an estimate of the percentage of devices active on the Google
Play store that can run the selected API level. You can view a graphical representation of these estimates by
clicking theHelpme choose link in the text below the Minimum SDKmenu. ClickNext when you’re finished.

Youmust now specify your app’s first activity. Although you’ll use this activity to authenticate users to
your Liferay DXP instance, don’t select Login Activity. Select Empty Activity instead. Later, you’ll insert Login
Screenlet in this activity. Login Screenlet contains everything your users need to authenticate to a Liferay
DXP instance, including the UI. ClickNext.

The final screen of the New Project Wizard asks you to enter the activity’s name and the name of its
layout file. Accept the defaults and click Finish.

394

https://developer.android.com/studio/install.html?pkg=studio
https://developer.android.com/studio/intro/index.html

Figure 42.4: The first screen of Android Studio’s Create New Project wizard asks you to enter your app’s name and company domain.

Figure 42.5: The second screen of Android Studio’s Create New Project wizard lets you select your app’s form factors and minimum Android API level.

A progress indicator appears that indicates your project is building. Android Studio then opens the
project with the activity’s class and layout ready to edit. The project’s structure appears on the left side of the
screen.

Well done! You successfully created the Guestbook app’s project. Now it’s time to put the Guestbook
Mobile SDK and Liferay Screens to work!

42.4 Installing the Guestbook Mobile SDK and Liferay Screens for
Android

For your Android app to interact with the Guestbook portlet, you must install the following libraries in your
Android project:

• Liferay’s pre-built Mobile SDK:This Mobile SDK contains the classes that call Liferay DXP’s core
remotes services. It also contains the framework necessary for any Mobile SDK to make server calls.

• TheGuestbookMobile SDK:ThisMobile SDK contains only the classes that call the Guestbook portlet’s
remote services.

395

Figure 42.6: The third screen of Android Studio’s Create New Project wizard lets you specify an activity for your app.

Figure 42.7: In the final screen of Android Studio’s Create New Project wizard, accept the default values for the activity and layout name.

396

Figure 42.8: Android Studio shows your project’s structure.

397

• Liferay Screens: Screens contains the Screenlet framework and several built-in Screenlets like Login
Screenlet. Because these built-in Screenlets interact with Liferay DXP’s core apps, they make their
server calls with Liferay’s pre-built Mobile SDK.Note that all Screenlets, including those that make
server calls with a custom-built Mobile SDK,must use the framework in Liferay’s pre-built Mobile
SDK to issue their calls.

Since Liferay’s pre-built Mobile SDK is a dependency of Liferay Screens, installing Screens automatically
installs this Mobile SDK. Youmust, however, install the GuestbookMobile SDKmanually.

This article walks you through the installation of the GuestbookMobile SDK and Liferay Screens. When
you finish, you’ll be ready to start developing the app.

Installing the Guestbook Mobile SDK

TheMobile SDK Builder generated two separate JAR files in your liferay-mobile-sdk-android-7.0.6 folder:

1. modules/gb/build/libs/liferay-gb-android-sdk-1.0.jar

2. android/build/libs/liferay-android-sdk-7.0.6.jar

The first JAR file is the GuestbookMobile SDK.The second JAR file is a custom built version of Liferay’s
pre-builtMobile SDK.Because Screens includes the pre-builtMobile SDK,youdon’t need to install the second
JARfile. Youmust, however, install the first JARfile. To do so, copy liferay-gb-android-sdk-1.0.jar into your
app’s app/libs folder (the default location for your Android app is AndroidStudioProjects/LiferayGuestbook).
That’s it! Next, you’ll install Liferay Screens.

Installing Liferay Screens

To install Liferay Screens, you must edit your app’s build.gradle file. Note that your project has two
build.gradle files: one for the project, and another for the app module. You can find them under Gradle
Scripts in your Android Studio project. This screenshot highlights the appmodule’s build.gradle file:

Figure 42.9: The app module’s build.gradle file.

In the appmodule’s build.gradle file, add the following lines of code inside the dependencies element:

compile 'com.liferay.mobile:liferay-screens:2.1.1'

compile 'com.liferay.mobile:liferay-material-viewset:2.1.1'

This adds the liferay-screens and liferay-material-viewset dependencies. Although only the liferay-
screens dependency is necessary to install Screens, adding other View Sets, like the Material View Set, gives

398

you flexibility when designing your app’s look and feel. Click here for more information on Views in Liferay
Screens.

Once you edit build.gradle, amessage appears at the top of the file that asks you to sync your appwith its
Gradle files. Syncing with the Gradle files is required to incorporate any changes youmake to them. Syncing
also downloads and installs any new dependencies, like those you just added. Sync the Gradle files now by
clicking the Sync Now link in the message.

Note that after syncing, your build.gradlemay show an error similar to this:

All com.android.support libraries must use the exact same version specification...

If this occurs, youmust manually add the correct version of the com.android.support dependencies. For
example, the app in this Learning Path currently uses version 25.3.1 of the com.android.support libraries.
This requires that youmanually add the following dependencies to the app’s build.gradle:

compile 'com.android.support:support-v4:25.3.1'

compile 'com.android.support:recyclerview-v7:25.3.1'

compile 'com.android.support:transition:25.3.1'

compile 'com.android.support:design:25.3.1'

compile 'com.android.support:exifinterface:25.3.1'

After adding these inside the dependencies element, click Sync Now again. The error message should be
gone once the sync completes.

Great! Now you’re ready to test your Screens andMobile SDK installations.

Verifying the Installations

To check your Screens andMobile SDK installations, first open your project’s MainActivity class in Android
Studio. It’s in the java folder’s com.liferay.docs.liferayguestbook package. Then add the following imports
to this file:

import com.liferay.mobile.android.service.Session;

import com.liferay.mobile.android.v7.entry.EntryService;

import com.liferay.mobile.android.v7.guestbook.GuestbookService;

import com.liferay.mobile.screens.auth.login.LoginScreenlet;

If Android Studio recognizes these imports, then you’re good to go! Remove them once you’ve verified
that they’re valid. Next, there’s one final small but important task to complete: point your app at the correct
Liferay DXP instance.

Configuring Communication with Liferay DXP

For Screens to work properly with your app, youmust point it to your Liferay DXP instance. You do this by
adding a server_context.xml file in your project’s res/values directory. Create this file and add the following
code to it:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<!-- Change these values for your portal instance -->

<string name="liferay_server">http://10.0.2.2:8080</string>

<integer name="liferay_company_id">20116</integer>

<integer name="liferay_group_id">20147</integer>

<integer name="liferay_portal_version">70</integer>

</resources>

399

Figure 42.10: After editing the app module’s build.gradle file, click Sync Now to incorporate the changes in your app.

As the comment indicates, change the values to match those of your Liferay DXP instance. The server
address http://10.0.2.2:8080 is suitable for testing with Android Studio’s emulator, because it corresponds
to localhost:8080 through the emulator. The Liferay DXP instance you set up earlier should be running on
localhost:8080.

The liferay_company_id value is your Liferay DXP instance’s ID. You can find it in your Liferay DXP
instance at Control Panel → Configuration → Virtual Instances. The instance’s ID is in the Instance ID column. Copy
and paste this value into the liferay_company_id value in server_context.xml.

The liferay_group_id value is the ID of the site your app needs to communicate with. Since the app
needs to communicate with the Guestbook portlet, navigate to the site you put the Guestbook portlet on. In
the Site Administrationmenu, select Configuration → Site Settings. The site ID is listed at the top of the General
tab. Copy and paste this value from your portal to the liferay_group_id value in server_context.xml.

Awesome! Next, you’ll learn the app’s basic design.

400

42.5 Designing Your App
Asadeveloper, youknow that developinganykindof appwithout anoverall designgoal andplan to implement
it is a recipe for disaster. To avoid this, you need to decide some things upfront. The Liferay Guestbook app
needs a straightforward way to do three things:

1. Authenticate users

2. Display guestbooks

3. Display entries

To authenticate users, all you need to do is insert and configure Login Screenlet in your app. Login
Screenlet comes complete with its own UI.The design for authentication, therefore, like with Liferay DXP
itself, is done for you.

Youmust, however, create the UI for displaying guestbooks and entries. What sort of UI would be best
for this? Although the best UI for any purpose is a matter of opinion, displaying guestbooks and entries in
a list is a good choice. Lists are common, compact design elements familiar to mobile users. Since most
mobile devices don’t have room to display a list of guestbooks and a list of entries at the same time, you also
need a user-friendly way to display and manage these lists. It makes sense to show the first guestbook’s
entries automatically after the user authenticates. This is similar to the Guestbook portlet’s design: it shows
a list of the first guestbook’s entries by default. When the user selects a different guestbook, you can then
use the same UI to show the selected guestbook’s entries instead.

Figure 42.11: By default, the first guestbook in the portlet is selected.

Youmust also decide how the users can select different guestbooks. Showing the list of guestbooks in a
navigation drawer that slides out from the left side of the screen is a good choice. A navigation drawer is
easily hidden and is a common Android UI element.

Todisplay these lists of guestbooks andentries, you’ll create yourownScreenlets: GuestbookList Screenlet
and Entry List Screenlet. Guestbook List Screenlet needs to retrieve guestbooks from the portlet and display
them in a simple list. Once written, using this Screenlet is a simple matter of inserting it in the navigation

401

drawer. Entry List Screenlet needs to retrieve and display a guestbook’s entries in a similar list. You’ll display
the entries by inserting Entry List Screenlet in the UI element where you want it.

Also note that these Screenlets are list Screenlets. You develop list Screenlets by using the list Screenlet
framework, which sits on top of the core Screenlet framework. The list Screenlet frameworkmakes it easy
for developers to write Screenlets that display lists of entities from a Liferay DXP instance.

Awesome! Now you have a basic UI design and know the Screenlets you’ll create to implement it. But
where in the app can you use these Screenlets? The app only contains one empty activity, MainActivity, which
you’ll use for authentication with Login Screenlet. To use your custom list Screenlets, you’ll need to create an
additional activity and a fragment: GuestbooksActivity and EntriesFragment. You’ll create the activity in a
moment.

Figure 42.12: The Liferay Guestbook app’s design uses two activities and a fragment. In this diagram, each activity and fragment is labeled, along with the Screenlets and
the navigation drawer.

In addition to showing the app’s components, this diagram shows how the user navigates through the
app. After sign in, the user transitions to GuestbooksActivity. This activity uses Entry List Screenlet in
EntriesFragment to display the selected guestbook’s entries (the first guestbook is selected by default). Press-
ing the hamburger button at the top-left of this screen opens the navigation drawer, where Guestbook List
Screenlet displays the list of guestbooks. Selecting a guestbook closes the drawer to reveal that guestbook’s
entries. Note that you only need one activity, GuestbooksActivity, to display guestbooks and entries. The
navigation drawer and EntriesFragment are part of this activity.

Now you’re ready to create GuestbooksActivity. Fortunately, Android Studio has a template for creating
an activity that contains a navigation drawer. Follow these steps to create GuestbooksActivity with the
navigation drawer template:

1. Right click the package com.liferay.docs.liferayguestbook and select New → Activity → Navigation
Drawer Activity to launch the New Android Activity wizard.

2. Name the activity GuestbooksActivity, accept the defaults for the remaining fields, and click Finish.

402

3. After Android Studio creates the activity, the GuestbooksActivity class and content_guestbooks.xml

layout open in the editor. Close them. You don’t need to edit these files yet.

Great! Now you understand the Liferay Guestbook app’s design. You also have the app structure in place.
Next, you’ll authenticate users by adding Login Screenlet to MainActivity.

42.6 Using Login Screenlet for Authentication
For the app to retrieve data from the Guestbook portlet, the user must first authenticate to the Liferay
DXP instance. You can implement authentication using the Liferay Mobile SDK, but it takes time to write.
Using Liferay Screens to authenticate takes about ten minutes. In this article, you’ll use Login Screenlet to
implement authentication in your app.

Adding Login Screenlet to the App

To use any Screenlet, youmust follow two steps:

1. Insert the Screenlet’s XML in the layout of the activity or fragment where you want the Screenlet to
appear.

2. Implement the Screenlet’s listener in the activity or fragment class.

In this app, you’ll use Login Screenlet in MainActivity. This means youmust insert the Screenlet’s XML
in MainActivity’s layout, activity_main.xml. You’ll then implement Login Screenlet’s listener, LoginListener,
in the MainActivity class.

Insert the Screenlet's XML

Follow these steps to insert Login Screenlet’s XML in activity_main.xml:

1. Open activity_main.xml from the res/layout folder and delete the TextView generated by Android
Studio when you created the project. Insert Login Screenlet’s XML in its place:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:basicAuthMethod="screen_name"

app:layoutId="@layout/login_default"

/>

Note the two app attributes in the Login Screenlet’s XML.The app:basicAuthMethod attribute tells the
Screenlet to use basic authentication instead of OAuth. The screen_name value tells the Screenlet
to authenticate with the user’s screen name. You can alternatively set this to email or userId. This
Learning Path uses screen_name only because it’s much faster to type a screen name than a full email
address in the emulator. Also, this value must match the authentication setting in the Liferay DXP
instance. By default, Liferay DXP instances use email address for authentication. For this Learning
Path, you need to set your Liferay DXP instance to authenticate by screen name instead. Click here for
instructions on changing your Liferay DXP instance’s authentication setting.

The second app attribute in Login Screenlet’s XML is app:layoutId. This attribute sets the View to
display the Screenlet with. Views in Liferay Screens set a Screenlet’s look and feel independent of

403

the Screenlet’s core functionality. You can think of them as a sort of skin or theme for a Screenlet.
The value @layout/login_default specifies Login Screenlet’s Default View, which is part of the Default
View Set. A View Set is a collection of Views for several Screenlets. Using a View Set lets you apply a
consistent look and feel across multiple Screenlets. To use a View that is part of a View Set, like Login
Screenlet’s Default View, the theme of the app or activity must inherit the theme that sets the View
Set’s styles. For the Default View Set, this is default_theme.

2. To set the app’s theme to inherit from default_theme, open res/values/styles.xml and set the base app
theme’s parent to default_theme. In this app, the base app theme is AppTheme. The theme declaration
should now look like this:

<style name="AppTheme" parent="default_theme">

...

Click here for more information on using Views in Liferay Screens. For more information on Login
Screenlet’s available attributes, click here.

Next, you’ll implement LoginListener in the MainActivity class.

Implement the Screenlet's Listener

To use a Screenlet in an activity or fragment, youmust also implement the Screenlet’s listener in that activity
or fragment’s class. You’ll do this now to use Login Screenlet in MainActivity:

1. Open MainActivity and change its declaration to implement LoginListener. The class declaration
should now look like this:

public class MainActivity extends AppCompatActivity implements LoginListener {...

Youmust also import com.liferay.mobile.screens.auth.login.LoginListener.

2. Implementing LoginListener requires you to implement the onLoginSuccess and onLoginFailuremeth-
ods. Add them to the class as follows:

@Override

public void onLoginSuccess(User user) {

Toast.makeText(this, "Login successful!", Toast.LENGTH_SHORT).show();

}

@Override

public void onLoginFailure(Exception e) {

Toast.makeText(this, "Couldn't log in " + e.getMessage(), Toast.LENGTH_LONG).show();

}

Whenyouadd thesemethods, youmust import android.widget.Toastand com.liferay.mobile.screens.context.User.

These are listener methods called when login succeeds or fails, respectively. Using them lets your app
respond the Screenlet’s actions. For the moment, they each only do one thing: display a success or
failure message to the user. You’ll change this shortly. Note that each Screenlet has different listener
methods; they’re listed in the Screenlet reference documentation.

3. Now youmust get a reference to the Screenlet and set the MainActivity class as its listener. To do so,
add the following code to the end of the onCreatemethod:

404

LoginScreenlet loginScreenlet = (LoginScreenlet) findViewById(R.id.login_screenlet);

loginScreenlet.setListener(this);

This requires you to import com.liferay.mobile.screens.auth.login.LoginScreenlet.

The findViewById method uses the Screenlet’s ID from the layout to create the reference. The
setListenermethod then sets MainActivity as Login Screenlet’s listener.

Now run the app by clicking the green play button in the toolbar, or by selecting Run ‘app’ from the Run
menu. If you’ve never run the emulator, youmust first create and choose an Android Virtual Device (AVD)
to run your app. For more information on this and running the emulator in general, click here. Once the
emulator launches, unlock it if necessary. Your app automatically opens to Login Screenlet. Enter your
credentials and click SIGN IN.The toast message pops up saying that the login succeeded.

The toast message goes away and you remain on the login screen. Nothing else happens. Don’t worry,
this is supposed to happen; you haven’t added any other functionality yet. You’ll fix this next.

Navigating from Login Screenlet

When login succeeds, the app should open GuestbooksActivity. You’ll do this by using an Android intent in
MainActivity’s onLoginSuccessmethod:

1. Replace the contents of onLoginSuccesswith this code:

Intent intent = new Intent(this, GuestbooksActivity.class);

startActivity(intent);

When login succeeds, this code creates an Intent and uses it to start GuestbooksActivity. If you haven’t
already,make sure to import android.content.Intent in MainActivity.

2. Now you’re ready to see the intent in action! Run the app in the emulator and log in when prompted.
When login succeeds, GuestbooksActivity opens.

Nice work! You successfully implemented Liferay DXP authentication in your Android app. It didn’t take
you that long, either. So far, however, that’s all your app does; it doesn’t display any content. Next, you’ll
rectify this by developing Guestbook List Screenlet.

405

https://developer.android.com/studio/run/emulator.html
https://developer.android.com/guide/components/intents-filters.html

Figure 42.13: Login Screenlet successfully authenticated you with the Liferay DXP instance.

406

Figure 42.14: Upon login, the app takes you to the new activity.

407

Chapter 43

Creating Guestbook List Screenlet

In the previous section, you created an Android app that contains the GuestbookMobile SDK and Liferay
Screens. You also used Login Screenlet to implement authentication to Liferay DXP.That’s all your app does
though. It doesn’t display any Guestbook portlet content. In this section of the Learning Path, you’ll create
Guestbook List Screenlet to retrieve and display the portlet’s guestbooks in your app’s navigation drawer.

Creating your own Screenlets brings additional benefits. Since you use a consistent, repeatable develop-
ment model to create them, you can often reuse code when creating other Screenlets. You can also package
and reuse Screenlets in other apps. What’s more, Screenlet UIs are fully pluggable. This lets you change a
Screenlet’s appearance quickly without affecting its functionality. In summary, Screenlets are pretty much
the greatest thing since sliced bread. Now it’s time to make a sandwich.

As backgroundmaterial, the followingmaterials are helpful:

1. Getting started: creating the Screenlet’s package, andmodel class.

2. Creating the Screenlet’s UI (its View).

3. Creating the Screenlet’s Interactor. Interactors are Screenlet components that make server calls.

4. Creating the Screenlet class. The Screenlet class governs the Screenlet’s behavior.

Before beginning, you should read the following tutorials:

• Architecture of Liferay Screens for Android: Explains the components that constitute a Screenlet, and
how they relate to one another.

• Creating Android Screenlets: Explains the general steps for creating a Screenlet.

• Creating Android List Screenlets: Explains the general steps for creating a list Screenlet. This section
of the Learning Path follows this tutorial.

Note that these tutorials explain Screenlet and list Screenlet concepts that this Learning Path doesn’t
cover in depth. Although it’s possible to complete this Learning Path without reading these tutorials, they
explain how Screenlets work in more detail. By reading them you’ll be better able to apply the Learning Path
material to your own Screenlets.

If you get confused or stuck while creating Guestbook List Screenlet, refer to the finished app that
contains the Screenlet code here in GitHub.

409

https://github.com/liferay/liferay-docs/tree/master/develop/tutorials/code/mobile/android/screenlets-app/LiferayGuestbook

43.1 Getting Started with Guestbook List Screenlet

Before creating a Screenlet, you should know how you’ll use it. If you plan to use it in only one app, then
you can create it in that app’s project. If you need to use it in several apps, however, then it’s best to create it
in a separate project for redistribution. For information on creating Screenlets for redistribution, see the
tutorial Packaging Your Android Screenlets. Since you’ll use Guestbook List Screenlet in only this app, you
can create it in a new package inside the app’s project. Create this package now:

1. In Android Studio, right click the java folder and selectNew → Package.

2. Select …/app/src/main/java as the destination directory, and clickOK.

3. Enter com.liferay.docs.guestbooklistscreenlet as the package’s name and click OK. Android
Studio lists the new package alongside the package that contains the app’s activity and fragment
(liferayguestbook). If it doesn’t appear at first, youmay need to collapse and reopen the java folder.

Figure 43.1: Guestbook List Screenlet’s new package is highlighted.

Before getting started, you should understand how pagination works in list Screenlets.

Pagination

To ensure that users can scroll smoothly through large lists of items, list Screenlets support fluent pagination.
Support for this is built into the list Screenlet framework. You’ll see this as you construct your list Screenlet.
For example, several methods have parameters for the start row and end row of a page in the list.

Now you’re ready to begin!

Creating the Model Class for Guestbooks

Entities come back from Liferay Portal in JSON. To work with these results efficiently in your app, you must
convert them tomodel objects that represent the entity in the portal. Although Screens’s BaseListInteractor
transforms the JSON entities into Map objects for you, you still must convert these into proper entity objects
for use in your app. You’ll do this via a model class.

Themodel class you’ll create for Guestbook List Screenlet, GuestbookModel, creates GuestbookModel objects
that represent guestbooks retrieved from the Guestbook portlet. You’ll create this model class in a separate
package outside of the guestbooklistscreenlet package. In this case, it makes sense to organize your code
this way because other Screenlets may also use the model class. For example, if a Screenlet that edits

410

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/BaseListInteractor.java

guestbooks existed, it would also need GuestbookModel objects. Putting themodel class in a separate package
makes it clear that this class doesn’t belong exclusively to a single Screenlet.

Follow these steps to create GuestbookModel:

1. Create a new package called model inside the com.liferay.docs package.

2. Inside this new model package, create a new class called GuestbookModel.

3. Replace GuestbookModel’s contents with this code:

package com.liferay.docs.model;

import android.os.Parcel;

import android.os.Parcelable;

import java.util.Date;

import java.util.Map;

public class GuestbookModel implements Parcelable {

private Map values;

private long guestbookId;

private long groupId;

private long companyId;

private long userId;

private String userName;

private long createDate;

private long modifiedDate;

private String name;

public static final Creator<GuestbookModel> CREATOR = new Creator<GuestbookModel>() {

@Override

public GuestbookModel createFromParcel(Parcel in) {

return new GuestbookModel(in);

}

@Override

public GuestbookModel[] newArray(int size) {

return new GuestbookModel[size];

}

};

public GuestbookModel() {

super();

}

protected GuestbookModel(Parcel in) {

guestbookId = in.readLong();

groupId = in.readLong();

companyId = in.readLong();

userId = in.readLong();

userName = in.readString();

createDate = in.readLong();

modifiedDate = in.readLong();

name = in.readString();

}

public GuestbookModel(Map<String, Object> stringObjectMap) {

values = stringObjectMap;

guestbookId = Long.parseLong((String) stringObjectMap.get("guestbookId"));

groupId = Long.parseLong((String) stringObjectMap.get("groupId"));

companyId = Long.parseLong((String) stringObjectMap.get("companyId"));

userId = Long.parseLong((String) stringObjectMap.get("userId"));

userName = (String) stringObjectMap.get("userName");

createDate = (long) stringObjectMap.get("createDate");

411

modifiedDate = (long) stringObjectMap.get("modifiedDate");

name = (String) stringObjectMap.get("name");

}

@Override

public void writeToParcel(Parcel dest, int flags) {

dest.writeLong(guestbookId);

dest.writeLong(groupId);

dest.writeLong(companyId);

dest.writeLong(userId);

dest.writeString(userName);

dest.writeLong(createDate);

dest.writeLong(modifiedDate);

dest.writeString(name);

}

@Override

public int describeContents() {

return 0;

}

public long getGuestbookId() {

return guestbookId;

}

public long getGroupId() {

return groupId;

}

public long getCompanyId() {

return companyId;

}

public long getUserId() {

return userId;

}

public String getUserName() {

return userName;

}

public Date getCreateDate() {

return new Date(createDate);

}

public Date getModifiedDate() {

return new Date(modifiedDate);

}

public String getName() {

return name;

}

public Map getValues() {

return values;

}

public void setValues(Map values) {

this.values = values;

}

}

This class creates GuestbookModel objects that represent the Guestbook portlet’s Guestbook objects. The
constructor with the Map<String, Object> argument does the heavy lifting. Following a successful Mobile
SDK call, the list Screenlet framework’s BaseListInteractor class returns this Map, which contains the data
of a guestbook retrieved from the portlet. To get the guestbook’s data from the Map, the constructor uses

412

https://github.com/liferay/liferay-screens/blob/2.1.0/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/BaseListInteractor.java

the getmethod with each parameter of the portlet’s Guestbook entity. To see how the portlet defines these
parameters, see the Liferay MVC Learning Path article on Service Builder. For now, the only parameters you
really need in GuestbookModel are guestbookId and name. Because youmight need the rest later, however, it’s
best to add all of them now.

Besides the getters and setter, the remaining code in GuestbookModel implements Android’s Parcelable
interface. For more information on this, see Android’s documentation on Parcelable.

Great! Now you have a model class for guestbooks. Next, you’ll create the Screenlet’s UI.

43.2 Creating Guestbook List Screenlet's UI

Recall that in Liferay Screens for Android, Screenlet UIs are called Views, and every Screenlet must have at
least one View. In this article, you’ll use the following steps to create a View for Guestbook List Screenlet:

1. Create the row layout. This layout defines the UI for each row instance in the list.

2. Create the adapter class. This is an Android adapter that fills a row layout instance with the data for
one list item. This repeats for each list item until the list is full.

3. Create the View class. This class renders the UI, handles user interactions, and communicates with
the Screenlet class.

4. Create the View’s layout. This layout defines the Screenlet’s UI as a whole. For a list Screenlet, this is a
scrollable list.

Note that these are the same steps for creating a View as those in the list Screenlet tutorial.
You’ll create Guestbook List Screenlet’s View in its own package inside the guestbooklistscreenlet pack-

age. Create a new package named view inside the guestbooklistscreenlet package. Now you’re ready to
create the row layout.

Creating the Row Layout

First, you must create the layout that defines the UI for each row instance in the list. Since each row in
Guestbook List Screenlet displays only a single guestbook’s name, the row layout only needs a single TextView.
Create the layout file res/layout/guestbook_row.xml and paste in this content:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

<TextView

android:id="@+id/guestbook_name"

android:textSize="25sp"

android:padding="10dp"

android:layout_width="match_parent"

android:layout_height="wrap_content"/>

</LinearLayout>

Note that the textSize and padding values result in clean, readable text for this example. When you
develop your own list Screenlets, you can style your row layouts however you like.

413

https://developer.android.com/reference/android/os/Parcelable.html
https://developer.android.com/guide/topics/ui/declaring-layout.html#AdapterViews

Creating the Adapter Class

Android adapters fill a layout with content. In Guestbook List Screenlet, the layout is guestbook_row.xml (the
row layout) and the content is a guestbook’s name. Tomake list scrolling smooth, the adapter class should use
an Android view holder. To make this easier, you can extend the list Screenlet framework’s BaseListAdapter
class with your model class and view holder as type arguments. By extending BaseListAdapter, your adapter
needs only twomethods:

• createViewHolder: instantiates the view holder
• fillHolder: fills in the view holder for each row

Your view holder should also contain variables for any data each row needs to display. The view holder
must assign these variables to the corresponding row layout elements, and set the appropriate data to them.

Inside the Screenlet’s view package, create the following GuestbookAdapter class:

package com.liferay.docs.guestbooklistscreenlet.view;

import android.support.annotation.NonNull;

import android.view.View;

import android.widget.TextView;

import com.liferay.docs.liferayguestbook.R;

import com.liferay.docs.model.GuestbookModel;

import com.liferay.mobile.screens.base.list.BaseListAdapter;

import com.liferay.mobile.screens.base.list.BaseListAdapterListener;

public class GuestbookAdapter extends

BaseListAdapter<GuestbookModel, GuestbookAdapter.GuestbookViewHolder> {

public GuestbookAdapter(int layoutId, int progressLayoutId, BaseListAdapterListener listener) {

super(layoutId, progressLayoutId, listener);

}

@NonNull

@Override

public GuestbookViewHolder createViewHolder(View view, BaseListAdapterListener listener) {

return new GuestbookAdapter.GuestbookViewHolder(view, listener);

}

@Override

protected void fillHolder(GuestbookModel entry, GuestbookViewHolder holder) {

holder.bind(entry);

}

public class GuestbookViewHolder extends BaseListAdapter.ViewHolder {

private final TextView name;

public GuestbookViewHolder(View view, BaseListAdapterListener listener) {

super(view, listener);

name = (TextView) view.findViewById(R.id.guestbook_name);

}

public void bind(GuestbookModel entry) {

name.setText(entry.getName());

}

}

}

Thisadapter class extends BaseListAdapterwith GuestbookModeland GuestbookAdapter.GuestbookViewHolder
as type arguments. The view holder is an inner class that extends BaseListAdapter’s view holder. Since

414

https://developer.android.com/guide/topics/ui/declaring-layout.html#AdapterViews
https://developer.android.com/training/improving-layouts/smooth-scrolling.html#ViewHolder
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListAdapter.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListAdapter.java

Guestbook List Screenlet only needs to display a guestbook’s name in each row, the view holder only needs
one variable: name. The view holder’s constructor assigns the TextView from guestbook_row.xml to this
variable. The bindmethod then sets the guestbook’s name as the TextView’s text. The other methods in
GuestbookAdapter leverage the view holder. The createViewHoldermethod instantiates GuestbookViewHolder.
The fillHoldermethod calls the view holder’s bindmethod to set the guestbook’s name as the name variable’s
text.

Next, you’ll create the View class.

Creating the View Class

Recall that the View class controls a Screenlet’s UI. It renders the UI, handles user interactions, and commu-
nicates with the Screenlet class. The list Screenlet framework provides most of this functionality for you
via the BaseListScreenletView class. Your View class must extend this class to provide your row layout ID
and an instance of your adapter. You’ll do this by overriding BaseListScreenletView’s getItemLayoutId and
createListAdaptermethods. Also, when you extend BaseListScreenletView youmust do so with your model
class, view holder, and adapter as type arguments. This is required for your View class to represent your
model objects in a view holder, inside an adapter.

Create the GuestbookListView class inside the view package, and replace its contents with this code:

package com.liferay.docs.guestbooklistscreenlet.view;

import android.content.Context;

import android.util.AttributeSet;

import com.liferay.docs.liferayguestbook.R;

import com.liferay.docs.model.GuestbookModel;

import com.liferay.mobile.screens.base.list.BaseListScreenletView;

public class GuestbookListView extends BaseListScreenletView<GuestbookModel,

GuestbookAdapter.GuestbookViewHolder, GuestbookAdapter> {

public GuestbookListView(Context context) {

super(context);

}

public GuestbookListView(Context context, AttributeSet attributes) {

super(context, attributes);

}

public GuestbookListView(Context context, AttributeSet attributes, int defaultStyle) {

super(context, attributes, defaultStyle);

}

@Override

protected GuestbookAdapter createListAdapter(int itemLayoutId, int itemProgressLayoutId) {

return new GuestbookAdapter(itemLayoutId, itemProgressLayoutId, this);

}

@Override

protected int getItemLayoutId() {

return R.layout.guestbook_row;

}

}

This View class represents GuestbookModel instances in a GuestbookViewHolder inside a GuestbookAdapter.
This class therefore extends BaseListScreenletViewparameterizedwith GuestbookModel, GuestbookAdapter.GuestbookViewHolder,
and GuestbookAdapter. Besides overriding createListAdapter to return a GuestbookAdapter instance, the only
other functionality that this View class needs to support is to get the layout for each row in the list. The
overridden getItemLayoutIdmethod does this by returning the row layout guestbook_row.

415

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListScreenletView.java

Now you’re ready to create your View’s main layout.

Creating the View's Layout

Although you already created a layout for your list rows, youmust still create a layout to define the list as a
whole. This layout must contain:

• The View class’s fully qualified name as the layout’s first element.
• An Android RecyclerView to let your app efficiently scroll through a potentially large list of items.
• An Android ProgressBar to indicate progress when loading the list.

Apart from the View class and styling, this layout’s code is the same for all list Screenlets.
Create the layout file res/layout/list_guestbooks.xml and replace its contents with this code:

<com.liferay.docs.guestbooklistscreenlet.view.GuestbookListView

xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/liferay_list_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent">

<ProgressBar

android:id="@+id/liferay_progress"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_gravity="center"

android:visibility="gone"/>

<android.support.v7.widget.RecyclerView

android:id="@+id/liferay_recycler_list"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:visibility="gone"/>

</com.liferay.docs.guestbooklistscreenlet.view.GuestbookListView>

Note that the android:id values in this layout XML are hardcoded into the Screens framework and
changing themwill cause your app to crash.

Great! You’re done with Guestbook List Screenlet’s View. Next, you’ll create the Screenlet’s Interactor.

43.3 Creating Guestbook List Screenlet's Interactor
Interactors are Screenlet components that make server calls and process the results. Interactors themselves
are made up of several components:

1. Theevent class: creates event objects that contain the server call’s results. Liferay Screens uses these
event objects via the EventBus library to communicate the results between the Screenlet’s components.

2. The listener interface: defines the methods the app developer needs to respond to the Screenlet’s
behavior. For example, Login Screenlet’s listener defines the onLoginSuccess and onLoginFailuremeth-
ods. Screens calls these methods when login succeeds or fails, respectively. By implementing these
methods in the activity or fragment class that contains the Screenlet, the app developer can respond
to login success and failure.

3. The Interactor class: makes the server calls, processes the results in the event objects, and notifies the
listener of those results.

Since the list Screenlet framework already contains two listener interfaces, you only need to create the
event and Interactor classes. You’ll create the event class first.

416

http://developer.android.com/training/material/lists-cards.html#RecyclerView
https://developer.android.com/reference/android/widget/ProgressBar.html
https://greenrobot.github.io/EventBus/

Creating the Event Class

1. First, create a newpackage called interactor in the com.liferay.docs.guestbooklistscreenletpackage.
You’ll create your Interactor’s components in this new package.

2. A list Screenlet’s event class must extend the ListEvent class with the Screenlet’s model class as a type
argument. This lets the event class contain the server call’s results as model objects. Guestbook List
Screenlet’s event class, GuestbookEvent,must therefore extend ListEventwith GuestbookModel as a type
argument. Create this class now in the interactor package. The class declaration should look like this:

public class GuestbookEvent extends ListEvent<GuestbookModel> {...

Thisrequires you to import com.liferay.docs.model.GuestbookModeland com.liferay.mobile.screens.base.list.interactor.ListEvent.

3. The event class should also contain a private instance variable for the model class, a constructor that
sets this variable, and a no-argument constructor that calls the superclass constructor. Add this code
now:

private GuestbookModel guestbook;

public GuestbookEvent() {

super();

}

public GuestbookEvent(GuestbookModel guestbook) {

this.guestbook = guestbook;

}

4. Youmust also implement ListEvent’s abstract methods in your event class. Note that these methods
support offline mode. Even though Guestbook List Screenlet doesn’t support offline mode, youmust
still implement these methods. Add these methods to GuestbookEvent now:

• getListKey: returns the ID for the cache. This ID is typically the data each list row displays. For
example, the getListKeymethod in GuestbookEvent returns the guestbook’s name:

@Override

public String getListKey() {

return guestbook.getName();

}

• getModel: unwraps the model entity to the cache by returning the model class instance. For
example, the getModelmethod in GuestbookEventmethod returns the guestbook:

@Override

public GuestbookModel getModel() {

return guestbook;

}

Note that this code is almost identical to the example event class in the list Screenlet tutorial. The only
difference is that GuestbookEvent handles GuestbookModel objects.

Nicework! Your event class is done. You’re almost ready towrite the Screenlet’s server call. First, however,
you should understand the basics of how server calls work in Interactors.

417

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/ListEvent.java

Understanding Screenlet Server Calls

Recall that Interactor classes use the Liferay Mobile SDK to make server calls and process the results. An
Interactor class does this with the following sequence:

1. Get the Mobile SDK session and use it to create the Mobile SDK service you want to call.

2. Invoke the Mobile SDK service method that makes the server call.

3. Create an event object from the JSON that the server call returns. If your Screenlet has a model class,
create a model object from this JSON, then use the model object to create the event object.

Figure 43.2: This diagram shows a typical server call made by a Screenlet’s Interactor. The dashed line around the model class indicates that it’s optional. Although list
Screenlets require model classes, non-list Screenlets don’t.

To call the Guestbook portlet’s remote services, you’ll use the Guestbook Mobile SDK you built and
installed earlier. This Mobile SDK contains the services required to call the Guestbook portlet’s remote
services. Next, you’ll create Guestbook List Screenlet’s Interactor class.

Creating the Interactor Class

A Screenlet’s Interactor class is the central component of the Interactor. It makes the server calls, processes
the results in the event objects, and notifies the listener of those results. The list Screenlet framework’s
BaseListInteractor class provides most of the functionality that Interactor classes in list Screenlets require.

418

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/BaseListInteractor.java

Youmust, however, extend BaseListInteractor to make your service calls and handle their results via your
model and event classes.

Follow these steps to create Guestbook List Screenlet’s Interactor class, GuestbookListInteractor:

1. Create the GuestbookListInteractor class in thepackage com.liferay.docs.guestbooklistscreenlet.interactor.
A list Screenlet’s Interactor classmust extend BaseListInteractorwith BaseListInteractorListener<YourModelClass>
and your event class as type arguments. You must therefore change GuestbookListInteractor to
extend BaseListInteractorwith BaseListInteractorListener<GuestbookModel> and GuestbookEvent as
type arguments:

public class GuestbookListInteractor extends

BaseListInteractor<BaseListInteractorListener<GuestbookModel>, GuestbookEvent> {...

This requires that you add the following imports:

import com.liferay.docs.model.GuestbookModel;

import com.liferay.mobile.screens.base.list.interactor.BaseListInteractor;

import com.liferay.mobile.screens.base.list.interactor.BaseListInteractorListener;

2. Override the getPageRowsRequestmethod to retrieve a page of entities. In this method, you can use
the getSession()method to retrieve the session created by authentication with Login Screenlet. Then
make the server call by creating a service instance from the session and calling the service method
that retrieves the entities. Guestbook List Screenlet must retrieve a page of guestbooks, so youmust
create a GuestbookService instance from the session. Then call the service’s getGuestbooksmethodwith
the groupId, start row, and end row. The groupId specifies the site to retrieve guestbooks from, while
the start row and end row define the list rows that mark the start and end of the page of guestbooks,
respectively. Add this getPageRowsRequestmethod to GuestbookListInteractor:

@Override

protected JSONArray getPageRowsRequest(Query query, Object... args) throws Exception {

return new GuestbookService(getSession()).getGuestbooks(groupId, query.getStartRow(),

query.getEndRow());

}

Note that the groupId variable isn’t set anywhere. Interactors that extend
BaseListInteractor, like GuestbookListInteractor, inherit this variable via the Screens framework.
You’ll set it when you create the Screenlet class.

This getPageRowsRequestmethod requires that you add the following imports:

import com.liferay.mobile.android.v7.guestbook.GuestbookService;

import com.liferay.mobile.screens.base.list.interactor.Query;

import org.json.JSONArray;

3. Override the getPageRowCountRequestmethod to retrieve the total number of entities. This enables
pagination. In GuestbookListInteractor, you retrieve the total number of guestbooks from a site by
creating a GuestbookService instance from the session and then calling the service’s getGuestbooksCount
method with the groupId. Add this getPageRowCountRequestmethod to GuestbookListInteractor:

419

@Override

protected Integer getPageRowCountRequest(Object... args) throws Exception {

return new GuestbookService(getSession()).getGuestbooksCount(groupId);

}

4. Override the createEntitymethod to create and return a new event object containing the server call’s
results. The BaseListInteractor class converts the JSON that results from a successful server call into
a Map<String, Object>. The createEntitymethod’s only argument is this Map, which you use to create
a GuestbookModel object. Then use the model object to create and return a new GuestbookEvent object.
Add this createEntitymethod to GuestbookListInteractor:

@Override

protected GuestbookEvent createEntity(Map<String, Object> stringObjectMap) {

GuestbookModel guestbook = new GuestbookModel(stringObjectMap);

return new GuestbookEvent(guestbook);

}

This requires you to import java.util.Map.

5. Override the getIdFromArgsmethod to return the value of the first object argument as a string. Add
this method to GuestbookListInteractor:

@Override

protected String getIdFromArgs(Object... args) {

return String.valueOf(args[0]);

}

This is a boilerplate method that returns a cache key for offline mode. Even though you won’t add
offline mode support to Guestbook List Screenlet, this methodmakes it easier if you decide to do so
later.

Nice work! Your Interactor class is finished. Note that this class is very similar to the Interactor class in
the list Screenlet creation tutorial.

Your Interactor is finished too. Next, you’ll create the Screenlet class.

43.4 Creating Guestbook List Screenlet's Screenlet Class

When using a Screenlet, app developers primarily interact with its Screenlet class. The Screenlet class
contains attributes for configuring the Screenlet’s behavior, a reference to the Screenlet’s View,methods for
invoking Interactor operations, andmore.

You’ll use these steps to create the Screenlet class:

1. Define theScreenlet’s attributes. These are theXMLattributes the appdeveloper can setwhen inserting
the Screenlet’s XML.These attributes control aspects of the Screenlet’s behavior.

2. Create the Screenlet class. This class implements the Screenlet’s functionality defined in the View and
Interactor. It also reads the attribute values and configures the Screenlet accordingly.

First, you’ll define Guestbook List Screenlet’s attributes.

420

Defining Screenlet Attributes

Before creating the Screenlet class, you should define its attributes. These are the attributes the app developer
can set when inserting the Screenlet’s XML in an activity or fragment layout. For example, to use Login
Screenlet, the app developer could insert the following Login Screenlet XML in an activity or fragment layout:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:basicAuthMethod="email"

app:layoutId="@layout/login_default"

/>

Theapp developer can set the app attributes basicAuthMethod and layoutId to set Login Screenlet’s authen-
ticationmethod and View, respectively. The Screenlet class reads these settings to enable the appropriate
functionality.

When creating a Screenlet, you can define the attributes you want to make available to app developers.
You do this in an XML file inside your Android project’s res/values directory. Guestbook List Screenlet
only needs one attribute. You’ll define it now. Create the file guestbook_attrs.xml in your app’s res/values
directory. Replace the file’s contents with the following code:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<declare-styleable name="GuestbookListScreenlet">

<attr name="groupId"/>

</declare-styleable>

</resources>

This defines the groupId attribute, which the app developer can use to set the portal site to communicate
with if they don’t want to use the default groupId setting in server_context.xml. You’ll account for this
attribute’s functionality in the Screenlet class.

Now that you’ve defined this attribute and know what it needs to do, you’re ready to write the Screenlet
class.

Extending BaseListScreenlet

Because the BaseListScreenlet class provides the basic functionality for all Screenlet classes in list
Screenlets, including methods for pagination and other default behavior, your Screenlet class must extend
BaseListScreenletwith your model class and Interactor as type arguments.

Use the following steps to create the Screenlet class forGuestbook List Screenlet, GuestbookListScreenlet:

1. Create the GuestbookListScreenlet class in the package com.liferay.docs.guestbooklistscreenlet.
This class must extend BaseListScreenletwith the model and Interactor as type arguments:

public class GuestbookListScreenlet extends

BaseListScreenlet<GuestbookModel, GuestbookListInteractor> {...

This requires you to add the following imports:

import com.liferay.docs.guestbooklistscreenlet.interactor.GuestbookListInteractor;

import com.liferay.docs.model.GuestbookModel;

import com.liferay.mobile.screens.base.list.BaseListScreenlet;

421

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListScreenlet.java

2. For constructors, leverage the superclass constructors:

public GuestbookListScreenlet(Context context) {

super(context);

}

public GuestbookListScreenlet(Context context, AttributeSet attrs) {

super(context, attrs);

}

public GuestbookListScreenlet(Context context, AttributeSet attrs, int defStyleAttr) {

super(context, attrs, defStyleAttr);

}

public GuestbookListScreenlet(Context context, AttributeSet attrs, int defStyleAttr,

int defStyleRes) {

super(context, attrs, defStyleAttr, defStyleRes);

}

This requires you to add the following imports:

import android.content.Context;

import android.util.AttributeSet;

3. Implement the errormethod. This is a boilerplate method that uses a listener in the Screenlet frame-
work to propagate any exception, and the user action that produced it, that occurs during the service
call. This method does this by checking for a listener and then calling its error method with the
Exception and userAction:

@Override

public void error(Exception e, String userAction) {

if (getListener() != null) {

getListener().error(e, userAction);

}

}

4. Override the createScreenletViewmethod. This method reads the Screenlet’s attribute values via an
Android TypedArray, and instantiates the View. In Guestbook List Screenlet, you only need to read
the value of the groupId attribute and set it to the groupId variable. Recall that the Screens framework
propagates this variable to your Interactor. Finish the createScreenletView method by calling the
superclass’s createScreenletViewmethod. This instantiates the View for you:

@Override

protected View createScreenletView(Context context, AttributeSet attributes) {

TypedArray typedArray = context.getTheme().obtainStyledAttributes(attributes,

R.styleable.GuestbookListScreenlet, 0, 0);

groupId = typedArray.getInt(R.styleable.GuestbookListScreenlet_groupId,

(int) LiferayServerContext.getGroupId());

typedArray.recycle();

return super.createScreenletView(context, attributes);

}

Note that if the app developer doesn’t set the groupId attribute, LiferayServerContext.getGroupId() is
called to retrieve the app’s default liferay_group_id setting from res/values/server_context.xml.

This createScreenletViewmethod requires you to add the following imports:

422

https://developer.android.com/reference/android/content/res/TypedArray.html

import android.content.res.TypedArray;

import android.view.View;

import com.liferay.docs.liferayguestbook.R;

import com.liferay.mobile.screens.context.LiferayServerContext;

5. Override the loadRowsmethod to start your Interactor and thereby retrieve the list rows from the
server. This method takes an instance of your Interactor as an argument, which you use to call
the Interactor’s start method. The loadRows method in GuestbookListScreenlet therefore starts a
GuestbookListInteractor instance. Note that the Interactor inherits start from BaseListInteractor.
Also, because youdon’t need to pass any data to GuestbookListInteractor, you can call the startmethod
with 0 as an argument:

@Override

protected void loadRows(GuestbookListInteractor interactor) {

interactor.start(0);

}

6. Override the createInteractormethod to instantiate your Interactor. Since that’s all this method
needs to do, call your Interactor’s constructor and return the new instance:

@Override

protected GuestbookListInteractor createInteractor(String actionName) {

return new GuestbookListInteractor();

}

Awesome! Your Screenlet class is finished. Note that this Screenlet class is very similar to the one in the
list Screenlet creation tutorial.

Your Screenlet is finished, too! Before using Guestbook List Screenlet, however, you’ll create Entry List
Screenlet to show a list of each guestbook’s entries. After all, viewing guestbooks without their entries
doesn’t make much sense. It isn’t very exciting either. What’s really exciting is that you can create Entry List
Screenlet with the same set of steps you used to create Guestbook List Screenlet. The next series of articles
in this Learning Path walks you through this.

423

Chapter 44

Creating Entry List Screenlet

In the previous section, you created Guestbook List Screenlet to retrieve and display guestbooks from the
Guestbook portlet. You still need a way to retrieve and display each guestbook’s entries, though. You’ll do
this by creating another list Screenlet: Entry List Screenlet. This sectionwalks you through the steps required
to create it.

Because you use a consistent development model to create Screenlets, similar Screenlets have similar
code. As with guestbooks, it makes sense to display entries in a list using a list Screenlet. This means you
can reuse most of Guestbook List Screenlet’s code in Entry List Screenlet. You’ll therefore create Entry List
Screenlet using the same sequence of steps you used to create Guestbook List Screenlet:

1. Getting started: creating the Screenlet’s package andmodel class.
2. Creating the Screenlet’s UI (its View).
3. Creating the Screenlet’s Interactor.
4. Creating the Screenlet class.

Although this Learning Path section presents complete code snippets, it only discusses the code unique
to Entry List Screenlet. Refer back to the previous section for detailed explanations of the code shared with
Guestbook List Screenlet. If you get confused or stuck, refer to the finished app that contains the Screenlet
code here in GitHub.

44.1 Getting Started with Entry List Screenlet

LikeGuestbook List Screenlet, you’ll create Entry List Screenlet in a newpackage inside your app’s project. Get
started by creating the package com.liferay.docs.entrylistscreenlet. Once you have this package, you’re
ready to start writing the Screenlet.

Creating the Model Class for Entries

Recall that you need amodel class to represent entities retrieved from Liferay DXP.Themodel class you’ll
create for guestbook entries, EntryModel, creates EntryModel objects that serve as guestbook entries retrieved
from the Guestbook portlet.

Create the following EntryModel class alongside the GuestbookModel class in the com.liferay.docs.model
package:

425

https://github.com/liferay/liferay-docs/tree/master/develop/tutorials/code/mobile/android/screenlets-app/LiferayGuestbook

package com.liferay.docs.model;

import android.os.Parcel;

import android.os.Parcelable;

import java.util.Date;

import java.util.Map;

public class EntryModel implements Parcelable {

private Map values;

private long entryId;

private long groupId;

private long companyId;

private long userId;

private String userName;

private long createDate;

private long modifiedDate;

private String name;

private String email;

private String message;

private long guestbookId;

public static final Creator<EntryModel> CREATOR = new Creator<EntryModel>() {

@Override

public EntryModel createFromParcel(Parcel in) {

return new EntryModel(in);

}

@Override

public EntryModel[] newArray(int size) {

return new EntryModel[size];

}

};

public EntryModel() {

super();

}

protected EntryModel(Parcel in) {

entryId = in.readLong();

groupId = in.readLong();

companyId = in.readLong();

userId = in.readLong();

userName = in.readString();

createDate = in.readLong();

modifiedDate = in.readLong();

name = in.readString();

email = in.readString();

message = in.readString();

guestbookId = in.readLong();

}

public EntryModel(Map<String, Object> stringObjectMap) {

values = stringObjectMap;

entryId = Long.parseLong((String) stringObjectMap.get("entryId"));

groupId = Long.parseLong((String) stringObjectMap.get("groupId"));

companyId = Long.parseLong((String) stringObjectMap.get("companyId"));

userId = Long.parseLong((String) stringObjectMap.get("userId"));

userName = (String) stringObjectMap.get("userName");

createDate = (long) stringObjectMap.get("createDate");

modifiedDate = (long) stringObjectMap.get("modifiedDate");

name = (String) stringObjectMap.get("name");

email = (String) stringObjectMap.get("email");

message = (String) stringObjectMap.get("message");

guestbookId = Long.parseLong((String) stringObjectMap.get("guestbookId"));

}

426

@Override

public void writeToParcel(Parcel dest, int flags) {

dest.writeLong(entryId);

dest.writeLong(groupId);

dest.writeLong(companyId);

dest.writeLong(userId);

dest.writeString(userName);

dest.writeLong(createDate);

dest.writeLong(modifiedDate);

dest.writeString(name);

dest.writeString(email);

dest.writeString(message);

dest.writeLong(guestbookId);

}

@Override

public int describeContents() {

return 0;

}

public Map getValues() {

return values;

}

public void setValues(Map values) {

this.values = values;

}

public long getEntryId() {

return entryId;

}

public long getGroupId() {

return groupId;

}

public long getCompanyId() {

return companyId;

}

public long getUserId() {

return userId;

}

public String getUserName() {

return userName;

}

public Date getCreateDate() {

return new Date(createDate);

}

public Date getModifiedDate() {

return new Date(modifiedDate);

}

public String getName() {

return name;

}

public String getEmail() {

return email;

}

public String getMessage() {

return message;

}

427

public long getGuestbookId() {

return guestbookId;

}

}

Besides working with entries instead of guestbooks, this class works the same as GuestbookModel. For an
explanation of the code, see the article on getting started with Guestbook List Screenlet.

Next, you’ll create the Screenlet’s UI.

44.2 Creating Entry List Screenlet's UI
Once you have the model class for entries, you can create the Screenlet’s UI. Recall that in Liferay Screens
for Android, you create a Screenlet’s UI by implementing a View. In this article, you’ll create Entry List
Screenlet’s View by using the same sequence of steps you used to create Guestbook List Screenlet’s View:

1. Create the row layout. This layout defines the UI for each row in the list.

2. Create the adapter class. The adapter fills a row layout instance with the data for one list item. This
repeats for each list item.

3. Create the View class. This class renders the UI, handles user interactions, and communicates with
the Screenlet class.

4. Create the View’s layout. This layout defines the Screenlet’s UI as a whole. For a list Screenlet, this is a
scrollable list.

As you follow these steps, you’ll see that Entry List Screenlet’s View shares a great deal of code with
Guestbook List Screenlet’s View. The biggest difference between these Views is that one displays guestbooks
and the other displays entries. Themechanisms they use to display data, however, are almost identical.

To get started, create a new package named view inside the entrylistscreenlet package. You’ll create
the row layout first.

Creating the Row Layout

Youmust create the layout that defines the Screenlet’s UI for each list row instance. Recall that in Guestbook
List Screenlet, guestbook_row.xml serves this purpose with a single TextView it uses to display a guestbook’s
name. You’ll create a similar layout here for Entry List Screenlet, but you’ll use two TextView elements: one
for the entry and one for the name of the person that left it. Create entry_row.xml in your app’s res/layout
directory and replace its contents with this code:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

<TextView

android:id="@+id/entry_message"

android:textSize="25sp"

android:textStyle="bold"

android:paddingLeft="10dp"

android:paddingRight="10dp"

android:paddingBottom="1dp"

android:paddingTop="10dp"

428

android:layout_width="match_parent"

android:layout_height="wrap_content"/>

<TextView

android:id="@+id/entry_name"

android:textSize="15sp"

android:paddingLeft="10dp"

android:paddingRight="10dp"

android:paddingBottom="10dp"

android:paddingTop="1dp"

android:layout_width="match_parent"

android:layout_height="wrap_content"/>

</LinearLayout>

You’ll use the first TextView (entry_message) to display the entry, and the second TextView (entry_name)
to display the name of the person that left it. The padding settings in each TextView element group the text
closer together and create extra space at the top and bottom of the row. This makes it clear that the text in
each row belongs together as a single list item. Of course, this is only one of many possible representations.
You can style each row as you wish.

Next, you’ll create your Screenlet’s adapter class.

Creating the Adapter Class

Recall that an adapter class is required to fill each rowwith data. Entry List Screenlet’s adapter class is almost
identical to that of Guestbook List Screenlet. The only difference, besides working with EntryModel instead of
GuestbookModel, is that it needs two variables: one for the entry and one for the name of the person who left
it. In contrast, Guestbook List Screenlet’s adapter class needed only one variable for the guestbook’s name.

Inside the Entry List Screenlet’s view package, create the following EntryAdapter class:

package com.liferay.docs.entrylistscreenlet.view;

import android.support.annotation.NonNull;

import android.view.View;

import android.widget.TextView;

import com.liferay.docs.liferayguestbook.R;

import com.liferay.docs.model.EntryModel;

import com.liferay.mobile.screens.base.list.BaseListAdapter;

import com.liferay.mobile.screens.base.list.BaseListAdapterListener;

public class EntryAdapter extends BaseListAdapter<EntryModel, EntryAdapter.EntryViewHolder> {

public EntryAdapter(int layoutId, int progressLayoutId, BaseListAdapterListener listener) {

super(layoutId, progressLayoutId, listener);

}

@NonNull

@Override

public EntryViewHolder createViewHolder(View view, BaseListAdapterListener listener) {

return new EntryAdapter.EntryViewHolder(view, listener);

}

@Override

protected void fillHolder(EntryModel entry, EntryViewHolder holder) {

holder.bind(entry);

}

public class EntryViewHolder extends BaseListAdapter.ViewHolder {

private final TextView message;

429

private final TextView name;

public EntryViewHolder(View view, BaseListAdapterListener listener) {

super(view, listener);

message = (TextView) view.findViewById(R.id.entry_message);

name = (TextView) view.findViewById(R.id.entry_name);

}

public void bind(EntryModel entry) {

message.setText(entry.getMessage());

name.setText(entry.getName());

}

}

}

For an explanation of how this code works, see the section on the adapter class in the article on Creating
Guestbook List Screenlet’s UI.

Now you’re ready to create the View class.

Creating the View Class

Recall that the View class controls a Screenlet’s UI. Because Entry List Screenlet is so similar to Guestbook
List Screenlet, their View classes are almost identical. The only difference is–you guessed it–one uses entries
and the other uses guestbooks. For a full explanation of the View class, see the section on the View class in
the article on Creating Guestbook List Screenlet’s UI.

Create the EntryListView class inside Entry List Screenlet’s view package, and replace its contents with
this code:

package com.liferay.docs.entrylistscreenlet.view;

import android.content.Context;

import android.util.AttributeSet;

import com.liferay.docs.liferayguestbook.R;

import com.liferay.docs.model.EntryModel;

import com.liferay.mobile.screens.base.list.BaseListScreenletView;

public class EntryListView extends BaseListScreenletView<EntryModel,

EntryAdapter.EntryViewHolder, EntryAdapter> {

public EntryListView(Context context) {

super(context);

}

public EntryListView(Context context, AttributeSet attributes) {

super(context, attributes);

}

public EntryListView(Context context, AttributeSet attributes, int defaultStyle) {

super(context, attributes, defaultStyle);

}

@Override

protected EntryAdapter createListAdapter(int itemLayoutId, int itemProgressLayoutId) {

return new EntryAdapter(itemLayoutId, itemProgressLayoutId, this);

}

@Override

protected int getItemLayoutId() {

return R.layout.entry_row;

430

}

}

Fabulous work! Next, you’ll create your View’s main layout.

Creating the View's Layout

In the first step, you created a layout for each list row. Recall that youmust also create a layout for the list as
a whole. Although youmay be getting tired of hearing this, it’s saving you a great deal of work: Entry List
Screenlet’s layout is almost identical to that of Guestbook List Screenlet. The only difference is that Entry
List Screenlet’s layout uses EntryListView instead of GuestbookListView.

Create the file list_entries.xml in the res/layout directory, and replace its contents with this code:

<com.liferay.docs.entrylistscreenlet.view.EntryListView

xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/liferay_list_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent">

<ProgressBar

android:id="@+id/liferay_progress"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_gravity="center"

android:visibility="gone"/>

<android.support.v7.widget.RecyclerView

android:id="@+id/liferay_recycler_list"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:visibility="gone"/>

</com.liferay.docs.entrylistscreenlet.view.EntryListView>

For a full explanation of this layout, see the section on creating the layout in the article on creating
Guestbook List Screenlet’s UI. Youmust also be sure not to change the layout’s android:id values. They’re
hard-coded into the list Screenlet framework and changing themwill cause your app to crash.

Nice job! You’re done creating Entry List Screenlet’s View. Next, you’ll create the Screenlet’s Interactor.

44.3 Creating Entry List Screenlet's Interactor

Recall that Interactors are Screenlet components that make server calls and process the results. Also recall
that Interactors themselves are made up of several components:

1. The event class
2. The listener interface
3. The Interactor class

Since the list Screenlet framework already contains two listeners, you only need to create the event and
Interactor classes. This article walks you through the steps required do this. Because Entry List Screenlet’s
Interactor is so similar to that of Guestbook List Screenlet, these steps aren’t explained in detail. Focus is
instead placed on the few places in the code where the Interactors diverge. For a full explanation of the code,
see the article on creating Guestbook List Screenlet’s Interactor.

You’ll create the event class first.

431

Creating the Event Class

Recall that you must create an event class to communicate the server call’s results via EventBus. First,
create a new package called interactor in the com.liferay.docs.entrylistscreenlet package. Then create
the EntryEvent class in the interactor package. Replace this class’s contents with this code:

package com.liferay.docs.entrylistscreenlet.interactor;

import com.liferay.docs.model.EntryModel;

import com.liferay.mobile.screens.base.list.interactor.ListEvent;

public class EntryEvent extends ListEvent<EntryModel> {

private EntryModel entry;

public EntryEvent() {

super();

}

public EntryEvent(EntryModel entry) {

this.entry = entry;

}

@Override

public String getListKey() {

return entry.getMessage();

}

@Override

public EntryModel getModel() {

return entry;

}

}

This code is almost identical to GuestbookEvent. The only difference is that it works with entries instead
of guestbooks.

Next, you’ll create the Interactor class.

Creating the Interactor Class

Recall that an Interactor class issues the server call and processes the results via the event. In the interactor
package, create a new class called EntryListInteractor. Replace this class’s content with this code:

package com.liferay.docs.entrylistscreenlet.interactor;

import com.liferay.docs.model.EntryModel;

import com.liferay.mobile.android.v7.entry.EntryService;

import com.liferay.mobile.screens.base.list.interactor.BaseListInteractor;

import com.liferay.mobile.screens.base.list.interactor.BaseListInteractorListener;

import com.liferay.mobile.screens.base.list.interactor.Query;

import org.json.JSONArray;

import java.util.Map;

public class EntryListInteractor extends

BaseListInteractor<BaseListInteractorListener<EntryModel>, EntryEvent> {

@Override

protected JSONArray getPageRowsRequest(Query query, Object... args) throws Exception {

long guestbookId = (long) args[0];

return new EntryService(getSession()).getEntries(groupId, guestbookId,

query.getStartRow(), query.getEndRow());

432

http://greenrobot.org/eventbus/

}

@Override

protected Integer getPageRowCountRequest(Object... args) throws Exception {

long guestbookId = (long) args[0];

return new EntryService(getSession()).getEntriesCount(groupId, guestbookId);

}

@Override

protected EntryEvent createEntity(Map<String, Object> stringObjectMap) {

EntryModel entry = new EntryModel(stringObjectMap);

return new EntryEvent(entry);

}

@Override

protected String getIdFromArgs(Object... args) {

return String.valueOf(args[0]);

}

}

Besides getting entries instead of guestbooks, this class is almost identical to GuestbookListInteractor.
The only other differences are due to the service calls that retrieve the entries and number of entries
from a guestbook in the Guestbook portlet. These service calls, made in getPageRowsRequest and
getPageRowCountRequest, require an EntryService instance. The getEntriesmethod retrieves a guestbook’s
entries, and the getEntriesCountmethod retrieves the number of entries in a guestbook. Note that these
calls require a guestbook ID (guestbookId) in addition to the group ID (groupId). The getPageRowsRequest and
getPageRowCountRequestmethods get the guestbookId from the args argument, and then use it along with
groupIdmake their service calls. You’ll see how the guestbookId gets into the args argument when you create
the Screenlet class.

Nicely done! Now that Entry List Screenlet has an Interactor, youmust create the Screenlet class. The
next article shows you how to do this.

44.4 Creating Entry List Screenlet's Screenlet Class
Recall that when using a Screenlet, the app developer primarily interacts with its Screenlet class. The
Screenlet class contains attributes for configuring the Screenlet’s behavior, a reference to the Screenlet’s
View,methods for invoking Interactor operations, and more. This article shows you how to create Entry List
Screenlet’s Screenlet class.

As with most of Entry List Screenlet, its Screenlet class is almost identical to that of Guestbook List
Screenlet. Besides working with entries instead of guestbooks, the only difference is that it must know its
entries’ guestbook ID. Even the Screenlets’ attributes are the same.

Therefore, this article doesn’t explain all the code in detail. Focus is instead placed on the few parts
that differ from Guestbook List Screenlet. For a full explanation of the code, click here to see the article on
creating Guestbook List Screenlet’s Screenlet class.

You’ll create Entry List Screenlet’s class with the same steps you used to create Guestbook List Screenlet’s
class:

1. Define theScreenlet’s attributes. These are theXMLattributes the appdeveloper can setwhen inserting
the Screenlet’s XML.These attributes control aspects of the Screenlet’s behavior.

2. Create the Screenlet class. This class implements the Screenlet’s functionality defined in the View and
Interactor. It also reads the attribute values and configures the Screenlet accordingly.

First, you’ll define Entry List Screenlet’s attributes.

433

Defining Screenlet Attributes

Recall that before creating the Screenlet class, you must define the attributes the app developer needs to
control the Screenlet’s behavior. Entry List Screenlet, like Guestbook List Screenlet, only needs a groupId
attribute. In your app’s res/values directory, create entry_attrs.xml and replace its contents with this code:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<declare-styleable name="EntryListScreenlet">

<attr name="groupId"/>

</declare-styleable>

</resources>

Next, you’ll create the Screenlet class.

Creating the Screenlet Class

Entry List Screenlet’s class must contain an instance variable for the ID of the guestbook the Screenlet
retrieves entries from. This is required to start the Interactor. This is the only significant difference between
the Screenlet classes of Entry List Screenlet and Guestbook List Screenlet. The remaining differences exist
only because they handle different entities.

Create the EntryListScreenlet class in the entrylistscreenlet package. Replace the class’s content with
this code:

package com.liferay.docs.entrylistscreenlet;

import android.content.Context;

import android.content.res.TypedArray;

import android.util.AttributeSet;

import android.view.View;

import com.liferay.docs.entrylistscreenlet.interactor.EntryListInteractor;

import com.liferay.docs.liferayguestbook.R;

import com.liferay.docs.model.EntryModel;

import com.liferay.mobile.screens.base.list.BaseListScreenlet;

import com.liferay.mobile.screens.context.LiferayServerContext;

public class EntryListScreenlet extends BaseListScreenlet<EntryModel, EntryListInteractor> {

private long guestbookId;

public EntryListScreenlet(Context context) {

super(context);

}

public EntryListScreenlet(Context context, AttributeSet attrs) {

super(context, attrs);

}

public EntryListScreenlet(Context context, AttributeSet attrs, int defStyleAttr) {

super(context, attrs, defStyleAttr);

}

public EntryListScreenlet(Context context, AttributeSet attrs, int defStyleAttr, int defStyleRes) {

super(context, attrs, defStyleAttr, defStyleRes);

}

@Override

public void error(Exception e, String userAction) {

if (getListener() != null) {

getListener().error(e, userAction);

}

}

434

@Override

protected View createScreenletView(Context context, AttributeSet attributes) {

TypedArray typedArray = context.getTheme().obtainStyledAttributes(attributes,

R.styleable.GuestbookListScreenlet, 0, 0);

groupId = typedArray.getInt(R.styleable.GuestbookListScreenlet_groupId,

(int) LiferayServerContext.getGroupId());

typedArray.recycle();

return super.createScreenletView(context, attributes);

}

@Override

protected void loadRows(EntryListInteractor interactor) {

interactor.start(guestbookId);

}

@Override

protected EntryListInteractor createInteractor(String actionName) {

return new EntryListInteractor();

}

public long getGuestbookId() {

return guestbookId;

}

public void setGuestbookId(long guestbookId) {

this.guestbookId = guestbookId;

}

}

The instance variable for the guestbook ID is guestbookId. The getter and setter methods getGuestbookId
and setGuestbookId let the app developer get and set this variable, respectively. The loadRowsmethod starts
the Interactor by calling the startmethod with guestbookId as an argument. Behind the scenes, the list
Screenlet framework passes guestbookId to the Interactor’s getPageRowsRequest and getPageRowCountRequest

methods via the args argument. This is why you were able to extract guestbookId from the args argument in
these methods. For an explanation of how the rest of this Screenlet class works, click here to see the article
on creating Guestbook List Screenlet’s Screenlet class.

That’s it! Now you’re ready to use Entry List Screenlet alongside Guestbook List Screenlet. The following
section of this Learning Path concludes with both Screenlets working together in harmony.

435

Chapter 45

Using the Guestbook List and Entry List
Screenlets

Now that you have the Guestbook List and Entry List Screenlets, you’re ready to put them to work. As you’ll
see, using these Screenlets isn’t much more difficult than using Login Screenlet. This is an advantage of
Screenlets; it typically takes only a fewminutes to get them up and running. They also integrate with the rest
of your app’s UI.

To add your Screenlets to the app, you’ll follow these steps:

1. Understand how GuestbooksActivity’s UI works. Since your Screenlets augment this UI instead of
replacing it, you should first understand how it works.

2. Prepare GuestbooksActivity for Guestbook List Screenlet.

3. Use Guestbook List Screenlet by inserting it in GuestbooksActivity.

4. Create EntriesFragment for Entry List Screenlet. You’ll also set GuestbooksActivity to display this
fragment when a guestbook is selected in Guestbook List Screenlet.

5. Use Entry List Screenlet by inserting it in EntriesFragment.

If you get confused or stuck at any point in this section of the Learning Path, refer to the finished app’s
code here in GitHub.

First, you’ll see how GuestbooksActivity’s UI works.

45.1 Understanding GuestbooksActivity's UI

Recall that you used Android Studio’s NavigationDrawer Activity template to create GuestbooksActivity. Any
activity this template creates contains a navigation drawer and all the components the activity needs. This
includes layout files that display content. Currently, these files contain simple placeholder content. You’ll
replace this content shortly with content from your Guestbook portlet. Before doing so, however, you should
know where the placeholder content exists in the project’s structure and how the app displays it.

The app’s UI is defined by three layout files that combine to display the app’s content:

437

https://github.com/liferay/liferay-docs/tree/master/develop/tutorials/code/mobile/android/screenlets-app/LiferayGuestbook

1. activity_guestbooks.xml: The activity’s main layout file. This layout defines the navigation drawer and
includes the app_bar_guestbooks layout. The latter appears when the navigation drawer is closed.

2. app_bar_guestbooks.xml: Defines the action bar (app bar) and includes the content_guestbooks layout.

3. content_guestbooks.xml: Defines the activity’s main content, which appears below the action bar.

First, you’ll learn how activity_guestbooks.xmlworks.

Understanding the Activity's Main Layout File

First, open GuestbooksActivity’s main layout file, activity_guestbooks.xml. This file should look similar to
this one:

<?xml version="1.0" encoding="utf-8"?>

<android.support.v4.widget.DrawerLayout

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:id="@+id/drawer_layout"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:fitsSystemWindows="true"

tools:openDrawer="start">

<include layout="@layout/app_bar_guestbooks"

android:layout_width="match_parent"

android:layout_height="match_parent" />

<android.support.design.widget.NavigationView

android:id="@+id/nav_view"

android:layout_width="wrap_content"

android:layout_height="match_parent"

android:layout_gravity="start"

android:fitsSystemWindows="true"

app:headerLayout="@layout/nav_header_guestbooks"

app:menu="@menu/activity_guestbooks_drawer" />

</android.support.v4.widget.DrawerLayout>

This isn’tmuch code considering everything that’s in GuestbooksActivity. The NavigationView and its par-
ent DrawerLayoutdefine the navigation drawer. Two attributes in NavigationViewdefine the drawer’s contents:
app:headerLayout and app:menu. The app:headerLayout value "@layout/nav_header_guestbooks" specifies that
the layout res/layout/nav_header_guestbooks.xml renders the drawer’s header section. The app:menu value
"@menu/activity_guestbooks_drawer" specifies that the menu in res/menu/activity_guestbooks_drawer.xml

creates the drawer’s items. Above the NavigationView, the include statement adds the layout
app_bar_guestbooks.xml as the content shown when the navigation drawer is closed. The following
diagram illustrates how activity_guestbooks.xmlmaps to the UI.

The activity’s main content also contains a toolbar (the action bar), some text, and a floating action
button. Next, you’ll see how these are defined.

Understanding the app_bar_guestbooks and content_guestbooks Layouts

Open app_bar_guestbooks.xml. It should look similar to this:

<?xml version="1.0" encoding="utf-8"?>

<android.support.design.widget.CoordinatorLayout

xmlns:android="http://schemas.android.com/apk/res/android"

438

https://www.google.com/design/spec/components/buttons-floating-action-button.html
https://www.google.com/design/spec/components/buttons-floating-action-button.html

Figure 45.1: The activity_guestbooks.xml layout defines the app’s main UI components.

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:fitsSystemWindows="true"

tools:context="com.liferay.docs.liferayguestbook.GuestbooksActivity">

<android.support.design.widget.AppBarLayout

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:theme="@style/AppTheme.AppBarOverlay">

<android.support.v7.widget.Toolbar

android:id="@+id/toolbar"

android:layout_width="match_parent"

android:layout_height="?attr/actionBarSize"

android:background="?attr/colorPrimary"

app:popupTheme="@style/AppTheme.PopupOverlay" />

439

</android.support.design.widget.AppBarLayout>

<include layout="@layout/content_guestbooks" />

<android.support.design.widget.FloatingActionButton

android:id="@+id/fab"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_gravity="bottom|end"

android:layout_margin="@dimen/fab_margin"

android:src="@android:drawable/ic_dialog_email" />

</android.support.design.widget.CoordinatorLayout>

The AppBarLayout and Toolbar elements define the toolbar at the top of the activity. Following the
toolbar definition, the include statement adds the content_guestbooks layout to app_bar_guestbooks. The
content_guestbooks layout defines the content displayed in the activity’s body (below the toolbar). Right
now, this layout only contains an empty ConstraintLayout element. Now open content_guestbooks.xml. Its
contents should look similar to this:

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:layout_behavior="@string/appbar_scrolling_view_behavior"

tools:context="com.liferay.docs.liferayguestbook.GuestbooksActivity"

tools:showIn="@layout/app_bar_guestbooks">

</android.support.constraint.ConstraintLayout>

Anything you define in this layout becomes the activity’s main body content. Later, you’ll return to
content_guestbooks.xml to display the guestbook entries retrieved from the Guestbook portlet.

Now return to app_bar_guestbooks.xml. This layout concludes by using FloatingActionButton to define
the floating action button. Pressing this button in the app slides a snackbar containing placeholder content
up from the bottom of the screen. Although you won’t do anything with the floating action button in this
Learning Path, you’ll leave it in place. When you finish this Learning Path, youmay want to test your Liferay
mobile development chops by adding functionality to this button.

The following figure illustrates how the app_bar_guestbooks layout maps to the activity’s UI. On the left,
this figure lists each UI component in app_bar_guestbooks. Each arrow points to the component’s rendering
on the right.

Awesome! Now you knowwhich layout files in the project define the app’s UI. You also know the exact UI
components these files define. Next, you’ll prepare GuestbooksActivity for Guestbook List Screenlet.

45.2 Preparing GuestbooksActivity for Guestbook List Screenlet

Recall that you want GuestbooksActivity to display Guestbook List Screenlet and Entry List Screenlet. Before
using these Screenlets, however, youmust prepare GuestbooksActivity as follows:

1. Refactor the action bar so you can later set its title to the selected guestbook’s name.

2. Refactor the navigation drawer so you can later close it when a guestbook is selected in Guestbook List
Screenlet.

440

https://www.google.com/design/spec/components/snackbars-toasts.html

Figure 45.2: The layout app_bar_guestbooks.xml defines the activity’s main content.

3. Delete the NavigationView.OnNavigationItemSelectedListener implementation. Since Guestbook List
Screenlet handles guestbook selections, you don’t need NavigationView.

When you finish, you’ll be ready to use Guestbook List Screenlet. Note that you won’t always have to take
steps like these before using Screenlets. You only do so here to fit this particular app’s design.

First, you’ll refactor the action bar.

Refactoring the Action Bar

By default, the action bar displays the activity’s name. When you use Guestbook List Screenlet, you want the
action bar to display the selected guestbook’s name instead. You’ll enable this by modifying the code that
creates the action bar. Android Studio created this code for you in the GuestbooksActivity class’s onCreate
method:

Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

setSupportActionBar(toolbar);

1. Remove this code. Although you could edit it, you’ll instead create a separate method that creates
the action bar. Note that you don’t need to worry about the nowmissing toolbar variable in onCreate;
you’ll fix it shortly.

2. Create ActionBar and Toolbar instance variables. This lets you refer to them anywhere in the activity.
Add these variables to the GuestbooksActivity class:

Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);

setSupportActionBar(toolbar);

441

This requires that you import android.support.v7.app.ActionBar.

3. Add the following initActionBar()method to GuestbooksActivity:

private void initActionBar() {

toolbar = (Toolbar) findViewById(R.id.toolbar);

setSupportActionBar(toolbar);

actionBar = getSupportActionBar();

actionBar.setTitle("");

}

Like the code you removed from onCreate, this method also creates a Toolbar and sets it as the action
bar. It also sets the action bar’s title to an empty string. This prevents the activity’s title from showing
in the action bar before the app can retrieve guestbooks from the portlet.

4. Call initActionBar() in onCreate. Place the call immediately below the setContentView call. The first
few lines of onCreate should now look like this:

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_guestbooks);

initActionBar();

...

}

Next, you’ll modify the code that controls the navigation drawer.

Refactoring the Navigation Drawer

Before you can use Guestbook List Screenlet in the navigation drawer, youmust refactor the drawer’s existing
code. Do so now by following these steps:

1. Currently, the navigation drawer initialization code is in the onCreatemethod. Android Studio created
this code for youwhen you used the Navigation Drawer Activity template to create GuestbooksActivity.
Delete this code from onCreate:

DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

ActionBarDrawerToggle toggle = new ActionBarDrawerToggle(

this, drawer, toolbar, R.string.navigation_drawer_open, R.string.navigation_drawer_close);

drawer.setDrawerListener(toggle);

toggle.syncState();

Instead, you’ll initialize the navigation drawer in a separate method that you’ll call in onCreate. You’ll
create this method shortly.

2. You’ll also change the drawer variable to be an instance variable that you can refer to throughout the
class. This lets you use this variable to close the drawer when a guestbook is selected in Guestbook List
Screenlet. Add this variable to GuestbooksActivity:

private DrawerLayout drawer;

442

3. Add the following initDrawermethod. This method’s contents match the drawer initialization code
you deleted in onCreate, except that drawer is now an instance variable:

private void initDrawer() {

// drawer initialization

drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

ActionBarDrawerToggle toggle = new ActionBarDrawerToggle(

this, drawer, toolbar, R.string.navigation_drawer_open,

R.string.navigation_drawer_close);

drawer.setDrawerListener(toggle);

toggle.syncState();

}

4. In the onCreatemethod, place the call to initDrawer() immediately below the initActionBar call. The
first few lines of onCreate should now look like this:

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_guestbooks);

initActionBar();

initDrawer();

...

}

5. Also, because you want to use the same DrawerLayout instance throughout the class, delete the line of
code that creates a new DrawerLayout in the onBackPressedmethod. Your onBackPressedmethod should
now look like this:

@Override

public void onBackPressed() {

if (drawer.isDrawerOpen(GravityCompat.START)) {

drawer.closeDrawer(GravityCompat.START);

} else {

super.onBackPressed();

}

}

Now you’re ready to delete the NavigationView.OnNavigationItemSelectedListener implementation. The
next section walks you through this.

Deleting the NavigationView.OnNavigationItemSelectedListener Implementation

Since Guestbook List Screenlet handles navigation drawer item selections, you don’t need to implement
NavigationView.OnNavigationItemSelectedListener in GuestbooksActivity. Follow these steps to remove this
implementation:

1. Delete the implementation from the class declaration. The class declaration should now look like this:

public class GuestbooksActivity extends AppCompatActivity {...

2. Remove the code in GuestbooksActivity that implements NavigationView.OnNavigationItemSelectedListener.
To do this, first delete the following code at the end of the onCreatemethod:

443

NavigationView navigationView = (NavigationView) findViewById(R.id.nav_view);

navigationView.setNavigationItemSelectedListener(this);

Your onCreatemethod should now look like this:

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_guestbooks);

initActionBar();

initDrawer();

FloatingActionButton fab = (FloatingActionButton) findViewById(R.id.fab);

fab.setOnClickListener(new View.OnClickListener() {

@Override

public void onClick(View view) {

Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)

.setAction("Action", null).show();

}

});

}

3. Delete the onNavigationItemSelectedmethod,alongwith its @Overrideand @SuppressWarnings("StatementWithEmptyBody")
statements.

4. Finally, remove the android.support.design.widget.NavigationView import.

Great job! Now you’re ready to insert Guestbook List Screenlet in GuestbooksActivity.

45.3 Using Guestbook List Screenlet

The steps for using Guestbook List Screenlet are the same as those for using any Screenlet:

1. Insert the Screenlet’s XML in the activity or fragment layout you want the Screenlet to appear in.

2. Implement the Screenlet’s listener in the activity or fragment class.

Recall that you used these steps to insert Login Screenlet in MainActivity. First, you’ll insert Guestbook
List Screenlet’s XML in GuestbooksActivity’s layout.

Inserting the Screenlet XML in the Layout

Recall that activity_guestbooks.xml defines GuestbooksActivity’s UI. Also recall that the NavigationView in
activity_guestbooks.xml defines the navigation drawer.

To put Guestbook List Screenlet in the drawer, youmust insert the Screenlet’s XML in the NavigationView.
You must also remove the placeholder content from the NavigationView. To do these things, replace the
NavigationView in activity_guestbooks.xmlwith this code:

<android.support.design.widget.NavigationView

android:id="@+id/nav_view"

android:layout_width="wrap_content"

android:layout_height="match_parent"

android:layout_gravity="start"

android:fitsSystemWindows="true"

app:headerLayout="@layout/nav_header_guestbooks">

444

<com.liferay.docs.guestbooklistscreenlet.GuestbookListScreenlet

android:id="@+id/guestbooklist_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:paddingTop="@dimen/nav_header_height"

app:layoutId="@layout/list_guestbooks"/>

</android.support.design.widget.NavigationView>

Compared to the NavigationView it replaced, this NavigationView containsGuestbookList Screenlet’sXML
and lacks the app:menu attribute. Recall that this attribute pointed to the menu resource file that creates the
drawer’s items. Since the Screenlet now handles the drawer’s items (the guestbooks), you don’t need app:menu

or the menu resource file. Delete the menu resource file res/menu/activity_guestbooks_drawer.xml. You
also don’t need the drawable resources that Android Studio created for the navigation drawer’s placeholder
content. Delete res/values/drawables.xml, and each of the ic_menu_*.xml files in res/drawable.

Returning your attention to activity_guestbooks.xml, note that Guestbook List Screenlet’s XML strongly
resembles Login Screenlet’s XML. Both contain an android:id value that you can use in the activity to get
a reference to the Screenlet. Both also use a layoutId attribute to specify the Screenlet’s View. Guestbook
List Screenlet’s XML, however, differs by using the android:paddingTop attribute. This attribute’s value,
@dimen/nav_header_height, pads the top of the Screenlet by the height of the navigation drawer’s header
section. This prevents the Screenlet and drawer header from overlapping.

Great! Next, you’ll implement the Screenlet’s listener interface in GuestbooksActivity.

Implementing the Screenlet's Listener

To use a Screenlet, youmust implement its listenermethods in the class of the activity or fragmentwhere you
want the Screenlet to appear. How you implement these methods depends on how you want the Screenlet
to function in your app. For example, when you used Login Screenlet you implemented LoginListener in
MainActivity. You implemented this listener’s onLoginSuccess and onLoginFailure methods to display a
message to the user. You then changed the onLoginSuccess implementation to navigate from MainActivity to
GuestbooksActivity. Since these methods are void, however, you could have left them empty. Obviously this
wouldn’t havemade for a very useful app, but it highlights an important point: Screenlet listener methods let
the app developer choose how to respond to the Screenlet’s events. By implementing these methods, app
developers can therefore control how the Screenlet functions with their app.

Before implementing Guestbook List Screenlet’s listener, however, you should add amethod that the
listener methods can use to help display a guestbook and its entries. Youmight now be thinking, “I thought
you said Screenlets contain their own UIs? Why does the activity need special methods for displaying the
Screenlets’ entities?” Although a list Screenlet’s UI displays the list of entities, the rest of the app’s UI must
still account for that list. Consider the action bar, for example. List Screenlets don’t include an action bar, but
you should still change the action bar’s contents to reflect what’s on the screen. When a guestbook is selected
in Guestbook List Screenlet, the action bar should display that guestbook’s name. You can accomplish this
by calling a method that takes a GuestbookModel and sets that guestbook’s name as the action bar’s title.

Follow these steps to add this method and implement the listener:

1. Add this showEntriesmethod to GuestbooksActivity:

public void showEntries(GuestbookModel guestbook) {

actionBar.setTitle(guestbook.getName());

}

445

This requires you to import com.liferay.docs.model.GuestbookModel. Thismethod is called showEntries
because you’ll also use it to display the guestbook’s entries via Entry List Screenlet (you’ll add this code
later). You’ll call this method in the listenermethods you’ll implement to process a guestbook selection.

2. Recall that Guestbook List Screenlet doesn’t need any custom listener methods. It can use the
listener methods defined in the list Screenlet framework’s BaseListListener interface. Change
GuestbooksActivity’s class declaration to implement BaseListListener<GuestbookModel>. The class
declaration should now look like this:

public class GuestbooksActivity extends AppCompatActivity implements

BaseListListener<GuestbookModel> {...

This requires you to import com.liferay.mobile.screens.base.list.BaseListListener.

3. To implement BaseListListener, you must implement the followingmethods:

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page
of items fails. This method’s arguments include the Exception generated when the server call
failed. Implement this method to show the user a toast message containing an error:

@Override

public void onListPageFailed(int startRow, Exception e) {

Toast.makeText(this, "Page request failed", Toast.LENGTH_LONG).show();

}

This requires you to import android.widget.Toast.

• onListPageReceived(int startRow, int endRow, List<E> entries, int rowCount): Calledwhen
the server call to retrieve a page of items succeeds. Note that this method’s arguments include
the list of objects retrieved from the server (entries), and the page’s start row (startRow), and
end row (endRow). Recall that by default, you want the activity to display the first guestbook’s
entries. You’ll use this method to do so because it receives the guestbooks from the server.
Note that because startRow and endRow change for each page, a startRow of 0 corresponds to the
first guestbook on the first page. Use an if statement to select this guestbook, and then call
showEntries:

@Override

public void onListPageReceived(int startRow, int endRow, List<GuestbookModel> guestbooks,

int rowCount) {

if (startRow == 0) {

showEntries(guestbooks.get(0));

}

}

This requires you to import java.util.List.

• onListItemSelected(E element, View view): Calledwhen the user selects an item in the list. This
method’s arguments include the selected list item (element). Toprocess theguestbook’s selection,
call showEntries in this method. Also, close the navigation drawer following the showEntries call:

446

https://github.com/liferay/liferay-screens/blob/2.1.0/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
https://developer.android.com/guide/topics/ui/notifiers/toasts.html

@Override

public void onListItemSelected(GuestbookModel guestbook, View view) {

showEntries(guestbook);

drawer.closeDrawers();

}

4. Because BaseListListener extends the BaseCacheListener interface, the activity must also implement
BaseCacheListener’s errormethod. This method lets you respond to an error alongside the user action
that caused it. In this app, you don’t need to do anything in this method, so you can leave its contents
empty:

@Override

public void error(Exception e, String userAction) {

}

5. Now that you’ve implemented the listener methods, youmust set GuestbooksActivity as the listener.
This is where the guestbooklist_screenlet ID that you set in the Screenlet’s XML comes in handy. Add
the following code to the end of the activity’s onCreatemethod:

GuestbookListScreenlet screenlet =

(GuestbookListScreenlet) findViewById(R.id.guestbooklist_screenlet);

screenlet.setListener(this);

This requires you to import com.liferay.docs.guestbooklistscreenlet.GuestbookListScreenlet.

This code first uses the ID guestbooklist_screenlet to get a reference to GuestbookListScreenlet. It
then sets this GuestbooksActivity instance as the Screenlet’s listener.

Great! That’s it! Your app’s GuestbooksActivity now contains Guestbook List Screenlet. You’re almost
ready to use Entry List Screenlet. Before you do so, however, youmust create a fragment to put it in. You’ll
do this next.

45.4 Creating a Fragment for Entry List Screenlet

Using a fragment for Entry List Screenlet lets you swap out part of GuestbookActivity’s contents without
recreating the entire activity from scratch each time a guestbook is selected. Your app doesn’t currently have
any fragments, though. In this step, you’ll create a fragment and then add it to GuestbooksActivity. When
you finish, you’ll be ready to use Entry List Screenlet in this fragment.

Creating the Fragment

Follow these steps to create the fragment:

1. To create the fragment, right click the com.liferay.docs.liferayguestbook package and selectNew →
Fragment → Fragment (Blank). In the wizard, check only the box to create the layout XML, name the
fragment EntriesFragment, and then click Finish. The following screenshot illustrates this:

This creates the EntriesFragment class and its layout file fragment_entries.xml.

2. Replace the class’s contents with this code:

447

https://github.com/liferay/liferay-screens/blob/2.1.0/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/listener/BaseCacheListener.java

Figure 45.3: Create a new blank fragment for the entries.

package com.liferay.docs.liferayguestbook;

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

public class EntriesFragment extends Fragment {

public static EntriesFragment newInstance(long guestbookId) {

EntriesFragment entriesFragment = new EntriesFragment();

Bundle args = new Bundle();

args.putLong("guestbookId", guestbookId);

entriesFragment.setArguments(args);

return entriesFragment;

}

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

// Inflate the layout for this fragment

View view = inflater.inflate(R.layout.fragment_entries, container, false);

long guestbookId = getArguments().getLong("guestbookId");

return view;

}

}

If you have experience with Android fragments, then you’re likely familiar with the static newInstance
method. In short, using such a method instead of an empty constructor lets you create the fragment
and initialize its data in one step. This makes it easier to create and restore the fragment. Click here
for more information.

Since this fragment will contain Entry List Screenlet, its data must include the guestbook ID the
Screenlet retrieves entries from (guestbookId). Also, the onCreateViewmethod uses the bundle argu-

448

http://www.androiddesignpatterns.com/2012/05/using-newinstance-to-instantiate.html

ments set in newInstance to retrieve the guestbookId. For now, you don’t have to do anything with the
guestbookId in onCreateView. You’ll use this variable when you add the Screenlet to the fragment.

Next, you’ll add this fragment to GuestbooksActivity.

Adding the Fragment to GuestbooksActivity

Now that EntriesFragment exists, you can add it to GuestbooksActivity. To do this, you must put an
Android fragment container in the layout where you want the fragment. For more information, see
Android’s documentation on adding fragments at runtime. Since you want Entry List Screenlet to
appear in GuestbooksActivity, your first thought might be to put the fragment container directly in
activity_guestbooks.xml. Don’t do this. Recall that Android Studio’s Navigation Drawer Activity template
created the layout content_guestbooks.xml to hold the activity’s main body content. You’ll add the fragment
container to this layout, then write the code in GuestbooksActivity that displays the fragment.

Follow these steps to add the fragment to GuestbooksActivity:

1. Open content_guestbooks.xml and place the following fragment container inside the ConstraintLayout.
This fragment container should be the only other element inside the ConstraintLayout:

<FrameLayout

android:id="@+id/fragment_container"

android:layout_width="match_parent"

android:layout_height="match_parent" />

2. Next, you must write the GuestbooksActivity code that displays the fragment when a guestbook is
selected in Guestbook List Screenlet. You’ll do this with an Android fragment transaction. Recall that
you created GuestbooksActivity’s showEntriesmethod to process a list item selection in Guestbook
List Screenlet. All showEntries does right now is set the action bar’s title to the selected guestbook’s
name. You’ll add the fragment transaction to showEntries, so a guestbook selection also shows that
guestbook’s entries. Replace the showEntriesmethod in GuestbooksActivitywith this code:

public void showEntries(GuestbookModel guestbook) {

actionBar.setTitle(guestbook.getName());

EntriesFragment entriesFragment = EntriesFragment.newInstance(guestbook.getGuestbookId());

FragmentTransaction transaction = getSupportFragmentManager().beginTransaction();

transaction.replace(R.id.fragment_container, entriesFragment);

transaction.commit();

}

This requires that you import android.support.v4.app.FragmentTransaction.

This method’s actionBar.setTitle call is the same as before. Only the fragment code is new. In it,
you first use newInstance to create a new EntriesFragment instance with the selected guestbook’s ID. A
fragment transaction then adds this fragment to the fragment container.

Fantastic! Now you have a fragment to put Entry List Screenlet in, and the code that displays this
fragment in GuestbooksActivity. Next, you’ll put Entry List Screenlet in the fragment.

449

http://developer.android.com/training/basics/fragments/fragment-ui.html#AddAtRuntime
http://developer.android.com/guide/components/fragments.html#Transactions

45.5 Using Entry List Screenlet
You’ll use Entry List Screenlet by following the same steps to use any Screenlet: insert the Screenlet’s XML in
an activity or fragment layout, and then implement the Screenlet’s listener in the activity or fragment class.
You’ll follow these steps here to insert Entry List Screenlet in EntriesFragment.

First, you’ll insert Entry List Screenlet’s XML in EntriesFragment’s layout, fragment_entries.xml.

Inserting the Screenlet in the Layout

Inserting Entry List Screenlet’s XML is very simple. Since all you want fragment_entries.xml to do is display
the Screenlet, it must only contain the Screenlet’s XML. Replace the contents of fragment_entries.xmlwith
the followingmarkup:

<com.liferay.docs.entrylistscreenlet.EntryListScreenlet

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

android:id="@+id/entrylist_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:layoutId="@layout/list_entries"/>

As with Guestbook List Screenlet, you’ll use the android:id value to get a Screenlet reference. Next, you
must implement the Screenlet’s listener.

Implementing the Screenlet's Listener

Recall that to use a Screenlet, youmust implement its listener. The listener methods let the app developer
respond to the Screenlet’s behavior in the activity or fragment class that contains the Screenlet. Also recall
that becauseGuestbookList Screenlet didn’t need extra listenermethods, youused it in GuestbooksActivityby
implementing the BaseListListener interface with GuestbookModel as a type argument. Entry List Screenlet
also doesn’t need extra listener methods. Like Guestbook List Screenlet, you can use it by implementing
BaseListListenerwith its model class as a type argument.

Follow these steps to implement Entry List Screenlet’s listener in EntriesFragment:

1. Change EntriesFragment’s class declaration to implement BaseListListener<EntryModel>. The class
declaration should now look like this:

public class EntriesFragment extends Fragment implements BaseListListener<EntryModel> {...

This requires that you add the following imports:

import com.liferay.docs.model.EntryModel;

import com.liferay.mobile.screens.base.list.BaseListListener;

2. Now you must implement the listener’s methods. Recall that this includes the BaseCacheListener

interface’s, errormethod, since BaseListListener extends BaseCacheListener. For a full explanation
of the methods in both listeners, see using Guestbook List Screenlet. Note that in EntriesFragment,
you don’t need to take any action in these methods. There are no UI elements or other parts of the
fragment that must be updated or processed in response to the Screenlet’s behavior. All this Screenlet
must do is display its content, which it does regardless of anything you do in the listener methods. The
only thing youmay want to add is a toast message in onListPageFailed to notify the user if the server
call fails, but this isn’t required. Implement these methods now:

450

https://github.com/liferay/liferay-screens/blob/2.1.0/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
https://github.com/liferay/liferay-screens/blob/2.1.0/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
https://github.com/liferay/liferay-screens/blob/2.1.0/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java

@Override

public void onListPageFailed(int startRow, Exception e) {

Toast.makeText(getActivity(), "Page request failed", Toast.LENGTH_LONG).show();

}

@Override

public void onListPageReceived(int startRow, int endRow, List<EntryModel> entries, int rowCount) {

}

@Override

public void onListItemSelected(EntryModel entry, View view) {

}

@Override

public void error(Exception e, String userAction) {

}

This requires you to add the following imports:

import android.widget.Toast;

import java.util.List;

3. Now you’re ready to register EntriesFragment as the Screenlet’s listener. You’ll do this the same way
you registered GuestbooksActivity as Guestbook List Screenlet’s listener: get a reference to the Screen-
let and call its setListenermethod. After doing this, you’ll use the Entry List Screenlet reference’s
setGuestbookIdmethod to set its guestbook ID.This sets the guestbook where the Screenlet gets its
entries. You’ll do these things in the onCreateViewmethod. Replace the onCreateViewmethod with this
updated version:

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState) {

// Inflate the layout for this fragment

View view = inflater.inflate(R.layout.fragment_entries, container, false);

long guestbookId = getArguments().getLong("guestbookId");

EntryListScreenlet screenlet = (EntryListScreenlet) view.findViewById(R.id.entrylist_screenlet);

screenlet.setListener(this);

screenlet.setGuestbookId(guestbookId);

return view;

}

This requires you to import com.liferay.docs.entrylistscreenlet.EntryListScreenlet.

As you can see, onCreateView now registers EntriesFragment as the Screenlet’s listener and sets the
Screenlet’s guestbook ID.The rest of onCreateView is unchanged.

Now run the app in the emulator and log in with your credentials when prompted. The app then presents
you with the first guestbook’s entries. Open the navigation drawer by pressing the hamburger button, then
select a different guestbook. The drawer then closes to show the selected guestbook’s entries. Nice work!
Your app now uses Guestbook List Screenlet and Entry List Screenlet to show the same guestbooks and
entries as the Guestbook portlet. The following screenshots show these Screenlets in action.

Although your Screenlets work, you may have noticed something odd about the navigation drawer’s
header–it’s hideous. The action bar is somewhere on the purple-blue spectrum, while the drawer header is

451

Figure 45.4: Entry List Screenlet displays guestbook entries in your app.

Figure 45.5: Guestbook List Screenlet displays guestbooks in the navigation drawer.

452

green. You’ve probably seenmore attractive finger paintings. Fortunately, it’s simple to change the drawer
header’s color. Also, the drawer header contains the generic text Android Studio. You should change this to
something more suitable for your app, like Liferay Guestbook.

Follow these steps to apply these changes to the drawer header:

1. In res/drawable/side_nav_bar.xml, replace android:centerColor, android:endColor, and android:startColor
with the following settings:

android:centerColor="@color/colorPrimary"

android:endColor="@color/colorPrimaryDark"

android:startColor="@color/colorPrimary"

This sets the drawer header’s colors to match the colors used in the rest of the app.

2. Define the following string resource in res/values/strings.xml:

<string name="liferay_guestbook">Liferay Guestbook</string>

3. In nav_header_guestbooks.xml, find the TextView element that contains android:text="Android

Studio", and replace Android Studio with @string/liferay_guestbook. You can delete any other
TextView elements in this file. Run the app again, and open the drawer after signing in. The drawer
header now shows your greeting. It’s a lot prettier too.

Figure 45.6: The drawer header looks a lot better after some light customization.

Congratulations! Now you know how to use Liferay Screens and create your own Screenlets. This opens
up a world of possibilities for developing apps that leverage Liferay DXP. Although you learned a great deal
in this Learning Path, there’s still more. You can customize your Screenlet’s appearance, package it for
redistribution, and even configure it to receive push notifications. These topics, andmore, are covered in the
tutorials on Android apps with Liferay Screens.

453

Chapter 46

Writing an iOS App with Liferay Screens

Users expect to access portal content from their mobile devices. As an intrepid developer, you naturally want
to turn these expectations into reality. Thankfully, Liferay provides away for yourmobile apps to access portal
content and applications with Liferay Screens! Screens contains native components called Screenlets that
can call Liferay DXP’s remote services and display the results in your app. Each Screenlet comes complete
with its own fully pluggable UI that you can customize to your liking. Although the Screenlets included with
Screens only work with Liferay DXP’s built-in remote services, you can write your own Screenlets that work
with your custom portlets’ remote services.

If you’re an experienced iOS developer but need a start-to-finish guide on how to integrate iOS apps with
Liferay DXP, you’re in the right place. This Learning Path walks you through the creation of an iOS app that
interacts with the Guestbook portlet developed in the Developing aWeb Application Learning Path. Since
this is a custom portlet, you’ll write your own Screenlets that let your app retrieve and display guestbooks
and their entries.

You should note that although this Learning Path provides complete code snippets of the app, not every
aspect of iOS development is explained in detail. Focus is instead placed on the code that leverages Liferay
Screens. Therefore, youmust have significant iOS development experience before attempting this Learning
Path. Otherwise, you’ll likely be confused. Apple provides extensive documentation of the iOS APIs as well as
some basic tutorials on developer.apple.com.

Experience in iOS development is all you need to start working. You needn’t have completed the Devel-
oping aWeb Application Learning Path to obtain a working Guestbook portlet. The complete Guestbook
portlet’s modules are provided for installation into your local Liferay DXP instance.

Now that you knowwhat you’ll be doing here, it’s time tomove on to the first series of articles: Beginning
iOSDevelopment for Your Portal. These articleswalk you through the steps required to get started developing
an iOS app that interacts with Liferay DXP.

455

https://www.liferay.com/supporting-products/liferay-screens
https://developer.apple.com/

Chapter 47

Beginning iOS Development for Your Portal

Getting started with Liferay Screens for iOS is straightforward. This series of Learning Path articles walks
you through creating an iOS app and preparing it to work with the Guestbook portlet developed in the
Developing aWeb Application Learning Path. Since Liferay Screens uses the Liferay Mobile SDK tomake
remote service calls, you’ll build a Mobile SDK capable of calling the Guestbook portlet’s remote services (the
GuestbookMobile SDK). You’ll then install this Mobile SDK and Screens into your iOS project. You’ll also
learn about the iOS app’s design and implement authentication with Login Screenlet.

This section of the Learning Path covers these topics:

1. Setting up the Guestbook portlet
2. Building the GuestbookMobile SDK
3. Creating the iOS project
4. Installing the GuestbookMobile SDK and Liferay Screens in the iOS project
5. Designing Your App
6. Using Login Screenlet for Authentication
7. Creating the Guestbooks Scene

When you finish, you’ll be ready to start developing your first Screenlet.

47.1 Setting up the Guestbook Portlet

Before you begin developing the Guestbook app for iOS, youmust set up the Guestbook portlet in a Liferay
DXP instance. To do this, follow these steps:

1. Install JDK 8
2. Install and Configure a Local Liferay DXP Bundle
3. Deploy the Guestbook Portlet to the Local Liferay DXP Instance

Installing the JDK

To get started, youmust have JDK 8 installed. You can download and install the Java SE JDK from the Java
downloads page. This page also has links to the JDK installation instructions.

457

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing and Configuring a Local Liferay DXP Bundle

Follow these instructions to install and configure a local Liferay DXP instance:

1. Download a Liferay DXP Tomcat bundle from liferay.com.

2. Unzip the bundle to a new bundles folder. Note that the bundle’s root folder is referred to as Liferay
Home and is named according to the version, edition, and specific Liferay DXP release. For example, if
you downloaded Liferay CE Portal 7.0 GA5 and unzipped it to a bundles folder on your machine, that
bundle’s Liferay Home folder is:

bundles/liferay-ce-portal-7.0-ga5

3. Now you’re ready to start Liferay DXP! Open a terminal and navigate to [Liferay Home]/tomcat-

[version]/bin. Then run these commands:

./startup.sh

tail -f ../logs/catalina.out

The tail command ensures that the server log prints to the terminal.

4. After a minute or two, Liferay DXP starts up and automatically takes you to its initial setup page at
http://localhost:8080. On this page, provide the following information to set up your Liferay DXP
instance:

• Enter a name for your instance.
• Select the default language.
• Uncheck the Add Sample Data box.
• Enter the first name, last name, and email address of the default administrative user. For the
purposes of this Learning Path, these don’t have to be real.

• If you want to connect Liferay DXP to a separate database such as MySQL or PostgreSQL, you
can configure that connection here. Note that although the default embedded database is fine
for development on your local machine, it isn’t optimized for production.

Click Finish Configurationwhen you’re done.

5. Accept the terms of use.

6. Set a password and apassword reminder query for your administrative user. Your LiferayDXP instance
then takes you to its default site.

Great! Next, you’ll deploy the Guestbook portlet to your Liferay DXP instance.

458

https://www.liferay.com/
http://localhost:8080

Deploying the Guestbook Portlet

Now that your portal is set up, you can deploy the Guestbook portlet to it. Follow these instructions to do so:

1. Download the Guestbook portlet’s modules:

• com.liferay.docs.guestbook.api-1.0.0.jar

• com.liferay.docs.guestbook.portlet-1.0.0.jar

• com.liferay.docs.guestbook.service-1.0.0.jar

• com.liferay.docs.guestbook.service-wsdd-1.0.0.jar

2. Place these modules in your Liferay DXP instance’s [Liferay Home]/deploy folder. You should then see
console messages indicating that the modules have successfully deployed and started.

3. On your Liferay DXP instance’s default site, click the Add button () on the upper-right corner of the
screen. Then click the Applications → Sample category and drag Guestbook onto the page. The Guestbook
portlet should now appear with the default guestbook (Main).

4. In the portlet, add a new guestbook and an entry or two each from the Addmenu () that appears in
the top right of the portlet’s border when youmouse over the portlet. When you create the Guestbook
iOS app, this ensures there’s some content to display in it. The Guestbook portlet on your site should
now look like this:

Figure 47.1: The Guestbook portlet, with a new guestbook and some entries.

Stupendous! You’ve successfully set up a Liferay DXP instance and added the Guestbook portlet to it.
Now you’re ready to get started with the Liferay Mobile SDK.

459

https://portal.liferay.dev/documents/113763090/114000186/guestbook-services.zip

47.2 Building the Guestbook Mobile SDK

Once you’ve deployed the Guestbook portlet, you’re ready to build the GuestbookMobile SDK. Youmight be
asking yourself, “Why do I have to build a separate Mobile SDK? Can’t I just use the pre-built Mobile SDK
that Liferay already provides?” Fantastic question! The reason is that Liferay’s pre-built Mobile SDK doesn’t
have the classes it needs to call the Guestbook portlet’s remote services. The pre-built Mobile SDK includes
only the framework necessary to make server calls to the remote services of Liferay DXP’s core apps. Core
apps (also referred to as out-of-the-box apps) are those included with every Liferay DXP instance. Since you’re
calling services of an app the default Mobile SDK doesn’t know about (the Guestbook portlet), youmust build
a Mobile SDK that can call its services. Now put on your hard hat, because it’s time to get building!

Building the Mobile SDK

In theMobile SDK source code, Liferay provides a Mobile SDK Builder that you can use to build your own
Mobile SDKs. For the builder to generate the classes that can call a non-core app’s remote services, those
services must be available and accompanied by a Web Service Deployment Descriptor (WSDD). To learn
how the Guestbook portlet’s remote services andWSDDwere generated, see the section GeneratingWeb
Services in the web application Learning Path. Since the Guestbook portlet’s web services already exist, you
don’t need to generate them. Just remember that youmust generate web services when developing your own
portlets.

1. Download theMobile SDK’s source code and unzip the file to a location on your machine where you
want theMobile SDK to reside. This location is purely personal preference; the builder works the same
nomatter where you put the Mobile SDK’s source code. Once unzipped, the Mobile SDK’s source code
is in the folder liferay-mobile-sdk-ios-7.0.13.

2. Now you’re ready to build the GuestbookMobile SDK.The builder contains a convenient command
line wizard to assist you in building Mobile SDKs. To start it, navigate to the liferay-mobile-sdk-ios-
7.0.13 folder and run the following command:

./gradlew createModule

Thewizard launches and asks you to enter your project’s properties. You’ll do this next.

3. You must first provide the Context property. This is the context path of the remote services the builder
will generate classes and methods for. To view your Liferay DXP instance’s remote service context
paths, go to http://localhost:8080/api/jsonws. On the page’s upper left, there’s a menu for selecting
the context path. Select gb, which is the Guestbook portlet’s context path. The UI updates to show only
the remote services available in the selected context path. Return to the terminal and enter gb for the
Context property.

4. Next, the wizard needs the Package Name property. Because the builder also builds an Android version
of the Mobile SDK, this property defines the Java package path for the classes the builder generates.
Accept the default value of com.liferay.mobile.android.

5. The wizard then asks for the POM Description property. This property also applies to the Android
version of the Mobile SDK. Since the builder requires it, however, enter Guestbook SDK.The following
screenshot shows these properties entered in the wizard:

Once you enter the final property, the builder runs and generates a BUILD SUCCESSFULmessage.

460

https://github.com/liferay/liferay-mobile-sdk/archive/ios-7.0.13.zip
http://localhost:8080/api/jsonws

Figure 47.2: The Guestbook Portlet’s context path (gb) on the server.

461

Figure 47.3: To build your Mobile SDK, you must enter values for the Context, Package Name, and POM Description properties. The blue values in square brackets are
defaults.

6. Now that the builder contains a gbmodule, youmust generate that module’s remote services. To do
this, first navigate to this folder:

liferay-mobile-sdk-ios-7.0.13/modules/gb

Then run this command:

../../gradlew generate

As before, the builder runs and generates a BUILD SUCCESSFULmessage. Great! You’re probably won-
dering what just happened, though. The builder generated the source classes you’ll use in your iOS
app to interact with the Guestbook portlet. You can find these source classes in the following folder of
the Mobile SDK’s source code:

modules/gb/ios/Source/Service/v7

The last folder in this path, v7, denotes the Liferay DXP version the classes work with. This folder
has two subfolders that correspond to each entity in the Guestbook portlet: guestbook and entry.
Each subfolder contains an Objective-C class header and implementation file for that entity’s class
(LRGuestbookService_v7 and LREntryService_v7, respectively).

7. There’s one last thing to do before you can use these classes in your iOS app: put them in a JAR file. To
do this, make sure you’re still in the modules/gb folder on the command line and run this command:

../../gradlew zip

This command generates this ZIP file:

modules/gb/build/liferay-gb-ios-sdk-1.0.zip

This ZIP file is the GuestbookMobile SDK. It contains the service classes required to call the Guestbook
portlet’s remote services.

Congratulations! You just built the GuestbookMobile SDK.Now that’s an accomplishmentworthwriting
in a guestbook. All you need now is an iOS app to install this Mobile SDK in. The next article shows you how
to create it.

462

47.3 Creating the iOS Project

Now that you’ve built the GuestbookMobile SDK, you’re ready to create the Guestbook iOS app. This article
walks you through the steps required to create the app’s project in Xcode. After this, you’ll be ready to install
the GuestbookMobile SDK and Liferay Screens.

Note:This learningpathpresumes that you’ve installed andknowhowtouseXcode. If youneedassistance
with Xcode, see Apple’s developer site.

Follow these steps to create the Liferay Guestbook iOS project:

1. Open Xcode and click Create a newXcode project on the welcome screen. Alternatively, you can select File
→New → Project.

2. In the Application section of the iOS tab, select Single View Application and clickNext.

Figure 47.4: Use the Single View Application project template.

3. Enter the following fields as listed here:

• Product Name: Liferay Guestbook
• OrganizationName: Your name
• Organization Identifier: com.liferay.docs
• Language: Swift

Make sure the checkboxes below these fields are unchecked, and clickNext.

4. Select a location for your project and click Create. Xcode creates and opens your new project.

Nice! You now have the iOS project in which you’ll develop the Liferay Guestbook app. Before doing any
development, however, youmust install Liferay Screens and the GuestbookMobile SDK. You’ll do this next.

47.4 Installing Liferay Screens and the Guestbook Mobile SDK

For your iOS app to work with the Guestbook portlet, youmust install the following in your iOS project:

463

https://developer.apple.com/xcode/

Figure 47.5: Fill out this form as shown.

• Liferay’s pre-built Mobile SDK:This Mobile SDK contains the classes that call Liferay DXP’s core
remote services. It also contains the framework necessary for any Mobile SDK to make server calls.

• TheGuestbookMobile SDK:ThisMobile SDK contains only the classes that call the Guestbook portlet’s
remote services.

• Liferay Screens: Screens contains the Screenlet framework and several built-in Screenlets like Login
Screenlet. Because these built-in Screenlets work with Liferay DXP’s core apps, they make their server
calls with Liferay’s pre-built Mobile SDK. Note that all Screenlets, including those that make server
calls with a custom-built Mobile SDK,must use the framework in Liferay’s pre-built Mobile SDK to
issue their calls.

Since Liferay’s pre-built Mobile SDK is a dependency of Liferay Screens, installing Screens automatically
installs this Mobile SDK. Youmust, however, install the GuestbookMobile SDKmanually.

This article walks you through the installation of the GuestbookMobile SDK and Liferay Screens. When
you finish, you’ll be ready to start developing the app.

Anatomy of the Liferay Guestbook iOS Project

Before getting started, you should learn a couple of terms this Learning Path uses when referring to the
project’s structure. Knowing these terms ensures that you know where to add folders and files in the project.
In Xcode’s Project navigator, there are two Liferay Guestbook items:

1. Theroot project:This is the first item in the Project navigator. It contains all other items in the project,
and is labeled with a blue application document icon. The root project corresponds with a folder in

464

your file system that this Learning Path refers to as the root project folder. For example, the root project
folder for the Liferay Guestbook project is Liferay Guestbook.

2. TheLiferay Guestbook folder:This is immediately under the root project. It contains the app’s files,
and is labeled with a manila folder icon. Even though this folder shares a name with the root project
folder on your file system, it is not the same thing. The root project folder contains this Liferay
Guestbook folder.

Figure 47.6: The root project and Liferay Guestbook folder are labeled in this screenshot.

Figure 47.7: On your file system, the Liferay Guestbook root project folder contains the app’s Liferay Guestbook folder. The latter is selected in this screenshot.

It’s important not to confuse these two items. If you’re ever confused about where things should go, click
here to see the finished app in GitHub.

Now you’re ready to install Liferay Screens!

Installing Liferay Screens

You’ll use CocoaPods to install Liferay Screens. Click here for instructions on installing CocoaPods. After
installing it, use these steps to install Screens:

1. In your root project’s folder, create a file named Podfile that contains the following:

source 'https://github.com/CocoaPods/Specs.git'

platform :ios, '9.0'

use_frameworks!

target "Liferay Guestbook" do

pod 'LiferayScreens', '3.0.2'

end

post_install do |installer|

465

https://github.com/liferay/liferay-docs/tree/7.0.x/develop/tutorials/code/mobile/ios/screenlets-app/Liferay%20Guestbook
https://github.com/liferay/liferay-docs/tree/7.0.x/develop/tutorials/code/mobile/ios/screenlets-app/Liferay%20Guestbook
https://cocoapods.org/
https://guides.cocoapods.org/using/getting-started.html

incompatiblePods = [

'Cosmos',

'CryptoSwift',

'KeychainAccess',

'Liferay-iOS-SDK',

'Liferay-OAuth',

'LiferayScreens',

'Kingfisher'

]

installer.pods_project.targets.each do |target|

if incompatiblePods.include? target.name

target.build_configurations.each do |config|

config.build_settings['SWIFT_VERSION'] = '3.2'

end

end

target.build_configurations.each do |config|

config.build_settings['CONFIGURATION_BUILD_DIR'] = '$PODS_CONFIGURATION_BUILD_DIR'

end

end

end

This adds Liferay Screens 3.0.2 (the most recent version at the time this Learning Path was published)
as a dependency. Since Screens 3.0.2 is incompatible with Swift 4, this Podfile also specifies that
Screens and several of its dependencies (incompatiblePods) should be compiled by Swift 3.2. This lets
you develop the app in Swift 4, while Screens itself is compiled in Swift 3.2.

Also note the setting for CONFIGURATION_BUILD_DIR.This is a workaround for a benign bug that causes
Screenlet previews to fail in Interface Builder.

2. On the terminal, navigate to your root project’s folder and run this command:

pod repo update

This ensures you have the latest version of the CocoaPods repository on your machine. Note that this
command can take a while to run.

3. Still in your root project’s folder in the terminal, run this command:

pod install

This installs the Liferay Screens as specified in your Podfile. Once this completes, quit Xcode and
reopen your project by using the LiferayGuestbook.xcworkspace file in your root project’s folder. From
now on, youmust use this file to open your project.

Great! You just installed Liferay Screens and the Liferay Mobile SDK! Next, you’ll install the Guestbook
Mobile SDK.

Installing the Guestbook Mobile SDK

To install the Guestbook Mobile SDK, you must add its service classes to your project. Recall that these
service classes are Objective-C. To use them from your project’s Swift code, you must also add and configure
an Objective-C bridging header. You’ll do these things now:

1. Recall that you created the following ZIP file containing the GuestbookMobile SDK:

466

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/MixandMatch.html

modules/gb/build/liferay-gb-ios-sdk-1.0.zip

Unzip this file to a location of your choosing on your machine. This creates the following directory
hierarchy:

Figure 47.8: The Guestbook Mobile SDK’s Objective-C classes unzip to this folder structure.

This should look familiar. It’s the same Service folder, contents and all, from the GuestbookMobile
SDK you built earlier.

2. To install the service classes in your project, drag the v7 folder fromyour Finder into yourXcode project,
directly under the root project. In the dialog that appears,make sure you select the following items,
and then click Finish:

Figure 47.9: When adding the Guestbook Mobile SDK to your project, select these options and then click Finish.

3. The v7 folder and its contents are now inside your Xcode project. Now youmust change each Objective-
C class header file in the GuestbookMobile SDK to always import the Liferay Mobile SDK framework.
This is necessary because you used use_frameworks! in your Podfile.

In LREntryService_v7.h and LRGuestbookService_v7.h, replace the #if ... #endif statement with
@import LRMobileSDK;. Don’t worry if Xcode doesn’t recognize this import–you’ll fix this shortly by
adding and configuring an Objective-C bridging header in your project.

467

Figure 47.10: Your project structure should look like this after adding the Guestbook SDK.

4. InXcode, for each *.mfile in theGuestbookMobileSDK (LREntryService_v7.mand LRGuestbookService_v7.m),
make sure the checkbox for the Liferay Guestbook target is selected in the File inspector’s Target
Membership section.

To use the Guestbook Mobile SDK’s Objective-C classes from Swift, you must add and configure an
Objective-C bridging header in your project. Follow these instructions to do so:

1. InXcode’s project navigator, right-click the root project and selectNewFile. In thewindow that appears,
selectHeader File from the Source section of the iOS tab, and clickNext.

2. Name the file Liferay Guestbook-Bridging-Header.h andmake sure that LiferayGuestbookwith the blue
icon is selected in the Groupmenu. To finish creating the file, uncheck any items in Targets and click
Create.

3. Upon creating the header file, Xcode opens it in the editor. In this file, youmust import the Guestbook
Mobile SDK’s header files. Add these imports immediately below the comments at the top of the file:

#import "LRGuestbookService_v7.h"

#import "LREntryService_v7.h"

Your bridging header file should now look like this:

#import "LRGuestbookService_v7.h"

#import "LREntryService_v7.h"

#ifndef Liferay_Guestbook_Bridging_Header_h

#define Liferay_Guestbook_Bridging_Header_h

468

Figure 47.11: Each *.m file in the Guestbook Mobile SDK must be part of the Liferay Guestbook target.

Figure 47.12: Create a new iOS header file.

469

Figure 47.13: Use these options to create the header file.

#endif

4. Now youmust configure your project to use this file. Select the root project on the left and then click
Build Settings. Enter for Objective-C Bridging Header in the search box. The matching build setting
appears under the section Swift Compiler - General. In the two Liferay Guestbook fields for this build
setting, enter the bridging header’s file name.

Figure 47.14: The red boxes highlight the two Liferay Guestbook fields configured to use the bridging header file.

5. Build the project.

Awesome! You’ve successfully installed the GuestbookMobile SDK.Next, you’ll configure your app to
communicate with your Liferay DXP installation.

Configuring Communication with Liferay Portal

For Liferay Screens to work with your app, you must configure it to communicate with your Liferay DXP
installation. You’ll do this by setting attributes in a plist file:

1. In Xcode’s project navigator, right-click the Liferay Guestbook folder (not the root project) and select
New File. In the dialog that appears, select the iOS tab then scroll down to the Resource section and
select Property List. ClickNext.

2. Name the file liferay-server-context.plist andmake sure you’re creating it in the Liferay Guestbook
folder, which should be selected in the Groupmenu. Also make sure that Liferay Guestbook is selected in
the Targetsmenu. Then click Create.

470

Figure 47.15: : Use the Property List template to create a new plist file.

Figure 47.16: : Create the plist file as shown here.

3. The plist file now opens in the editor. Right-click the file in the Project navigator and select Open As →
Source Code. Replace the file’s contents with this code:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>server</key>

<string>http://localhost:8080</string>

<key>version</key>

<integer>70</integer>

<key>companyId</key>

<integer>20116</integer>

<key>groupId</key>

<integer>20143</integer>

</dict>

</plist>

This plistfile sets the server address (http://localhost:8080), LiferayDXP version (70 specifies Liferay
CE Portal 7.0 and Liferay DXP 7.0), companyId (Liferay DXP instance ID), and groupId (site ID) the app

471

retrieves data from.

4. Change the companyId and groupId in the plist file to match those of your Liferay DXP instance. You
canfind your company ID in your portal atControl Panel →Configuration →Virtual Instances. The instance’s
ID is in the Instance ID column. You can find your site ID from the site you put the Guestbook portlet
on. Navigate to this site, and in the Site Administrationmenu select Configuration → Site Settings. The site
ID is listed at the top of the General tab.

Next, you’ll configure iOS App Transport Security.

Disabling App Transport Security

AppTransport Security is an iOS security feature that restricts all network activity toHTTPS. It isn’t necessary
for use in development and testing. Since your local Liferay DXP instance uses HTTP by default, App
Transport Security prevents your app from communicating with the portal. Youmust therefore disable it:

1. Select your project in Xcode’s Project navigator. With the LiferayGuestbook target selected in the outline,
click the Info tab.

Figure 47.17: : You’ll disable App Transport Security in the Info tab.

2. In Custom iOS Target Properties, right-click Bundle OS Type Code and select Add Row. In the new row’s
text field, enter App Transport Security Settings.

3. Even though it doesn’t yet contain any items, ensure that the App Transport Security Settings category
is open (click the triangle icon to its left to open/close it). Now click the + icon next to App Transport
Security Settings and select Allow Arbitrary Loads. Then select YES for this field’s value.

Figure 47.18: : Your App Transport Security settings should look like this.

TheAllow Arbitrary Loads setting should look like this when viewing your app’s Info.plist file as code:

...

<key>NSAppTransportSecurity</key>

<dict>

<key>NSAllowsArbitraryLoads</key>

<true/>

</dict>

...

Stupendous! You’ve successfully installed Liferay Screens and theGuestbookMobile SDK, and configured
your app to communicate with your Liferay DXP instance. Before starting work on the app, however, you
should learn the app’s design. The next article walks you through this.

472

47.5 Designing Your App

Asadeveloper, youknow that developinganykindof appwithout anoverall designgoal andplan to implement
it is a recipe for disaster. To avoid this, you need to decide some things upfront. The Liferay Guestbook app
needs a straightforward way to do three things:

1. Authenticate users
2. Display guestbooks
3. Display entries

To authenticate users, all you need to do is insert and configure Login Screenlet in your app. Login
Screenlet comes complete with its own UI.The design for authentication, therefore, like with Liferay DXP
itself, is done for you.

Youmust, however, create the UI for displaying guestbooks and entries. What sort of UI would be best
for this? Although the best UI for any purpose is a matter of opinion, displaying guestbooks and entries in
lists is a good choice. Lists are common, compact design elements familiar to mobile users. Since most
mobile devices don’t have room to display a list of guestbooks and a list of entries at the same time, you
also need a user-friendly way to display andmanage these lists. It makes sense to show a list of guestbooks
automatically after the user authenticates. The user can then select a guestbook to view a list of its entries.
Users are familiar with this drill-down navigation style, as it’s common throughout iOS.

To display these lists, you’ll create your own Screenlets: Guestbook List Screenlet and Entry List Screenlet.
Guestbook List Screenlet needs to retrieve guestbooks from the portlet and display them in a simple list.
Once written, using this Screenlet is a simple matter of inserting it in a scene. Entry List Screenlet needs to
retrieve and display a guestbook’s entries in a similar list. You’ll display the entries by inserting Entry List
Screenlet in another scene.

Also note that these Screenlets are list Screenlets. You develop list Screenlets by using the list Screenlet
framework, which sits on top of the core Screenlet framework. The list Screenlet frameworkmakes it easy
for developers to write Screenlets that display lists of entities from a Liferay DXP instance.

Figure 47.19: After login, the user transitions to the guestbooks scene where Guestbook List Screenlet displays a list of guestbooks. Upon selecting a guestbook, the
entries scene displays a list of that guestbook’s entries with Entry List Screenlet. Because the guestbooks and entries scenes are embedded in a navigation controller, the
user can navigate back to the guestbooks scene via a back button in the navigation bar.

Awesome! Now you have a basic UI design and know the Screenlets you’ll create to implement it. But the
app currently contains only one empty scene,which you’ll use for authentication with Login Screenlet. To use
your custom list Screenlets, you’ll need to create two additional scenes. You’ll do this as you develop the app.

473

Great! Now you understand the Liferay Guestbook app’s design. Next, you’ll use Login Screenlet to
implement authentication.

47.6 Using Login Screenlet for Authentication
For the app to retrieve data from the Guestbook portlet, the user must first authenticate to the Liferay
DXP instance. You can implement authentication using the Liferay Mobile SDK, but it takes time to write.
Using Liferay Screens to authenticate takes about ten minutes. In this article, you’ll use Login Screenlet to
implement authentication in your app.

Adding Login Screenlet to the App

To use any Screenlet, youmust follow two steps:

1. Insert the Screenlet in the storyboard scene where you want it to appear. You do this by adding an
empty view to the scene, and then setting the Screenlet class as the view’s custom class.

2. Conform the scene’s view controller’s class to the Screenlet’s delegate protocol. This lets the view
controller respond to the Screenlet’s events.

In this app, you’ll use Login Screenlet in the app’s first (and at this time, only) scene. After adding
the Screenlet to this scene, you’ll conform ViewController (the scene’s view controller class) to the
LoginScreenletDelegate protocol.

Adding Login Screenlet to the Scene

Follow these steps to add Login Screenlet to the scene:

1. In Main.storyboard, first select the scene’s view controller. Then drag and drop a plain view (UIView)
from the Object Library onto the view controller. In the outline view, this new view should be nested
under the view controller’s existing view.

Figure 47.20: The new view is nested under the view controller’s existing view.

2. With the new view selected, open the Identity inspector and set the view’s Custom Class as
LoginScreenlet. Xcode now builds the project and renders Login Screenlet’s preview in the view. Also
note that the view now appears as Login Screenlet in the outline view.

474

Figure 47.21: You must set the view’s Custom Class to LoginScreenlet.

3. Now you’ll set the constraints to center Login Screenlet in the scene. Although this isn’t required
(you can technically position Login Screenlet anywhere you want), centering an authentication UI is
common in mobile apps. Center Login Screenlet in the scene, and click the Alignmenu at the bottom-
right of the canvas. In this menu, check the checkboxes for Horizontally in Container and Vertically
in Container, and click the Add 2 Constraints button (don’t worry about the Auto Layout errors that
appear–you’ll resolve these in the next step).

Figure 47.22: These alignment constraints center Login Screenlet in the scene.

4. By default, Login Screenlet stretches or compresses to fill the view. It’s compressed at the moment
because of the alignment constraints. To avoid any ill-effects caused by automatic resizing, you’ll
set the Screenlet to a fixed size. With the view selected, open the Add New Constraintsmenu at the
bottom-right of the canvas. In this menu, set theWidth to 270 and theHeight to 185, and click the Add
2 Constraints button. The Screenlet looks better now and the Auto Layout errors are gone. Note that
you don’t have to use these exact width and height values when using Login Screenlet. You can size the
Screenlet however you wish.

475

Figure 47.23: Setting these size constraints ensures that Login Screenlet isn’t too stretched out or compressed.

Figure 47.24: With the alignment and size constraints set, Login Screenlet appears in the center of the scene and its UI components aren’t too compressed or stretched out.

476

Nicely done! The scene now contains Login Screenlet. Next, you’ll conform ViewController (the scene’s
view controller class) to the LoginScreenletDelegate protocol.

Conforming to the Screenlet's Delegate Protocol

A view controller can respond to a Screenlet’s events by conforming to the Screenlet’s delegate protocol. This
lets the app developer choose how their app behaves with the Screenlet. To respond to Login Screenlet’s
events, ViewControllermust conform to the LoginScreenletDelegate protocol. The Login Screenlet events
that need a response are login success and failure. The delegate defines methods for both.

Follow these steps to conform ViewController to the LoginScreenletDelegate protocol:

1. Import LiferayScreens and set ViewController to adopt the LoginScreenletDelegate protocol. The first
few lines of the class should look like this:

import UIKit

import LiferayScreens

class ViewController: UIViewController, LoginScreenletDelegate {...

2. Implement the LoginScreenletDelegatemethod screenlet(_:onLoginResponseUserAttributes:). This
method is called when authentication with Login Screenlet succeeds. Right now, you don’t need to do
anything in this method besides indicate that login succeeded:

func screenlet(_ screenlet: BaseScreenlet,

onLoginResponseUserAttributes attributes: [String:AnyObject]) {

print("Login Successful!")

}

3. Implement the LoginScreenletDelegatemethod screenlet(_:onLoginError:). This method is called
when authentication with Login Screenlet fails. All you need to do in this method is print a message
indicating that login failed:

func screenlet(_ screenlet: BaseScreenlet, onLoginError error: NSError) {

print("Login Failed!")

}

4. Now youmust get a Login Screenlet reference in ViewController. You’ll do this by creating an outlet to
the Screenlet. Return to your storyboard and enter the Assistant editor to display ViewController’s
code and the storyboard side by side. With Login Screenlet selected in the storyboard, Control-drag
from the Screenlet to the ViewController class to create the outlet. In the dialog that appears upon
releasing your mouse button, enter the following information and click Connect:

• Connection: Outlet
• Name: loginScreenlet
• Type: LoginScreenlet
• Storage:Weak

Xcode then adds the following code inside the ViewController class:

@IBOutlet weak var loginScreenlet: LoginScreenlet!

477

Figure 47.25: Create an outlet from Login Screenlet to the ViewController class.

5. In the ViewController class, use the new loginScreenlet variable to set the view controller as the
Screenlet’s delegate. Do this in the viewDidLoad()method by deleting the placeholder comment and
inserting this code below the call to super.viewDidLoad():

self.loginScreenlet?.delegate = self

Great, you’re finished! Before running the app,make sure that your ViewController class looks like this:

import UIKit

import LiferayScreens

class ViewController: UIViewController, LoginScreenletDelegate {

@IBOutlet weak var loginScreenlet: LoginScreenlet!

override func viewDidLoad() {

super.viewDidLoad()

self.loginScreenlet?.delegate = self

}

override func didReceiveMemoryWarning() {

super.didReceiveMemoryWarning()

}

func screenlet(_ screenlet: BaseScreenlet, onLoginResponseUserAttributes attributes: [String:AnyObject]) {

print("Login Successful!")

}

func screenlet(_ screenlet: BaseScreenlet, onLoginError error: NSError) {

print("Login Failed!")

}

}

Now you’re ready to test your work. With your Liferay DXP instance running, launch the app using the
iPhone simulator (any iPhone version supported by Xcode will work). Enter your credentials when Login
Screenlet appears and click SIGN IN. In Xcode, the Login Successful! message appears in the console.

Nice job! Nothing else happens, though. Your app still displays Login Screenlet. This is expected. There
aren’t any other scenes for your app to navigate to. In the next article, you’ll create the scene for displaying
guestbooks: the guestbooks scene.

478

Figure 47.26: It worked!

47.7 Creating the Guestbooks Scene

In the previous article, you used Login Screenlet to implement authentication in the login scene. Now you
must create the scene you want the user to see following login: the guestbooks scene. Later in this Learning
Path, you’ll display guestbooks in this scene via Guestbook List Screenlet. For now, though, all you need to do
is create the scene and take the user to it after login. This article shows you how to do this with the following
steps:

1. Add a view controller to your storyboard. You’ll then embed the view controller in a navigation con-
troller. The navigation controller gives the scene a navigation bar and automatically implements
back-navigation in the entries scene you’ll create later.

2. Create the guestbook scene’s view controller class. This class controls the view controller’s behavior.

3. Create a segue from the login scene to the guestbooks scene. Upon login, this segue takes the user to
the guestbooks scene.

First, you’ll add a view controller to the storyboard.

Adding a View Controller to the Storyboard

Follow these steps to add a view controller to the storyboard:

1. Open your storyboard and drag and drop a ViewController from the Object Library to the right of the
login scene.

2. Now youmust embed this view controller in a navigation controller. Navigation controllers in iOS
implement a navigation stack. You can loosely think of a navigation stack as a deck of cards where each
card is a view controller with a navigation bar. The navigation bar contains a back button that lets you
navigate to the previous view controller in the stack. You can also change the navigation bar’s title to
reflect the scene’s content.

With the new view controller selected in the storyboard, select Editor → Embed In →Navigation Controller.
Your storyboard now shows the navigation controller with a segue to the guestbooks scene. Also, the
guestbooks scene now contains an empty navigation bar.

3. Select the Navigation Item in the guestbooks scene’s navigation bar. In the Attributes inspector, enter
Guestbooks in the Title field, then enter a single space in the Back Button field and press return. This
labels the scene via the navigation bar, and ensures that the back button in the Navigation controller
has no label. The back button’s default left chevron indicates the button’s purpose without the need for
additional text.

479

https://developer.apple.com/library/content/documentation/WindowsViews/Conceptual/ViewControllerCatalog/Chapters/NavigationControllers.html

Figure 47.27: The arrow shows where to drag and drop the View Controller to create the new guestbooks scene.

Figure 47.28: Label the scene in the navigation bar, and set the back button’s label to an empty space.

480

Figure 47.29: Make sure the view controller’s Adjust Scroll View Insets option is unchecked in the Attributes inspector.

4. With the guestbooks scene’s view controller selected in the storyboard, open the Attributes inspector
and uncheckAdjust Scroll View Insets. This ensures that the scene’s contents are flushwith the navigation
bar.

Great! You now have the guestbooks scene, embedded in a navigation controller. For this scene’s view
controller to work, it must have a class that controls its behavior. You’ll create this class next.

Creating the Guestbooks Scene's View Controller Class

Each view controller must have a class that controls its behavior. In this section, you’ll create this class for
the guestbooks scene’s view controller. In the storyboard, you’ll then set this class as the view controller’s
custom class.

1. Right-click the Liferay Guestbook folder in Xcode’s project navigator and selectNew File. In the iOS →
Source section of the dialog that appears, select Cocoa Touch Class and clickNext.

2. The next screen in the dialog lets you set the class’s name, subclass, and language. You can also choose
whether to create an XIB file for the class. Enter the following information and clickNext:

• Class: GuestbooksViewController
• Subclass of: UIViewController
• Also create XIBfile: Unchecked
• Language: Swift

Figure 47.30: Set these options when creating the view controller’s class.

3. The final screen in the dialog lets you set the class’s location, group, and targets. Make sure Liferay
Guestbook is selected for both the Group and Targetsmenus, and click Create.

4. In the storyboard, select the guestbooks scene’s view controller. In the Identity inspector, set
GuestbooksViewController as the Custom Class.

481

Figure 47.31: Set GuestbooksViewController as the custom class of the guestbooks scene’s view controller.

Nice! The guestbooks scene’s view controller now has a class that governs its behavior. You may have
noticed a big problem, though. There’s no way for the user to get from the login scene to the guestbooks
scene. This is because there’s no segue from the login scene to the navigation controller the guestbooks scene
is embedded in. You’ll fix this next.

Creating the Segue

Follow these steps to create and trigger the segue:

1. Control-drag from the login scene’s view controller to the navigation controller. In the dialog that
appears when you release your mouse button, select show for the segue type. The segue now connects
the login scene’s view controller and the navigation controller.

Figure 47.32: A segue now exists from the login scene to the navigation controller.

2. Now youmust tell the login scene’s view controller when to perform this segue. You’ll do this program-
matically in the ViewController class. To perform a segue programmatically, youmust first give it an
identifier in your storyboard. You’ll then use this identifier in ViewController to perform the segue
when a user logs in.

In your storyboard, select the segue and then enter the Attributes inspector. Enter loginsegue in the
Identifier field, and press return.

482

Figure 47.33: Set the segue’s ID in the Attributes inspector.

3. Recall that the ViewController class’s screenlet(_:onLoginResponseUserAttributes:) method is called
upon successful login. You’ll therefore trigger the segue in this method. Currently, this method only
prints a success message. Below the line that prints this message, add the following code:

performSegue(withIdentifier: "loginsegue", sender: nil)

The performSegue(withIdentifier:sender:) method performs the segue with the specified identifier
and includes any additional sender code. You send nil here since you don’t need to send any infor-
mation with the segue. Your screenlet(_:onLoginResponseUserAttributes:) method should now look
like this:

func screenlet(_ screenlet: BaseScreenlet,

onLoginResponseUserAttributes attributes: [String:AnyObject]) {

print("Login Successful!")

performSegue(withIdentifier: "loginsegue", sender: nil)

}

Great! Your app can now navigate to the guestbooks scene after login. To verify this, run the app and log
in.

Figure 47.34: Following successful login, the app now navigates to the empty guestbooks scene.

Awesome! You’ve successfully added a scene for displaying guestbooks, and set the app to take the user
there after login. Now you’re ready to develop Guestbook List Screenlet. The next section in this Learning
Path walks you through this.

483

Chapter 48

Creating Guestbook List Screenlet

In the previous section, you created an iOS app that contains the GuestbookMobile SDK and Liferay Screens.
You also used Login Screenlet to implement authentication to Liferay DXP.That’s all your app does though.
It doesn’t display any Guestbook portlet content. In this section of the Learning Path, you’ll create Guestbook
List Screenlet to retrieve and display the portlet’s guestbooks in your app’s guestbooks scene.

Creating your own Screenlets brings additional benefits. Since you use a consistent, repeatable develop-
ment model to create them, you can often reuse code when creating other Screenlets. You can also package
and reuse Screenlets in other apps. What’s more, Screenlet UIs are fully pluggable. This lets you change a
Screenlet’s appearance quickly without affecting its functionality. In summary, Screenlets are pretty much
the greatest thing since sliced bread. Now it’s time to make a sandwich.

You’ll use these steps to create Guestbook List Screenlet:

1. Getting started: Create the Screenlet’s folder, and the model class. Themodel class creates objects that
represent guestbooks retrieved from the portlet, making it easier to work with guestbooks in your
app.

2. Create the Screenlet’s UI (itsTheme).
3. Create the Connector. Connectors are Screenlet components that make server calls.
4. Create the Interactor. In list Screenlets, Interactors are Screenlet components that instantiate Con-
nectors and receive their results.

5. Create the delegate. Delegates let other classes respond to the Screenlet’s events.
6. Create the Screenlet class. The Screenlet class governs the Screenlet’s behavior.

As backgroundmaterial, the followingmaterials are helpful:

• Architecture of Liferay Screens for iOS: Explains the components that constitute a Screenlet, and how
they relate to one another.

• Creating iOS Screenlets: Explains the general steps for creating a Screenlet.
• Creating iOS List Screenlets: Explains the general steps for creating a list Screenlet. This section of
the Learning Path follows this tutorial.

Note that these tutorials explain Screenlet and list Screenlet concepts that this Learning Path doesn’t
cover in depth. Although it’s possible to complete this Learning Path without reading these tutorials, they
explain how Screenlets work in more detail. By reading them you’ll be better able to apply the Learning Path
material to your own Screenlets.

485

If you get confused or stuck while creating Guestbook List Screenlet, refer to the finished app that
contains the Screenlet code here in GitHub.

48.1 Getting Started with Guestbook List Screenlet
Before creating a Screenlet, you should know how you’ll use it. If you plan to use it in only one app, then
you can create it in that app’s project. If you need to use it in several apps, however, then it’s best to create it
in a separate project for redistribution. For information on creating Screenlets for redistribution, see the
tutorial Packaging iOSThemes. Even though that tutorial is for packagingThemes, you can use the same
steps to package Screenlets.

Since you’ll use Guestbook List Screenlet in only this app, you can create it in a new folder inside the app’s
project. Create this folder now:

1. In the Finder, create the GuestbookListScreenlet folder inside the root project folder.

Figure 48.1: The new GuestbookListScreenlet folder should be inside your root project folder.

2. Drag and drop the GuestbookListScreenlet folder from the Finder into your Xcode project, under the
root project. In the dialog that appears, selectCopy items if needed,Create groups, and the LiferayGuestbook
target. Then click Finish. The GuestbookListScreenlet folder now appears in your project.

Great! Now you have a folder to create Guestbook List Screenlet in. Before getting started, you should
understand how pagination works in in list Screenlets.

Pagination

To ensure that users can scroll smoothly through large lists of items, list Screenlets support fluent pagination.
Support for this is built into the list Screenlet framework. You’ll see this as you construct your list Screenlet.
For example, several methods have parameters for the start row and end row of a page in the list.

Now you’re ready to begin creating the Screenlet!

Creating the Model Class

Liferay Screens typically receives entities from a Liferay DXP instance as a [String:AnyObject] dictionary,
where String is the entity’s attribute and AnyObject is the attribute’s value. Although your Screenlet can

486

https://github.com/liferay/liferay-docs/tree/7.0.x/develop/tutorials/code/mobile/ios/screenlets-app/Liferay%20Guestbook
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Figure 48.2: After adding the GuestbookListScreenlet folder, your project should look something like this.

use these dictionary objects, it’s often easier to create amodel class that converts each into an object that
represents the corresponding entity in the portal. Model classes are especially convenient for complex
entities composed of many attribute-value pairs, like guestbooks in the Guestbook portlet.

Your model class must contain all the code necessary to transform each [String:AnyObject] dictionary
that comes back from the server into a model object that represents a guestbook. This includes a public
constant for holding each [String:AnyObject] dictionary, a public initializer that sets this constant, and a
public property for each attribute value.

Themodel class you’ll create for Guestbook List Screenlet, GuestbookModel, creates GuestbookModel objects
that represent guestbooks retrieved from the Guestbook portlet. You’ll create this model class in a separate
folder outside of the GuestbookListScreenlet folder. In this case, it makes sense to organize your code this
way because other Screenlets may also use the model class. For example, if a Screenlet that edits guestbooks
existed, it would also need GuestbookModel objects. Putting themodel class in a separate folder makes it clear
that this class doesn’t belong exclusively to a single Screenlet.

Follow these steps to create Guestbook List Screenlet’s model class:

1. In the Finder, create the model folder inside your root project folder.

487

Figure 48.3: The new model folder should be inside your root project folder.

2. Drag and drop the model folder from the Finder into your Xcode project, under the root project. In the
dialog that appears, select Copy items if needed, Create groups, and the Liferay Guestbook target. Then click
Finish. The model folder now appears in your project.

Figure 48.4: After adding the model folder, your project should look something like this.

3. In the Project navigator, right-click the model folder and selectNew File. In the dialog that appears, fill
out each screen as follows:

• Select iOS → Source → Cocoa Touch Class, and clickNext.
• Name the class GuestbookModel, set it to extend NSObject, select Swift for the language, and click
Next.

• Make sure the model folder and group is selected, as well as the Liferay Guestbook target (these
should be selected by default). Click Create.

The new class now opens in the editor.

4. Replace the class file’s contents with this code:

488

import UIKit

@objc public class GuestbookModel: NSObject {

public let attributes: [String:AnyObject]

public var guestbookId: Int64 {

return attributes["guestbookId"]?.int64Value ?? 0

}

public var groupId: Int64 {

return attributes["groupId"]?.int64Value ?? 0

}

public var companyId: Int64 {

return attributes["companyId"]?.int64Value ?? 0

}

public var userId: Int64 {

return attributes["userId"]?.int64Value ?? 0

}

public var userName: String {

return attributes["userName"] as? String ?? ""

}

public var createDate: Int64 {

return attributes["createDate"]?.int64Value ?? 0

}

public var modifiedDate: Int64 {

return attributes["modifiedDate"]?.int64Value ?? 0

}

public var name: String {

return attributes["name"] as? String ?? ""

}

//MARK: Initializer

public init(attributes: [String:AnyObject]) {

self.attributes = attributes

}

}

This class creates GuestbookModel objects that represent guestbooks from the Guestbook portlet. The
[String:AnyObject] dictionary contains the data of a guestbook retrieved from the portlet. The initializer
sets this dictionary to the attributes property. Each computed property returns the value of a guestbook
parameter in attributes. For example, the guestbookId property returns the value of the guestbookId param-
eter, the groupId property returns the value of the groupId parameter, and so on. To see how the Guestbook
portlet defines these parameters, see the section on generating the portlet’s back end in the Liferay Web
Application Learning Path.

Also note that each computed property defaults to an empty string or 0, depending on the property’s type,
if the parameter contains a value that can’t be represented as that type. This prevents the app from crashing
if the parameter doesn’t have an appropriate value. For example, if the guestbookId parameter contains nil,
then the guestbookId property returns 0.

Great! Now you have a model class for guestbooks. Next, you’ll create the Screenlet’s UI.

489

48.2 Creating Guestbook List Screenlet's UI

In Liferay Screens for iOS, Screenlet UIs are calledThemes. Every Screenlet must have at least oneTheme.
You’ll use the following steps to create aTheme for Guestbook List Screenlet:

1. Create yourTheme’s folder and add it to your Xcode project.
2. Create an XIB file and use it to construct the UI.
3. Create yourTheme’s View class and set it as the XIB file’s custom class.

Creating Your Theme's Folder

Even if you only plan on creating oneTheme, it’s best practice to create it in its own folder inside a parent
Themes folder. The parent Themes folder gives you a place to put any additionalThemes you create. You’ll create
a singleTheme for Guestbook List Screenlet: the DefaultTheme. You’ll therefore create the Themes/Default
folder path inside the GuestbookListScreenlet folder.

Follow these steps to create yourTheme’s folder:

1. In the Finder, create the Themes folder inside your project’s GuestbookListScreenlet folder. Then create
the Default folder inside the new Themes folder.

Figure 48.5: The new Themes/Default folder structure should be inside the Screenlet’s folder.

2. Draganddrop the Themes folder fromtheFinder into yourXcodeproject,under the GuestbookListScreenlet
folder. In the dialog that appears, select Copy items if needed, Create groups, and the Liferay Guestbook
target. Then click Finish. The Themes/Default folder structure now appears in your project.

Figure 48.6: After adding the Themes folder to your project, the Themes/Default folder structure should appear in the Project navigator.

Now you’re ready to start creating yourTheme. First, you’ll create its XIB file.

490

Creating the XIB File

ATheme requires anXIB file to define theUI’s components and layout. Use these steps to create yourTheme’s
XIB file:

1. In the Project navigator, right-click the Default folder and selectNew File. In the dialog that appears,
select iOS →User Interface → Empty, and clickNext. Name the file GuestbookListView_default.xib, and
ensure thatDefault is selected for the save location and group. The Liferay Guestbook target should also
be selected. Click Create. The file should then open in Interface Builder.

2. In Interface Builder, drag and drop a View from the Object Library to the canvas. Then add a Table
View to the View. Set the Table View to take up the entire View.

3. With the Table View selected, open the AddNewConstraintsmenu at the bottom-right of the canvas. In
this menu, set Spacing to nearest neighbor to 0 on all sides, select Constrain to margins, and then click the
Add 4 Constraints button.

Figure 48.7: Add these constraints to the Table View in the XIB.

YourTheme’s XIB is now finished. Next, you’ll create your View class.

Creating the Theme's View Class

EveryTheme needs a View class that controls its behavior. Since the XIB file uses a UITableView to show a
list of guestbooks, your View class must extend the BaseListTableView class. Liferay Screens provides this
class to serve as the base class for list Screenlets’ View classes. Since BaseListTableView provides most of the
required functionality, extending it lets you focus on the parts of your View class that are unique to your
Screenlet.

Follow these steps to create your Screenlet’s View class:

491

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/TableView/BaseListTableView.swift

1. In the Project navigator, right-click the Default folder and selectNew File. In the dialog that appears,
fill out each screen as follows:

• Select iOS → Source → Cocoa Touch Class, and clickNext.
• Name the class GuestbookListView_default, set it to extend BaseListTableView, select Swift for
the language, and clickNext.

• Make sure the Default folder and group is selected, as well as the Liferay Guestbook target (these
should be selected by default). Click Create.

2. In GuestbookListView_default, add an import for LiferayScreens anddelete any placeholder comments
in the class body.

3. Now youmust override the View classmethods that fill the table cells’ contents. There are twomethods
for this, depending on the cell type:

• Normal cells: the cells that show the entities. These cells typically use UILabel, UIImage, or
another UI component to show the entity. Override the doFillLoadedCellmethod to fill these
cells. Guestbook List Screenlet’s View class must override doFillLoadedCell to set each cell’s
textLabel to a guestbook’s name:

override public func doFillLoadedCell(row: Int, cell: UITableViewCell,

object: AnyObject) {

let guestbook = object as! GuestbookModel

cell.textLabel?.text = guestbook.name

}

• Progress cell: the cell at the bottom of the list that indicates the list is loading the next page
of items. Override the doFillInProgressCellmethod to fill this cell. Guestbook List Screenlet’s
View class must override this method to set the cell’s textLabel to the string "Loading...":

override public func doFillInProgressCell(row: Int, cell: UITableViewCell) {

cell.textLabel?.text = "Loading..."

}

Your complete View class should look like this:

import UIKit

import LiferayScreens

class GuestbookListView_default: BaseListTableView {

override public func doFillLoadedCell(row: Int, cell: UITableViewCell,

object: AnyObject) {

let guestbook = object as! GuestbookModel

cell.textLabel?.text = guestbook.name

}

override public func doFillInProgressCell(row: Int, cell: UITableViewCell) {

cell.textLabel?.text = "Loading..."

}

}

492

4. Return to theTheme’s XIB in Interface Builder, and set GuestbookListView_default as the the parent
View’s custom class. To do this, select the Table View’s parent View, click the Identity inspector, and
enter GuestbookListView_default as the Custom Class.

Figure 48.8: In the XIB file, set the Custom Class of the Table View’s parent View to GuestbookListView_default.

5. With theTheme’s XIB still open in Interface Builder, set the parent View’s tableView outlet to the Table
View. To do this, select the parent View and click the Connections inspector. In the Outlets section,
drag and drop from the tableView’s circle icon (it turns into a plus icon on mouseover) to the Table
View in the XIB.The new outlet then appears in the Connections inspector.

Figure 48.9: In the XIB, drag and drop from the tableView outlet to the Table View.

Figure 48.10: After creating the connection, it appears in the Connections inspector.

Great! YourTheme is finished. Next, you’ll create Guestbook List Screenlet’s Connector.

493

48.3 Creating Guestbook List Screenlet's Connector
Connectors are Screenlet components that make server calls. Non-list Screenlets don’t require Connectors–
they can make server calls in Interactors instead. Connectors, however, provide a layer of abstraction by
making the server call outside the Interactor. This leaves the Interactor to instantiate the Connector and
receive the server call’s results. List Screenlets exploit this architectural advantage by requiring Connectors.

First, you’ll create a folder for the Connector.

Creating Your Connector's Folder

Follow these steps to create your Connector’s folder:

1. In the Finder, create the Connector folder inside your project’s GuestbookListScreenlet folder.

2. Drag and drop the Connector folder from the Finder into your Xcode project, under the
GuestbookListScreenlet folder. In the dialog that appears, select Copy items if needed, Create
groups, and the Liferay Guestbook target. Then click Finish. The Connector folder now appears in your
project.

Figure 48.11: The new Connector folder should be inside the Screenlet’s folder.

Now you’re ready to create the Connector.

Creating the Connector

List Screenlet Connectorsmust extend the PaginationLiferayConnector class, which Liferay Screens provides
to enable most of the functionality required by list Screenlet Connectors. Extending this class lets you
focus on the functionality unique to your Connector. Your list Screenlet’s Connector class must contain any
properties it needs to make the server call, and an initializer that sets them. To support pagination, the
initializer must also contain the following arguments, which you’ll pass to the superclass initializer:

• startRow: The number representing the page’s first row.
• endRow: The number representing the page’s last row.
• computeRowCount: Whether to call the Connector’s doAddRowCountServiceCallmethod (you’ll learn about
this method shortly).

Follow these steps to create Guestbook List Screenlet’s Connector:

1. In the Project navigator, right-click the Connector folder and selectNew File. In the dialog that appears,
fill out each screen as follows:

• Select iOS → Source → Cocoa Touch Class, and clickNext.

494

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/PaginationLiferayConnector.swift

• Namethe class GuestbookListPageLiferayConnector, set it to extend PaginationLiferayConnector,
select Swift for the language, and clickNext.

• Make sure the Connector folder and group is selected, as well as the LiferayGuestbook target (these
should be selected by default). Click Create.

2. In the new class, import LiferayScreens and add a public Int64 constant called groupId. This constant
holds the ID of the site the Connector retrieves guestbooks from. Your Connector should now look
like this:

import UIKit

import LiferayScreens

class GuestbookListPageLiferayConnector: PaginationLiferayConnector {

public let groupId: Int64

}

3. Create an initializer that takes the arguments startRow, endRow, computeRowCount, and groupId. In this
initializer, set the groupId constant to the corresponding argument, then call the superclass initializer
with the remaining arguments. Add the initializer as follows:

public init(startRow: Int, endRow: Int, computeRowCount: Bool, groupId: Int64) {

self.groupId = groupId

super.init(startRow: startRow, endRow: endRow, computeRowCount: computeRowCount)

}

4. Override the doAddPageRowsServiceCallmethod to make the server call that retrieves guestbooks from
the portlet. This method must call the Guestbook SDK service method getGuestbooksWithGroupId,
which retrieves guestbooks. To do this, youmust first create a LRGuestbookService_v7 instance from
the session. Then call the service’s getGuestbooksWithGroupId method with groupId, startRow, and
endRow:

public override func doAddPageRowsServiceCall(session: LRBatchSession, startRow: Int, endRow: Int,

obc: LRJSONObjectWrapper?) {

let service = LRGuestbookService_v7(session: session)

do {

try service!.getGuestbooksWithGroupId(groupId, start: Int32(startRow), end: Int32(endRow))

}

catch {

// ignore error: the service method returns nil because

// the request is sent later, in batch

}

}

Note that youdon’t need to do anything in the catch statement because the request is sent later, in batch.
The session type LRBatchSession handles this for you. You’ll receive the request’s results elsewhere,
once the request completes.

5. Override the doAddRowCountServiceCallmethod to make the server call that retrieves the total number
of guestbooks from the portlet. This enables pagination. This methodmust call the Guestbook SDK
service method getGuestbooksCount, which retrieves the total number of guestbooks. To do this, you
must first create a LRGuestbookService_v7 service instance from the session. Then call the service’s
getGuestbooksCountmethod with groupId:

495

override public func doAddRowCountServiceCall(session: LRBatchSession) {

let service = LRGuestbookService_v7(session: session)

do {

try service!.getGuestbooksCount(withGroupId: groupId)

}

catch {

// ignore error: the service method returns nil because

// the request is sent later, in batch

}

}

As in the previous step, you don’t need to do anything in the catch statement.

Awesome! Your Connector is finished. Now you’re ready to create the Interactor.

48.4 Creating Guestbook List Screenlet's Interactor

Interactors implement your Screenlet’s actions. In non-list Screenlets, this can includemaking the server
call. List Screenlets, however, make server calls via Connectors. Also, loading entities is usually the only
action a user can take in a list Screenlet. Therefore, list Screenlet Interactors typically only need to instantiate
the Connector and receive the server call’s results. This is the case for Guestbook List Screenlet’s Interactor.
You’ll create this Interactor now.

Creating Your Interactor's Folder

Follow these steps to create your Interactor’s folder:

1. In the Finder, create the Interactor folder inside your project’s GuestbookListScreenlet folder.

2. Drag and drop the Interactor folder from the Finder into your Xcode project, under the
GuestbookListScreenlet folder. In the dialog that appears, select Copy items if needed, Create
groups, and the Liferay Guestbook target. Then click Finish. The Interactor folder now appears in your
project.

Figure 48.12: The new Interactor folder should be inside the Screenlet’s folder.

Now you’re ready to create the Interactor.

496

Creating the Interactor

The Interactor class of a list Screenlet that implements fluent pagination must extend Liferay Screens’s
BaseListPageLoadInteractor class. This class provides most of the functionality required by list Screenlet
Interactors. Your Interactor class must also contain any properties your Screenlet needs and an initializer
that sets them. This initializer needs arguments for the following properties,which it passes to the superclass
initializer:

• screenlet: A BaseListScreenlet reference. This ensures the Interactor always has a Screenlet reference.
• page: The page number to retrieve.
• computeRowCount: Whether to call the Connector’s doAddRowCountServiceCallmethod.

Follow these steps to create Guestbook List Screenlet’s Interactor:

1. In the Project navigator, right-click the Interactor folder and selectNewFile. In the dialog that appears,
fill out each screen as follows:

• Select iOS → Source → Cocoa Touch Class, and clickNext.
• Name the class GuestbookListPageLoadInteractor, set it to extend BaseListPageLoadInteractor,
select Swift for the language, and clickNext.

• Make sure the Interactor folder and group is selected, as well as the Liferay Guestbook target
(these should be selected by default). Click Create.

2. In the new class, import LiferayScreens and add a private Int64 constant called groupId. This constant
holds the ID of the site guestbooks are retrieved from. Your Interactor should now look like this:

import UIKit

import LiferayScreens

class GuestbookListPageLoadInteractor: BaseListPageLoadInteractor {

private let groupId: Int64

}

3. Create an initializer that takes the arguments screenlet, page, computeRowCount, and groupId. In this
initializer, set the groupId constant to the corresponding argument, then call the superclass initializer
with the remaining arguments. Note that if the the groupId is 0, the groupId setting in liferay-server-

context.plist is used instead. Add the initializer as follows:

init(screenlet: BaseListScreenlet,

page: Int,

computeRowCount: Bool,

groupId: Int64) {

self.groupId = (groupId != 0) ? groupId : LiferayServerContext.groupId

super.init(screenlet: screenlet, page: page, computeRowCount: computeRowCount)

}

4. Override the createListPageConnectormethod to create and return an instance of your Connector,
GuestbookListPageLiferayConnector. This method must first get a reference to the Screenlet via the
screenletproperty. When calling theConnector’s initializer, use screenlet.firstRowForPage to convert
the page number (page) to the page’s start and end indices. Youmust also pass the initializer any other
properties it needs, like groupId. Add this createListPageConnectormethod to your Interactor class:

497

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListPageLoadInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListPageLoadInteractor.swift

public override func createListPageConnector() -> PaginationLiferayConnector {

let screenlet = self.screenlet as! BaseListScreenlet

return GuestbookListPageLiferayConnector(

startRow: screenlet.firstRowForPage(self.page),

endRow: screenlet.firstRowForPage(self.page + 1),

computeRowCount: self.computeRowCount,

groupId: groupId)

}

5. Override the convertResultmethod to convert each [String:AnyObject] result into a GuestbookModel
object. The Screenlet calls this method once for each guestbook retrieved from the server. Add this
method as follows:

override public func convertResult(_ serverResult: [String:AnyObject]) -> AnyObject {

return GuestbookModel(attributes: serverResult)

}

6. Override the cacheKeymethod to return a key that can be used with offline mode. Although Guestbook
List Screenlet won’t initially support offline mode, this method is still required. For this Screenlet, the
groupId serves as a sufficient key. Add this method as follows:

override public func cacheKey(_ op: PaginationLiferayConnector) -> String {

return "\(groupId)"

}

Great! Your Interactor is finished. Next, you’ll create the delegate.

48.5 Creating Guestbook List Screenlet's Delegate

A delegate is a Screenlet component that lets other classes to respond to a Screenlet’s actions. For example,
Login Screenlet’s delegate lets the app developer implement methods that respond to login success or failure.
Note that the reference documentation for each Screenlet that comeswith Liferay Screens lists the Screenlet’s
delegate methods.

You can also create a delegate for your own Screenlet. Guestbook List Screenlet should have a delegate
protocol that defines the followingmethods:

• screenlet(_:onGuestbookListResponse:): Receives the GuestbookModel results when the server call suc-
ceeds. This lets app developers respond to a successful server call.

• screenlet(_:onGuestbookListError:): Receives the NSError object when the server call fails. This lets
app developers respond to a failed server call.

• screenlet(_:onGuestbookSelected:): Receives the GuestbookModelwhen a user selects it in the list. This
lets app developers respond to a guestbook selection by the user.

You’ll create this delegate in the same file as the Screenlet class. Later, you’ll finish creating the Screenlet
class itself.

Follow these steps to create Guestbook List Screenlet’s delegate:

1. In the Project navigator, right-click the GuestbookListScreenlet folder and selectNewFile. In the dialog
that appears, fill out each screen as follows:

498

• Select iOS → Source → Cocoa Touch Class, and clickNext.
• Name the class GuestbookListScreenlet, set it to extend BaseListScreenlet, select Swift for the
language, and clickNext.

• Make sure the GuestbookListScreenlet folder andgroup is selected, aswell as theLiferayGuestbook
target (these should be selected by default). Click Create.

2. In the new GuestbookListScreenlet class, import LiferayScreens, make the class public, and delete
any placeholder comments in the class body.

3. In between the import statements and the class declaration, add the following code:

@objc public protocol GuestbookListScreenletDelegate : BaseScreenletDelegate {

@objc optional func screenlet(screenlet: GuestbookListScreenlet,

onGuestbookListResponse guestbooks: [GuestbookModel])

@objc optional func screenlet(screenlet: GuestbookListScreenlet,

onGuestbookListError error: NSError)

@objc optional func screenlet(screenlet: GuestbookListScreenlet,

onGuestbookSelected guestbook: GuestbookModel)

}

This defines the GuestbookListScreenletDelegate protocol, which extends the BaseScreenletDelegate
protocol. Delegates for custom Screenlets, like Guestbook List Screenlet, must extend
BaseScreenletDelegate. The rest of GuestbookListScreenletDelegate defines the delegate meth-
ods you’ll use later to respond to the Screenlet’s events.

The contents of GuestbookListScreenlet.swift should now look like this:

import UIKit

import LiferayScreens

@objc public protocol GuestbookListScreenletDelegate : BaseScreenletDelegate {

@objc optional func screenlet(screenlet: GuestbookListScreenlet,

onGuestbookListResponse guestbooks: [GuestbookModel])

@objc optional func screenlet(screenlet: GuestbookListScreenlet,

onGuestbookListError error: NSError)

@objc optional func screenlet(screenlet: GuestbookListScreenlet,

onGuestbookSelected guestbook: GuestbookModel)

}

public class GuestbookListScreenlet: BaseListScreenlet {

}

Nice work! Now you’re ready to complete the Screenlet class.

48.6 Creating the Screenlet Class

The Screenlet class is the main component that governs the Screenlet’s behavior. When using a Screenlet,
app developers primarily interact with its Screenlet class. A list Screenlet’s Screenlet class must extend the

499

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListScreenlet.swift

BaseListScreenlet class. Since BaseListScreenlet provides most of the functionality needed by Screenlet
classes, extending it lets you focus on the functionality unique to your Screenlet. The Screenlet class must
also define the configurable IBInspectable properties the Screenlet needs, create and return an instance of
your Interactor, and respond to the Screenlet’s events via the delegate.

The Screenlet class you created while creating the delegate is currently empty. You’ll complete it now.
Follow these steps to complete the GuestbookListScreenlet class in GuestbookListScreenlet.swift:

1. Define a public, IBInspectable, Int64 property for the groupId. Although the app developer can set
this value via liferay-server-context.plist, it’s also a good idea to let them set it in Interface Builder
when using the Screenlet. Give this property an initial value of 0. Your Screenlet class should now look
like this:

public class GuestbookListScreenlet: BaseListScreenlet {

@IBInspectable public var groupId: Int64 = 0

}

2. Override the createPageLoadInteractormethod to create and return an instance of your Interactor,
GuestbookListPageLoadInteractor. This method includes page and computeRowCount arguments, which
you can pass to the Interactor’s constructor along with groupId:

override public func createPageLoadInteractor(

page: Int,

computeRowCount: Bool) -> BaseListPageLoadInteractor {

return GuestbookListPageLoadInteractor(screenlet: self,

page: page,

computeRowCount: computeRowCount,

groupId: self.groupId)

}

3. Create a computed property to get a reference to your delegate, GuestbookListScreenletDelegate:

public var guestbookListDelegate: GuestbookListScreenletDelegate? {

return delegate as? GuestbookListScreenletDelegate

}

You’ll use this property to handle the Screenlet’s events via the delegate’s methods.

4. Override the BaseListScreenletmethods that handle the Screenlet’s events. Because these methods
correspond to your delegate methods, you’ll call your delegate methods in them:

• onLoadPageResult: Called when the Screenlet loads a page successfully. Override this
method to call the superclass’s onLoadPageResult method, then call your delegate’s
screenlet(_:onGuestbookListResponse:) method:

override public func onLoadPageResult(page: Int, rows: [AnyObject], rowCount: Int) {

super.onLoadPageResult(page: page, rows: rows, rowCount: rowCount)

guestbookListDelegate?.screenlet?(screenlet: self,

onGuestbookListResponse: rows as! [GuestbookModel])

}

500

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListScreenlet.swift

• onLoadPageError: Called when the Screenlet fails to load a page. Override this method to call the
superclass’s onLoadPageErrormethod, thencall yourdelegate’s screenlet(_:onGuestbookListError:)
method:

override public func onLoadPageError(page: Int, error: NSError) {

super.onLoadPageError(page: page, error: error)

guestbookListDelegate?.screenlet?(screenlet: self,

onGuestbookListError: error)

}

• onSelectedRow: Called when an item is selected in the list. Override this method to call your
delegate’s screenlet(_:onGuestbookSelected:) method:

override public func onSelectedRow(_ row: AnyObject) {

guestbookListDelegate?.screenlet?(screenlet: self,

onGuestbookSelected: row as! GuestbookModel)

}

Awesome! Your Screenlet class is finished. You’re also done with Guestbook List Screenlet! The next
section in this Learning Path shows you how to create Entry List Screenlet to display a guestbook’s entries.

501

Chapter 49

Creating Entry List Screenlet

In the previous section, you created Guestbook List Screenlet to retrieve and display guestbooks from the
Guestbook portlet. You still need a way to retrieve and display each guestbook’s entries, though. You’ll do
this by creating another list Screenlet: Entry List Screenlet. This sectionwalks you through the steps required
to create it.

Because you use a consistent development model to create Screenlets, similar Screenlets have similar
code. As with guestbooks, it makes sense to display entries in a list using a list Screenlet. This means you
can reuse most of Guestbook List Screenlet’s code in Entry List Screenlet. You’ll therefore create Entry List
Screenlet using the same sequence of steps you used to create Guestbook List Screenlet:

1. Getting started: create the Screenlet’s folder, and themodel class. This model class creates objects that
represent entries retrieved from the portlet, making it easier to work with entries in the app.

2. Create the Screenlet’s UI (itsTheme).
3. Create the Connector. Connectors are Screenlet components that make server calls.
4. Create the Interactor. In list Screenlets, Interactors are Screenlet components that instantiate Con-
nectors and receive their results.

5. Create the delegate. Delegates let other classes respond to the Screenlet’s events.
6. Create the Screenlet class. The Screenlet class governs the Screenlet’s behavior.

Although this Learning Path section presents complete code snippets, it only discusses the code unique
to Entry List Screenlet. Refer back to the previous section for detailed explanations of the code shared with
Guestbook List Screenlet.

If you get confused or stuck while creating Guestbook List Screenlet, refer to the finished app that
contains the Screenlet code here in GitHub.

49.1 Getting Started with Entry List Screenlet

Like Guestbook List Screenlet, you’ll create Entry List Screenlet in its own folder inside your app’s project.
Create this folder now:

1. In the Finder, create the EntryListScreenlet folder inside your root project folder (on the same level as
the GuestbookListScreenlet folder).

503

https://github.com/liferay/liferay-docs/tree/7.0.x/develop/tutorials/code/mobile/ios/screenlets-app/Liferay%20Guestbook

2. Drag and drop the EntryListScreenlet folder from the Finder into your Xcode project, under the root
project (on the same level as the GuestbookListScreenlet folder). In the dialog that appears, select Copy
items if needed, Create groups, and the Liferay Guestbook target. Then click Finish. The EntryListScreenlet
folder now appears in your project.

Figure 49.1: After adding the EntryListScreenlet folder, your project should look something like this.

Now you’re ready to begin!

Creating the Model Class

Recall that youneedamodel class to represent entities retrieved fromLiferayDXP.Themodel class you’ll create
for guestbook entries, EntryModel, creates EntryModel objects that represent guestbook entries retrieved
from the Guestbook portlet.

Create the following EntryModel class alongside the GuestbookModel class in the model folder:

1. In the Project navigator, right-click the model folder and selectNew File. In the dialog that appears, fill
out each screen as follows:

• Select iOS → Source → Cocoa Touch Class, and clickNext.
• Name the class EntryModel, set it to extend NSObject, select Swift for the language, and clickNext.
• Make sure the model folder and group is selected, as well as the Liferay Guestbook target (these
should be selected by default). Click Create.

The new class now opens in the editor.

2. Replace the class file’s contents with this code:

import UIKit

@objc public class EntryModel: NSObject {

public let attributes: [String:AnyObject]

public var entryId: Int64 {

return attributes["entryId"]?.int64Value ?? 0

}

public var groupId: Int64 {

return attributes["groupId"]?.int64Value ?? 0

}

public var companyId: Int64 {

return attributes["companyId"]?.int64Value ?? 0

}

public var userId: Int64 {

504

return attributes["userId"]?.int64Value ?? 0

}

public var userName: String {

return attributes["userName"] as? String ?? ""

}

public var createDate: Int64 {

return attributes["createDate"]?.int64Value ?? 0

}

public var modifiedDate: Int64 {

return attributes["modifiedDate"]?.int64Value ?? 0

}

public var name: String {

return attributes["name"] as? String ?? ""

}

public var email: String {

return attributes["email"] as? String ?? ""

}

public var message: String {

return attributes["message"] as? String ?? ""

}

public var guestbookId: Int64 {

return attributes["guestbookId"]?.int64Value ?? 0

}

//MARK: Initializer

public init(attributes: [String:AnyObject]) {

self.attributes = attributes

}

}

Besides working with entries instead of guestbooks, this class is almost identical to GuestbookModel. For
an explanation of the code, see the article on getting started with Guestbook List Screenlet.

Next, you’ll create the Screenlet’s UI.

49.2 Creating Entry List Screenlet's UI
Recall that in Liferay Screens for iOS, Screenlet UIs are calledThemes, and every Screenlet must have at least
oneTheme. You’ll create Entry List Screenlet’sTheme with the same steps you used to create Guestbook List
Screenlet’sTheme:

1. Create yourTheme’s folder and add it to your Xcode project.
2. Create an XIB file and use it to construct the UI.
3. Create yourTheme’s View class and set it as the XIB file’s custom class.

Creating Your Theme's Folder

Like Guestbook List Screenlet’sTheme, you’ll create Entry List Screenlet’sTheme in a Themes/Default folder.
Follow these steps to create this folder structure in Entry List Screenlet’s folder:

1. In the Finder, create the Themes folder inside your project’s EntryListScreenlet folder. Then create the
Default folder inside the new Themes folder.

505

2. Drag anddrop the Themes folder from the Finder into yourXcode project, under the EntryListScreenlet
folder. In the dialog that appears, select Copy items if needed, Create groups, and the Liferay Guestbook
target (these should be selected by default). Then click Finish. The Themes/Default folder structure now
appears in your project.

Figure 49.2: After adding the Themes folder to Entry List Screenlet, the Themes/Default folder structure should look like this in the Project navigator.

Now you’re ready to start creating yourTheme. First, you’ll create its XIB file.

Creating the XIB File

ATheme requires anXIB file to define theUI’s components and layout. Use these steps to create yourTheme’s
XIB file:

1. In the Project navigator, right-click the Default folder you added above and select New File.
In the dialog that appears, select iOS → User Interface → Empty, and click Next. Name the file
EntryListView_default.xib, and ensure that Default is selected for the save location and group. The
Liferay Guestbook target should also be selected. Click Create. The file then opens in Interface Builder.

2. In Interface Builder, drag and drop a View from the Object Library onto the canvas. Then add a Table
View to the View. Set the Table View to take up the entire View.

3. With the Table View selected, open the AddNewConstraintsmenu at the bottom-right of the canvas. In
this menu, set Spacing to nearest neighbor to 0 on all sides, select Constrain to margins, and then click the
Add 4 Constraints button.

YourTheme’s XIB is now finished. Next, you’ll create your View class.

Creating the Theme's View Class

EveryTheme needs a View class that controls its behavior. Recall that a list Screenlet’s View class gets most
of its functionality by extending the BaseListTableView class. This lets you focus on the parts of your View
class that are unique to your Screenlet.

Follow these steps to create your Screenlet’s View class:

1. In the Project navigator, right-click Entry List Screenlet’s Default folder and select New File. In the
dialog that appears, fill out each screen as follows:

• Select iOS → Source → Cocoa Touch Class, and clickNext.
• Name the class EntryListView_default, set it to extend BaseListTableView, select Swift for the
language, and clickNext.

• Make sure the Default folder and group is selected, as well as the Liferay Guestbook target (these
should be selected by default). Click Create.

506

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/TableView/BaseListTableView.swift

Figure 49.3: Add these constraints to the Table View in the XIB.

2. Replace the class file’s contents with this code:

import UIKit

import LiferayScreens

class EntryListView_default: BaseListTableView {

override public func doFillLoadedCell(row: Int, cell: UITableViewCell, object: AnyObject) {

let entry = object as! EntryModel

cell.textLabel?.text = entry.message

cell.detailTextLabel?.text = entry.name

}

override open func doCreateCell(_ cellId: String) -> UITableViewCell {

return UITableViewCell(style: .subtitle, reuseIdentifier: cellId)

}

override public func doFillInProgressCell(row: Int, cell: UITableViewCell) {

cell.textLabel?.text = "Loading..."

}

}

Note that this class is almost identical toGuestbookList Screenlet’sViewclass, GuestbookListView_default.
The only difference is that EntryListView_default handles entries (EntryModel) instead of guestbooks
(GuestbookModel). The doFillLoadedCellmethod sets the cell’s main text label to the entry’s message,
and sets the cell’s secondary text label to the name of the person who left the message. This
way, a single cell displays both pieces of information. For a description of the code shared with
GuestbookListView_default, see the article on creating Guestbook List Screenlet’sTheme.

507

3. Return to theTheme’s XIB in Interface Builder and set EntryListView_default as the the parent View’s
custom class. To do this, select the Table View’s parent View, click the Identity inspector, and enter
EntryListView_default as the custom class.

Figure 49.4: In the XIB file, set the custom class of the Table View’s parent View to EntryListView_default.

4. With theTheme’s XIB still open in Interface Builder, set the parent View’s tableView outlet to the Table
View. To do this, select the parent View and click the Connections inspector. In the Outlets section,
drag and drop from the tableView’s circle icon (on mouseover, it turns into a plus icon) to the Table
View in the XIB.The new outlet then appears in the Connections inspector.

Figure 49.5: Drag and drop from the tableView outlet to the Table View in the XIB.

Figure 49.6: After creating the connection, the outlet looks like this in the Connections inspector.

Great! YourTheme is finished. Next, you’ll create Entry List Screenlet’s Connector.

508

49.3 Creating Entry List Screenlet's Connector
Recall that Connectors are Screenlet components that make server calls. Also recall that by making your
server calls in Connectors instead of Interactors, you gain an additional layer of abstraction.

In this article, you’ll create Entry List Screenlet’s Connector. Because this Connector is so similar to that
of Guestbook List Screenlet, the steps to create it aren’t explained in detail. Focus is instead placed on the
few places in the code where the Connectors diverge. For a full explanation of the code, see the article on
creating Guestbook List Screenlet’s Connector.

Creating Your Connector's Folder

Follow these steps to create your Connector’s folder:

1. In the Finder, create the Connector folder inside your project’s EntryListScreenlet folder.

2. Drag and drop the Connector folder from the Finder into your Xcode project, under the
EntryListScreenlet folder. In the dialog that appears, select Copy items if needed, Create groups,
and the Liferay Guestbook target. Then click Finish. The Connector folder now appears in your project.

Now you’re ready to create the Connector.

Creating the Connector

Recall that list Screenlet Connectors must extend the PaginationLiferayConnector class. Your list Screenlet’s
Connector class must also contain any properties it needs to make the server call, and an initializer that sets
them. To support pagination, the initializer must also contain the following arguments, which you’ll pass to
the superclass initializer:

• startRow: The number representing the page’s first row.
• endRow: The number representing the page’s last row.
• computeRowCount: Whether to call the Connector’s doAddRowCountServiceCallmethod.

Follow these steps to create Guestbook List Screenlet’s Connector:

1. In the Project navigator, right-click the Connector folder you added above and selectNew File. In the
dialog that appears, fill out each screen as follows:

• Select iOS → Source → Cocoa Touch Class, and clickNext.
• Name the class EntryListPageLiferayConnector, set it to extend PaginationLiferayConnector,
select Swift for the language, and clickNext.

• Make sure the Connector folder and group is selected, as well as the LiferayGuestbook target (these
should be selected by default). Click Create.

2. Replace the class file’s contents with this code:

import UIKit

import LiferayScreens

class EntryListPageLiferayConnector: PaginationLiferayConnector {

public let groupId: Int64

509

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/PaginationLiferayConnector.swift

public let guestbookId: Int64

//MARK: Initializer

public init(startRow: Int, endRow: Int, computeRowCount: Bool, groupId: Int64,

guestbookId: Int64) {

self.groupId = groupId

self.guestbookId = guestbookId

super.init(startRow: startRow, endRow: endRow, computeRowCount: computeRowCount)

}

//MARK: PaginationLiferayConnector

public override func doAddPageRowsServiceCall(session: LRBatchSession, startRow: Int, endRow: Int,

obc: LRJSONObjectWrapper?) {

let service = LREntryService_v7(session: session)

do {

try service!.getEntriesWithGroupId(groupId, guestbookId: guestbookId,

start: Int32(startRow), end: Int32(endRow))

}

catch {

// the service method returns nil because the request is sent later, in batch

}

}

override public func doAddRowCountServiceCall(session: LRBatchSession) {

let service = LREntryService_v7(session: session)

do {

try service!.getEntriesCount(withGroupId: groupId, guestbookId: guestbookId)

}

catch {

// the service method returns nil because the request is sent later, in batch

}

}

}

Thisclass is almost identical toGuestbookList Screenlet’sConnector class, GuestbookListPageLiferayConnector.
The only differences are due to the service calls. To define the guestbook to retrieve entries from,
EntryListPageLiferayConnector needs a guestbookId property. It then uses this property with the
service methods getEntriesWithGroupId and getEntriesCount to retrieve the entries and number of
entries, respectively. Also note that the service is an LREntryService_v7 instance.

Nicely done! Now that Entry List Screenlet has a Connector, you must create its Interactor. The next
article shows you how to do this.

49.4 Creating Entry List Screenlet's Interactor

Recall that list Screenlets require an Interactor to instantiate the Connector and receive the server call’s
results. In this article, you’ll create Entry List Screenlet’s Interactor.

Because this Interactor is so similar to that of Guestbook List Screenlet, the steps to create it aren’t
explained in detail. Focus is instead placed on the few places in the code where the Interactors diverge. For a
full explanation of the code, see the article on creating Guestbook List Screenlet’s Interactor.

510

Creating Your Interactor's Folder

Follow these steps to create your Interactor’s folder:

1. In the Finder, create the Interactor folder inside your project’s EntryListScreenlet folder.

2. Drag and drop the Interactor folder from the Finder into your Xcode project, under the
EntryListScreenlet folder. In the dialog that appears, select Copy items if needed, Create groups,
and the Liferay Guestbook target. Then click Finish. The Interactor folder now appears in your project.

Now you’re ready to create the Interactor.

Creating the Interactor

Recall that the Interactor class of a list Screenlet that implements fluent pagination must extend the
BaseListPageLoadInteractor class. Your Interactor class must also contain any properties the Screenlet
needs, and an initializer that sets them. This initializer also needs arguments for the following properties,
which it passes to the superclass initializer:

• screenlet: A BaseListScreenlet reference. This ensures the Interactor always has a Screenlet reference.
• page: The page number to retrieve.
• computeRowCount: Whether to call the Connector’s doAddRowCountServiceCallmethod.

Follow these steps to create Entry List Screenlet’s Interactor:

1. In the Project navigator, right-click the Interactor folder you added above and selectNew File. In the
dialog that appears, fill out each screen as follows:

• Select iOS → Source → Cocoa Touch Class, and clickNext.
• Name the class EntryListPageLoadInteractor, set it to extend BaseListPageLoadInteractor, select
Swift for the language, and clickNext.

• Make sure the Interactor folder and group is selected, as well as the Liferay Guestbook target
(these should be selected by default). Click Create.

2. Replace the class file’s contents with this code:

import UIKit

import LiferayScreens

class EntryListPageLoadInteractor: BaseListPageLoadInteractor {

private let groupId: Int64

private let guestbookId: Int64

init(screenlet: BaseListScreenlet,

page: Int,

computeRowCount: Bool,

groupId: Int64,

guestbookId: Int64) {

self.groupId = (groupId != 0) ? groupId : LiferayServerContext.groupId

self.guestbookId = guestbookId

super.init(screenlet: screenlet, page: page, computeRowCount: computeRowCount)

}

511

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListPageLoadInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListPageLoadInteractor.swift

public override func createListPageConnector() -> PaginationLiferayConnector {

let screenlet = self.screenlet as! BaseListScreenlet

return EntryListPageLiferayConnector(

startRow: screenlet.firstRowForPage(self.page),

endRow: screenlet.firstRowForPage(self.page + 1),

computeRowCount: self.computeRowCount,

groupId: groupId,

guestbookId: guestbookId)

}

override public func convertResult(_ serverResult: [String:AnyObject]) -> AnyObject {

return EntryModel(attributes: serverResult)

}

override public func cacheKey(_ op: PaginationLiferayConnector) -> String {

return "\(groupId)-\(guestbookId)"

}

}

Thisclass is almost identical toGuestbookList Screenlet’s Interactor, GuestbookListPageLoadInteractor.
The only real difference is that EntryListPageLoadInteractor handles entries. It therefore needs a
guestbookId variable to define the guestbook to retrieve entries from. This variable is set in the initial-
izer and then used in the createListPageConnectormethod to create a EntryListPageLiferayConnector
instance. The convertResult method receives each [String:AnyObject] entry from the server and
transforms it into an EntryModel object. Also recall that the cacheKeymethodmust return a key that
can be usedwith onlinemode. For entries, a combination of the groupId and guestbookId is a sufficient
key.

Great! Your Interactor is finished. Next, you’ll create the delegate.

49.5 Creating Entry List Screenlet's Delegate
Recall that a delegate lets other classes respond to your Screenlet’s actions. Like you did for Guestbook List
Screenlet, you’ll create a delegate for Entry List Screenlet that can respond to a successful server call, a failed
server call, and an item selection in the list. This delegate must therefore define these methods:

• screenlet(_:onEntryListResponse:): Receives the EntryModel results when the server call succeeds.
This lets app developers respond to a successful server call.

• screenlet(_:onEntryListError:): Receives the NSError object when the server call fails. This lets app
developers respond to a failed server call.

• screenlet(_:onEntrySelected:): Receives the EntryModelwhen a user selects it in the list. This lets app
developers respond to an entry selection by the user.

You’ll create this delegate in the same file as the Screenlet class. Later, you’ll finish creating the Screenlet
class itself.

Follow these steps to create Entry List Screenlet’s delegate:

1. In the Project navigator, right-click the EntryListScreenlet folder and selectNew File. In the dialog
that appears, fill out each screen as follows:

• Select iOS → Source → Cocoa Touch Class, and clickNext.

512

• Name the class EntryListScreenlet, set it to extend BaseListScreenlet, select Swift for the lan-
guage, and clickNext.

• Make sure the EntryListScreenlet folder and group is selected, as well as the Liferay Guestbook
target (these should be selected by default). Click Create.

2. In the new EntryListScreenlet class, import LiferayScreens, make the class public, and delete any
placeholder comments in the class body.

3. In between the import statements and the class declaration, add the following code:

@objc public protocol EntryListScreenletDelegate : BaseScreenletDelegate {

@objc optional func screenlet(screenlet: EntryListScreenlet,

onEntryListResponse entries: [EntryModel])

@objc optional func screenlet(screenlet: EntryListScreenlet,

onEntryListError error: NSError)

@objc optional func screenlet(screenlet: EntryListScreenlet,

onEntrySelected entry: EntryModel)

}

This delegate is almost identical to that of Guestbook List Screenlet, GuestbookListScreenletDelegate.
The only difference is that EntryListScreenletDelegateworks with entries instead of guestbooks.

The contents of EntryListScreenlet.swift should now look like this:

import UIKit

import LiferayScreens

@objc public protocol EntryListScreenletDelegate : BaseScreenletDelegate {

@objc optional func screenlet(screenlet: EntryListScreenlet,

onEntryListResponse entries: [EntryModel])

@objc optional func screenlet(screenlet: EntryListScreenlet,

onEntryListError error: NSError)

@objc optional func screenlet(screenlet: EntryListScreenlet,

onEntrySelected entry: EntryModel)

}

public class EntryListScreenlet: BaseListScreenlet {

}

Nice work! Now you’re ready to complete the Screenlet class.

49.6 Creating the Screenlet Class

Recall that the Screenlet class is the main component that governs the Screenlet’s behavior. Also recall that a
list Screenlet’s class must do the following:

• Extend BaseListScreenlet. Since BaseListScreenlet provides most of the functionality needed by
Screenlet classes, extending it lets you focus on the functionality unique to your Screenlet.

513

• Define the configurable IBInspectable properties the Screenlet needs.
• Create and return an instance of your Interactor.
• Respond to the Screenlet’s events via the delegate.

The Screenlet class you created when you created the delegate is currently empty. You’ll complete it now.
Follow these steps to complete the EntryListScreenlet class in EntryListScreenlet.swift:

1. Define public, IBInspectable, Int64 properties for the groupId and guestbookId. Although the app
developer can set groupId via liferay-server-context.plist, and the guestbookId is set dynamically,
it’s also a good idea to let the developer set their values in Interface Builder. Give both properties an
initial value of 0. Your Screenlet class should now look like this:

public class EntryListScreenlet: BaseListScreenlet {

@IBInspectable public var groupId: Int64 = 0

@IBInspectable public var guestbookId: Int64 = 0

}

2. Override the createPageLoadInteractormethod to create and returnan instanceof EntryListPageLoadInteractor.
This method includes page and computeRowCount arguments, which you pass to the Interactor’s
constructor along with groupId and guestbookId:

override public func createPageLoadInteractor(

page: Int,

computeRowCount: Bool) -> BaseListPageLoadInteractor {

return EntryListPageLoadInteractor(screenlet: self,

page: page,

computeRowCount: computeRowCount,

groupId: self.groupId,

guestbookId: self.guestbookId)

}

3. Create a computed property to get a reference to EntryListScreenletDelegate:

public var entryListDelegate: EntryListScreenletDelegate? {

return delegate as? EntryListScreenletDelegate

}

You’ll use this property to handle the Screenlet’s events via the delegate’s methods.

4. Override the BaseListScreenletmethods that handle the Screenlet’s events. Because these events
correspond to those handled by your delegate, you’ll call the corresponding delegate methods in these
BaseListScreenletmethods:

• onLoadPageResult: Called when the Screenlet loads a page successfully. Override this
method to call the superclass’s onLoadPageResult method, then call your delegate’s
screenlet(_:onEntryListResponse:) method:

override public func onLoadPageResult(page: Int, rows: [AnyObject], rowCount: Int) {

super.onLoadPageResult(page: page, rows: rows, rowCount: rowCount)

entryListDelegate?.screenlet?(screenlet: self, onEntryListResponse: rows as! [EntryModel])

}

514

• onLoadPageError: Called when the Screenlet fails to load a page. Override this method to call the
superclass’s onLoadPageErrormethod, then call your delegate’s screenlet(_:onEntryListError:)
method:

override public func onLoadPageError(page: Int, error: NSError) {

super.onLoadPageError(page: page, error: error)

entryListDelegate?.screenlet?(screenlet: self, onEntryListError: error)

}

• onSelectedRow: Called when an item is selected in the list. Override this method to call your
delegate’s screenlet(_:onEntrySelected:) method:

override public func onSelectedRow(_ row: AnyObject) {

entryListDelegate?.screenlet?(screenlet: self, onEntrySelected: row as! EntryModel)

}

Awesome! Your Screenlet class is finished. You’re also done with Entry List Screenlet! Now you’re ready
to use Entry List Screenlet alongside Guestbook List Screenlet. The following section of this Learning Path
concludes with both Screenlets working together in harmony.

515

Chapter 50

Using Your Screenlets

Now that you have the Guestbook List and Entry List Screenlets, you’re ready to put them to work. As you’ll
see, using these Screenlets isn’t much more difficult than using Login Screenlet. This is an advantage of
Screenlets; it typically takes only a fewminutes to get them up and running.

To add your Screenlets to the app, you’ll follow these steps:

1. Create the entries scene.
2. Add Guestbook List Screenlet to the guestbooks scene.
3. Add Entry List Screenlet to the entries scene.

If you get confused or stuck at any point in this section of the Learning Path, refer to the finished app
that contains the Screenlet code here in GitHub.

First, you’ll create the entries scene.

50.1 Creating the Entries Scene

Currently, the login and guestbooks scenes are the only two scenes in your app. The login scene contains
Login Screenlet, and you’ll put Guestbook List Screenlet in the guestbooks scene. Before you can use Entry
List Screenlet, youmust create a scene to put it in: the entries scene.

In this article, you’ll use these steps to create the entries scene:

1. Add a new view controller to your storyboard, and create a segue to it from the guestbooks scene.
2. Create the entries scene’s view controller class.

Adding a View Controller to the Storyboard

Follow these steps to create a view controller for the entries scene:

1. Open your storyboard and drag and drop a ViewController from the Object Library to the right of the
guestbooks scene.

2. With the new view controller selected in the storyboard, open the Attributes inspector and uncheck
Adjust Scroll View Insets. This ensures that the scene’s contents are flush with the navigation bar.

517

https://github.com/liferay/liferay-docs/tree/7.0.x/develop/tutorials/code/mobile/ios/screenlets-app/Liferay%20Guestbook

3. Create a segue from the guestbooks scene’s view controller to the new view controller. To do this,
control-drag from the guestbooks scene’s view controller to the new view controller. In the dialog that
appears upon releasing yourmouse button, select show for the segue type. The segue now connects the
two view controllers.

4. Click the new segue, and then enter the Attributes inspector. Enter entriessegue in the Identifier field,
and press return. Later, you’ll use this identifier to perform the segue programmatically when a user
selects a guestbook in Guestbook List Screenlet.

Figure 50.1: The entries scene now exists to the right of the guestbooks scene, with a segue connecting the two scenes.

Great! The entries scene now exists, and there’s a segue going to it from the guestbooks scene. Next,
you’ll create the entries scene’s view controller class.

Creating the Entries Scene's View Controller Class

Each view controller must have a class that controls its behavior. In this section, you’ll create this class for
the entries scene’s view controller. In the storyboard, you’ll then set this class as the view controller’s custom
class.

Follow these steps to create the entries scene’s view controller class:

1. Right-click the Liferay Guestbook folder in Xcode’s project navigator and selectNew File. In the iOS →
Source section of the dialog that appears, select Cocoa Touch Class and clickNext.

2. The next screen in the dialog lets you set the class’s name, subclass, and language. You can also choose
whether to create an XIB file for the class. Enter the following information and clickNext:

• Class: EntriesViewController
• Subclass of: UIViewController
• Also create XIBfile: Unchecked
• Language: Swift

3. The final screen in the dialog lets you set the class’s location, group, and targets. Make sure Liferay
Guestbook is selected for both the Group and Targetsmenus (it should be by default), and click Create.

518

4. EntriesViewController needs a GuestbookModel variable to hold the guestbook it shows entries from.
Add this variable to the top of the class:

var selectedGuestbook: GuestbookModel?

As its name implies, this variable holds the guestbook the user selects in Guestbook List Screenlet.

5. In the storyboard, select the entries scene’s view controller. In the Identity inspector, set
EntriesViewController as the custom class.

Nice work! The entries scene’s view controller now has a class that governs its behavior. Now you’re ready
to put your Screenlets to use.

50.2 Using Guestbook List Screenlet

The steps for using Guestbook List Screenlet are the same as those for using any Screenlet:

1. Insert the Screenlet in the storyboard scene where you want it to appear. You do this by adding an
empty view to the scene, and then setting the Screenlet class as the view’s custom class.

2. Conform the scene’s view controller class to the Screenlet’s delegate protocol. This lets the view
controller respond to the Screenlet’s events.

You’ll follow these steps to use Guestbook List Screenlet in the guestbooks scene. You’ll also take an extra
step to trigger the segue to the entries scene when a user selects a guestbook.

Adding Guestbook List Screenlet to the Guestbooks Scene

Follow these steps to add Guestbook List Screenlet to the guestbooks scene:

1. In your storyboard, first select the guestbooks scene’s view controller. Then drag and drop a plain view
(UIView) from the Object Library to the view controller. In the outline view, this new view should be
nested under the view controller’s existing view.

Figure 50.2: The new view is nested under the view controller’s existing view.

2. Resize the new view to take up all the space below the navigation bar. With the new view selected, open
the AddNewConstraintsmenu at the bottom-right of the canvas. In this menu, set Spacing to nearest
neighbor to 0 on all sides, and click the Add 4 Constraints button.

519

Figure 50.3: Set the new view’s Spacing to nearest neighbor constraints to 0 on all sides.

3. With the new view still selected, open the Identity inspector and set the view’s custom class to
GuestbookListScreenlet. The view now appears as Guestbook List Screenlet in the outline view.

Fantastic! The guestbooks scene now contains Guestbook List Screenlet. Next, you’ll conform the scene’s
view controller class to the Screenlet’s delegate.

Conforming to the Screenlet's Delegate Protocol

Recall that a view controller can respond to a Screenlet’s events by conforming to the Screenlet’s delegate
protocol. To respond to Guestbook List Screenlet’s events, GuestbooksViewController (the guestbooks scene’s
view controller class) must conform to the GuestbookListScreenletDelegate protocol. You created this dele-
gate when creating the Screenlet. This delegate defines methods for responding to the success or failure to
retrieve guestbooks, and the selection of a guestbook in the list.

Follow these steps to conform GuestbooksViewController to the GuestbookListScreenletDelegateprotocol:

1. Import LiferayScreens, and in the class declaration set GuestbooksViewController to adopt the
GuestbookListScreenletDelegate protocol. The first few lines of the class should look like this:

import UIKit

import LiferayScreens

class GuestbooksViewController: UIViewController, GuestbookListScreenletDelegate {...

2. Implement the GuestbookListScreenletDelegate method screenlet(_:onGuestbookListResponse:).
Recall that this method lets you respond to a successful server call. Its arguments include the
GuestbookModel objects that result from such a call. Since the Screenlet already displays these objects,
you don’t need to do anything in this method:

520

func screenlet(screenlet: GuestbookListScreenlet,

onGuestbookListResponse guestbooks: [GuestbookModel]) {

}

3. Implement the GuestbookListScreenletDelegatemethod screenlet(_:onGuestbookListError:). Recall
that this method lets you respond to a failed server call. Its arguments include the NSError object that
results from such a call. You don’t have to do anything in this method, but it’s a good idea to print the
error:

func screenlet(screenlet: GuestbookListScreenlet, onGuestbookListError error: NSError) {

print("Failed to retrieve guestbooks: \(error.localizedDescription)")

}

4. Implement the GuestbookListScreenletDelegatemethod screenlet(_:onGuestbookSelected:). Recall
that this method lets you respond when a user selects a guestbook in the list. It does so by
including the selected GuestbookModel object in its arguments. When a user selects a guestbook,
the app should transition to the entries scene and display that guestbook’s entries with Entry
List Screenlet. To do this, you must trigger the segue to the entries scene by using the method
performSegue(withIdentifier:sender:) with the segue’s ID and the selected GuestbookModel. Recall
that you assigned the segue’s ID, entriessegue, when you created the segue. Including the selected
GuestbookModel lets Entry List Screenlet know which guestbook to display entries from:

func screenlet(screenlet: GuestbookListScreenlet,

onGuestbookSelected guestbook: GuestbookModel) {

performSegue(withIdentifier: "entriessegue", sender: guestbook)

}

5. Next, youmust set the segue’s destination view controller to an EntriesViewController instance, and
set that instance’s selectedGuestbook variable to the selected guestbook. This ensures that Entry List
Screenlet receives the guestbook you sent in performSegue(withIdentifier:sender:).

Youdo this byoverriding the prepare(for:sender:)method. Thismethod is calledby performSegue(withIdentifier:sender:)
before the segue occurs. The prepare(for:sender:) method’s sender parameter receives the guestbook
sent by performSegue(withIdentifier:sender:). Currently, prepare(for:sender:) is commented out
at the bottom of GuestbooksViewController. Xcode created this method for you when you used the
Cocoa Touch Class template to create a view controller class. Uncomment the method, and replace it
with this:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

guard segue.identifier == "entriessegue",

let entriesViewController = segue.destination as? EntriesViewController,

let selectedGuestbook = sender as? GuestbookModel

else {return}

entriesViewController.selectedGuestbook = selectedGuestbook

}

The guard statement ensures that the code only runswhen the segue ID is entriessegue, the destination
view controller is EntriesViewController, and the sender is a GuestbookModel. In other words, the code
only runs in preparation for the segue to the entries scene. The code that runs when that condition is
met is only one line long:

521

entriesViewController.selectedGuestbook = selectedGuestbook

This sets the guestbook received by prepare(for:sender:) to the guestbook in EntriesViewController.
As the variable names indicate, this is the guestbook the user selects in Guestbook List Screenlet.

6. Nowyoumust get aGuestbookList Screenlet reference. You’ll do this by creating anoutlet to the Screen-
let. Return to your storyboard and enter the Assistant editor to display GuestbooksViewController’s
code and the storyboard side by side. WithGuestbookList Screenlet selected in the storyboard,Control-
drag from the Screenlet to the GuestbooksViewController class, just below the class declaration. Release
your mouse button, enter the following information in the dialog that appears, and click Connect:

• Connection: Outlet
• Name: screenlet
• Type: GuestbookListScreenlet
• Storage:Weak

Xcode then adds the following code inside the GuestbooksViewController class:

@IBOutlet weak var screenlet: GuestbookListScreenlet!

7. Use this new screenlet variable to set the view controller as the Screenlet’s delegate. Do this in the
viewDidLoad()method by deleting the placeholder comment and inserting this code below the call to
super.viewDidLoad():

self.screenlet.delegate = self

Great! The guestbooks scene now contains Guestbook List Screenlet. Next, you’ll use Entry List Screenlet
in the entries scene.

50.3 Using Entry List Screenlet
You’ll use Entry List Screenlet the same way you use any Screenlet: insert it in a storyboard scene, then
conform the scene’s view controller class to the Screenlet’s delegate protocol. You’ll follow these steps now to
use Entry List Screenlet in the entries scene.

Adding Entry List Screenlet to the Entries Scene

Follow these steps to add Entry List Screenlet to the entries scene:

1. In your storyboard, select the entries scene’s view controller. Then drag and drop a plain view (UIView)
from the Object Library to the view controller. In the outline view, this new view should be nested
under the view controller’s existing view.

2. Resize the new view to take up all the space below the navigation bar. Then open the AddNewConstraints
menu at the bottom-right of the canvas. In this menu, set Spacing to nearest neighbor to 0 on all sides,
and click the Add 4 Constraints button.

3. With the new view still selected, open the Identity inspector and set the view’s custom class to
EntryListScreenlet. The view now appears as Entry List Screenlet in the outline view.

Great! Theentries scenenowcontainsEntry List Screenlet. Next, you’ll conformthe scene’s viewcontroller
class to the Screenlet’s delegate.

522

Figure 50.4: The new view is nested under the view controller’s existing view.

Figure 50.5: Set the new view’s Spacing to nearest neighbor constraints to 0 on all sides.

Conforming to the Screenlet's Delegate Protocol

Torespond toEntryList Screenlet’s events, EntriesViewControllermust conformto the EntryListScreenletDelegate
protocol. You created this delegate when creating the Screenlet. This delegate defines methods for respond-
ing to the success or failure to retrieve entries, and the selection of an entry in the list.

Follow these steps to conform EntriesViewController to the EntryListScreenletDelegate protocol:

1. Import LiferayScreens, and in the class declaration set EntriesViewController to adopt the
EntryListScreenletDelegate protocol. The first few lines of the class should look like this:

import UIKit

import LiferayScreens

class EntriesViewController: UIViewController, EntryListScreenletDelegate {...

2. Implement the EntryListScreenletDelegatemethod screenlet(_:onEntryListResponse:). Recall that
this method lets you respond to a successful server call. Its arguments include the EntryModel objects

523

that result from such a call. Since the Screenlet already displays these objects, you don’t need to do
anything in this method:

func screenlet(screenlet: EntryListScreenlet, onEntryListResponse entries: [EntryModel]) {

}

3. Implement the EntryListScreenletDelegatemethod screenlet(_:onEntryListError:). Recall that this
method lets you respond to a failed server call. Its arguments include the resulting NSError object. You
don’t have to do anything in this method, but it’s a good idea to print the error:

func screenlet(screenlet: EntryListScreenlet, onEntryListError error: NSError) {

print("Failed to retrieve guestbook entries: \(error.localizedDescription)")

}

4. Implement the EntryListScreenletDelegatemethod screenlet(_:onEntrySelected:). Recall that this
method lets you respond when a user selects an entry in the list. It does so by including the selected
EntryModel object in its arguments. Since there’s currently not a scene or other action that handles
detailed information about an entry, you don’t need to do anything in this method:

func screenlet(screenlet: EntryListScreenlet, onEntrySelected entry: EntryModel) {

}

5. Now youmust get an Entry List Screenlet reference. You’ll do this by creating an outlet to the Screenlet.
Return to your storyboard and enter the Assistant editor to display EntriesViewController’s code and
the storyboard side by side. With Entry List Screenlet selected in the storyboard, Control-drag from
the Screenlet to the EntriesViewController class, just below the class declaration. Release your mouse
button, enter the following information in the dialog that appears, and click Connect:

• Connection: Outlet
• Name: screenlet
• Type: EntryListScreenlet
• Storage:Weak

Xcode then adds the following code inside the EntriesViewController class:

@IBOutlet weak var screenlet: EntryListScreenlet!

6. Use this new screenlet variable to set the view controller as the Screenlet’s delegate. Do this in the
viewDidLoad()method by deleting the placeholder comment and inserting this code below the call to
super.viewDidLoad():

self.screenlet.delegate = self

7. Next, you must set the guestbook the Screenlet retrieves entries from. To do this, set the Screen-
let’s guestbookId property to the selected guestbook’s ID, immediately below the Screenlet’s delegate
assignment in the viewDidLoad()method:

524

self.screenlet.guestbookId = selectedGuestbook!.guestbookId

8. Lastly, you must set the selected guestbook’s name to the navigation bar’s title. This lets the scene
reflect the guestbook selection in the UI. To do this, add the following line of code at the end of the
viewDidLoad()method:

self.navigationItem.title = selectedGuestbook!.name

Your viewDidLoad()method should now look like this:

override func viewDidLoad() {

super.viewDidLoad()

self.screenlet.delegate = self

self.screenlet.guestbookId = selectedGuestbook!.guestbookId

self.navigationItem.title = selectedGuestbook!.name

}

Now you’re ready to test your handiwork. Make sure your portal containing the Guestbook portlet is
running, and that the portlet contains a couple guestbooks that have entries. Then run the app and log in
with your credentials. You should see the list of guestbooks displayed by Guestbook List Screenlet. Selecting
a guestbook in the list takes you to the entries scene, which uses Entry List Screenlet to display a list of that
guestbook’s entries. Pressing the back button returns you to the guestbooks scene, where you can select a
different guestbook.

Figure 50.6: After login, Guestbook List Screenlet displays the list of guestbooks from the portlet.

Figure 50.7: Selecting a guestbook displays a list of that guestbook’s entries via Entry List Screenlet.

525

Congratulations! Now you know how to use Liferay Screens and create your own Screenlets. This opens
up a world of possibilities for developing apps that leverage Liferay DXP. Although you learned a great deal
in this Learning Path, there’s still more. You can customize your Screenlet’s appearance, package Screenlets
andThemes for redistribution, and even addmultiple actions to a Screenlet. These topics, andmore, are
covered in the tutorials on iOS apps with Liferay Screens.

526

Chapter 51

Tooling

Liferay is very flexible when it comes to supporting different development tooling. Instead of being pi-
geonholed into using a specific tool, Liferay works with whatever tools you like to use. This set of tutorials
describes some of the more popular tools that are used to develop for Liferay. If you’re a newbie looking for
the best development tool for Liferay, or even a seasoned veteran looking for a tool youmay like more than
your current setup, this section will answer your tooling questions.

527

Chapter 52

Liferay @ide@

Liferay @ide@ provides an all-in-one, integrated development environment based on Eclipse that supports
development for Liferay DXP.@ide@ includes Liferay IDE plugins and additional enterprise-only features
like

• Kaleo Designer for Java
• WebSphere support
• Pre-installed Liferay Digital Enterprise server

@ide@ is also designed to work with build tools such as Gradle andMaven, and configuration tools like
BndTools.

Liferay @ide@makes Liferay development easier. There are editors for Service Builder files, workflow
definitions, layout templates, andmore. You’ll find wizards for creating every kind of Liferay project there is,
snippet for tag libraries, and auto-deploy of changes to plugins.

In this section of tutorials, you’ll learn how to install Liferay@ide@ and develop/manage Liferaymodules
using LiferayWorkspace and other technologies.

52.1 Installing Liferay @ide@
Liferay @ide@ is a plugin for Eclipse that provides many Liferay-specific features and additional enterprise
only features. You can install it into your existing Eclipse environment, or Liferay provides a bundled version.
In this tutorial, you’ll learn the different methods available for installing Liferay @ide@. Before beginning
the installation process, view@ide@’s Compatibility Matrix to get acquainted with its supported Liferay
versions and application servers.

Important: If you’re upgrading your Liferay@ide@ instance to version 3.1, youmust install a new@ide@
bundle. You cannot install an update for this upgrade. Your LiferayWorkspace instance and its contents are
backwards compatible and can be copied to the new 3.1 version.

Install the Liferay @ide@ Bundle

1. Download and install Java. Liferay DXP runs on Java, so you’ll need it to run everything else. Because
you’ll be developing apps for Liferay DXP in Liferay@ide@, the Java Development Kit (JDK) is required.
It is an enhanced version of the Java Environment used for developing new Java technology. You can
download the Java SE JDK from the Java Downloads page.

529

https://web.liferay.com/group/customer/dxp/support/compatibility-matrix/developer-tools
http://java.oracle.com
http://www.oracle.com/technetwork/java/javase/downloads/index.html

2. Download the Liferay @ide@ installer. Be sure to choose the installer appropriate for your operating
system (e.g.,Windows,MacOS, Linux).
Youmay be prompted for your liferay.com username and password before downloading the Liferay
DXP installer. Since @ide@ includes access to Liferay DXP, youmust verify that you have rights to use
it.
Your credentials are not saved locally; they’re saved as a token in the ~/.liferay folder. The token
is used by your @ide@’s LiferayWorkspace if you ever decide to redownload a Liferay DXP bundle.
Furthermore, the Liferay DXP bundle that was downloaded in your workspace is also copied to your
~/.liferay/bundles folder, so if you decide to initialize another Liferay DXP instance of the same
version, the bundle is not re-downloaded. See the Adding a Liferay Bundle to aWorkspace for more
information on this topic.
Important:The token generator sometimes has issues generating a token for workspaces built behind
a proxy. If you’re unable to automatically generate a workspace token, you can generate one manually.

3. Run the installer. You may need to allow permission for the installer to run, depending on your
operating system and where you want to install it.

4. Click Next to begin the installation process. Select the installation folder for your Liferay @ide@
instance. Then clickNext.

Figure 52.1: Choose the folder your @ide@ instance should reside.

5. Liferay @ide@ provides Liferay Workspace by default, which is a developer environment used to
build andmanage Liferay DXP projects. The installer automatically installs LiferayWorkspace and its
dedicated command line tool (Blade CLI).
You’ll need to choose the Liferay bundle you plan to use in your LiferayWorkspace: Liferay DXP Bundle
or Community Edition Bundle. Then chooseNext.
If you selected Liferay DXPBundle, you’re also required to provide your liferay.com email and password.

6. ClickNext to finish the installation process for your @ide@ instance.

Congratulations! You’ve installed Liferay @ide@! It’s now available in the folder you specified. To run
@ide@, execute the DeveloperStudio executable. A LiferayWorkspace has also been initialized in that same
folder. For more information on the LiferayWorkspace installation related to this installation process, see
the Installing LiferayWorkspace section.

530

https://web.liferay.com/group/customer/dxp/downloads/developer-tools

Figure 52.2: Choose the Liferay bundle you plan to use.

Install Liferay @ide@ into Eclipse Environment

To install @ide@ using an update URL, follow these steps:

1. In Eclipse, go toHelp → Install New Software….

2. In theWork with field, copy in the URL http://releases.liferay.com/tools/ide/latest/stable/.

3. You’ll see the @ide@ components in the list below. Check them off and clickNext.

4. Accept the terms of the agreements. ClickNext, and@ide@ is installed. Like other Eclipse plugins,
youmust restart Eclipse to use them.

Liferay @ide@ is now installed in your existing Eclipse environment.

Install Liferay @ide@ into Eclipse from a ZIP File

To install @ide@ using a Zip file, follow these steps:

1. Go to the Liferay @ide@ downloads page. From the drop-downmenu, selectDeveloper Studio Update
Site Zip and clickDownload.

2. In Eclipse, go toHelp → Install New Software….

3. In the Add dialog, click the Archive button and browse to the location of the downloaded Liferay @ide@
Update Site .zip file. Then pressOK.

4. You’ll see the @ide@ components in the list below. Check them off and clickNext.

5. Accept the terms of the agreements and clickNext, andDeveloper Studio is installed. Like other Eclipse
plugins, youmust restart Eclipse to use them.

Awesome! You’ve installed Liferay @ide@ in your existing Eclipse environment.

531

https://web.liferay.com/group/customer/dxp/downloads/developer-tools

Figure 52.3: Make sure to check all the @ide@ components you wish to install.

Generating a Workspace Token Manually

If you run into any issues with generating your token automatically, you can follow the steps below to
manually create one.

1. Navigate to www.liferay.com and log in to your account.

2. Click the Options button () and select Account Home.

3. Select Account Settings from the left menu.

4. Click Authorization Tokens from the right menu under the Miscellaneous heading.

5. Select Add Token, give it a device name, and click Generate. The device name can be set to any string; it’s
for bookkeeping purposes only.

6. Create a file named ~/.liferay/token and copy the generated token into that file.

Make sure there are no new lines or white space in the file. It should only be one line.

You’ve successfully generated your tokenmanually and it’s now available for your installer to access. If
you haven’t run the installer, you can do so now. If you’ve already run the installer, you can set the DXP
bundle to download in the gradle.properties file of your workspace. See the Adding a Liferay Bundle to a
Workspace tutorial for details.

532

https://www.liferay.com/

Figure 52.4: You can manually create your workspace token in the Authorization Tokens menu.

533

Figure 52.5: The generated token is available to copy.

52.2 Creating a Liferay Workspace with Liferay @ide@
In this tutorial, you’ll learn how to generate a LiferayWorkspace using Liferay @ide@,which runs on the
Blade CLI behind the scenes. Liferay @ide@ gives you a graphical interface instead of the command prompt,
which can streamline your workflow. To learnmore about LiferayWorkspaces, visit its dedicated tutorial
section.

!PVideoThumbnail
Before creating your LiferayWorkspace, you should understand the available Liferay DXP perspectives

specifically designed for Liferay DXP development. You’ll notice in the Perspectives view the LiferayWorkspace
and Liferay perspectives. If you plan on using a Liferay Workspace for your Liferay DXP development,
you should select the LiferayWorkspace perspective. This offers Gradle related development tools that are
helpful when using a Liferay workspace. The Liferay perspective is geared towards developers who are using
Ant-based development tools such as the Plugins SDK.

To create a LiferayWorkspace in @ide@, select File →New → LiferayWorkspace Project.

Note: Creating or importing a LiferayWorkspace in IDE leverages Gradle scripts provided by the Build-
ship plugin. When using @ide@ 3.1.x, you should be using Buildship 2.1.x. If you leverage higher versions
of Buildship (e.g., 2.2.x), @ide@ cannot successfully create or import a workspace.

A New LiferayWorkspace dialog appears, presenting several configuration options. Follow the instruc-
tions below to create your workspace.

1. Give your workspace a name.

2. Choose the location where you’d like your workspace to reside. Checking the Use default location
checkbox places your LiferayWorkspace in the Eclipse workspace you’re working in.

3. Check theDownload Liferay bundle checkbox if you’d like to auto-generate a Liferay instance in your
workspace. You’ll be prompted to name the server, if selected. This Liferay bundle is generated the
same way as described in the previous section.

534

https://portal.liferay.dev/documents/113763090/113920063/vid-ide-thumbnail.png
https://projects.eclipse.org/projects/tools.buildship
https://projects.eclipse.org/projects/tools.buildship

Figure 52.6: By selecting Liferay Workspace, you begin the process of creating a new workspace for your Liferay projects.

Note: If you'd like to configure a pre-existing Liferay bundle to your

workspace, you can create a directory for the bundle in your workspace and

configure it in the workspace's `gradle.properties` file by setting the

`liferay.workspace.home.dir` property.

4. Check the Add project to working set checkbox if you’d like the workspace to be a part of a larger working
set you’ve already created in @ide@. For more information on working sets, visit Eclipse Help.

5. Click Finish to create your LiferayWorkspace.

A dialog appears prompting you to open the LiferayWorkspace perspective. Click Yes, and your perspec-
tive will switch to LiferayWorkspace.

Note: You can also create a LiferayWorkspace during the initial start-up of a Liferay Developer Studio
instance.

Awesome! You’ve successfully created a Liferay Workspace in Liferay @ide@! If you’re using Liferay
Developer Studio, you can also create a workspace during initial start-up.

535

http://help.eclipse.org/mars/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fcworkset.htm

Figure 52.7: Liferay @ide@ provides an easy-to-follow menu to create your Liferay Workspace.

Liferay Workspace Settings in @ide@

The Liferay Workspace perspective is intended for Gradle development for 7.0 modules. Since Liferay
Workspaces are used for Gradle based development and the Liferay Plugins perspective is intended for the
Plugins SDK and Ant based development, the two perspectives are independent of each other.

You’ll find your new workspace in the Project Explorer and your Liferay server (if you created it) in the
Servers menu. It’s important to note that an Eclipse workspace can only have one LiferayWorkspace project.

You can configure your workspace’s module presentation by switching between the defaultHierarchical
or Flat views. To do this, navigate to the Project Explorer’s ViewMenu (), select Projects Presentation and then
select the presentation mode you’d like to display. The Hierarchical view displays subfolders and subprojects
under the workspace project, whereas the Flat view displays the workspace’s modules separately from the
workspace.

If you’ve already created a LiferayWorkspace and you’d like to import it into your existing @ide@, you
can do so by navigating to File → Import → Liferay → LiferayWorkspace Project. Then clickNext and browse for
your workspace project. Once you’ve selected you workspace, click Finish.

Congratulations! You’ve learned how to create and configure a LiferayWorkspace using Liferay @ide@.
Now that your workspace is created, you can begin creating Liferay plugins.

!VVideo Tutorial

536

https://portal.liferay.dev/documents/113763090/113920063/getting-started-with-liferay-ide.mp4%7Chttps://portal.liferay.dev/documents/113763090/113920063/getting-started-with-liferay-ide.webm

Figure 52.8: The Liferay Workspace perspective is preferred for 7.0 and OSGi module development.

52.3 Setting Proxy Requirements for Liferay @ide@

If you have proxy server requirements and want to configure your http(s) proxy
to work with Liferay @ide@, follow the instructions below.

1. Navigate to Eclipse’sWindow → Preferences → General →Network Connectionsmenu.

2. Set the Active Provider drop-down selector toManual.

3. Under Proxy entries, configure both proxy HTTP and HTTPS by clicking the field and selecting the Edit
button.

4. For each schema (HTTP and HTTPS), enter your proxy server’s host, port, and authentication settings
(if necessary).

Note: Do not leave whitespace at the end of your proxy host or port settings.

5. Once you’ve configured your proxy entry, clickOK →OK.

537

Figure 52.9: An @ide@ workspace only supports one Liferay Workspace project. If you create another, you’ll be given an error message.

538

Figure 52.10: The Hierarchical project presentation mode is set, by default.

If you’re working with a LiferayWorkspace in @ide@, you’ll need to configure your proxy settings for
that environment too. See the Setting Proxy Requirements for LiferayWorkspace for more details.

Awesome! You’ve successfully configured Liferay @ide@’s proxy settings!

Additional Proxy Settings

Some Eclipse plugins do not properly check the core.net proxy infrastructure when setting proxy settings
viaWindow → Preferences → General →Network Connections. Therefore, you may need to configure additional
proxy settings.

To do so, open the eclipse.ini file associated with your Eclipse installation and add the following entries:

-vmargs

-Dhttp.proxyHost=www.somehost.com

-Dhttp.proxyPort=1080

-Dhttp.proxyUser=userId

-Dhttp.proxyPassword=somePassword

-Dhttps.proxyHost=www.somehost.com

-Dhttps.proxyPort=1080

-Dhttps.proxyUser=userId

-Dhttps.proxyPassword=somePassword

After saving the file, restart Eclipse. Now your additional proxy settings are applied!

52.4 Updating Liferay @ide@

If you’re already using Liferay @ide@ but need to update your environment, follow the steps below:

539

Figure 52.11: You can import an existing Liferay Workspace into your current @ide@ session.

1. In Liferay @ide@, go toHelp → Install New Software….

2. In theWork with field, copy in the URL http://releases.liferay.com/tools/ide/latest/stable/.

3. You’ll see the @ide@ components in the list below. Check them off and clickNext.

4. Accept the terms of the agreements. ClickNext, and@ide@ is updated. Youmust restart @ide@ for
the updates to take effect.

You’re now on the latest version of Liferay @ide@!

52.5 Creating Modules with Liferay @ide@

@ide@ provides a Module Project Wizard for users to create a variety of different module projects. You can
create a new Liferay module project by navigating to File →New → LiferayModule Project.

540

Figure 52.12: You can configure your proxy settings in @ide@’s Network Connections menu.

You’re given options for project name, location, build type, and template type. You can build your
project using Gradle or Maven. If you’re unsure for which template type to choose, see the Project Templates
reference section. ClickNext and you’re given additional configuration options for a component class.

You can specify your component class’s name, package name, and its properties. The properties you
assign are the ones found in the @Component annotation’s property = {...} assignment.

Once you’ve configured your module project’s component class, click Finish to create your project.

Creating Component Classes

You can also create a new component class for a pre-existing module project. Navigate to File →New → Liferay
Component Class. This is a similar wizard to the previous component class wizard, except you can select a
component class template. There are many templates in the Component Class Template list:

• Auth Failure: processes a verify login failure
• AuthMax Failure: processes maximum number of login failures
• Authenticator: authenticates processing
• Friendly URLMapper: processes Friendly URLs
• GOGOCommand: creates a custom Gogo command
• Indexer Post Processor: creates a new Indexer Post Processor
• Login Pre Action: creates a login pre action

541

Figure 52.13: Make sure to check all the @ide@ components you wish to install.

• Model Listener: sets a model listener
• Poller Processor: creates a new poller processor
• Portlet: creates a new portlet class file
• Portlet Action Command: creates a new portlet action command
• Portlet Filter: creates a new portlet filter
• Rest: calls and wraps inner service in the way of Rest
• ServiceWrapper: creates a new service wrapper
• Struts in Action: creates a new struts action
• Struts Portlet Action: creates a new struts portlet action

Possible Dependency Issues

When selecting the Authenticator, Portlet Action Command, Rest, or Service Wrapper templates, you may
run into some dependency issues that could cause errors in your project. There is a set of steps outlined
below that you should follow, with sub-steps for each of the four templates that could cause problems.

1. Open the module project’s build.gradle file.

2. Check whether the appropriate dependencies exist. These are outlined below.

3. Right-click your project and select Gradle → Refresh Gradle Project.

4. If you’re using the Portlet Action Command template, you’ll also need to change the component class dec-
laration from implementing the FreeMarkerPortlet class to extending it. For instance, your *Portlet
component class should have the following declared:

542

Figure 52.14: When selecting New → Liferay Module Project, a Module Project Wizard appears.

YourPortletClass extends FreeMarkerPortlet

The dependencies to check for when using each template are outlined below:
Authenticator

• compile com.liferay.portal:com.liferay.portal.kernel:VERSION

• compile org.osgi:org.osgi.service.component.annotations:VERSION

Portlet Action Command

• compile javax.portlet:portlet-api:VERSION

• compile javax.servlet:javax.servlet-api:VERSION

• compile org.osgi:org.osgi.service.component.annotations:VERSION

• compile com.liferay.portal:com.liferay.portal.kernel:VERSION

• compile com.liferay.portal:com.liferay.util.bridges:VERSION

• compile com.liferay.portal:com.liferay.util.taglib:VERSION

Rest

• compile javax.ws.rs:javax.ws.rs-api:VERSION

ServiceWrapper

543

Figure 52.15: Specify your component class’s details in the Portlet Component Class Wizard.

• Theservicewrapper classbeingused. For example, if you’reusing the BookmarksEntryLocalServiceWrapper,
the following dependency would be required:

compile com.liferay:com.liferay.bookmarks.api:VERSION

Make sure the replace the VERSION text with the appropriate version for each specified dependency.
Once you’ve created your module project, you can configure your project’s presentation in the @ide@’s

Project Explorer. To change the project’s presentation, select the defaultHierarchical or Flat views. To do this,
navigate to the Project Explorer’s ViewMenu (), select Projects Presentation and then select the presentation
mode you’d like to display. The Hierarchical view displays subfolders and subprojects under the project,
whereas the Flat view displays the modules separately from their project.

@ide@ also provides a method to import existing module projects. You can import a module project
by navigating to File → Import → Liferay → LiferayModule Project(s). Then point to the project location and click
Finish.

You now have the knowledge to create a Liferay module project from Liferay @ide@. Now go out there
and get stuff done!

52.6 Creating Themes with Liferay @ide@
Liferay @ide@ lets you create and configure Liferay theme projects. You can create a standalone theme or
in a LiferayWorkspace. You can even create a Gradle or Maven based theme! Read on to learnmore about
creating themes in @ide@.

544

Figure 52.16: The Hierarchical project presentation mode is set, by default.

1. In @ide@, navigate to File →New → LiferayModule Project.

2. In the New Liferay Module Project wizard, give your project a name and select the theme project
template. Also choose your theme’s build type by selecting either gradle-module ormaven-module.

3. Select Finish.

That’s it! You’ve created a theme project in @ide@!
If you’ve configured a Liferay Workspace in your @ide@ instance, your theme is available in the

workspace’s wars folder by default. If you don’t have a workspace configured in @ide@, it’s available in the
root of @ide@’s Project Explorer.

Note that themes created in @ide@ follow aWAR-style layout. This is the default layout of themes in 7.0.
Although the wizard can be misleading by calling the theme a newmodule project, it is aWAR.

To modify a theme created in @ide@,mirror the folder structure of the files you wish to change and
copy them into your theme’s webapp folder.

Under the hood, @ide@ is using the theme project template. If you’re interested in creating Liferay
themes using the Liferay Theme Generator, see its dedicated tutorial. For more general information on
Liferay themes, visit their dedicated tutorial sectionThemes and Layout Templates.

52.7 Deploying Modules with Liferay @ide@
Deployingmodules in Liferay @ide@ is a cinch. Before deploying your module,make sure you have a Liferay
server configured in @ide@. To see how to do this, see the Installing a Server in Liferay @ide@

There are two ways to deploy a module to your Liferay server. You should start your Liferay server before
attempting to deploy to it.

545

Figure 52.17: Select the Liferay Module Project(s) to import a module project.

1. Select the module from the Package Explorer window and drag it to your Liferay server in the Servers
window.

2. Right-click the server from the Servers window and select Add and Remove…. Add the module(s) you’d
like to deploy from the Available window to the Configured window. Then click Finish.

Note: For a legacy Maven application, you were able to deploy it by right-clicking it in the Package
Explorer and selecting Liferay →Maven → liferay:deploy. This is no longer possible because Liferay’s Maven
archetypes no longer rely on the legacy liferay-maven-plugin. To deploy Maven projects in @ide@,make
sure to follow the methods described above.

That’s it! Once your module is deployed to the Liferay server, you can verify its installation in @ide@’s
Console window.

52.8 Managing Module Projects with Liferay @ide@
Liferay @ide@ provides the ability to manage Liferay module projects from a GUI. Before you begin learning
about managing your modules from Liferay @ide@, you should make sure a Liferay server is configured in
your Eclipse workspace so you can deploy and run your projects. You can learn how to create a Liferay bundle
and link it to your Liferay workspace in the Creating a LiferayWorkspace with Liferay @ide@ tutorial.

546

Figure 52.18: Use the theme project template to create a Liferay theme in @ide@.

Once you’ve createdmodules, you can deploy them using Liferay @ide@. First, make sure your Liferay
server is started by clicking the Start Server button (). Then navigate to your module project from the
Project Explorer and drag-and-drop the project onto the configured Liferay bundle in the Serversmenu. If at
any time you’d like to stop your Liferay server, click the Stop Server button (). Awesome! You’ve deployed a
module to your running Liferay instance!

For the deployed module project, you can check if it has been deployed successfully by using Gogo Shell.
Right-click the started portal in server view and selectOpen Gogo Shell.

A Gogo shell terminal appears, allowing you to enter Gogo commands to inspect your Liferay instance
and the modules deployed to it. Enter the lb command to view a list of deployed modules. If the project
status is active, then it deployed successfully.

Since the LiferayWorkspace perspective in @ide@ is Gradle-based, you have some additional Gradle
features you can take advantage of. The Gradle Tasks toolbar presents Gradle commands for your workspace
that you can execute with a click of the mouse.

You can also access various Gradle build operations intended for Liferay module projects. Right-click
your module project and select Liferay → Gradle and then the build command you want to execute.

To learn more about Gradle development in Liferay @ide@, see the Using Gradle in Liferay @ide@
tutorial.

Excellent! You’ve learned how to manage your Gradle-based LiferayWorkspace using Liferay @ide@.

547

Figure 52.19: You can use the drag-and-drop method to deploy your module to Liferay DXP.

52.9 Installing a Server in Liferay @ide@

Installing a server in Liferay @ide@ is easy. In just a few steps you’ll have your server up and running. Follow
these steps to install your server:

1. In the Servers view, click theNo Servers are available link. If you already have a server installed, you can
install a new server by right-clicking in the Servers view and selectingNew → Server. This brings up a
wizard that walks you through the process of defining a new server.

2. Select the type of server you would like to create from the list of available options. For a standard
server, open the Liferay, Inc. folder and select the Liferay 7.x option. You can change the server name to
something more unique too; this is the name displayed in the Servers view. Then clickNext. If you’re
creating a server for the first time, continue to the next step.

Note: If you’ve already configured previous Liferay servers, you’ll be provided the Server runtime environ-
ment field, which lets you choose previously configured runtime environments. If you want to re-add
an existing server, select one from the dropdownmenu. You can also add a new server by selecting Add,
or you can edit existing servers by selecting Configure runtime environments. Once you’ve configured the

548

Figure 52.20: Using the this deployment method is convenient when deploying multiple module projects.

Figure 52.21: Select Open Gogo Shell to open a terminal window in @ide@ using Gogo shell.

549

Figure 52.22: You can check to see if your module deployed successfully to Liferay using the Gogo shell.

Figure 52.23: The Gradle Task toolbar offers Gradle tasks and their descriptions, which can be executed by double-clicking them.

Figure 52.24: You can execute build operations by right-clicking the Gradle project in the Project Explorer.

550

Figure 52.25: Choose the type of server you want to create.

551

server runtime environment, select Finish. If you selected an existing server, your server installation is
finished; you can skip steps 3-5.

3. Enter a name for your server. This is the name for the Liferay DXP runtime configuration used by
@ide@. This is not the display name used in the Servers tab.

4. Browse to the installation folder of the Liferay DXP bundle. For example, C:\liferay-ce-portal-7.0-
ga4\tomcat-8.0.32.

Figure 52.26: Specify the installation folder of the bundle.

5. Select a runtime JRE and click Finish. Your new server appears under the Servers view.

Your server is now available in Liferay @ide@!
For reference, here’s how the Liferay DXP server buttons work with your Liferay DXP instance:

552

Figure 52.27: Your new server appears under the Servers view.

• Start (): Starts the server.
• Stop (): Stops the the server.
• Debug (): Starts the server in debugmode. For more information on debugging in Eclipse, see the
Eclipse Debugging article.

Now you’re ready to use your server in Liferay @ide@!

52.10 Searching Liferay DXP Source in Liferay @ide@

In Liferay Liferay DXP, you can search through Liferay DXP’s source code to aid in the development of
your project. Liferay provides great resources to help with development (e.g., official documentation,
docs.liferay.com, sample projects, etc.), but sometimes, searching through Liferay’s codebase (i.e., platform
and official apps) for patterns is just as useful. For example, if you’re creating a custom app that extends a
class provided in Liferay’s portal-kernel JAR, you can inspect that class and research how it’s used in other
areas of Liferay DXP’s codebase.

To do this, you must be developing in a Liferay Workspace. Liferay Workspace is able to provide this
functionality by targeting a specific Liferay DXP version, which indexes the configured Liferay DXP source
code to provide advanced search. See the Managing the Target Platform in LiferayWorkspace tutorial for
more information on how this works.

Workspace does not perform portal source indexing by default. Youmust enable this functionality by
adding the following property to your workspace’s gradle.properties file:

target.platform.index.sources=true

Note: Portal source indexing is disabled in Gradle workspace version 2.0.3+ (Target Platform plugin
version 2.0.0+).

In this tutorial, you’ll explore three use cases where advanced search would be useful.

• Search class hierarchy
• Search declarations
• Search references

553

https://eclipse.org/community/eclipse_newsletter/2017/june/article1.php
https://docs.liferay.com/

These examples are just a small subset of what you can search in Liferay @ide@. See Eclipse’s documen-
tation on Java Search for a comprehensive guide.

Search Class Hierarchy

Inspecting classes that extend a similar superclass can help you find useful patterns and examples for how
you can develop your own app. For example, suppose your app extends the MVCPortlet class. You an search
classes that extend that same class in @ide@ by right-clicking the MVCPortlet declaration and selectingOpen
Type Hierarchy. This opens a window that lets you inspect all classes residing in the target platform that
extend MVCPortlet.

Figure 52.28: Browse the Type Hierarchy window and open the provided classes for examples on how to extend a class.

Great! Now you can search for all extensions and implementations of a class/interface to aid in your
quest for developing the perfect app.

Search Method Declarations

Sometimes you want a search to be more granular, exploring the declarations of a specific method provided
by a class/interface. Liferay @ide@’s advanced search has no limits; LiferayWorkspace’s target platform
indexing provides method exploration too!

Suppose in the MVCPortlet class you’re extending, you’d like to search for declarations of its doView
method you’re overriding. You can do this by right-clicking the doViewmethod declaration in your custom
app’s class and selectingDeclarations →Workspace.

Figure 52.29: All declarations of the method are returned in the Search window.

The rendered Search window displays the other occurrences in the target platformwhere that method
was overridden.

Search Annotation References

Annotations used in Liferay DXP’s source code can sometimes be cryptic. With the ability to search where
these types of annotations reside in Liferay’s target platform, you can find how they could be used in your
own app.

For example, youmay find some official documentation on using the @Reference annotation in an OSGi
module and implement it in your custom app. It could be useful to reference real world examples in Liferay

554

http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fconcept-java-search.htm&resultof=%22%6a%61%76%61%22%20
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html

DXP’s apps to check how it was used elsewhere. You could search for this by right-clicking the annotation in
a class and selecting References →Workspace.

Figure 52.30: All matching annotations are displayed in the Search window.

The rendered Searchwindow displays the other occurrences in the target platformwhere that annotation
was used.

Excellent! You now have the tools to search the configured target platform specified in your Liferay
Workspace!

52.11 Debugging Liferay DXP Source in Liferay @ide@
You can use Liferay Liferay DXP to debug Liferay DXP source code to help resolve errors. Debugging Liferay
DXP code follows most of the same techniques associated with debugging in Eclipse. If you need some help
with general debugging, you can visit Eclipse’s documentation. Here’s some helpful Eclipse links to visit:

• Debugger
• Local Debugging
• Remote Debugging

There are a couple Liferay-specific configurations to know before debugging Liferay DXP code:

• Configure your target platform.
• Configure a Liferay server and start it in debugmode.

Let’s explore these Liferay-specific debugging configurations.

Configure Your Target Platform

To configure your target platform, you must be developing in a Liferay Workspace. Liferay Workspace
is able to provide debugging capabilities by targeting a specific Liferay DXP version, which indexes the
configured Liferay DXP source code. Youmust enable this functionality by adding the following property to
your workspace’s gradle.properties file:

target.platform.index.sources=true

Note: Portal source indexing is disabled in Gradle workspace version 2.0.3+ (Target Platform plugin
version 2.0.0+).

Without specifying a target platform, Liferay DXP’s source code cannot be accessed by @ide@. See the
Managing the Target Platform for LiferayWorkspace tutorial for more information on how this works.

Important:The target platform shouldmatch the Liferay server version you configure in the next section.
Once the target platform is configured in your workspace, Eclipse has access to all of Liferay DXP’s source

code. Next, you’ll configure a Liferay server and learn how to start it in Debugmode.

555

http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fcdebugger.htm&cp=1_2_9
http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fclocdbug.htm&cp=1_2_11
http://help.eclipse.org/oxygen/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Fconcepts%2Fcremdbug.htm&cp=1_2_12

Configure a Liferay Server and Start It in Debug Mode

Configuring your target platform gives Eclipse Liferay DXP’s source code to reference. Now you must
configure a Liferay server matching the target platform version so you can deploy the custom code you wish
to debug.

1. Set up your Liferay DXP server to run in @ide@. See the Installing a Server in Liferay @ide@ for more
details.

2. Start the server in debug mode. To do this, click the debug button in the Servers pane of Liferay
@ide@.

Figure 52.31: The red box in this screenshot highlights the debug button. Click this button to start the server in debug mode.

Awesome! You’re now equipped to begin debugging in Liferay @ide@!

52.12 Enabling Code Assist Features in Your Project

Liferay @ide@’s integration of Tern provides many valuable front-end and back-end development tools for
code inference and completion. This tutorial covers how to enable Tern features for your projects.

Before beginning this tutorial, make sure your @ide@ instance has the necessary development tooling
and Tern integration installed. To to this, go toHelp → Installation Details and search for Liferay IDE AlloyUI
under Installed Software. If you have it installed, you can continue to the Setting Up Tern Features section; if you
do not, you’ll need to install it by following the instructions below.

Navigate toHelp → Install New Software… and paste the following link into theWork with field:

http://releases.liferay.com/tools/ide/latest/stable/

Make sure the Liferay IDE AlloyUI option is checked and finish the installation process.
Now that the necessary features are installed, follow the steps below to learn how to enable Tern’s code

assist features in your project.

Setting Up Tern Features

Tern features are enabled on a project-by-project basis. By default, Tern is already enabled for Liferay portlet
plugins. For all other project types, you’ll need to follow the steps below:

1. Right-click on your project and select Configure → Convert to Tern Project.

Your project is now configured to use Tern. Now that you have your project configured, you need to
enable the modules you want to use for your project.

2. Right-click your project and select Properties.

556

http://ternjs.net/

Figure 52.32: The Liferay IDE AlloyUI option is actually a sub-option listed within the Liferay IDE option.

3. Select Tern →Modules.

Here you’ll find a list of all the available Tern modules you currently have installed. To use AlloyUI
features, you’ll need the AlloyUI, Browser, JSCS, Liferay, and YUI Librarymodules enabled. The figure
below shows the TernModules menu.

4. Check any additional modules you wish to use in your project and clickOK.

Your project is now set up to use @ide@’s Tern features.

Related Topics

Using Front-End Code Assist Features in @ide@
Creating Modules with Liferay @ide@
Blade CLI

52.13 Using Gradle in Liferay @ide@

Gradle is a popular open source build automation system. You can take full advantage of Gradle in Liferay
@ide@ by utilizing Buildship, which is a collection of Eclipse plugin-ins that provide support for building
software using Gradle with Liferay@ide@. Buildship is bundled with Liferay@ide@ versions 3.0 and higher.

The first thing you’ll learn about in this tutorial is creating Gradle projects in @ide@.

Creating and Importing Gradle Projects

You can create a Gradle project by using the Gradle Project wizard.

1. Navigate to File →New → Project… and select Gradle → Gradle Project. Finally, clickNext →Next.

2. Enter a valid project name. You can also specify your project location and working sets.

557

http://gradle.org/
https://projects.eclipse.org/releases/oxygen

Figure 52.33: By selecting these Tern modules, you can use AlloyUI code assist features in your project.

3. Optionally, you can navigate to the next page and specify your Gradle distribution and other advanced
options. Once you’re finished, select Finish.

You can also import existing Gradle projects in Liferay @ide@.

1. Go to File → Import… → Gradle → Gradle Project →Next →Next.

2. Click the Browse… button to choose a Gradle project.

3. Optionally, you can navigate to the next page and specify your Gradle distribution and other advanced
options. Once you’re finished, clickNext again to review the import configuration. Select Finish once
you’ve confirmed your Gradle project import.

Next you’ll learn about Gradle tasks and executions, and learn how to run and display them in Liferay
@ide@.

558

Figure 52.34: Navigate to Help → Installation Details to view plugins included in Liferay @ide@.

Gradle Tasks and Executions

Liferay @ide@ provides two views to enhance your developing experience using Gradle: Gradle Tasks and
Gradle Executions. You can open these views by following the instructions below.

1. Go toWindow → ShowView →Other….

2. Navigate to the Gradle folder and open Gradle Tasks and Gradle Executions.

Gradle tasks and executions views open automatically once you create or import a Gradle project.
TheGradle Tasks view allows you to display the Gradle tasks available for you to use in your Gradle project.

Users can execute a task listed under the Gradle project by double-clicking it.
Once you’ve executed a Gradle task, you can open the Gradle Executions view to inspect its output.
Keep in mind that if you change the Gradle build scripts inside your Gradle projects (e.g., build.gradle

or settings.gradle), youmust refresh the project so Liferay @ide@ can account for the change and display
it properly in your views. To refresh a Gradle project, right-click on the project and select Gradle → Refresh
Gradle Project.

If you prefer Eclipse refresh your Gradle projects automatically, navigate to Window → Preferences →
Gradle and enable the Automatic Project Synchronization checkbox. If you’d like to enable Gradle’s automatic
synchronization for just one Gradle project, you can right-click a Gradle project and select Properties → Gradle
and enable auto sync that way. This feature is available in Buildship version 2.2+, so make sure you have the
required version.

559

Figure 52.35: You can specify your Gradle distribution and advanced options such as home directories, JVM options, and program arguments.

Excellent! You’re now equipped with the knowledge to add, import, and build your Gradle projects in
Liferay @ide@!

52.14 Using Maven in Liferay @ide@

You can take full advantage ofMaven in Liferay@ide@with its built-inMaven support. In this tutorial, you’ll
learn about the following topics:

• Installing Maven Plugins for Liferay @ide@
• Creating Maven Projects
• Importing Maven Projects
• Using the POMGraphic Editor

First you’ll install the necessary Maven plugins for Liferay @ide@.

560

Figure 52.36: You can specify what Gradle project to import from the Import Gradle Project wizard.

561

Figure 52.37: You can preview your Gradle project’s import information.

562

Figure 52.38: Navigate into your preferred Gradle project to view its available Gradle tasks.

Figure 52.39: The Gradle Executions view helps you visualize the Gradle build process.

563

Figure 52.40: Make sure to always refresh your Gradle project in Liferay @ide@ after build script edits.

Installing Maven Plugins for Liferay @ide@

In order to support Maven projects in @ide@ properly, you first need a mechanism to recognize Maven
projects as Liferay @ide@ projects. @ide@ projects are recognized in Eclipse as faceted web projects that
include the appropriate Liferay plugin facet. Therefore, all @ide@ projects are also Eclipse web projects
(faceted projects with the web facet installed). In order for @ide@ to recognize the Maven project and for it
to be able to leverage Java EE tooling features (e.g., the Servers view) with the project, the project must be a
flexible web project. Liferay @ide@ relies on the following Eclipse plugins to provide this capability:

• m2e-core (Maven integration for Eclipse)
• m2e-wtp (Maven integration forWTP)

All you have to do is install them so you can begin developingMaven projects for Liferay DXP.
When first installing Liferay @ide@, the installation startup screen lets you select whether you’d like to

install the Maven plugins automatically. Don’t worry if you missed this during setup. You’ll learn how to
install the requiredMaven plugins for @ide@manually below.

1. Navigate toHelp → Install New Software. In theWork with field, insert the following value:

Liferay IDE repository - http://releases.liferay.com/tools/ide/latest/milestone/

2. Check the Liferay IDEMaven Support option. This bundles all the requiredMaven plugins you need to
begin developingMaven projects for Liferay DXP.

If the Liferay IDEMaven Support option does not appear, then it’s already installed. To verify that it’s
installed, uncheck theHide items that are already installed checkbox and look for Liferay IDEMavenSupport
in the list of installed plugins. Also, if you’d like to view everything that is bundled with the Liferay IDE
Maven Support option, uncheck the Group items by category checkbox.

3. ClickNext, review the install details, accept the term and license agreements, and select Finish.

Awesome! Your Liferay DXP is ready to developMaven projects for Liferay DXP!
You’ll learn about creating Maven projects in @ide@ next.

Creating Maven Projects

You can create a Maven project based on Liferay’s providedMaven archetypes.

1. Navigate to File →New → LiferayModule Project.

2. Give your project a name, select the maven-module build type, and choose the project template
(archetype) you’d like to use.

564

Figure 52.41: You can install all the necessary Maven plugins for @ide@ by installing the Liferay IDE Maven Support option.

Figure 52.42: The New Liferay Module Project wizard lets you generate a Maven module project.

565

3. (Optional) ClickNext and name your component class name and package. You can also specify your
component class’s properties in the Properties menu.

4. Click Finish.

That’s it! You’ve created a Liferay module project usingMaven!
If you created your Maven project outside of @ide@with another tool, you can still manage that project

in @ide@, but youmust first import it. You’ll learn how to do this next.

Importing Maven Projects

To import a pre-existing Maven project into Liferay @ide@, follow the steps outlined below:

1. Navigate to File → Import →Maven → ExistingMaven Projects and clickNext.

Figure 52.43: @ide@ offers the Maven folder in the Import wizard.

2. Click Browse… and select the root folder for your Maven project. Once you’ve selected it, the pom.xml for
that project should be visible in the Projects menu.

3. Click Finish.

Now your Maven project is available from the Package Explorer. Next you’ll learn about Liferay @ide@’s
POM graphical editor.

Using the POM Graphic Editor

You’re provided a nifty POM graphic editor when opening your Maven project’s pom.xml in Liferay @ide@.
This gives you several different ways to leverage the power of Maven in your project:

• Overview: provides a graphical interface where you can add to and edit the pom.xml file.

566

Figure 52.44: Use the Import Maven Projects wizard to import your pre-existing project.

• Dependencies: provides a graphical interface for adding and editing dependencies in your project, as
well as modifying the dependencyManagement section of the pom.xml file.

• Effective POM: provides a read-only version of your project POMmerged with its parent POM(s),
settings.xml, and the settings in Eclipse for Maven.

• DependencyHierarchy: provides a hierarchical view of project dependencies and an interactive listing
of resolved dependencies.

• pom.xml: provides an editor for your POM’s source XML.

The figure below shows the pom.xml file editor and its modes.
By taking advantage of these interactive modes, Liferay @ide@makes modifying and organizing your

POM and its dependencies a snap!

52.15 Using Front-End Code Assist Features in @ide@

Liferay @ide@ provides extended front-end development tools to assist in Liferay development. You now
have access to code inferencing and code completion features for AlloyUI, JavaScript, CSS, and jQuery.

This tutorial covers how to use the code assist features for AlloyUI, JavaScript, CSS, and jQuery in@ide@.
Each language is covered in its own section, so you can navigate to the language you’re most interested in.
Continue reading to find out how to use @ide@’s code assist features in your project.

Using Code Assist Features

@ide@’s integration of Tern gives you access to code assist in JavaScript, AlloyUI, and CSS. To access these
features, youmust be working in a JavaScript, JSP, HTML, or CSS file.

567

http://ternjs.net/

Figure 52.45: Liferay @ide@ provides five interactive modes to help you edit and organize your POM..

You must have Tern features enabled in your project in order to use them. By default, Liferay portlet
plugins already have Tern features enabled. Visit the Enabling Code Assist Features in your Project tutorial
to learn how to enable Tern features for non-Liferay specific projects.

Note: For those developing with the Plugins SDK, the taglib descriptions that @ide@makes available to
users are dependent upon the Plugins SDK version. @ide@ uses taglib descriptions from the current SDK’s
util-taglib.jar file, so a more up-to-date Plugins SDKmeans more up-to-date taglib descriptions.

You’ll begin testing the AlloyUI code assist features next.

AlloyUI Code Assist Features

There are several helpful code assist features that can improve your productivity when writing code for
AlloyUI. The example below shows how to access the AlloyUI code assist features in the main.js of your
project:

1. Open your project’s main.js file and type the following code:

AUI().

2. Press Ctrl+Spacewith your cursor to the right of AUI().. This brings up the code inference for the AUI()
global object. Notice the AlloyUI framework’s own API documentation is also displayed. Press Enter to
use code completion.

Note: Code assist not only works for methods of an object, but also works for AUI-specific Tern com-
pletions for objects. For instance, you could type AU and press Ctrl+Space to see a list of objects to choose
from.

By default, code inference is triggered by a keystroke combination; however, you can enable auto activa-
tion in @ide@’s Preferences menu. Follow the steps below to enable auto activation:

568

Figure 52.46: This figure demonstrates code inference in a JS file.

1. Navigate toWindow → Preferences → JavaScript → Editor → Content Assist.

2. Check the Enable auto activation box and click Apply. Then clickOK.

The figure below shows how to enable auto activation:
Now, if you follow the previous example, code inference activates as soon as you press the trigger key,

which in this case is the . (period) key.
In addition to general code inference for AlloyUI, you have access to code templates. AUI JavaScript

templates are available in Eclipse’s JavaScript editor as well as in the HTML/JSP editor when working with
<script> and <aui-script> tags. Follow the steps below to use AUI code templates:

1. Type the following code in your main.js:

AUI

2. Press Ctrl+Space to bring up the code inference for AUI, and you’ll see a list of all the available AlloyUI
code templates, along with documentation.

3. Select your template and hit Enter to paste its contents into your main.js.

Note: You can view all the AlloyUI code templates you have

installed by going to @ide@'s Preferences menu and selecting *JavaScript*

→ *Editor* → *Templates*.

In addition to code inference in your JS files, you can also use code inference in your JSP/HTML files
using <aui:script> tags.

Open one of your project’s JSPs and add the AUI taglib directive if it is not already in your JSP:

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

569

Figure 52.47: The Enable auto activation checkbox is listed below the Auto-Activation heading.

570

Figure 52.48: @ide@ gives you access to AUI code templates in the JS and JSP editors.

You can also add the import from the Snippets menu under Taglib imports → Liferay AUI Taglib Import v6.1.

1. Add an <aui:script> tag inside your JSP and configure it to look like the following code:

<aui:script>

aui

</aui:script>

2. Press Ctrl+Spacewith your cursor placed to the right of aui to bring up code inference.

There you go! Whether in a JavaScript file or inside a JSP, you now have access to code assist features that
improve your workflow.

Next, you’ll examine the JavaScript code assist features for @ide@.

JavaScript Code Assist Features

In addition to AlloyUI code assist features, you also have access to code inference and completion using raw
JavaScript. This code assist feature is available in your project because the Ternmodule Liferay is enabled.
This plugin provides code completions for the static JavaScript object APIs available to portlets when running
in Liferay Portal. To learnmore about enabling Ternmodules in Eclipse, refer to the Enabling Code Assist
Features in Your Project tutorial.

The example below shows how you can use code assist features to easily access functions in your portlet
project.

1. Open the main.js of your portlet and add the following function:

function say(text){

alert(text);

}

2. Add the following button to the view.jsp of your portlet:

571

<aui:button onClick=""/>

3. Place your cursor within the quotation marks of the onClick attribute and press Ctrl+Space. The code
inference dialog pops up with a list of possible JavaScript functions available for you to use.

4. Type say and you’ll notice the list is narrowed down to your new say(text) function.

Figure 52.49: JavaScript code assist features give easy access to your functions.

5. Select the say(text) function, and you’ll notice that it’s accompanied by documentation that provides
the parameter for the function, as well as the file path where the function is located.

6. Press Enter to use code completion and add the function to your button.

As you can see, JavaScript development is a breeze using @ide@’s code assist features. Now that you
know how to use the AlloyUI and JavaScript code assist features, you can learn how to use the CSS code assist
features next.

CSS Code Assist Features

@ide@ offers code inference and completion tools for CSS. In order to use these tools, you’ll need to install
an additional plugin.

Note:The plugin described below is planned to be bundled with Liferay @ide@ in the near future. Initial
tests of the plugin revealed performance issues in some cases, which is why it is not yet a part of Liferay
@ide@. Problems were not consistent, so youmay have no issues installing the plugin, but we wanted to
give full disclosure about it.

Follow the steps below to install the plugin in @ide@:

1. Go toHelp → Install New Software….

2. Paste the following link into the Work with: input field:

http://oss.opensagres.fr/eclipse-wtp-webresources/1.1.0/

3. Click Add… and check the box next toWTPHTML -Web Resources.

572

4. ClickNext and follow the installation instructions.

Now that your plugin is installed, you’ll need to enable the CSS features in your project. Right-click your
project and go to Properties →Web Resources → CSS. Check both boxes to enable CSS features in your project.

You have successfully installed and enabled the new CSS features in your project!
Now that you have the CSS features enabled, you’ll find out how to use them next. Follow the steps below

to use the CSS code assist features to locate a CSS class. Note that the process below can also be used to
locate an ID.

1. Open your main.css file and add the following class to it:

.sample-class {

background-color:green;

}

2. Inside your view.jsp add an <aui:button/> tag and configure it to match the following code:

<aui:button name="test" value="test" cssClass=""/>

3. Within the quotations of the cssClass�attribute, press Ctrl+Space to bring up the code inference for
CSS. Begin typing sample-class to narrow down the classes to the one you’re looking for.

Figure 52.50: CSS code inference improves your workflow when developing in CSS.

Notice, along with code inference, you can also view the styling you have for the class, as well as the file
in which it is located.

4. Press Enter to use code completion and add the CSS class to the JSP.

If you look at the code inference dialog for CSS classes, you’ll also notice that in addition to your own
CSS classes, you also have access to Bootstrap CSS classes found in Liferay Portal.

Note: You can go to the file that the class, ID, or function is located in by hovering over top of it in your
JSP and holding down the Ctrl (Windows) or command (Mac) key, and clicking the hyperlink that appears.

Lastly, you’ll learn about the code assist features for jQuery.

573

jQuery Code Assist Features

You can also use code assist with jQuery. To do this, you must enable the jQuery Tern module. Follow the
instructions in the Enabling Code Assist Features in Your Project tutorial to learn how to enable Ternmodules
in your project.

The jQuery Tern plugin gives type information for the jQuery framework. In the example below, you’ll
test the jQuery code assist feature.

1. Open your project’s jquery.js file.

2. In the file, type the following sample variable:

var form =

3. Press Ctrl+Space to bring up the code inference for the variable you’re declaring, and you’ll see a list of
everything that is available. Also notice jQuery documentation is available for eachmethod. Take a
look at the figure below for an example of using code assit in jQuery.

Figure 52.51: Using the jQuery code assist features gives you the convenience of showing you what’s available, and the documentation behind each option.

Furthermore, for jQuery callback handlers, the type information for parameters is also made available.
Excellent! You now know how to use @ide@’s front-end development code assist features to improve

your workflow.

574

Figure 52.52: jQuery code assist also displays type information for parameters.

Related Topics

Enabling Code Assist Features in your Project
LiferayWorkspace
From Liferay 6 to 7.0

575

Chapter 53

Blade CLI

The Blade CLI is the easiest way for Liferay developers to create new Liferay modules. Although the Plugins
SDK is also supported, Blade CLI lets you create projects that can be used with any IDE or development
environment. Blade CLI is a command line tool bootstrapped on to a Gradle based environment that is used
to build Liferay 7.0 modules. This tool set provides a host of sub-commands that help Liferay developers
create and deploy modules to a Liferay instance. The following sub-commands are callable in the Blade CLI
environment:

• convert: Converts a Plugins SDK plugin project to a GradleWorkspace project.
• create: Creates a new Liferay module project from available templates.
• deploy: Builds and deploys bundles to the Liferay module framework.
• gw: Executes Gradle command using the GradleWrapper, if detected.
• help: Gives help on a specific command.
• init: Initializes a new LiferayWorkspace.
• install: Installs a bundle into Liferay’s module framework.
• open: Opens or imports a file or project in Liferay @ide@.
• samples: Generates a sample project.
• server: Starts or stops server defined by your Liferay project.
• sh: Connects to Liferay and executes Gogo command and returns output.
• update: Updates Blade CLI to latest version.
• upgradeProps: Analyzes your old portal-ext.properties and your newly installed 7.x server to show you
properties moved to OSGi configuration files or removed from the product.

• version: Displays version information about Blade CLI.

In this set of tutorials, you’ll learn how to use these commands to create and test Liferay modules.

53.1 Installing Blade CLI

You can install Blade CLI using the Liferay Project SDK installer. This installs JPM and Blade CLI into your
user home folder and optionally initializes a LiferayWorkspace folder.

Note: In the past, if you’ve installed Blade CLI globally (e.g., using sudo), you should not run the installer
to update your Blade CLI version. Since the installer only installs Blade CLI to your user home folder, your

577

https://github.com/liferay/liferay-blade-cli/

previous global installation would always override the installer’s installation. Therefore, always follow the
Updating Blade CLI tutorial to update your Blade CLI instance.

If you need to configure proxy settings for Blade CLI, follow the Installing Blade CLI with Proxy Require-
ments

Follow the steps below to download and install Blade CLI:

1. Download the latest Liferay Project SDK installer that corresponds with your operating system (e.g.,
Windows,MacOS, or Linux). The Project SDK installer is listed under Liferay IDE, so the folder versions
are based on IDE releases. You can select an installer that does not include @ide@, if you don’t intend
to use it. The Project SDK installer is available for versions 3.2.0+. Do not select the large green
download button; this downloads Liferay Portal instead.

2. Run the installer. ClickNext to step through the installer’s introduction.

3. If you’d like to initialize a LiferayWorkspace, you can set the directory where it should go.

Figure 53.1: Determine where your Liferay Workspace should reside, if you want one.

Select theDon’t initialize LiferayWorkspace directory option if you only want to install Blade CLI.Then
clickNext.

4. If you decided to initialize a LiferayWorkspace folder in the previous step, you’ll have an additional
option to select the Liferay product type you’ll use with your workspace. Choose the product type and
clickNext.

5. ClickNext to begin installing Blade CLI/LiferayWorkspace on your computer.

578

https://sourceforge.net/projects/lportal/files/Liferay%20IDE/

Figure 53.2: Select the product version you’ll use with your Liferay Workspace.

That’s it! Blade CLI is installed on your machine! If you specified a location to initialize a Liferay
Workspace folder, that is also available.

Blade CLI offers many create templates to help build 7.0 applications. It also offers various ways to
deploy those apps and interact with your Liferay server. Be sure to explore more Blade CLI tutorials to learn
how.

Installer Issues on macOS

If you’re using macOS or Linux, you could experience an issue where the blade command is not available via
command line. This is caused by the installer being unable to add JPM’s bin folder to your user path. JPM is a
Java package manager used in Blade CLI.

To add the required bin folder, execute the appropriate command based on your operating system.
macOS:

echo 'export PATH="$PATH:$HOME/Library/PackageManager/bin"' >> ~/.bash_profile

Linux:

echo 'export PATH="$PATH:$HOME/jpm/bin"' >> ~/.bash_profile

Once you restart the command line, the blade command should be available.

579

53.2 Installing Blade CLI with Proxy Requirements

If you have proxy server requirements and want to use Blade CLI, youmust configure your http(s) proxy for
it using JPM. Before beginning,make sure you’ve installed JPM and Blade CLI using a LiferayWorkspace
installer. Read the Installing Blade CLI tutorial for more details.

Once Blade CLI and JPM are installed, execute the following command to configure your proxy require-
ments for Blade CLI:

jpm command --jvmargs "-Dhttp(s).proxyHost=[your proxy host] -Dhttp(s).proxyPort=[your proxy port]" jpm

Excellent! You’ve configured Blade CLI with your proxy settings using JPM.

Note: When executing blade update, your Blade CLI’s proxy settings are sometimes reset. Be sure to
verify your proxy settings after every Blade CLI update.

53.3 Creating a Liferay Workspace with Blade CLI

In this tutorial, you’ll learn how to generate a LiferayWorkspace using Blade CLI.The Blade CLI tool you
installed in the Installing Blade CLI section provides many different commands to help build and customize
Liferay projects. The first thing you should do before building and customizing projects is create a Liferay
Workspace. The workspace generated by Blade CLI is Gradle based; if you’d like to generate a Liferay
Workspace built with Maven, see the MavenWorkspace tutorial.

Your workspace is the home for all your custom Liferay projects. Navigate to the folder where you want
your workspace and run the following command:

blade init -v 7.0 [WORKSPACE_NAME]

Note:Workspace automatically sets the default Liferay DXP version to develop against when it’s first
initialized. The default version is set to 7.2. When adding the -v 7.0 param to Blade’s init command,
the version is set for 7.0 Liferay DXP development. This is applied to create projects using appropriately
versioned project templates.

You can update the default version after it has been set by opening your workspace’s .blade.properties
file and setting the liferay.version.default property.

Initializing a workspace requires no downloading or access to the internet.
If you still plan on using a Plugins SDK and wish to use it in conjunction with a workspace, navigate to

your Plugins SDK root folder and run the following command:

blade init -u

This command builds a workspace and automatically adds and configures your current Plugins SDK
environment for use inside the workspace. See the Using a Plugins SDK From YourWorkspace section for
more information on how to use a Plugins SDK fromwithin a workspace.

Once your workspace is generated, look at its folder structure. Several folders and build/properties files
were autogenerated:

• configs

• gradle

580

• modules

• themes

• build.gradle

• gradle-local.properties

• gradle.properties

• gradlew

• settings.gradle

The build/properties files included in your workspace’s root directory sets your workspace’s Gradle
properties and facilitates the build processes of your modules. You can learnmore about these generated
files/folders in the LiferayWorkspace tutorial. You’ll learn about how to use these folders and properties files
throughout the next few tutorials.

Next you’ll learn about generating and using a Liferay DXP instance fromwithin your workspace.

Running a Liferay Instance from Your Workspace

As discussed in the LiferayWorkspace tutorial, LiferayWorkspaces can generate and hold a Liferay Server.
This lets you build/test your plugins against a running Liferay instance. Once you’ve properly generated and
installed a Liferay server in your workspace, you can begin using it with the Blade CLI. To start your Liferay
instance, run

blade server start -b

This command starts your Liferay server in a separate window. You also have the option to run your
server in debugmode (-d).

Awesome! You have a built-in Liferay server in your workspace and can start the server using Blade CLI.
Next you’ll learn how to use a legacy Plugins SDK from your workspace.

Configuring a Plugins SDK in Your Workspace

Because Liferay DXP 7.0 uses a module-based framework, the current structure of a LiferayWorkspace is
centered around module development. There are still, however, many situations where you must create
WAR-style plugins using the Plugins SDK. Because of this, your workspace can also work with the Plugins
SDK. When configuring your SDK in a workspace, you can take advantage of all the new functionality
workspaces provide and also use the SDK environment that you’re used to.

Running the blade init -u command converted thePlugins SDK to aworkspace that includes the Plugins
SDK. If you created your workspace from scratch instead with blade init, you’ll need to configure your
Liferay workspace’s Gradle properties.

If you revisit yourworkspace’s gradle.propertiesfile, you’ll notice thePluginsSDKfolder is set to plugins-
sdk. This folder was not generated by default, so you must create it yourself. In your workspace’s root
folder, create the plugins-sdk folder. Then copy your legacy Plugins SDK files into the plugins-sdk folder.
Lastly, generate its requirements by running gradlew tasks. Once this command successfully downloads all
your Plugins SDK dependencies, it’s ready to use in your workspace. For more information on manually
configuring a Plugins SDK, see the Using a Plugins SDK from YourWorkspace section.

53.4 Creating Projects with Blade CLI
When you use Blade CLI to create a project, your project’s folder structure, build script (e.g., build.gradle),
Java classes, and other resources (such as JSPs) are created based on the chosen template. In this tutorial,
you’ll learn how to use Blade CLI to create modules based on pre-existing templates and samples.

581

Using Blade CLI gives you the flexibility to choose how you want to create your application. You can
do so in your own standalone environment, or within a Liferay Workspace. You can also create a project
using either the Gradle or Maven build tool. Creating Liferay modules in a workspace using Blade CLI is very
similar to creating them in a standalone environment.

When creating projects in a workspace, you should navigate to the appropriate folder corresponding to
that type of project (e.g., the /modules folder for a module project). You can also provide further directory
nesting into that folder, if preferred. For example, the Gradle workspace, by default, sets the directory where
your modules should be stored by setting the following property in the workspace’s gradle.properties file:

liferay.workspace.modules.dir=modules

Change this property if you’d like to store your modules in a different directory.

Note: Your projects should define a repository where external dependencies can be downloaded. Unlike
Maven, Gradle does not define any repositories by default. For convenience, Gradle projects created with
Blade CLI define Liferay’s public Nexus repository as its default repository. This is defined, however, in
different files depending on where the project was created.

If you used Blade CLI to create a Gradle project outside of a workspace, your repository is defined in
the module’s build.gradle file. Likewise, if you created your module inside a workspace, your repository is
defined in the settings.gradle file located in the workspace’s ROOT folder. This ensures that all modules
residing in the workspace share the same repository URL.

First, you’ll learn how to create a module using a template.

Project Templates

To create anewLiferayproject, you can run theBlade create command,whichoffersmanyavailable templates.
There are, however,many other options you can specify to help mold your project just the way you want it.
To learn how to use the Blade create command and the many options it provides, enter blade help create

into a terminal. A list of the create options are listed below:

• -b, --build <string>: The build type of the project. Available options are gradle (default) and maven.
• -c, --classname <string>: If a class is generated in the project, provide the name of the class to be
generated. If not provided, the class name defaults to the project name.

• C, --contributorType <string>: Identifies your module as a theme contributor. This is also used to
add the Liferay-Theme-Contributor-Type and Web-ContextPath bundle headers to the BND file.

• -d, --dir <file>: The directory to create the new project.
• -h, --hostbundlebsn <string>: If a new JSP hook fragment needs to be created, provide the name of
the host bundle symbolic name.

• -H, --hostbundleversion <string>: If a new JSP hook fragment needs to be created, provide the name
of the host bundle version.

• -l, --listtemplates: Prints a list of available project templates.
• -p, --packagename <string>: The package name to use when creating the project.
• -s, --service <string>: If a new Declarative Services (DS) component needs to be created, provide
the name of the service to be implemented. Note that in this context, the term service refers to an OSGi
service, not to a Liferay API.

• -t, --template <string>: The project template to use when creating the project. Run blade create -l

for a listing of available Blade CLI templates.
• -v, --liferay-version: The Liferay DXP version to target when creating a project (e.g., 7.0).

582

To create a module project, use the following syntax:

blade create [OPTIONS] <NAME>

For example, if you wanted to create anMVC portlet project with Gradle, you could execute the following:

blade create -t mvc-portlet -p com.liferay.docs.guestbook -c GuestbookPortlet my-guestbook-project

This command creates anMVC portlet project based on the template mvc-portlet. It uses the package
name com.liferay.docs.guestbook and creates the portlet class GuestbookPortlet. The project name is my-
guestbook-project. Since thedirectorywasnot specified, it is created in the folder youexecuted the command.
When generating a project using Blade CLI, there is no downloading, whichmeans internet access is not
required.

Blade CLI can also create the same project with Maven by specifying the -b maven parameter. Using
Blade CLI’s Maven option isn’t the only way leverage Liferay’s Maven project templates; you can also generate
them usingMaven archetypes. See Liferay’s Project Templates articles to see how.

When using Blade CLI, you’ll have to manually edit your project’s component class. Blade CLI gives you
the ability to specify the class’s name, but all other contents of the class can only be edited after the class is
created. See the CreatingModules with Liferay@ide@ tutorial for further details and important dependency
information on component classes.

Now that you know the basics on creating Liferay projects using blade create, you can visit the Project
Templates reference section to view specific create templates and how they work.

Next, you’ll explore Liferay’s provided project samples and how to generate them using Blade CLI.

Project Samples

Liferay provides many sample projects that are useful for those interested in learning best practices on
structuring their projects to accomplish specific tasks in Liferay DXP.These samples can be found in the
liferay-blade-samples Github repository. You can also learn more about these samples by visiting the Liferay
Sample Projects article.

You can generate these samples using Blade CLI for convenience, instead of cloning the repository and
manually copy/pasting them to your environment. To do this, use the following syntax:

blade samples <NAME>

For example, if you wanted to generate the portlet-ds sample, you could execute

blade samples ds-portlet

For a full listing of all the available Blade samples, run

blade samples

Awesome! Now you know the basics on creating Liferay projects with Blade CLI.

583

https://github.com/liferay/liferay-blade-samples
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/ds-portlet

53.5 Deploying Modules with Blade CLI

Deploying modules to a Liferay server using Blade CLI is easy. To use the Blade deploy command, youmust
first have built a module to deploy. See the Creating Projects with Blade CLI tutorials for more information
about creating Liferay projects. Once you’ve built a module, navigate to it with your CLI and execute the
following command to deploy it:

blade deploy

This can be used forWAR-style projects andmodules (JARs). You can also deploy all projects in a folder
by running the deploy command from the parent folder (e.g., [WORKSPACE_ROOT]/modules).

If you’re using LiferayWorkspace, the deploy command deploys your project based on the build tool’s
deployment configuration. For example, leveraging Blade CLI in a default Gradle LiferayWorkspace uses the
underlying Gradle deployment configuration. The build tool’s deployment configuration is found by reading
the Liferay Home folder set in your workspace’s gradle.properties or pom.xml file. The deploy command
works similarly if you’re working outside of workspace; the Liferay Home folder, in contrast, is set by loading
the Liferay extension object (Gradle) or the effective POM (Maven) and searching for the Liferay Home
property stored there. If it’s not stored, Blade prompts you to set it so it’s available.

Note: If you prefer using pure Gradle or Maven to deploy your project, you can do this by applying the
appropriate plugin and configuring your Liferay Home property. Here’s how you can do this for Gradle and
Maven:

Gradle:
First ensure the Liferay Gradle plugin is applied in your build.gradle file:

apply plugin: "com.liferay.plugin"

Then extend the Liferay extension object to set your Liferay Home and deploy folder:

liferay {

liferayHome = "../../../../liferay-ce-portal-7.0.1-ga2"

deployDir = file("${liferayHome}/deploy")

}

Maven:
Ensure the Bundle Support plugin is applied and configure Liferay Home in your pom.xml. See the

Deploying a Module Built with Maven to Liferay Portal for details.

If you prefer not to use your underlying build tool’s (Gradle or Maven) module deployment configuration,
and instead, you want to deploy straight to Liferay DXP’s OSGi container, run this command instead:

blade deploy -l

Blade CLI also offers a way to watch a deployed project, which compiles and redeploys a project when
changes are detected. There are two ways to do this:

• blade watch

• blade deploy -w

584

The blade watch command is the fastest way to develop and test module changes, because the watch
command does not rebuild your project every time a change is detected. When running blade watch, your
project is not copied to Portal, but rather, is installed into the runtime as a reference. This means that the
Portal does not make a cached copy of the project. This allows the Portal to see changes that are made to your
project’s files immediately. When you cancel the watch task, your module is uninstalled automatically.

Note: The blade watch command is available for Liferay Workspace versions 1.10.9+ (i.e., the
com.liferay.gradle.plugins.workspace dependency). Maven projects cannot leverage the watch feature at
this time.

The blade deploy -w commandworks similarly to blade watch, except itmanually recompiles anddeploys
yourproject every timea change is detected. This causes slowerupdate times,butdoespreserve yourdeployed
project in Portal when it’s shut down.

Cool! You’ve successfully deployed your module project using Blade CLI.

53.6 Managing Your Liferay Server with Blade CLI

In this tutorial, you’ll learn how to manage a Liferay server using Blade CLI. For example, Blade CLI lets you
install, start, stop, inspect, andmodify a Liferay server.

Make sure you’re in a LiferayWorkspace and have a bundle installed and configured in the workspace
before testing the Blade CLI commands on your own. To learn more about installing a Liferay server in a
LiferayWorkspace, see the Creating a LiferayWorkspace with Liferay @ide@ section. The following Blade
CLI commands are covered in this sub-section:

• server

• sh

Thefirst thing that comes tomind when interacting with a server is simply turning it on/off. You can use
the server sub-command to accomplish this. To turn on a Liferay server (Tomcat orWildfly/JBoss), you can
run

blade server start -b

Likewise, to turn off a server, run

blade server stop

Once you’ve started your bundle, you can examine your server’s OSGi container by using the sh command,
which provides access to your server using the Felix Gogo shell. For example, to check if you successfully
deployed your application from the previous section, you could run:

blade sh lb

Your output lists a long list of modules that are active/installed in your server’s OSGi container.
You can run any Gogo command using blade sh. See the Using the Felix Gogo Shell section for more

information on this tool.
Awesome! You learned how to conveniently interact with Liferay DXP using Blade CLI.

585

Figure 53.3: Blade CLI accesses the Gogo shell script to run the lb command.

53.7 Updating Blade CLI

If your Blade CLI version is outdated, you can run the following command to automatically download and
install the latest version of Blade CLI:

blade update

ForWindows users, the blade update command does not work becauseWindows cannot update a file
that is currently in use. To bypass this issue, you can use JPM to update your version of Blade CLI:

jpm install -f https://releases.liferay.com/tools/blade-cli/latest/blade.jar

Blade CLI is updated frequently, so it’s recommended to update your Blade CLI environment for new
features. You can check the released versions of Blade CLI at https://releases.liferay.com/tools/blade-cli/.
You can check your current installed version by running blade version.

Note: If you run blade version after updating, but don’t see the expected version installed, youmay have
two separate Blade CLI installations on your machine. This is typically caused by users who installed an
earlier version of Blade CLI, and then used the LiferayWorkspace installer (at any time prior) to update the
older Blade CLI instance. This is not recommended. Doing this installs Blade CLI in the global and user home
folder of your machine. The latest Blade CLI update process installs to your user home folder, so youmust
delete the legacy Blade files in your global folder, if present. To do this, navigate to your GLOBAL_FOLDER/JPM4J
folder and delete

• /bin/blade

586

https://releases.liferay.com/tools/blade-cli/

• /commands/blade

The newest Blade CLI installation in your user home folder is now recognized and available.

Although Blade CLI is frequently released, if you want bleeding edge features not yet available, you can
install the latest snapshot version:

blade update -s

This pulls the latest snapshot version of Blade CLI and installs it to your local machine. Running blade
version after installing a snapshot displays output similar to this:

blade version 3.3.1.SNAPSHOT201811301746

Be careful; snapshot versions are unstable and should only be used for experimental purposes.
Awesome! You’ve successfully learned how to update Blade CLI.

53.8 Converting Plugins SDK Projects with Blade CLI

Blade CLI can automatically migrate a Plugins SDK project to a LiferayWorkspace. During the process, the
Ant-based Plugins SDK project is copied to the applicable workspace folder based on its project type (e.g.,
wars) and is converted to a Gradle-based LiferayWorkspace project. This drastically speeds up the migration
process when upgrading to a LiferayWorkspace from a legacy Plugins SDK.

Note:There is no Maven command for the migration process yet, so youmust complete it manually for
Maven-based workspaces.

To copy your Plugins SDK project and convert it to Gradle, use the Blade convert command:

1. Navigate to the root folder of your workspace in a command line tool.

2. Execute the following command:

blade convert -s [PLUGINS_SDK_PATH] [PLUGINS_SDK_PROJECT_NAME]

Youmust provide the path of the Plugins SDK your project resides in and the project name you want
to convert. If you prefer converting all the Plugins SDK projects at once, replace the project name
variable with -a (i.e., specifying all plugins).

Note: If the `convert` task doesn't work as described above, you may

need to update your Blade CLI version. See the

[Updating Blade CLI](/docs/7-0/tutorials/-/knowledge_base/t/updating-blade-cli)

article for more information.

587

This Gradle conversion process also works for themes; they're converted to

automatically leverage NodeJS. If you're converting a Java-based theme, add

the `-t` option to your command too. This will incorporate the

[Theme Builder](/docs/reference/7-0/-/knowledge_base/r/theme-builder-gradle-plugin)

Gradle plugin for the theme instead. For more information on upgrading

6.2 themes, see the

[Upgrade a 6.2 Theme to 7.0](/docs/7-0/tutorials/-/knowledge_base/t/upgrading-themes)

article.

Note:When converting a Service Builder project, the convert task automatically extracts the project’s
service interfaces and implementations into OSGi modules (i.e., -impl and -api) and places them in the
workspace’s modules folder. Your portlet and controller logic remain aWAR and reside in the wars folder.

Your project is successfully converted to a Gradle-based workspace project! Great job!

588

Chapter 54

Liferay Workspace

A LiferayWorkspace is a generated environment that is built to hold andmanage your Liferay projects. This
workspace is intended to aid in themanagement of Liferay projects by providing various Gradle build scripts
and configured properties. This is the official way to create 7.0 modules using Gradle. For those developers
that still want to developWAR-style plugins using the Plugins SDK, this way is also supported using a Liferay
Workspace. Do you preferMaven over Gradle? See theMavenWorkspace tutorial to learn about using Liferay
Workspace with Maven.

LiferayWorkspaces can be used in many different development environments, which makes it flexible
and applicable to many different developers. You can download the LiferayWorkspace installer and run it to
install Blade CLI (default CLI for workspace) and initialize a new LiferayWorkspace.

You can also use it with other developer IDEs. For example, a LiferayWorkspace easily integrates with
Liferay@ide@, providing a seamless development experience. To learnmore about Liferay@ide@ and using
workspace with it, see the Creating a LiferayWorkspace with Liferay @ide@ tutorial.

Your workspace also offers Gradle properties that you canmodify to help manage the generated folders.
There are also some folders that aren’t generated by default, but can be manually created and set. This
provides you the power to customize your workspace’s folder structure any way you’d like. To learn more
info on a workspace’s folder structure and how you can configure a workspace, see the Configuring a Liferay
Workspace tutorial.

LiferayWorkspaces offer a full development lifecycle for yourmodules tomake your Liferay development
easier than ever. The development lifecycle includes creating, building, deploying, testing, and releasing
modules. To learn more about the development lifecycle of a Liferay Workspace, see the Development
Lifecycle for a LiferayWorkspace tutorial.

54.1 Installing Liferay Workspace

You can install LiferayWorkspace using the Liferay Project SDK installer. This installs JPM and Blade CLI
into your user home folder and optionally initializes a LiferayWorkspace folder. This is the same installer
used to install Blade CLI, which is covered in the Installing Blade CLI tutorial.

Follow the steps below to download and install LiferayWorkspace:

1. Download the latest Liferay Project SDK installer that corresponds with your operating system (e.g.,
Windows,MacOS, or Linux). The Project SDK installer is listed under Liferay IDE, so the folder versions
are based on IDE releases. You can select an installer that does not include @ide@, if you don’t intend

589

https://sourceforge.net/projects/lportal/files/Liferay%20Workspace
https://sourceforge.net/projects/lportal/files/Liferay%20IDE/

to use it. The Project SDK installer is available for versions 3.2.0+. Do not select the large green
download button; this downloads Liferay Portal instead.

2. Run the installer. ClickNext to step through the installer’s introduction.

3. Set the directory where your LiferayWorkspace should be initialized.

Figure 54.1: Determine where your Liferay Workspace should reside.

Then clickNext.

4. Choose the Liferay product type you intend to use with the workspace. Then clickNext.

Note: You'll be prompted for your liferay.com username and password

before downloading the Liferay DXP bundle. Your credentials are not saved

locally; they're saved as a token in the `~/.liferay` folder. The token is

used by your workspace if you ever decide to redownload a DXP bundle.

Furthermore, the bundle that is downloaded in your workspace is also copied

to your `~/.liferay/bundles` folder, so if you decide to initialize another

Liferay DXP instance of the same version, the bundle is not re-downloaded. See

the

[Adding a Liferay Bundle to a Workspace](/docs/7-0/tutorials/-/knowledge_base/t/configuring-a-liferay-workspace#adding-a-liferay-

bundle-to-a-workspace)

for more information on this topic.

5. ClickNext to begin installing LiferayWorkspace on your machine.

That’s it! LiferayWorkspace is now installed on your machine!

590

Figure 54.2: Select the product version you’ll use with your Liferay Workspace.

54.2 Configuring a Liferay Workspace
A LiferayWorkspace offers a development environment that can be configured to fit your development needs.
You’ll learn about the files/folders a workspace provides by default, and then you’ll dive into configuring your
workspace.

The top-level files/folder of a Liferay workspace are outlined below:

• bundles (generated): the default folder for Liferay DXP bundles.
• configs: holds the configuration files for different environments. These files serve as your global
configuration files for all Liferay servers and projects residing in your workspace. To learn more about
using the configs folder, see the Testing Modules section.

• gradle: holds the GradleWrapper used by your workspace.
• modules: holds your custommodules.
• plugins-sdk (generated): holds plugins to migrate from previous releases.
• themes: holds your custom themes which are built using theTheme Generator.
• wars (generated): holds traditional WAR-style web application projects.
• build.gradle: the common Gradle build file.
• gradle-local.properties: sets user-specific properties for your workspace. This lets multiple users
use a single workspace, letting them configure specific properties for the workspace on their own
machine.

• gradle.properties: specifies the workspace’s project locations and Liferay DXP server configuration
globally.

• gradlew: executes the Gradle command wrapper
• settings.gradle: applies plugins to the workspace and configures its dependencies.

591

Thebuild/properties files included in yourworkspace’s root folder sets yourworkspace’sGradle properties
and facilitates the build processes of your modules.

Before you begin using your workspace, you should set your workspace Gradle properties in the
gradle.properties file. There are several commented out properties in this file. These are the default
properties set in your workspace. If you’d like to change a variable, uncomment the variable and set it
to a custom value. For instance, if you want to store your modules in a folder other than [ROOT]/modules,
uncomment the liferay.workspace.modules.dir variable and set it to a different value.

If you’d like to keep the global Gradle properties the same, but want to change them for yourself only (per-
haps for local testing), you can override the gradle.properties file with your own gradle-local.properties

file.

Note: Liferay Workspace provides many subprojects for you behind the scenes, which hides some
complexities of Gradle. You can learn more about this in the BuildingModules section.

Now that you know about a workspace’s default folder structure and how tomodify its Gradle properties,
you’ll learn how to add a Liferay bundle to your workspace.

Adding a Liferay Bundle to a Workspace

LiferayWorkspaces can generate and hold a Liferay Server. This lets you build/test your plugins against a
running Liferay instance. Before generating a Liferay instance, open the gradle.properties file located in
your workspace’s root folder. There are several configurable properties for your workspace’s Liferay instance.
You can set the version of the Liferay bundle you’d like to generate and install by setting the download
URL for the liferay.workspace.bundle.url property (e.g., https://releases-cdn.liferay.com/portal/7.0.6-
ga7/liferay-ce-portal-tomcat-7.0-ga7-20180507111753223.zip). You can also set the folder where your Lif-
eray bundle is generated with the liferay.workspace.home.dir property. It’s set to bundles by default.

You can download a Liferay DXP bundle for your workspace if you’re a DXP subscriber. Do this by setting
the liferay.workspace.bundle.url property to a ZIP hosted on api.liferay.com. For example,

liferay.workspace.bundle.url=https://api.liferay.com/downloads/portal/7.0.10.8/liferay-dxp-

digital-enterprise-tomcat-7.0-sp8-20180717152749345.zip

It can be tricky to find the fully qualified ZIP name/number for the DXP bundle you want. You cannot
access Liferay’s API site directly to find it, so youmust start to download DXPmanually, take note of the file
name, and append it to https://api.liferay.com/downloads/portal/.

Youmust also set the liferay.workspace.bundle.token.downloadproperty to true to allow yourworkspace
to access Liferay’s API site.

Once you’ve finalized your Gradle properties, navigate to your workspace’s root folder and run

blade server init

This uses workspace’s pre-bundled Blade CLI tool to download the version of Liferay DXP you specified
in your Gradle properties and installs your Liferay instance in the bundles folder.

If you want to skip the downloading process, you can create the bundles folder manually in your
workspace’s ROOT folder and unzip your Liferay DXP bundle to that folder.

You can also produce a distributable Liferay bundle (Zip or Tar) from within a workspace. To do this,
navigate to your workspace’s root folder and run the following command:

./gradlew distBundle[Zip|Tar]

592

Your distribution file is available from the workspace’s /build folder.

Note: You can define different environments for your Liferay bundle for easy testing. You can learnmore
about this in the Testing Modules section.

The LiferayWorkspace is a great development environment for Liferay module development; however,
what if you’d like to also stick with developingWAR-style applications? LiferayWorkspace can handle that
request too!

Using a Plugins SDK from Your Workspace

Because 7.0 uses a module-based framework, the current structure of a Liferay Workspace is centered
aroundmodule development. There are still, however,many situations where youmust createWAR-style
plugins using the Plugins SDK. Because of this, your workspace can also work with the Plugins SDK.When
configuring your SDK in aworkspace, you can take advantage of all the new functionality workspaces provide
and also use the SDK environment that you’re used to. To learn more about upgrading legacy applications
to 7.0 and what you should consider before converting them tomodules, visit the tutorial Planning Plugin
Upgrades and Optimizations.

The Blade CLI offers a command that adds and configures your current Plugins SDK environment
automatically for use inside a newly generated workspace (e.g., blade init -u). You can learn more about
this in the Creating a LiferayWorkspace with Blade CLI tutorial. If you created your workspace from scratch
and want to use a Plugins SDK, however, you can add one to your workspace by completing one of the two
options:

1. Copy your existing Plugins SDK’s files into the workspace.

2. Generate a new Plugins SDK to use in the workspace.

Follow the appropriate section based on the option you want to follow.

Copying an Existing Plugins SDK into Workspace

If you open your workspace’s gradle.properties file, you’ll notice the liferay.workspace.plugins.sdk.dir
property sets the Plugins SDK folder to plugins-sdk. This is where the workspace expects any Plugins SDK
files to reside. This folder was not generated by default, so youmust create it yourself. In your workspace’s
root folder, create the plugins-sdk folder. Then copy your legacy Plugins SDK files into the plugins-sdk folder.

The copied Plugins SDK requires many build-related artifacts. To start the artifact download process,
execute the following command in your workspace’s root folder:

./gradlew upgradePluginsSDK

The Plugins SDK’s artifacts are downloaded. The Plugins SDK is now ready for use!

Generating a New Plugins SDK in Workspace

You can easily generate a new Plugins SDK for your workspace by executing a single Gradle command in
your workspace’s root folder:

./gradlew upgradePluginsSDK

593

This generates a new 7.0 Plugins SDK into the folder set by the liferay.workspace.plugins.sdk.dir

property, which is configured to plugins-sdk by default in the workspace’s gradle.properties file. You can
change the folder name by updating the property. The downloaded Plugins SDK version is the latest release
at the time of execution. You can reference the latest Plugins SDK releases here.

Once the downloading is complete, your Plugins SDK is ready to use in your workspace!

54.3 Setting Proxy Requirements for Liferay Workspace
If you’re working behind a corporate firewall that requires using a proxy server to access external repositories,
you need to add some extra configuration to make LiferayWorkspace work within your environment. You’ll
learn how to set proxy requirements for both Gradle andMaven environments.

Using Gradle

1. Open your ~/.gradle/gradle.properties file. Create this file if it does not exist.

2. Add the following properties to the file:

systemProp.http.proxyHost=www.somehost.com

systemProp.http.proxyPort=1080

systemProp.https.proxyHost=www.somehost.com

systemProp.https.proxyPort=1080

Make sure to replace the proxy host and port values with your own.

3. If the proxy server requires authentication, also add the following properties:

systemProp.http.proxyUser=userId

systemProp.http.proxyPassword=yourPassword

systemProp.https.proxyUser=userId

systemProp.https.proxyPassword=yourPassword

Excellent! Your proxy settings are set in your LiferayWorkspace’s Gradle environment.

Using Maven

1. Open your ~/.m2/settings.xml file. Create this file if it does not exist.

2. Add the following XML snippet to the file:

<?xml version="1.0" encoding="UTF-8"?>

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.apache.org/xsd/settings-1.0.0.xsd">

<proxies>

<proxy>

<id>httpProxy</id>

<active>true</active>

<protocol>http</protocol>

<host>www.somehost.com</host>

<port>1080</port>

</proxy>

<proxy>

<id>httpsProxy</id>

<active>true</active>

<protocol>https</protocol>

594

https://repository.liferay.com/nexus/content/groups/public/com/liferay/portal/com.liferay.portal.plugins.sdk/

<host>www.somehost.com</host>

<port>1080</port>

</proxy>

</proxies>

</settings>

Make sure to replace the proxy host and port values with your own.

3. If the proxy server requires authentication, also add the username and password proxy properties. For
example, the HTTP proxy authentication configuration would look like this:

<proxy>

<id>httpProxy</id>

<active>true</active>

<protocol>http</protocol>

<host>www.somehost.com</host>

<port>1080</port>

<username>userID</username>

<password>somePassword</password>

</proxy>

Excellent! Your Maven proxy settings are now set.

54.4 Development Lifecycle for a Liferay Workspace

Liferay Workspaces provide an environment that supports all phases of a Liferay module’s development
lifecycle:

• Creating modules
• Building modules
• Deploying modules
• Testing modules
• Releasing modules

In this tutorial, you’ll explore the development lifecycle phases LiferayWorkspace provides for you. Then
you’ll be directed to other tutorials that go into further detail for leveraging the workspace’s particular
lifecycle phase for a specific tool (e.g., Blade CLI or Liferay @ide@). Let’s get started!

Creating Modules

The first step of LiferayWorkspace’s development phase is the module creation process. Workspace provides
a slew of templates that you can use to create many different types of Liferay modules.

You can configure where your workspace creates modules by editing the liferay.workspace.modules.dir
property in the workspace’s gradle.properties file. By default, modules are created in the [ROOT]/modules
folder.

You can also control where themes are generated by specifying the liferay.workspace.themes.dir prop-
erty in the gradle.properties file. Themes are typically migrated to the themes folder after being created
using the LiferayTheme Generator.

To learnmore about creatingmodules in aworkspace usingBladeCLI or Liferay@ide@, visit theCreating
Modules with Blade CLI and Creating Modules with Liferay @ide@ tutorials, respectively.

595

Building Modules

LiferayWorkspace abstracts many build requirements away so you can focus on developing modules instead
of worrying about how to build them. LiferayWorkspace is built using Gradle, so your modules leverage the
Gradle build lifecycle.

Workspace includes aGradlewrapper in its ROOT folder (e.g., gradlew),which you can leverage to execute
Gradle commands. Thismeans that you can run familiar Gradle build commands (e.g., build, clean, compile,
etc.) from a LiferayWorkspace without having Gradle installed on your machine.

Note: You can also use the workspace’s Gradle wrapper by executing blade gw followed by the Gradle
command. This is an easier way to run the workspace’s Gradle wrapper without specifying its path. Since
the workspace’s Gradle wrapper resides in its root folder, it can sometimes be a hassle running it for a
deeply nestedmodule (e.g., ../../../../gradlew compileJava). Running the Gradle wrapper from Blade CLI
automatically detects the Gradle wrapper and can run it anywhere.

When using LiferayWorkspace, the workspace plugin is automatically applied which adds a multitude
of subprojects for you, hiding some complexities of Gradle. For example, a typical project’s settings.gradle
file could contain many included subprojects like this:

...

include images:base:oracle-jdk:oracle-jdk-6

include images:base:oracle-jdk:oracle-jdk-7

include images:base:oracle-jdk:oracle-jdk-8

include images:base:liferay-portal:liferay-portal-ce-tomcat-7.0-ga1

include images:source-bundles:glassfish

include images:source-bundles:jboss-eap

include images:source-bundles:tomcat

include images:source-bundles:websphere

include images:source-bundles:wildfly

include compose:jboss-eap-mysql

include compose:tomcat-mariadb

include compose:tomcat-mysql

include compose:tomcat-mysql-elastic

include compose:tomcat-postgres

include file-server

...

You don’t have to worry about applying these subprojects because the workspace plugin does it for you.
Likewise, if a folder in the /themes folder includes a liferay-theme.json file, the gulp plugin is applied to it; if
a folder in the /modules folder includes a bnd.bnd file, the liferay-gradle plugin is applied to it. See the Gradle
reference article for a list of Liferay Gradle plugins automatically provided for all Workspace apps. As you
can see, LiferayWorkspace provides many plugins and build configurations behind the scenes to make your
development process convenient.

A good example of theGradle build lifecycle abstraction is themodule deployment process in aworkspace.
You can build/deploy your modules fromworkspace without ever running a Gradle command. You’ll learn
how to do this next.

Deploying Modules

LiferayWorkspace provides easy-to-use deploymentmechanisms that let you deploy yourmodule to a Liferay
server without any custom configuration. To learn more about deploying modules from a workspace using
Blade CLI or Liferay@ide@, visit the DeployingModules with Blade CLI andDeployingModules with Liferay
@ide@ tutorials, respectively.

596

Testing Modules

Liferay provides many configuration settings for 7.0. Configuring several different Liferay DXP installations
to simulate/test certain behaviors can become cumbersome and time consuming. With LiferayWorkspace,
you can easily organize environment settings and generate an environment installation with those settings.

Liferay Workspace provides the configs folder, which lets you configure different environments in
the same workspace. For example, you could configure separate Liferay DXP environment settings for
development, testing, and production in a single LiferayWorkspace. So how does it work?

The configs folder offers five subfolders:

• common: holds a common configuration that you want applied to all environments.
• dev: holds the development configuration.
• local: holds the configuration intended for testing locally.
• prod: holds the configuration for a production site.
• uat: holds the configuration for a UAT site.

You’re not limited to just these environments. You can create any subfolder in the configs folder (e.g., aws,
docker, etc.) to simulate any environment. Each environment folder can supply its own database, portal-
ext.properties, Elasticsearch, etc. The files in each folder overlay your Liferay DXP installation, which you
generate fromwithin workspace.

Figure 54.3: The configs/common and configs/[environment] overlay you Liferay DXP bundle when it’s generated.

When workspace generates a Liferay DXP bundle, these things happen:

1. Configuration files found in the configs/common folder are applied to the Liferay DXP bundle.

2. The configured workspace environment (dev, local, prod, uat, etc.) is applied on top of any existing
configurations from the common folder.

To generate a Liferay DXP bundle with a specific environment configuration to the workspace’s /bundles
folder, run

./gradlew initBundle -Pliferay.workspace.environment=[ENVIRONMENT]

<!-- `blade server init` is not able to pass the environment param in

currently. This new feature is requested in BLADE-343. -Cody -->

597

To generate a distributable Liferay DXP installation to the workspace’s /build folder, run

./gradlew distBundle[Zip|Tar] -Pliferay.workspace.environment=[ENVIRONMENT]

The ENVIRONMENT variable should match the configuration folder (dev, local, prod, uat, etc.) you intend to
apply.

Note: Youmay prefer to set your workspace environment in the gradle.properties file instead of passing
it via Gradle command. If so, it’s recommended to set the workspace envrionment variable inside the
[USER_HOME]/.gradle/gradle.properties file.

liferay.workspace.environment=local

The variable is set to local by default.

To simulate using the configs folder, let’s explore a typical scenario. Suppose you want a local Liferay
DXP installation for testing and a UAT installation for simulating a production site. Assume you want the
following configuration for the two environments:

Local Environment

• Use MySQL database pointing to localhost
• Skip setup wizard

UATEnvironment

• Use MySQL database pointing to a live server
• Skip setup wizard

To configure these two environments in your workspace, follow the steps below:

1. Open the configs/common folder and add the portal-setup-wizard.properties file with the
setup.wizard.enabled=false property.

2. Open the configs/local folder and configure the MySQL database settings for localhost in a portal-
ext.properties file.

3. Open the configs/uat folder and configure theMySQL database settings for the live server in a portal-
ext.properties file.

4. Now that your two environments are configured, generate one of them:

./gradlew distBundle[Zip|Tar] -Pliferay.workspace.environment=uat

You’ve successfully configured two environments and generated one of them.

Awesome! You can now test various Liferay DXP bundle environments using LiferayWorkspace.

598

Releasing Modules

LiferayWorkspace does not provide a built-in release mechanism, but there are easy ways to use external
release toolswithworkspace. Themostpopular choice is uploadingyourmodules to aMavenNexus repository.
You could also use other release tools like Artifactory.

Uploading modules to a remote repository is useful if you need to share themwith other non-workspace
projects. Also, if you’re ready for your modules to be in the spotlight, uploading them to a public remote
repository gives other developers the chance to use them.

For more instructions on how to set up a Maven Nexus repository for your workspace’s modules, see the
Creating a Maven Repository and Deploying Liferay Maven Artifacts to a Repository tutorials.

54.5 Managing the Target Platform for Liferay Workspace

LiferayWorkspace helps you target a specific release of Liferay DXP, so dependencies get resolved properly.
This makes upgrades easy: specify your target platform, andWorkspace points to the new version. All your
dependencies are updated to the latest ones provided in the targeted release.

Note:There are times when configuring dependencies based on a version range is better than tracking
exact versions. See the Semantic Versioning tutorial for more details.

Liferay @ide@ 3.2+ helps you streamline targeting a specific version evenmore. @ide@ can index the
configured Liferay DXP source code to

• provide advanced Java search (Open Type and Reference Searching) (tutorial)
• debug Liferay DXP sources (tutorial)

To enable this functionality, set the following property in your workspace’s gradle.properties file:

target.platform.index.sources=true

Note: Portal source indexing is disabled in Gradle workspace version 2.0.3+ (Target Platform plugin
version 2.0.0+).

These options in @ide@ are only available when developing in a LiferayWorkspace, or if you have the
Target Platform Gradle plugin applied to your multi-module Gradle project with specific configurations. See
the Targeting a PlatformOutside ofWorkspace section for more info on applying the Target Platform Gradle
plugin.

Next, you’ll discover how all of this is possible.

Dependency Management with BOMs

You can target a version by importing a predefined bill ofmaterials (BOM).This only requires that you specify
a property in your workspace’s gradle.properties file. You’ll see how to do this later.

Each Liferay DXP version has a predefined BOM that you can specify for your workspace to reference.
Each BOM defines the artifacts and their versions used in the specific release. BOMs list all dependencies in
a management fashion, so it doesn’t add dependencies to your project; it only provides your build tool (e.g.,
Gradle or Maven) the versions needed for the project’s defined artifacts. This means you don’t need to specify

599

https://www.jfrog.com/artifactory/

your dependency versions; the BOM automatically defines the appropriate artifact versions based on the
BOM.

You can override a BOM’s defined artifact version by specifying a different version in your project’s
build.gradle. Artifact versions defined in your project’s build files override those specified in the predefined
BOM. Note that overriding the BOM can be dangerous; make sure the new version is compatible in the
targeted platform.

For more information on BOMs, see the Importing Dependencies section in Maven’s official documenta-
tion.

Pretty cool, right? Next, you’ll step through an example configuration.

Setting the Target Platform

Setting the version to develop for takes two steps:

1. Open the workspace’s gradle.properties file and set the liferay.workspace.target.platform.version
property to the version you want to target. For example,

liferay.workspace.target.platform.version=7.0.6

If you’re using Liferay DXP, the versions are specified based on service packs. For example, you could
set your target platformworkspace Gradle property to

liferay.workspace.target.platform.version=7.0.10.7

Important: You can leverage the target platform features in Liferay Portal GA6+ and Liferay DXP 7.0
SP7+. Previous versions do not provide these features.

The versions following the SP7 release of DXP follow fix pack versions (e.g., 7.0.10.fp69, 7.0.10.fp70,
etc.).

2. Once the target platform is configured, check to make sure no dependencies in your Gradle build files
specify a version. The versions are now imported from the configured target platform’s BOM. For
example, a simple MVC portlet’s build.gradlemay look something like this:

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib"

compileOnly group: "javax.portlet", name: "portlet-api"

compileOnly group: "javax.servlet", name: "javax.servlet-api"

compileOnly group: "jstl", name: "jstl"

compileOnly group: "org.osgi", name: "osgi.cmpn"

}

Note: The liferay.workspace.target.platform.version property also sets the distro JAR, which can be
used in to validate your projects during the build process. See the ValidatingModules Against the Target
Platform tutorials for more info.

The target platform functionality is available in LiferayWorkspace version 1.9.0+. If you have an older
version, youmust update it to leverage platform targeting. See the Updating LiferayWorkspace tutorial to
do this.

You now know how to configure a target platform in workspace and how dependencies without versions
appear in your Gradle build files. You’re all set!

600

https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism#Importing_Dependencies

Targeting a Platform Outside of Workspace

If you prefer to not use Liferay Workspace, but still want to target a platform, you must apply the Target
Platform Gradle plugin to the root build.gradle file of your custommulti-module Gradle build.

To do this, your build.gradle file should look similar to this:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.target.platform", version: "1.1.6"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.target.platform"

dependencies {

targetPlatformBoms group: "com.liferay.portal", name: "release.portal.bom", version: "7.0.6"

targetPlatformBoms group: "com.liferay.portal", name: "release.portal.bom.compile.only", version: "7.0.6"

}

Liferay DXP users must replace the artifact names and versions:

• release.portal.bom → release.dxp.bom

• release.portal.bom.compile.only → release.dxp.bom.compile.only

• 7.0.6 → 7.0.10.7

This Gradle code

• applies Liferay’s Target Platform Gradle plugin
• configures the repository that provides the necessary artifacts for your project build
• sets the Target Platform plugin’s dependencies:

– release.portal.bom: provides all the artifacts included in Liferay DXP.
– release.portal.bom.compile.only: provides artifacts that are not included in Liferay DXP, but
are necessary to reference during the build (e.g., org.osgi.core).

If you’re interested in advanced search and/or debugging Liferay DXP’s source using Liferay @ide@, you
must also apply the following configuration:

targetPlatformIDE {

includeGroups "com.liferay", "com.liferay.portal"

}

This indexes the target platform’s source code andmakes it available to @ide@.
Now you can define your target platform!

601

Chapter 55

Validating Modules Against the Target
Platform

Important: Validating modules with the resolve task is deprecated. It only functions as it’s documented
here in versions prior to LiferayWorkspace (Gradle only) version 2.0.3. It is being redesigned for workspace
versions 2.0.3+ and is still in development at this time.

After you write a module in LiferayWorkspace, you can validate it before deployment to make sure of
several things:

• Will my app deploy successfully?
• Will there be some sort of missing requirement?
• If there’s an issue, how do I diagnose it?

These are all common worries that can be frustrating.
Instead of deploying your app and checking for errors in the log, you can validate your app before

deployment. This is done by calling LiferayWorkspace’s resolve task, which validates your modules against
a targeted platform. Continue on to learn how this works.

55.1 Resolving Your Modules

Deploying your modules only to be met with console errors or mysterious problems can be frustrating. You
can avoid this painful process by resolving your modules before deployment. This can be done by calling the
resolveGradle task provided by LiferayWorkspace.

../gradlew resolve

This task gathers all the capabilities provided by

• the specified version of Liferay DXP (i.e., targeted platform)
• the current workspace’s modules

Some capabilities/information gathered by the resolve task that are validated include

603

• declared required capabilities
• module versions
• package imports/use constraints
• service references

It also computes a list of run requirements for your project. Then it compares the current project’s
requirements against the gathered capabilities. If your project requires something not available in the
gathered list of capabilities, the task fails.

The task can only validate OSGi modules. It does not work with WAR-style projects, themes, or npm
portlets.

Note:The resolve task can be executed from a specific project folder or from the workspace’s root folder.
Running the task from the root folder validates all the modules in your workspace.

The resolve task can automatically gather the available capabilities from your workspace, but youmust
specify this for your targeted Liferay DXP version. To do this, open your workspace’s gradle.properties
file and set the liferay.workspace.target.platform.version property to the version you want to target. For
example,

liferay.workspace.target.platform.version=7.0.6

If you’re using Liferay DXP, the versions are specified based on service packs. For example, you could set
your target platformworkspace Gradle property to

liferay.workspace.target.platform.version=7.0.10.7

Important: You can leverage the target platform features in Liferay Portal GA6+ and Liferay DXP 7.0
SP7+. Previous versions do not provide these features.

The versions following the SP7 release of DXP follow service pack versions (e.g., 7.0.10.8 (SP8), 7.0.10.9
(SP9), etc.).

This provides a static distro JAR for the specified version of Liferay DXP, which contains all the metadata
(i.e., capabilities, packages, versions, etc.) running in that version. The distro JAR is a complete snapshot of
everything provided in the OSGi runtime; this serves as the target platform’s list of capabilities that your
modules are validated against.

You can now validate your module projects before deploying them! Sometimes, youmust modify the
resolve task’s default behavior to successfully validate your app. See the Modifying the Target Platform’s
Capabilities tutorial for more information. For help resolving common output errors printed by the resolve
task, see the Resolving Common Output Errors Reported by the resolve Task article.

55.2 Modifying the Target Platform's Capabilities
In a perfect world, everything the resolve task gathers and checks against would work during your develop-
ment process. Unfortunately, there are exceptions that may force you to modify the default functionality of
the resolve task. If you’re unfamiliar with workspace’s resolve task, see the Resolving Your Modules tutorial
for more information.

There are two scenarios youmay run into during development that require amodification for your project
to pass the resolver check.

• You’re depending on a third party library that is not available in the targeted Liferay DXP instance or
the current workspace.

604

• You’re depending on a customized distribution of Liferay DXP.

You’ll explore these use cases next.

Depending on Third Party Libraries Not Included in Liferay DXP

The resolve task, by default, gathers all of Liferay DXP’s capabilities and the capabilities of your workspace’s
modules. What if, however, your module depends on a third party project that is not included in either
space (e.g., Google Guava)?. The resolve task fails by default if your project depends on this project type. You
probably plan to have this project deployed and available at runtime, so it’s not a concern, but the resolver
doesn’t know that; youmust customize the resolver to bypass this.

There are three ways you can do this:

• Embed the third party library in your module
• Add the third party library’s capabilities to the current static set of resolver capabilities
• Skip the resolving process for your module

For help resolving third party dependency errors, see the ResolvingThird Party Library Package Depen-
dencies tutorial.

Embed the Third Party Library in Your Module

If you only have one module that depends on the third party project, you can bypass the resolver failure by
embedding the JAR in your module. This is not a best practice if more than one project in the OSGi container
depends on that module. See the Embedding Libraries in a Module

section for more details.

Add the Third Party Library's Capabilities to the Current Static Set of Resolver Capabilities

You can add your third party dependencies to the target platform’s default list of capabilities by listing them
as providedmodules. Do this by adding the following Gradle code into your workspace’s root build.gradle
file:

dependencies {

providedModules group: "GROUP_ID", name: "NAME", version: "VERSION"

}

For example, if you wanted to add Google Guava as a providedmodule, it would look like this:

dependencies {

providedModules group: "com.google.guava", name: "guava", version: "23.0"

}

This both provides the third party dependency to the resolver, and it downloads and includes it in your
Liferay DXP bundle’s osgi/modules folder when you initialize it (e.g., blade server init).

605

https://opensource.google.com/projects/guava
https://opensource.google.com/projects/guava

Skip the Resolving Process for Your Module

It may be easiest to skip validating a particular module during the resolve process. To do this, open your
workspace’s root build.gradle file and insert the following Gradle code at the bottom of the file:

targetPlatform {

resolveOnlyIf { project ->

project.name != 'PROJECT_NAME'

}

}

Be sure to replace the PROJECT_NAME filler with your module’s name (e.g., test-api).
If you prefer to disable the Target Platform plugin altogether, you can add a slightly different directive to

your build.gradle file:

targetPlatform {

onlyIf { project ->

project.name != 'PROJECT_NAME'

}

}

This both skips the resolve task execution and disables BOM dependency management.
Now the resolve task skips your module project.

Depending on a Customized Distribution of Liferay DXP

There are times whenmanually specifying your project’s list of dependent JARs does not suffice. If your app
requires a customized Liferay DXP instance to run, youmust regenerate the target platform’s default list of
capabilities with an updated list. Two examples of a customized Liferay DXP instance are described below:

Example 1: Leveraging an External Feature
There aremany external features/frameworks available that are not included in the downloadable bundle

by default. After deploying a feature/framework, it’s available for your module projects to leverage. When
validating your app, however, the resolve task does not have access to external capabilities not included
by default. For example, Audience Targeting is an example of this type of external framework. If you’re
creating a Liferay Audience Targeting rule that depends on the Audience Targeting framework, you can’t
easily provide a slew of JARs for your module. In this case, you should install the platform your code depends
on and regenerate an updated list of capabilities that your Liferay DXP instance provides.

Example 2: Leveraging a Customized Core Feature
YoucanextendLiferayDXP’s core features toprovide a customized experience for your intendedaudience.

Once deployed, you can assume these customizations are present and build other things on top of them.
The new capabilities resulting from your customizations are not available, however, in the target platform’s
default list of capabilities. Therefore, when your application relies on non-default capabilities, it fails during
the resolve task. To get around this, you must regenerate a new list of capabilities that your customized
Liferay DXP instance provides.

To regenerate the target platform’s capabilities (distro JAR) based on the current workspace’s Liferay
DXP instance, follow the steps below:

1. Start the Liferay DXP instance stored in your workspace. Make sure the platform you want to depend
on is installed.

2. Download the BND Remote Agent JAR file and copy it into the osgi/modules folder.

3. From the root folder of your workspace, run the following command:

606

https://search.maven.org/#search%7Cga%7C1%7Cbiz.aqute.remote.agent

bnd remote distro -o custom_distro.jar release.portal.distro 7.0.6

Liferay DXP usersmust replace the release.portal.distro artifact namewith release.dxp.distro and
use the 7.0.10.7 version syntax.

This connects to the newly deployed BND agent running in Liferay DXP and generates a new distro
JAR named custom_distro.jar. All other capabilities inherit their functionality based on your Liferay
DXP instance, so verify the workspace bundle is the version you plan to release in production.

4. Navigate to your workspace’s root build.gradle file and add the following dependency:

dependencies {

targetPlatformDistro files('custom_distro.jar')

}

Now your workspace is pointing to a custom distro JAR file instead of the default one provided. Run the
resolve task to validate your modules against the new set of capabilities.

55.3 Including the Resolver in Your Gradle Build

By default, LiferayWorkspace provides the resolve task as an independent executable. It’s provided by the
Target Platform Gradle plugin and is not integrated in any other Gradle processes. This gives you control
over your Gradle build without imposing strategies youmay not want included in your default build process.

With that said, the resolve task can be useful to include in your build process if you want to check for
errors in your module projects before deployment. Instead of resolving your projects separately from your
standard build, you can build and resolve them all in one shot.

In LiferayWorkspace, the recommended path for doing this is adding it to the default check Gradle task.
The check task is provided by default in a workspace by the Java plugin. Adding the resolve task to the check
lifecycle task also promotes the resolve task to run for CI and other test tools that typically run the check
task for verification. Of course, Gradle’s build task also depends on the check task, so you can run gradlew

build and run the resolver too.
To call the resolve task during the check task automatically, open your workspace’s root build.gradle file

and add the following directive:

check.dependsOn resolve

You can also configure this for specific projects in aworkspace if you don’t want allmodules to be included
in the global check.

If the resolve task runs during every Gradle build, you may want to prevent the build from failing if
there are errors reported by the resolver. To do this, open your workspace’s root build.gradle file and add
the following code:

targetPlatform {

ignoreResolveFailures = true

}

This reports the failures without failing the build. Note, this can only be configured in the workspace’s
root build.gradle file.

Awesome! You can now run the resolve task in your current Gradle lifecycle.

607

https://docs.gradle.org/current/userguide/java_plugin.html#_lifecycle_tasks

55.4 Validating Modules Outside of Workspace
If you prefer to not use LiferayWorkspace, but still want to validate modules against a target platform, you
must apply the Target PlatformGradle plugin to the root build.gradlefile of yourmulti-module Gradle build.
Follow the Targeting a Platform Outside ofWorkspace section to do this.

Once you have the Target Platform plugin and its BOM dependencies configured, youmust configure
the targetPlatformDistro dependency. Open your project’s root build.gradle file and add it to the list of
dependencies. It should look like this:

dependencies {

targetPlatformBoms group: "com.liferay.portal", name: "release.portal.bom", version: "7.0.6"

targetPlatformBoms group: "com.liferay.portal", name: "release.portal.bom.compile.only", version: "7.0.6"

targetPlatformDistro group: "com.liferay.portal", name "release.portal.distro", version: "7.0.6"

}

Liferay DXP users must replace the artifact names and versions:

- `release.portal.bom` → `release.dxp.bom`

- `release.portal.bom.compile.only` → `release.dxp.bom.compile.only`

- `release.portal.distro` → `release.dxp.distro`

- `7.0.6` → `7.0.10.7`

Now you can validate your modules against a target platform!

55.5 Updating Liferay Workspace
LiferayWorkspace is continuously being updated with new features. If you created yourWorkspace a while
ago, you may be missing out on some of the latest features that could improve your Liferay development
experience. Updating your LiferayWorkspace is easy; you’ll learn how to do it next.

1. Find the latest Liferay Workspace version. To do this, open the Liferay Gradle Plugins Workspace
Change Log and copy the version to which you want to upgrade. You can find the updates and new
features associated with each version by browsing the change log too.

2. Open your LiferayWorkspace’s settings.gradle file. This file resides in yourWorkspace’s root folder.

3. In the dependencies block, you’ll find code similar to below:

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.workspace", version: "[WORKSPACE_VERSION]"

}

Update the com.liferay.gradle.plugins.workspace dependency’s version to the version number you
copied from the change log in step 1.

4. Execute any Gradle command to initiate the update process for yourWorkspace (e.g., blade gw tasks).

Awesome! You learned where to check for Liferay Workspace’s latest version, how to update your
Workspace to that version, and how to initiate the update process.

608

https://github.com/liferay/liferay-portal/blob/master/modules/sdk/gradle-plugins-workspace/CHANGELOG.markdown
https://github.com/liferay/liferay-portal/blob/master/modules/sdk/gradle-plugins-workspace/CHANGELOG.markdown

Chapter 56

Maven

Maven is a viable option for managing Liferay projects if you don’t want to use Liferay’s default Gradle
management system. Liferay provides several Maven plugins to let you generate andmanage your project.
Liferay also provides Maven artifacts that are easy to obtain and are required for Liferay Maven module
development. In the Maven tutorials, you’ll learn how to

• Install Liferay Maven artifacts.
• Generate Liferay projects usingMaven archetypes.
• Create a Module JAR usingMaven.
• Deploy a module built with Maven to Liferay DXP.
• Create a remote repository for Maven projects.
• Deploy a Maven project to a remote repository.
• Use Service Builder in a Maven project.
• Compile Sass files in a Maven project.
• Build a Liferay theme in aMaven project.
• Leverage the MavenWorkspace.

Because Liferay DXP is tool agnostic, Maven is fully supported for Liferay DXP development. Read on to
learn more!

56.1 Installing Liferay Maven Artifacts

To create Liferay modules using Maven, you’ll need the archives required by Liferay (e.g., JAR and WAR
files). This isn’t a problem–Liferay provides them asMaven artifacts. You can retrieve them from a remote
repository.

There are two repositories that contain Liferay artifacts: Central Repository and Liferay Repository. The
Central Repository is the default repository used to download artifacts if you don’t have a remote repository
configured. The Central Repository usually offers the latest Liferay Maven artifacts, but using the the Liferay
Repository guarantees the latest artifacts released by Liferay. Other than a slight delay between artifact
releases between the two repositories, they’re identical. You’ll learn how to reference both of them next.

Using the Central Repository to install Liferay Maven artifacts only requires that you specify your
module’s dependencies in its pom.xml file. For example, the snippet below sets a dependency on Liferay’s
com.liferay.portal.kernel artifact:

609

https://maven.apache.org/

<dependencies>

<dependency>

<groupId>com.liferay.portal</groupId>

<artifactId>com.liferay.portal.kernel</artifactId>

<version>2.0.0</version>

<scope>provided</scope>

</dependency>

...

</dependencies>

When packaging your module, the automatic Maven artifact installation process only downloads the
artifacts necessary for that module from the Central Repository.

You can view the published Liferay Maven artifacts on the Central Repository by searching for
liferay maven in the repo’s Search bar. For convenience, you can reference the available artifacts at
http://search.maven.org/#search|ga|1|liferay maven. Use the Latest Version column as a guide to see what’s
available for the intended version of Liferay DXP for which you’re developing.

If you’d like to access Liferay’s latest Maven artifacts, you can configureMaven to use Liferay’s Nexus
repository instead by inserting the following snippet in your project’s parent pom.xml:

<repositories>

<repository>

<id>liferay-public-releases</id>

<name>Liferay Public Releases</name>

<url>https://repository.liferay.com/nexus/content/repositories/liferay-public-releases</url>

</repository>

</repositories>

<pluginRepositories>

<pluginRepository>

<id>liferay-public-releases</id>

<url>https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/</url>

</pluginRepository>

</pluginRepositories>

The above configuration retrieves artifacts from Liferay’s release repository.

Note: Liferay also provides a snapshot repository that you can access by modifying the <id>, <name>, and
<url> tags to point to that repo. This repository should only be used in special cases. You’ll also need to enable
accessing the snapshot artifacts:

<snapshots>

<enabled>true</enabled>

</snapshots>

If you’ve configured the LiferayNexus repository to access LiferayMaven artifacts and you’ve already been
syncing from the Central Repository, you may need to clear out parts of your local repository to force Maven
to re-download the newer artifacts. Also, do not leave the Liferay repository configured when publishing
artifacts to Maven Central. You must comment out the Liferay Repository credentials when publishing your
artifacts.

The Liferay Maven repository offers a good alternative for those who want the most up-to-date Maven
artifacts produced by Liferay.

Congratulations! You’ve downloaded the Liferay artifacts and installed them to your chosen repository.

610

http://search.maven.org/#search%7Cga%7C1%7Cliferay%20maven
https://repository.liferay.com
https://repository.liferay.com
https://repository.liferay.com/nexus/content/repositories/liferay-public-snapshots/

56.2 Generating New Projects Using Archetypes

CreatingMaven projects from scratch can be a lot ofwork. What dependencies doesmyLiferay portlet project
need? What does a Liferay Maven Service Builder project look like? How do I create a Liferay Maven-based
context contributor? These questions can be answered with three words: Liferay Maven Archetypes.

Liferay provides a slew of Maven archetypes for easy Liferay module projects. In this tutorial, you’ll learn
how to use Liferay’s Maven archetypes to generate your module project.

At the time of this writing, Liferay provides just under 40Maven archetypes for you to use; expect this
number to continue growing! These archetypes are generated from the Central Repository, unless you’ve
configured for them to be generated from another remote repository (e.g., Liferay Repository. You can view
the Liferay-providedMaven archetypes by running the following command:

mvn archetype:generate -Dfilter=liferay

The generated archetypes are not all intended for the latest Liferay DXP release. Some are intended for
earlier versions of Liferay Portal (e.g., 6.2, 6.1, etc.). An easy way to tell if the archetype is compatible with 7.0
is by inspecting the archetype’s package name. Archetypes with the com.liferay.maven.archetypes prefix are
legacyarchetypes. Thoseprefixedwith com.liferay.project.templates.[TYPE]or com.liferay.faces.archetype:[TYPE]
are compatible with 7.0.

Here’s a brief list of some popular Maven archetypes provided by Liferay:

• Activator
• Context Contributor
• Liferay Faces portlets

– Alloy
– ICEfaces
– JSF
– PrimeFaces
– RichFaces

• MVC Portlet
• Panel App
• Portlet Provider
• Service Builder
• ServiceWrapper
• Vaadin Liferay portlet

For documentation on the archetypes (project templates) compatible with 7.0, see the Project Templates
reference section. Visit Maven’s Archetype Generation documentation for further details on how to modify
the Maven archetype generation process.

Note: If you’re creating a JSF portlet using Liferay Faces, you can find example archetype declarations for
JSF component suites at http://www.liferayfaces.org.

Here’s an example that creates a Liferay MVC portlet using its Liferay Maven archetype.

1. On the command line, navigate to where you want your Maven project. Run the Maven archetype
generation command filtered for Liferay archetypes only:

611

https://repository.liferay.com
https://web.liferay.com/community/liferay-projects/liferay-faces/alloy
http://www.icesoft.org/java/projects/ICEfaces/overview.jsf
https://web.liferay.com/community/liferay-projects/liferay-faces/overview
http://primefaces.org/
http://richfaces.jboss.org/
http://maven.apache.org/archetype/maven-archetype-plugin/generate-mojo.html
http://www.liferayfaces.org/

mvn archetype:generate -Dfilter=liferay

2. Select the com.liferay.project.templates.mvc.portlet archetype by choosing its corresponding num-
ber (e.g., 8).

In most cases, you should choose the latest archetype version. The archetype versions provided are
compatible with all 7.x versions of Liferay DXP.

3. Depending on the Maven archetype you selected, you’re given a set of archetype options to fill out for
your Maven project. For the MVC portlet archetype, you could use these properties:

• groupId: com.liferay
• artifactId: com.liferay.project.templates.mvc.portlet
• version: 1.0.0
• package: com.liferay.docs
• className: SampleMVC

Once you’ve filled out the required property values, you’re given a summary of the properties configu-
ration you defined. Enter Y to confirm your project’s configuration.

YourMaven project is generated and available from the folder for which you ran the archetype generation
command. If you have an existing parent pom.xml file in that folder, your module project is automatically
accounted for there:

<modules>

...

<module>com.liferay.project.templates.mvc.portlet</module>

</modules>

The Liferay Maven archetypes generate deployable Liferay module projects, but they’re bare bones and
likely require further customizations.

If you want to generate a quick foundation for a Liferay module built with Maven, using Liferay Maven
archetypes is your best option.

56.3 Creating a Module JAR Using Maven

If you have an existing Liferay module built with Maven that you created from scratch, or you’re upgrading
yourMaven project from a previous version of Liferay, your project probably can’t generate an executable
OSGi JAR. Don’t fret! You can do this by making a fewminor configurations in your module’s POMs.

Note: If you used Liferay’s Maven archetypes to generate your module project, the project already has
the Maven plugins required to generate an OSGi JAR.

Continue on to see how this is done.

1. In your project’s pom.xml file, add the BNDMaven Plugin declaration:

612

http://njbartlett.name/2015/03/27/announcing-bnd-maven-plugin.html

<plugin>

<groupId>biz.aQute.bnd</groupId>

<artifactId>bnd-maven-plugin</artifactId>

<version>3.3.0</version>

<executions>

<execution>

<goals>

<goal>bnd-process</goal>

</goals>

</execution>

</executions>

</plugin>

The BNDMaven plugin prepares all your Maven module’s resources (e.g., MANIFEST.MF) and inserts
them into the generated [Maven Project]/target/classes folder. This plugin prepares your module to
be packaged as an OSGi JAR deployable to Liferay DXP.

Note: Although WABs can be generated using the `bnd-maven-plugin`, this

is not supported by Liferay. WABs should be created as a standard WAR

project and deployed to the

[Liferay WAB Generator](/docs/7-0/tutorials/-/knowledge_base/t/using-the-wab-generator),

which generates a WAB for you.

2. In your project’s pom.xml file, add the Maven JAR Plugin declaration:

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-jar-plugin</artifactId>

<version>2.6</version>

<configuration>

<archive>

<manifestFile>${project.build.outputDirectory}/META-INF/MANIFEST.MF</manifestFile>

</archive>

</configuration>

</plugin>

</plugins>

</build>

TheMaven JAR plugin builds yourMaven project as a JAR file, including the resources generated by the
BNDMaven plugin. The above configuration also sets the default project MANIFEST.MF file path for your
project, which is essential when packaging your module using the BNDMaven plugin. By default,
theMaven JAR Plugin ignores the target/classes/META-INF/MANIFEST.MF generated by the BNDMaven
plugin, so youmust explicitly set it as the manifest file so it’s included properly in the generated JAR
file.

3. Make sure you’ve added a bnd.bnd file to your Liferay Maven project, residing in the same folder as
your project’s pom.xml file.

4. Build your Maven OSGi JAR by running

mvn package

613

http://maven.apache.org/plugins/maven-jar-plugin/
http://bnd.bndtools.org/

Your Maven JAR is generated in your project’s /target folder. You can deploy it manually into Liferay
DXP’s /deploy folder, or you can configure your project to deploy automatically to Liferay DXP by
following the Deploying a Module Built with Maven to Liferay DXP tutorial.

Fantastic! You’ve configured your Liferay Maven project to package itself into a deployable OSGi module.

56.4 Deploying a Module Built with Maven to Liferay DXP
There are two ways to deploy a Maven-built Liferay module:

1. Copy your generatedMavenmodule JAR to your Liferay DXP instance’s /deploy folder.
2. Configure yourMaven project to deploy to the Liferay DXP instance automatically by running aMaven
command via the command prompt.

Althoughmanually copying your module JAR for deployment is a viable option, this is an inefficient way
to deploy your projects. With a small configuration in your Maven POMs, you can deploy a module to Liferay
DXP with one command execution.

In previous versions of Liferay Portal, you were able to execute the liferay:deploy command to deploy
your configuredMaven project to a Liferay server. This is no longer possible since the liferay-maven-plugin
is not applied to Maven projects built from Liferay archetypes.

A prerequisite for this tutorial is to have your project configured to generate an OSGi module JAR; if you
haven’t done this, visit the Creating a Module JAR UsingMaven tutorial for more information.

1. Add the following plugin configuration to your Liferay Maven project’s parent pom.xml file.

<build>

<plugins>

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.bundle.support</artifactId>

<version>2.0.1</version>

<executions>

<execution>

<id>default-deploy</id>

<goals>

<goal>deploy</goal>

</goals>

<phase>pre-integration-test</phase>

</execution>

</executions>

</plugin>

</plugins>

</build>

This POM configuration applies Liferay’s Bundle Support plugin by defining its groupId, artifactId,
and version. You can learn more about this plugin in the Maven Workspace tutorial. The logic
also defines the executions tag, which configures the Bundle Support plugin to run during the pre-
integration-test phase of your Maven project’s build lifecycle. The deploy goal is defined for that
lifecycle phase.

2. By default, the Bundle Support plugin deploys to the Liferay installation in the bundles folder, located
in your plugin’s parent folder. If you do not have your project set up this way, youmust define your
Liferay home folder in your POM. You can do this by adding the following logic within the plugin tags,
but outside of the execution tags:

614

https://repository.liferay.com/nexus/content/groups/public/com/liferay/com.liferay.portal.tools.bundle.support/
https://maven.apache.org/guides/mini/guide-configuring-plugins.html#Using_the_executions_Tag
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#A_Build_Phase_is_Made_Up_of_Plugin_Goals

<configuration>

<liferayHome>LIFERAY_HOME_PATH</liferayHome>

</configuration>

An example configuration would look like this:

<configuration>

<liferayHome>C:/liferay/liferay-ce-portal-7.0-ga7</liferayHome>

</configuration>

Note: Maven applications built for previous Liferay Portal versions

required the `<liferay.maven.plugin.version>` tag to do various tasks (e.g.,

deploying to a Liferay server). This tag is not needed since the old

`liferay-maven-plugin` is no longer used.

3. Run this command to deploy your project:

mvn verify

That’s it! Your Liferay Maven project is built and deployed automatically to your Liferay DXP instance.

56.5 Creating a Maven Repository

You’ll frequently want to share Liferay artifacts andmodules with teammates or manage your repositories
using a GUI. Sonatype Nexus is a valuable tool for managing your repositories. It’s a Maven repository
management server that facilitates creating and managing release servers, snapshot servers, and proxy
servers. There are several otherMaven repositorymanagement servers you can use (for example, Artifactory),
but this tutorial focuses on Nexus.

To create a Maven repository using Nexus, download Nexus and follow the instructions at http://books.
sonatype.com/nexus-book/reference/install.html to install and start it.

To create your own repository using Nexus, follow these steps:

1. Open your web browser; navigate to your Nexus repository server (e.g., http://localhost:8081/nexus)
and log in. The default user name is adminwith password admin123.

2. Click on Repositories and navigate to Add… →Hosted Repository.

To learn more about each type of Nexus repository, read Sonatype’s Managing Repositories guide.

3. Enter repository properties appropriate for the type of artifacts it will hold. If you’re installing re-
lease version artifacts into the repository, specify Release as the repository policy. Below are example
repository property values:

• Repository ID: liferay-releases
• RepositoryName: Liferay Release Repository
• Provider: Maven2
• Repository Policy: Release

615

https://www.jfrog.com/artifactory/
http://www.sonatype.org/nexus/
http://books.sonatype.com/nexus-book/reference/install.html
http://books.sonatype.com/nexus-book/reference/install.html
http://localhost:8081/nexus
http://books.sonatype.com/nexus-book/reference/confignx-sect-manage-repo.html

Figure 56.1: Adding a repository to hold your Liferay artifacts is easy with Nexus.

4. Click Save.

You just created a Liferay Maven repository accessible from your Nexus repository server! Congratula-
tions!

It’s also useful to create aMaven repository to hold snapshots of each Liferaymodule you create. Creating
a snapshot repository is almost identical to creating a release repository. The only difference is that you
specify Snapshot as its repository policy. For example, examine an example snapshot repository’s property
values:

• Repository ID: liferay-snapshots
• RepositoryName: Liferay Snapshot Repository
• Provider: Maven2
• Repository Policy: Snapshot

Voila! You’ve created a repository for your Liferay releases (i.e., liferay-releases) and Liferay snapshots
(i.e., liferay-snapshots). To learn how to deploy your Liferay Maven artifacts to a Nexus repository, see the
Deploying Liferay Maven Artifacts to a Repository tutorial.

Next, you’ll configure your new repository servers in your Maven settings to install artifacts to them.

Configuring Local Maven Settings

Before using your repository servers, you must specify them in your Maven environment settings. Your
repository settings let Maven find the repository and retrieve and install artifacts. You can configure your
local Maven settings in the [USER_HOME]/.m2/settings.xml file.

616

You only need to configure a repository server if you’re sharing artifacts (e.g., Liferay artifacts and/or your
modules) with others. If you’re automatically installing Liferay artifacts from the Central/Liferay Repository
and aren’t interested in sharing artifacts, you don’t need a repository server specified in your Maven settings.
You canfindoutmore about installing artifacts from theCentral Repository or Liferay’s ownNexus repository
in the Installing Liferay Maven Artifacts tutorial.

To configure yourMaven environment to access your liferay-releases and liferay-snapshots repository
servers, do the following:

1. Navigate to your [USER_HOME]/.m2/settings.xml file. Create it if it doesn’t yet exist.

2. Provide settings for your repository servers. Here are contents from a settings.xml file that has
liferay-releases and liferay-snapshots repository servers configured:

<?xml version="1.0"?>

<settings>

<servers>

<server>

<id>liferay-releases</id>

<username>admin</username>

<password>admin123</password>

</server>

<server>

<id>liferay-snapshots</id>

<username>admin</username>

<password>admin123</password>

</server>

</servers>

</settings>

The user name admin and password admin123 are the credentials of the default Nexus administrator
account. If you changed these credentials for your Nexus server, make sure to update settings.xml with
these changes.

Now that your repositories are configured, they’re ready to receive all the Liferay Maven artifacts you’ll
download and the Liferay module artifacts you’ll create!

56.6 Deploying Liferay Maven Artifacts to a Repository

Deploying artifacts to a remote repository is important if you intend to share your Maven projects with
others. First, you must have a remote repository that can hold deployed Maven artifacts. If you do not
currently have a remote repository, see the Creating aMaven Repository tutorial to learn how you can set up a
Nexus repository. Also make sure your [USER_HOME]/.m2/settings.xml file specifies your remote repository’s
ID, user name, and password.

To deploy to a remote repository, your Liferay module should be packaged using Maven. Maven provides
a packaging command that creates an artifact (JAR) that can be easily deployed to your remote repository.
You’ll learn how to do this with a Liferay portlet module.

Once you’ve created a deployable artifact, you’ll configure yourmodule project to communicate with your
remote repository and use Maven’s deploy command to send it on its way. Once your module project resides
on the remote repository, other developers can configure your remote repository in their projects and set
dependencies in their project POMs to reference it.

To follow this tutorial, you’ll need a Liferay module built with Maven. For demonstration purposes,
this tutorial uses the portlet.ds sample module project. To follow along with this module, download the
portlet.ds ZIP.

617

https://portal.liferay.dev/documents/113763090/114000186/portlet.ds.zip

1. Create a folder anywhere on yourmachine to serve as the parent folder for your Liferaymodules. Unzip
the portlet.dsmodule project into that folder.

2. Create a pom.xml file inside this folder. Copy the following logic into the parent POM:

<?xml version="1.0" encoding="UTF-8"?>

<project

xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"

>

<modelVersion>4.0.0</modelVersion>

<groupId>liferay.sample</groupId>

<artifactId>liferay.sample.maven</artifactId>

<version>1.0.0</version>

<name>Liferay Maven Module Projects</name>

<packaging>pom</packaging>

<distributionManagement>

<repository>

<id>liferay-releases</id>

<url>http://localhost:8081/nexus/content/repositories/liferay-releases</url>

</repository>

</distributionManagement>

<modules>

<module>portlet.ds</module>

</modules>

</project>

The tags <modelVersion> through <packaging> are POM tags that are used frequently in parent POMs.
Visit Maven’s POMReference documentation for more information.

The <distributionManagement> tag specifies the deployment repository for all module projects residing
in theparent folder. You should include the repository’s IDandURL.Theabove distributionManagement
declaration is configured for the Liferay Nexus repository created in the Creating a Maven Repository
tutorial. That tutorial also created the [USER_HOME]/.m2/settings.xml, which specified the remote
repository’s ID, user name, and password. Both the parent POM and settings.xml file’s repository
declarations are required to deploy your modules to that remote repository.

Finally, you must list the modules residing in the parent folder that you want deployed using the
<modules> tag. The portlet.dsmodule is specified within that tag.

3. Open the portlet.dsmodule’s pom.xml file. If you did not download the portlet.dsmodule project Zip,
you can reference its POM below.

<project

xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"

>

<modelVersion>4.0.0</modelVersion>

<artifactId>portlet.ds</artifactId>

<version>1.0.0</version>

<packaging>jar</packaging>

<parent>

<groupId>liferay.sample</groupId>

<artifactId>liferay.sample.maven</artifactId>

618

https://maven.apache.org/pom.html

<version>1.0.0</version>

<relativePath>../pom.xml</relativePath>

</parent>

<dependencies>

<dependency>

<groupId>javax.portlet</groupId>

<artifactId>portlet-api</artifactId>

<version>2.0</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.osgi</groupId>

<artifactId>org.osgi.service.component.annotations</artifactId>

<version>1.3.0</version>

<scope>provided</scope>

</dependency>

</dependencies>

</project>

The portlet.dsmodule’s POMspecifies its own attributes first, followed by the parent POM’s attributes.
Declaring the <parent> tag like above links the portlet.dsmodule to its parent POM,which is necessary
to deploy to the remote repository. Then themodule’s dependencies are listed. These dependencies are
downloaded from the Central Repository and installed to your local .m2 repository when you package
the portlet.dsmodule.

4. Now that you’ve configured your parent POMandmodule POM,package yourMaven project. Navigate
to your module project (e.g., project.ds) in your command prompt and run the Maven package
command:

mvn package

This downloads and installs all your module’s dependencies and packages the project into a JAR file.
Navigate to your module project’s generated build folder (e.g., /target). You’ll notice there is a newly
generated JAR file. This is the artifact you’ll deploy to your Nexus repository.

5. Run Maven’s deploy command to deploy your module project’s artifact to your configured remote
repository.

mvn deploy

Your console shows output from the artifact being deployed into your repository server.

To verify that your artifact is deployed, navigate to the Repositories page of your Nexus server and select
your repository. A window appears below showing the Liferay artifact now deployed to your repository.

Awesome! You can now share your Liferay module projects with anyone by deploying them as artifacts
to a remote repository!

56.7 Using Service Builder in a Maven Project

Liferay’s Service Builder is a model-driven service generation tool that is frequently used bymany Liferay
module projects. If you have a Liferay Maven project, youmay be wondering if Service Builder works with
your Mavenmodules; the answer is a resounding yes!

619

Figure 56.2: Your repository server now provides access to your Liferay Maven artifacts.

The easiest way to add Service Builder to your Maven project is to create a new Maven project using
Liferay’s provided Service Builder archetype. You can learn how to generate a Service Builder Maven project
by visiting the Service Builder Template tutorial. In some cases, this may not be possible due to a number of
reasons:

• You’re updating a legacy Maven project to follow OSGi modular architecture.
• You have a pre-existing modular Maven project and don’t want to start over.

Time to get started!

1. Apply the Service Builder plugin in your Maven project’s pom.xml file:

<build>

<plugins>

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.service.builder</artifactId>

<version>1.0.174</version>

<configuration>

<apiDirName>../blade.servicebuilder.api/src/main/java</apiDirName>

<autoImportDefaultReferences>true</autoImportDefaultReferences>

<autoNamespaceTables>true</autoNamespaceTables>

<buildNumberIncrement>true</buildNumberIncrement>

<hbmFileName>src/main/resources/META-INF/module-hbm.xml</hbmFileName>

<implDirName>src/main/java</implDirName>

<inputFileName>service.xml</inputFileName>

<mergeModelHintsConfigs>src/main/resources/META-INF/portlet-model-hints.xml</mergeModelHintsConfigs>

<modelHintsFileName>src/main/resources/META-INF/portlet-model-hints.xml</modelHintsFileName>

<osgiModule>true</osgiModule>

<propsUtil>com.liferay.blade.samples.servicebuilder.service.util.PropsUtil</propsUtil>

<resourcesDirName>src/main/resources</resourcesDirName>

<springFileName>src/main/resources/META-INF/spring/module-spring.xml</springFileName>

<springNamespaces>beans,osgi</springNamespaces>

<sqlDirName>src/main/resources/META-INF/sql</sqlDirName>

620

<sqlFileName>tables.sql</sqlFileName>

<testDirName>src/main/test</testDirName>

</configuration>

</plugin>

</plugins>

</build>

Service Builder is applied by specifying its groupId, artifactId, and version. The configuration tag
used above is an example of what a Service Builder project’s configuration could look like. All the
configuration attributes above should be modified to fit your project.

The above code configures Service Builder for a blade.servicebuilder.svc module. When run-
ning Service Builder with this configuration, the project’s API classes are generated in the
blade.servicebuilder.api module’s src/main/java folder. You can also specify your hibernate
module mappings, implementation directory name, model hints file, Spring configurations, SQL
configurations, etc. You can reference all the configurable Service Builder properties in the Service
Builder with Maven reference article. Also, visit the Defining an Object-Relational Map with Service
Builder tutorial for more information on defining a service.xml file to configure Service Builder.

2. Apply theWSDD Builder plugin declaration directly after the Service Builder plugin declaration:

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.wsdd.builder</artifactId>

<version>1.0.8</version>

<configuration>

<inputFileName>service.xml</inputFileName>

<outputDirName>src/main/java</outputDirName>

<serverConfigFileName>src/main/resources/server-config.wsdd</serverConfigFileName>

</configuration>

</plugin>

TheWSDD Builder is necessary to generate your project’s remote services. Visit the Creating Remote
Services tutorial formore information onWSDD (Web Service Deployment Descriptor). Similar to the
Service Builder configuration, the service.xml file is set to define your project’s remote services. Also,
the outputDirName defines where the *_deploy.wsdd and *_undeploy.wsdd files are generated. Make
sure to define your server-config.wsdd file, as well.

Terrific! You’ve successfully configured your Maven project to use Service Builder by applying the
com.liferay.portal.tools.service.builder and com.liferay.portal.tools.wsdd.builder plugins in your
project’s POM. To run Service Builder, see the Running Service Builder and Understanding the Generated
Code tutorial for instructions.

56.8 Compiling Sass Files in a Maven Project
If your Liferay Maven project uses Sass files to style its UI, you must configure the project to convert its Sass
files into CSS files so they are recognizable for Maven’s build lifecycle. It would be a real pain to convert your
Sass files into CSS files manually before building your Maven project!

Liferay provides the com.liferay.css.builder plugin. The CSS Builder converts Sass files into CSS files
so the Maven build can parse your style sheets.

Here’s how to apply Liferay’s CSS builder to your Maven project.

1. Open your project’s pom.xml file and apply Liferay’s CSS Builder:

621

http://axis.apache.org/axis/java/reference.html#Global_Axis_Configuration

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.css.builder</artifactId>

<version>2.0.1</version>

<executions>

<execution>

<id>default-build</id>

<phase>compile</phase>

<goals>

<goal>build</goal>

</goals>

</execution>

</executions>

<configuration>

<docrootDirName>${com.liferay.portal.tools.theme.builder.outputDir}</docrootDirName>

<outputDirName>/</outputDirName>

<portalCommonPath>target/deps/com.liferay.frontend.css.common.jar</portalCommonPath>

</configuration>

</plugin>

The above configuration applies the CSS Builder by specifying its groupId, artifactId, and version. It
then defines the CSS Builder’s execution and configuration.

• The executions tag configures the CSS Builder to run during the compile phase of your Maven
project’s build lifecycle. The build goal is defined for that lifecycle phase.

• The configuration tag defines two important properties:

– docrootDirName: The base resources folder containing the Sass files to compile.
– outputDirName: The name of the sub-directories where the SCSS files are compiled to.
– portalCommonPath: The file path for the Liferay Frontend Common CSS JAR file.

2. If you’re using Bourbon in your Sass files, you’ll need to add an additional plugin dependency to your
project’s POM. If you’re not using Bourbon, skip this step. Add the following plugin dependency:

<plugin>

<artifactId>maven-dependency-plugin</artifactId>

<executions>

<execution>

<phase>generate-sources</phase>

<goals>

<goal>copy</goal>

</goals>

<configuration>

<artifactItems>

<artifactItem>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.css.common</artifactId>

<version>2.0.4</version>

</artifactItem>

</artifactItems>

<outputDirectory>${project.build.directory}/deps</outputDirectory>

<stripVersion>true</stripVersion>

</configuration>

</execution>

</executions>

</plugin>

Themaven-dependency-plugin copies the com.liferay.frontend.css.common dependency fromMaven
Central to your project’s build folder so the CSS Builder can leverage it.

622

https://maven.apache.org/guides/mini/guide-configuring-plugins.html#Using_the_executions_Tag
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#A_Build_Phase_is_Made_Up_of_Plugin_Goals
https://maven.apache.org/pom.html#Plugins
https://mvnrepository.com/artifact/com.liferay/com.liferay.frontend.css.common
http://bourbon.io/
http://maven.apache.org/plugins/maven-dependency-plugin/

3. Use this command to compile your Maven project’s Sass files:

mvn compile

Note: Liferay’s CSS Builder is supported for Oracle’s JDK and uses a native compiler for increased speed.
If you’re using an IBM JDK, you may experience issues when building your SASS files (e.g., when building a
theme). It’s recommended to switch to using the Oracle JDK, but if you prefer using the IBM JDK, you must
use the fallback Ruby compiler. To do this, add the following tag to your CSS Builder configuration in your
POM:

<sassCompilerClassName>ruby</sasscompilerClassName>

Be aware that the Ruby-based compiler doesn’t perform as well as the native compiler, so expect longer
compile times.

Awesome! You can now compile Sass files in your Liferay Maven project.

56.9 Building Themes in a Maven Project
Liferay’sTheme Builder is a tool used to build Liferay DXP theme files in your project. You can incorporate
the Theme Builder into your Maven project to generate WAR-style themes deployable to Liferay DXP. To
learn more about theming in Liferay DXP, see theThemes and Layout Templates tutorial section.

The easiest way to create a Liferay theme withMaven is to create a newMaven project using Liferay’s
providedTheme archetype. You can learn how to generate a MavenTheme project by visiting the Generating
New Projects Using Archetypes tutorial. In some cases, however, this may not be convenient. For instance, if
you have a legacy theme project and don’t want to start over, generating a new project is not ideal.

For cases like this, you should manually configure your Maven project to build a theme. You’ll learn how
to do this next.

1. Configure Liferay’sTheme Builder plugin in your project’s pom.xml file:

<build>

<plugins>

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.theme.builder</artifactId>

<version>${com.liferay.portal.tools.theme.builder.version}</version>

<executions>

<execution>

<phase>generate-resources</phase>

<goals>

<goal>build</goal>

</goals>

<configuration>

<diffsDir>${maven.war.src}</diffsDir>

<name>${project.artifactId}</name>

<outputDir>${project.build.directory}/${project.build.finalName}</outputDir>

<parentDir>${project.build.directory}/deps/com.liferay.frontend.theme.styled.jar</parentDir>

<parentName>_styled</parentName>

<templateExtension>ftl</templateExtension>

<unstyledDir>${project.build.directory}/deps/com.liferay.frontend.theme.unstyled.jar</unstyledDir>

</configuration>

</execution>

</executions>

623

</plugin>

</plugins>

</build>

The above configuration applies theTheme Builder by specifying its groupId, artifactId, and version.
It then defines theTheme Builder’s execution and configuration.

• The executions tag configures theTheme Builder to run during the generate-resources phase of
your Maven project’s build lifecycle. The build goal is defined for that lifecycle phase.

• The configuration tag defines several important properties:

– diffsDir: The folder holding the files to copy over the parent theme.
– name: The new theme’s name.
– outputDir: The folder to build the theme.
– parentDir: The parent theme’s folder.
– parentName: The parent theme’s name.
– templateExtension: The extension of the template files (e.g., ftl or vm).
– unstyledDir: The unstyled theme’s folder.

2. Apply the CSS Builder plugin, which is required to use theTheme Builder:

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.css.builder</artifactId>

<version>${com.liferay.css.builder.version}</version>

<executions>

<execution>

<id>default-build</id>

<phase>compile</phase>

<goals>

<goal>build</goal>

</goals>

</execution>

</executions>

<configuration>

<docrootDirName>target/${project.build.finalName}</docrootDirName>

<outputDirName>/</outputDirName>

<portalCommonPath>target/deps/com.liferay.frontend.css.common.jar</portalCommonPath>

</configuration>

</plugin>

You can learn more about the CSS Builder’s Maven configuration by visiting the Compiling Sass Files
in a Maven Project tutorial.

3. You can configure your project to exclude Sass files frombeing packaged in your theme. This is optional,
but is a nice convenience to keep any unnecessary source code out of your WAR. Since the Theme
Builder creates aWAR-style theme, you should apply the maven-war-plugin so it instructs theWAR
file packaging process to exclude Sass files:

<plugin>

<artifactId>maven-war-plugin</artifactId>

<version>3.0.0</version>

<configuration>

<packagingExcludes>**/*.scss</packagingExcludes>

</configuration>

</plugin>

624

https://maven.apache.org/guides/mini/guide-configuring-plugins.html#Using_the_executions_Tag
http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#A_Build_Phase_is_Made_Up_of_Plugin_Goals
https://maven.apache.org/pom.html#Plugins
https://maven.apache.org/plugins/maven-war-plugin/

4. Insert the <packaging> tag in your project’s POM so your project is correctly packaged as aWAR file.
This tag can be placed with your project’s groupId, artifactId, and version specifications like this:

<groupId>com.liferay</groupId>

<artifactId>com.liferay.project.templates.theme</artifactId>

<version>1.0.0</version>

<packaging>war</packaging>

5. Building themes requires certaindependencies. You can configure these dependenices in your project’s
pom.xml as directories or JAR files. If you choose to use JARs, youmust apply the maven-dependency-
plugin and have it copy JAR dependencies into your project fromMaven Central:

<plugin>

<artifactId>maven-dependency-plugin</artifactId>

<executions>

<execution>

<phase>generate-sources</phase>

<goals>

<goal>copy</goal>

</goals>

<configuration>

<artifactItems>

<artifactItem>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.css.common</artifactId>

<version>${com.liferay.frontend.css.common.version}</version>

</artifactItem>

<artifactItem>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.theme.styled</artifactId>

<version>${com.liferay.frontend.theme.styled.version}</version>

</artifactItem>

<artifactItem>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.theme.unstyled</artifactId>

<version>${com.liferay.frontend.theme.unstyled.version}</version>

</artifactItem>

</artifactItems>

<outputDirectory>${project.build.directory}/deps</outputDirectory>

<stripVersion>true</stripVersion>

</configuration>

</execution>

</executions>

</plugin>

This configuration copies the com.liferay.frontend.css.common, com.liferay.frontend.theme.styled,
and com.liferay.frontend.theme.unstyled dependencies into your Maven project. Notice that you’ve
set the stripVersion tag to true and you’re setting the artifact versions within each artifactItem tag.
You’ll set these versions and a few other properties for your Maven project next.

6. Configure the properties for your project in its pom.xml file:

<properties>

<com.liferay.css.builder.version>2.0.1</com.liferay.css.builder.version>

<com.liferay.frontend.css.common.version>2.0.4</com.liferay.frontend.css.common.version>

<com.liferay.frontend.theme.styled.version>2.0.28</com.liferay.frontend.theme.styled.version>

<com.liferay.frontend.theme.unstyled.version>2.2.5</com.liferay.frontend.theme.unstyled.version>

<com.liferay.portal.tools.theme.builder.version>1.1.4</com.liferay.portal.tools.theme.builder.version>

</properties>

The properties above set the versions for the CSS andTheme Builder plugins and their dependencies.

625

http://maven.apache.org/plugins/maven-dependency-plugin/
http://maven.apache.org/plugins/maven-dependency-plugin/

You’ve successfully configured your Maven project to build a Liferay theme! For info on running the
Theme Builder in your Maven project, see theTheme Builder tutorial.

56.10 Maven Workspace
A Liferay MavenWorkspace is a generated environment that is built to hold andmanage Liferay projects
built with Maven. This workspace aids in Liferay project management by applying various Maven plugins
and configured properties. The Liferay MavenWorkspace offers a full development lifecycle for your Maven
projects to make developing them for Liferay DXP easier than ever. In this tutorial, you’ll learn how to
leverage the development lifecycle of a Liferay MavenWorkspace.

First, you’ll learn how to install a MavenWorkspace.

Installation

TheMavenWorkspace is installed by generating the workspace project from an archetype. You can do this by
executing the following command with your command line tool:

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.workspace \

-DgroupId=[GROUP_ID] \

-DartifactId=[WORKSPACE_NAME] \

-Dversion=[VERSION]

AMavenWorkspace is generated in the current folder. No other tools or CLIs are required for Maven
Workspace.

Anatomy

The default MavenWorkspace contains the following folders/files:

• [MAVEN_WORKSPACE]

– configs

* common

* dev

* local

* prod

* uat

– modules

* pom.xml

– themes

* pom.xml

– wars

* pom.xml

626

– pom.xml

For more information on the configs folder, see the TestingModules section. The modules, themes, and
wars folders hold projects of that type. The parent pom.xml configures your workspace as a Maven project and
applies the Bundle Support plugin, which is required for your MavenWorkspace to handle 7.0 projects. You
can also configure workspace properties in your POM,which you’ll learn about later.

Next, you’ll learn how to initialize and package Liferay DXP bundles using workspace.

Adding a Liferay Bundle to a Maven Workspace

Liferay Maven Workspaces can generate and hold a Liferay Server. This lets you build/test your plugins
against a running Liferay instance. Before generating a Liferay instance, open the pom.xml file located in
your workspace’s root folder and set the version of the Liferay bundle to generate and install by setting the
download URL for the liferay.workspace.bundle.url property. For example,

<properties>

<liferay.workspace.bundle.url>

https://releases-cdn.liferay.com/portal/7.0.6-ga7/liferay-ce-portal-tomcat-7.0-ga7-20180507111753223.zip

</liferay.workspace.bundle.url>

...

</properties>

You can also set location of your Liferay bundle with the liferay.workspace.home.dir property. It’s set to
bundles by default.

Important: Make sure the com.liferay.portal.tools.bundle.support plugin in your POM is configured
to use version 3.2.0+. The liferay.workspace.bundle.url property does not work for workspaces using an
older version of the Bundle Support plugin. See the Updating aMavenWorkspace section for instructions
on how to update the plugin.

Once you’ve finalized your workspace properties, navigate to your workspace’s root folder and run

blade server init

This uses workspace’s pre-bundled and installs your Liferay DXP instance in the bundles folder. Blade
CLI tool to download the version of Liferay DXP you specified in your POM file and installs your Liferay DXP
instance in the bundles folder. If you prefer to not use Blade CLI or do not have it installed, the pure Maven
equivalent for this command is mvn bundle-support:init.

If you want to skip the downloading process, you can create the bundles folder manually in your
workspace’s ROOT folder and extract your Liferay Portal bundle to that folder.

You can also produce a distributable Liferay DXP bundle (Zip) from within a workspace. To do this,
navigate to your workspace’s root folder and run the following command:

mvn bundle-support:dist

Your distribution file is available from the workspace’s /target folder.

Configuring Maven Workspace Properties

There are many configurable workspace properties you can set in the root pom.xml file:

• liferay.workspace.bundle.dest: the destination folder for downloaded Liferay DXP bundle ZIP files.
• liferay.workspace.bundle.url: the URL used to download the Liferay DXP bundle. For more informa-
tion, see Adding a Liferay Bundle to a MavenWorkspace.

627

https://repository.liferay.com/nexus/content/groups/public/com/liferay/com.liferay.portal.tools.bundle.support/

• liferay.workspace.default.repository.enabled: whether Liferay CDN is set as the default repository
in the root project.

• liferay.workspace.deploy.war.dir: the deployment folder forWAR projects.
• liferay.workspace.deploy.modules.dir: the deployment folder for module projects.
• liferay.workspace.environment: the name of a configs subfolder holding the Liferay DXP server con-
figuration to use. See Testing Modules for more information.

• liferay.workspace.home.dir: the Liferay DXP bundle root folder.
• liferay.workspace.modules.default.repository.enabled: whether the LiferayCDN is set as the default
repository for module projects.

• liferay.workspace.modules.dir: the module projects’ root folder.
• liferay.workspace.plugins.sdk.dir: the converted Plugins SDK’s root folder. For more information,
see Using a Plugins SDK from YourWorkspace

• liferay.workspace.themes.dir: the theme projects’ root folder.
• liferay.workspace.wars.dir: theWAR projects’ root folder.

Properties can be set by adding tags with the property name. See the property configurations below for
an example on how these can be set in your POM:

<properties>

<liferay.workspace.home.dir>${liferay.workspace.basedir}/bundles</liferay.workspace.home.dir>

<liferay.workspace.bundle.dest>${user.home}/.liferay/bundles/liferay-ce-portal-tomcat-7.0-ga7-20180507111753223.zip</liferay.workspace.bundle.dest>

<liferay.workspace.bundle.url>https://releases-cdn.liferay.com/portal/7.0.6-ga7/liferay-ce-portal-tomcat-7.0-ga7-20180507111753223.zip</liferay.workspace.bundle.url>

<liferay.workspace.deploy.war.dir>${liferay.workspace.home.dir}/osgi/war</liferay.workspace.deploy.war.dir>

<liferay.workspace.deploy.modules.dir>${liferay.workspace.home.dir}/osgi/modules</liferay.workspace.deploy.modules.dir>

<liferay.workspace.environment>local</liferay.workspace.environment>

</properties>

Next, you’ll learn how to add and deploy modules/projects in your MavenWorkspace.

Module Management

MavenWorkspace makes managing your Maven project easier than ever. To create a project, navigate to the
appropriate workspace folder for that type of project (e.g., modules, wars, etc.). Then generate the project
archetype. You can view a full listing of the available archetypes in the Project Templates reference section.
Once the project is generated, it can leverage all of MavenWorkspace’s functionality.

MavenWorkspace also lets you deploy your projects to Liferay DXP usingMaven. See the Deploying a
Module Built with Maven to Liferay DXP tutorial for more information.

Want to leverage MavenWorkspace’s testing infrastructure so you can simulate your Maven projects in a
specific environment? See the Testing Modules section for more information.

Once you have yourMaven projects solidified and ready for the limelight, it’d be great to release your
projects to the public. MavenWorkspace doesn’t provide this functionality, but there are easy ways to use
external release tools with workspace. See the ReleasingModules section for more information.

Next, you’ll learn how to update a MavenWorkspace.

Updating a Maven Workspace

LiferayWorkspace is updatedperiodicallywithnew features, so you’ll want to update yourworkspace instance
accordingly. To update your MavenWorkspace, youmust update the Bundle Support plugin configured in
your workspace’s root pom.xml file:

<plugin>

<groupId>com.liferay</groupId>

628

<artifactId>com.liferay.portal.tools.bundle.support</artifactId>

<version>3.2.5</version>

...

</plugin>

Update the version to the latest available release. You can reference the available releases for the Bundle
Support plugin here.

629

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.tools.bundle.support/

Chapter 57

IntelliJ IDEA

The Liferay IntelliJ plugin provides support for Liferay DXP development in IntelliJ IDEA. Liferay’s IntelliJ
plugin provides the following built-in features:

• Creating a LiferayWorkspace (Gradle andMaven based)
• Creating Liferay projects (Gradle andMaven based)
• Liferay DXP Tomcat server support for project deployment and debugging
• Support for adding line markers for each entity in the service editor
• Syntax checking, highlighting, and code completion (e.g., Bnd and XML files)

In these tutorials, you’ll learn how to install the Liferay IntelliJ plugin and leverage its features to improve
Liferay development with IntelliJ IDEA.

57.1 Installing the Liferay IntelliJ Plugin

To install the Liferay IntelliJ plugin in IntelliJ IDEA, follow the steps below:

1. Navigate to the JetBrains’ Liferay IntelliJ plugin page and download it to your local machine.

2. In IntelliJ, navigate to File → Settings → Plugins and select Install plugin from disk….

3. Select the Liferay IntelliJ plugin ZIP and selectOK →OK → Restart.

Once IntelliJ restarts, the Liferay IntelliJ plugin is installed and ready for use. Great job! You’re now ready
to develop for Liferay DXP in IntelliJ!

57.2 Creating a Liferay Workspace with IntelliJ IDEA

In this tutorial, you’ll learn how to generate a LiferayWorkspace using IntelliJ IDEA, which runs on Blade
CLI behind the scenes. IntelliJ gives you a graphical interface instead of the command prompt, which can
streamline your workflow. You’ll also learn how to import an existing Liferay Workspace into IntelliJ. To
learn more about LiferayWorkspaces, visit its dedicated tutorial section.

631

https://plugins.jetbrains.com/plugin/10739-liferay-intellij-plugin
https://www.jetbrains.com/idea/
https://plugins.jetbrains.com/plugin/10739-liferay-intellij-plugin

Creating a Liferay Workspace

Follow the steps below to create a LiferayWorkspace:

1. Open the New Project wizard by selecting File →New → Project. If you’re starting IntelliJ for the first
time, you can do this by selecting Create New Project in the opening window.

2. Select Liferay from the left menu.

3. Choose the build type for your workspace (i.e., Gradle or Maven). Then clickNext.

Figure 57.1: Choose Liferay Gradle Workspace or Liferay Maven Workspace, depending on the build you prefer.

4. Specify your workspace’s name, location, intended Liferay DXP version, and SDK (i.e., Java JDK).Then
click Finish.

5. A window opens for additional build configurations for the build type you selected (i.e., Gradle or
Maven). Verify the settings and clickOK.

Awesome! You’ve successfully created a LiferayWorkspace in IntelliJ IDEA!

632

Figure 57.2: Specify your workspace’s configurations.

Importing a Liferay Workspace

To import an existing workspace into IntelliJ, follow the steps below:

1. Select File →New → Project from Existing Sources….

2. Select the workspace you want to import. Then clickOK.

3. Click the Import project from external model radio button and select the build tool your workspace uses
(e.g., Gradle or Maven).

4. Configure the project import (if necessary) and then click Finish. See the Import a Project section of
IntelliJ’s official documentation for more information.

5. Step through the remaining import prompts and then open your imported workspace as you desire
(i.e., in the current window or a new window).

Excellent! Your existing LiferayWorkspace is now imported in IntelliJ IDEA!

57.3 Creating Projects with IntelliJ IDEA
IntelliJ IDEA provides a New Liferay Modules wizard to create a variety of different module projects. You
can also use the same wizard to create theme projects, WAR-style projects, and more. Before beginning,

633

https://www.jetbrains.com/help/idea/creating-and-managing-projects.html#importing-project

Figure 57.3: Specify your workspace’s configurations.

ensure you’ve created/imported a LiferayWorkspace in your IntelliJ environment. Follow the steps below to
create a Liferay DXPmodule:

1. Navigate to File →New → LiferayModule.

Figure 57.4: Selecting Liferay Module opens the New Liferay Modules wizard.

2. Select the project you want to create. Although the wizard characterizes itself formodules, there are
many available projects that are not OSGi-basedmodules (e.g., theme, war-mvc-portlet, etc.). See the
Project Templates reference section for more information on the available templates.

3. Configure your project’s SDK (i.e., JDK), package name, class name, and service name, if necessary.
Then clickNext.

4. Give your project a name. Then click Finish.

Awesome! Your project is available under its project type folder in your workspace.

634

Figure 57.5: Choose the project template to create your module.

57.4 Installing a Server in IntelliJ IDEA
Installing a Liferay server in IntelliJ is easy. In just a few steps, you’ll have your server up and running.

Note: Tomcat andWildfly are the only supported Liferay app server bundles available to install in IntelliJ.

Follow these steps to install your server:

1. Right-click your Liferay workspace and select Liferay → InitBundle.

This downloads the Liferay DXP bundle specified in your workspace’s gradle.properties file. You can
change the default bundle by updating the liferay.workspace.bundle.url property. For example, this
is required to update the default bundle version and/or type (e.g.,Wildfly). The downloaded bundle is
stored in the workspace’s bundles folder.

2. Navigate to the top right Configurations dropdownmenu and select Edit Configurations. From here,
you can configure your server’s run and debug configurations.

Figure 57.6: You have several options to choose from the server dropdown menu.

3. Click the AddNewConfiguration button () and select Liferay Server.

4. Give your server a better name andmodify any other configurations, if necessary. Then selectOK .

Your server is now available in IntelliJ! Make sure to select it in the Configurations dropdown before
executing the configuration buttons (below).

For reference, here’s how the IntelliJ configuration buttons work with your Liferay DXP instance:

• Start (): Starts the server.

635

Figure 57.7: Set your Liferay server’s configurations in the Run/Debug Configurations menu.

• Stop (): Stops the server.
• Debug (): Starts the server in debugmode. For more information on debugging in IntelliJ, see the
IntelliJ Debugging article.

Now you’re ready to use your server in IntelliJ!

57.5 Deploying Projects with IntelliJ IDEA

Once you’ve created a project and installed your Liferay server in IntelliJ, you’ll want to deploy your project.
Follow the steps below to do this:

1. Right-click your project from within the LiferayWorkspace folder structure and select Liferay →Deploy.

This automatically loads a build progress window viewable at the bottom of your IntelliJ instance.

2. Verify that your project builds successfully from the build progress window. Then navigate back to your
server’s window and confirm it starts in your configured Liferay DXP instance. You should receive a
message like this:

636

https://www.jetbrains.com/help/idea/debugging-code.html

Figure 57.8: Verify that your project build successfully.

INFO [fileinstall-C:/liferay-workspace/bundles/osgi/modules][BundleStartStopLogger:35] STARTED com.liferay.docs_1.0.0 [652]

That’s it! You’ve successfully deployed your project to Liferay DXP!

637

Chapter 58

Liferay Sample Projects

Liferay provides working examples of sample projects that target different integration points in Liferay DXP.
These working examples can be copy/pasted into your own independent project so you can take advantage
of various Liferay extension points. Each sample is a standalone project and includes its own build files.
Liferay’s sample projects can be found in the liferay-blade-samples repository on GitHub. You can find
documentation for Liferay’s sample projects in the Sample Projects reference section.

If you’d like to browse the repository locally or copy sample projects into your own project, fork and clone
the liferay-blade-samples repository.

At first glance, you’ll notice that the repository is broken up into three primary folders:

• gradle

• liferay-workspace

• maven

The provided sample projects are organized by their development toolchains to cater to a variety of
developers. Each folder offers the same set of sample Liferay projects. Their only difference is that the
build files are specific to their toolchain. For example, the gradle folder contains projects using standard
OSS Gradle plugins that can be added to any Gradle composite build. The same concept also applies to the
liferay-workspace and maven projects.

The gradle folder also uses the Liferay Gradle plugin (e.g., com.liferay.plugin) which encompasses
additional functionality for various types of Liferay projects. The Liferay Gradle plugin is recommended for
Gradle users developing for Liferay.

Some samples also come configured with logging to help you fully understand what the sample is
accomplishing behind the scenes. For example, OSGi module logging is implemented for several samples
(e.g., action-command-portlet, document-action, service-builder/jdbc, etc.), which lets OSGi modules
supply their own logging configuration defaults without external configuration. See the Adjusting Module
Logging tutorial for more information.

For a list of sample template projects available, visit the Liferay extension points sub-section in the Liferay
Blade Samples repository. This list is not comprehensive. A subset of missing extension point samples can
be found in the Liferay extension points without template projects sub-section. Visit the repo’s Contribution
Guidelines section for details on contributing to this repository.

639

https://github.com/liferay/liferay-blade-samples
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/cloning-a-repository/
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/action-command-portlet
https://github.com/liferay/liferay-blade-samples#liferay-extension-points-and-template-projects
https://github.com/liferay/liferay-blade-samples#liferay-extension-points-without-template-projects
https://github.com/liferay/liferay-blade-samples#contribution-guidelines
https://github.com/liferay/liferay-blade-samples#contribution-guidelines

58.1 Liferay Upgrade Planner
The Liferay Upgrade Planner provides an automated way to adapt your installation’s data and legacy plugins
to your desired Liferay DXP upgrade version. We recommend leveraging this tool for any of the following
upgrades:

• Liferay Portal 6.2 → Liferay DXP 7.0, 7.1, or 7.2
• Liferay DXP 7.0 → Liferay DXP 7.1 or 7.2
• Liferay DXP 7.1 → Liferay DXP 7.2

The Upgrade Planner is provided in Liferay Dev Studio (versions 3.6+). Here’s what the Upgrade Planner
does:

• Updates your development environment.
• Identifies code affected by the API changes.
• Describes each API change related to the code.
• Suggests how to adapt the code.
• Provides options, in some cases, to adapt code automatically.
• Transfers database and server data to your new environment.

Even if you prefer tools other than Dev Studio (which is based on Eclipse), you should upgrade your data
and legacy plugins using the Upgrade Planner first–you can use your favorite tools afterward.

To start the Upgrade Planner in Dev Studio, do this:

1. Navigate to Project →New Liferay Upgrade Plan….

2. In the New Liferay Upgrade Plan wizard, assign your plan a name and choose an upgrade plan outline.
The data and code upgrade processes are separate, so youmust step through each process indepen-
dently.

3. Choose your current Liferay version and the new version you’re upgrading to.

4. If you chose to complete a code upgrade, you must also select the folder where your legacy plugins
reside (e.g., Plugins SDK for Liferay 6.2 projects).

5. Click Finish.

Switch to the new Liferay Upgrade Planner perspective (prompted automatically). You’re now offered
several windows in the UI:

• Project Explorer: displays your legacy plugin environment and new development environment. It also
displays your upgrade problems that are detected during the Fix Upgrade Problems step.

• Liferay Upgrade Plan: outlines the upgrade plan’s steps and step summaries.
• Liferay Upgrade Plan Info: shows official documentation that describes the upgrade step.

To progress through your upgrade plan, click the steps outlined in the Liferay Upgrade Plan window.
Each step can have several options:

• Click to preview: previews what an automated step will perform.
• Click to perform: executes an automated process provided with the step. This is only offered for steps
where the Upgrade Planner can assist.

640

Figure 58.1: Configure your upgrade plan before beginning the upgrade process.

• Click when complete: marks the step as complete. This is only offered when the Upgrade Planner cannot
provide automated assistance and, instead, only offers documentation to assist in completing the step
manually.

• Restart: marks a completed step as unfinished. The step is performed again if automation is involved.
• Skip: skips the step and jumps to the next step in the outline.

Figure 58.2: You can preview the Upgrade Planner’s automated updates before you perform them.

Great! You now have a good understanding of the Liferay Upgrade Planner’s UI and how to get started.

Note:TheUpgrade Planner upgrades data and code to Liferay DXP versions that include 7.0 and the
latest DXP version. It links to the latest Liferay DXP upgrade documentation. 7.0 upgrade documentation is
available here:

641

• Data Upgrade
• Code Upgrade

58.2 Using the Upgrade Planner with Proxy Requirements
If you have proxy server requirements and want to configure your http(s) proxy
to work with the Liferay Upgrade Planner, follow the instructions below.

1. In Dev Studio’s DeveloperStudio.ini/eclipse.ini file, add the following parameters:

-Djdk.http.auth.proxying.disabledSchemes=

-Djdk.http.auth.tunneling.disabledSchemes=

2. Launch Dev Studio.

3. Go toWindow → Preferences → General →Network Connections.

4. Set the Active Provider drop-down selector toManual.

5. Under Proxy entries, configure both proxy HTTP and HTTPS by clicking the field and selecting the Edit
button.

6. For each schema (HTTP and HTTPS), enter your proxy server’s host, port, and authentication settings
(if necessary). Do not leave whitespace at the end of your proxy host or port settings.

7. Once you’ve configured your proxy entry, click Apply and Close.

Awesome! You’ve successfully configured the Upgrade Planner’s proxy settings!

642

Figure 58.3: You can configure your proxy settings in Dev Studio’s Network Connections menu.

643

Chapter 59

Portlets

Web apps in Liferay DXP are called portlets. Like many web apps, portlets process requests and generate
responses. In the response, the portlet returns content (e.g. HTML, XHTML) for display in browsers. You
might now be thinking, “Ok, besides the funky name, how are portlets different from other types of web
apps?” This is a fantastic question! One key difference is that portlets run in a portion of the web page.
When you’re writing a portlet application, you only need to worry about that application: the rest of the
page–the navigation, the top banner, and any other global component of the interface–is handled by other
components. Another difference is that portlets run only in a portal server, like the one in Liferay DXP.
Portlets can therefore use the portal’s existing support for user management, authentication, permissions,
page management, andmore. This frees you to focus on developing the portlet’s core functionality. In many
ways, writing your application as a portlet is easier than writing a standalone application.

Portlets can be placed on pages by users or portal administrators, who can place several different portlets
on a single page. For example, a page in a community site could have a calendar portlet for community events,
an announcements portlet for important announcements, and a bookmarks portlet for links of interest to
the community. And because the portal controls page layout, you can reposition and resize one or more
portlets on a page without altering any portlet code. Doing all this in other types of web apps would require
manual re-coding. Alternatively, a single portlet can take up an entire page if it’s the only app you need on
that page. For example, a message boards or wiki portlet is best suited on its own page. In short, portlets
alleviate many of the traditional pain points associated with developing web apps.

What’s more, portals and portlets are standards-based. In 2003, Java Portlet Specification 1.0 (JSR-168)
first defined portal and portlet behavior. In 2008, Java Portlet Specification 2.0 (JSR-286) refined and built
on JSR-168, while maintaining backwards compatibility, to define features like inter-portlet communication
(IPC) andmore. The recently released Java Portlet Specification 3.0 (JSR-362) continues portal and portlet
evolution. Liferay leads in this space by having a member in the Expert Group.

So what do these specifications define? We won’t bore you with the gory details; if that’s what you
want you can read the specifications. We will tell you, however, how portlets differ from other types of
servlet-based web apps. Portlets handle requests in multiple phases. This makes portlets muchmore flexible
than servlets. Each portlet phase executes different operations:

• Render: Generates the portlet’s contents based on the portlet’s current state. When this phase runs on
one portlet, it also runs on all other portlets on the page. The Render phase runs when any portlets on
the page complete the Action or Event phases.

645

https://jcp.org/en/jsr/detail?id=168
https://jcp.org/en/jsr/detail?id=286
https://jcp.org/en/jsr/detail?id=362

Figure 59.1: You can place multiple portlets on a single page.

• Action: In response to a user action, performs some operation that changes the portlet’s state. The
Action phase can also trigger events that are processed by the Event phase. Following the Action phase
and optional Event phase, the Render phase then regenerates the portlet’s contents.

• Event: Processes events triggered in the Action phase. Events are used for IPC. Once the portlet
processes all events, the portal calls the Render phase on all portlets on the page.

• Resource-serving: Serves a resource independent from the rest of the lifecycle. This lets a portlet serve
dynamic content without running the Render phase on all portlets on a page. The Resource-serving
phase handles AJAX requests.

Compared to servlets, portlets alsohave someother keydifferences. Sinceportlets only render aportionof
apage, tags like <html>, <head>, and <body>aren’t allowed. Andbecause youdon’t knowtheportlet’s pageahead
of time, you can’t create portlet URLs directly. Instead, the portlet API gives youmethods to create portlet
URLs programmatically. Also, because portlets don’t have direct access to the javax.servlet.ServletRequest,
they can’t read query parameters directly fromaURL.Portlets instead access a javax.portlet.PortletRequest
object. The portlet specification only provides a mechanism for a portlet to read its own URL parameters or

646

those declared as public render parameters. Liferay DXP does, however, provide utility methods that can
access the ServletRequest and query parameters. Portlets also have a portlet filter available for each phase
in the portlet lifecycle. Portlet filters are similar to servlet filters in that they allow request and response
modification on the fly.

Portlets also differ from servlets by having distinct modes and window states. Modes distinguish the
portlet’s current function:

• Viewmode:The portlet’s standard mode. Use this mode to access the portlet’s main functionality.
• Editmode:The portlet’s configurationmode. Use this mode to configure a custom view or behavior.
For example, the Edit mode of a weather portlet could let you choose a location to retrieve weather
data from.

• Helpmode: Amode that displays the portlet’s help information.

Most modern applications use ViewMode only.
Portlet window states control the amount of space a portlet takes up on a page. Window states mimic

window behavior in a traditional desktop environment:

• Normal:The portlet can be on a page that contains other portlets. This is the default window state.
• Maximized:The portlet takes up an entire page.
• Minimized: Only the portlet’s title bar shows.

When you develop portlets for Liferay DXP, you can leverage all the features defined by the portlet
specification. Depending on how you develop and package your portlet, however, it may not be able to run on
other portal containers. Youmay now be saying, “Hold on aminute! I thought Liferay DXP was standards-
compliant? What gives?” Liferay DXP is standards-compliant, but it contains some sweeteners in the form of
APIs designed to make developers’ lives easier. For example, Liferay DXP contains anMVC framework that
makes it simpler to implement MVC in your portlet. This framework, however, is only available in Liferay’s
portal. Withoutmodification, a portlet that uses this frameworkwon’t run if deployed to a non-Liferay portal
container. Note, though, that we don’t force you to use Liferay DXP’s MVC framework or any of its other
unique APIs. For example, you can develop your portlet with strictly standards-compliant frameworks and
APIs, package it in aWAR file, and then deploy it on any standards-compliant portal container.

Liferay DXP also contains an OSGi runtime. This means that you don’t have to develop and deploy your
portlet as a traditional WAR file; you can do so as OSGi modules instead. We recommend the latter, so you
can take advantage of the modularity features inherent in OSGi. For a detailed description of these features,
see the tutorial OSGi andModularity. Note, however, that Liferay DXP portlets you develop as OSGimodules
won’t run on other portlet containers that lack an OSGi runtime. Even so, the advantages of modularity are
so great that we still recommend you develop your portlets as OSGi modules.

With that said, you can use a variety of technologies to develop portlets that run on Liferay DXP.Have
you ever heard the saying, “There’s more than one way to skin a cat?” It’s gross, but it’s probably true. Liferay
DXP doesn’t force you to use a single tool or set of tools to develop portlets. This section shows you how to
develop portlets using the following frameworks and techniques:

• Liferay’s MVCPortlet
• Soy Portlet
• SpringMVC
• JavaServer Faces (JSF) Portlets with Liferay Faces
• Making URLs Friendlier
• Preparing Your JavaScript Files for ES2015
• Applying Lexicon Styles to Your App

647

• Automatic Single Page Applications
• Creating Layouts Inside Custom Portlets

648

Chapter 60

Liferay MVC Portlet

Web applications are often developed following theModel View Controller (MVC) pattern. But Liferay has
developed a groundbreaking new pattern called theModal Veal Contractor (MVC) pattern. Okay, that’s not
true: the framework is actually another implementation of Model View Controller. If you’re an experienced
developer, this will not be the first time you’ve heard about Model View Controller. In this article you’ll need
to stay focused, because there will be several attempts to show you why Liferay’s implementation of Model
View Controller is different, when instead you’re hearing about another MVC framework. With that in mind,
let’s get back to theMedial Vein Constriction pattern we were discussing.

If there are so many implementations of MVC frameworks in Java, why did Liferay create yet another
one? Stay with us and you’ll see that Liferay MVC provides these benefits:

• It’s lightweight, as opposed to many other Java MVC frameworks.
• There are no special configuration files that need to be kept in sync with your code.
• It’s a simple extension of GenericPortlet.
• You avoid writing a bunch of boilerplate code, since Liferay’s MVC framework simply looks for some
pre-defined parameters when the init()method is called.

• The controller can be broken down into MVC command classes, each of which handles the controller
code for a particular portlet phase (render, action, and resource serving phases).

• Liferay’s portlets use it. That means there are plenty of robust implementations to reference when you
need to design or troubleshoot your Liferay applications.

The Liferay MVC portlet framework is light, it hides part of the complexity of portlets, and it makes the
most common operations easier. The default MVCPortlet project uses separate JSPs for each portlet mode:
For example, edit.jsp is for edit mode and help.jsp is for helpmode.

Before diving in to the Liferay MVC swimming pool with all the other cool kids (applications), review
how each layer of theMoody Vase Conscription pattern helps you separate the concerns of your application.

60.1 MVC Layers and Modularity

In MVC, there are three layers, and you can probably guess what they are.
Model:Themodel layer holds the application data and logic for manipulating it.
View:The view layer contains logic for displaying data.

649

Controller:Themiddle man in the MVC pattern, the Controller contains logic for passing the data back
and forth between the view and the model layers.

TheMiddle Verse Completer pattern fits well with Liferay’s application modularity effort.
Liferay’s applications are divided into multiple discrete modules. With Service Builder, the model layer

is generated into a service and an apimodule. That accounts for the model in theMVC pattern. The view
and the controller share a module, the webmodule.

Generating the skeleton for a multi-module Service Builder driven MVC application using Liferay Blade
CLI saves you lots of time and gets you started on themore important (and interesting, if we’re being honest)
development work.

60.2 Liferay MVC Command Classes

In a larger application, your -Portlet class can becomemonstrous and unwieldy if it holds all of the controller
logic. Liferay provides MVC command classes to break up your controller functionality.

• MVCActionCommand: Use -ActionCommand classes to hold each of your portlet actions, which are invoked
by action URLs.

• MVCRenderCommand: Use -RenderCommand classes to hold a rendermethod that dispatches to the appro-
priate JSP, by responding to render URLs.

• MVCResourceCommand: Use -ResourceCommand classes to execute resource serving in your MVC portlet, by
responding to resource URLs.

Theremust be someconfusing configurationfiles to keep everythingwired together andworkingproperly,
right? Wrong: it’s all easily managed in the OSGi component in the -Portlet class.

60.3 Liferay MVC Portlet Component

Whether or not you plan to split up the controller into MVC command classes, you use a portlet component
class with a certain set of properties. Here’s a simple portlet component as an example:

@Component(

immediate = true,

property = {

"com.liferay.portlet.css-class-wrapper=portlet-hello-world",

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.icon=/icons/hello_world.png",

"com.liferay.portlet.preferences-owned-by-group=true",

"com.liferay.portlet.private-request-attributes=false",

"com.liferay.portlet.private-session-attributes=false",

"com.liferay.portlet.remoteable=true",

"com.liferay.portlet.render-weight=50",

"com.liferay.portlet.use-default-template=true",

"javax.portlet.display-name=Hello World",

"javax.portlet.expiration-cache=0",

"javax.portlet.init-param.always-display-default-configuration-icons=true",

"javax.portlet.name=" + HelloWorldPortletKeys.HELLO_WORLD,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=guest,power-user,user",

"javax.portlet.supports.mime-type=text/html"

},

service = Portlet.class

)

public class HelloWorldPortlet extends MVCPortlet {

}

650

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCActionCommand.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderCommand.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCResourceCommand.html

When using MVC commands, the javax.portlet.name property is important. This property is one of
two that must be included in eachMVC command component; it links a particular portlet URL/command
combination to the correct portlet.

Important: Make your portlet name unique, considering how Liferay DXP uses the name to create the
portlet’s ID.

There can be some confusion over exactly what kind of Portlet.class implementation you’re publishing
with this component. Liferay’s service registry expects this to be javax.portlet.Portlet, so make sure that’s
the class you import, and not, for example, com.liferay.portal.kernel.model.Portlet.

Note: To find a list of all the Liferay-specific attributes you can specify as properties in your portlet
components, check out the liferay-portlet-app_7_0_0.dtd.

Consider the <css-class-wrapper> element from the above link as an example. To specify that property
in your component, use this syntax in your property list:

"com.liferay.portlet.css-class-wrapper=portlet-hello-world",

The properties namespaced with javax.portlet.... are elements of the portlet.xml descriptor.

60.4 A Simpler MVC Portlet
With all for this focus onMVC commands, you might be concerned that you’ll be forced into a more complex
pattern than is necessary, especially if you’re developing only a small Liferay MVC application. Not so; just
put all of your logic into the -Portlet class if you don’t want to split up your MVC commands.

In simpler applications, if you don’t have anMVC command to rely on, your portlet render URLs specify
the path to the JSP in an mvcPath parameter.

<portlet:renderURL var="addEntryURL">

<portlet:param name="mvcPath" value="/entry/edit_entry.jsp" />

<portlet:param name="redirect" value="<%= redirect %>" />

</portlet:renderURL>

As you’ve seen, Liferay’sMedical Vortex Concentrator (MVC) portlet framework gives you a well-structured
controller layer that takes very little time to implement. With all your free time, you could

• Learn a new language
• Take pottery classes
• Lift weights
• Work on your application’s business logic

It’s entirely up to you.

60.5 Creating an MVC Portlet
You’re convinced that Liferay’s MVC Framework is right for you, and you want to learn how to configure it.

You’ll need:

• A module that publishes a portlet component with the necessary properties.

651

@platform-ref@/7.0-latest/definitions/liferay-portlet-app_7_0_0.dtd.html
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd

• Controller code to handle the request and response.
• JSPs to implement your view layer.

Along the way you’ll want to know how to call services from your controller and how to pass information
from the view layer to the controller.

Keep in mind that you can take two paths with your Liferay MVC portlet implementation. If you have a
small application that won’t be heavy on controller logic (maybe just a couple of actionmethods), you can
put all your controller code in the -Portlet class. If you have more complex needs (lots of actions, complex
render logic to implement, or maybe even some resource serving code), consider breaking the controller
into MVC Action Command classes,MVC Render Command classes, andMVC Resource Command classes.

In this tutorial you’ll learn to implement a LiferayMVC portlet with all the controller code in the -Portlet
class.

Configuring a WEB Module

As a naming convention, the module with your controller code and view layer is referred to as the WEB
module. A very basicWEBmodule might look like this:

docs.liferaymvc.web/

src/main/java/

com/liferay/docs/liferaymvc/web/portlet/LiferayMVCPortlet.java

src/main/resources/

content/

Language.properties

META/-INF/resources/

init.jsp

view.jsp

build.gradle

bnd.bnd

Of course you’re not tied to the use of Gradle or BndTools to build your project. However, you do need a
JAR with the proper OSGi headers defined, which is easily done if you provide a bnd.bnd file. To see Liferay
MVC portlets built with Maven and Gradle, you can check out the tutorial on Liferay Sample Projects.

Specifying OSGi Metadata

At a minimum, you should specify the bundle symbolic name and the bundle version for the OSGi runtime.
Providing a human readable bundle name is also recommended.

Bundle-Name: Example Liferay MVC Web

Bundle-SymbolicName: com.liferay.docs.liferaymvc.web

Bundle-Version: 1.0.0

If you don’t specify a Bundle-SymbolicName, one will be generated from the project’s directory path, which
is suitable for many cases. If you specify the bundle symbolic name yourself, it’s a nice convention to use the
root package name as the bundle symbolic name.

Creating a Portlet Component

Using the OSGi Declarative Services component model makes it easy to publish service implementations to
the OSGi runtime. In this case an implementation of the javax.portlet.Portlet service must be published.
Declare this using an @Component annotation in the portlet class:

652

@Component(

immediate = true,

service = Portlet.class

)

public class LiferayMVCPortlet extends MVCPortlet {

}

Since Liferay’s MVCPortlet class is itself an extension of javax.portlet.Portlet, you’ve provided the right
implementation. That’s good in itself, but the component needs to be fleshed out with some properties:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.display-name=Liferay MVC Portlet",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

public class LiferayMVCPortlet extends MVCPortlet {

}

Some of those properties might look familiar to you if you’ve developed Liferay MVC portlets before
7.0. That’s because they correspond with the XML attributes you used to specify in liferay-portlet.xml,
liferay-display.xml, and portlet.xml. To find a list of all the Liferay-specific attributes you can specify as
properties in your portlet components, check out the liferay-portlet-app_7_0_0.dtd. This is still maintained
as a DTD to keep compatibility with the JSR-168 and JSR-286 portlet specs.

Consider the <instanceable> element from the above link as an example. To specify that property in your
component, use this syntax in your property list:

"com.liferay.portlet.instanceable=true",

The properties namespaced with javax.portlet.... are elements of the portlet.xml descriptor.
Also note that it is possible to create nested categories using the com.liferay.portlet.display-category

property. The format for creating these categories is to write out the category path starting with the root and
separating each category in descending order by the use of //. Here’s an example:

com.liferay.portlet.display-category=root//category.category1//category.category2

Liferay’s DTD files can be found here.
You can publish this portlet component, but it doesn’t do anything yet. You’ll implement the Controller

code next.

Writing Controller Code

InMVC, your controller receives requests from the front end, and it receives data from the back end. It’s
responsible for sending that data to the right front end view so it can be displayed to the user, and it’s
responsible for taking data the user entered in the front end and passing it to the right back end service. For
this reason, it needs a way to process requests from the front end and respond to them appropriately, and it
needs a way to determine the appropriate front end view to pass data back to the user.

For data coming from the user to the back end, Liferay’s MVC portlet framework offers you two ways to
do this. One of these is designed for smaller applications, and the other is designed for larger applications.

653

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html
@platform-ref@/7.0-latest/definitions/liferay-portlet-app_7_0_0.dtd.html
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd

First, you’ll learn about processing requests in smaller applications. After that, you’ll learn about how data is
rendered from the back end to the user. For processing requests in larger applications, see the tutorials MVC
Action Command,MVC Render Command, andMVC Resource Command. But read these after you finish
this one, so you can understand how the whole framework works.

Action Methods

If you have a small application, you can implement all your controller code in your portlet class (the same
one you annotated with @Component), which acts as your controller by itself. For processing requests, you use
action methods. Here’s what an action methodmight look like:

public void addGuestbook(ActionRequest request, ActionResponse response)

throws PortalException, SystemException {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), request);

String name = ParamUtil.getString(request, "name");

try {

_guestbookService.addGuestbook(serviceContext.getUserId(),

name, serviceContext);

SessionMessages.add(request, "guestbookAdded");

} catch (Exception e) {

SessionErrors.add(request, e.getClass().getName());

response.setRenderParameter("mvcPath",

"/html/guestbook/edit_guestbook.jsp");

}

}

In this action method, the javax.portlet.ActionRequest object is used to retrieve two pieces of informa-
tion that are needed to call the addGuestbook service, which is the point of the method. If successful, the
SessionMessages object is used to store a success message. If an exception is thrown, it’s caught, and the ap-
propriate SessionErrors object is used to store the exceptionmessage. Note the call to the setRenderParameter
method on the ActionResponse. This is used to render the edit_guestbook.jsp if a guestbook could not be
added, by setting the mvcPath parameter. This parameter is a convention in Liferay’s MVCPortlet framework
that denotes the next view that should be displayed to the user.

Render Logic

So what might a render method look like? First, note that implementing render logic might not be necessary
at all. Note the init-param properties you set in your Component:

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

With these, you’re directing the default rendering to your view.jsp. The template-path property tells the
MVC framework where your JSP files live. In the above example, /means that the JSP files are located in
your project’s root resources folder. That’s why it’s important to follow Liferay’s standard folder structure,
outlined above. Here’s the path of a hypothetical Webmodule’s resource folder:

docs.liferaymvc.web/src/main/resources/META-INF/resources

654

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/SessionMessages.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/SessionErrors.html

In this case, the view.jsp file is found at

docs.liferaymvc.web/src/main/resources/META-INF/resources/view.jsp

and that’s the default view of the application. When the initmethod is called, the initialization parame-
ters you specify are read and used to direct rendering to the default JSP.Throughout the controller, you can
render a different view (JSP file) by setting the render parameter mvcPath, like this:

actionResponse.setRenderParameter("mvcPath", "/error.jsp");

In some cases, the uses of initialization parameters and render parameters obviates the need for addi-
tional render logic. However, it’s often necessary to provide additional render logic. To do this, override the
rendermethod. Here’s an example:

@Override

public void render(RenderRequest renderRequest,

RenderResponse renderResponse) throws PortletException, IOException {

try {

ServiceContext serviceContext = ServiceContextFactory.getInstance(

Guestbook.class.getName(), renderRequest);

long groupId = serviceContext.getScopeGroupId();

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

List<Guestbook> guestbooks = _guestbookService

.getGuestbooks(groupId);

if (guestbooks.size() == 0) {

Guestbook guestbook = _guestbookService.addGuestbook(

serviceContext.getUserId(), "Main", serviceContext);

guestbookId = guestbook.getGuestbookId();

}

if (!(guestbookId > 0)) {

guestbookId = guestbooks.get(0).getGuestbookId();

}

renderRequest.setAttribute("guestbookId", guestbookId);

} catch (Exception e) {

throw new PortletException(e);

}

super.render(renderRequest, renderResponse);

}

With render logic, you’re providing the view layer with information to display the data properly to the
user. In this case, there’s some information needed at the outset, and then there’s some logic in the if

statements that determine if there are any Guestbooks that can be displayed. If not, a Guestbook should
be created by default. If there are Guestbooks in the database, the ID that’s first in the list retrieved via
the getGuestbooksmethod should be displayed. This is accomplished by passing the appropriate ID to the
RenderRequest using the setAttirbutemethod. Since this logic should be executed before the default render
method, the method concludes by calling super.render.

655

Note: Are you wondering how to call Service Builder services in 7.0? Refer to the tutorial on Finding
and Invoking Liferay Services for a more detailed explanation. In short, obtain a reference to the service by
annotating a setter method with the @ReferenceDeclarative Services annotation and set the service object as
a private variable.

private GuestbookService _guestbookService;

@Reference(unbind = "-")

protected void setGuestbookService(GuestbookService guestbookService) {

_guestbookService = guestbookService;

}

Once done, you can call the service’s methods.

_guestbookService.addGuestbook(serviceContext.getUserId(), "Main",

serviceContext);

Setting and Retrieving Request Parameters and Attributes

In the portlet class’s render method action methods, and even in your JSPs, you can use a handy utility class
called ParamUtil to retrieve parameters from an ActionRequest or a RenderRequest.

long guestbookId = ParamUtil.getLong(renderRequest, "guestbookId");

In the above example, the parameter was set into an action request in a JSP:

<portlet:param name="guestbookId"

value="<%= String.valueOf(entry.getGuestbookId()) %>" />

You can also set attributes into the request using the method

request.setAttribute();

in your portlet class. To read the attribute in a JSP, use the method

request.getAttribute();

To set parameters into the response in your controller code, you can use the setRenderParametermethod.

actionResponse.setRenderParameter("mvcPath", "/error.jsp");

Passing information back and forth from your view and controller is important, but there’s more to the
view layer than that.

656

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ParamUtil.html

Configuring the View Layer

You now know how to extend Liferay’s MVCPortlet to write controller code and register a Component in the
OSGi runtime. You also need a view layer, of course, and for that, you’ll use JSPs. Lexicon can be used to
guide your app’s styling so it matches Liferay’s. To learn about Lexicon and about some of Liferay’s taglibs,
refer to the tutorial Applying Lexicon Styles to Your App. This section will briefly cover how to get your view
layer working, from organizing your imports in one JSP file, to configuring URLs that direct processing to
your code in the portlet class.

It’s a good practice to put all your Java imports, tag library declarations, and variable initializations
into an init.jsp file. If you use Liferay @ide@ to create your Web module, these taglib declarations and
initializations are automatically added to your init.jsp:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://liferay.com/tld/portlet" prefix="liferay-portlet" %>

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme" %>

<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>

<liferay-theme:defineObjects />

<portlet:defineObjects />

Make sure you include the init.jsp in your other JSP files:

<%@include file="/html/init.jsp"%>

You can, if necessary, write Java code in your JSPs using scriptlets. Perhaps you set an attribute into the
request in your controller:

renderRequest.setAttribute("guestbookId", guestbookId);

You can reference it in your JSP by calling the renderRequest.getAttributemethod:

<%

long guestbookId = Long.valueOf((Long) renderRequest

.getAttribute("guestbookId"));

%>

To construct a URL that calls the rendermethod of your controller, you can use the portlet:renderURL
tag:

<portlet:renderURL var="searchURL">

<portlet:param name="mvcPath" value="/admin/view.jsp" />

</portlet:renderURL>

You create a variable to hold the generated URL with the var attribute. Then you can set any parameters
you need using the portlet:param tag. The mvcPath parameter is used to direct to another JSP.The example
above points to a JSP in

docs.liferaymvc.web/src/main/resources/META-INF/resources/admin/view.jsp

You can then use the var value to invoke the URL in your JSP code, perhaps in a button or navigation bar
item.

Action URLs can be similarly created with the portlet taglib:

657

<portlet:actionURL name="doSomething" var="doSomethingURL">

<portlet:param name="redirect" value="<%= redirect %>" />

</portlet:actionURL>

The name of the action URL should match the actionmethod name in your portlet class; that’s all Liferay’s
MVC framework needs in order to know that the action method of the same name should run when this
action URL is invoked. Use the var attribute like you did the var attribute in the render URL; to call the action
URL in your JSP code, whether it’s in an icon, a button, or somewhere else.

As you can see, with Liferay MVC it’s pretty easy to make your controller talk to your view layer.

Beyond the Basics

This tutorial should get you up and running with a LiferayMVCWebmodule, but there’s more to know about
creating an app in Liferay. Here are a few useful jumping off points:

• Making URLs Friendlier
• Applying Lexicon Styles to your App
• Localizing your Application
• Liferay’s Workflow Framework
• Model Listeners
• Application Security
• Asset Framework
• Service Builder

60.6 MVC Action Command

Liferay’s MVC framework lets you split your portlet’s action methods into separate classes. This can be very
helpful in portlets that have many actions. Each action URL in your portlet’s JSPs then calls the appropriate
action class when necessary.

First, use the <portlet:actionURL> tag to create the action URL in your JSP. For example, the edit blog
entry action in Liferay’s Blogs app is defined in the edit_entry.jsp file as follows:

<portlet:actionURL name="/blogs/edit_entry" var="editEntryURL" />

When the action URL is triggered, the matching action class processes the action. Implement the action
by creating a class that implements the MVCActionCommand interface. To avoid writing oodles of boilerplate
code, your *MVCActionCommand class should extend the BaseMVCActionCommand class instead of implement-
ing MVCActionCommand directly. The BaseMVCActionCommand class already implements MVCActionCommand and
provides many useful method implementations. Naming your *MVCActionCommand class after the action it
performs is a good convention. For example, if your action edits some kind of entry, you could name its class
EditEntryMVCActionCommand.

Your *MVCActionCommand class must also have a @Component annotation like the following. Set the property
javax.portlet.name to your portlet’s internal ID, and the property mvc.command.name to the value of the name
property in your JSP’s matching actionURL. To register the component in the OSGi container as using the
MVCActionCommand class, youmust set the service property to MVCActionCommand.class:

@Component(

immediate = true,

property = {

"javax.portlet.name=your_portlet_name_YourPortlet",

"mvc.command.name=/your/jsp/action/url"

658

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/blogs/blogs-web/src/main/resources/META-INF/resources/blogs/edit_entry.jsp
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCActionCommand.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/BaseMVCActionCommand.html

},

service = MVCActionCommand.class

)

public class YourMVCActionCommand extends BaseMVCActionCommand {

// implement your action

}

For example, this is the @Component annotation for the Blogs app’s EditEntryMVCActionCommand class:

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS,

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN,

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_AGGREGATOR,

"mvc.command.name=/blogs/edit_entry"

},

service = MVCActionCommand.class

)

public class EditEntryMVCActionCommand extends BaseMVCActionCommand {

// the app's edit blog entry action implementation

}

Note that you can usemultiple javax.portlet.name values to indicate the component works withmultiple
portlets.

In your *MVCActionCommand class, process the action by overriding the BaseMVCActionCommand class’s
doProcessActionmethod. Thismethod takes javax.portlet.ActionRequestand javax.portlet.ActionResponse
parameters that you can use to process your action. Your *MVCActionCommand class should also contain any
other code required to implement your action. For a real-world example of a *MVCActionCommand class, see
the Blogs app’s EditEntryMVCActionCommand class.

Related Topics

MVC Render Command
MVC Resource Command
MVC Command Overrides

60.7 MVC Render Command

If you’re here, that means you know that MVCRenderCommands are used to respond to portlet render URLs, and
you want to know how to create and useMVC render commands. If you just want to learn about Liferay’s
MVC Portlet framework in general, that information is in a separate article.

To use MVC render commands, you need these things:

• An implementation of the MVCRenderCommand interface.
• A portlet render URL in your view layer.
• a Component that publishes the MVCRenderCommand service, with two properties.

Implementing MVCRenderCommand

What is it you want to do when a portlet render URL is invoked? Using the mvcRenderCommandName parameter,
direct the request to an MVCRenderCommand implementation. Now override the rendermethod.

Some MVCRenderCommandswill simply render aparticular JSP.Here’swhat BlogsViewMVCRenderCommand looks
like:

659

https://github.com/liferay/liferay-portal/blob/7.0.2-ga3/modules/apps/collaboration/blogs/blogs-web/src/main/java/com/liferay/blogs/web/internal/portlet/action/EditEntryMVCActionCommand.java
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/BaseMVCActionCommand.html#doProcessAction-javax.portlet.ActionRequest-javax.portlet.ActionResponse-
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderCommand.html
https://github.com/liferay/liferay-portal/blob/7.0.2-ga3/modules/apps/collaboration/blogs/blogs-web/src/main/java/com/liferay/blogs/web/internal/portlet/action/BlogsViewMVCRenderCommand.java

@Override

public String render(

RenderRequest renderRequest, RenderResponse renderResponse) {

return "/blogs/view.jsp";

}

Sometimes you’ll want to add logic to render a certain JSP based on one or more conditions:

@Override

public String render(

RenderRequest renderRequest, RenderResponse renderResponse)

throws PortletException {

try {

ActionUtil.getEntry(renderRequest);

}

catch (Exception e) {

if (e instanceof NoSuchEntryException ||

e instanceof PrincipalException) {

SessionErrors.add(renderRequest, e.getClass());

return "/hello/error.jsp";

}

else {

throw new PortletException(e);

}

}

return "/hello/edit_entry.jsp";

}

If there’s an error caught following the call to ActionUtil.getEntry in the code above, the error.jsp is
rendered. If the call is returned without an exception being caught, edit_entry.jsp is rendered.

How does a request get directed to your MVC render command? Using a portlet render URL.

Creating a Portlet Render URL

You can generate a render URL for your portlet using the <portlet:renderURL> taglib. To invoke your MVC
render command from the render URL, you need to specify the parameter mvcRenderCommandNamewith the
same value as your Component property mvc.command.name.

For example, you can create a URL that directs the user to a page with a form for editing an entry like
this (in a JSP):

<portlet:renderURL var="editEntryURL">

<portlet:param name="mvcRenderCommandName" value="/hello/edit_entry" />

<portlet:param name="entryId" value="<%= String.valueOf(entry.getEntryId()) %>" />

</portlet:renderURL>

Now the request will contain a parameter named mvcRenderCommandName. To find the proper MVC render
command, the OSGi runtime needs to have a mvc.command.name property with a matching value.

Registering the MVC Render Command

In order to respond to a particular render URL, you need an MVCRenderCommand Component that with two
properties:

"javax.portlet.name=" + HelloWorldPortletKeys.HELLO_WORLD,

"mvc.command.name=/hello/edit_entry"

660

Using the above properties as an example, any portlet renderURL for the portlet that includes a parameter
called mvcRenderCommandwith the value /hello/edit_entrywill be handled by this MVCRenderCommand.

The Component must also publish a MVCRenderCommand.class service to the OSGi runtime. Here’s a basic
Component that publishes anMVC render command.

@Component(

immediate = true,

property = {

"javax.portlet.name=" + HelloWorldPortletKeys.HELLO_WORLD,

"mvc.command.name=/hello/edit_entry"

},

service = MVCRenderCommand.class

)

public class EditEntryMVCRenderCommand implements MVCRenderCommand {

One command can be used by one portlet, as the example above shows. If you want, one command
can be used for multiple portlets by addingmore javax.portlet.name entries in the property list. Likewise,
multiple commands can invoke the MVC command class by adding more mvc.command.name entries. If you’re
really feeling wild, you can specify multiple portlets andmultiple command URLs in the same command
component, like this:

@Component(

immediate = true,

property = {

"javax.portlet.name=" + HelloWorldPortletKeys.HELLO_MY_WORLD,

"javax.portlet.name=" + HelloWorldPortletKeys.HELLO_WORLD,

"mvc.command.name=/hello/edit_super_entry",

"mvc.command.name=/hello/edit_entry"

},

service = MVCRenderCommand.class

)

As you can see,MVC render commands are flexible and very easy to implement.

Related Topics

MVC Resource Command
MVC Action Command
MVC Command Overrides

60.8 MVC Resource Command
When using Liferay’s MVC framework, you can create resource URLs in your JSPs to retrieve images, XML,
or any other kind of resource from a Liferay instance. The resource URL then invokes the corresponding
MVC resource command class (*MVCResourceCommand) that processes the resource request and response.

First, use the <portlet:resourceURL> tag to create the resource URL in a JSP. For example, the Login Port-
let’s /login-web/src/main/resources/META-INF/resources/navigation/create_account.jspfile defines the fol-
lowing resource URL for retrieving a CAPTCHA image during account creation:

<portlet:resourceURL id="/login/captcha" var="captchaURL" />

When the resource URL is triggered, the matching *MVCResourceCommand class processes the resource
request and response. You can create this class by implementing the MVCResourceCommand interface, or
extending the BaseMVCResourceCommand class. The latter may save you time, since it already implements
MVCResourceCommand.

661

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCResourceCommand.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/BaseMVCResourceCommand.html

Also, it’s a good idea to name your *MVCResourceCommand class after the resource it handles, and suffix it
with MVCResourceCommand. For example, the resource command class matching the preceding CAPTCHA re-
source URL in the Login Portlet is CaptchaMVCResourceCommand. In an application with several MVC command
classes, this will help differentiate them.

Your *MVCResourceCommand class must also have a @Component annotation like the following. Set the prop-
erty javax.portlet.name to your portlet’s internal ID, and the property mvc.command.name to the value of the
id property in your JSP’s matching resourceURL. To register the component in the OSGi container as using
the MVCResourceCommand class, youmust set the service property to MVCResourceCommand.class:

@Component(

immediate = true,

property = {

"javax.portlet.name=your_portlet_name_YourPortlet",

"mvc.command.name=/your/jsp/resource/url"

},

service = MVCResourceCommand.class

)

public class YourMVCResourceCommand implements MVCResourceCommand {

// your resource handling code

}

As a real-world example, consider the Login Portlet’s CaptchaMVCResourceCommand class (find this class in
theLiferay source codeat modules/apps/foundation/login/login-web/src/main/java/com/liferay/login/web/internal/portlet/action/CaptchaMVCResourceCommand.java):

@Component(

property = {

"javax.portlet.name=" + LoginPortletKeys.FAST_LOGIN,

"javax.portlet.name=" + LoginPortletKeys.LOGIN,

"mvc.command.name=/login/captcha"

},

service = MVCResourceCommand.class

)

public class CaptchaMVCResourceCommand implements MVCResourceCommand {

@Override

public boolean serveResource(

ResourceRequest resourceRequest, ResourceResponse resourceResponse) {

try {

CaptchaUtil.serveImage(resourceRequest, resourceResponse);

return false;

}

catch (Exception e) {

_log.error(e, e);

return true;

}

}

private static final Log _log = LogFactoryUtil.getLog(

CaptchaMVCResourceCommand.class);

}

In the @Component annotation, note that javax.portlet.name has two different settings. This lets
multiple portlets use the same component. In this example, the portlet IDs are defined as constants
in the LoginPortletKeys class. Also note that the mvc.command.name property setting /login/captcha

matches the resourceURL’s id setting shown earlier in this tutorial, and that the service property is set to
MVCResourceCommand.class.

The CaptchaMVCResourceCommand class implements the MVCResourceCommand interface with only a
single method: serveResource. This method processes the resource request and response via the

662

https://github.com/liferay/liferay-portal/blob/7.0.2-ga3/modules/apps/foundation/login/login-web/src/main/java/com/liferay/login/web/internal/portlet/action/CaptchaMVCResourceCommand.java
@app-ref@/foundation/7.0.8/javadocs/com/liferay/login/web/constants/LoginPortletKeys.html

javax.portlet.ResourceRequest and javax.portlet.ResourceResponse parameters, respectively. Note that
the try block uses the helper class CaptchaUtil to serve the CAPTCHA image. Though you don’t have to create
such a helper class, doing so often simplifies your code.

Great! Now you know how to use MVCResourceCommand to process resources in your Liferay MVC portlets.

Related Topics

MVC Render Command
MVC Action Command
MVC Command Overrides

663

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/captcha/CaptchaUtil.html

Chapter 61

Liferay Soy Portlet

A Soy portlet is an extension of Liferay’s MVC portlet framework. This gives you access to all the MVC Portlet
functionality you are familiar with, plus the added bonus of using Soy templates for writing your front-end.
Soy templates use an easy templating language that also lets you useMetalJS components. With all these
benefits andmore, Soy portlets can be a good front-end tool to have in your utility belt.

You can learn about Liferay MVC portlets in the Creating anMVC Portlet tutorial.
This section covers how to implement a Soy portlet.

61.1 Creating a Soy Portlet

To create a Soy portlet, you’ll need these key components:

• A module that publishes a portlet component with the necessary properties
• Controller code to handle the request and response
• Soy templates to implement your view layer

Configuring the Web Module

First, familiarize yourself with a Soy portlet’s anatomy. Youmay recognize it, since a Soy portlet extends an
MVC portlet:

• my-soy-portlet

– bnd.bnd

– build.gradle

– package.json

– src/main/

* java/path/to/portlet/

· MySoyPortlet.java

· action/

· *MVCRenderCommand.java

665

* resources/META-INF/resources/

· content/

· Language.properties

· View.es.js (MetalJS component)
· View.soy (Soy template)

Now that you know the basic structure of a Soy portlet module, you can configure it. You can use the soy
portlet Blade template to build your initial project if you wish. Otherwise, you can follow the instructions in
this section to manually configure the module.

Specifying OSGi Metadata

Add the OSGi metadata to your module’s bnd.bnd file. A sample BND configuration is shown below:

Bundle-Name: Liferay Hello Soy Web

Bundle-SymbolicName: com.liferay.hello.soy.web

Bundle-Version: 1.0.3

Require-Capability:\

soy;\

filter:="(type=metal)"

Include-Resource: package.json

In addition to the standardmetadata, notice the Require-Capability property. This specifies that this
bundle requires modules that provide the capability soywith a type of metal to work. Also note the Include-
Resource property. Youmust include your package.json file to load the Soy Portlet’s JavaScript files.

Specifying JavaScript Dependencies

Specify the JavaScript module dependencies in your package.json. At a minimum, you should have the
following dependencies and configuration parameters:

{

"dependencies": {

"metal-component": "^2.4.5",

"metal-soy": "^2.4.5"

},

"devDependencies": {

"liferay-module-config-generator": "^1.2.1",

"metal-cli": "^4.0.1"

},

"name": "my-portlet-name",

"version": "1.0.0"

}

This provides everything you need to create a Metal component based on Soy. Note that the version in
your package.json should match the Bundle-Version in your bnd.bnd file.

Next you can specify your module’s build dependencies.

666

Specifying Build Dependencies

Add the dependencies shown below to your build.gradle file:

dependencies {

provided group: "com.liferay", name: "com.liferay.portal.portlet.bridge.soy", version: "3.1.0"

provided group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

provided group: "com.liferay.portal", name: "com.liferay.util.java", version: "2.0.0"

provided group: "javax.portlet", name: "portlet-api", version: "2.0"

provided group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

provided group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

Note:These are current at the time of this writing, but may change. Please check the Nexus Repository
for the proper versions for your Liferay DXP instance.

Now that your module build is configured, you can learn how to create the Soy portlet component.

Creating a Soy Portlet Component

Create a Soy Portlet component that extends the SoyPortlet class. This
requires an implementation of the javax.portlet.portlet service to run. Declare this using an @Component

annotation in the portlet class:

@Component(

immediate = true,

service = Portlet.class

)

public class MySoyPortlet extends SoyPortlet {

@Override

public void render(RenderRequest renderRequest, RenderResponse renderResponse) {

//do things here

}

}

Liferay DXP’s SoyPortlet class extends Liferay DXP’s MVCPortlet class, which is an extension itself of
javax.portlet.Portlet, so you’ve provided the right implementation.

The component requires some properties as well. A sample configuration is shown below:

@Component(

immediate = true,

property = {

"com.liferay.portlet.add-default-resource=true",

"com.liferay.portlet.application-type=full-page-application",

"com.liferay.portlet.application-type=widget",

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.layout-cacheable=true",

"com.liferay.portlet.preferences-owned-by-group=true",

"com.liferay.portlet.private-request-attributes=false",

"com.liferay.portlet.private-session-attributes=false",

"com.liferay.portlet.render-weight=50",

"com.liferay.portlet.scopeable=true",

"com.liferay.portlet.use-default-template=true",

"javax.portlet.display-name=Hello Soy Portlet",

"javax.portlet.expiration-cache=0",

"javax.portlet.init-param.copy-request-parameters=true",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=View",

"javax.portlet.name=hello_soy_portlet",

"javax.portlet.resource-bundle=content.Language",

667

https://repository.liferay.com
https://github.com/liferay/com-liferay-portal-portlet-bridge/blob/7.0.x/portal-portlet-bridge-soy/src/main/java/com/liferay/portal/portlet/bridge/soy/SoyPortlet.java
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html

"javax.portlet.security-role-ref=guest,power-user,user",

"javax.portlet.supports.mime-type=text/html"

},

service = Portlet.class

)

Some of these properties may seem familiar to you, as they are the same ones used to develop anMVC
portlet. You can find a list of all the Liferay-specific attributes that are available for use as properties in your
portlet components in the liferay-portlet-app_7_0_0.dtd.

The javax.portlet... properties are elements of the portlet.xml descriptor
Liferay’s DTD files can be found here
Now that you’ve set your Soy portlet component’s foundation, you can write the controller code.

Writing Controller Code

Soy portlets extendMVC portlets, so they use the sameModel-View-Controller framework to operate. Your
controller receives requests from the front-end, and it receives data from the back-end. It’s responsible
for sending that data to the right front-end view so it can be displayed to the user, and it’s responsible for
taking data the user entered in the front-end and passing it to the right back-end service. For this reason, it
needs a way to process requests from the front-end and respond to them appropriately, and it needs a way to
determine the appropriate front-end view to pass data back to the user.

Render Logic

The render logic is where all the magic happens. After all, what’s the use of a portlet if you can’t see it? Note
the init-param properties you set in your Component class:

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=View",

This directs the default rendering to View (View.soy). The template-path property tells the framework
the location of your Soy templates. The / above means that the Soy files are located in your project’s root
resources folder. That’s why it’s important to follow Liferay DXP’s standard folder structure, outlined above.
Here’s the path of a hypothetical webmodule’s resource folder:

docs.liferaysoy.web/src/main/resources/META-INF/resources

In this case, the View.soy file is found at:

docs.liferaysoy.web/src/main/resources/META-INF/resources/View.soy

That’s the default view of the application. When the initmethod is called, the initialization param-
eters you specify are read and used to direct rendering to the default template. Throughout this frame-
work, you can render a different view (Soy template) by setting the mvcRenderCommandName parameter of the
javax.portlet.PortletURL to the Soy template. The example below uses a portlet URL called navigationURL

to render the view View:

navigationURL.setParameter("mvcRenderCommandName", "View");

Each view, excluding the default template view,must have an implementation of the MVCRenderCommand
class. The *MVCRenderCommand implementation must declare itself as a component with the MVCRenderCommand
service, and it must specify the portlet’s name and MVC command name using the javax.portlet.name

and mvc.command.name properties respectively. Below is an example MVCRenderCommand implementation for a
Navigation Soy template:

668

@platform-ref@/7.0-latest/definitions/liferay-portlet-app_7_0_0.dtd.html
http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd

@Component(

immediate = true,

property = {

"javax.portlet.name=hello_soy_portlet",

"mvc.command.name=Navigation"

},

service = MVCRenderCommand.class

)

public class HelloSoyNavigationExampleMVCRenderCommand

implements MVCRenderCommand {

@Override

public String render(

RenderRequest renderRequest, RenderResponse renderResponse) {

Template template = (Template)renderRequest.getAttribute(

WebKeys.TEMPLATE);

PortletURL navigationURL = renderResponse.createRenderURL();

navigationURL.setParameter("mvcRenderCommandName", "View");

template.put("navigationURL", navigationURL.toString());

return "Navigation";

}

}

The render logic provides the view layer with information to display the data properly to the user. In
this case the MVC command name is set to Navigation (the Soy template with namespace Navigation).
The MVC render command name for the PortletURL navigationURL is set to View (the Soy template with
namespace Navigation), using the mvcRenderCommandName attribute. The navigationURL parameter is passed
to the Navigation Soy template as the variable navigationURL, using the template.put()method. Finally, the
*MVCRenderCommand class returns the MVC render command name as a String.

Note that Soy portlet parameters are scoped to the portlet class they’re written in. For instance, you can
have a navigationURL parameter in two different classes, each with a different value. Below is an example
HelloSoyPortlet class that also defines a navigationURL parameter:

public class HelloSoyPortlet extends SoyPortlet {

@Override

public void render(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

PortletURL navigationURL = renderResponse.createRenderURL();

navigationURL.setParameter("mvcRenderCommandName", "Navigation");

template.put("navigationURL", navigationURL.toString());

template.put("releaseInfo", ReleaseInfo.getReleaseInfo());

super.render(renderRequest, renderResponse);

}

}

The navigationURL points to the Navigation Soy template this time. The navigationURL and releaseInfo

parameters are passed to the View Soy template. Since this logic should be executed before the default render
method, the method concludes by calling super.render.

Now that you understand the render logic, you can learn how the view layer works.

669

Configuring the View Layer

Your portlet also requires a view layer, and for that you’ll use Soy templates, which is the whole point of
developing a Soyportlet, isn’t it? This section briefly covers how to get your view layerworking, from including
other Soy templates, to creating a MetalJS component for rendering your views.

Soy templates are defined in a file with the extension .soy. The filename is arbitrary. The Soy template’s
name is specified at the top of the template using the namespace declaration. For example, this template has
the namespace View:

{namespace View}

It can be accessed in another Soy template by calling the rendermethod on the namespace as shown
below:

{call View.render data="all"}{/call}

Below is an example View Soy template that includes Header and Footer Soy templates:

{namespace View}

/**

* Prints the portlet main view.

⁎/

{template .render}

<div id="{$id}">

{call Header.render data="all"}{/call}

<p>{msg desc=""}here-is-a-message{/msg}</p>

{call Footer.render data="all"}{/call}

</div>

{/template}

Each view has a corresponding *es.js file (usually with the same name) that imports the Soy templates
the view requires and registers the view as a MetalJS component. This file is also used for any additional
JavaScript logic your viewmay have. For example, here is a View.es.js component for a View.soy template:

import Component from 'metal-component/src/Component';

import Footer from './Footer.es';

import Header from './Header.es';

import Soy from 'metal-soy/src/Soy';

import templates from './View.soy';

/**

* View Component

⁎/

class View extends Component {}

// Register component

Soy.register(View, templates);

export default View;

Now that you understand how to configure a Soy template view, you can learn how to use portlet param-
eters in your Soy templates next.

670

Using Portlet Template Parameters in the Soy Template

Asmentioned above, the template.put()method exposes portlet parameters to the Soy templates. Once a
parameter is exposed, you can access it in the Soy template by defining it at the top with the {@param name:

type} declaration. For instance, the hello-soy-web portlet’s View Soy template defines the navigationURL

parameter with the code below:

{@param navigationURL: string}

It is then used to navigate between portlet views:

{msg desc=""}

click-here-to-navigate-to-another-view

{/msg}

Some Java theme object variables are available as well. For example, to access the ThemeDisplay object in
a Soy template, use the following syntax:

{$themeDisplay}

You can also access the Locale object by using {$locale}. Here is the full View.soy template for the
com.liferay.hello.soy.web portlet, which demonstrates the features covered in this section:

{namespace View}

/**

* Prints the portlet main view.

⁎/

{template .render}

{@param id: string}

{@param layouts: list<[

friendlyURL: string,

nameCurrentValue: string

]>}

{@param navigationURL: string}

<div id="{$id}">

{call Header.render data="all"}{/call}

<p>{msg desc=""}here-you-will-find-how-easy-it-is-to-do-things-like{/msg}</p>

<h3>{msg desc=""}listing-pages{/msg}</h3>

<div class="list-group">

<div class="list-group-heading">{msg desc=""}navigate-to{/msg}</div>

{foreach $layout in $layouts}

{$layout.nameCurrentValue}

{/foreach}

</div>

<h3>{msg desc=""}navigating-between-views{/msg}</h3>

{msg desc=""}click-here-to-navigate-to-another-view{/msg}

{call Footer.render data="all"}{/call}

</div>

{/template}

Now you know how to create a Soy Portlet!

671

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/theme/ThemeDisplay.html

Related Topics

Liferay MVC Portlet
JSF Portlets with Liferay Faces

672

Chapter 62

The State Object

MetalJS’s component class, which your view component extends, extendsMetalJS’s state class. The state class
provides a STATE object that contains state properties, as well as watches these properties for changes. Any
template parameters defined in your portlet classes are automatically added as properties to the portlet’s
STATE object. The component class provides additional rendering logic, such as automatically re-rendering the
component when the state class detects a change in a state property. This means that you can change a state
property on the client-side and automatically see that change reflected in the component’s UI!

This section of tutorials covers how to configure and use your Soy portlet’s STATE object.

62.1 Understanding The State Object's Architecture
An example STATE object configuration appears below:

View.STATE {

myStateProperty: {

setter: 'setterFunction',

validator: val => val === expected value,

value: default value,

valueFn: val => default value,

writeOnce: true

}

}

State properties have these configuration options:
setter: Normalizes the state key’s value. The setter function receives the new value that was set and

return the value that should be stored.
validator: Validates the state key’s value. When it returns false, the new value is ignored.
value:The state key’s default value. Alternatively, you can set the default value with the valueFn property.

Setting this to an object causes all class instances to use the same reference to the object. To have each
instance use a different reference for objects, use the valueFn option instead. Note that the portlet template
parameter’s value (if applicable) has priority over this value.

valueFn: A function that returns the state key’s default value. Alternatively, you can set the default value
with the value property. Note that the portlet template parameter’s value (if applicable) has priority over this
value.

writeOnce:Whether the state key is read-only, meaning the initial value is the final value.
Now you know the STATE object’s architecture and how to configure it!

673

Related Topics

Configuring Portlet Template Parameter State Properties
Configuring Soy Portlet Template Parameters on the Client Side

62.2 Configuring Portlet Template Parameter State Properties
Portlet template parameters are added automatically as state properties to the view component’s STATE object.
Therefore, you can provide additional configuration options for them in the STATE object. The example below
sets the default value for the portlet template parameter color in its *MVCRenderCommand class:

Template template = (Template)renderRequest.getAttribute(

WebKeys.TEMPLATE);

String color = "red";

template.put("color", color);

The configuration above has the implicit state property configuration shown below in the view’s compo-
nent file (View.es.js for example):

View.STATE {

color: {

value: 'red'

}

}

You can provide additional settings by configuring the state Property in the View component. The example
below defines a setter function that transforms the color’s string to upper case before adding it to the STATE
object:

function setColor(color) {

return color.toUpperCase();

}

View.STATE = {

color: {

setter: 'setColor'

}

}

Now you know how to configure portlet template parameter state properties!

Related Topics

Understanding the State Object’s Architecture
Configuring Soy Portlet Template Parameters on the Client Side

62.3 Configuring Soy Portlet Template Parameters on the Client Side
Portlet template parameters are set in the Soy Portlet’s server-side code. MetalJS’s state class provides a
STATE object that exposes these parameters as properties so you can access them on the client side. This
tutorial covers how to configure your view component’s STATE object and its properties on the client side so
you can update the UI.

This tutorial references the example below.

674

An Example Header State Portlet

This tutorial references the example portlet covered in this section. It includes one view with a header that
readsHello Soy by default.

Figure 62.1: The example Soy portlet has a configurable header.

The text in the header following Hello is provided by the header state property defined in its
*mvcRenderCommand class. Deploy the provided com.liferay.docs.state.soy-1.0.0.jar file to follow along
with this tutorial. The example portlet’s *MVCRenderCommand class and Soy template appear below for
reference:

*MVCRenderCommand class:

@Component(

immediate = true,

property = {

"javax.portlet.name=MyStateSoyPortlet", "mvc.command.name=View",

"mvc.command.name=/"

},

service = MVCRenderCommand.class

)

public class MyStateSoyPortletViewMVCRenderCommand

implements MVCRenderCommand {

@Override

public String render(

RenderRequest renderRequest, RenderResponse renderResponse) {

Template template = (Template)renderRequest.getAttribute(

WebKeys.TEMPLATE);

String header = "Soy";

template.put("header", header);

return "View";

}

}

View.soy:

{namespace View}

/**

* Prints the portlet main view.

⁎/

675

https://github.com/liferay/liferay-docs/tree/7.0.x/develop/tutorials/code/osgi/modules/com.liferay.docs.state.soy-1.0.0.jar

{template .render}

{@param id: string}

{@param header: string}

<div id="{$id}">

<h1>Hello {$header}</h1>

<p>You can update the header with the portlet's header State properties.</p>

</div>

{/template}

Configuring the State properties

Soy Portlets are registered automatically using the Liferay.component API, so you can use this API to retrieve
your portlet and update its state properties. You can test this in your browser’s developer console.

Follow these steps:

1. Open the console in your web browser.

2. Retrieve your portlet’s component by passing the Soy portlet’s ID in the method Liferay.component().
For example, you can access the example portlet’s component with the code below:

Liferay.component('_MyStateSoyPortlet_');

This returns the Soy portlet’s component Object containing the state properties along with properties
inherited from the prototype. Alternatively, you can access the STATE object directly by calling the
getState()method:

Liferay.component("_MyStateSoyPortlet_").getState();

Note: The `Liferay.component()` method only returns the `STATE` object

information for components currently on the page. These are the state

properties defined for the current view.

3. Now that you retrieved your Soy portlet’s component, you can access its state properties the same way
you would access any object’s properties: the dot notation or the bracket notation. For example, you
can use the code below to retrieve the com.liferay.docs.state.soy portlet’s header state property:

Liferay.component("_MyStateSoyPortlet_").header;

or

Liferay.component("_MyStateSoyPortlet_")["header"]

4. Update the state property’s value:

Liferay.component("portletID").stateProperty = "new value";

676

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/portal-template/portal-template-soy/src/main/resources/com/liferay/portal/template/soy/utils/dependencies/bootstrap.js.tpl

or

Liferay.component("portletID")["stateProperty"] = "new value";

or you can pass a configuration object with the setState()method:

Liferay.component("portletID").setState({stateProperty: new value});

For example, you can change the example portlet’s header to readHello Hamburger instead, if you don’t
like soy:

Liferay.component('_MyStateSoyPortlet_').setState({header: 'Hamburger'});

Figure 62.2: You can change the example portlet’s header state property on the client side.

Now you know how to configure Soy portlet state properties on the client side!

Related Topics

Understanding the State Object’s Architecture
Configuring Portlet Template Parameter State Properties

677

Chapter 63

Spring MVC

Liferay is an open platform in an ecosystem of open platforms. Just because Liferay has its own MVC
framework, therefore, doesn’t mean you have to use it. It is perfectly valid to bring the tools and experience
you have from other development projects over to Liferay. In fact, we expect you to. Liferay’s development
platform is standards-based,making it an ideal choice for applications of almost any type.

If you’re already a wizard with SpringMVC, you can use it instead of Liferay’s MVCPortlet class with no
limitations whatsoever. Since SpringMVC replaces only your application’s web application layer, you can
still use Service Builder for your service layer.

So what does it take to implement a Spring MVC application in Liferay? Start by considering how to
package a SpringMVC application for 7.0.

63.1 Packaging a Spring MVC Portlet
Developers creating portlets for 7.0 can usually deploy their portlet as Java EE-styleWeb Application ARchive
(WAR) artifacts or as Java ARchive (JAR) OSGi bundle artifacts. SpringMVC portlet developers don’t have
that flexibility. SpringMVC portlets must be packaged asWAR artifacts because the SpringMVC framework
is designed for Java EE. Therefore, it expects a WAR layout and requires Java EE resources such as the
WEB-INF/web.xml descriptor.

Because Liferay supports the OSGiWAB (Web Application Bundler) standard for deployment, you can
deploy yourWAR and it runs as expected in the OSGi runtime. Here are the high points on why that works
in 7.0:

• The Liferay auto-deploy process runs, adding the PortletServlet and PlugincontextListener configu-
rations to the WEB-INF/web.xml file.

• The Liferay WAB Generator automatically creates an OSGi-ready META-INF/MANIFEST.MF file. If you
want to affect the content of the manifest file, you can place BND directives and OSGi headers directly
into the WEB-INF/liferay-plugin-package.properties file.

You’ll still need to provide the Liferay descriptor files liferay-display.xml and liferay-portlet.xml, and
you’ll need a portlet.xml descriptor.

Develop a SpringMVC portlet WAR file with the appropriate descriptor files.
Import class packages your portlet’s descriptor files reference by adding the packages to an Import-

Package header in your liferay-plugin-package.properties file.

679

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html

Here’s an example Import-Package header:

Import-Package:\

org.springframework.beans.factory.xml,\

org.springframework.context.config,\

org.springframework.security.config,\

org.springframework.web.servlet.config

The auto-deploy process and Liferay’s WAB generator convert your project to a Liferay-readyWAB.The
WAB generator detects your class’s import statements and adds all external packages to theWAB’s Import-
Package header. The generator merges packages from your plugin’s liferay-plugin-package.properties into
the header also.

If you depend on a package from Java’s rt.jar other than a java.* package, override portal property
org.osgi.framework.bootdelegation and add it to the property’s list. Go here for details.

Note: Spring MVC portlets whose embedded JARs contain properties files (e.g., spring.handlers,
spring.schemas, spring.tooling) might be affected by issue LPS-75212. The last JAR that has properties files
is the only JAR whose properties are added to the resultingWAB’s classpath. Properties in other JARs aren’t
added.

For example, suppose that a portlet has several JARs containing these properties files:

• WEB-INF/src/META-INF/spring.handlers

• WEB-INF/src/META-INF/spring.schemas

• WEB-INF/src/META-INF/spring.tooling

The properties from the last JAR processed are the only ones added to the classpath. The properties files
must be on the classpath in order for the module to use them.

To add all the properties files to the classpath, you can combine them into one of each type (e.g., one
spring.handlers, one spring.schemas, and one spring.tooling) and add them to WEB-INF/src.

Here’s a shell script that combines these files:

cat /dev/null > docroot/WEB-INF/src/META-INF/spring.handlers

cat /dev/null > docroot/WEB-INF/src/META-INF/spring.schemas

cat /dev/null > docroot/WEB-INF/src/META-INF/spring.tooling

for jar in $(find docroot/WEB-INF/lib/ -name '*.jar'); do

for file in $(unzip -l $jar | grep -F META-INF/spring. | awk '

{ print $4 }

'); do

if ["META-INF/spring.tld" != "$file"]; then

unzip -p $jar $file >> docroot/WEB-INF/src/$file

echo >> docroot/WEB-INF/src/$file

fi

done

done

You canmodify and use the shell script to add your JAR’s properties files to the classpath.

Note: If you want to use a Spring Framework version different from the version Liferay DXP
provides, you must name your Spring Framework JARs differently from the ones portal property
module.framework.web.generator.excluded.paths excludes. If you don’t rename your Spring Framework
JARs, theWAB generator assumes you’re using Liferay DXP’s Spring Framework JARs and excludes yours
from the generated WAB. Understanding Excluded JARs explains how to detect Liferay DXP’s Spring
Framework version.

Now get into the details of configuring a SpringMVC portlet for Liferay.

680

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#Module%20Framework
@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://issues.liferay.com/browse/LPS-75212
https://docs.liferay.com/ce/portal/7.0-latest/propertiesdoc/portal.properties.html#Module%20Framework
https://docs.liferay.com/ce/portal/7.0-latest/propertiesdoc/portal.properties.html#Module%20Framework

63.2 Spring MVC Portlets in Liferay
This isn’t a comprehensive guide to configuring a SpringMVCportlet. It covers the high points, assuming you
already have familiarity with Spring MVC. If you don’t, you should consider using Liferay’s MVC framework.

What does a Liferay Spring MVC portlet look like? Almost identical to any other Spring MVC portlet.
To configure a SpringMVC portlet, start with the <portlet-class> element in portlet.xml. In it youmust
declare Spring’s DispatcherPortlet:

<portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class>

The Spring front controller needs to know where the application context file is, so specify it as an
initialization parameter in portlet.xml (update the path as needed):

<init-param>

<name>contextConfigLocation</name>

<value>/WEB-INF/spring/portlet-context.xml</value>

</init-param>

Provide an application context file (portlet-context.xml in the example above), specified as you normally
would for your SpringMVC portlet.

<bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/views/" />

<property name="suffix" value=".jsp" />

</bean>

If you’re configuring aWAB yourself, the web.xml file in your Spring MVC project needs to be fully ready
for deployment. In addition to any web.xml configuration for Spring MVC, you need to include a listener for
PluginContextListener and a servlet and servlet-mapping for PortletServlet:

<listener>

<listener-class>com.liferay.portal.kernel.servlet.PluginContextListener</listener-class>

</listener>

<servlet>

<servlet-name>Portlet Servlet</servlet-name>

<servlet-class>com.liferay.portal.kernel.servlet.PortletServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Portlet Servlet</servlet-name>

<url-pattern>/portlet-servlet/*</url-pattern>

</servlet-mapping>

If you’re letting Liferay generate theWAB for you (this is the recommended approach), the above is not
necessary, as it is added automatically during auto-deployment.

Yourapplicationmustbeable to convert javax.portlet.PortletRequests to javax.servlet.ServletRequests
and back again. Add this to web.xml:

<servlet>

<servlet-name>ViewRendererServlet</servlet-name>

<servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>ViewRendererServlet</servlet-name>

<url-pattern>/WEB-INF/servlet/view</url-pattern>

</servlet-mapping>

To configure the Spring view resolver, add a bean in your application context file:

681

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/PluginContextListener.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/PortletServlet.html

<bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">

<property name="prefix" value="/WEB-INF/views/" />

<property name="suffix" value=".jsp" />

</bean>

Now the front controller, org.springframework.web.portlet.DispatcherPortlet, can get a request from
the view layer, but there are no actual controller classes to delegate the request handling to.

With SpringMVC, your controller is conveniently separated into classes that handle the portlet modes
(View, Edit, Help).

You’ll use Spring’s annotations to configure the controller and tell DispatcherPortletwhich mode the
controller supports.

A simple controller class supporting Viewmodemight look like this:

@Controller("myAppController")

@RequestMapping("VIEW")

public class MyAppController {

@RenderMapping

public String processRenderRequest(RenderRequest request,

RenderResponse response) {

return "defaultView";

}

}

The return defaultView statement should be understood in terms of the view resolver bean in the ap-
plication context file, which gives the String defaultView a prefix of WEB-INF/views/, and a suffix of .jsp.
That maps to the path WEB-INF/views/defaultView.jsp, where you would place your default view for the
application.

With SpringMVC, you can only support one portlet phase in each controller.
An edit mode controller might contain render methods and action methods.

@Controller("myAppEditController")

@RequestMapping("EDIT")

public class MyAppEditController {

@RenderMapping

public String processRenderRequest(RenderRequest request,

RenderResponse response) {

return "thisView";

}

@ActionMapping(params="action=doSomething")

public void doSomething(Actionrequest request, ActionResponse response){

// Do something here

}

}

You need to define any controller classes in your application context file by adding a <bean> tag for each
one:

<bean class="com.liferay.docs.springmvc.portlet.MyAppController" />

<bean class="com.liferay.docs.springmvc.portlet.MyAppEditController" />

Develop your controllers and your views as you normally would in a Spring MVC portlet. You’ll also need
to provide some necessary descriptors for Liferay.

682

Liferay Descriptors

Liferay portlet plugins that are packaged asWAR files should include some Liferay specific descriptors.
The descriptor liferay-display.xml controls the category in which your portlet appears in Liferay DXP’s

Addmenu. Find the complete DTD here.
Here’s a simple example that just specifies the category the application will go under in Liferay’s menu

for adding applications:

<display>

<category name="New Category">

<portlet id="example-portlet" />

</category>

</display>

The descriptor liferay-portlet.xml is used for specifying additional information about the portlet (like
the location of CSS and JavaScript files or the portlet’s icon. A complete list of the attributes you can set can
be found here

<liferay-portlet-app>

<portlet>

<portlet-name>example-portlet</portlet-name>

<instanceable>true</instanceable>

<render-weight>0</render-weight>

<ajaxable>true</ajaxable>

<header-portlet-css>/css/main.css</header-portlet-css>

<footer-portlet-javascript>/js/main.js</footer-portlet-javascript>

<footer-portlet-javascript>/js/jquery.foundation.orbit.js</footer-portlet-javascript>

</portlet>

<role-mapper>

<role-name>administrator</role-name>

<role-link>Administrator</role-link>

</role-mapper>

<role-mapper>

<role-name>guest</role-name>

<role-link>Guest</role-link>

</role-mapper>

<role-mapper>

<role-name>power-user</role-name>

<role-link>Power User</role-link>

</role-mapper>

<role-mapper>

<role-name>user</role-name>

<role-link>User</role-link>

</role-mapper>

</liferay-portlet-app>

Important: Make your portlet name unique, considering how Liferay DXP uses the name to create the
portlet’s ID.

You’ll also notice the role-mapper elements included above. They’re for defining the Liferay roles used in
the portlet.

Then there’s the liferay-plugin-package.properties. These properties describe the Liferay plugin, de-
clare its resources, and specify its security related parameters. The DTD is found here.

name=example-portlet

module-group-id=liferay

module-incremental-version=1

tags=

short-description=

683

@platform-ref@/7.0-latest/definitions/liferay-display_7_0_0.dtd.html
@platform-ref@/7.0-latest/definitions/liferay-portlet-app_7_0_0.dtd.html
@platform-ref@/7.0-latest/definitions/liferay-plugin-package_7_0_0.dtd.html

change-log=

page-url=http://www.liferay.com

author=Liferay, Inc.

licenses=LGPL

version=1

In the liferay-plugin-package.properties file, you can also add OSGi metadata which the LiferayWAB
Generator adds to the MANIFEST.MF file when you deploy yourWAR file.

Find all of Liferay’s DTDs here.

63.3 Calling Services from Spring MVC

To call OSGi-based Service Builder services from your Spring MVC portlet, you need a mechanism that gives
you access to the OSGi service registry.

Note: If you don’t already have one, create a service builder project using Blade CLI.

springmvc-service-builder/

build.gradle

springmvc-service-builder-api/

bnd.bnd

build.gradle

springmvc-service-builder-service/

bnd.bnd

build.gradle

service.xml

Design your model entity and write your service layer as normal (see the tutorials on Service Builder
here). After that, add your service’s API JAR as a dependency in your SpringMVC project.

Since you’re in the context of a SpringMVC portlet, you can’t look up a reference to the services published
to the OSGi runtime using Declarative Services. So how do you call Service Builder services, or other services
published in the OSGi service registry? One way is by calling the static utility methods.

FooServiceUtil.getFoosByGroupId()

While very simple, that’s not a good way to call OSGi services because of the dynamic nature of the OSGi
runtime. Service implementations could be removed and added at any time, and your plugin needs to be
able to account for that. Additionally, you need a mechanism that lets your portlet plugin react gracefully to
the possibility of the service implementation becoming unavailable entirely. That’s why you should open a
Service Tracker when you want to call a service that’s in the OSGi service registry.

Service Trackers

Since you don’t have the luxury of using Declarative Services to manage your service dependencies, you have
a little bit of work to do if you want to gain some of the benefits OSGi gives you:

• Accounting for multiple service implementations, using the best service implementation available
(taking into account the service ranking property)

• Accounting for no service implementations

684

The static utility classes don’t let you do that, and that’s sad. But be happy, because with a little code,
you can regain those benefits. For the details on implementing a service tracker, read the Service Trackers
tutorial.

To summarize, you’ll need to do these things:

• Instantiate a new org.osgi.util.tracker.ServiceTracker to track the service of the type you need.

• Open the service tracker in an @PostConstructmethod.

• Make sure the service tracker has something in it.

• If there is indeed something in the service tracker, get the service.

• Now you’re ready to call the service. Here’s what the if block might look like:

if (!someServiceTracker.isEmpty()) {

SomeService someService = someServiceTracker.getService();

someService.doSomethingCool();

}

• Close the service tracker in an @PreDestroymethod.

That’s probably not enough detail, so refer to the tutorial on Service Trackers for the details. As you’ll
see in the tutorial, there’s some boilerplate code involved, but leveraging service trackers lets you look up
services in the OSGi runtime.

If you are not required to use a Spring MVC portlet, consider using Liferay’s MVC framework to design
your portlets instead. Then you can take advantage of the Declarative Services @Component and @Reference

annotations, which let you avoid the boilerplate code associated with service trackers.

63.4 Related Topics
Upgrading a SpringMVC Portlet

Using theWAB Generator

685

Chapter 64

JSF Portlets with Liferay Faces

Do you want to developMVC-based portlets using the Java EE standard? Do you want to use a portlet
development framework with a UI component model that makes it easy to develop sophisticated, rich UIs?
Or have you been writing web apps using JSF that you’d like to use in Liferay DXP? If you answered yes to any
of these questions, you’re in luck! Liferay Faces provides all these capabilities andmore.

Liferay Faces is an umbrella project that provides support for the JavaServer™ Faces (JSF) standard in
Liferay DXP. It encompasses the following projects:

• Liferay Faces Bridge lets you deploy JSF web apps as portlets without writing portlet-specific Java
code. It also contains innovative features that make it possible to leverage the power of JSF 2.x inside
a portlet application. Liferay Faces Bridge implements the JSR 329/378 Portlet Bridge Standard.

• Liferay Faces Alloy lets you use AlloyUI components in a way that is consistent with JSF development.
• Liferay Faces Portal lets you leverage Liferay-specific utilities and UI components in JSF portlets.

For a comprehensive demo for the JSF component suite, visit the Liferay Faces Showcase.
If you’renew to JSF,youmaywant toknow its strengths, itsweaknesses, andhow it stacksup todeveloping

portlets with CSS/JavaScript.
Here are some good reasons to use JSF and Liferay Faces:

687

http://www.liferayfaces.org

• JSF is the Java EE standard for developing web applications that use the Model/View/Controller (MVC)
design pattern. As a standard, the specification is actively maintained by the Java Community Process
(JCP), and the Oracle reference implementation (Mojarra) has frequent releases. Software Architects
often choose standards like JSF because they are supported by Java EE application server vendors and
have a guaranteed service life according to Service Level Agreements (SLAs).

• JSF was first introduced in 2003 and is a mature technology for developing web applications that are
(arguably) easy to maintain.

• JSF Portlet Bridges (like Liferay Faces Bridge) are also standardized by the JCP andmake it possible to
deploy JSF web applications as portlets without writing portlet-specific Java code.

• Support for JSF (via Liferay Faces) is included with Liferay DXP support.
• JSF is a unique framework in that it provides a UI component model that makes it easy to develop
sophisticated, rich user interfaces.

• JSF has built-in Ajax functionality that provides automatic updates to the browser by replacing ele-
ments in the DOM.

• JSF is designed with many extension points that make a variety of integrations possible.
• There are several JSF component suites available including Liferay Faces Alloy, Primefaces, ICEfaces,
and RichFaces. Each of these component suites fortify JSF with a variety of UI components and
complimentary technologies such as Ajax Push.

• JSF is a good choice for server-side developers that need to build web user interfaces. This
enables server-side developers to focus on their core competencies rather than being experts in
HTML/CSS/JavaScript.

• JSF provides the Facelets templating engine whichmakes it possible to create reusable UI components
that are encapsulated as markup.

• JSF provides good integration with HTML5markup
• JSF provides the Faces Flows feature which makes it easy for developers to create wizard-like applica-
tions that flow from view-to-view.

• JSF has good integration with dependency injection frameworks such as CDI and Spring that
make it easy for developers to create beans that are placed within a scope managed by a container:
@RequestScoped, @ViewScoped, @SessionScoped, @FlowScoped

• Since JSF is a stateful technology, the framework encapsulates the complexities of managing applica-
tion state so the developer doesn’t have to write state management code. It is also possible to use JSF
in a stateless manner, but some of the features of application state management become effectively
disabled.

There are some reasons not to use JSF. For example, if you are a front-end developer whomakes heavy
use of HTML/CSS/JavaScript, youmight find that JSF UI components render HTML in a manner that gives
you less control over the overall HTML document. Sticking with JavaScript and leveraging AlloyUI or some
other JavaScript frameworkmay be better for you. Or, perhaps standards aren’t a major consideration for
you or youmay simply prefer developing portlets using your current framework.

Whether youdevelopyournextportlet applicationwith JSFandLiferayFacesorwithHTML/CSS/JavaScript
is entirely up to you. But you probably want to learn more about Liferay Faces and try it out for yourself.

64.1 Generating a JSF Project from the Command Line
You can generate a Liferay Faces application without having to create your own folder structure, descriptor
files, and such manually. If you really want to do that manually, you can examine the structure of a JSF
application and create one from scratch in the Creating a JSF Project Manually tutorial.

!PVideoThumbnail

688

https://portal.liferay.dev/documents/113763090/113920063/jsf-vid-thumbnail.png

Before generating your JSF application, you should first visit liferayfaces.org, a great reference spot for
JSF application development targeted for Liferay DXP.This site lets you choose the options for your JSF
application and generates a Maven archetype command you can execute to generate an application with
your chosen options. You can select the following archetype options:

• Liferay Portal Version
• JSF Version
• Component Suite

You can also choose a build framework (Gradle or Maven) and have a list of dependencies generated
for you and displayed on the page. The dependencies are provided to you on the site page in a pom.xml or
build.gradle, depending on the build type you selected. This is useful because it gives you an idea of what
dependencies are required in your JSF application before generating it.

Note: Gradle developers can also use the archetype:generate command because it generates both a
build.gradle and a pom.xml file for you to use.

Figure 64.1: You can select the Liferay Portal version, JSF version, and component suite for your archetype generation command.

Next you’ll generate an example JSF application (e.g., Liferay Portal 7 + JSF 2.2 + JSF Standard) via
command line using liferayfaces.org.

1. Navigate to liferayfaces.org and select the following options:

• Liferay Portal: 7
• JSF: 2.2
• Component Suite: JSF Standard

2. Copy the archetype generation command and execute it. Make sure you’ve navigated to the folder
where you want to generate your project.

That’s it! Your JSF application is generated in the current folder!
You can also generate a Liferay JSF application usingMaven’s interactive archetype UI. To do this, execute

mvn archetype:generate -Dfilter=liferay and select the JSF archetype you want to use. Then you’ll step
through each option and select the version, group ID, artifact ID, etc. To learn more about this, see the
Generating New Projects Using Archetypes tutorial.

689

http://liferayfaces.org/
http://liferayfaces.org/
http://liferayfaces.org/

Once you have your JSF application generated, you can import it into Liferay @ide@ and develop it
further. To deploy it to your Liferay DXP instance, drag and drop it onto the Liferay DXP server.

You can build the project and deploy it to Liferay DXP from the command line too! If you’re using Gradle,
run the following command to build your JSF application:

gradle build

For Maven, execute the following command:

mvn package

Then copy the generatedWAR to Liferay DXP’s deploy folder:

[cp|copy] ./com.mycompany.my.jsf.portlet.war LIFERAY_HOME/deploy

Awesome! You’ve generated your JSF application and deployed it using the command line.
!VVideo Tutorial

64.2 Generating a JSF Project Using @ide@
You cangenerate a Liferay Faces applicationwithout having to create your own folder structure anddescriptor
filesmanually usingLiferay@ide@. If you’re interested in creating the structure of a JSF applicationmanually
or if you want to examine a basic JSF application structure, visit the Creating a JSF Project Manually tutorial.

In this tutorial, you’ll generate an example JSF project using Liferay @ide@. Open your @ide@ instance
to get started.

1. Navigate to File →New → Project…. This opens a new project wizard.

2. Select the Liferay project and choose Liferay JSF Project from the listed subprojects. Then clickNext.

3. Assign your JSF project a name, build framework (Gradle or Maven), and Component Suite. You have
five component suites to choose from:

• ICEFaces
• JSF Standard
• Liferay Faces Alloy
• PrimeFaces
• RichFaces

4. Click Finish to generate your Liferay JSF project.

You’ve generated a Liferay JSF project using @ide@! The project you generated contains a simple portlet
that you can customize.

Note:There is another option in @ide@’s File → Newmenu named Liferay JSF Portlet. This is intended
to add portlets to existing JSF projects. Currently, this is only configured to create Liferay Portal 6.2 JSF
portlets. Do not use this option if you’re developing for 7.0.

To deploy the new JSF project to your Liferay DXP instance, drag and drop it onto the Liferay server.
Fantastic! You’re now able to quickly generate your Liferay JSF project using Liferay @ide@!

690

https://portal.liferay.dev/documents/113763090/113920063/developing-a-new-jsf-portlet.mp4%7Chttps://portal.liferay.dev/documents/113763090/113920063/developing-a-new-jsf-portlet.mkv

Figure 64.2: Choose the Liferay JSF Project option to begin creating a JSF project in @ide@.

64.3 Creating a JSF Project Manually
Liferay DXP’s modular architecture lends itself well to modular applications created using a multitude of
different technologies. JSF applications are no different and can be developed to integrate seamlessly into
the Liferay platform.

In this tutorial, you’ll step through packaging and creating a JSF application that is deployable as an
OSGi module at runtime. First, you’ll learn how to package a JSF application as a module.

Packaging a JSF Application

Developers creating portlets for 7.0 can package their portlets as Java EE style Web Application ARchive
(WAR) artifacts or as Java ARchive (JAR) OSGi bundle artifacts. JSF portlet developers, however,must package
their portlets as WAR artifacts because the JSF framework expects a WAR layout and often requires the
WEB-INF/faces-config.xml descriptor and other Java EE resources such as the WEB-INF/web.xml descriptor.

Liferay provides a way for theseWAR-styled portlets to be deployed and treated like OSGi modules by
Liferay’s OSGi runtime. TheWAB Generator does this automatically by converting yourWAR artifact to a
WAB at deployment time. You can learnmore aboutWABs and theWAB Generator in the Using theWAB
Generator tutorial.

This is how a JSFWAR artifact is structured:

• jsf-portlet

– src

691

Figure 64.3: Choose your preferred options for your JSF project.

Figure 64.4: The generated JSF portlet project displays basic build information.

692

* main

· java

· Java Classes

· resources

· Properties files

· webapp

· WEB-INF/

· classes/

· Class files and related properties

· lib/

· JAR dependencies

· resources/

· CSS, XHTML, PNG or other frontend files

· views/

· XHTML views

· faces-config.xml

· liferay-display.xml

· liferay-plugin-package.properties

· liferay-portlet.xml

· portlet.xml

· web.xml

Next, you’ll begin creating a simple JSF application that is deployable to Liferay DXP.

Creating a JSF Application

JSF portlets are supported on Liferay Portal by using Liferay Faces Bridge. Liferay Faces Bridge makes
developing JSF portlets as similar as possible to JSF web app development.

You’ll create a simpleHello User application that asks for the user’s name and then greets him or her with
the name. You’ll begin by creating theWAR-style folder structure, and then you’ll configure dependencies
like Liferay Faces Bridge.

1. Create aWAR-style folder structure for your module. Maven archetypes are available to help you get
started quickly. They set the default configuration for you and contain boilerplate code so you can
skip the file creation steps and get started right away. For your JSF application, you’ll set up the folder
structure manually. Follow the folder structure outline below:

- hello-user-jsf-portlet

- src

- main

- java

- resources

- webapp

- WEB-INF

- resources

- views

693

https://web.liferay.com/web/neil.griffin/blog/-/blogs/new-maven-archetypes-for-jsf-portlets

2. Make sure yourmodule specifies the dependencies necessary for a Liferay JSF application. For instance,
youmust always specify the Faces API, Faces Reference Implementation (Mojarra), and Liferay Faces
Bridge as dependencies in a Liferay-compatible JSF application. Also, an important, but not required,
dependency is the Log4j logging utility. This is highly recommended for development purposes because
it logs DEBUGmessages in the console. You’ll configure the logging utility later.

For an example build file, the pom.xml file used for the Maven based Hello User JSF application is below.
All the dependencies described above are configured in the Hello User JSF application’s pom.xml file.

<?xml version="1.0"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.hello.user.jsf.portlet</artifactId>

<packaging>war</packaging>

<name>hello-user-jsf-portlet</name>

<version>1.0-SNAPSHOT</version>

<properties>

<faces.api.version>2.2</faces.api.version>

<liferay.faces.bridge.ext.version>5.0.0</liferay.faces.bridge.ext.version>

<liferay.faces.bridge.version>4.0.0</liferay.faces.bridge.version>

<mojarra.version>2.2.13</mojarra.version>

</properties>

<build>

<plugins>

<plugin>

<artifactId>maven-compiler-plugin</artifactId>

<version>3.3</version>

<configuration>

<encoding>UTF-8</encoding>

<source>1.8</source>

<target>1.8</target>

</configuration>

</plugin>

<plugin>

<artifactId>maven-war-plugin</artifactId>

<version>2.3</version>

<configuration>

<filteringDeploymentDescriptors>true</filteringDeploymentDescriptors>

</configuration>

</plugin>

</plugins>

</build>

<dependencies>

<dependency>

<groupId>javax.faces</groupId>

<artifactId>javax.faces-api</artifactId>

<version>${faces.api.version}</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>org.glassfish</groupId>

<artifactId>javax.faces</artifactId>

<version>${mojarra.version}</version>

<scope>runtime</scope>

</dependency>

<dependency>

<groupId>com.liferay.faces</groupId>

<artifactId>com.liferay.faces.bridge.ext</artifactId>

<version>${liferay.faces.bridge.ext.version}</version>

</dependency>

<dependency>

<groupId>com.liferay.faces</groupId>

694

<artifactId>com.liferay.faces.bridge.impl</artifactId>

<version>${liferay.faces.bridge.version}</version>

</dependency>

<dependency>

<groupId>log4j</groupId>

<artifactId>log4j</artifactId>

<version>1.2.14</version>

</dependency>

</dependencies>

</project>

There are also two plugins the Hello User JSF application defined in its pom.xml: maven-compiler-
plugin andmaven-war-plugin. These two plugins are responsible for building and compiling the JSF
application usingMaven.

There are several UI component suites that a JSF application can use, which include Liferay Faces Alloy,
PrimeFaces, ICEfaces, and RichFaces. Furthermore, you can take advantage of Liferay Faces Portal in order
to use Liferay-specific utilities and UI components. These components can be used by specifying them
as dependencies in your build file, as well.

Now that your build file is configured, youmust define the JSF-specific configurations for your appli-
cation. These fall into two convenient categories: general descriptors and Liferay descriptors. You’ll
start with creating the necessary general descriptors.

Defining JSF Portlet Descriptors

Since JSF portlets must follow aWAR-style folder structure, they must also haveWAR-style portlet descrip-
tors.

1. Create a portlet.xml file in the webapp/WEB-INF folder. All portlet WARs require this file. In this file,
make sure to declare the following portlet class:

<portlet>

...

<portlet-class>javax.portlet.faces.GenericFacesPortlet</portlet-class>

...

</portlet>

The javax.portlet.faces.GenericFacesPortlet class handles invocations to your JSF portlet andmakes
your portlet, since it relies on Liferay Faces Bridge, easy to develop by acting as a turnkey implementa-
tion.

2. Define a default view file as an init-param in the portlet.xml. This ensures your portlet is visible when
deployed to Liferay DXP.

<init-param>

<name>javax.portlet.faces.defaultViewId.view</name>

<value>/WEB-INF/views/view.xhtml</value>

</init-param>

You’ll create this view later.

The portlet.xml file holds other important details too, like portlet info and security settings. Look at
the portlet.xml file for the example Hello User JSF application.

695

https://maven.apache.org/plugins/maven-compiler-plugin/
https://maven.apache.org/plugins/maven-compiler-plugin/
https://maven.apache.org/plugins/maven-war-plugin/
http://primefaces.org/
http://www.icesoft.org/java/projects/ICEfaces/overview.jsf
http://richfaces.jboss.org/

<?xml version="1.0"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-

app_2_0.xsd" version="2.0">

<portlet>

<portlet-name>hello-user-jsf-portlet</portlet-name>

<display-name>Hello User JSF Portlet</display-name>

<portlet-class>javax.portlet.faces.GenericFacesPortlet</portlet-class>

<init-param>

<name>javax.portlet.faces.defaultViewId.view</name>

<value>/WEB-INF/views/view.xhtml</value>

</init-param>

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

</supports>

<portlet-info>

<title>Hello User JSF Portlet</title>

<short-title>Hello User</short-title>

<keywords>com.liferay.hello.user.jsf.portlet</keywords>

</portlet-info>

<security-role-ref>

<role-name>administrator</role-name>

</security-role-ref>

<security-role-ref>

<role-name>guest</role-name>

</security-role-ref>

<security-role-ref>

<role-name>power-user</role-name>

</security-role-ref>

<security-role-ref>

<role-name>user</role-name>

</security-role-ref>

</portlet>

</portlet-app>

The above configuration sets your portlet’s various names,MIME type, expiration cache, and security
roles.

3. Create a web.xml file in your JSF application’s webapp/WEB-INF folder. The web.xml file serves as a deploy-
ment descriptor that provides necessary configurations for your JSF portlet to deploy and function in
Liferay DXP. Copy the XML code below into your Hello User JSF application.

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd" version="3.0">

<context-param>

<param-name>javax.faces.PROJECT_STAGE</param-name>

<param-value>${project.stage}</param-value>

</context-param>

<context-param>

<param-name>javax.faces.WEBAPP_RESOURCES_DIRECTORY</param-name>

<param-value>/WEB-INF/resources</param-value>

</context-param>

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

<security-constraint>

<display-name>Prevent direct access to Facelet XHTML</display-name>

<web-resource-collection>

696

<web-resource-name>Facelet XHTML</web-resource-name>

<url-pattern>*.xhtml</url-pattern>

</web-resource-collection>

<auth-constraint/>

</security-constraint>

</web-app>

First, you set the javax.faces.PROJECT_STAGE parameter to the ${project.stage} variable, which is de-
fined in your build file (e.g., pom.xml) as Development. When set to Development, the JSF implementation
will perform the following steps at runtime:

1. Log more verbose messages.
2. Render tips and/or warnings in the viewmarkup.
3. Cause the default ExceptionHandler to display a developer-friendly error page.

The javax.faces.WEBAPP_RESOURCES_DIRECTORY parameter sets the resources folder inside the WEB-INF
folder. This setting makes the resources in that folder (e.g., CSS, JavaScript, XHTML) secure from
non-JSF calls. You’ll create resources for your app later.

The Faces Servlet configuration is required to initialize JSF and should be defined in all JSF portlets
deployed to Liferay DXP.

Finally, a security restraint is set on Facelet XHTML, which prevents direct access to XHTML files in
your JSF application.

4. Create a faces-config.xml file in your JSF application’s webapp/WEB-INF folder. The faces-config.xml
descriptor is a JSF portlet’s application configuration file, which is used to register and configure
objects and navigation rules. The Hello User portlet’s faces-config.xml file has the following contents:

<?xml version="1.0"?>

<faces-config version="2.2"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd"

>

<lifecycle>

<phase-listener>com.liferay.faces.util.lifecycle.DebugPhaseListener</phase-listener>

</lifecycle>

</faces-config>

Many auto-generated faces-config.xml files have the following configuration:

<lifecycle>

<phase-listener>com.liferay.faces.util.lifecycle.DebugPhaseListener</phase-listener>

</lifecycle>

This configures your JSF portlet to log the before/after phases of the JSF lifecycle to your console in
debugmode. Remove this declaration before deploying to production.

Great! You now have a good idea of how to specify and define general descriptor files for your JSF
portlet. JSF portlets also use Liferay descriptors, which you can learn more about in the Liferay Descriptors
sub-section.

Now that your portlet descriptors are defined, you should begin working on your JSF application’s
resources.

697

Defining Resources for a JSF Application

If you look back at the Hello User portlet’s structure, you’ll notice two resources folders defined. Why are
there two of these folders for one portlet? These two folders have distinct differences in how they’re used and
what should be placed in them.

The resources folder in the application’s src/main folder is intended for resources that need to be on the
classpath. Files in this folder are usually properties files. For this portlet, you’ll create two properties files to
reside in this folder.

1. Create the i18n.properties file in the src/main/resources folder. Add the following property to this
file:

enter-your-name=Enter your name:

This is a language key your JSF portlet displays in its viewXHTML.Themessages in the i18n.properties
file can be accessed via the Expression Language using the implicit i18n object provided by the Liferay
Faces Util class. The i18n object can access messages both from a resource bundle defined in the
portlet’s portlet.xml file, and from Liferay DXP’s Language.properties file.

2. Create the log4j.properties file in the src/main/resources folder. This file sets properties for the Log4j
logging utility defined in your JSF application (i.e., faces-config.xml). Insert the properties below
into your JSF application’s log4j.properties file.

log4j.rootLogger=INFO, CONSOLE

log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender

log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout

log4j.appender.CONSOLE.layout.ConversionPattern=%d{ABSOLUTE} %-5p [%c{1}:%L] %m%n

log4j.logger.com.liferay.faces.util.lifecycle.DebugPhaseListener=DEBUG

The second resources folder in your JSF application is located in the src/main/webapp/WEB-INF folder. This
folder holds CSS/JS/XHTML resources that shouldn’t be accessed directly by the browser. For the Hello User
JSF application, create a css folder with a main.css file inside. In the main.css file, add the following style:

.com.liferay.hello.user.jsf.portlet {

font-weight: bold;

}

This file gives your JSF portlet a bold font.
Now that your resources are defined, it’s time to begin developing the Hello User application’s behavior

and UI.

Developing a JSF Application's Behavior and UI

Your current JSF application satisfies the requirements for portlet descriptors andWAR-style structure, but
it doesn’t do anything yet. You’ll learn how to develop a JSF application’s back-end and give it a simple UI
next.

The first thing to do is create a Java class for your module. Your JSF portlet’s behavior is defined here. In
the case of the Hello User portlet, you should provide Java methods that can get/set a name and facilitate the
submission process.

698

http://docs.oracle.com/javaee/6/tutorial/doc/bnahq.html

1. Create a unique package name in the module’s src/main/java folder and create a new public Java
class named ExampleBacking.java in that package. For example, the class’s folder structure could
be src/main/java/com/liferay/example/ExampleBacking.java. Make sure the class is annotated with
@RequestScoped and@ManagedBean:

@RequestScoped

@ManagedBean

public class ExampleBacking {

Managed beans are Java beans that are managed by the JSF framework. Managed beans annotated
with @RequestScoped are usually responsible for handling actions and listeners. JSF manages these
beans by creating and removing the bean object from the server. Visit the linked annotations above for
more details.

2. Add the followingmethods and field to your ExampleBacking.java class:

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public void submit(ActionEvent actionEvent) {

FacesContextHelperUtil.addGlobalSuccessInfoMessage();

}

private String name;

You’ve provided a getter and settermethod for the private namefield. You’ve also provided a submit(...)
method, which is called when the Submit button is selected. A success info message is displayed once
the method is invoked.

You’ve defined your Hello User portlet’s Java behavior; now create its UI!

3. Create a view.xhtml file in the webapp/WEB-INF/views folder. Add the following logic to that file:

<?xml version="1.0"?>

<f:view

xmlns="http://www.w3.org/1999/xhtml"

xmlns:f="http://java.sun.com/jsf/core"

xmlns:h="http://java.sun.com/jsf/html"

>

<h:head>

<h:outputStylesheet library="css" name="main.css" />

</h:head>

<h:form>

<h:messages globalOnly="true" />

<h:outputLabel value="#{i18n['enter-your-name']}" />

<h:inputText value="#{exampleBacking.name}" />

<h:commandButton actionListener="#{exampleBacking.submit}" value="#{i18n['submit']}">

<f:ajax execute="@form" render="@form" />

</h:commandButton>

<h:outputText value="Hello #{exampleBacking.name}" />

</h:form>

</f:view>

699

http://docs.oracle.com/javaee/7/api/javax/faces/bean/RequestScoped.html
http://docs.oracle.com/javaee/7/api/javax/faces/bean/ManagedBean.html

Thefirst thing to notice is the main.css file you created is specified here, whichmakes your portlet’s
heading typeface bold. Next, your form is defined within the <h:form> tags. The form asks the user to
enter his or her name, and then sets that value to the name field in your Java class. The form uses the
<h:commandButton> tag to execute the Submit button and render the form after submission.

Notice the i18n object call for the enter-your-name and submit properties. The enter-your-name prop-
erty was set in the i18n.properties file you specified, but what about the submit property? This was
not defined in your portlet’s i18n.properties file, so how does your portlet know to use the string
Submit for your button? If you recall, the i18n object can also access messages in Liferay DXP’s
Language.properties file. This is where the submit language key comes from.

Finally, the <h:outputText> tag prints the submitted name on the page, prefixed withHello.

Awesome! Your Hello User JSF application is complete! Deploy yourWAR to Liferay DXP. Remember,
when yourWAR-style portlet is deployed, it’s converted to aWAB via theWAB Generator. Visit the Using the
WAB Generator tutorial for more information on this process and your portlet’s resulting folder structure.

Figure 64.5: After submitting the user’s name, it’s displayed with a greeting.

To recap, you created your JSF application in the following steps:

• Construct theWAR-style folder structure.
• Specify the necessary dependencies in a build file of your choice.
• Create JSF portlet descriptors and Liferay descriptors.
• Add resource files in the two designated resources folders.
• Define the portlet’s behavior using a Java class.
• Design a view XHTML form to let the user interact with the portlet.

You can view the finished version of the Hello User JSF application by downloading its ZIP file.
Now you have the knowledge to create your own JSF applications!

Related Topics

Fundamentals
Internationalization
Configuration

64.4 Services in JSF
Creating services works the same in a JSF portlet as it would in any other standardWAR-style MVC portlet;
generate custom services as separate API and Impl JARs and deploy them as individual modules to Liferay

700

https://portal.liferay.dev/documents/113763090/114000186/hello-user-jsf-portlet.zip

DXP. You can generate custom services for your JSF portlet using Service Builder. To learn more about how
Service Builder works in Liferay DXP, visit the Service Builder tutorials.

The JSFWAR can then rely on the API module as a provided dependency. Themain benefit for packaging
your services this way is to allowmultiple WARs to utilize the same custom service API without packaging it
inside everyWAR’s WEB-INF/lib folder. This practice also enforces a separation of concerns, ormodularity,
between the UI layer and service layer of a system.

To call OSGi-based Service Builder services from your JSF portlet, you need a mechanism that gives you
access to the OSGi service registry, because you can’t look up services published to the OSGi runtime using
Declarative Services. Instead, you should open a ServiceTracker when you want to call a service that’s in the
OSGi service registry.

To implement a service tracker in your JSF portlet, you can add a type-safe wrapper class that extends
org.osgi.util.tracker.ServiceTracker. For example, this is done in a demo JSF portlet as follows

public class UserLocalServiceTracker extends ServiceTracker<UserLocalService, UserLocalService> {

public UserLocalServiceTracker(BundleContext bundleContext) {

super(bundleContext, UserLocalService.class, null);

}

}

After extending the ServiceTracker, just call the constructor and the service tracker is ready to use in
your managed bean.

In a managed bean, whenever you need to call a service, open the service tracker. For example, this is
done in the same demo JSF portlet to open the service tracker, using the @PostContruct annotation:

@PostConstruct

public void postConstruct() {

Bundle bundle = FrameworkUtil.getBundle(this.getClass());

BundleContext bundleContext = bundle.getBundleContext();

userLocalServiceTracker = new UserLocalServiceTracker(bundleContext);

userLocalServiceTracker.open();

}

Then the service can be called:

UserLocalService userLocalService = userLocalServiceTracker.getService();

...

userLocalService.updateUser(user);

When it’s time for the managed bean to go out of scope, you must close the service tracker using the
@PreDestroy annotation:

@PreDestroy

public void preDestroy() {

userLocalServiceTracker.close();

}

For more information on service trackers and how to use them inWAR-style portlets, see the Service
Trackers tutorial.

Related Topics

Fundamentals
Internationalization
Configuration

701

https://osgi.org/javadoc/r6/core/org/osgi/util/tracker/ServiceTracker.html
http://docs.oracle.com/javaee/7/api/javax/annotation/PostConstruct.html
http://docs.oracle.com/javaee/7/api/javax/annotation/PreDestroy.html

Chapter 65

Making URLs Friendlier

This is a story of twoURLswho couldn’t bemore different. Onewas full of himself, and alwayswanted to show
everyone (users and SEO services alike) just how smart he was, by openly displaying all of the parameters he
carried. He was happiest when hemet new people and could tell they were intimidated and confused by him.

http://localhost:8080/group/guest/~/control_panel/manage?p_p_id=com_liferay_blogs_web_portlet_BlogsAdminPortlet&p_p_lifecycle=0&p_p_state=maximized&p_p_mode=view&_com_liferay_blogs_web_portlet_BlogsAdminPortlet_mvcRenderCommandName=%2Fblogs%2Fedit_entry&_com_liferay_blogs_web_portlet_BlogsAdminPortlet_redirect=http%3A%2F%2Flocalhost%3A8080%2Fgroup%2Fguest%2F~%2Fcontrol_panel%2Fmanage%3Fp_p_id%3Dcom_liferay_blogs_web_portlet_BlogsAdminPortlet%26p_p_lifecycle%3D0%26p_p_state%3Dmaximized%26p_p_mode%3Dview%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_mvcRenderCommandName%3D%252Fblogs%252Fview%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_orderBycol%3Dtitle%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_orderByType%3Dasc%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_entriesNavigation%3D%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_cur%3D1%26_com_liferay_blogs_web_portlet_BlogsAdminPortlet_delta%3D20&_com_liferay_blogs_web_portlet_BlogsAdminPortlet_entryId=30836

The other was just, well, friendly. You knew only the important things about her, because she was less
concerned about looking smart, andmore concerned about those she interactedwith. She didn’t need to look
fancy and complicated. She aspired to be simple and kind to all the users and SEO services she encountered.

http://localhost:8080/web/guest/home/-/blogs/lunar-scavenger-hunt

If you want your application to be friendly to your users and to SEO services, make your URLs friendlier.
It only takes a couple steps, after all.

65.1 Creating Friendly URL Routes
1. First create a routes.xmlfile in your application’swebmodule (if amulti-module build, in the pattern of
Liferay’s nativeServiceBuilder applications). It’s recommended toput it in a src/main/resources/META-
INF/friendly-url-routes/ folder.

2. Add friendly URL routes, using as many <route> tags as you need friendly URLs, like this:

<?xml version="1.0"?>

<!DOCTYPE routes PUBLIC "-//Liferay//DTD Friendly URL Routes 7.0.0//EN" "http://www.liferay.com/dtd/liferay-friendly-url-

routes_7_0_0.dtd">

<routes>

<route>

<pattern></pattern>

<implicit-parameter name="mvcRenderCommandName">/blogs/view</implicit-parameter>

<implicit-parameter name="p_p_lifecycle">0</implicit-parameter>

<implicit-parameter name="p_p_state">normal</implicit-parameter>

</route>

<route>

<pattern>/maximized</pattern>

<implicit-parameter name="mvcRenderCommandName">/blogs/view</implicit-parameter>

<implicit-parameter name="p_p_lifecycle">0</implicit-parameter>

703

<implicit-parameter name="p_p_state">maximized</implicit-parameter>

</route>

<route>

<pattern>/{entryId:\d+}</pattern>

<implicit-parameter name="categoryId"></implicit-parameter>

<implicit-parameter name="mvcRenderCommandName">/blogs/view_entry</implicit-parameter>

<implicit-parameter name="p_p_lifecycle">0</implicit-parameter>

<implicit-parameter name="p_p_state">normal</implicit-parameter>

<implicit-parameter name="tag"></implicit-parameter>

</route>

...

</routes>

Use <pattern> tags to define placeholder values for the parameters that normally appear in the generated
URL.This is just a mask. The beastly URL still lurks beneath it.

The pattern value /{entryId:\d+} matches a / followed by an entryId variable that matches the Java
regular expression \d+—one or more numeric digits. For example, a URL /entryId, where the entryId value
is 123 results in a URL value /123, which matches the pattern.

Warning: Make sure your pattern values don’t end in a slash /. A trailing slash character prevents the
request from identifying the correct route.

Important: If your portlet is instanceable, youmust use a variant of the instanceId in the pattern value.
If the starting value is render-it, for example, use one of these patterns:

<pattern>/{userIdAndInstanceId}/render-it</pattern>

or

<pattern>/{instanceId}/render-it</pattern>

or

<pattern>/{p_p_id}/render-it</pattern>

Use <implicit-parameter> tags todefineparameters thatwill always be the same for theURL.For example,
if you’re dealing with a render URL, you can be certain that the p_p_lifecycle parameter will always be 0.
There’s no need for this to be generated. You don’t have to define these type of implicit parameters, but it’s a
best practice. If you happen to forget one, or decide not to define any of them, they’ll just be generated as
usual.

The implicit parameters with the name mvcRenderCommandName are very important. If you’re using an
MVCPortletwith MVCRenderCommand classes, that parameter comes from the mvc.command.name property in the
@Component of your MVCRenderCommand implementation. Basically, this determines what will be rendered (for
example, view.jsp).

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS, "mvc.command.name=/",

"mvc.command.name=/blogs/view"

},

service = MVCRenderCommand.class

)

704

https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

65.2 Implementing a Friendly URL Mapper

Once you have your URLs mapped in a routes.xml file, you need to provide an implementation of the
FriendlyURLMapper service. Just create a component that specifies a FriendlyURLMapper service, with two
properties:

1. One that sets the path to your routes.xmlfile in theproperty com.liferay.portlet.friendly-url-routes
property.

2. A javax.portlet.name property.

@Component(

property = {

"com.liferay.portlet.friendly-url-routes=META-INF/friendly-url-routes/routes.xml",

"javax.portlet.name=" + BlogsPortletKeys.BLOGS

},

service = FriendlyURLMapper.class

)

After that, implement the FriendlyURLMapper service. For your convenience, the DefaultFriendlyURLMapper
class provides a default implementation. If you extend DefaultFriendlyURLMapper you only need to override
one method, getMapping(). In this method you just need to return a String that defines the first part of your
Friendly URLs. It’s smart to name it after your application. Here’s what it looks like for Liferay’s Blogs
application:

public class BlogsFriendlyURLMapper extends DefaultFriendlyURLMapper {

@Override

public String getMapping() {

return _MAPPING;

}

private static final String _MAPPING = "blogs";

}

All of the Blogs application’s friendly URLs begin with the String set here (blogs).

65.3 Friendly URLs in Action

Let’s look at one of these Friendly URLs in action. If you add a blog entry in Liferay, and then add the Blogs
application to a page, click on the title of the entry to see it. After that, look at the URL:

http://localhost:8080/web/guest/home/-/blogs/lunar-scavenger-hunt

As specified in the friendly URLmapper class, blogs is the first part of the friendly URL that comes after
the Liferay part of the URL.The next part is determined by a specific URL route in routes.xml:

<route>

<pattern>/{urlTitle}</pattern>

<implicit-parameter name="categoryId"></implicit-parameter>

<implicit-parameter name="mvcRenderCommandName">/blogs/view_entry</implicit-parameter>

<implicit-parameter name="p_p_lifecycle">0</implicit-parameter>

<implicit-parameter name="p_p_state">normal</implicit-parameter>

<implicit-parameter name="tag"></implicit-parameter>

</route>

705

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/FriendlyURLMapper.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/DefaultFriendlyURLMapper.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/DefaultFriendlyURLMapper.html

Here, the urlTitle is a database field that’s generated from the title the author gives their blog post, and
it’s meant to be used in a URL. Since it’s already a parameter in the URL (see below), it’s available for use in
the friendly URL.

<portlet:renderURL var="viewEntryURL">

<portlet:param name="mvcRenderCommandName" value="/blogs/view_entry" />

<portlet:param name="urlTitle" value="<%= entry.getUrlTitle() %>" />

</portlet:renderURL>

When a render URL for viewing a blog entry is invoked, the String defined in the friendly URLmapper
teams upwith the pattern tag in your friendlyURL routes file, and you get a very friendlyURL indeed, instead
of some nasty, conceited, unfriendly URL that’s despised by users and SEO services alike.

65.4 Automatic Single Page Applications
A good user experience is the measure of a well-designed site. A user’s time is highly valuable. The last thing
you want is for someone to grow frustrated with your site because of constant page reloads. A Single Page
Application (SPA) is the solution. Single Page Applications drastically cut down on load times by loading only
a single HTML page that is dynamically updated as the user interacts and navigates through the site. This
provides a native-app experience by eliminating page loads. In Liferay DXP, SPA is enabled by default in
your apps and sites and requires no changes to yourworkflow or code!

This tutorial covers these key topics:

• The benefits of SPAs
• What is SennaJS?
• How to enable SPA in Liferay DXP
• How to configure SPA settings
• How to listen to SPA lifecycle events

The Benefits of SPAs

Let’s say you’re surfing the web and you find a really rad site that happens to be SPA enabled. Alright! Page
load times are blazin’ fast. You’re deep into the site, scrolling along, when you find this great post that just
speaks to you. You copy the URL from the address bar and email it to all of your friends with the subject:
‘Your LifeWill Change Forever.’ Theymust experience this awe-inspiring work!

You get a response back almost immediately. “This is a rad site, but what post are you talking about?” it
reads.

“What!? Domy eyes deceiveme?” you exclaim. Youwere in somuch of a hurry to share this life-changing
content that you neglected to notice that the URL never updated when you clicked the post. You click the
back button, hoping to get back to the post, but it takes you to the site you were on before you ever visited
this one.

What a bummer! “Why? Why have you failed me site?” you cry.
If only there was a way to have a Single Page Application, but also be able to link to the content you want.

Well, don’t despair my friend. You can have your cake and eat it too, thanks to SennaJS.

What is SennaJS?

SennaJS is LiferayDXP’s SPA engine. SennaJS handles the client-side data, and AJAX loads the page’s content
dynamically. While there are other JavaScript frameworks out there that may provide some of the same
features, Senna’s only focus is SPA, ensuring that your site provides the best user experience possible.

706

SennaJS provides the following key enhancements to SPA:
SEO& Bookmarkability: Sharing or bookmarking a link displays the same content you are viewing.

Search engines are able to index this content.
Hybrid rendering: Ajax + server-side rendering lets you disable pushState at any time, allowing progres-

sive enhancement. You can use your preferredmethod to render the server side (e.g. HTML fragments or
template views).

State retention: Scrolling, reloading, or navigating through the history of the page takes you back to
where you were.

UI feedback: The UI indicates to the user when some content is requested.
Pending navigations: UI rendering is blocked until data is loaded, and the content is displayed all at

once.
Timeout detection: If the request takes too long to load or the user tries to navigate to a different link

while another request is pending, the request times out.
History navigation: The browser history is manipulated via the History API, so you can use the back and

forward history buttons to navigate through the history of the page.
Cacheable screens: Once a surface is loaded, the content is cached in memory and is retrieved later

without any additional request, speeding up your application.
Page resourcesmanagement: Scripts and stylesheets are evaluated from dynamically loaded resources.

Additional content can be appended to the DOM using XMLHttpRequest. For security reasons, some
browsers won’t evaluate <script> tags from content fragments. Therefore, SennaJS extracts scripts from the
content and parses them to ensure that they meet the browser loading requirements.

You can readmore about SennaJS as well as see examples at http://sennajs.com/.
Now that you have a better understanding of how SennaJS benefits SPA, you can learn how to enable and

configure options for SPA within Liferay DXP next.

Enabling SPA

Enabling SPA is easy. Deploy com.liferay.frontend.js.spa.web-[version]module deployed and enabled,
and you’re all set to use SPA. Since this module is included with Liferay DXP by default, you shouldn’t have to
do anything.

SPA is enabled by default in your apps and sites, and requires no changes to yourworkflow or existing
code!

Next you can learn how to customize SPA settings to meet your own needs.

Customizing SPA Settings

Depending on what behaviors you need to customize, you can configure SPA options in one of two places.
SPA caching and SPA timeout settings can be configured in System Settings. If you wish to disable SPA for
a certain link, page, or portlet in your site, you can do so within the corresponding element itself. All SPA
configuration options are covered here.

Configuring SPA System Settings

To configure system settings for SPA, follow these steps:

1. In the Control Panel, navigate to Configuration → System Settings.

2. Select the Foundation tab at the top of the page.

3. Click Frontend SPA Infrastructure.

707

http://sennajs.com/

Note: In prior versions of Liferay, all SPA render requests that didn’t belong to a portlet (no p_p_id in the
URL) were cached indefinitely. This can confuse users, as the content they view is cached rather than the
latest fresh content. Since Liferay Portal CE 7.0 GA2 and Liferay DXP 7.0 GA1, administrators can use the
Cache Expiration Time property to set an expiration time for the Senna cache.

The following configuration options are available:
Cache Expiration Time: The time, in minutes, in which the SPA cache is cleared. A negative value means

the cache should be disabled.
Request Timeout Time: The time, in milliseconds, in which a SPA request times out. A zero value means

the request should never timeout.
UserNotification Time: The time, in milliseconds, in which a notification is shown to the user stating

that the request is taking longer than expected. A zero value means no notification should be shown.
Now that you know how to configure system settings for SPA, you can learn how to disable SPA for

elements in your site next.

Disabling SPA

Certain elements of your pagemay require a regular navigation to work properly. For example, youmay have
downloadable content that you want to share with the user. In these cases, SPAmust be disabled for those
specific elements.

To disable SPA on a portal wide basis, you can add the following line to your portal-ext.properties:

javascript.single.page.application.enabled = false

If there is a portlet or element that you don’t want to be part of the SPA, you have some options:

• Blacklist the portlet to disable SPA for the entire portlet
• Use the data-senna-off annotation to disable SPA for a specific form or link

To blacklist a portlet from SPA, follow these steps:

1. Open your portlet class.

2. Set the com.liferay.portlet.single-page-application property to false:

com.liferay.portlet.single-page-application=false

If you prefer, you can set this property to false in your liferay-portlet.xml instead by adding the
following property to the <portlet> section:

<single-page-application>false</single-page-application>

3. Alternatively, you can override the isSinglePageApplicationmethod of the portlet to return false.

To disable SPA for a form or link follow these steps:

1. Add the data-senna-off attribute to the element.

2. Set the value to true.

708

@platform-ref@/7.0-latest/javadocs/portal-impl/com/liferay/portal/model/impl/PortletImpl.html#isSinglePageApplication--

For example <a data-senna-off="true" href="/pages/page2.html">Page 2

That’s all you need to do to disable SPA in your app.
Now that you know how to disable SPA, you can learn how to specify how resources are loaded during

navigation.

Specifying How Resources Are Loaded During Navigation

By default, Liferay DXP unloads CSS resources from the <head> element on navigation. JavaScript resources
in the <head>, however, are not removed on navigation. This functionality can be customized by setting the
resource’s data-senna-track attribute. Follow these steps to customize your resources:

1. Select the resource you want to modify the default behavior for.

2. Add the data-senna-track attribute to the resource.

3. Set the data-senna-track attribute to permanent to prevent a resource from unloading on navigation.

Alternatively, set the data-senna-track attribute to temporary to unload the resource on navigation.

Note: the `data-senna-track` attribute can be added to resources loaded

outside of the `<head>` element as well to specify navigation behavior.

The example below ensures that the JS resource isn’t unloaded during navigation:

<script src="myscript.js" data-senna-track="permanent" />

Next you can learn about the available SPA lifecycle events next.

Listening to SPA Lifecycle Events

During development, youmay need to know when navigation has started or stopped in your SPA. SennaJS
makes this easy by exposing lifecycle events that represent state changes in the application. The following
events are available:

beforeNavigate: Fires before navigation starts. This event passes a JSON object with the path to the
content being navigated to and whether to update the history. Below is an example event payload:

{ path: '/pages/page1.html', replaceHistory: false }

startNavigate: Fires when navigation begins. Below is an example event payload:

{ form: '<form name="form"></form>', path: '/pages/page1.html',

replaceHistory: false }

endNavigate: Fired after the content has been retrieved and inserted onto the page. This event passes
the following JSON object:

{ form: '<form name="form"></form>', path: '/pages/page1.html' }

These events can be leveraged easily by listening for them on the Liferay global object.
For example, the JavaScript below alerts the user to “Get ready to navigate to” the URL that has been

clicked, just before SPA navigation begins.

709

Liferay.on('beforeNavigate', function(event) {

alert("Get ready to navigate to " + event.path);

});

The alert takes advantage of the payload for the beforeNavigate event, retrieving the URL from the path
attribute of the JSON payload object.

The above code results in the behavior shown below:

Figure 65.1: You can leverage SPA lifecycle events in your apps.

Due to the nature of SPA navigation, global listeners that you create can become problematic over time if
not handled properly. You’ll learn how to handle these listeners next.

Detaching Global Listeners

SPA provides several improvements that highly benefit your site and users, but there is potentially some
additional maintenance as a consequence. In a traditional navigation scenario, every page refresh resets
everything, so you don’t have to worry about what’s left behind. In a SPA scenario, however, global listeners
such as Liferay.on or Liferay.after or body delegates can become problematic. Every time you execute these
global listeners, you add yet another listener to the globally persisted Liferay object. The result is multiple
invocations of those listeners. This can obviously cause problems if not handled.

To prevent this, you need to listen to the navigation event in order to detach your listeners. For example,
you would use the following code to detach the event listeners of a global category event:

var onCategory = function(event) {...};

var clearPortletHandlers = function(event) {

if (event.portletId === '<%= portletDisplay.getRootPortletId() %>') {

Liferay.detach('onCategoryHandler', onCategory);

Liferay.detach('destroyPortlet', clearPortletHandlers);

}

};

Liferay.on('category', onCategory);

Liferay.on('destroyPortlet', clearPortletHandlers);

Now you know how to configure and use SPA in Liferay DXP!

710

Related Topics

ConfiguringModules for Liferay Portal’s Loaders
Preparing your JavaScript Files for ES2015
Using ES2015 Modules in Your Portlet

65.5 Creating Layouts inside Custom Portlets
Page layout tags let you create layouts using Bootstrap 3 within your portlets.

This tutorial explains the <aui:*> tags that developers can use to create layouts.

AUI Container

The <aui:container> tag creates a container <div> tag to wrap <aui:row> components and offer additional
styling.

It supports the following attributes:

Attribute Type Description

cssClass String A CSS class for styling the
component

dynamicAttributes Map<String, Object> Map of data- attributes for your
container

fluid boolean Whether to enable the container
to span the entire width of the
viewport. The default value is true

id String An ID for the component instance

AUI Row

The <aui:row> tag creates a row to hold <aui:col> components.
It supports the following attributes:

Attribute Type Description

cssClass String A CSS class for styling the component
id String An ID for the component instance

AUI Col

The <aui:col> tag creates a column to display content in an <aui:row> component.
It supports the following attributes:

711

Attribute Type Description

cssClass String A CSS class for styling the
component.

id String An ID for the component
instance.

lg String Comma separated string of
numbers 1-12 to be used for
Boostrap grid col-lg-

md String Comma separated string of
numbers 1-12 to be used for
Boostrap grid col-md-

sm String Comma separated string of
numbers 1-12 to be used for
Boostrap grid col-sm-

xs String Comma separated string of
numbers 1-12 to be used for
Boostrap grid col-xs-

span int The width of the column in the
containing row as a fraction of 12.
For example, a span of 4 would
result in a column width 4/12 (or
1/3) of the total width of the
containing row.

width int The width of the column in the
containing row as a percentage,
overriding the span attribute. The
width is then converted to a span
expressed as ((width/100) x 12),
rounded to the nearest whole
number. For example, a width of
33 would be converted to 3.96,
which would be rounded up to a
span value of 4.

Example JSP

Below is an example layout created in a portlet:

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<aui:container cssClass='super-awesome-container'>

<aui:row>

<aui:col md="4" sm="6">

<h2>Some fun content using the 'md' and 'sm' attributes</h2>

</aui:col>

<aui:col md="8" sm="6">

<p>

Some text here.

712

</p>

</aui:col>

</aui:row>

<aui:row>

<aui:col width="<%= 40 %>">

<h2>Some fun content using the 'width' attribute</h2>

</aui:col>

<aui:col width="<%= 60 %>">

<p>

Cool text here.

</p>

</aui:col>

</aui:row>

<aui:row>

<aui:col span="<%= 4 %>">

<h2>Some fun content using the 'span' attribute</h2>

</aui:col>

<aui:col span="<%= 8 %>">

<p>

Nice text here.

</p>

</aui:col>

</aui:row>

</aui:container>

Now you know how to create layouts inside your portlets!

Related Topics

Layout Templates with the LiferayTheme Generator

713

Chapter 66

Using JavaScript in Your Portlets

Would you like to use the latest ECMAScript features in your JavaScript files and portlets? Do you wish you
could use npm and npm packages in your portlets?

In this section of tutorials you’ll learn how to prepare your JavaScript files to leverage these features in
your portlets.

715

Chapter 67

Using ES2015 in Your Portlets

You can nowwrite JavaScript that adheres to the new ECMAScript 2015 (ES2015) syntax, leverage ES2015
advanced features in your modules, and publish them. To do these things, you need make only minor
adjustments to your JavaScript files and projects.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

This section of tutorials shows how to prepare modules for ES2015 and use them in your portlets.

67.1 Preparing Your JavaScript Files for ES2015

To use the ES2015 syntax in a JavaScript file, add the extension .es to its name. For example, you rename
file filename.js to filename.es.js. The extension indicates it uses ES2015 syntax and must therefore be
transpiled by Babel before deployment.

ES2015 advanced features, such as generators, are available to you if you import the polyfillBabel class
from the polyfill-babelmodule found in 7.0:

import polyfillBabel from 'polyfill-babel'

TheBabel Polyfill emulates a complete ES6 environment. Use it at your own discretion, as it loads a large
amount of code. You can inspect https://github.com/zloirock/core-js#core-js to see what’s polyfilled.

Once you’ve completedwriting yourmodule, you canexpose it by creating a package.jsonfile that specifies
your bundle’s name and version. Make sure to create this in your module’s root folder. The js-logger module,
for example, specifies the following values in its package.json file:

{

"name": "js-logger",

"version": "1.0.0"

}

TheModule Config Generator creates the module based on this information. There you have it! In just a
few steps you can prepare your module to leverage the latest JavaScript standard features and publish it.

717

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify
https://babeljs.io/
https://babeljs.io/docs/learn-es2015/#generators
http://babeljs.io/docs/usage/polyfill/
https://github.com/zloirock/core-js#core-js
https://github.com/liferay/liferay-docs/tree/7.0.x/develop/tutorials/code/osgi/modules/js-logger

Related Topics

Using ES2015 Modules in Your Portlet
OSGi andModularity for Liferay Portal 6 Developers

67.2 Using ES2015 Modules in your Portlet
Once you’ve exposed your modules via your package.json file, you can use them in your portlets. The
aui:script tag’s require attribute makes it easy.

This tutorial covers how to access in your portlets the modules you’ve exposed. The example module
logger.eswas written inside the Console Logger Portlet. Once the portlet is deployed, and added to a page,
you’ll notice a printout in the console.

Follow the steps below to use your exposedmodules in your portlets.

1. Declare the aui taglib in a JSP in your view:

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

Note: if you created the portlet using Blade, the aui taglib is already provided for you in the init.jsp.

2. Add an aui:script tag to the JSP and set the require attribute to the relative path for your module.

Since 7.0, the require attribute allows you to include your exposed modules in your JSP.The AMD
Loader fetches the specified module and its dependencies. For example, the Console Logger Portlet’s
view.jsp includes the module logger.es:

<aui:script require="js-logger/logger.es">

var Logger = jsLoggerLoggerEs.default;

var loggerOne = new Logger('*** -> ');

loggerOne.log('Hello');

var loggerDefault = new Logger();

loggerDefault.log('World');

</aui:script>

References to the module within the script tag are named after the require value, in camel-case and
with all invalid characters removed. The logger.esmodule’s reference jsLoggerLoggerEs is derived
from the module’s relative path value js-logger/logger.es. The value is stripped of its dash and slash
characters and converted to camel case.

Thanks to the aui:script tag and its require attribute, using your modules in your portlet is a piece of
cake!

Related Topics

Overriding a Module’s JSPs
Web Services

718

https://github.com/liferay/liferay-docs/tree/7.0.x/develop/tutorials/code/osgi/modules/console-logger-portlet

Chapter 68

Using npm in Your Portlets

npm is a powerful tool, and almost a necessity for Front-End development. Since Liferay DXP 7.0 Fix Pack
30 and Liferay Portal 7.0 CE GA5, you can use npm as your JavaScript package manager tool—including npm
and npm packages—while developing portlets in your normal, everyday workflow.

Deployed portlets leverage Liferay AMD Loader to share JavaScript modules and take advantage of
semantic versioning when resolvingmodules among portlets on the same page. The liferay-npm-bundler
helps prepare your npmmodules for the Liferay AMD Loader.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

This section of tutorials covers how to set up npm-based portlet projects and how Liferay DXP supports
them.

68.1 liferay-npm-bundler

The liferay-npm-bundler is a bundler (likeWebpack or Browserify) that targets Liferay DXP as a platform
and assumes you’re using your npm packages from portlets (as opposed to typical web applications). It is
just one of the pieces of the Liferay JS Bundle Toolkit. Liferay JS Bundle Toolkit is an abstract umbrella term
that refers to the following tools:

• liferay-npm-bundler
• Babel plugins
• liferay-npm-bundler plugins
• frontend-js-loader-modules-extender
• Javascript AMD loader

Note:The Liferay JS Bundle Toolkit is supported for Liferay DXP 7.0 Fix Pack 39 and up.

The workflow for running npm packages inside portlets is slightly different from standard bundlers.
Instead of bundling the JavaScript in a single file, youmust link all packages together in the browser when

719

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify
https://webpack.github.io/
http://browserify.org/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/foundation/frontend-js/frontend-js-loader-modules-extender
https://github.com/liferay/liferay-amd-loader

the full web page is assembled. This lets portlets share common versions of modules instead of each one
loading its own copy. The liferay-npm-bundler handles this for you. You can learn how it works next.

How it Works Internally

The liferay-npm-bundler takes a Liferay DXP portlet project and outputs its files (including npm packages)
to a build folder, so the standard portlet build (Gradle) can produce an OSGi bundle. You can learn more
about the build folder’s structure inThe Structure of OSGi Bundles Containing NPM Packages tutorial.

Here’s what happens to produce the OSGi bundle:

1. Copy the project’s package.json file to the output directory.

2. Traverse the project’s dependency tree to determine its dependencies.

3. For each npm package dependency:

a. Copy the npm package to the output folder and prefix the bundle’s name to it. Note that the
bundler stores packages in plain bundle-name$package@version format, rather than the standard
node_modules tree format).

b. Pre-process the npm package with any configured plugins.

c. Run Babel with configured plugins for each .js file inside the npm package.

d. Post-process the npm package with any configured plugins.

4. For the project:

a. Pre-process the project’s package with any configured plugins.

b. Run Babel with configured plugins for each .js file inside the project.

c. Post-process the project package with any configured plugins.

The only difference between the pre-process and post-process steps are when they are run (before or
after Babel is run, respectively). During this workflow, liferay-npm-bundler calls all the configured plugins
so they can perform transformations on the npm packages (for instance,modifying their package.json files,
or deleting or moving files).

Now you understand how the liferay-npm-bundler works!

Related Topics

The Structure of OSGi Bundles Containing NPM Packages
How Liferay DXP Publishes NPM Packages
Liferay JavaScript APIs

68.2 Adding liferay-npm-bundler to Your Portlet

Adding liferay-npm-bundler to your portlet involves installing the package via npm and adding it to your
npm build process.

720

https://babeljs.io/
https://babeljs.io/

Installing liferay-npm-bundler

Note: liferay-npm-bundler 1.x performs aggressive semantic version resolution, which can potentially
lead to unstable results. To avoid issues, we recommend that you use the latest version of the bundler (2.x at
the time of this writing).

Follow these steps to install liferay-npm-bundler:

1. Install NodeJS >= v6.11.0 if you don’t have it installed.

2. Navigate to your portlet’s src/main/resources/META-INF/resources folder.

If you don’t have a portlet already, create an empty MVC portlet. For convenience, you can use Blade
CLI to create an empty portlet with the mvc portlet blade template.

3. Run the following command to install the liferay-npm-bundler:

npm install --save-dev liferay-npm-bundler

Note: Use npm fromwithin your portlet project’s root folder (where the package.json file lives), as you
normally do on a typical web project.

Now that you have the liferay-npm-bundler installed, you can add it to your npm build process.

Adding liferay-npm-bundler to Your Build Process

Once your source is transpiled (if necessary) to ECMAScript and converted to AMD format for the Liferay
AMD Loader, you must run liferay-npm-bundler in package.json to pack the needed npm packages and
transform them to AMD.This lets Liferay AMD Loader grab the packages from the Portal.

Add liferay-npm-bundler to your package.json’s build script:

"scripts": {

"build": "[... &&] liferay-npm-bundler"

}

The [...&&] refers to any previous steps you need to perform (for example, transpiling your sources with
Babel).

You can use any languages you like as long as they can be transpiled to Ecmascript 5 or higher (the only
requirement is that Babel can process it and your browser can execute it). When you deploy your portlet
using Gradle, the build script is called as part of the process.

Now you know how to add the liferay-npm-bundler to your portlet!

Related Topics

Configuring liferay-npm-bundler
Understanding How liferay-npm-bundler Formats JavaScript Modules for AMD

721

http://nodejs.org/dist/v6.11.0/

68.3 Configuring liferay-npm-bundler

The liferay-npm-bundler is configured via a .npmbundlerrc file placed in the portlet project’s root folder. You
can create a complete configuration manually or extend a configuration preset (via Babel).

This tutorial explains the .npmbundlerrc file’s structure and shows how the default preset configures the
liferay-npm-bundler.

Understanding the .npmbundlerrc File's Structure

The .npmbundlerrc file has four possible phase definitions: copy-process, pre-process, post-process, and babel.
These phase definitions are explained in more detail below:

Copy-Process: Defined with the copy-plugins property (only available for dependency packages). Speci-
fies which files should be copied or excluded from each given package.

Pre-Process: Defined with the plugins property. Specifies plugins to run before the Babel phase is run.
Babel: Defined with the .babelrc definition. Specifies the .babelrc file to use when running Babel

through the package’s .js files.

Note: During this phase, Babel transforms package files (for example, to convert them to AMD format, if
necessary), but doesn’t transpile them. In theory, you could also transpile them by configuring the proper
plugins. We recommend transpiling before running the bundler, to avoid mixing both unrelated processes.

Post-Process: Defined with the post-plugins property. An alternative to using the pre-process phase, this
specifies plugins to run after the Babel phase has completed.

Here’s an example of a .npmbundlerrc configuration:

{

"exclude": {

"*": [

"test/**/*"

],

"some-package-name": [

"test/**/*",

"bin/**/*"

],

"another-package-name@1.0.10": [

"test/**/*",

"bin/**/*",

"lib/extras-1.0.10.js"

]

},

"include-dependencies": [

"isobject", "isarray"

],

"output": "build",

"process-serially": false,

"verbose": false,

"dump-report": true,

"config": {

"imports": {

"npm-angular5-provider": {

"@angular/common": "^5.0.0",

"@angular/core": "^5.0.0"

}

}

},

"/": {

"plugins": ["resolve-linked-dependencies"],

".babelrc": {

722

"presets": ["liferay-standard"]

},

"post-plugins": [

"namespace-packages",

"inject-imports-dependencies"

]

},

"*": {

"copy-plugins": ["exclude-imports"],

"plugins": ["replace-browser-modules"],

".babelrc": {

"presets": ["liferay-standard"]

},

"post-plugins": [

"namespace-packages",

"inject-imports-dependencies",

"inject-peer-dependencies"

]

}

"packages": {

"a-package-name": [

"copy-plugins": ["exclude-imports"],

"plugins": ["replace-browser-modules"],

".babelrc": {

"presets": ["liferay-standard"]

},

"post-plugins": [

"namespace-packages",

"inject-imports-dependencies",

"inject-peer-dependencies"

]

],

"other-package-name@1.0.10": [

"copy-plugins": ["exclude-imports"],

"plugins": ["replace-browser-modules"],

".babelrc": {

"presets": ["liferay-standard"]

},

"post-plugins": [

"namespace-packages",

"inject-imports-dependencies",

"inject-peer-dependencies"

]

]

}

Note: Not all definition formats (*, some-package-name, and some-package-name@version) shown above are
required. Inmost cases, the wildcard definition (*) is enough. The non-wildcard formats (some-package-name
and some-package-name@version) are rare exceptions for packages that require a more specific configuration
than the wildcard definition provides.

Below are the configuration options for the .npmbundlerrc file:
exclude: defines glob expressions of files to exclude from bundling from all or specific packages.
include-dependencies: defines packages to include in bundling, even if they are not listed under the

dependencies section of package.json. These packages must be available in the node_modules folder (i.e. in-
stalled manually, without saving them to package.json, or listed in the devDependencies section).

output: bydefault thebundlerwritespackages to the standardGradle resources folder: build/resources/main/META-
INF/resources. Set this value to override the default output folder.

process-serially: Process packages in parallel, leveraging Node.js asynchronous model, or one by one. The
default value is false, (parallel), but if you get EMFILE errors, you can disable this.

723

verbose: Sets whether to output detailed information about what the tool is doing to the commandline.
dump-report: Sets whether to generate a debugging report. If true, an HTML file is generated in the

project directory with information such as what the liferay-npm-bundler is doing with each package.
config: global configuration which is passed to all bundler and Babel plugins. Please refer to each plugin’s

documentation to find the available options for each specific plugin.
“/”: plugins’ configuration for the project’s package.
“”: plugins’ configuration for dependency packages.

Note: Plugins’ configuration specifies the options for configuring plugins in all the possible phases, as
well as the .babelrc file to use when running Babel (see Babel’s documentation for more information on that
file format).

Note: Prior to version 1.4.0 of the liferay-npm-bundler, package configurations were placed next to
the tools options (*, output, exclude, etc.) To prevent package name collisions, package configurations
are now namespaced and placed under the packages section. To maintain backwards compatibility, the
liferay-npm-bundler falls back to the root section outside packages for package configuration, if no package
configurations (package-name@version, package-name, or *) are found in the packages section.

Now that you know the structure of the .npmbundlerrc file, you can learn about the default configuration
preset.

How the Default Preset Configures the liferay-npm-bundler

The liferay-npm-bundler comes with a default configuration preset: liferay-npm-bundler-preset-standard
in your .npmbundlerrc file. This preset configures several plugins for the build process and is automatically
used (even if the .npmbundlerrc is missing), unless you override it with one of your own. Running the
liferay-npm-bundler with this preset applies the config file from liferay-npm-bundler-preset-standard:

{

"/": {

"plugins": ["resolve-linked-dependencies"],

".babelrc": {

"presets": ["liferay-standard"]

},

"post-plugins": ["namespace-packages", "inject-imports-dependencies"]

},

"*": {

"copy-plugins": ["exclude-imports"],

"plugins": ["replace-browser-modules"],

".babelrc": {

"presets": ["liferay-standard"]

},

"post-plugins": [

"namespace-packages",

"inject-imports-dependencies",

"inject-peer-dependencies"

]

}

}

Note: You can override configuration preset values by adding your own configuration to your project’s
.npmbundlerrc file. For instance, using the configuration preset example above, you can define your own
.babelrc value in .npmbundlerrc file to override the defined “liferay-standard” babelrc preset.

724

https://babeljs.io/docs/usage/babelrc/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-preset-standard
https://github.com/liferay/liferay-npm-build-tools/blob/master/packages/liferay-npm-bundler-preset-standard/config.json

The liferay-standard preset applies the following plugins to packages:

• exclude-imports: Exclude packages declared in the imports section from the build.

• inject-imports-dependencies: Inject dependencies declared in the imports section in the dependencies’
package.json files.

• inject-peer-dependencies: Inject declared peer dependencies (as they are resolved in the project’s
node_modules folder) in the dependencies’ package.json files.

• namespace-packages: Namespace package names based on the root project’s package name to isolate
packages per project and avoid collisions. This prepends <project-package-name>$ to each package
name appearance in package.json files.

• replace-browser-modules: Replace modules listed under browser/unpkg/jsdelivr section of
package.json files.

• resolve-linked-dependencies: Replace linked dependencies versions appearing in package.json files
(those obtained from local file system or GitHub, for example) by their real version number, as resolved
in the project’s node_modules directory.

In addition, the bundler runs Babel with the babel-preset-liferay-standard preset, that invokes the
following plugins:

• babel-plugin-name-amd-modules: NameAMDmodules based on package name, version, andmodule
path.

• babel-plugin-namespace-amd-define: Add a prefix to AMD define() calls (by default Liferay.Loader.).

• babel-plugin-namespace-modules: Namespace modules based on the root project’s package name,
prepending <project-package-name>$. Wrapmodules inside anAMD define()module for eachmodule
name appearance (in define() or require() calls) so that the packages are localized per project and
don’t clash.

• babel-plugin-normalize-requires: Normalize AMD require() calls.

• babel-plugin-wrap-modules-amd: Wrapmodules inside an AMD define()module.

• babel-plugin-transform-node-env-inline: Inline the NODE_ENV environment variable, and if it’s part of a
binary expression (eg. process.env.NODE_ENV === "development"), then statically evaluate and replace
it.

Now you know how to configure the liferay-npm-bundler!

Related Topics

Adding liferay-npm-bundler to Your Portlet
The Structure of OSGi Bundles Containing NPM Packages

725

https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-preset-liferay-standard
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-exclude-imports
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-inject-imports-dependencies
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-inject-peer-dependencies
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-namespace-packages
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-replace-browser-modules
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-resolve-linked-dependencies
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-preset-liferay-standard
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-plugin-name-amd-modules
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-plugin-namespace-amd-define
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-plugin-namespace-modules
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-plugin-normalize-requires
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/babel-plugin-wrap-modules-amd
https://github.com/babel/minify/tree/master/packages/babel-plugin-transform-node-env-inline

68.4 The Structure of OSGi Bundles Containing npm Packages
To deploy JavaScript modules, youmust create an OSGi bundle with the npm dependencies extracted from
the project’s node_modules folder andmodify them to work with the Liferay AMD Loader. The liferay-npm-
bundler automates this process for you, creating a bundle similar to the one below:

• my-bundle/

– META-INF/

* resources/

· package.json

· name: my-bundle-package
· version: 1.0.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 2.0.0
· my-bundle-package$isobject: 2.1.0

· …

· lib/

· index.js

· …

· …
· node_modules/

· my-bundle-package$isobject@2.1.0/

· package.json

· name: my-bundle-package$isobject
· version: 2.1.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 1.0.0

· …

· …

· my-bundle-package$isarray@1.0.0/

· package.json

· name: my-bundle-package$isarray
· version: 1.0.0
· …

· …

· my-bundle-package$isarray@2.0.0/

· package.json

726

https://github.com/liferay/liferay-amd-loader

· name: my-bundle-package$isarray
· version: 2.0.0
· …

· …

The packages inside node_modules are the same format as the npm tool and can be copied (after a lit-
tle processing for things like converting to AMD, for example) from a standard node_modules folder. The
node_modules folder can hold any number of npm packages (even different versions of the same package), or
no npm packages at all.

Now that you know the structure for OSGi bundles containing npm packages, you can learn how the
liferay-npm-bundler handles inline JavaScript packages.

Inline JavaScript packages

The resulting OSGi bundle that the liferay-npm-bundler creates lets you deploy one inline JavaScript package
(named my-bundle-package in the example) with several npmpackages that are placed inside the node_modules
folder, one package per folder.

The inline package is nested in the OSGi standard META-INF/resources folder and is defined by a standard
npm package.json file.

The inline package is optional, but only one inline package is allowed per OSGi bundle. The inline
package usually provides the JavaScript code for a portlet, when the OSGi bundle contains one. Note that the
architecture does not differentiate between inline and npm packages once they are published. The inline
package is only used for organizational purposes.

Now you know the liferay-npm-bundler creates OSGi bundles for npm packages!

Related Topics

Configuring liferay-npm-bundler
liferay-npm-bundler
Adding liferay-npm-bundler to Your Portlet

68.5 Understanding How liferay-npm-bundler Formats JavaScript
Modules for AMD

Liferay AMD Loader is based on the AMD specification. All modules inside an npmOSGi bundle must be in
AMD format. This is done for CommonJSmodules by wrapping the module code inside a define call. The
liferay-npm-bundler helps automate this process by wrapping the module for you. This tutorial references
the OSGi structure below as an example. You can learn more about this structure inThe Structure of OSGi
Bundles Containing NPM Packages tutorial.

• my-bundle/

– META-INF/

* resources/

· package.json

· name: my-bundle-package

727

https://github.com/amdjs/amdjs-api/wiki/AMD
http://www.commonjs.org/

· version: 1.0.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 2.0.0
· my-bundle-package$isobject: 2.1.0

· …

· lib/

· index.js

· …

· …
· node_modules/

· my-bundle-package$isobject@2.1.0/

· package.json

· name: my-bundle-package$isobject
· version: 2.1.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 1.0.0

· …

· …

· my-bundle-package$isarray@1.0.0/

· package.json

· name: my-bundle-package$isarray
· version: 1.0.0
· …

· …

· my-bundle-package$isarray@2.0.0/

· package.json

· name: my-bundle-package$isarray
· version: 2.0.0
· …

· …

For example, the my-bundle-package$isobject@2.1.0 package’s index.js file contains the following code:

'use strict';

var isArray = require('my-bundle-package$isarray');

module.exports = function isObject(val) {

return val != null && typeof val === 'object' && isArray(val) === false;

};

728

The updated module code configured for AMD format is shown below:

define(

'my-bundle-package$isobject@2.1.0/index',

['module', 'require', 'my-bundle-package$isarray'],

function (module, require) {

'use strict';

var define = undefined;

var isArray = require('my-bundle-package$isarray');

module.exports = function isObject(val) {

return val != null && typeof val === 'object'

&& isArray(val) === false;

};

}

);

Note:Themodule’s namemust be based on its package, version, and file path (for example my-bundle-
package$isobject@2.1.0/index), otherwise Liferay AMD Loader can’t find it.

Note the module’s dependencies: ['module', 'require', 'my-bundle-package$isarray'].
module and requiremust be used to get a reference to the module.exports object and the local require

function, as defined in the AMD specification.
The subsequent dependencies state the modules on which this module depends. Note that my-bundle-

package$isarray in the example is not a package but rather an alias of the my-bundle-package$isarray pack-
age’s main module (thus, it is equivalent to my-bundle-package$isarray/index).

Also note that there is enough information in the package.json files to know that my-bundle-

package$isarray refers to my-bundle-package$isarray/index, but also that it must be resolved to version
1.0.0 of such package, i.e., that my-bundle-package$isarray/index in this case refers to my-bundle-

package$isarray@1.0.0/index.
Youmay also have noted the var define = undefined; addition to the top of the file. This is introduced

by liferay-npm-bundler to make the module think that it is inside a CommonJS environment (instead of an
AMD one). This is because some npm packages are written in UMD format and, because we are wrapping it
inside our AMD define() call, we don’t want them to execute their own define() but prefer them to take the
CommonJS path, where the exports are done through the module.exports global.

You can leverage liferay-npm-bundler with the correct presets to process your npmmodules for AMD.
All liferay-npm-bundler presets (liferay-npm-bundler-preset-) found in the liferay-npm-build-tools repository
include some or all of the following Babel plugins to accomplish the AMD conversion:

• babel-plugin-wrap-modules-amd

• babel-plugin-name-amd-modules

• Babel-plugin-namespace-amd-define

Now you have a better understanding of how liferay-npm-bundler formats JavaScript modules for AMD!

Related Topics

How Liferay DXP Publishes NPM Packages
Configuring liferay-npm-bundler

729

https://github.com/liferay/liferay-npm-build-tools/tree/1.x/packages
https://github.com/liferay/liferay-npm-build-tools/tree/1.x/packages/babel-plugin-wrap-modules-amd
https://github.com/liferay/liferay-npm-build-tools/tree/1.x/packages/babel-plugin-name-amd-modules
https://github.com/liferay/liferay-npm-build-tools/tree/1.x/packages/babel-plugin-namespace-amd-define

68.6 How Liferay DXP Publishes npm Packages
When you deploy an OSGi bundle with the specified structure, as explained inThe Structure of OSGi Bundles
Containing NPM Packages tutorial, its modules are made available for consumption through canonical
URLs. To better illustrate resolved modules, the example structure below is the standard structure that the
liferay-npm-bundler 1.x generates, and therefore doesn’t have the namespaced packages that the 2.x version
generates. Please refer to the last sections of this tutorial to know how liferay-npm-bundler 2.0 overrides
this de-duplication mechanism to implement isolated dependencies and imports.

• my-bundle/

– META-INF/

* resources/

· package.json

· name: my-bundle-package
· version: 1.0.0
· main: lib/index
· dependencies:
· isarray: 2.0.0
· isobject: 2.1.0

· …

· lib/

· index.js

· …

· …
· node_modules/

· isobject@2.1.0/

· package.json

· name: isobject
· version: 2.1.0
· main: lib/index
· dependencies:
· isarray: 1.0.0

· …

· …

· isarray@1.0.0/

· package.json

· name: isarray
· version: 1.0.0
· …

· …

730

· isarray@2.0.0/

· package.json

· name: isarray
· version: 2.0.0
· …

· …

If you deploy the example OSGi bundle shown above, the following URLs are made available (one for
each module):

• http://localhost/o/js/module/598/my-bundle-package@1.0.0/lib/index.js

• http://localhost/o/js/module/598/isobject@2.1.0/index.js

• http://localhost/o/js/module/598/isarray@1.0.0/index.js

• http://localhost/o/js/module/598/isarray@2.0.0/index.js

NOTE:TheOSGi bundle ID (598) may vary.

You can learn about package de-duplication next.

Package De-duplication

Since two or more OSGi modules may export multiple copies of the same package and version, Liferay Portal
must de-duplicate such collisions. To accomplish de-duplication, a new concept called resolved module was
created.

A resolved module is the reference package exported to Liferay Portal’s front-end, whenmultiple copies
of the same package and version exist. It’s randomly referenced from one of the several bundles exporting
the same copies of the package.

Using the example from the previous section, for each group of canonical URLs referring to the same
module inside different OSGi bundles, there’s another canonical URL for the resolved module. The example
structure has the resolved module URLs shown below:

• http://localhost/o/js/resolved-module/my-bundle-package@1.0.0/lib/index.js

• [http://localhost/o/js/resolved-module/my-bundle-package𝑖𝑠𝑜𝑏𝑗𝑒𝑐𝑡@2.1.0/𝑖𝑛𝑑𝑒𝑥.𝑗𝑠](ℎ𝑡𝑡𝑝 ∶
//𝑙𝑜𝑐𝑎𝑙ℎ𝑜𝑠𝑡/𝑜/𝑗𝑠/𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 − 𝑚𝑜𝑑𝑢𝑙𝑒/𝑚𝑦 − 𝑏𝑢𝑛𝑑𝑙𝑒 − 𝑝𝑎𝑐𝑘𝑎𝑔𝑒isobject@2.1.0/index.js)

• [http://localhost/o/js/resolved-module/my-bundle-package𝑖𝑠𝑎𝑟𝑟𝑎𝑦@1.0.0/𝑖𝑛𝑑𝑒𝑥.𝑗𝑠](ℎ𝑡𝑡𝑝 ∶
//𝑙𝑜𝑐𝑎𝑙ℎ𝑜𝑠𝑡/𝑜/𝑗𝑠/𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 − 𝑚𝑜𝑑𝑢𝑙𝑒/𝑚𝑦 − 𝑏𝑢𝑛𝑑𝑙𝑒 − 𝑝𝑎𝑐𝑘𝑎𝑔𝑒isarray@1.0.0/index.js)

• [http://localhost/o/js/resolved-module/my-bundle-package𝑖𝑠𝑎𝑟𝑟𝑎𝑦@2.0.0/𝑖𝑛𝑑𝑒𝑥.𝑗𝑠](ℎ𝑡𝑡𝑝 ∶
//𝑙𝑜𝑐𝑎𝑙ℎ𝑜𝑠𝑡/𝑜/𝑗𝑠/𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 − 𝑚𝑜𝑑𝑢𝑙𝑒/𝑚𝑦 − 𝑏𝑢𝑛𝑑𝑙𝑒 − 𝑝𝑎𝑐𝑘𝑎𝑔𝑒isarray@2.0.0/index.js)

NOTE:TheOSGi bundle ID (598 in the example) is removed andmodule is replaced by resolved-module.

Next you can learn how the bundler (since version 2.0.0) isolates package dependencies. See What
Changed Between liferay-npm-bundler 1.x and 2.x for more information on why this change was made.

731

http://localhost/o/js/module/598/my-bundle-package@1.0.0/lib/index.js
http://localhost/o/js/module/598/isobject@2.1.0/index.js
http://localhost/o/js/module/598/isarray@1.0.0/index.js
http://localhost/o/js/module/598/isarray@2.0.0/index.js
http://localhost/o/js/resolved-module/my-bundle-package@1.0.0/lib/index.js

Isolated Package Dependencies

A typical OSGi bundle structure generated with liferay-npm-bundler 2.x is shown below:

• my-bundle/

– META-INF/

* resources/

· package.json

· name: my-bundle-package
· version: 1.0.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 2.0.0
· my-bundle-package$isobject: 2.1.0

· …

· lib/

· index.js

· …

· …
· node_modules/

· my-bundle-package$isobject@2.1.0/

· package.json

· name: my-bundle-package$isobject
· version: 2.1.0
· main: lib/index
· dependencies:
· my-bundle-package$isarray: 1.0.0

· …

· …

· my-bundle-package$isarray@1.0.0/

· package.json

· name: my-bundle-package$isarray
· version: 1.0.0
· …

· …

· my-bundle-package$isarray@2.0.0/

· package.json

· name: my-bundle-package$isarray
· version: 2.0.0

732

· …

· …

Note that each package dependency is namespaced with the bundle’s name (my-bundle-package$ in the
example structure). This lets each project load its own dependencies and avoid potential collisions with
projects that export the same package. For example, consider the two portlet projects below:

- `my-portlet`

- package.json

- dependencies:

- a-library 1.0.0

- a-helper 1.0.0

- node_modules

- a-library

- version: 1.0.0

- dependencies:

- a-helper ^1.0.0

- a-helper

- version: 1.0.0

- `another-portlet`

- package.json

- dependencies:

- a-library 1.0.0

- a-helper 1.2.0

- node_modules

- a-library

- version: 1.0.0

- dependencies:

- a-helper ^1.0.0

- a-helper

- version: 1.2.0

In this example, a-library depends on a-helper at version 1.0.0 or higher (note the caret ^ expression in
the dependencies). The bundler implements isolated dependencies by prefixing the name of the bundle to
the modules, so that my-portlet gets its a-helper at 1.0.0, while another-portlet gets its a-helper at 1.2.0.

The dependencies isolation not only avoids collisions between bundles, but alsomakes peer dependencies
behave deterministically as each portlet gets what it had in its node_modules folder when it was developed.

Now that you understand how namespacing modules isolates bundle dependencies, avoiding collisions,
you can learn about de-duplication next.

De-duplication through Importing

Isolated dependencies are very useful, but there are times when sharing the same package betweenmodules
would be more beneficial. To do this, the liferay-npm-bundler lets you import packages from an external
OSGi bundle, instead of using your own. This lets you put shared dependencies in one project and reference
them from the rest.

Imagine that you have three portlets that compose the homepage of your site: my-toolbar, my-menu, and
my-content. These portlets depend on the fake, but awesome,Wonderful UI Components (WUI) framework.
This quite limited framework is composed of only three packages:

1. component-core

2. button

3. textfield

733

Since the bundler namespaces each dependency package with the portlet’s name by default, you would
end up with three namespaced copies of theWUI package on the page. This is not what you want. Since they
share the same package, instead you can create a fourth bundle that contains theWUI package, and import
theWUI package in the three portlets. This results in the structure below:

• my-toolbar/

– .npmbundlerrc

* config:

· imports:
· wui-provider:
· component-core: ^1.0.0
· button: ^1.0.0
· textfield: ^1.0.0

• my-menu/

– .npmbundlerrc

* config:

· imports:
· wui-provider:
· component-core: ^1.0.0
· button: ^1.0.0
· textfield: ^1.0.0

• my-content/

– .npmbundlerrc

* config:

· imports:
· wui-provider:
· component-core: ^1.0.0
· button: ^1.0.0
· textfield: ^1.0.0

• wui-provider/

– .package.json

* name: wui-provider

* dependencies:

· component-core: 1.0.0
· button: 1.0.0

734

· textfield: 1.0.0

The bundler switches the namespace of certain packages, thus pointing them to an external bundle. Say
that you have the following code in my-toolbar portlet:

var Button = require('button');

By default, the bundler 2.x transforms this into the following when not imported from another bundle:

var Button = require('my-toolbar$button');

But, because button is imported from wui-provider, it is instead changed to the value below:

var Button = require('wui-provider$button');

Also, a dependency on wui-provider$button at version ^1.0.0 is included in my-toolbar’s package.json
file so that the loader finds the correct version. That’s all you need. Once wui-provider$button is required at
runtime, it jumps to wui-provider’s context and loads the subdependencies from there on, even if code is
executed from my-toolbar. This works because, as you can imagine, wui-provider’s modules are namespaced
too, and once you load amodule from it, it keeps requiring wui-provider$ prefixedmodules all the way down.

Next, you will learn possible strategies for importing.

Strategies When Importing Packages

De-duplication by importing is a powerful tool, but youmust design a versioning strategy suitable for you so
that you don’t run into errors.

First of all, youmust decide if youwant to declare imported dependencies only in the .npmbundlerrcfile or
in the package.json too. Listing an imported dependency in .npmbundlerrc is enough, even if it isn’t present
in your node_modules folder because during runtime the loader will find it. Listing an imported dependency
in .npmbundlerrc is enough, even if it isn’t present in your node_modules folder, because during runtime the
loader finds it. If you have previous experience with dynamic linking support in standard operating systems,
think of it as a DLL or shared object.

You may need to install your dependencies in node_modules too if you use them for tests, or if they
contain types needed to compile (like in Typescript), etc. If that is the case, then you can place them in
the dependencies or devDependencies section of your package.json. If you list them under the latter, they are
automatically excluded from the output bundle by the liferay-npm-bundler. Otherwise, you need to exclude
them in the .npmbundlerrc file so they don’t redundantly appear in the output.

If you list dependencies both in package.json and .npmbundlerrc, decide how to keep versions in sync.
The best advice is to use the same version constraints in both files, but youmay decide not to do so if it is
necessary. For example, imagine that you import one of your dependencies from another bundle during
runtime to run tests. Say you are using version constraint ^1.5.1. It would be desirable that if you have tested
your code with a version >=1.5.1 and <2.0.0 (that’s what ^1.5.1 means), you get a compatible version during
runtime. Thus, you would declare the dependency with ^1.5.1 in .npmbundlerrc too.

However, there are times when youmaywant to bemore lenient, and youmay need to get a lower version
(1.4.0 for example) during runtime, even if you are developing against ^1.5.1. In that case, you can declare
^1.5.1 in your package.json and ^1.0.0 in .npmbundlerrc.

In the end, it’s up to you to decide how you want to handle your dependencies:

1. package.json (While developing)

2. .npmbundlerrc (During runtime)

735

we recommend that you choose a versioning strategy and stick to it, to ensure dependencies are satisfied
at runtime.

Now you know how Liferay DXP publishes npm packages!

Related Topics

Understanding How liferay-npm-bundler Formats JavaScript Modules for AMD
Understanding How Liferay DXP Exposes Configuration for Liferay AMD Loader

68.7 Understanding How Liferay DXP Exposes Configuration For
Liferay AMD Loader

NOTE:This tutorial is for users who know how Liferay AMD Loader works under the hood. You can learn
more about Liferay AMD Loader in the Liferay AMDModule Loader tutorial.

With de-duplication in place, JavaScript modules are made available to Liferay AMD Loader through the
configuration returned by the /o/js_loaded_modulesURL.

The OSGi bundle shown below is used for reference in this tutorial:

• my-bundle/

– META-INF/

* resources/

· package.json

· name: my-bundle-package
· version: 1.0.0
· main: lib/index
· dependencies:
· isarray: 2.0.0
· isobject: 2.1.0

· …

· lib/

· index.js

· …

· …
· node_modules/

· isobject@2.1.0/

· package.json

· name: isobject
· version: 2.1.0
· main: lib/index
· dependencies:
· isarray: 1.0.0

· …

736

· …

· isarray@1.0.0/

· package.json

· name: isarray
· version: 1.0.0
· …

· …

· isarray@2.0.0/

· package.json

· name: isarray
· version: 2.0.0
· …

· …

For example, for the specified structure (shown above), as explained inThe Structure of OSGi Bundles
Containing npm Packages tutorial, the following configuration is published for Liferay AMD loader to
consume:

Liferay.PATHS = {

...

'my-bundle-package@1.0.0/lib/index': '/o/js/resolved-module/my-bundle-package@1.0.0/lib/index',

'isobject@2.1.0/index': '/o/js/resolved-module/isobject@2.1.0/index',

'isarray@1.0.0/index': '/o/js/resolved-module/isarray@1.0.0/index',

'isarray@2.0.0/index': '/o/js/resolved-module/isarray@2.0.0/index',

...

}

Liferay.MODULES = {

...

"my-bundle-package@1.0.0/lib/index.es": {

"dependencies": ["exports", "isarray", "isobject"],

"map": {

"isarray": "isarray@2.0.0",

"isobject": "isobject@2.1.0"

}

},

"isobject@2.1.0/index": {

"dependencies": ["module", "require", "isarray"],

"map": {

"isarray": "isarray@1.0.0"

}

},

"isarray@1.0.0/index": {

"dependencies": ["module", "require"],

"map": {}

},

"isarray@2.0.0/index": {

"dependencies": ["module", "require"],

"map": {}

},

...

}

Liferay.MAPS = {

...

'my-bundle-package@1.0.0': { value: 'my-bundle-package@1.0.0/lib/index', exactMatch: true}

'isobject@2.1.0': { value: 'isobject@2.1.0/index', exactMatch: true},

'isarray@2.0.0': { value: 'isarray@2.0.0/index', exactMatch: true},

737

'isarray@1.0.0': { value: 'isarray@1.0.0/index', exactMatch: true},

...

}

Note:

• The Liferay.PATHS property describes paths to the JavaScript module files.

• The Liferay.MODULES property describes the dependency names and versions of each module.

• The Liferay.MAPS property describes the aliases of the package’s main modules.

Now you know how Liferay DXP exposes configuration for Liferay AMD Loader!

68.8 Related Topics
How Liferay DXP Publishes npm Packages

Understanding How liferay-npm-bundler Formats JavaScript Modules for AMD

738

Chapter 69

Using the NPMResolver API in Your Portlets

If you’redevelopingannpm-basedportlet, yourOSGibundle’s package.json is a treasure-troveof information.
It contains everything that’s stored in the npm registry about your bundle: default entry point, dependencies,
modules, package names, versions, and more. Since Liferay DXP 7.0 Fix Pack 37 and Liferay Portal 7.0
CE GA6, Liferay DXP’s NPMResolver APIs expose this information so you can access it in your portlet. If
it’s defined in the OSGi bundle’s package.json, you can retrieve the information in your portlet with the
NPMResolver API. For instance, you can use this API to reference an npm package’s static resources (such as
CSS files) and even to make your code more maintainable.

To enable the NPMResolver in your portlet, use the @Reference annotation to inject the NPMResolverOSGi
component into your portlet’s Component class, as shown below:

import com.liferay.frontend.js.loader.modules.extender.npm.NPMResolver;

public class MyPortlet extends MVCPortlet {

@Reference

private NPMResolver `_npmResolver`;

}

Note: Because the NPMResolver reference is tied directly to the OSGi bundle’s package.json file, it can only
be used to retrieve npmmodule and package information from that file. You can’t use the NPMResolver to
retrieve npm package information for other OSGi bundles.

Now that the NPMResolver is added to your portlet, the tutorials in this section describe retrieving your
OSGi bundle’s npm package andmodule information.

69.1 Referencing an npm Module's Package to Improve Code Main-
tenance

Once you’ve exposed yourmodules, you can use them in your portlet via the aui:script tag’s require attribute.
By default, Liferay DXP automatically composes an npmmodule’s JavaScript variable based on its name.
For example, the module my-package@1.0.0 translates to the variable myPackage100 for the <aui:script> tag’s
require attribute. This means that each time a new version of the OSGi bundle’s npm package is released,

739

@app-ref@/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html

youmust update your code’s variable to reflect the new version. You can use the JSPackage interface to obtain
the module’s package name and create an alias to reference it, so the variable name always reflects the latest
version number!

Follow these steps:

1. Retrieve a reference to the OSGi bundle’s npm package using the getJSPackage()method:

JSPackage jsPackage = _npmResolver.getJSPackage();

2. Grab the npm package’s resolved ID (the current package version, in the format <package

name>@<version>, defined in the OSGi module’s package.json) using the getResolvedId()method and
alias it with the as myVariableName pattern. The example below retrieves the npmmodule’s resolved ID,
sets it to the bootstrapRequire variable, and assigns the entire value to the attribute bootstrapRequire.
This ensures that the package version is always up to date:

renderRequest.setAttribute(

"bootstrapRequire",

jsPackage.getResolvedId() + " as bootstrapRequire");

3. Include the reference to the NPMResolver:

@Reference

private NPMResolver _npmResolver;

4. Resolve the JSPackage and NPMResolver imports:

import com.liferay.frontend.js.loader.modules.extender.npm.JSPackage;

import com.liferay.frontend.js.loader.modules.extender.npm.NPMResolver;

5. In the portlet’s JSP, retrieve the aliased attribute (bootstrapRequire in the example):

<%

String bootstrapRequire =

(String)renderRequest.getAttribute("bootstrapRequire");

%>

6. Finally, use the attribute as the <aui:script> require attribute’s value:

<aui:script require="<%= bootstrapRequire %>">

bootstrapRequire.default();

</aui:script>

Below is the full example *Portlet class:

public class MyPortlet extends MVCPortlet {

@Override

public void doView(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

JSPackage jsPackage = _npmResolver.getJSPackage();

renderRequest.setAttribute(

740

@app-ref@/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/JSPackage.html
@app-ref@/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html#getJSPackage
@app-ref@/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/JSPackage.html#getResolvedId
@app-ref@/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html

"bootstrapRequire",

jsPackage.getResolvedId() + " as bootstrapRequire");

super.doView(renderRequest, renderResponse);

}

@Reference

private NPMResolver _npmResolver;

}

And here is the corresponding example view.jsp:

<%

String bootstrapRequire =

(String)renderRequest.getAttribute("bootstrapRequire");

%>

<aui:script require="<%= bootstrapRequire %>">

bootstrapRequire.default();

</aui:script>

Now you know how to reference an npmmodule’s package!

Related Topics

Obtaining an OSGi bundle’s Dependency npm Package Descriptors
liferay-npm-bundler
How Liferay DXP Publishes npm Packages

69.2 Obtaining an OSGi bundle's Dependency npm Package Descrip-
tors

While writing your npm portlet, you may need to reference a dependency package or its modules. For
instance, you can retrieve an npm dependency package module’s CSS file and use it in your portlet. The
NPMResolverOSGi component provides twomethods for retrieving an OSGi bundle’s dependency npm pack-
age descriptors: getDependencyJSPackage() to retrieve dependency npm packages and resolveModuleName()

to retrieve dependency npmmodules. This tutorial references the package.json below to help demonstrate
these methods:

{

"dependencies": {

"react": "15.6.2",

"react-dom": "15.6.2"

},

.

.

.

}

To obtain an OSGi bundle’s npm dependency package, pass the package’s name in as the
getDependencyJSPackage() method’s argument. The example below resolves the react dependency
package:

String reactResolvedId = npmResolver.getDependencyJSPackage("react");

741

@app-ref@/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html
@app-ref@/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html#getDependencyJSPackage
@app-ref@/foundation/latest/javadocs/com/liferay/frontend/js/loader/modules/extender/npm/NPMResolver.html#resolveModuleName

reactResolvedId’s resulting value is react@15.6.2.
You can use the resolveModuleName()method To obtain a module in an npm dependency package. To do

this, pass the module’s relative path in as the resolveModuleName()method’s argument. The example below
resolves a module named react-with-addons for the react dependency package:

String resolvedModule =

npmResolver.resolveModuleName("react/dist/react-with-addons");

The resolvedModule variable evaluates to react@15.6.2/dist/react-with-addons. You can also use this to
reference static resources inside npm packages (like CSS or image files), as shown in the example below:

String cssPath = npmResolver.resolveModuleName(

"react/lib/css/main.css");

Now you know how to obtain an OSGi bundle’s dependency npm packages descriptors!

Related Topics

Obtaining an OSGi bundle’s npm Package Descriptors
The Structure of OSGi Bundles Containing npm Packages
How Liferay DXP Publishes npm Packages

742

Chapter 70

Applying Lexicon Styles to your App

It’s important to have a consistent user experience across your apps. Liferay DXP’s built-in apps achieve this
through Liferay’s Lexicon Experience Language and its web implementation, Lexicon.

Lexicon provides a consistent, user-friendly UI for Liferay DXP apps, and is included in all themes that
are based on the _styled base theme,making all the components documented on the Lexicon site accessible.

This means you can use Lexicon markup and components in your Liferay DXP apps. These tutorials
explain how to apply Lexicon’s design patterns to achieve the same look and feel as Liferay DXP’s built-in
apps.

The tutorials in this section cover the following topics:

• Configuring your portlet title and back link
• Applying Lexicon patterns to your forms, navigation, andmore
• Using the Add Button pattern
• Implementing the Management Bar
• Configuring your admin app’s actions menu
• Setting search container animations
• Using Lexicon icons in your app

70.1 Configuring Your Application's Title and Back Link

For 7.0 administration applications, the title should bemoved to the inner views of the app and the associated
back link should be moved to the portlet titles.

If you open the Blogs Admin application in the Control Panel and add a new blog entry, you’ll see this
behavior in action:

Figure 70.1: Adding a new blog entry displays the portlet title at the top, along with a back link.

This tutorial uses the Blogs Admin application’s edit_entry.jsp as an example.
Follow these steps to configure your app’s title and back URL:

743

https://v1.lexicondesign.io/
https://lexiconcss.wedeploy.io/
https://lexiconcss.wedeploy.io/
https://github.com/liferay/liferay-portal/blob/b74496b5c450c134957347e7ebabd25dec1c763d/modules/apps/collaboration/blogs/blogs-web/src/main/resources/META-INF/resources/blogs/edit_entry.jsp

1. Use ParamUtil to retrieve the redirect for the URL:

String redirect = ParamUtil.getString(request, "redirect");

2. Display the back icon and set the back URL to the redirect:

portletDisplay.setShowBackIcon(true);

portletDisplay.setURLBack(redirect);

3. Finally, set the title using the renderResponse.setTitle()method, as shown in the example configura-
tion below:

renderResponse.setTitle((entry != null) ? entry.getTitle() :

LanguageUtil.get(request, "new-blog-entry"));

%>

The example above provides a title for two scenarios:

• If an existing blog entry is being updated, the blog’s title is displayed.
• Otherwise it defaults toNewBlog Entry since a new blog entry is being created.

You should also update any back links in the view to use the redirect. For example the edit_entry.jsp
form’s cancel button redirects the user:

<aui:button cssClass="btn-lg" href="<%= redirect %>" name="cancelButton"

type="cancel" />

Now you know how to configure your app’s title and back URL!

Related topics

Applying Lexicon Patterns to your Forms, Navigation, and Search
Setting Search Container Animations

70.2 Applying Lexicon Patterns to Your Forms, Navigation, and
Search

This tutorial covers how to leverage Lexicon patterns in your app’s forms, navigation, and search results to
make themmore user-friendly.

You can learn how to update your navigation next.

744

Applying Lexicon to the Navigation Bar

All administration apps in 7.0 have a navigation bar. Applying Lexicon to your existing navigation bar takes
only one additional attribute.

If your app already has a navigation bar implementedwith the aui:nav-bar tag, you can reuse it by adding
the attribute markupView="lexicon".

For example, Liferay’s Trash app has the configuration below:

<aui:nav-bar cssClass="collapse-basic-search" markupView="lexicon">

Note:The markupView="lexicon" attribute ensures that the Lexiconmarkup is used for theUI components,
rather than the standard markup. This attribute tells the app to use the lexicon folder in the taglib to render
the HTML, rather than the default rendering. For example, <aui:fieldset markupView="lexicon" /> renders
theHTMLusing /portal/portal-web/docroot/html/taglib/aui/fieldset/lexicon/ insteadof the end.jsp and
start.jsp files in /portal/portal-web/docroot/html/taglib/aui/fieldset/.

Alternatively, you can use non-bordered tabs with the liferay-ui:tabs taglib as the Lexicon Guidelines
state.

Sweet! Now you know how to style a navigation bar with Lexicon. Next, you’ll learn how to apply Lexicon
to your forms.

Applying Lexicon Patterns to the Application Body

To ensure that your application uses all available screen real state from left to right,make the application
body fluid in all portlet views. This helps provide a consistent user-experience across all app views.

To make your app’s content fluid, add the container-fluid-1280 class in a <div> (or equivalent) element
that contains all the portlet’s content (excluding the Nav Bar andManagement Bar).

If your app’s view (or views) are already contained within a <div> element, add the container-fluid-1280
class to it. Otherwise add an uppermost <div> element for this purpose:

<div class="container-fluid-1280">

...

</div>

Next, you can learn how to apply Lexicon to your forms.

Improving your Forms with Lexicon

Follow these steps to apply Lexicon to your forms:

1. Encapsulate your fieldsets with the following taglib:

<aui:fieldset-group markupView="lexicon">

</aui:fieldset-group>

2. The fieldset inside fieldset-group should be collapsible, so you can hide it when it’s not being used.
Add the collapsed and collapsible attributes to your aui:fieldset taglib:

745

@platform-ref@/7.0-latest/taglibs/util-taglib/aui/nav-bar.html
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/web-experience/trash/trash-web/src/main/resources/META-INF/resources/navigation.jsp
https://lexicondesign.io/docs/patterns/nav%20tabs.html

<aui:fieldset collapsed="<%= true %>" collapsible="<%= true %>"

label="permissions">

 ...

</aui:fieldset>

3. Finally, add the btn-lg CSS class to your form’s buttons to increase the click area:

<aui:button-row>

<aui:button cssClass="btn-lg" type="submit" />

<aui:button cssClass="btn-lg" href="<%= redirect %>"

type="cancel" />

</aui:button-row>

Your forms are now configured to use Lexicon! Next, you can learn how to apply Lexicon to the Actions
menu for your entities.

Applying Lexicon to Your Entity's Actions Menus

Your Actions menus can also benefit from Lexicon patterns. Learn how to apply Lexicon patterns to your
Admin app’s actions in the Configuring Your Admin app’s ActionsMenu tutorial. For regular apps, follow
these steps:

1. Open your module’s actions JSP (guestbook_actions.jsp for example) and update the <liferay-

ui:icon-menu> to use Lexicon’s markup with the markupView attribute:

<liferay-ui:icon-menu

direction="left-side"

icon="<%= StringPool.BLANK %>"

markupView="lexicon"

message="<%= StringPool.BLANK %>"

showWhenSingleIcon="<%= true %>"

>

2. To follow the Lexicon guidelines, the Actions menu should only display an icon if it is one action. If
the Actions menu contains multiple actions, remove the icon’s image attribute and replace it with the
message attribute displaying the action’s title. Below is an example configuration:

<liferay-ui:icon

message="Edit"

url="<%= editURL.toString() %>"

/>

Next you can update your search iterator.

Applying Lexicon to your Search iterator

To apply Lexicon to your search iterator, add the markupView="lexicon" attribute:

<liferay-ui:search-iterator

displayStyle="<%= displayStyle %>"

markupView="lexicon"

searchContainer="<%= searchContainer %>"

/>

746

The displayStyle attribute specifies which display style is set for the management bar. You can learn
how to configure display styles in the ImplementingManagement Bar Display Styles tutorial.

If the results contain different sets of entries (folders and documents, categories and threads, etc.), you
must use a class that implements *ResultRowSplitter to divide the results. This is covered next.

Creating a Result Row Splitter

Classes that implement the *ResultRowSplitter class divide and categorize the results based on the different
entry types. Follow these steps to create a result row splitter:

1. Create a Java class that implements the ResultRowSplitter interface. For example, the com.liferay.bookmarks.web
module has the following BookmarksResultRowSplitter class to split its folder and bookmark results:

public class BookmarksResultRowSplitter implements ResultRowSplitter {

2. Override the split()method:

@Override

public List<ResultRowSplitterEntry> split(List<ResultRow> resultRows) {

List<ResultRowSplitterEntry> resultRowSplitterEntries =

new ArrayList<>();

3. Create an ArrayList for each type of entity, as shown in the example below:

List<ResultRow> entryResultRows = new ArrayList<>();

List<ResultRow> folderResultRows = new ArrayList<>();

4. Loop through the results and add your entities to the proper ArrayList:

for (ResultRow resultRow : resultRows) {

Object object = resultRow.getObject();

if (object instanceof BookmarksFolder) {

folderResultRows.add(resultRow);

}

else {

entryResultRows.add(resultRow);

}

}

5. Create a new ResultRowSplitterEntry for each entity, passing the name of the entity and the ArrayList:

if (!folderResultRows.isEmpty()) {

resultRowSplitterEntries.add(

new ResultRowSplitterEntry("folders", folderResultRows));

}

if (!entryResultRows.isEmpty()) {

resultRowSplitterEntries.add(

new ResultRowSplitterEntry("bookmarks", entryResultRows));

}

6. Return the List of resultRowSplitter Entries.

7. Use the resultRowSplitter attribute in your liferay-ui:search-iterator taglib to create anew instance
of your *ResultRowSplitter as shown in the example below:

747

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/search/ResultRowSplitter.html

<liferay-ui:search-iterator

displayStyle="<%= displayStyle %>"

markupView="lexicon"

resultRowSplitter="<%= new BookmarksResultRowSplitter() %>"

searchContainer="<%= bookmarksSearchContainer %>"

/>

Now you know how to apply Lexicon patterns to your app’s forms, navigation, and search results!

Related topics

Configuring Your Application’s Title and Back Link
Using Lexicon Icons in Your App

70.3 Applying the Add Button Pattern
Lexicon’s add button pattern is for actions that add entities (for example a new blog entry button): it gives
you a clean,minimal UI. You can use it in any of your app’s screens. The add button pattern consists of an
add-menu tag and at least one add-menu-item tag.

Figure 70.2: The add button pattern consists of an add-menu tag and at least one add-menu-item tag.

If there’s only one item, the plus icon acts as a button that triggers the item. If there’s more than one
item, clicking the plus icon displays a menu containing them.

Add a <liferay-frontend:add-menu-item> tag for every menu item you have. Here’s an example of the
add button pattern with a single item:

748

@platform-ref@/7.0-latest/taglibs/modules/apps/foundation/com.liferay.frontend.taglib/com.liferay.frontend.taglib/liferay-frontend/add-menu.html
@platform-ref@/7.0-latest/taglibs/modules/apps/foundation/com.liferay.frontend.taglib/com.liferay.frontend.taglib/liferay-frontend/add-menu-item.html

<liferay-frontend:add-menu>

<liferay-frontend:add-menu-item title='<%= LanguageUtil.get(request,

"titleName") %>' url="<%= nameURL.toString() %>" />

</liferay-frontend:add-menu>

You can also find the add button pattern in Liferay DXP’s built-in apps. For example, theMessage Boards
Admin application uses the following add button pattern:

<liferay-frontend:add-menu>

...

<liferay-frontend:add-menu-item title='<%= LanguageUtil.get(request,

"thread") %>' url="<%= addMessageURL.toString() %>" />

...

<liferay-frontend:add-menu-item title='<%= LanguageUtil.get(request,

(categoryId == MBCategoryConstants.DEFAULT_PARENT_CATEGORY_ID) ?

"category[message-board]" : "subcategory[message-board]") %>'

url="<%= addCategoryURL.toString() %>" />

...

</liferay-frontend:add-menu>

There you have it! Now you know how to use the add button pattern.

Related Topics

Setting Search Container Animations
Adding the Management Bar

749

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/collaboration/message-boards/message-boards-web/src/main/resources/META-INF/resources/message_boards_admin/add_button.jsp
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/collaboration/message-boards/message-boards-web/src/main/resources/META-INF/resources/message_boards_admin/add_button.jsp

Chapter 71

Adding the Management Bar

TheManagement Bar controls display options for search container results. You can use it to display content
in a list or a grid, or to display a specific type of content. You can also customize your app’s Management Bar.

TheManagement Bar is divided into a few key sections. Each section is grouped and configured using
different taglibs:

The <liferay-frontend:management-bar-buttons> tag wraps the Management Bar’s button elements:
The <liferay-frontend:management-bar-sidenav-toggler-button> tag implements slide-out navigation

for the info button.
The <liferay-frontend:management-bar-display-buttons> tag renders the app’s display style options:
The <liferay-frontend:management-bar-filters> tag wraps the app’s filtering options. This filter should

be included in all control panel applications. Filtering options can include sort criteria, sort ordering, and
more:

Finally, the <liferay-frontend:management-bar-action-buttons> tag wraps the actions that you can exe-
cute over selected items. In 7.0, you can select multiple items between pages. Themanagement bar keeps
track of the number of selected items for you:

For example, here’s the Management Bar configuration in Liferay’s Trash app:

<liferay-portlet:actionURL name="changeDisplayStyle"

varImpl="changeDisplayStyleURL">

<portlet:param name="redirect" value="<%= currentURL %>" />

</liferay-portlet:actionURL>

<liferay-frontend:management-bar-display-buttons

displayViews='<%= new String[] {"descriptive", "icon",

"list"} %>'

portletURL="<%= changeDisplayStyleURL %>"

selectedDisplayStyle="<%= trashDisplayContext.getDisplayStyle()

%>"

/>

</liferay-frontend:management-bar-buttons>

<liferay-frontend:management-bar-filters>

<liferay-frontend:management-bar-navigation

navigationKeys='<%= new String[] {"all"} %>'

portletURL="<%= trashDisplayContext.getPortletURL() %>"

/>

<liferay-frontend:management-bar-sort

orderByCol="<%= trashDisplayContext.getOrderByCol() %>"

orderByType="<%= trashDisplayContext.getOrderByType() %>"

751

@platform-ref@/7.0-latest/taglibs/modules/apps/foundation/com.liferay.frontend.taglib/com.liferay.frontend.taglib/liferay-frontend/management-bar-buttons.html
@platform-ref@/7.0-latest/taglibs/modules/apps/foundation/com.liferay.frontend.taglib/com.liferay.frontend.taglib/liferay-frontend/management-bar-sidenav-toggler-button.html
@platform-ref@/7.0-latest/taglibs/modules/apps/foundation/com.liferay.frontend.taglib/com.liferay.frontend.taglib/liferay-frontend/management-bar-display-buttons.html
@platform-ref@/7.0-latest/taglibs/modules/apps/foundation/com.liferay.frontend.taglib/com.liferay.frontend.taglib/liferay-frontend/management-bar-filters.html
@platform-ref@/7.0-latest/taglibs/modules/apps/foundation/com.liferay.frontend.taglib/com.liferay.frontend.taglib/liferay-frontend/management-bar-action-buttons.html

Figure 71.1: The Management Bar lets the user customize how the app displays content.

Figure 71.2: The management-bar-buttons tag contains the Management Bar’s main buttons.

Figure 71.3: The management-bar-display-buttons tag contains the content’s display options.

Figure 71.4: The management-bar-filters tag contains the content filtering options.

752

Figure 71.5: The management bar keeps track of the items selected and displays the actions to execute on them.

orderColumns='<%= new String[] {"removed-date"} %>'

portletURL="<%= trashDisplayContext.getPortletURL() %>"

/>

</liferay-frontend:management-bar-filters>

<liferay-frontend:management-bar-action-buttons>

<liferay-frontend:management-bar-sidenav-toggler-button />

<liferay-frontend:management-bar-button href="javascript:;"

icon="trash" id="deleteSelectedEntries" label="delete" />

</liferay-frontend:management-bar-action-buttons>

In this section of tutorials, you’ll learn how to add amanagement bar to your application.

71.1 Implementing the Management Bar Display Styles

TheManagement Bar offers a few display styles for your app’s search container contents: descriptive, icon,
and list. These views are standard in Liferay DXP’s control panel apps. While you are not required to
implement all these display styles in your app’s management bar, they provide some additional control over
how your app’s information is displayed.

Figure 71.6: The management-bar-display-buttons tag contains the content’s display options.

To provide these views in your app, youmust make some updates to your search result columns. Follow
the patterns covered in this tutorial to configure your app.

Note: You are not required to implement all the display views in your app. Youmust just at least have
one display style implemented (list is the default). Views that are disabled in your app will render as greyed
out buttons.

Start by configuring the Management Bar Display Buttons tag next.

Configuring the Management Bar Display Buttons Tag

Follow these steps to configure the management bar display button tags:

1. Add the <liferay-frontend:management-bar> taglib to your app’s main view (view.jsp for example). If
themanagement bar has a checkbox that needs to stay selectedwhile the navigation is used, you can op-
tionally provide a search container IDwith the searchContainerId attribute and set the includeCheckBox
attribute to true.

2. Add the management bar buttons using the <liferay-frontend:management-bar-buttons> and
<liferay-frontend:management-bar-display-buttons> tags. The <liferay-frontend:management-bar-

display-buttons> tag requires three attributes: displayViews, the display style views that are available;

753

portletURL, the URL to redirect to after an option is chosen; and selectedDisplayStyle, the view to
display. Below is an example configuration that implements all three display views:

<liferay-frontend:management-bar>

<liferay-frontend:management-bar-buttons>

<liferay-frontend:management-bar-display-buttons

displayViews='<%= new String[] {"icon", "descriptive", "list"} %>'

portletURL="<%= myViewURL %>"

selectedDisplayStyle="<%= displayStyle %>"

/>

</liferay-frontend:management-bar-buttons>

</liferay-frontend:management-bar>

Your taglibs are configured for your display styles, but at the moment they don’t do anything. You’ll
configure the views next.

Configuring the Display Views

Note that your management bar may not contain all three views. You only need to implement the views
that you defined in your <liferay-frontend:management-bar-display-buttons> tag’s displayViews attribute.
Follow these steps to set the display views for the management bar:

1. Define a default display style. For example, the configuration below sets the default display style to list:

<%

String displayStyle = ParamUtil.getString(request, "displayStyle", "list");

%>

2. Wrap each display style configuration with the proper check:

<c:choose>

<c:when test='<%= Objects.equals(displayStyle, "icon") %>'>

<%-- icon display style configuration goes here --%>

</c:when>

...

<c:when test='<%= Objects.equals(displayStyle, "descriptive") %>'>

<%-- descriptive display style configuration goes here --%>

</c:when>

...

<c:when test='<%= Objects.equals(displayStyle, "list") %>'>

<%-- list display style configuration goes here --%>

</c:when>

</c:choose>

Use cards to display the information. Use a vertical card to display assets like files or web content. Use
horizontal cards to display folders or directories. You can add the display style configurations for each view
next.

Implementing the Icon View

The icon view prominently displays an icon for the content, along with its name, status, and a condensed
description.

Follow the steps below to create your icon view:

1. First, make your icon view responsive to different devices.

For vertical cards use the following pattern:

754

https://lexicondesign.io/docs/patterns/cards.html

Figure 71.7: The Management Bar’s icon display view gives a quick summary of the content’s description and status.

<%

row.setCssClass("col-md-2 col-sm-4 col-xs-6");

%>

For horizontal cards use the following pattern:

<%

row.setCssClass("col-md-3 col-sm-4 col-xs-12");

%>

2. Once your cards are responsive, youmust add search container column text using the pattern below:

<liferay-ui:search-container-column-text>

<%-- include your vertical card or horizontal card here --%>

</liferay-ui:search-container-column-text>

3. Add the card to the <liferay-ui:search-container-column-text>:

Use one of the following tags for your vertical card:

<liferay-frontend:vertical-card/>

755

<liferay-frontend:user-vertical-card/>

<liferay-frontend:icon-vertical-card/>

Below is an example from the com.liferay.journal.webmodule’s view_comments.jsp:

<liferay-ui:search-container-column-text>

<liferay-frontend:vertical-card

cssClass="entry-display-style"

imageUrl="<%= (userDisplay != null) ? userDisplay.getPortraitURL(themeDisplay) : UserConstants.getPortraitURL(themeDisplay.getPathImage(), true, 0, null) %>"

resultRow="<%= row %>"

>

<liferay-frontend:vertical-card-header>

<liferay-ui:message arguments="<%= new String[] {LanguageUtil.getTimeDescription(locale, System.currentTimeMillis() - mbMessage.getModifiedDate().getTime(), true), HtmlUtil.escape(mbMessage.getUserName())} %>" key="x-

ago-by-x" translateArguments="<%= false %>" />

</liferay-frontend:vertical-card-header>

<liferay-frontend:vertical-card-footer>

<%= HtmlUtil.extractText(content) %>

</liferay-frontend:vertical-card-footer>

</liferay-frontend:vertical-card>

</liferay-ui:search-container-column-text>

For horizontal cards you can use the tag below:

<liferay-frontend:horizontal-card/>

Now that your icon view is configured, you canmove onto your descriptive view next.

Implementing the Descriptive View

The descriptive view displays the complete description, along with a small icon for the content, and its name.
Your descriptive view should have three columns.

1. The first column usually contains an icon, image, or user portrait:

For an icon use the following tag:

<liferay-ui:search-container-column-icon/>

For an image use the following tag:

<liferay-ui:search-container-column-image/>

For a user portrait use the following pattern:

<liferay-ui:search-container-column-text>

<liferay-ui:user-portrait/>

</liferay-ui:search-container-column-text>

2. The second column should contain the descriptions. For example, the site teams application is config-
ured with the settings below:

756

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/web-experience/journal/journal-web/src/main/resources/META-INF/resources/view_comments.jsp
https://github.com/liferay/liferay-portal/blob/98d332c8fa884ab229c848e7eabd5b9a8da514d6/modules/apps/web-experience/site/site-teams-web/src/main/resources/META-INF/resources/user_group_columns.jspf

Figure 71.8: The Management Bar’s descriptive display view gives the content’s full description.

757

<liferay-ui:search-container-column-text

colspan="<%=2%>"

>

<h5><%= userGroup.getName() %></h5>

<h6 class="text-default">

<%= userGroup.getDescription() %>

</h6>

<h6 class="text-default">

<liferay-ui:message arguments="<%= usersCount%>" key="x-users"

/>

</h6>

</liferay-ui:search-container-column-text>

3. Finally, the third column contains the actions. For example, the site teams application uses the
configuration below:

<liferay-ui:search-container-column-jsp

path="/edit_team_assignments_user_groups_action.jsp"

/>

Now that your descriptive view is configured you can implement your list view next.

Implementing the List View

The list view is the default view that is shown for most applications. This view lists the content’s information
in individual columns.

For example, the mobile device rules application configures its list view using the pattern below:

<liferay-ui:search-container-column-text

cssClass="content-column name-column title-column"

name="name"

truncate="<%= true %>"

value="<%= rule.getName(locale) %>"

/>

<liferay-ui:search-container-column-text

cssClass="content-column description-column"

name="description"

truncate="<%= true %>"

value="<%= rule.getDescription(locale) %>"

/>

<liferay-ui:search-container-column-date

cssClass="create-date-column text-column"

name="create-date"

property="createDate"

/>

<liferay-ui:search-container-column-text

cssClass="text-column type-column"

name="type"

translate="<%= true %>"

value="<%= rule.getType() %>"

/>

<liferay-ui:search-container-column-jsp

cssClass="entry-action-column"

path="/rule_actions.jsp"

/>

758

https://github.com/liferay/liferay-portal/blob/fe808e45473fc1491ac79b396b822629df5b052c/modules/apps/foundation/mobile-device-rules/mobile-device-rules-web/src/main/resources/META-INF/resources/rule_columns.jspf

Figure 71.9: The Management Bar’s list display view list the content’s information in individual columns.

Finally, set the display style in your liferay-ui:search-iterator tag with the displayStyle attribute:

<liferay-ui:search-iterator

displayStyle="<%= displayStyle %>"

markupView="lexicon"

searchContainer="<%= searchContainer %>"

/>

The displayStyle attribute is set to the displayStyle var which is set by themanagement bar display style
buttons.

Your display views are configured!

Related Topics

Implementing a Management Bar Sort Filter
Implementing a Management Bar Navigation Filter

71.2 Implementing a Management Bar Navigation Filter
Navigation filters are used to create navigation menus in the Management Bar. You can add as many
navigation filters to the Management Bar as your app requires.

759

You can learn how to configure the navigation filter next.

Configuring the Navigation Filter

Follow these steps to configure the navigation filter:

1. Add the <liferay-frontend:management-bar-filters> tag below the <liferay-frontend:management-

bar-buttons> tags, to contain your management bar filters.

2. Use the <liferay-frontend:management-bar-navigation> tag to add as many navigation menus as
your app requires. Use the navigationKeys attribute to set the navigation menu options. The
navigationParam attribute identifies the parameter to use for the navigation filter value. The default
value is navigation. If you have more than one navigation menu, you can specify a unique variable
with the navigationParam to identify eachmenu. Finally, use the portletURL attribute to set the URL
for the page. Below is an example configuration with one navigation menu:

<liferay-frontend:management-bar-filters>

<liferay-frontend:management-bar-navigation

navigationKeys='<%= new String[] {"all", ["navigation-title"]...} %>'

navigationParam="myCustomNavigationVariable"

portletURL="<%= portletURL %>"

/>

</liferay-frontend:management-bar-filters>

If your app doesn’t require any navigation filters, you can just provide the all filter to display everything.
If, however, you need to let the user navigate between pages (JSPs) of your app , you can add additional
strings to the navigationKeys attribute for each page you need.

3. Set the navigation filter’s default value with paramUtil. For example, the configuration below sets the
default navigation filter to all:

String navigation = ParamUtil.getString(request, "navigation", "all");

4. If your app has multiple options in a navigation menu, use the navigationParam to check the cur-
rent value. Below is an example code snippet from com.liferay.wiki.webmodule’s page_iterator.jsp
that checks the navigation menu’s value to render the proper JSP content. Note that it uses the
navigationParam’s default value navigation to check the current value:

if (navigation.equals("all-pages")) {

portletURL.setParameter("mvcRenderCommandName", "/wiki/view_pages");

PortalUtil.addPortletBreadcrumbEntry(request, LanguageUtil.get(request,

"all-pages"), portletURL.toString());

}

else if (navigation.equals("categorized-pages")) {

portletURL.setParameter("mvcRenderCommandName",

"/wiki/view_categorized_pages");

portletURL.setParameter("categoryId", String.valueOf(categoryId));

}

else if (navigation.equals("draft-pages")) {

portletURL.setParameter("mvcRenderCommandName", "/wiki/view_draft_pages");

PortalUtil.addPortletBreadcrumbEntry(request, LanguageUtil.get(request,

"draft-pages"), portletURL.toString());

}

Now you know how to add navigation filters to a management bar!

760

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/collaboration/wiki/wiki-web/src/main/resources/META-INF/resources/wiki/page_iterator.jsp

Related Topics

Implementing a Management Bar Sort Filter
Implementing the Management Bar Display Styles

71.3 Implementing a Management Bar Sort Filter

The Management Bar Sort Filters let you compare entries for a search container field, and sort them by
ascending or descending. To do this, you must create a comparator class for each field that you want to sort.

The sort filters are an implementation of the standard Comparator Interface, with some additional meth-
ods provided by the OrderByComparator class.

Once the class is created you can use it in your view to add the sort filters to the UI.
Go ahead and get started by creating the Comparator class next.

Creating the Comparator Class

The OrderByComparator class is a Comparator implementation that you can extend to create sort filters. Follow
these steps to create the *OrderByComparator class:

1. Right-click on your API module’s folder in the package explorer and selectNew→Package to create a
new package.

2. Right-click the package you just created and selectNew→Class. Enter EntryNameComparator for the
class Name, check the Constructors from superclass option, and click Finish.

3. Update the class declaration to extend the OrderByComparator class and use a proper asset type, <Entry>
for example>. Below is an example configuration for an entry name field comparator:

public class EntryNameComparator extends OrderByComparator<Entry>{

...

}

4. Add variables for the ascending, descending, and column name field (name for example) sorters:

public static final String ORDER_BY_ASC = "[asset].[column name] ASC";

public static final String ORDER_BY_DESC = "[asset].[column name] DESC";

public static final String[] ORDER_BY_FIELDS = {"[field name]"};

Below is an example configuration for an Entry asset’s name field:

public static final String ORDER_BY_ASC = "Entry.name ASC";

public static final String ORDER_BY_DESC = "Entry.name DESC";

public static final String[] ORDER_BY_FIELDS = {"name"};

5. Replace the public constructor with the following constructors:

761

https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-kernel/src/com/liferay/portal/kernel/util/OrderByComparator.java

public *Comparator() {

this(false);

}

public *Comparator(boolean ascending) {

_ascending = ascending;

}

Below is an example configuration for an EntryNameComparator:

public EntryNameComparator() {

this(false);

}

public EntryNameComparator(boolean ascending) {

_ascending = ascending;

}

6. Add the compare()method to compare search container asset entries. Below is an example configura-
tion for entry assets:

@Override

public int compare(Entry entry1, Entry entry2) {

String name1 = entry1.getName();

String name2 = entry2.getName();

int value = name1.compareTo(name2);

if (_ascending) {

return value;

}

else {

return -value;

}

}

7. Add the following code to return the order fields and check whether the order is ascending or descend-
ing:

@Override

public String getOrderBy() {

if (_ascending) {

return ORDER_BY_ASC;

}

else {

return ORDER_BY_DESC;

}

}

@Override

public String[] getOrderByFields() {

return ORDER_BY_FIELDS;

}

@Override

public boolean isAscending() {

return _ascending;

}

private final boolean _ascending;

8. Finally, resolve imports for the class:

762

import com.liferay.docs.guestbook.model.Entry;

import com.liferay.portal.kernel.util.OrderByComparator;

Now that your *Comparator class is written youmust update the service layer to use it.

Updating the Service Layer

Follow these steps to update services:

1. Open your *EntryLocalServiceImpl class in your service module and import the OrderByComparator
class:

import com.liferay.portal.kernel.util.OrderByComparator;

2. Update the getEntries()method with the start and end integers to include the OrderByComparator
parameter. Below is an example configuraiton:

public List<Entry> getEntries(

long groupId, long guestbookId, int start, int end,

OrderByComparator<Entry> obc) {

return entryPersistence.findByG_G(

groupId, guestbookId, start, end, obc);

}

3. Rebuild services for your App. Right-click the service module in the Project Explorer and select Liferay
→ build-service.

4. Export the comparator package in the API module’s BND.

Now that the services are updated and your exports are in order, you can configure the view to use the
comparator next.

Configuring the View

Follow these steps to configure the view to use the Comparator:

1. Import the EntryNameComparator and Comparator classes into the webmodule project’s init.jsp:

page import="com.liferay.docs.guestbook.util.comparator.EntryNameComparator"

page import="com.liferay.portal.kernel.util.OrderByComparator"

2. Open the view and add the comparator code below the displayStyle variable in the java scriplet at the
top. Below is an example configuration that uses the EntryNameComparator class:

String orderByCol = ParamUtil.getString(request, "orderByCol", "name");

boolean orderByAsc = false;

String orderByType = ParamUtil.getString(request, "orderByType", "asc");

if (orderByType.equals("asc")) {

orderByAsc = true;

763

}

OrderByComparator orderByComparator = null;

if (orderByCol.equals("name")) {

orderByComparator = new EntryNameComparator(orderByAsc);

}

This sets up the configuration for the comparators.

3. Add orderByCol and orderByType portlet parameters for your order comparator to the view’s render
URL.The orderByCol parameter specifies the column to order by and the orderByType column specifies
whether the order is ascending or descending. Below is the configuration for the EntryNameCom-
parator:

<liferay-portlet:renderURL varImpl="viewPageURL">

<portlet:param name="mvcPath" value="/html/guestbookmvcportlet/view.jsp" />

<portlet:param name="guestbookId" value="<%= String.valueOf(guestbookId) %>" />

<portlet:param name="displayStyle" value="<%= displayStyle %>" />

<portlet:param name="orderByCol" value="<%= orderByCol %>" />

<portlet:param name="orderByType" value="<%= orderByType %>" />

</liferay-portlet:renderURL>

4. Add the sort filters below the navigation filters, using the <liferay-frontend:management-bar-sort />

taglib. Pass the name of the column you specified in the *Comparator class. Below is the example
configuration for the EntryNameComparator class:

<liferay-frontend:management-bar-sort

orderByCol="<%= orderByCol %>"

orderByType="<%= orderByType %>"

orderColumns='<%= new String[] {"name"} %>'

portletURL="<%= viewPageURL %>"

/>

5. Finally, pass the orderByComparator in as an argument in the search container results to match the
updated method signature you modified. Below is the configuration for the example EntryNameCom-
parator:

<liferay-ui:search-container-results

results="<%= EntryLocalServiceUtil.getEntries(scopeGroupId,

guestbookId, searchContainer.getStart(), searchContainer.getEnd(),

orderByComparator) %>"

/>

TheManagement Bar Sort Filters are finished!

Related Topics

Implementing a Management Bar Navigation Filter
Disabling the Management Bar

764

71.4 Disabling the Management Bar
When there’s no content in the app, you should disable all the Management Bar’s buttons, except the info
button.

Youcandisable theManagementBarbyadding the disabledattribute to the liferay-frontend:management-
bar tag:

<liferay-frontend:management-bar

disabled="<%= total == 0 %>"

includeCheckBox="<%= true %>"

searchContainerId="<%= searchContainerId %>"

>

You can also disable individual buttons by adding the disabled attribute to the corresponding tag. The
example configuration below disables the display buttons when the search container displays 0 results:

<liferay-frontend:management-bar-display-buttons

disabled="<%= total == 0 %>"

displayViews='<%= new String[] {"descriptive", "icon", "list"} %>'

portletURL="<%= changeDisplayStyleURL %>"

selectedDisplayStyle="<%= trashDisplayContext.getDisplayStyle() %>"

/>

Now you know how to disable the Management Bar!

Related Topics

Implementing a Management Bar Sort Filter
Setting Search Container Animations

71.5 Configuring Your Admin App's Actions Menu
In versions prior to 7.0, it was common to have a series of buttons or menus with actions in the different
views of the app. In 7.0 the proposed pattern is to move all of these actions to the upper right menu of the
administrative portlet, leaving the primary action (often an “Add” operation) visible in the addmenu, using
the Add Button pattern. For example, the web content application has the actions menu shown below:

The changes covered in this tutorial do not refer to actions menus associated with entities. For those, see
Applying Lexicon Patterns to Your Forms, Navigation, and Search.

This tutorial shows how to configure the actions menu in your admin app. The first step is to create the
PortletConfigurationIconFactory class.

Creating the Icon Factory Class

Toaddanaction to theupper rightmenuof theAdminportlet youmustfirst create a PortletConfigurationIcon
Component class. This class specifies the portlet for the action, the screen to show it on, and the order (by
specifying a weight).

In this example, the action appears on the System Settings portlet. To make it appear in a secondary
screen, you can use the path property as shown below:

@Component(

immediate = true,

property = {

"javax.portlet.name=" +

ConfigurationAdminPortletKeys.SYSTEM_SETTINGS,

765

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/configuration/icon/PortletConfigurationIcon.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/configuration/icon/PortletConfigurationIcon.html

Figure 71.10: The upper right ellipsis menu contains most of the actions for the app.

"path=/view_factory_instances"

},

service = PortletConfigurationIconFactory.class

)

public class ExportFactoryInstancesIconFactory

extends BasePortletConfigurationIconFactory {

@Override

public PortletConfigurationIcon create(PortletRequest portletRequest) {

return new ExportFactoryInstancesIcon(portletRequest);

}

@Override

public double getWeight() {

return 1;

}

}

The value of the path property depends on the MVC framework used to develop the app.
For the MVCPortlet framework, provide the path (often a JSP) from the mvcPath parameter.
For MVCPortlet with MVC Commands, the path should contain the mvcRenderCommandName where the

actions should be displayed (such as /document_library/edit_folder for example).
Nowthat your PortletConfigurationIconFactory class iswritten, youcanwrite the PortletConfigurationIcon

class next.

Writing the Configuration Icon Class

The second class that you must write is a class that extends the BasePortletConfigurationIcon class. This
class specifies the action’s label, whether it’s invoked with a GET or POSTmethod, and the URL (or onClick
JavaScriptmethod) to invokewhen theaction is clicked. It canalso implement somecustomcode todetermine

766

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/configuration/icon/BasePortletConfigurationIcon.html

whether the action should display for the current request. For example the class below creates a export-all-
settings label and specifies the GETmethod for the action:

public class ExportAllConfigurationIcon extends BasePortletConfigurationIcon {

public ExportAllConfigurationIcon(PortletRequest portletRequest) {

super(portletRequest);

}

@Override

public String getMessage() {

return "export-all-settings";

}

@Override

public String getMethod() {

return "GET";

}

@Override

public String getURL() {

LiferayPortletURL liferayPortletURL =

(LiferayPortletURL)PortalUtil.getControlPanelPortletURL(

portletRequest, ConfigurationAdminPortletKeys.SYSTEM_SETTINGS,

PortletRequest.RESOURCE_PHASE);

liferayPortletURL.setResourceID("export");

return liferayPortletURL.toString();

}

@Override

public boolean isShow() {

return true;

}

}

By default, if the portlet uses mvcPath, the global actions (such as configuration, export/import,
maximized, etc.) are displayed for the JSP indicated in the initialization parameter of the portlet
javax.portlet.init-param.view-template=/view.jsp. The value indicates the JSP where the global actions
should be displayed.

However, if the portlet uses MVC Command, the views for the global actions must be indicated with
the initialization parameter javax.portlet.init-param.mvc-command-names-default-views=/wiki_admin/view
and the value must contain the mvcRenderCommandNamewhere the global actions should be displayed.

For portlets that can be added to a page, if the desired behavior is to always include the configuration
options, the following initialization parameter should be added to the portlet:

javax.portlet.init-param.always-display-default-configuration-icons=true

Now you know how to configure your admin app’s actions!

Related Topics

Applying Lexicon Patterns to your Forms, Navigation, and Search
Configuring Your Application’s Title and Back Link

767

71.6 Setting Search Container Animations
If you’ve toured 7.0’s UI, you’ve probably noticed animations in the search containers. These animations
show the user when there is no available content.

Figure 71.11: This is a still frame from the Blogs portlet’s empty results animation.

This tutorial covers the following topics:

• Using the default animations in your search container
• Using custom animations in your search container

First, you’ll learn how to use the default animations in your search container.

Using the Default Animations in Your Search Container

There are three built-in classes for the search container animation:

1. The default class is taglib-empty-result-message-header. This is used for most cases.

2. taglib-empty-search-result-message-header is used when there are no search results.

3. taglib-empty-result-message-header-has-plus-btn is used when there is no content, but you can use the
add button to add an entity.

To use these animations, use the followingmethod:

768

Figure 71.12: When no content is found, the default animation is usually shown.

SearchContainer.setEmptyResultsMessageCssClass()

Forexample, theRolesAdminapplicationuses this code to set its animation in its edit_role_assignments_sites.jsp
file:

if (!searchTerms.isSearch()) {

searchContainer.setEmptyResultsMessageCssClass(

"taglib-empty-result-message-header-has-plus-btn"

);

}

Alternatively you can use the emptyResultsMessageCssClass attribute of the liferay-ui:search-container
tag to set the animation. For example,

<liferay-ui:search-container

emptyResultsMessage="no-results-were-found"

emptyResultsMessageCssClass="taglib-empty-result-message-header-has-plus-btn"

...

>

If you don’t want to use the default animations packaged with 7.0, you can use custom animations
instead. This is covered next.

769

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/roles/roles-admin-web/src/main/resources/META-INF/resources/edit_role_assignments_sites.jsp#L46-L48
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/roles/roles-admin-web/src/main/resources/META-INF/resources/edit_role_assignments_sites.jsp#L46-L48
https://docs.liferay.com/portal/7.0/taglibs/util-taglib/liferay-ui/search-container.html

Figure 71.13: You can use the empty search result animation to show that no search results were found.

Using Custom Animations

As stated earlier, each animation has a matching CSS class that the search container uses. To use a custom
animation, therefore, youmust modify the existing styles.

There are two approaches you can take:

• Overwrite the existing styles to replace the default animations
• Create new styles to make the animation available to the search container

Regardless of the approach you choose, you must provide the CSS styles in aTheme,Themelet, orTheme
Contributor. These styles point to the animation’s source. You can provide the animation however you like:
as long as you have a valid URL (relative or absolute) that points to the animation, you can use it.

The default search container animation styles are provided by the _empty_result_message.scss file.

Note: Search containers can also contain static images for the no results message if you prefer. Just use a
valid image type instead. All animations must be of type GIF though.

You can learn how to replace the default animations next.

Replacing Default Empty Results Message Animations

Follow these steps to replace the existing animations with your own:

770

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-css/frontend-css-web/src/main/resources/META-INF/resources/taglib/_empty_result_message.scss

Figure 71.14: If you can use the add button to add entities to the app, use the has plus button animation.

1. Make your custom animation available in your theme, themelet, Documents andMedia repository,
etc. For example, place the .gif in your theme’s images folder.

2. Inside your CSS file (_custom.scss for example), override the animation styles that you want to replace.
For example, to replace the default animation, include the following styles for a custom animation
located in the images/emoticons folder of a theme:

.taglib-empty-result-message {

.taglib-empty-result-message-header {

background-image:

url(@theme_image_path@/emoticons/[your_custom_animation].gif);

}

}

3. Inside your app’s search container, use the emptyResultsMessageCssClass attribute, or use the
SearchContainer.setEmptyResultsMessageCssClass()method. Below is an example configuration that
uses the emptyResultsMessageCssClass attribute:

<liferay-ui:search-container

emptyResultsMessage="no-results-were-found"

emptyResultsMessageCssClass="taglib-empty-result-message-header"

771

total="<%= total %>"

>

Here is an example configuration that uses the SearchContainer.setEmptyResultsMessageCssClass()
method:

SearchContainer.setEmptyResultsMessageCssClass("taglib-empty-result-message-header")

Your custom animation now appears in the search container instead of the default animation. If instead
you want to add your custom animation to the default ones available, follow the steps in the next section.

Adding A New Empty Results Message Animation

Adding an animation to the empty results message involves the same steps as replacing a default animation.
The only difference is you must add a new CSS class. Follow these steps to create a new style for your custom
search container animation:

1. Make your custom animation available in your theme, themelet, Documents andMedia repository,
etc. For example, place the GIF in your theme’s images folder.

2. Inside your CSS file (_custom.scss for example), add the styles for your new class, wrapped with
.taglib-empty-result-message. For example, the styles below add a custom animation for a class called
my-custom-message-header:

.taglib-empty-result-message {

.my-custom-message-header {

background-image:

url(@theme_image_path@/emoticons/[my_custom_animation].gif);

}

}

3. Use the emptyResultsMessageCssClassattribute in theSearchContainer,oruse the SearchContainer.setEmptyResultsMessageCssClass()
method to use the new CSS class you just added. Below is an example configuration that uses the
emptyResultsMessageCssClass attribute:

<liferay-ui:search-container

emptyResultsMessage="no-results-were-found"

emptyResultsMessageCssClass="my-custom-message-header"

total="<%= total %>"

>

Here is an example configuration that uses the SearchContainer.setEmptyResultsMessageCssClass()
method:

SearchContainer.setEmptyResultsMessageCssClass("my-custom-message-header")

Now you know how to set search container animations in your app!

Related Topics

Using the Liferay UI Taglib
Introduction to Liferay Search

772

71.7 Using Lexicon Icons in Your App
Whether you’re updating your app to 7.0 or writing a new 7.0 app, follow the process here to use Lexicon’s
icons. You can find the list of available Lexicon icons on the Lexicon site.

Lexicon icons are defined with the icon attribute. For example, you define the icon in the management
bar, inside the liferay-frontend:management-bar-sidenav-toggler-button taglib:

<liferay-frontend:management-bar-sidenav-toggler-button

disabled="<%= false %>"

href="javascript:;"

icon="info-circle"

label="info"

sidenavId='<%= liferayPortletResponse.getNamespace() + "infoPanelId" %>'

/>

To use Lexicon icons outside the management bar, you have two options:

1. You can use the liferay-ui:icon taglib. For example:

<liferay-ui:icon

icon="icon-name"

markupView="lexicon"

message="message-goes-here"

/>

2. You can use the aui:icon taglib. For example:

<aui:icon

cssClass="icon-monospaced"

image="times"

markupView="lexicon"

/>

Note the addition of the markupView="lexicon" attribute. This ensures that the HTML is rendered with
Lexiconmarkup.

That’s it! Now you know how to use Lexicon icons in your apps.

Related Topics

Setting Search Container Animations
Creating Layouts inside Custom Portlets

773

https://liferay.github.io/lexiconcss/content/icons-lexicon/
@platform-ref@/7.0-latest/taglibs/util-taglib/liferay-ui/icon.html
@platform-ref@/7.0-latest/taglibs/util-taglib/aui/icon.html

Chapter 72

Customizing

In Liferay DXP, portlets let you add functionality and themes let you style your sites. But how do youmodify
and add to existing functionality in Liferay DXP and portlets? How do you change their content? The
Customizing tutorials answer these questions and demonstrate how to affect your site in the following ways:

• Add,modify, or remove content from Liferay DXP and portlets
• Modify behavior
• Perform actions that respond to events

775

Chapter 73

Customizing JSPs

There are several different ways to customize JSPs in portlets and the core. Liferay DXP’s API provides the
safest ways to customize them. If you customize a JSP by other means, new versions of the JSP can render
your customization invalid and leave you with runtime errors. It’s highly recommended to use one of the
API-based ways.

73.1 Using Liferay's API to Override a JSP
Here are API-based approaches to overriding JSPs in Liferay DXP:

Approach Description Cons/Limitations

Dynamic includes Adds content at dynamic include
tags.

Limited to JSPs that have
dynamic-include tags (or tags whose
classes inherit from IncludeTag).
Only inserts content in the JSPs at
the dynamic include tags.

Portlet filters Modifies portlet requests and/or
responses to simulate a JSP
customization.

Although this approach doesn’t
directly customize a JSP, it achieves
the effect of a JSP customization.

73.2 Overriding a JSP Without Using Liferay's API
It’s strongly recommended to customize JSPs using Liferay DXP’s API, as the previous section describes. As
of Liferay 7.0, overriding a JSP using an OSGi fragment or a Custom JSP Bag are both deprecated. Since
these approaches are not based on APIs there’s no way to guarantee that they’ll fail gracefully. Instead, if
your customization is buggy (because of your code or because of a change in Liferay), you are most likely to
find out at runtime, where functionality breaks and nasty log errors greet you.

If you’re maintaining a JSP customization that uses one of these approaches, you should know how they
work. This section describes them and links to their tutorials.

Here are ways to customize JSPs without using Liferay DXP’s API:

777

Approach Description Cons/Limitations

OSGi fragment (deprecated
as of Liferay 7.0)

Completely overrides a module’s JSP
using an OSGi fragment

Changes to the original JSP or
module can cause runtime errors.

Custom JSP bag (deprecated
as of Liferay 7.0)

Completely override a Liferay DXP
core JSP or one of its corresponding
-ext.jsp files.

For Liferay DXP core JSPs only.
Changes to the original JSP or
module can cause runtime errors.

All the JSP customization approaches are available to you. It’s time to customize some JSPs!

73.3 Customizing JSPs with Dynamic Includes

The liferay-util:dynamic-include tag is an extension point for inserting content (e.g., JavaScript code,
HTML, andmore). To do this, create a module that has content you want to insert, register that content with
the dynamic include tag, and deploy your module.

Note: If the JSP you want to customize has no liferay-util:dynamic-include tags (or tags whose classes
inherit from IncludeTag), you must use a different customization approach, such as portlet filters.

We’ll demonstrate how dynamic includes work using the Blogs entries. For reference, you can download
the example module.

1. Find the liferay-util:dynamic-include tag where you want to insert content and note the tag’s key.

The Blogs app’s view_entry.jsp has a dynamic include tag at the top and another at the very bottom.

<%@ include file="/blogs/init.jsp" %>

<liferay-util:dynamic-include key="com.liferay.blogs.web#/blogs/view_entry.jsp#pre" />

... JSP content is here

<liferay-util:dynamic-include key="com.liferay.blogs.web#/blogs/view_entry.jsp#post" />

Here are the Blogs view entry dynamic include keys:

• key="com.liferay.blogs.web#/blogs/view_entry.jsp#pre"

• key="com.liferay.blogs.web#/blogs/view_entry.jsp#post"

2. Create a module (e.g., blade create my-dynamic-include). Themodule will hold your dynamic include
implementation.

3. Specify compile-only dependencies, like these Gradle dependencies, in your module build file:

dependencies {

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "com.liferay", name: "com.liferay.petra.string", version: "1.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "org.osgi", name: "osgi.cmpn", version: "6.0.0"

}

778

@platform-ref@/7.0-latest/taglibs/util-taglib/liferay-util/dynamic-include.html
https://portal.liferay.dev/documents/113763090/114000186/example-dynamic-include-blogs-master.zip

4. Create an OSGi component class that implements the DynamicInclude interface.

Here’s an example dynamic include implementation for Blogs:

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.osgi.service.component.annotations.Component;

import com.liferay.portal.kernel.servlet.taglib.DynamicInclude;

@Component(

immediate = true,

service = DynamicInclude.class

)

public class BlogsDynamicInclude implements DynamicInclude {

@Override

public void include(

HttpServletRequest request, HttpServletResponse response,

String key)

throws IOException {

PrintWriter printWriter = response.getWriter();

printWriter.println(

"<h2>Added by Blogs Dynamic Include!</h2>
");

}

@Override

public void register(DynamicIncludeRegistry dynamicIncludeRegistry) {

dynamicIncludeRegistry.register(

"com.liferay.blogs.web#/blogs/view_entry.jsp#pre");

}

}

Giving the class a @Component annotation that has the service attribute service = DynamicInclude.class

makes the class a DynamicInclude service component.

@Component(

immediate = true,

service = DynamicInclude.class

)

In the includemethod, add your content. The example includemethod writes a heading.

@Override

public void include(

HttpServletRequest request, HttpServletResponse response,

String key)

throws IOException {

PrintWriter printWriter = response.getWriter();

printWriter.println(

"<h2>Added by Blogs Dynamic Include!</h2>
");

}

779

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/DynamicInclude.html

In the registermethod, specify the dynamic include tag youwant to use. The example registermethod
targets the dynamic include at the top of the Blogs view_entry.jsp.

@Override

public void register(DynamicIncludeRegistry dynamicIncludeRegistry) {

dynamicIncludeRegistry.register(

"com.liferay.blogs.web#/blogs/view_entry.jsp#pre");

}

Once you’ve deployed your module, the overridden JSP dynamically includes your content. Congratula-
tions on injecting dynamic content into a JSP!

73.4 JSP Overrides Using Portlet Filters
Portlet filters let you intercept portlet requests before they’re processed and portlet responses after they’re
processed but before they’re sent back to the client. You can operate on the request and / or response to
modify the JSP content. Unlike dynamic includes, portlet filters give you access to all of the content sent
back to the client.

We’ll demonstrate using a portlet filter to modify content in Liferay’s Blogs portlet. For reference, you
can download the example module.

Create a newmodule andmake sure it specifies these compile-only dependencies, shown here in Gradle
format:

dependencies {

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "org.osgi", name: "osgi.cmpn", version: "6.0.0"

}

Create an OSGi component class that implements the javax.portlet.filter.RenderFilter interface.
Here’s an example portlet filter implementation for Blogs:

import java.io.IOException;

import javax.portlet.PortletException;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

import javax.portlet.filter.FilterChain;

import javax.portlet.filter.FilterConfig;

import javax.portlet.filter.PortletFilter;

import javax.portlet.filter.RenderFilter;

import javax.portlet.filter.RenderResponseWrapper;

import org.osgi.service.component.annotations.Component;

import com.liferay.portal.kernel.util.PortletKeys;

@Component(

immediate = true,

property = {

"javax.portlet.name=" + PortletKeys.BLOGS

},

service = PortletFilter.class

)

public class BlogsRenderFilter implements RenderFilter {

@Override

public void init(FilterConfig config) throws PortletException {

780

https://portal.liferay.dev/documents/113763090/114000186/example-portlet-filter-customize-jsp-master.zip

}

@Override

public void destroy() {

}

@Override

public void doFilter(RenderRequest request, RenderResponse response, FilterChain chain)

throws IOException, PortletException {

RenderResponseWrapper renderResponseWrapper = new BufferedRenderResponseWrapper(response);

chain.doFilter(request, renderResponseWrapper);

String text = renderResponseWrapper.toString();

if (text != null) {

String interestingText = "<input class=\"field form-control\"";

int index = text.lastIndexOf(interestingText);

if (index >= 0) {

String newText1 = text.substring(0, index);

String newText2 = "\n<p>Added by Blogs Render Filter!</p>\n";

String newText3 = text.substring(index);

String newText = newText1 + newText2 + newText3;

response.getWriter().write(newText);

}

}

}

}

Make your class a PortletFilter service component by giving it the @Component annotation that has
the service attribute service = PortletFilter.class. Target the portlet whose content you’re overriding by
assigning it a javax.portlet.name property that’s the same as your portlet’s key. Here’s the example @Component
annotation:

@Component(

immediate = true,

property = {

"javax.portlet.name=" + PortletKeys.BLOGS

},

service = PortletFilter.class

)

Override the doFilterMethod to operate on the request or response to produce the content you want. The
example appends a paragraph stating Added by Blogs Render Filter! to the portlet content:

@Override

public void doFilter(RenderRequest request, RenderResponse response, FilterChain chain)

throws IOException, PortletException {

RenderResponseWrapper renderResponseWrapper = new BufferedRenderResponseWrapper(response);

chain.doFilter(request, renderResponseWrapper);

String text = renderResponseWrapper.toString();

if (text != null) {

String interestingText = "<input class=\"field form-control\"";

781

int index = text.lastIndexOf(interestingText);

if (index >= 0) {

String newText1 = text.substring(0, index);

String newText2 = "\n<p>Added by Blogs Render Filter!</p>\n";

String newText3 = text.substring(index);

String newText = newText1 + newText2 + newText3;

response.getWriter().write(newText);

}

}

}

The example uses a RenderResponseWrapper extension class called BufferedRenderResponseWrapper.
BufferedRenderResponseWrapper is a helper class whose toStringmethod returns the current response text
and whose getWritermethod lets you write data to the response before it’s sent back to the client.

import java.io.CharArrayWriter;

import java.io.IOException;

import java.io.OutputStream;

import java.io.PrintWriter;

import javax.portlet.RenderResponse;

import javax.portlet.filter.RenderResponseWrapper;

public class BufferedRenderResponseWrapper extends RenderResponseWrapper {

public BufferedRenderResponseWrapper(RenderResponse response) {

super(response);

charWriter = new CharArrayWriter();

}

public OutputStream getOutputStream() throws IOException {

if (getWriterCalled) {

throw new IllegalStateException("getWriter already called");

}

getOutputStreamCalled = true;

return super.getPortletOutputStream();

}

public PrintWriter getWriter() throws IOException {

if (writer != null) {

return writer;

}

if (getOutputStreamCalled) {

throw new IllegalStateException("getOutputStream already called");

}

getWriterCalled = true;

writer = new PrintWriter(charWriter);

return writer;

}

public String toString() {

String s = null;

if (writer != null) {

s = charWriter.toString();

782

}

return s;

}

protected CharArrayWriter charWriter;

protected PrintWriter writer;

protected boolean getOutputStreamCalled;

protected boolean getWriterCalled;

}

Once you’ve deployed your module, the portlet’s JSP shows your custom content.
Your portlet filter operates directly on portlet response content. Unlike dynamic includes, portlet filters

allow you to work with all of a JSP’s content.

73.5 JSP Overrides Using OSGi Fragments
You can completely override JSPs using OSGi fragments. This approach is powerful but can make things
unstable when the host module is upgraded:

1. By overriding an entire JSP, youmight not account for new content or new widgets that are essential
to new host module versions.

2. Fragments are tied to a specific host module version. If the host module is upgraded, the fragment
detaches from it. In this scenario, the original JSPs are still available and the module is functional (but
lacks your JSP enhancements).

Liferay’s API based approaches to overriding JSPs, on the other hand, provide more stability as they let
you customize specific parts of the JSP that are safe to override. Also, the API based approaches don’t limit
your override to a specific host module version. In case you’re maintaining existing JSP overrides that use
OSGi fragments, however, this tutorial explains how they work.

An OSGi fragment that overrides a JSP requires these two things:

• Specifies a host module’s symbolic name and version in the OSGi header Fragment-Host declaration.

• includes the original JSP with any modifications you need to make.

For more information about fragment modules, you can refer to section 3.14 of the OSGi Alliance’s core
specification document.

Declaring a Fragment Host

There are two players in this game: the fragment and the host. The fragment is a parasitic module that
attaches itself to ahost. That soundsharsh, so let’s compare the fragment-host relationship to the relationship
between a pilot fish and a huge, scary shark. It’s symbiotic, really. Your fragment module benefits by not
doing much work (like the pilot fish who benefits from the shark’s hunting prowess). In return, the host
module gets whatever benefits you’ve conjured up in your fragment’s JSPs (for the shark, it gets free dental
cleanings!). To the OSGi runtime, your fragment is part of the host module.

Your fragment must declare two things to the OSGi runtime regarding the host module:

1. The Bundle Symbolic Name of the host module.

This is the module containing the original JSP.

783

https://www.osgi.org/developer/downloads/release-6/
https://www.osgi.org/developer/downloads/release-6/

2. The exact version of the host module to which the fragment belongs.

Both are declared using the OSGi header Fragment-Host.

Fragment-Host: com.liferay.login.web;bundle-version="[1.0.0,1.0.1)"

Supplying a specific host module version is important. If that version of the module isn’t present, your
fragment won’t attach itself to a host, and that’s a good thing. A new version of the host module might have
changed its JSPs, so if your now-incompatible version of the JSP is applied to the host module, you’ll break
the functionality of the host. It’s better to detach your fragment and leave it lonely in the OSGi runtime than
it is to break the functionality of an entire application.

Provide the Overridden JSP

There are two possible naming conventions for targeting the host original JSP: portal or original. For
example, if the original JSP is in the folder /META-INF/resources/login.jsp, then the fragment bundle should
contain a JSP with the same path, using the following pattern:

<liferay-util:include

page="/login.original.jsp" (or login.portal.jsp)

servletContext="<%= application %>"

/>

After that, make your modifications. Just make sure youmimic the host module’s folder structure when
overriding its JAR. If you’re overriding Liferay’s login application’s login.jsp for example, you’d put your
own login.jsp in

my-jsp-fragment/src/main/resources/META-INF/resources/login.jsp

If you need to post-process the output, you can update the pattern to include Liferay DXP’s buffering
mechanism. Below is an example that overrides the original create_account.jsp:

<%@ include file="/init.jsp" %>

<liferay-util:buffer var="html">

<liferay-util:include page="/create_account.portal.jsp"

servletContext="<%= application %>"/>

</liferay-util:buffer>

<liferay-util:buffer var="openIdFieldHtml"><aui:input name="openId"

type="hidden" value="<%= ParamUtil.getString(request, "openId") %>" />

</liferay-util:buffer>

<liferay-util:buffer var="userNameFieldsHtml"><liferay-ui:user-name-fields />

</liferay-util:buffer>

<liferay-util:buffer var="errorMessageHtml">

<liferay-ui:error

exception="<%= com.liferay.portal.kernel.exception.NoSuchOrganizationException.class %>" message="no-such-registration-code" />

</liferay-util:buffer>

<liferay-util:buffer var="registrationCodeFieldHtml">

<aui:input name="registrationCode" type="text" value="">

<aui:validator name="required" />

</aui:input>

</liferay-util:buffer>

<%

html = com.liferay.portal.kernel.util.StringUtil.replace(html,

openIdFieldHtml, openIdFieldHtml + errorMessageHtml);

784

html = com.liferay.portal.kernel.util.StringUtil.replace(html,

userNameFieldsHtml, userNameFieldsHtml + registrationCodeFieldHtml);

%>

<%=html %>

Note: An OSGi fragment can access all of the fragment host’s packages—it doesn’t need to import them
from another bundle. bnd adds external packages the fragment uses (even ones in the fragment host) to the
fragment’s Import-Package: [package],... OSGi manifest header. That’s fine for packages exported to the
OSGi runtime. The problem is, however, when bnd tries to import a host’s internal package (a package the
host doesn’t export). The OSGi runtime can’t activate the fragment because the internal package remains an
Unresolved requirement—a fragment shouldn’t import a fragment host’s packages.

If your fragment uses an internal package from the fragment host, continue using it but explicitly
exclude the package from your bundle’s Import-PackageOSGi manifest header. This Import-Package header,
for example, excludes packages that match com.liferay.portal.search.web.internal.*.

Import-Package: !com.liferay.portal.search.web.internal.*,*

Now you can easily modify the JSPs of any application in Liferay.

To see a sample JSP-modifying fragment in action, look at the BLADE project named module-jsp-

override.

785

https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/overrides/module-jsp-override
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/overrides/module-jsp-override

Related Topics

Upgrading App JSP Hooks

73.6 JSP Overrides Using Custom JSP Bag
Liferay’s API based approaches to overriding JSPs are the best way to override JSPs in apps and in the core.
You can also use Custom JSP Bags to override core JSPs. But the approach is not as stable as the API based
approaches. If your Custom JSP Bag’s JSP is buggy (because of your code or because of a change in Liferay),
you are most likely to find out at runtime, where functionality breaks and nasty log errors greet you. In the
case that you’re maintaining existing Custom JSP Bags, however, this tutorial explains how they work.

A Custom JSP Bagmodule must satisfy these criteria:

• Includes a class that implements the CustomJspBag interface.

• Registers the service in the OSGi runtime.

• Provides the JSP you’re extending.

Themodule provides transportation for this code into Liferay’s OSGi runtime. When configuring it to
build a proper JAR,map the path of the JSPs in the JAR to their path in your module. In a bnd.bnd file you
could specify

-includeresource: META-INF/jsps=src/META-INF/custom_jsps

If you’re using theMaven Standard Directory Layout and placing your JSPs under src/main/resources,
you can ignore the -includeresource directive.

Any core JSPs you’re customizing should be put into this folder, and the rest of their path and their name
must match exactly the path and name of the JSP that’s nested underneath portal-web/docroot/html. For
example, if you’re overriding

portal-web/docroot/html/common/themes/bottom-ext.jsp

and you used the includeresource directive above, put the overridden JSP in this folder of your module:

my-module/src/META-INF/custom_jsps/html/common/themes/bottom-ext.jsp

Implement a Custom JSP Bag

Create a class that implements CustomJspBag. The overall goal is to make sure that Liferay (specifically the
CustomJspBagRegistryUtil class) loads the JSPs from your module upon activation.

public class MyCustomJspBag implements CustomJspBag {

When the Component is activated, you need to add the URL path for all your custom core JSPs (by
directory path) to a List.

@Activate

protected void activate(BundleContext bundleContext) {

bundle = bundleContext.getBundle();

_customJsps = new ArrayList<>();

Enumeration<URL> entries = bundle.findEntries(

786

@platform-ref@/7.0-latest/javadocs/portal-impl/com/liferay/portal/deploy/hot/CustomJspBag.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
@platform-ref@/7.0-latest/javadocs/portal-impl/com/liferay/portal/deploy/hot/CustomJspBagRegistryUtil.html

getCustomJspDir(), "*.jsp", true);

while (entries.hasMoreElements()) {

URL url = entries.nextElement();

_customJsps.add(url.getPath());

}

}

...

private List<String> _customJsps;

private Bundle bundle;

In the custom JSP bag you’ll need to override the followingmethods:

• getCustomJspDir: Return thedirectory path in yourmodule’s JARwhere the JSPs areplaced (for example,
META-INF/jsps).

• getCustomJsps: Return a List of the custom JSP URL paths.

• getURLContainer: Return a new com.liferay.portal.kernel.url.URLContainer. Instantiate the URL
container and override its getResources and getResourcemethods. The getResourcesmethod is for
looking up all of the paths to resources in the container by a given path. It should return a HashSet of
Strings for the matching custom JSP paths. The getResourcemethod returns one specific resource by
its name (the path included).

• isCustomJspGlobal: Return true.

For an example of a full class that provides a working implementation of a custom JSP bag, refer to the
core-jsp-override BLADE project.

Register the Custom JSP Bag

Register the custom JSP bag implementation from your module in the OSGi runtime with three properties:

• context.id: Specify your custom JSP bag class name. For example, MyCustomJspBag.

• contex.name:This should be a more human readable name, like My Custom JSP Bag.

• service.ranking:integer:This will determine the priority of your implementation. If you specify 100
here, and one of your coworkers develops a separate custom JSP bag implementation and gives theirs
a ranking of 101, you’re out of luck. Theirs will take precedence. Logically then, you should use 102.

Extend a JSP

If you want to add something to a core JSP, see if it has an empty -ext.jsp and override that instead of the
whole JSP. It’ll keep things simpler andmore stable, since the full JSP might change significantly, breaking
your customization in the process. By overriding the -ext.jsp, you’re only relying on the original JSP
including the -ext.jsp. For anexample, open portal-web/docroot/html/common/themes/bottom.jsp, and scroll
to the end. You’ll see this:

<liferay-util:include page="/html/common/themes/bottom-ext.jsp" />

787

https://github.com/liferay/liferay-blade-samples/blob/master/gradle/overrides/core-jsp-override/src/main/java/com/liferay/blade/samples/corejsphook/BladeCustomJspBag.java

If you need to add something to bottom.jsp, override bottom-ext.jsp.
As of 7.0, the content from the following JSP files formerly in html/common/themes are inlined to improve

performance. - body_bottom-ext.jsp - body_top-ext.jsp - bottom-ext.jsp - bottom-test.jsp
They’re no longer explicit files in the code base. But you can still create them in your module to add

functionality and content.
Remember, this type of customization should be seen as a last resort. There’s a risk that your override

will break due to the nature of this implementation, and core functionality in Liferay can go down with it. If
the JSP you want to override is in anothermodule, refer to the section on API based approaches to overriding
JSPs.

Site Scoped JSP Customization

In Liferay Portal 6.2, you could use Application Adapters to scope your core JSP customizations to a specific
site. Since themajority of JSPsweremoved intomodules for 7.0, the use case for this has shrunk considerably.
If you need to scope a core JSP customization to a site, prepare an application adapter as you would have for
Liferay Portal 6.2, and deploy it to 7.0. It will still work. However, note that this approach is deprecated in
7.0 and won’t be supported at all in Liferay 8.0.

Related Topics

Upgrading Core JSP Hooks

73.7 Overriding Liferay DXP's Default YUI and AUI Modules

Liferay DXP contains several default YUI/AUImodules. Youmay need to override functionality provided
by these module’s scripts. It’s possible to override JSPs using fragments, but you can’t with JavaScript files.
Instead, you create a custom AUImodule containing three things:

• A copy of the original module’s JavaScript file containing your modifications
• A config.js file that specifies the modified JavaScript file’s path and the module it overrides
• A bnd.bnd file that tells the OSGi container to override the original

Follow these steps:

1. Create an OSGi module to override the original one. For example, you can create a module named
session-js-override-web to override Liferay DXP’s session.js file.

2. Create a src/main/resources/META-INF/resources/js folder in your module, copy the original
JavaScript file into it, and rename it. For example, create a copy of the session.js module and
rename it session-override.js. Make sure you also rename the module definition inside the
session-override.js, e.g. AUI().add('liferay-session-override',

3. Apply your modifications and save the file.

4. Next, you’ll write yourmodule’s configuration file (config.js) to apply your override. Add the config.js
file to the module’s src/main/resources/META-INF/resources/js folder. The example config.js file be-
low specifies the condition that the YUI/AUI Loader should load the custom AUI module (liferay-
session-override) instead (indicated with the when property) of the triggermodule (liferay-session).
You can follow this same pattern to create your module’s config.js file:

788

;(function() {

var base = MODULE_PATH + '/js/';

AUI().applyConfig(

{

groups: {

mymodulesoverride: { //mymodulesoverride

base: base,

combine: Liferay.AUI.getCombine(),

filter: Liferay.AUI.getFilterConfig(),

modules: {

'liferay-session-override': { //my-module-override

path: 'session-override.js', //my-module.js

condition: {

name: 'liferay-session-override', //my-module-override

trigger: 'liferay-session', //original module

when: 'instead'

}

}

},

root: base

}

}

}

);

})();

5. Finally, youmust configure your bnd.bnd file. For the system to apply the changes, youmust specify the
config.js’s location with the Liferay-JS-Config BND header. The liferay-session-overridemodule
from the previous example has the configuration below in its bnd.bnd file:

Bundle-Name: session-js-override

Bundle-SymbolicName: session.js.override.web

Bundle-Version: 1.0.0

Liferay-JS-Config:/META-INF/resources/js/config.js

Web-ContextPath: /liferay-session-override-web

Now you know how to override Liferay DXP’s default YUI/AUI modules!

Related Topics

Overriding JSPs
ConfiguringModules for Liferay DXP’s Module Loaders

73.8 Overriding Liferay Services (Service Wrappers)

Whymight you need to customize Liferay services? Perhaps you’ve added a custom field to Liferay’s User
object and you want its value to be saved whenever the addUser or updateUsermethods of Liferay’s API are
called. Or maybe you want to add some additional logging functionality to some of Liferay’s APIs. Whatever
your case may be, Liferay’s service wrappers provide easy-to-use extension points for customizing Liferay’s
services.

To create amodule that overrides one of Liferay’s services, follow the ServiceWrapper Template reference
article to create a servicewrapper project type.

As an example, here’s the UserLocalServiceOverride class that’s generated in the ServiceWrapper Tem-
plate tutorial:

789

package com.liferay.docs.serviceoverride;

import com.liferay.portal.kernel.service.UserLocalServiceWrapper;

import com.liferay.portal.kernel.service.ServiceWrapper;

import org.osgi.service.component.annotations.Component;

@Component(

immediate = true,

property = {

},

service = ServiceWrapper.class

)

public class UserLocalServiceOverride extends UserLocalServiceWrapper {

public UserLocalServiceOverride() {

super(null);

}

}

Notice that youmust specify the fully qualified class name of the service wrapper class that you want to
extend. The service argument was used in full in this import statement:

import com.liferay.portal.service.UserLocalServiceWrapper

This import statement, in turn, allowed the short form of the service wrapper class name to be used in
the class declaration of your component class:

public class UserLocalServiceOverride extends UserLocalServiceWrapper

The bottom line is that when using blade create to create a service wrapper project, youmust specify a
fully qualified class name as the service argument. (This is also true when using blade create to create a
service project.) For information about creating service projects, please see the Service Builder tutorial.

The generated UserLocalServiceOverride class does not actually customize any Liferay service. Before
you can test that your service wrapper module actually works, you need to override at least one service
method.

Open your UserLocalServiceOverride class and add the followingmethods:

@Override

public int authenticateByEmailAddress(long companyId, String emailAddress,

String password, Map<String, String[]> headerMap,

Map<String, String[]> parameterMap, Map<String, Object> resultsMap)

throws PortalException {

System.out.println(

"Authenticating user by email address " + emailAddress);

return super.authenticateByEmailAddress(companyId, emailAddress, password,

headerMap, parameterMap, resultsMap);

}

@Override

public User getUser(long userId) throws PortalException {

System.out.println("Getting user by id " + userId);

return super.getUser(userId);

}

Each of these methods overrides a Liferay service method. These implementations merely add a few
print statements that are executed before the original service implementations are invoked.

Lastly, you must add the following method to the bottom of your service wrapper so it can find the
appropriate service it’s overriding on deployment.

790

@Reference(unbind = "-")

private void serviceSetter(UserLocalService userLocalService) {

setWrappedService(userLocalService);

}

Now you’re ready to build your project. Navigate to your project’s root folder and run ../../gradlew

build. The JAR file representing your portlet module is produced in your project’s build/libs directory.
To deploy your project, run this command from your project’s root directory:

blade deploy

Blade CLI detects your locally running Liferay instance and deploys the specified module to Liferay’s
module framework. After running the blade deploy command, you should see a message like this:

Installed or updated bundle 334

Use the Gogo shell to confirm that your module was installed: Run blade sh lb at the prompt. If your
module was installed, you’ll see an entry like this:

335|Active | 1|com.liferay.docs.serviceoverride (1.0.0.201502122109)

Finally, log into your portal as an administrator. Navigate to the Users section of the Control Panel.
Confirm that your customizations of Liferay’s user service methods have taken effect by checking Liferay’s
log for the print statements that you added. Congratulations! You’ve created and deployed a 7.0 service
wrapper module!

Related Topics

Upgrading ServiceWrappers
Installing Blade CLI
Creating Modules with Blade CLI

73.9 Overriding Language Keys

LiferayDXPCore andportletmodule language*.propertiesfiles implement site internationalization. They’re
fully customizable, too. This tutorial demonstrates this in the following topics:

• Overriding Global Language Keys
• Overriding a Module’s Language Keys

Modifying Global Language Keys

Language files contain translations of your application’s user interface messages. But you can also override
the default language keys globally and in other applications (including your own). Here are the steps for
overriding language keys:

1. Determine the language keys to override
2. Override the keys in a new language properties file
3. Create a Resource Bundle service component

791

Note: Many applications that were once part of Liferay Portal 6.2 are nowmodularized. Their language
keys might have been moved out of Liferay’s language properties files and into one of the application
modules. The process for overriding a module’s language keys is different from the process for overriding
global language keys.

Determine the language keys to override

So how do you find global language keys? They’re in the Language[xx_XX].properties files in the source code
or your Liferay DXP bundle.

• From the source:

/portal-impl/src/content/Language[_xx_XX].properties

• From a bundle:

portal-impl.jar

All language properties files contain properties you can override, like the language settings properties:

##

Language settings

##

...

lang.user.name.field.names=prefix,first-name,middle-name,last-name,suffix

lang.user.name.prefix.values=Dr,Mr,Ms,Mrs

lang.user.name.required.field.names=last-name

lang.user.name.suffix.values=II,III,IV,Jr,Phd,Sr

...

There are also many simple keys you can override to update default messages and labels.

##

Category titles

##

category.admin=Admin

category.alfresco=Alfresco

category.christianity=Christianity

category.cms=Content Management

...

For example, Figure 1 shows a button that uses Liferay’s publish default language key.

publish=Publish

Figure 73.1: Messages displayed in Liferay’s user interface can be customized.

Next, you’ll learn how to override this key.

792

Override the keys in a new language properties file

Once you know the keys to override, create a language properties file for the locale you want (or the default
Language.properties file) in your module’s src/main/resources/content folder. In your file, define the keys
your way. For example, you could override the publish key.

publish=Publish Override

To enable your change, you must create a resource bundle service component to reference your language
file.

Create a Resource Bundle service component

In your module, create a class that extends java.util.ResourceBundle for the locale you’re overriding. Here’s
an example resource bundle class for the en_US locale:

@Component(

property = { "language.id=en_US" },

service = ResourceBundle.class

)

public class MyEnUsResourceBundle extends ResourceBundle {

@Override

protected Object handleGetObject(String key) {

return _resourceBundle.getObject(key);

}

@Override

public Enumeration<String> getKeys() {

return _resourceBundle.getKeys();

}

private final ResourceBundle _resourceBundle = ResourceBundle.getBundle(

"content.Language_en_US", UTF8Control.INSTANCE);

}

The class’s _resourceBundle field is assigned a ResourceBundle. The call to ResourceBundle.getBundle

needs two parameters. The content.Language_en_US parameter is the language file’s qualified name
with respect to the module’s src/main/resources folder. The second parameter is a control that sets
the language syntax of the resource bundle. To use language syntax identical to Liferay’s syntax, im-
port Liferay’s com.liferay.portal.kernel.language.UTF8Control class and set the second parameter to
UTF8Control.INSTANCE.

The class’s @Component annotation declares it anOSGi ResourceBundle service component. It’s language.id
property designates it for the en_US locale.

@Component(

property = { "language.id=en_US" },

service = ResourceBundle.class

)

The class overrides these methods:

• handleGetObject: Looks up the key in the module’s resource bundle (which is based on the module’s
language properties file) and returns the key’s value as an Object.

• getKeys: Returns an Enumeration of the resource bundle’s keys.

793

Your resource bundle service component redirects the default language keys to your module’s language
key overrides.

Note: Global language key overrides for multiple locales require a separate module for each locale. Each
module’s ResourceBundle extension class (like the MyEnUsResourceBundle class above) must specify its locale
in the language.id component property definition and in the language file qualified name parameter. For
example, here is what they look like for the Spanish locale.

Component definition:

@Component(

property = { "language.id=es_ES" },

service = ResourceBundle.class

)

Resource bundle assignment:

private final ResourceBundle _resourceBundle = ResourceBundle.getBundle(

"content.Language_es_ES", UTF8Control.INSTANCE);

Important: If your module uses language keys from another module and overrides any of that other
module’s keys, make sure to use OSGi headers to specify the capabilities your module requires and provides.
This lets you prioritize resource bundles from the modules.

To see your Liferay language key overrides in action, deploy your module and visit the portlets and pages
that use the keys.

Figure 73.2: This button uses the overridden publish key.

That’s all there is to overriding global language keys.

Overriding a Module's Language Keys

What do you do if the language keys youwant tomodify are in one of Liferay’s applications or anothermodule
whose source code you don’t control? Since module language keys are in the respective module, the process
for overriding a module’s language keys is different from the process of overriding global language keys.

Here is the process:

1. Find the module and its metadata and language keys
2. Write your custom language key values
3. Prioritize your module’s resource bundle

Find the module and its metadata and language keys

In Gogo shell, list the bundles and grep for keyword(s) that match the portlet’s display name. Language keys
are in the portlet’s webmodule (bundle). When you find the bundle, note its ID number.

To find the Blogs portlet, for example, your Gogo commands and output might look like this:

794

g! lb | grep Blogs

152|Active | 1|Liferay Blogs Service (1.0.2)

184|Active | 1|Liferay Blogs Editor Config (2.0.1)

202|Active | 1|Liferay Blogs Layout Prototype (2.0.2)

288|Active | 1|Liferay Blogs Recent Bloggers Web (1.0.2)

297|Active | 1|Liferay Blogs Item Selector Web (1.0.2)

374|Active | 1|Liferay Blogs Item Selector API (2.0.1)

448|Active | 1|Liferay Blogs API (3.0.1)

465|Active | 1|Liferay Blogs Web (1.0.6)

true

List the bundle’s headers by passing its ID to the headers command.

g! headers 465

Liferay Blogs Web (465)

Manifest-Version = 1.0

Bnd-LastModified = 1459866186018

Bundle-ManifestVersion = 2

Bundle-Name = Liferay Blogs Web

Bundle-SymbolicName = com.liferay.blogs.web

Bundle-Version: 1.0.6

...

Web-ContextPath = /blogs-web

g!

Note the Bundle-SymbolicName, Bundle-Version, and Web-ContextPath. The Web-ContextPath value, follow-
ing the /, is the servlet context name.

Important: Record the servlet context name, bundle symbolic name and version, as you’ll use them to
create the resource bundle loader later in the process.

For example, here are those values for Liferay BlogsWebmodule:

• Bundle symbolic name: com.liferay.blogs.web
• Bundle version: 1.0.6
• Servlet context name: blogs-web

Next find the module’s JAR file so you can examine its language keys. Liferay follows this module JAR file
naming convention:

[bundle symbolic name]-[version].jar

For example, the BlogsWeb version 1.0.6 module is in com.liferay.blogs.web-1.0.6.jar.
Here’s where to find the module JAR:

• Liferay’s Nexus repository
• [Liferay Home]/osgi/modules

• Embedded in an application’s or application suite’s LPKG file in [Liferay Home]/osgi/marketplace.

The language property files are in themodule’s src/main/resources/content folder. Identify the language
keys you want to override in the Language[_xx].properties files.

Checkpoint: Make sure you have the required information for overriding the module’s language keys:

• Language keys
• Bundle symbolic name
• Servlet context name

Next you’ll write new values for the language keys.

795

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/

Write custom language key values

Create a newmodule to hold a resource bundle loader and your custom language keys.
In your module’s src/main/resources/content folder, create language properties files for each locale

whose keys you want to override. In each language properties file, specify your language key overrides.
Next you’ll prioritize your module’s language keys as a resource bundle for the target module.

Prioritize Your Module's Resource Bundle

Now that your language keys are in place, use OSGi manifest headers to specify the language keys are for the
target module. To compliment the target module’s resource bundle, you’ll aggregate your resource bundle
with the targetmodule’s resource bundle. You’ll list yourmodule first to prioritize its resource bundle over the
targetmodule resource bundle. Here’s an example ofmodule com.liferay.docs.l10n.myapp.lang prioritizing
its resource bundle over target module com.liferay.blogs.web’s resource bundle:

Provide-Capability:\

liferay.resource.bundle;resource.bundle.base.name="content.Language",\

liferay.resource.bundle;resource.bundle.aggregate:String="(bundle.symbolic.name=com.liferay.docs.l10n.myapp.lang),(bundle.symbolic.name=com.liferay.blogs.web)";bundle.symbolic.name=com.liferay.blogs.web;resource.bundle.base.name="content.Language";service.ranking:Long="2";\

servlet.context.name=blogs-web

Let’s examine the example Provide-Capability header.

1. liferay.resource.bundle;resource.bundle.base.name="content.Language" declares that the module
provides a resource bundle whose base name is content.language.

2. The liferay.resource.bundle;resource.bundle.aggregate:String=... directive specifies the list of
bundles whose resource bundles are aggregated, the target bundle, the target bundle’s resource
bundle name, and this service’s ranking:

• "(bundle.symbolic.name=com.liferay.docs.l10n.myapp.lang),(bundle.symbolic.name=com.liferay.blogs.web)":
The service aggregates resource bundles from bundles com.liferay.docs.l10n.myapp.lang and
com.liferay.blogs.web. Aggregate as many bundles as desired. Listed bundles are prioritized
in descending order.

• bundle.symbolic.name=com.liferay.blogs.web;resource.bundle.base.name="content.Language":
Override the com.liferay.blogs.web bundle’s resource bundle named content.Language.

• service.ranking:Long="2": The resource bundle’s service ranking is 2. The OSGi frame-
work applies this service if it outranks all other resource bundle services that target
com.liferay.blogs.web’s content.Language resource bundle.

• servlet.context.name=blogs-web: The target resource bundle is in servlet context blogs-web.

Deploy your module to see the language keys you’ve overridden.

Tip: If your override isn’t showing, use Gogo Shell to check for competing resource bundle services.
It may be that another service outranks yours. To check for competing resource bundle services whose
aggregates include com.liferay.blogs.web’s resource bundle, for example, execute this Gogo Shell command:

services "(bundle.symbolic.name=com.liferay.login.web)"

Search the results for resource bundle aggregate services whose ranking is higher.

Now you can modify the language keys of modules in Liferay’s OSGi runtime. Remember, language keys
you want to override might actually be in Liferay’s core. You can override global language keys too.

796

Related Topics

Resource Bundle Override Sample Project
Upgrading Core Language Key Hooks
Internationalization

73.10 Overriding Portal Properties using a Hook

A portal properties hook plugin lets you override a subset of portal properties dynamically. These properties
define event actions, model listeners, validators, generators, and content sanitizers. The liferay-hook-

7.0.dtd file lists this subset of properties.

Note: To customize a property that’s not in the liferay-hook-7.0.dtd file, youmust use an Ext plugin.

Some portal properties acceptmultiple values. For example, the login.event.pre property defines action
classes to invoke before login. Deployingmultiple hooks for properties like this appends the values to the
property’s current value. For example, multiple hooks that add login event actions append their action
classes to the portal instance’s login.event.pre property. The portal property reference documentation
shows whether a property accepts multiple values by stating it or showing value lists assigned to a default or
example property setting.

Some portal properties accept a single value only. For example, the terms.of.use.required property is
either true or false. Override a single value property from one hook only–there’s no telling which value is
assigned if multiple hooks override it.

Here’s how to override a portal property using a Hook:

1. Create a Hook plugin using Liferay @ide@ orMaven.

2. In the plugin’s WEB-INF/src folder, create a portal.properties file and override properties with the
values you want.

3. In the plugin’s WEB-INF/liferay-hook.xml file, add the following portal-properties element as a child
of the hook element. Refer to the liferay-hook-7.0.dtd file for details.

<portal-properties>portal.properties</portal-properties>

4. Deploy the plugin.

You’ve modified the portal property. The Server Administration page’s Properties screen in the Control Panel
shows your new property setting.

Related Topics

Portal Properties Reference
Server Administration
Liferay @ide@
Generating New Projects usingMaven Archetypes.

797

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html
@platform-ref@/7.0-latest/definitions/liferay-hook_7_0_0.dtd.html
@platform-ref@/7.0-latest/definitions/liferay-hook_7_0_0.dtd.html
@platform-ref@/7.0-latest/definitions/liferay-hook_7_0_0.dtd.html
@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html
@platform-ref@/7.0-latest/definitions/liferay-hook_7_0_0.dtd.html
@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html

73.11 Overriding MVC Commands

MVC Commands are used to break up the controller layer of a Liferay MVC application into smaller, more
digestible code chunks.

Sometimes you’ll want to override anMVC command, whether it’s in a Liferay application or another
LiferayMVC applicationwhose source code you don’t own. SinceMVC commands are components registered
in the OSGi runtime, you can simply publish your own component, and give it a higher service ranking. Your
MVC command will then be invoked instead of the original one.

The logical way of breaking up the controller layer is to do it by portlet phase. The three MVC command
classes you can override are

• MVCActionCommand: An interface that allows the portlet to process a particular action request.
• MVCRenderCommand: An interface that handles the render phase of the portlet.
• MVCResourceCommand: An interface that allows the portlet to serve a resource.

Find more information about implementing each of these MVC command classes in the tutorials on
LiferayMVCPortlets. Herewe’re going to focus on overriding the logic contained in existingMVC commands.

Note:While it’s possible to copy the logic from an existing MVC command into your override class, then
customize it to your liking, it’s strongly recommended to decouple the original logic from your override logic.
Keeping the override logic separate form the original logic will keep the code clean,maintainable, and easy
to understand.

To do this, use the @Referencemethod to fetch a reference to the original MVC command component.
If there are no additional customizations on the same command, this reference will be the original MVC
command.

@Reference(

target = "(component.name=com.liferay.blogs.web.internal.portlet.action.EditEntryMVCRenderCommand)")

protected MVCRenderCommand mvcRenderCommand;

Set the component.name target to theMVC command class name. If you use this approach, your extension
will continue to work with new versions of the original portlet, because no coupling exists between the
original portlet logic and your customization. The command implementation class can change. Make sure
to keep your reference updated to the name of the current implementation class.

Note: In 7.0 GA1, there’s a bug that occurs whenmodules with override MVC commands are removed
from the OSGi runtime. Instead of looking for anMVC command with a lower service ranking (the original
MVC command inmost cases) to replace the removed one, the reference to the command is removed entirely.
This bug is documented and fixed here

Start by learning to override MVCRenderCommand. The process will be similar for the other MVC commands.

Overriding MVCRenderCommand

You can override MVCRenderCommand for any portlet that uses Liferay’s MVC framework and publishes an
MVCRenderCommand component.

For example, Liferay’s Blogs application has a class called EditEntryMVCRenderCommand, with this compo-
nent:

798

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCActionCommand.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderCommand.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCResourceCommand.html
https://issues.liferay.com/browse/LPS-65434
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/blogs/blogs-web/src/main/java/com/liferay/blogs/web/internal/portlet/action/EditEntryMVCRenderCommand.java

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS,

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN,

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_AGGREGATOR,

"mvc.command.name=/blogs/edit_entry"

},

service = MVCRenderCommand.class

)

ThisMVC render command can be invoked from any of the portlets specified by the javax.portlet.name
parameter, by calling a render URL that names the MVC command.

<portlet:renderURL var="addEntryURL">

<portlet:param name="mvcRenderCommandName" value="/blogs/edit_entry" />

<portlet:param name="redirect" value="<%= viewEntriesURL %>" />

</portlet:renderURL>

What if youwant to override the command, but not for all of the portlets listed in the original component?
In your override component, just list the javax.portlet.name of the portlets where you want the override
to take effect. For example, if you want to override the /blogs/edit_entryMVC render command just for
the Blogs Admin portlet (the Blogs Application accessed in the site administration section of Liferay), your
component could look like this:

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN,

"mvc.command.name=/blogs/edit_entry",

"service.ranking:Integer=100"

},

service = MVCRenderCommand.class

)

Note the last property listed, service.ranking. It’s used to tell the OSGi runtime which service to use,
in cases where there are multiple components registering the same service, with the same properties. The
higher the integer you specify here, the more weight your component carries. In this case, the override
component will be used instead of the original one, since the default value for this property is 0.

After that, it’s up to you to do whatever you’d like. You can add logic to the existing rendermethod or
redirect to an entirely new JSP.

Adding Logic to an Existing MVC Render Command

Don’t copy the existing logic from the MVC render command into your override command class. This
unnecessary duplication of code that makes maintenance more difficult. If you want to do something new
(like set a request attribute) and then execute the logic in the original MVC render command, obtain a
reference to the original command and call its rendermethod like this:

@Override

public String render(RenderRequest renderRequest,

RenderResponse renderResponse) throws PortletException {

//Do something here

return mvcRenderCommand.render(renderRequest, renderResponse);

}

@Reference(target =

799

"(component.name=com.liferay.blogs.web.internal.portlet.action.EditEntryMVCRenderCommand)")

protected MVCRenderCommand mvcRenderCommand;

}

Sometimes, you might need to redirect the request to an entirely new JSP that you’ll place in your
command override module.

Redirecting to a New JSP

If you want to render an entirely new JSP, the process is different.
The rendermethod of MVCRenderCommand returns the path to a JSP as a String. The JSPmust live in the orig-

inal module, so you cannot simply specify a path to a custom JSP in your override module. You need to make
the method skip dispatching to the original JSP altogether, by using the MVC_PATH_VALUE_SKIP_DISPATCH con-
stant from the MVCRenderConstants class. Then you need to initiate your own dispatching process, directing
the request to your JSP path. Here’s how that might look in practice:

public class CustomEditEntryMVCRenderCommand implements MVCRenderCommand {

@Override

public String render

(RenderRequest renderRequest, RenderResponse renderResponse) throws

PortletException {

System.out.println("Rendering custom_edit_entry.jsp");

RequestDispatcher requestDispatcher =

servletContext.getRequestDispatcher("/custom_edit_entry.jsp");

try {

HttpServletRequest httpServletRequest =

PortalUtil.getHttpServletRequest(renderRequest);

HttpServletResponse httpServletResponse =

PortalUtil.getHttpServletResponse(renderResponse);

requestDispatcher.include

(httpServletRequest, httpServletResponse);

} catch (Exception e) {

throw new PortletException

("Unable to include custom_edit_entry.jsp", e);

}

return MVCRenderConstants.MVC_PATH_VALUE_SKIP_DISPATCH;

}

@Reference(target = "(osgi.web.symbolicname=com.custom.code.web)")

protected ServletContext servletContext;

}

In this approach, there’s no reference to the original MVC render command because the original logic
isn’t reused. Instead, there’s a reference to the servlet context of your module, which is needed to use the
request dispatcher.

A servlet context is automatically created for portlets. It can be created for other modules by including
the following line in your bnd.bnd file:

Web-ContextPath: /custom-code-web

Once we have the servlet context we just need to dispatch to the specific JSP in our ownmodule.

800

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCRenderConstants.html

Overriding MVCActionCommand

You can override MVC action commands using a similar process to the one presented above for MVC render
commands. Again, you’ll register a new OSGi component with the same properties, but with a higher service
ranking. This time the service you’re publishing is MVCActionCommand.class.

For MVC action command overrides, extend the BaseMVCActionCommand class, and the only method you’ll
need to override is doProcessAction, which must return void.

As withMVC render commands, you can add your logic to the original behavior of the actionmethod
by getting a reference to the original service, and calling it after your own logic. Here’s an example of an
MVCActionCommand override that checks whether the delete action is invoked on a blog entry, and prints a
message to the log, before continuing with the original processing:

@Component(

property = {

"javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN,

"mvc.command.name=/blogs/edit_entry",

"service.ranking:Integer=100"

},

service = MVCActionCommand.class)

public class CustomBlogsMVCActionCommand extends BaseMVCActionCommand {

@Override

protected void doProcessAction

(ActionRequest actionRequest, ActionResponse actionResponse)

throws Exception {

String cmd = ParamUtil.getString(actionRequest, Constants.CMD);

if (cmd.equals(Constants.DELETE)) {

System.out.println("Deleting a Blog Entry");

}

mvcActionCommand.processAction(actionRequest, actionResponse);

}

@Reference(

target = "(component.name=com.liferay.blogs.web.internal.portlet.action.EditEntryMVCActionCommand)")

protected MVCActionCommand mvcActionCommand;

}

It’s straightforward to override MVC action commands while keeping your code decoupled from the
original action methods. You can also override MVC resource commands.

Overriding MVCResourceCommand

There are fewer uses for overridingMVC resource commands, but it can also be done.
The process is similar to the one described for MVCRenderCommand and MVCActionCommand. There’s a couple

things to keep in mind:

• The service to specify in your component is MVCResourceCommand.class

• As with overriding MVCRenderCommand, there’s no base implementation class to extend. You’ll implement
the interface yourself.

• Keepyour codedecoupled fromtheoriginal codebyaddingyour logic to theoriginal MVCResourceCommand’s
logic by getting a reference to the original and returning a call to its serveResourcemethod:

801

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/BaseMVCActionCommand.html

return mvcResourceCommand.serveResource(resourceRequest, resourceResponse);

Thefollowingexampleoverrides thebehaviorof com.liferay.login.web.portlet.action.CaptchaMVCResourceCommand,
from the login-webmodule of the Login portlet. It simply prints a line in the console then executes the
original logic: returning the Captcha image for the account creation screen.

@Component(

property = {

"javax.portlet.name=" + LoginPortletKeys.LOGIN,

"mvc.command.name=/login/captcha" },

service = MVCResourceCommand.class)

public class CustomCaptchaMVCResourceCommand implements MVCResourceCommand {

@Override

public boolean serveResource

(ResourceRequest resourceRequest, ResourceResponse resourceResponse) {

System.out.println("Serving login captcha image");

return mvcResourceCommand.serveResource(resourceRequest, resourceResponse);

}

@Reference(target = "(component.name=com.liferay.login.web.internal.portlet.action.CaptchaMVCResourceCommand)")

protected MVCResourceCommand mvcResourceCommand;

}

And that, as they say, is that. Even if you don’t own the source code of an application, you can override its
MVC commands just by knowing the component class name.

73.12 Overriding lpkg files

Applications are delivered through Liferay Marketplace as lpkg files. This is a simple compressed file format
that contains .jar files to be deployed to Liferay DXP. If youwant to examine an application fromMarketplace,
all you have to do is unzip it to reveal the .jar files it contains.

After examining them, youmay want to customize one of these applications. Make your customization,
but don’t deploy it the way you’d normally deploy an application. Instead, Liferay DXP provides a way to
update application modules without modifying the original .lpkg file they’re packaged in, by overriding the
.lpkg file. This only takes a few steps:

1. Shut down Liferay DXP.

2. Create a folder called override in the Liferay DXP instance’s osgi/marketplace folder.

3. Name your updated .jar the same as the .jar in the original .lpkg, minus the version information.
For example, if you’re overriding the com.liferay.amazon.rankings.web-1.0.5.jar from the Liferay CE

Amazon Rankings.lpkg, you’d name your .jar com.liferay.amazon.rankings.web.jar.

4. Copy this .jar into the override folder you created in step one.

This works for applications fromMarketplace, but there’s also the static .lpkg that contains core Liferay
technology and third-party utilities (such as the servlet API, Apache utilities, etc.). If you find you need to
customize or patch any of these .jar files, deploying these customizations is a similar process:

1. Make your customization and package your .jar file.

802

2. Name your updated .jar the same as the original .jar, minus the version information. For example, a
customized com.liferay.portal.profile-1.0.4.jar should be com.liferay.portal.profile.jar.

3. Place this .jar in the osgi/static folder.

Now start @product. Note that any time you add and remove .jars this way, Liferay DXPmust be shut
down and then restarted to make the changes take effect.

If youmust roll back your customizations, delete the overriding .jar files: Liferay DXP uses the original
.jar on its next startup.

73.13 Creating Model Listeners

Model Listeners implement the ModelListener interface. They are used to listen for persistence events on
models and do something in response (either before or after the event).

Model listeners were designed to perform lightweight actions in response to a create, remove, or update
attempt on an entity’s database table or amapping table (for example, users_roles). Here are some supported
use cases:

• Audit Listener: In a separate database, record information about updates to an entity’s database table.
• Cache Clearing Listener: Clear caches that you’ve added to improve the performance of custom code.
• Validation Listener: Perform additional validation on amodel’s attribute values before they are per-
sisted to the database.

• Entity Update Listener: Do some additional processing when an entity table is updated. For example,
notify users when changes are made to their account.

There are also use cases that are not recommended, since they’re likely to break unpredictably and give
you headaches:

• Setting a model’s attributes in an onBeforeUpdate call. If some other database table has already been
updated with the values before your model listener is invoked, your database will get out of sync. To
change how an entity’s attributes are set, consider using a service wrapper instead.

• Wrapping a model. Model listeners are not called when fetching records from the database.
• Creating worker threads to do parallel processing and querying data you updated via your listener.
Model listeners are called before the database transaction is complete (even the onAfter... methods),
so the queries could be executed before the database transaction is completed.

If there is no existing listener on themodel, yourmodel listener is the only one that runs. However, there
can be multiple listeners on a single model, and the order in which the listeners run cannot be controlled.

You can create a model listener in a module by doing two simple things:

• Implement ModelListener
• Register the service in Liferay’s OSGi runtime

Creating a Model Listener Class

Create a -ModelListener class that extends BaseModelListener.

803

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/ModelListener.html

package ...;

import ...;

public class CustomEntityListener extends BaseModelListener<CustomEntity> {

/* Override one or more methods from the ModelListener

interface.

⁎/

}

In the body of the class override any methods from the ModelListener interface. The available methods
are listed and described at the end of this article.

In your model listener class, the parameterized type (for example, CustomEntity in the snippet above)
is used to tell the listener’s ServiceTrackerCustomizerwhich model class the listener should be registered
against.

Register the Model Listener Service

Register the service with Liferay’s OSGi runtime. If using Declarative Services, set service=

ModelListener.class and immediate=true in the Component.

@Component(

immediate = true,

service = ModelListener.class

)

That’s all there is to preparing a model listener. Now learn what model events you can respond to.

Listening For Persistence Events

The ModelListener interface provides lots of opportunity to listen for model events:

• onAfterAddAssociation: If there’s an association between twomodels (if they have a mapping table),
use this method to do something after an association record is added.

• onAfterCreate: Use this method to do something after the persistence layer’s createmethod is called.
• onAfterRemove: Use this method to do something after the persistence layer’s removemethod is called.
• onAfterRemoveAssociation: If there’s an association between twomodels (if they have amapping table),
do something after an association record is removed.

• onAfterUpdate: Use this method to do something after the persistence layer’s updatemethod is called.
• onBeforeAddAssociation: If there’s an association between twomodels (if they have a mapping table),
do something before an addition to the mapping table.

• onBeforeCreate: Use this method to do something before the persistence layer’s create method is
called.

• onBeforeRemove: Use this method to do something before the persistence layer’s remove method is
called.

• onBeforeRemoveAssociation: If there’s an association between two models (if they have a mapping
table), do something before a removal from the mapping table.

• onBeforeUpdate: Use this method to do something before the persistence layer’s update method is
called.

804

Look in Liferay’s BasePersistenceImpl, particularly the remove and updatemethods, and you’ll see how
model listeners are accounted for before (for the onBefore... case) and after (for the onAfter... case) the
model persistence event.

Now that you know how to createmodel listeners, keep inmind that they’re useful as standalone projects
or inside of your application. If your application needs to do something (like add a custom entity) every time
a User is added in Liferay, you can include the model listener inside your application.

Related Topics

UpgradingModel Listener Hooks

805

Chapter 74

Application Display Templates

The application display template (ADT) framework allows portal administrators to override the default
display templates, removing limitations to the way your site’s content is displayed. With ADTs, you can
define custom display templates used to render asset-centric applications.

Usually, when you need to modify the UI of a Liferay portlet, you can do so using a hook (e.g., HTML-
related change) or a theme (e.g., CSS-related change). It’d be nice, however, if you could apply particular
display changes to specific portlet instances without having to redeploy any plugins. Ideally, you should be
able to provide authorized portal users the ability to apply custom display interfaces to portlets.

Be of good cheer! That’s precisely what Application Display Templates (ADTs) provide–the ability to add
custom display templates to your portlets from the portal. This isn’t actually a new concept in Liferay; some
applications already had templating capabilities (e.g.,Web Content and Dynamic Data Lists), in which you
can already add as many display options (or templates) as you want. Now you can add them to your custom
portlets, too.

Some portlets that already support Application Display Templates in 7.0 are Asset Catgories Navigation,
Asset Publisher,Asset TagsNavigation,Blogs,MediaGallery,RSS,Breadcrumb, Language,NavigationMenu,SiteMap,
andWiki.

74.1 Implementing Application Display Templates

Application Display Templates (ADTs) provide–the ability to add custom display templates to your portlets
from theportal. Thefigure below showswhat theDisplay Template option looks like in a portletConfiguration
menu.

In this tutorial, you’ll learn how to use the Application Display Templates API to add an ADT to a portlet.

Using the Application Display Templates API

To leverage the ADT API, there are several steps you need to follow. These steps involve registering your
portlet to use ADTs, defining permissions, and exposing the ADT functionality to users. You’ll walk through
these steps now:

1. Create and register a custom *PortletDisplayTemplateHandler component. Liferay provides the Base-
PortletDisplayTemplateHandler as a base implementation for you to extend. You can check the Tem-
plateHandler interface Javadoc to learn about each template handler method.

807

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portletdisplaytemplate/BasePortletDisplayTemplateHandler.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portletdisplaytemplate/BasePortletDisplayTemplateHandler.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/template/TemplateHandler.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/template/TemplateHandler.html

Figure 74.1: By using a custom display template, your portlet’s display can be customized.

TheComponent annotation ties yourhandler to a specificportlet setting theproperty javax.portlet.name
as the portlet name of your portlet. The same property should be found in your portlet class. For
example:

@Component(

immediate = true,

property = {

"javax.portlet.name="+ AssetCategoriesNavigationPortletKeys.ASSET_CATEGORIES_NAVIGATION

},

service = TemplateHandler.class

)

Each of the methods in this class have a significant role in defining and implementing ADTs for your
custom portlet. View the list below for a detailed explanation for each method defined specifically for
ADTs:

• getClassName(): Defines the type of entry your portlet is rendering.
• getName(): Declares the name of your ADT type (typically, the name of the portlet).
• getResourceName(): Specifies which resource is using the ADT (e.g., a portlet) for permission
checking. This methodmust return the portlet’s Fully Qualified Portlet ID (FQPI).

• getTemplateVariableGroups(): Defines the variables exposed in the template editor.

As an example *PortletDisplayTemplateHandler implementation, you can look at WikiPortletDis-
playTemplateHandler.java.

2. Since the ability to addADTs is new to your portlet, youmust configure permissions so that administra-
tive users cangrant permissions to the roles thatwill be allowed to create andmanagedisplay templates.

808

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/wiki/wiki-web/src/main/java/com/liferay/wiki/web/internal/portlet/template/WikiPortletDisplayTemplateHandler.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/wiki/wiki-web/src/main/java/com/liferay/wiki/web/internal/portlet/template/WikiPortletDisplayTemplateHandler.java

Add the action key ADD_PORTLET_DISPLAY_TEMPLATE to your portlet’s /src/main/resources/resource-

actions/default.xml file:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action Mapping 7.0.0//EN" "http://www.liferay.com/dtd/liferay-

resource-action-mapping_7_0_0.dtd">

<resource-action-mapping>

...

<portlet-resource>

<portlet-name>yourportlet</portlet-name>

<permissions>

<supports>

<action-key>ADD_PORTLET_DISPLAY_TEMPLATE</action-key>

<action-key>ADD_TO_PAGE</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

...

</permissions>

</portlet-resource>

...

</resource-action-mapping>

3. Next, you need to make sure that Liferay can find the updated default.xml with the new resource
action when you deploy the module. Create a file named portlet.prtoperies in the /resources folder
and add the following contents providing the path to your default.xml:

include-and-override=portlet-ext.properties

resource.actions.configs=resource-actions/default.xml

4. Now that your portlet officially supports ADTs, you’ll want to expose the ADT option to your users.
Just include the <liferay-ui:ddm-template-selector> tag in the JSP file you’re using to control your
portlet’s configuration.

For example, it may be helpful for you to insert an <aui:fieldset> in your configuration JSP file, like
the following:

<aui:fieldset>

<div class="display-template">

<liferay-ddm:template-selector

classNameId="<%= YourEntity.class.getName() %>"

displayStyle="<%= displayStyle %>"

displayStyleGroupId="<%= displayStyleGroupId %>"

refreshURL="<%= PortalUtil.getCurrentURL(request) %>"

showEmptyOption="<%= true %>"

/>

</div>

</aui:fieldset>

In this JSP, the <liferay-ddm:template-selector> tag specifies the Display Template drop-downmenu
to be used in the portlet’s Configurationmenu. The variables displayStyle and displayStyleGroupId

are preferences that your portlet stores when you use this taglib and your portlet uses the BaseJSPSet-
tingsConfigurationAction or DefaultConfigurationAction. Otherwise, you would need to obtain the
value of those parameters and store themmanually in your configuration class.

809

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BaseJSPSettingsConfigurationAction.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BaseJSPSettingsConfigurationAction.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/DefaultConfigurationAction.html

As an example JSP, see theWiki application’s configuration.jsp.

5. Youmust now extend your view code to render your portlet with the selected ADT.This allows you to
decide which part of your view will be rendered by the ADT and what will be available in the template
context.

First, initialize the Java variables needed for the ADT:

<%

String displayStyle = GetterUtil.getString(portletPreferences.getValue("displayStyle", StringPool.BLANK));

long displayStyleGroupId = GetterUtil.getLong(portletPreferences.getValue("displayStyleGroupId", null), scopeGroupId);

%>

Next, you can test if the ADT is configured, grab the entities to be rendered, and render them using
the ADT.The tag <liferay-ddm:template-renderer> aids with this process. It will automatically use the
selected template or render its body if no template is selected.

Here’s some example code that demonstrates implementing this:

<liferay-ddm:template-renderer

className="<%= YourEntity.class.getName() %>"

contextObjects="<%= contextObjects %>"

displayStyle="<%= displayStyle %>"

displayStyleGroupId="<%= displayStyleGroupId %>"

entries="<%= yourEntities %>"

>

<%-- The code that will be rendered by default when there is no

template available should be inserted here. --%>

</liferay-ddm:template-renderer>

In this step, you initialized variables dealing with the display settings (displayStyle and
displayStyleGroupId) and passed them to the tag along with other parameterers listed below:

• className: your entity’s class name.
• contextObjects: accepts a Map<String, Object>with any object youwant to the template context.
• entries: accepts a list of your entities (e.g., List<YourEntity>).

For an example that demonstrates implementing this, see configuration.jsp.

Now that your portlet supports ADTs, you can create your own scripts to change the display of your
portlet. You can experiment by adding your own custom ADT.

1. Navigate to Site Admin* → Configuration → Application Display Templates. Then select Add () → Your
Template. Give your ADT a name and insert FreeMarker (like the following code) or Velocity code into
the template editor, and click Save:

<#if entries?has_content>

Quick List:

<#list entries as curEntry>

${curEntry.name} - ${curEntry.streetAddress}, ${curEntry.city}, ${curEntry.stateOrProvince}

</#list>

</#if>

810

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/wiki/wiki-web/src/main/resources/META-INF/resources/wiki/configuration.jsp
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/web-experience/site-navigation/site-navigation-site-map-web/src/main/resources/META-INF/resources/configuration.jsp

2. Go back to your portlet and selectOptions () → Configuration and click theDisplay Template drop-down.
Select the ADT you created, and click Save.

Figure 74.2: The example Social template for the Wiki application provides extended social functionalities.

Once your script is uploaded into the portal and saved, users with the specified roles can select the
template when they’re configuring the display settings of your portlet on a page. You can visit the Styling
Apps with Application Display Templates section for more details on using ADTs.

Next, we’ll provide some recommendations for using ADTs in Liferay Portal.

Recommendations for Using ADTs

You’ve harnessed a lot of power by learning to leverage the ADT API. Be careful, for with great power, comes
great responsibility! To that end, you’ll learn about some practices you can use to optimize your portlet’s
performance and security.

First let’s talk about security. You may want to hide some classes or packages from the template con-
text, to limit the operations that ADTs can perform on your portal. Liferay provides some portal system
settings, which can be accessed by navigating to Control Panel → Configuration → System Settings → Foundation →
FreeMarker/Velocity Engine, to define the restricted classes, packages, and variables. In particular, youmay
want to add serviceLocator to the list of default values assigned to the FreeMarker and Velocity Engine
Restricted variables.

811

Application Display Templates introduce additional processing tasks when your portlet is rendered. To
minimize negative effects on performance, make your templates as minimal as possible by focusing on
the presentation, while using the existing API for complex operations. The best way to make Application
Display Templates efficient is to know your template context well, and understand what you can use from it.
Fortunately, you don’t need to memorize the context information, thanks to Liferay’s advanced template
editor!

To navigate to the template editor for ADTs, go to the Site Admin menu and select Configuration →
Application Display Templates and then click Add and select the specific portlet on which you decide to create
an ADT.

The template editor provides fields, general variables, and util variables customized for the portlet you
chose. These variable references can be found on the left-side panel of the template editor. You can use them
by simply placing your cursor where you’d like the variable placed, and clicking the desired variable to place it
there. You can learn more about the template editor in the Styling Apps with Application Display Templates
section.

Finally, don’t forget to run performance tests and tune the template cache options by modifying the
Resource modification check field in System Settings → Foundation → FreeMarker/Velocity Engine.

The cool thing about ADTs is the power they provide to your Liferay portlets, providing infinite ways of
editing your portlet to provide new interfaces for your portal users. You stepped through how to configure
ADTs for a custom portlet, tried out a sample template, and ran through important recommendations for
using ADTs, which included security and performance.

Related Topics

Styling Apps with Application Display Templates
Liferay JavaScript APIs
Internationalization

812

Chapter 75

Mobile

Liferay provides twoways to create native Android and iOS apps thatworkwith your Liferay instances: Liferay
Screens and the Liferay Mobile SDK. Liferay Screens does this via ready-to-use components called Screenlets.
Since Screenlets already contain the code required to call your Liferay instance–and a complete UI–all you
need to do is insert and configure them in your Android or iOS app. Screens provides Screenlets for common
tasks such as logging in, viewing web content, adding DDL records, andmore. You can also customize each
Screenlet to fit your specific needs, or write your own Screenlet. Behind the scenes, Screenlets use the Liferay
Mobile SDK to call Liferay’s remote services.

The LiferayMobile SDK is a lower-level tool that lets youmanually invoke Liferay’s remote services. You’ll
need to use the Mobile SDK to write your own Screenlets, or call Liferay’s remote services independent of
Screens. In most cases, you’ll find that using Screens saves you time and effort. For example, although you
can use the Mobile SDK to implement login in your app, Screens already provides this via Login Screenlet.
There are certain cases, however, where using the Mobile SDKmakes sense. For example, if you need to call
one or more Liferay remote services but your app’s UI doesn’t need to reflect this, then it doesn’t make sense
to use Screenlets for this purpose. Each Screenlet must contain a UI.

Regardless of your specific needs, Liferay has you covered with Liferay Screens and the Liferay Mobile
SDK.This section of tutorials contains the following sections that show you how to use both:

• Android Apps with Liferay Screens

• iOS Apps with Liferay Screens

• Using Xamarin with Liferay Screens

• Liferay Mobile SDK

Venture forth to become amobile guru!

813

Chapter 76

Android Apps with Liferay Screens

Liferay Screens speeds up and simplifies developing native mobile apps that use Liferay. Its power lies in its
Screenlets. A Screenlet is a visual component that you insert into your native app to leverage Liferay Portal’s
content and services. On Android, Screenlets are available to log in to your portal, create accounts, submit
forms, display content, andmore. You can use any number of Screenlets in your app; they’re independent,
so you can use them in modular fashion. Screenlets on Android also deliver UI flexibility with pluggable
Views that implement elegant user interfaces. Liferay’s reference documentation for Android Screenlets
describes each Screenlet’s features and Views.

Youmight be thinking, “These Screenlets sound like the greatest thing since taco Tuesdays, but what if
they don’t fit in with my app’s UI?What if they don’t behave exactly how I want them to? What if there’s no
Screenlet for what I want to do?” Fret not! You can customize Screenlets to fit your needs by changing or
extending their UI and behavior. You can even write your own Screenlets! What’s more, Screens seamlessly
integrates with your existing Android projects.

Screenlets leverage the Liferay Mobile SDK to make server calls. The Mobile SDK is a low-level layer
on top of the Liferay JSON API. To write your own Screenlets, youmust familiarize yourself with Liferay’s
remote services. If no existing Screenlet meets your needs, consider customizing an existing Screenlet,
creating a Screenlet, or directly using the Mobile SDK. Creating a Screenlet involves writingMobile SDK
calls and constructing the Screenlet; if you don’t plan to reuse or distribute the implementation then you
may want to forgo writing a Screenlet and, instead, work with the Mobile SDK. A benefit of integrating an
existing Screenlet into your app, however, is that the Mobile SDK’s details are abstracted from you.

These tutorials show you how to use, customize, create, and distribute Screenlets for Android. They show
you how to create Views too. There’s even a tutorial that explains the nitty-gritty details of the Liferay Screens
architecture. Nomatter how deep you want to go, you’ll use Screenlets in no time. Start by preparing your
Android project to use Liferay Screens.

76.1 Preparing Android Projects for Liferay Screens

To use Liferay Screens, you must install it in your Android project and then configure it to communicate
with your Liferay DXP instance. Note that Screens is released as an AAR file hosted in jCenter.

There are three different ways to install Screens. This tutorial shows you each:

1. With Gradle: Gradle is the build system Android Studio uses to build Android projects. We therefore
recommend that you use it to install Screens.

815

https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview
http://tools.android.com/tech-docs/new-build-system/aar-format

Figure 76.1: Here’s an app that uses a Liferay Screens Sign Up Screenlet.

2. With Maven
3. Manually

Note: After installation, you must configure Liferay Screens to communicate with your Liferay DXP
instance. The last section in this tutorial shows you how to do this.

Requirements

Liferay Screens for Android includes the Component Library (the Screenlets) and a sample project. It requires
the following software:

• Android Studio 3.0 or above.
• Android SDK 4.1 (API Level 16) or above.
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, or Liferay DXP 7.0
• Liferay Screens Compatibility Plugin (CE or DXP/EE, depending on your portal edition). This app is
preinstalled in Liferay CE Portal 7.0/7.1 CE and Liferay DXP 7.0.

• Liferay Screens source code.

816

http://www.liferay.com/downloads/liferay-portal/available-releases
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Liferay Screens for Android uses EventBus internally.

Securing JSON Web Services

Each Screenlet in Liferay Screens calls one or more of Liferay DXP’s JSONweb services, which are enabled
by default. The Screenlet reference documentation lists the web services that each Screenlet calls. To use a
Screenlet, its web services must be enabled in the portal. It’s possible, however, to disable the web services
needed by Screenlets you’re not using. For instructions on this, see the tutorial Configuring JSONWeb
Services. You can also use Service Access Policies for more fine-grained control over accessible services.

Using Gradle to Install Liferay Screens

To use Gradle to install Liferay Screens in your Android Studio project, youmust edit your app’s build.gradle
file. Note that your project has two build.gradle files: one for the project and another for the appmodule.
You can find them under Gradle Scripts in your Android Studio project. This screenshot highlights the app
module’s build.gradle file:

Figure 76.2: The app module’s build.gradle file.

In the appmodule’s build.gradle file, add the following line of code inside the dependencies element:

implementation 'com.liferay.mobile:liferay-screens:+'

Note that the + symbol tells Gradle to install the newest version of Screens. If your app relies on a specific
version of Screens, you can replace the + symbol with that version.

If you’re not sure where to add the above lines, see the below screenshot.
Once you edit build.gradle, a message appears at the top of the file that asks you to sync your app with

its Gradle files. Syncing the Gradle files incorporates the changes youmake to them. Syncing also downloads
and installs any new dependencies, like the Liferay Screens dependency that you just added. Sync the Gradle
files now by clicking the Sync Now link in the message. The following screenshot shows the top of an edited
build.gradle file with the Sync Now link highlighted by a red box:

Figure 76.3: After editing the app module’s build.gradle file, click Sync Now to incorporate the changes in your app.

817

https://github.com/greenrobot/EventBus

In the case of conflict with the appcompat-v7 or other support libraries (com.android.support:appcompat-
v7, com.android.support:support-v4), you have several options:

• Explicitly add the versions of the conflicting libraries you want to use. For example:

implementation 'com.android.support:design:27.0.2'

implementation 'com.android.support:support-media-compat:27.0.2'

implementation 'com.android.support:exifinterface:27.0.2'

• Remove the com.android.support:appcompat-v7 dependency from your project and use the one embed-
ded in Liferay Screens.

• Exclude the problematic library from Liferay Screens. For example:

implementation ('com.liferay.mobile:liferay-screens:+') {

exclude group: 'com.android.support:', module: 'design'

}

• Ignore the inspection, adding a comment like this:

//noinspection GradleCompatible

• Ignore the warning–Liferay Screens will work without problems.

Although we strongly recommend that you use Gradle to install Screens, the following section shows you
how to install Screens with Maven.

Using Maven to Install Liferay Screens

Note that we strongly recommend that you use Gradle to install Screens. It’s possible though to use Maven
to install Screens. Follow these steps to configure Liferay Screens in a Maven project:

1. Add the following dependency to your pom.xml:

<dependency>

<groupId>com.liferay.mobile</groupId>

<artifactId>liferay-screens</artifactId>

<version>LATEST</version>

</dependency>

2. Force a Maven update to download all the dependencies.

If Maven doesn’t automatically locate the artifact, you must add jCenter as a new repository in your
maven settings (e.g., .m2/settings.xml file):

<profiles>

<profile>

<repositories>

<repository>

<id>bintray-liferay-liferay-mobile</id>

<name>bintray</name>

<url>http://dl.bintray.com/liferay/liferay-mobile</url>

</repository>

</repositories>

<pluginRepositories>

818

<pluginRepository>

<id>bintray-liferay-liferay-mobile</id>

<name>bintray-plugins</name>

<url>http://dl.bintray.com/liferay/liferay-mobile</url>

</pluginRepository>

</pluginRepositories>

<id>bintray</id>

</profile>

</profiles>

<activeProfiles>

<activeProfile>bintray</activeProfile>

</activeProfiles>

Nice work!

Manual Configuration in Gradle

Although we strongly recommend that you use Gradle to install Screens automatically, it’s possible to use
Gradle to install Screens manually. Follow these steps to use Gradle to install Screens and its dependencies
manually in your Android project:

1. Download the latest version of Liferay Screens for Android.

2. Copy the contents of Android/library into a folder outside your project.

3. In your project, configure a settings.gradle file with the paths to the library folders:

include ':core'

project(':core').projectDir = new File(settingsDir, '../../library/core')

project(':core').name = 'liferay-screens'

4. Include the required dependencies in your build.gradle file:

implementation project(':liferay-screens')

You can also configure the .aar binary files (in Android/dist) as local .aar file dependencies. You can
download all necessary files from jCenter.

To check your configuration, you can compile and execute a blank activity and import a Liferay Screens
class (like Login Screenlet).

Next, you’ll set up communication with Liferay DXP.

Configuring Communication with Liferay DXP

Before using Liferay Screens, youmust configure it to communicate with your Liferay DXP instance. To do
this, youmust provide Screens the following information:

• Your Liferay DXP instance’s ID

• The ID of the site your app needs to communicate with

• Your Liferay DXP instance’s version

• Any other information required by specific Screenlets

819

https://github.com/liferay/liferay-screens/releases
https://bintray.com/liferay/liferay-mobile/liferay-screens/view

Fortunately, this is straightforward. In your Android project’s res/values folder, create a new file called
server_context.xml. Add the following code to the new file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<!-- Change these values for your Liferay DXP installation -->

<string name="liferay_server">http://10.0.2.2:8080</string>

<string name="liferay_company_id">10155</string>

<string name="liferay_group_id">10182</string>

<integer name="liferay_portal_version">70</integer>

</resources>

As the above comment indicates,make sure to change these values to match your Liferay DXP instance.
The server address http://10.0.2.2:8080 is suitable for testing with Android Studio’s emulator, because it
corresponds to localhost:8080 through the emulator. If you’re using the Genymotion emulator, you should,
however, use address 192.168.56.1 instead of localhost.

The liferay_company_id value is your Liferay DXP instance’s ID. You can find it in your Liferay DXP
instance at Control Panel → Configuration → Virtual Instances. The instance’s ID is in the Instance ID column. Copy
and paste this value into the liferay_company_id value in server_context.xml.

The liferay_group_id value is the ID of the site your app needs to communicate with. To find this value,
first go to the site in your Liferay DXP instance that you want your app to communicate with. In the Site
Administrationmenu, select Configuration → Site Settings. The site ID is listed at the top of the General tab. Copy
and paste this value into the liferay_group_id value in server_context.xml.

The liferay_portal_version value 70 tells Screens that it’s communicating with a Liferay CE Portal 7.0
or Liferay DXP 7.0 instance. Here are the supported liferay_portal_version values and the portal versions
they correspond to:

• 71: Liferay CE Portal 7.1 or Liferay DXP 7.1
• 70: Liferay CE Portal 7.0 or Liferay DXP 7.0
• 62: Liferay Portal 6.2 CE/EE

You can also configure Screenlet properties in your server_context.xml file. The example properties
listed below, liferay_recordset_id and liferay_recordset_fields, enable DDL Form Screenlet and DDL
List Screenlet to interact with a Liferay DXP instance’s DDLs. You can see an additional example
server_context.xml file here.

<!-- Change these values for your Liferay DXP installation -->

<string name="liferay_recordset_id">20935</string>

<string name="liferay_recordset_fields">Title</string>

Super! Your Android project’s ready for Liferay Screens.

Example Apps

As you use Screens to develop your apps, you may want to refer to some example apps that also use it. There
are two demo applications available:

• test-app: A showcase app containing all the currently available Screenlets.

820

https://github.com/liferay/liferay-screens/blob/master/android/samples/bankofwesteros/src/main/res/values/server_context.xml
https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app

• Westeros Bank: An example app that uses Screenlets to manage technical issues for theWesteros Bank.
It’s also available in Google Play.

Great! Now you’re ready to put Screens to use. The following tutorials show you how to do this.

Related Topics

Using Screenlets in Android Apps
Using Views in Android Screenlets
Preparing iOS Projects for Liferay Screens

76.2 Using Screenlets in Android Apps

You can start using Screenlets once you’ve prepared your project to use Liferay Screens. There are plenty
of Liferay Screenlets available and they’re described in the Screenlet reference documentation. It is very
straightforward to use Screenlets. This tutorial shows you how to insert Screenlets into your android app
and configure them. You’ll be a Screenlet master in no time!

First, in Android Studio’s visual layout editor or your favorite editor, open your app’s layout XML file and
insert the Screenlet in your activity or fragment layout. The following screenshot, for example, shows the
Login Screenlet inserted in an activity’s FrameLayout.

Figure 76.4: Here’s the Login Screenlet in an activity’s layout in Android Studio.

Next, set the Screenlet’s attributes. If it’s a Liferay Screenlet, refer to the Screenlet reference documenta-
tion to learn the Screenlet’s required and supported attributes. This screenshot shows the attributes of the
Login Screenlet being set:

To configure your app to listen for events the Screenlet triggers, implement the Screenlet’s listener
interface in your activity or fragment class. Refer to the Screenlet’s documentation to learn its listener

821

https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://play.google.com/store/apps/details?id=com.liferay.mobile.screens.bankofwesteros

Figure 76.5: You can set a Screenlet’s attributes via the app’s layout XML file.

interface. Then register your activity or fragment as the Screenlet’s listener. The activity class, for example,
in the screenshot below, declares that it implements the Login Screenlet’s LoginListener interface, and it
registers itself to listen for the Screenlet’s events.

Figure 76.6: Implement the Screenlet’s listener in your activity or fragment class.

Make sure to implement allmethods requiredby theScreenlet’s listener interface. For Liferay’s Screenlets,
the listenermethods are listed in each Screenlet’s reference documentation. That’s all there is to it! Awesome!
Now you know how to use Screenlets in your Android apps.

Related Topics

822

Preparing Android Projects for Liferay Screens
Using Views in Android Screenlets
Creating Android Screenlets
Using Screenlets in iOS apps

76.3 Using Views in Android Screenlets

You can use a Liferay Screens View to set a Screenlet’s look and feel independent of the Screenlet’s core
functionality. Liferay’s Screenlets come with several Views, and more are being developed by Liferay and the
community. The Screenlet reference documentation lists the Views available for each Screenlet included
with Screens. This tutorial shows you how to use Views in Android Screenlets. It’s straightforward; you’ll
master using Views in no time!

Views and View Sets

Before using Views, you should know what components make them up. Note that what follows is a simple
description, sufficient for learning how to use different Views. For a detailed description of the View layer in
Liferay Screens, see the tutorial Architecture of Liferay Screens for Android.

A View consists of the following items:
Screenlet class: A Java class that coordinates and implements the Screenlet’s functionality. The Screenlet

class contains attributes for configuring the Screenlet’s behavior, a reference to the Screenlet’s View class,
methods for invoking server operations, andmore.

View class: A Java class that implements a View’s behavior. This class usually listens for the UI compo-
nents’ events.

Layout: AnXMLfile that defines a View’s UI components. TheView class is usually this file’s root element.
To use a View, youmust specify its layout in the Screenlet XML (you’ll see an example of this shortly).

Note that because it contains a Screenlet class and a specific set of UI components, a View can only be
used with one particular Screenlet. For example, the Default View for Login Screenlet can only be used
with Login Screenlet. Multiple Views for several Screenlets can be combined into a View Set. A View Set
typically implements a similar look and feel for several Screenlets. This lets an app use a View Set to present
a cohesive look and feel. For example, the Bank ofWesteros sample app uses theWesteros View Set’s Views
with several Screenlets to present the red and white motif you can see here on Google Play. Liferay Screens
for Android comes with the Default View Set, but Liferay makes additional View Sets, like Material and
Westeros, available in jCenter. Anyone can create View Sets and publish them in public repositories like
Maven Central and jCenter.

To install View Sets besides Default, add them as dependencies in your project. The build.gradle file
code snippet below specifies the Material andWesteros View Sets as dependencies:

dependencies {

...

implementation 'com.liferay.mobile:liferay-material-viewset:+'

implementation 'com.liferay.mobile:liferay-westeros-viewset:+'

...

}

Here are the View Sets that Liferay currently provides for Screens:
Default: Comes standard with a Screenlet. It’s used by a Screenlet if no layout ID is specified or if no

View is found with the layout ID.The Default Views can be used as parent Views for your custom Views.
Refer to the architecture tutorial for more details.

823

https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros/src/main
https://play.google.com/store/apps/details?id=com.liferay.mobile.screens.bankofwesteros

Material: Demonstrates Views built from scratch. It follows Google’s Material Design guidelines. Refer
to the View creation tutorial for instructions on creating your own Views.

Westeros: Customizes the behavior and appearance of theWesteros Bank demo app.
Now that you know about Views and View Sets, you’re ready to put them to use!

Using Views

To use a View in a Screenlet, specify the View’s layout as the liferay:layoutId attribute’s valuewhen inserting
the Screenlet XML in an activity or fragment layout. For example, to use Login Screenlet with its Material
View, insert the Screenlet’s XML with liferay:layoutId set to @layout/login_material:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

liferay:layoutId="@layout/login_material"

/>

The following links list the View layouts available in each View Set:

• Default
• Material
• Westeros

If the View you want to use is part of a View Set, your app or activity’s thememust also inherit the theme
that defines that View Set’s styles. For example, the following code in an app’s res/values/styles.xml tells
AppTheme.NoActionBar to use the Material View Set as its parent theme:

<resources>

<style name="AppTheme.NoActionBar" parent="material_theme">

<item name="colorPrimary">@color/colorPrimary</item>

<item name="colorPrimaryDark">@color/colorPrimaryDark</item>

<item name="colorAccent">@color/colorAccent</item>

<item name="windowActionBar">false</item>

<item name="windowNoTitle">true</item>

</style>

...

</resources>

To use the Default orWesteros View Set, inherit default_theme or westeros_theme, respectively.
That’s it! Great! Now you know how to use Views to spruce up your Android Screenlets. This opens up a

world of possibilities, like writing your own Views.

Related Topics

Preparing Android Projects for Liferay Screens
Using Screenlets in Android Apps
Creating Android Views
Architecture of Liferay Screens for Android
UsingThemes in iOS Screenlets

824

https://developer.android.com/design/material/index.html
https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/res/layout
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material/src/main/res/layout
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros/src/main/res/layout

76.4 Using Offline Mode in Android
Offline mode in Liferay Screens lets your apps function when connectivity is unavailable or intermittent.
Even though the steady march of technology makes connections more stable and prevalent, there are still
plenty of places the Internet has trouble reaching. Areas with complex terrain, including cities with large
buildings, often lack stable connections. Remote areas typically don’t have connections at all. Using Screens’s
offline mode in your apps gives your users flexibility in these situations.

This tutorial shows you how to use offline mode in Screenlets. For an explanation of how offline mode
works, see the tutorial Architecture of Offline Mode in Liferay Screens. Offline mode’s architecture is the
same on iOS and Android, although its use on these platforms differs.

Configuring Screenlets for Offline Mode

If you want to enable offline mode in any of your screenlets, you must configure the offlinePolicy attribute
when inserting the Screenlet’s XML in a layout. This attribute can take four possible values:

• REMOTE_ONLY

• CACHE_ONLY

• REMOTE_FIRST

• CACHE_FIRST

For a description of these values, see the section Using Policies with Offline Mode in the offline mode
architecture tutorial. Note that each Screenlet behaves a bit differently with offlinemode. For specific details,
see the Screenlet reference documentation.

Handling Synchronization

Under some scenarios, values stored in the local cache need to be synchronized with the portal. To do this,
you need to use the CacheSyncService class. This class sends information from the local cache to the portal.
To register CacheSyncServicewith your app, youmust add the following code to your AndroidManifest.xml
file:

<receiver android:name=".CacheReceiver">

<intent-filter>

<action android:name="com.liferay.mobile.screens.auth.login.success"/>

<action android:name="com.liferay.mobile.screens.cache.resync"/>

<action android:name="android.net.conn.CONNECTIVITY_CHANGE"/>

</intent-filter>

</receiver>

<service

android:name=".CacheSyncService"

android:exported="false"/>

This code registers the CacheReceiver and CacheSyncService components. The CacheReceiver is invoked
in the following scenarios:

• When a connectivity change occurs (for example, when the network connection is restored).
• When Login Screenlet successfully completes the login.
• When a specific resync intent is broadcasted. In this case, use context.sendBroadcast(new

Intent("com.liferay.mobile.screens.cache.resync"));.

The CacheSyncService performs the synchronization process when invoked from the above receiver. This
is currently an unassisted process. Future versions will include some kind of control mechanism.

825

Related Topics

Architecture of Offline Mode in Liferay Screens
Using Screenlets in Android Apps
Using Offline Mode in iOS
Using Screenlets in iOS Apps

76.5 Architecture of Liferay Screens for Android

Liferay Screens applies architectural ideas fromModel View Presenter, Model View ViewModel, and VIPER.
Screens isn’t considered a canonical implementation of these architectures, because it isn’t an app, but it
borrows from them to separate presentation layers from business-logic. This tutorial explains Screen’s
high-level architecture, its components’ low-level architecture, and the Android Screenlet lifecycle. Now go
ahead and get started examining Screens’s building blocks!

High-Level Architecture

Liferay Screens for Android is composed of a Core, a Screenlet layer, a View layer, Interactors, and Server
Connectors. Interactors are technically part of the core, but are worth covering separately. They facilitate
interaction with both local and remote data sources, as well as communication between the Screenlet layer
and the Liferay Mobile SDK.

Figure 76.7: Here are the high-level components of Liferay Screens for Android. The dashed arrow connectors represent a “uses” relationship, in which a component uses
the component its pointing to.

Each component is described below.
Core: includes all the base classes for developing other Screens components. It’s a micro-framework

that lets developers write their own Screenlets, Views, and Interactors.
Screenlets: Java view classes for inserting into any activity or fragment view hierarchy. They render

a selected layout in the runtime and in Android Studio’s visual editor and react to UI events, sending any

826

http://en.wikipedia.org/wiki/Model-view-presenter
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://www.objc.io/issue-13/viper.html

necessary server requests. You can set a Screenlet’s properties from its layout XML file and Java classes. The
Screenlets bundled with Liferay Screens are known collectively as the Screenlet Library.

Server Connectors: a collection of classes that interact with different Liferay DXP versions. These classes
abstract away the complexity of communicating with different versions. This allows the developer to call API
methods and the correct Interactor without worrying about the specific Liferay DXP version.

Interactors: implement specific use cases for communicatingwith servers. They canuse local and remote
data sources. Most Interactors use the Liferay Mobile SDK to exchange data with a Liferay instance. If a user
action or use case needs to execute more than one query on a local or remote store, the sequence is done in
the corresponding Interactor. If a Screenlet supports more than one user action or use case, an Interactor
must be created for each. Interactors are typically bound to one specific Liferay version, and instantiated by
a Server Connector. Interactors run in a background thread and can therefore perform intensive operations
without blocking the UI thread.

Views: a set of layouts and accompanying custom view classes that present Screenlets to the user.
Next, the core layer is described in detail.

Core Layer

The core layer is the micro-framework that lets developers write Screenlets in a structured and isolated way.
All Screenlets share a common structure based on the core classes, but each Screenlet can have a unique
purpose and communication API.

Figure 76.8: Here’s the core layer of Liferay Screens for Android.

827

Here are the core’s main components:
Interactor: the base class for all Liferay Portal interactions and use cases that a Screenlet supports.

Interactors call services through the Liferay Mobile SDK and receive responses asynchronously through the
EventBus, eventually changing a View’s state. Their actions can vary in complexity, from performing simple
algorithms to requesting data asynchronously from a server or database. A Screenlet can have multiple
Interactors, each dedicated to supporting a specific operation.

BaseScreenlet: the base class for all Screenlet classes. It receives user events from a Screenlet’s View,
instantiates and calls the Interactors, and then updates the View with operation results. Classes that extend
it can override its template methods:

• createScreenletView: typically inflates the Screenlet’s View and gets the attribute values from the XML
definition.

• createInteractor: instantiates an Interactor for the specified action. If a Screenlet only supports one
Interactor type then that type of Interactor is always instantiated.

• onUserAction: runs the Interactor associated with the specified action.

Screenlet View: implements the Screenlet’s UI. It’s instantiated by the Screenlet’s createScreenletView
method. It renders a specific UI using standard layout files and updates the UI with data changes. When
developing your own Views that extend a parent View, you can read the parent Screenlet’s properties or call
its methods from this class.

EventBus: notifies the Interactor when asynchronous operations complete. It decouples the AsyncTask
class instance from the activity life cycle, to avoid problems typically associated with AsyncTask instances.

LiferayMobile SDK: calls a Liferay instance’s remote services in a type-safe and transparent way.
SessionContext: a singleton class that holds the logged in user’s session. Apps can use an implicit login,

invisible to the user, or a login that relies on explicit user input to create the session. User logins can be
implemented with the Login Screenlet. This is explained in detail here.

LiferayServerContext: a singleton object that holds server configuration parameters. It’s loaded from the
server_context.xmlfile, or from any other XMLfile that overrides the keys defined in the server_context.xml.

server_context.xml: specifies the default server, companyId (Liferay instance ID) and groupId (site ID).
You can also configure other Screens parameters in this file, such as the current Liferay version (with the
attribute liferay_portal_version) or an alternative ServiceVersionFactory to access custom backends.

LiferayScreensContext: a singleton object that holds a reference to the application context. It’s used
internally where necessary.

ServiceVersionFactory: an interface that defines all the server operations supported in Liferay Screens.
This is created and accessed through a ServiceProvider that creates the Server Connectors needed to interact
with a specific Liferay version. The ServiceVersionFactory is an implementation of an Abstract Factory
pattern.

Now that you know what makes up the core layer, you’re ready to learn the Screenlet layer’s details.

Screenlet Layer

The Screenlet layer contains the Screenlets available in Liferay Screens for Android. The following diagram
uses Screenlet classes prefixed withMyScreenlet to show the Screenlet layer’s relationship with the core, View,
and Interactor components.

Screenlets are comprised of several Java classes and an XML descriptor file:
MyScreenletViewModel: an interface that defines the attributes shown in the UI. It typically accounts

for all the input and output values presented to the user. For instance, LoginViewModel includes attributes
like the user name and password. The Screenlet can read the attribute values, invoke Interactor operations,
and change these values based on operation results.

828

https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/base/interactor/Interactor.java
https://github.com/greenrobot/EventBus
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/base/BaseScreenlet.java
http://www.oodesign.com/template-method-pattern.html
https://github.com/greenrobot/EventBus
https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/context/SessionContext.java
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/context/LiferayServerContext.java
https://github.com/liferay/liferay-screens/blob/develop/android/library/core/src/main/res/values/server_context.xml
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/context/LiferayScreensContext.java
https://github.com/liferay/liferay-screens/blob/develop/android/library/core/src/main/java/com/liferay/mobile/screens/util/ServiceVersionFactory.java
https://github.com/liferay/liferay-screens/blob/develop/android/library/core/src/main/java/com/liferay/mobile/screens/util/ServiceProvider.java
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login/view/LoginViewModel.java

Figure 76.9: This diagram illustrates the Android Screenlet layer’s relationship to other Screens components.

MyScreenlet: a class that represents the Screenlet component the app developer interacts with. It
includes the following things:

• Attribute fields for configuring the Screenlet’s behavior. They are read in the Screenlet’s
createScreenletViewmethod and their default values can optionally be set there too.

• A reference to the Screenlet’s View, specified by the liferay:layoutId attribute’s value. Note: a View
must implement the Screenlet’s ViewModel interface.

• Any number of methods for invoking Interactor operations. You can optionally make them pub-
lic for app developers to call. They can also handle UI events received in the view class through
a regular listener (such as Android’s OnClickListener) or events forwarded to the Screenlet via the
performUserActionmethod.

• An optional (but recommended) listener object for the Screenlet to call on a particular event.

MyScreenletInteractor: implements an end-to-end use case that communicates with a server or con-
sumes a Liferay service. It might perform several intermediate steps. For example, it might send a request
to a server, compute a local value based on the response, and then send this value to a different server. On

829

completing an interaction, the Interactor must notify its listeners, one of which is typically the Screenlet
class instance. The number of Interactors a Screenlet requires depends on the number of server use cases it
supports. For example, the Login Screenlet class only supports one use case (log in the user), so it has only
one Interactor. The DDL Forms Screenlet class, however, supports several use cases (load the form, load a
record, submit the form, etc.), so it uses a different Interactor class for each use case.

MyScreenletConnector62 and MyScreenletConnector70: the classes that create the Interactors
required to communicate with a specific Liferay version. The ServiceProvider creates a singleton
ServiceVersionFactory that returns the right Connector.

MyScreenletDefaultView: a class that renders the Screenlet’s UI with the default layout. The class in
Figure 3, for example, belongs to the Default View set. The View object and the layout file communicate using
standardmechanisms, like a findViewByIdmethodor a listener object. User actions are received by a specified
listener (for example, OnClickListener) and then passed to the Screenlet object via the performUserAction
method.

myscreenlet_default.xml: anXMLfile that specifies how to render the Screenlet’s View. Here’s a skeleton
of a Screenlet’s layout XML file:

<?xml version="1.0" encoding="utf-8"?>

<com.your.package.MyScreenletView

xmlns:android="http://schemas.android.com/apk/res/android">

<!-- Put your regular components here: EditText, Button, etc. -->

</com.your.package.MyScreenletView>

Refer to the tutorial Creating Android Screenlets for more Screenlet details. Next, the View layer’s details
are described.

View Layer

The View layer lets developers set a Screenlet’s look and feel. Each Screenlet’s liferay:layoutId attribute
specifies its View. A View consists of a Screenlet class, view class, and layout XML file. The layout XML
file specifies the UI components, while the Screenlet class and view class control the View’s behavior. By
inheriting one or more of these View layer components from another View, the different View types allow
varying levels of control over a Screenlet’s UI design and behavior.

There are several different View types:
Themed: presents the same structure as the current View, but alters the theme colors and tints of the

View’s resources. All existing Views can be themed with different styles. The View’s colors reflect the current
value of the Android color palette. If you want to use one View Set with another View Set’s colors, you can use
those colors in your app’s theme (e.g. colorPrimary_default, colorPrimary_material, colorPrimary_westeros).

Child: presents the same behavior and UI components as its parent, but can change the UI components’
appearance and position. A Child View specifies visual changes in its own layout XML file; it inherits the
parent’s view class and Screenlet class. It can’t add or remove any UI components. The parent must be a Full
View. Creating a Child View is ideal when you only need to make visual changes to an existing View. For
example, you might create a Child View for Login Screenlet’s Default View to set new positions and sizes for
the standard text boxes.

Extended: inherits the parent View’s behavior and appearance, but lets you change and add to both.
You can do so by creating a custom view class and a new layout XML file. An Extended View inherits all the
parent View’s other classes, including its Screenlet, listeners, and Interactors; if you need to customize any
of them, youmust create a Full View to do so. An Extended View’s parent must be a Full View. Creating an
Extended View is ideal for adding, removing, or changing an existing View’s UI components. For example,

830

https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login/LoginScreenlet.java
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/ddl/form/DDLFormScreenlet.java
https://www.google.com/design/spec/style/color.html#color-color-palette

you can extend the Login Screenlet’s Default View to present different UI components for the user name and
password fields.

Full: provides a complete standalone View. It doesn’t inherit another View’s UI components or behavior.
When creating a Full View, you must therefore create its Screenlet class, view class, and layout XML file. You
should create a Full View when you don’t need to inherit another View or when you need to alter the core
behavior of a Screenlet by customizing its listeners or calling custom Interactors. For example, you could
implement a Full View with a new Interactor for calling a different Liferay Portal instance. Default Views are
Full Views.

Liferay Screens Views are organized into View sets that contain Views for several Screenlets. Liferay’s
available View sets are listed here:

• Default: amandatory View Set supplied by Liferay. It’s used by a Screenlet if no layout ID is specified or
if no View is found with the layout ID.The Default View Set uses a neutral, flat white and blue design
with standard UI components. In the Login Screenlet, for example, the Default View uses standard
text boxes for the user name and password, but the text boxes are styled with the Default View’s flat
white and blue design. You can customize this View Set’s properties, such as its components’ colors,
positions, and sizes. See the Default View Set’s styles.xml file for specific values. Since the Default
View Set contains Full Views, you can use them to create your own custom Child and Extended Views.

• Material: the View Set containing Views that conform to Android’s Material design guidelines.

• Westeros: the View Set containing Views for the Bank ofWesteros sample app.

For information on creating or customizing Views, see the tutorial Creating Android Views.
Great! Now you know how Liferay Screens for Android is composed. However, there’s something you

should know before moving on: how Screenlets interact with the Android life cycle.

Screenlet Lifecycle

Liferay Screens automatically saves and restores Screenlets’ states using the Android SDK methods
onSaveInstanceState and onRestoreInstanceState. Each Screenlet uses a uniquely generated identifier
(screenletId) to assign action results to action sources.

The Screenlets’ states are restored after the onCreate and onStartmethods, as specified by the standard
Android lifecycle. It’s a best practice to execute Screenlet methods inside the activity’s onResumemethod; this
helps assure that actions and tasks find their destinations.

Awesome! Now you know the nitty gritty architectural details of Liferay Screens for Android. Let this
tutorial be a resource for you as you work with Liferay Screens.

Related Topics

Using Screenlets in Android Apps
Using Views in Android Screenlets
Creating Android Screenlets
Creating Android Views

76.6 Architecture of Offline Mode in Liferay Screens

Mobile users may encounter difficulty getting or maintaining a network connection at certain locations or
times of day. Using offline mode with Screenlets ensures that your app still functions in these situations.

831

https://github.com/liferay/liferay-screens/tree/master/android/library/core/src/main/java/com/liferay/mobile/screens/viewsets/defaultviews
https://github.com/liferay/liferay-screens/tree/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/res/values/styles.xml
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material
https://developer.android.com/design/material/index.html
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros
https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
http://developer.android.com/training/basics/activity-lifecycle/recreating.html
http://developer.android.com/training/basics/activity-lifecycle/recreating.html

You should note, however, that some difficulties may arise when using an app offline. For example, allowing
users to edit data in an app when they’re offline may cause synchronization conflicts with the portal when
they reconnect. By detailing how offline mode is implemented in Liferay Screens, this tutorial helps you be
aware of such difficulties and know how to handle them.

Understanding Offline Mode's Basics

Screenlets in Liferay Screens support the following phases:

1. Get information from the portal.
2. Show information to the user.
3. Collect the user’s input (if necessary).
4. Send input to the portal (if necessary).

The following diagram summarizes these phases:

Figure 76.10: A Screenlet’s basic phases when requesting and submitting data to the portal.

Note that not all Screenlets need to execute each phase. For example, theWeb Content Display Screenlet
only needs to retrieve and display portal content. Conversely, Login Screenlet and Sign Up Screenlet only

832

need to handle user input. Only the most complex Screenlets, like the DDL Form Screenlet and the User
Portrait Screenlet, need to do both.

So what does all this have to do with offline mode? Liferay Screens’s offline infrastructure is a small layer
of code that intercepts information going to and coming from the portal. It stores this information in a local
data store for use when there’s no Internet connection. The following diagram illustrates this, with Local
cache representing the local data store:

Figure 76.11: This is the same diagram as before, with the addition of the local cache for offline mode.

With offline mode enabled, any Screenlet can persist information exchanged with the portal. You can
also configure exactly how offline mode works with the Screenlet you’re using. You do this through policies.

Using Policies with Offline Mode

Policies configure how a Screenlet behaves with offline mode when it sends or receives data. The Screenlet
adheres to the policy even if the data operation fails. Screenlets support the following policies:

remote-only:The Screenlet only uses network connections to load data. Screenlets functioned this way
prior to the introduction of offline mode. Use this policy when you want the Screenlet always to use remote
content. Your app won’t work, however, if a network connection is unavailable. Also, apps using this policy
tend to be slower due to network lag. Note that if the request succeeds, the Screenlet stores the data in the
local cache for later use.

833

cache-only:The Screenlet only uses local storage to load data (it doesn’t use the network connection).
Use this policy when you want the Screenlet to always use offline content. Note that in the app’s local cache,
some portal data may not exist or may be outdated.

remote-first:The Screenlet first tries to use the network connection to load data. If this fails, it then
tries to load data from local storage. Use this policy when you want the Screenlet to use the latest portal
data when there’s a connection, but also want to support a fallback mechanism when the connection is gone.
Note that the Screenlet may use outdated information when there’s no connection. In many cases, however,
this is better than showing your users no information at all.

cache-first:The Screenlet first tries to load data from local storage. If this fails, it then tries to use the
network connection. Use this policy when you want the Screenlet to optimize performance and network
efficiency. You can update data in a background process, or let the user update on-demand (via an option,
for example). Note that while the information retrieved from local storage may be outdated, loading times
and bandwidth consumption are typically lower.

These policies behave a bit differently depending on the data’s direction. In otherwords,when a Screenlet
set to a specific policy retrieves information from the portal, it may behave differently than when it submits
information to the portal. As an example, consider the possible scenarios for User Portrait Screenlet:

• When loading the portrait:

– remote-only:The Screenlet always attempts to load the portrait from the portal. If the request
fails, the operation also fails.

– cache-only: TheScreenlet always attempts to load theportrait fromthe local cache. Theoperation
fails if the portrait doesn’t exist there.

– remote-first:The Screenlet first attempts to load the portrait from the portal. If the request
succeeds, the Screenlet stores the portrait locally for later use. If the request fails, the Screenlet
tries to load the portrait from the local cache. If the local cache doesn’t contain the portrait,
the Screenlet can’t load it, and calls the standard error handling code (call the delegate, use the
default placeholder, etc…).

– cache-first:The Screenlet first attempts to load the portrait from the local cache. If the portrait
doesn’t exist there, it’s then requested from the server.

• When submitting the portrait:

– remote-only:TheScreenlet first sends the new portrait to the portal. If the submission succeeds,
the Screenlet also stores the portrait in the local cache. If the submission fails, the operation
also fails.

– cache-only: The Screenlet only stores the portrait locally. The portrait may be loaded from the
cache later, or synchronized with the portal.

– remote-first: The Screenlet first tries to send the new portrait to the portal. If this fails due
to lack of network connectivity, the Screenlet stores the portrait in the local cache for later
synchronization with the portal.

– cache-first:The screenlet first stores the new portrait locally, then sends it to the portal. If the
submission fails, the Screenlet still stores the portrait locally, but the send operation fails.

834

Understanding Synchronization

Synchronization can be a tricky problem to solve. What initially seems straightforward quickly evolves into
scenarios where you’re not sure which version of the data to use. Having offline users complicates things
further. The following diagram illustrates how the Screenlet retrieves and stores portal data.

Figure 76.12: The Screenlet requests the resource from the portal and stores it in the app’s local cache.

When a user edits the data in the app, the Screenlet needs to send the new data to the portal. But what
happens if the user is offline? In this case, the new data can’t reach the portal and the local and portal data
are out-of-sync. In this scenario, the app has the new data while the portal has the old data. The app’s data in
this synchronization state is called the dirty version. Put away your soap and washcloth. We don’t recommend
giving your mobile device a bath. In this context, dirty means that the data should be synchronized with the
portal as soon as possible. When the Screenlet synchronizes the dirty version, it removes the dirty flag from
the local data.

There are other complicated synchronization states. For example, portal data may change while out-of-
sync with a Screenlet’s local data. To avoid data loss, the local data can’t overwrite the portal data, and vice
versa. In this situation, the synchronization process produces a conflict when it runs. The following diagram
illustrates this.

The developer needs to resolve the conflict by choosing the local data or portal data. Synchronization
conflicts have four possible resolutions:

835

Figure 76.13: The updated data is said to be dirty when the Screenlet can’t send it to the portal.

1. Keep the local version:The Screenlet overwrites the portal data with the local data. This results in the
local cache and the portal having the same version of the data (Version 2 in the above diagram).

2. Keep remote version:The Screenlet overwrites the local data with the portal data. This results in the
local cache and the portal having the same version of the data (Version 3 in the above diagram).

3. Discard:The Screenlet removes the local data, and the portal data isn’t overwritten.

4. Ignore:TheScreenlet doesn’t change any data. The next synchronization event reproduces the conflict.

Great! Now that you know how offline mode works, you’re ready to put it to use.

Related Topics

Using Offline Mode in Android
Using Offline Mode in iOS
Using Screenlets in Android Apps
Using Screenlets in iOS Apps

836

Figure 76.14: The dirty flag is removed once synchronization completes.

76.7 Creating Android Screenlets

The Screenlets that come with Liferay Screens cover common use cases for mobile apps that use Liferay. They
authenticate users, interact with Dynamic Data Lists, view assets, andmore. However, what if there’s no
Screenlet for your specific use case? No sweat! You can create your own. Extensibility is a key strength of
Liferay Screens.

This tutorial explains how to create your own Screenlets. As an example, it references code from the
sample Add Bookmark Screenlet, that saves bookmarks to Liferay’s Bookmarks portlet.

In general, you use the following steps to create Screenlets:

1. Determine your Screenlet’s location. Where you create your Screenlet depends on how you’ll use it.

2. Create the Screenlet’s UI (its View). Although this tutorial presents all the information you need to
create aView for your Screenlet, youmayfirstwant to learn how to create aView. Formore information
on Views in general, see the tutorial on using Views with Screenlets.

3. Create the Screenlet’s Interactor. Interactors are Screenlet components that make server calls.

837

https://github.com/liferay/liferay-screens/tree/master/android/samples/addbookmarkscreenlet

Figure 76.15: Users have changed the data independently in the app and in the portal, causing a synchronization conflict.

4. Define theScreenlet’s attributes. These are theXMLattributes the appdeveloper can setwhen inserting
theScreenlet’sXML.Theseattributes control aspects of theScreenlet’s behavior. You’ll add functionality
to these attributes in the Screenlet class.

5. Create the Screenlet class. The Screenlet class is the Screenlet’s central component. It controls the
Screenlet’s behavior and is the component the app developer interacts with when inserting a Screenlet.

To understand the components thatmake up a Screenlet, you should first learn the architecture of Liferay
Screens for Android.

Without further ado, let the Screenlet creation begin!

Determining Your Screenlet's Location

Where you should create your Screenlet depends on how you plan to use it. If you don’t plan to reuse your
Screenlet in another app or don’t want to redistribute it, create it in a new package inside your Android app
project. This lets you reference and access Liferay Screens’s core, in addition to all the View Sets youmay
have imported.

If you want to reuse your Screenlet in another app, create it in a new Android applicationmodule. The
tutorial Packaging Android Screenlets explains how to do this. When your Screenlet’s project is in place, you
can start by creating the Screenlet’s UI.

838

Creating the Screenlet's UI

In Liferay Screens for Android, Screenlet UIs are called Views. Every Screenlet must have at least one View. A
View consists of the following components:

• The ViewModel interface: defines the methods the View needs to update the UI.

• A layout XML file: defines the UI components that the View presents to the end user.

• A View class: renders the UI, handles user interactions, and communicates with the Screenlet class.
The View class implements the ViewModel interface.

• The Screenlet class: Although technically part of a View, the Screenlet class depends on all the other
Screenlet components. You therefore won’t create the Screenlet class until the end of this tutorial.

The first items to create for a Screenlet’s View are its ViewModel interface and layout. The following
steps explain how:

1. To define the methods that every Screenlet’s View class must implement, Screens provides the
BaseViewModel interface. Your View Model interface should extend BaseViewModel to define any
additional methods needed by your Screenlet. This includes any getters and setters for the attributes
you want to use.

For example, Add Bookmark Screenlet needs attributes for each bookmark’s URL and title. Its View
Model interface, AddBookmarkViewModel, therefore, defines getters and setters for these attributes:

public interface AddBookmarkViewModel extends BaseViewModel {

String getURL();

void setURL(String value);

String getTitle();

void setTitle(String value);

}

2. Define your Screenlet’s UI by writing a standard Android layout XML file. The layout’s root element
should be the fully qualified class name of your Screenlet’s View class. You’ll create that class in the
next step, but determine its name now and name the layout’s root element after it. Finally, add any UI
elements your View needs.

For example,AddBookmarkScreenlet’s layout needs two text fields: one for entering a bookmark’sURL
and one for entering its title. The layout also needs a button for saving the bookmark. The Screenlet
defines this UI in its bookmark_default.xml layout file:

<?xml version="1.0" encoding="utf-8"?>

<com.your.package.AddBookmarkView

xmlns:android="http://schemas.android.com/apk/res/android"

style="@style/default_screenlet">

<EditText

android:id="@+id/url"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginBottom="15dp"

android:hint="URL Address"

android:inputType="textUri"/>

839

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/view/BaseViewModel.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/res/layout/bookmark_default.xml

<EditText

android:id="@+id/title"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginBottom="15dp"

android:hint="Title"/>

<Button

android:id="@+id/add_button"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="Add Bookmark"/>

</com.your.package.AddBookmarkView>

Next, you’ll create your Screenlet’s View class.

Creating the Screenlet's View Class

Your Screenlet needs a View class to support the layout you just created. This class must extend an Android
layout class (e.g. LinearLayout, ListView), implement your ViewModel interface, and implement a separate
listener interface to handle user actions. Follow these steps to create this View class:

1. Create a View class that extends the Android layout class appropriate for your Screenlet’s UI. For
example, Add Bookmark Screenlet renders its UI components in a single column, so its View class
(AddBookmarkView) extendsAndroid’s LinearLayout. YourViewclass’s constructors should call theparent
layout class’s constructors. For example, AddBookmarkView’s constructors call those of LinearLayout:

public AddBookmarkView(Context context) {

super(context);

}

public AddBookmarkView(Context context, AttributeSet attributes) {

super(context, attributes);

}

public AddBookmarkView(Context context, AttributeSet attributes, int defaultStyle) {

super(context, attributes, defaultStyle);

}

2. Add instance variables for yourViewModel’s attributes and BaseScreenlet. For example,AddBookmark
Screenlet needs instance variables for a bookmark’s URL and title. Because all Screenlet classes extend
the BaseScreenlet class, a BaseScreenlet variable in your View class ensures that your View always has
a reference to the Screenlet. For example, here are AddBookmarkView’s instance variables:

private EditText urlText;

private EditText titleText;

private BaseScreenlet screenlet;

3. Implement your ViewModel interface. Implement your ViewModel’s getter and setter methods to
get and set the inner value of each component, respectively. For example, here’s AddBookmarkView’s
implementation of AddBookmarkViewModel:

840

https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/view/AddBookmarkView.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/view/AddBookmarkView.java
https://developer.android.com/reference/android/widget/LinearLayout.html
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/view/AddBookmarkView.java#L20-L30
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/BaseScreenlet.java

public String getURL() {

return urlText.getText().toString();

}

public void setURL(String value) {

urlText.setText(value);

}

public String getTitle() {

return titleText.getText().toString();

}

public void setTitle(String value) {

titleText.setText(value);

}

4. Implement a listener interface to handle user actions in the Screenlet. For example, Add Bookmark
Screenlet must detect when the user presses the save button. The AddBookmarkView class enables this by
implementing Android’s View.OnClickListener interface, which defines a single method: onClick. The
Screenlet’s onClick implementation gets a reference to the Screenlet and calls its performUserAction()
method (you’ll create performUserAction() in the Screenlet class shortly):

public void onClick(View v) {

AddBookmarkScreenlet screenlet = (AddBookmarkScreenlet) getParent();

screenlet.performUserAction();

}

You can set the listener to the appropriate UI element by implementing an onFinishInflate()method.
This method should also retrieve and assign any other UI elements from your layout. For example, the
onFinishInflate() implementation in AddBookmarkView retrieves the URL and title attributes from the
layout, and sets them to the urlText and titleText variables, respectively. This method then retrieves
the button from the layout and sets this View class as the button’s click listener:

protected void onFinishInflate() {

super.onFinishInflate();

urlText = (EditText) findViewById(R.id.url);

titleText = (EditText) findViewById(R.id.title_bookmark);

Button addButton = (Button) findViewById(R.id.add_button);

addButton.setOnClickListener(this);

}

5. Implement the BaseViewModel interface’s methods: showStartOperation, showFinishOperation,
showFailedOperation, getScreenlet, and setScreenlet. In the show*Operation methods, you can log
what happens in your Screenlet when the server operation starts, finishes successfully, or fails,
respectively. In the getScreenlet and setScreenletmethods, youmust get and set the BaseScreenlet
variable, respectively. This ensures that the View always has a Screenlet reference. For example, Add
Bookmark Screenlet implements these methods as follows:

@Override

public void showStartOperation(String actionName) {

}

@Override

841

https://developer.android.com/reference/android/view/View.OnClickListener.html
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/view/BaseViewModel.java

public void showFinishOperation(String actionName) {

LiferayLogger.i("Add bookmark successful");

}

@Override

public void showFailedOperation(String actionName, Exception e) {

LiferayLogger.e("Could not add bookmark", e);

}

@Override

public BaseScreenlet getScreenlet() {

return screenlet;

}

@Override

public void setScreenlet(BaseScreenlet screenlet) {

this.screenlet = screenlet;

}

Note that although youmust implement the show[something]Operationmethods, you can leave their
implementations empty if you don’t need to take any specific action.

Click here to see the complete example AddBookmarkView class.
Great! Your View class is finished. Now you’re ready to create your Screenlet’s Interactor class.

Creating the Screenlet's Interactor

A Screenlet’s Interactor makes the service call to retrieve the data you need from a Liferay instance. An
Interactor is made up of several components:

1. The event class. This class lets you handle communication between the Screenlet’s components via
event objects that contain the server call’s results. Screens uses the EventBus library for this. Screens
supplies the BasicEvent class and BaseListEvent class for communicating JSONObject and JSONArray

results within Screenlets, respectively. You can create your own event classes by extending BasicEvent.
You should create your own event classes when youmust communicate objects other than JSONObject

or JSONArray. The example Add Bookmark Screenlet only needs to communicate JSONObject instances,
so it uses BasicEvent.

2. The listener interface. This defines the methods the app developer needs to respond to the Screenlet’s
behavior. For example, Login Screenlet’s listener defines the onLoginSuccess and onLoginFailuremeth-
ods. Screens calls these methods when login succeeds or fails, respectively. By implementing these
methods in the activity or fragment class that contains the Screenlet, the app developer can respond to
login success and failure. Similarly, the example Add Bookmark Screenlet’s listener interface defines
twomethods: one for responding to the Screenlet’s failure to add a bookmark and one for responding
to its success to add a bookmark:

public interface AddBookmarkListener {

void onAddBookmarkFailure(Exception exception);

void onAddBookmarkSuccess();

}

3. The Interactor class. This class must extend Screens’s BaseRemoteInteractor with your listener and
event as type arguments. The listener lets the Interactor class send the server call’s results to any

842

https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/view/AddBookmarkView.java
https://greenrobot.github.io/EventBus/
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/event/BasicEvent.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/BaseListEvent.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/interactor/AddBookmarkListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/BaseRemoteInteractor.java

classes that implement the listener. In the implementation of the method that makes the server call,
the executemethod, youmust use the Mobile SDK to make an asynchronous service call. This means
youmust get a session and then make the server call. You make the server call by creating an instance
of the Mobile SDK service (e.g., BookmarksEntryService) that can call the Liferay service you need and
thenmaking the call. The Interactor class must also process the event object that contains the call’s
results and then notify the listener of those results. You do this by implementing the onSuccess and
onFailuremethods to invoke the corresponding getListener()methods.

For example, the AddBookmarkInteractor class is Add Bookmark Screenlet’s Interactor class. This class
implements the executemethod, which adds a bookmark to a folder in a Liferay instance’s Bookmarks
portlet. This method first validates the bookmark’s URL and folder. It then calls the getJSONObject
method to add the bookmark, and concludes by returning a new BasicEvent object created from the
JSONObject. The if statement in the getJSONObjectmethod checks the Liferay version so it can create
the appropriate BookmarksEntryService instance needed to make the server call. Regardless of the
Liferay version, the getSession()method retrieves the existing session created by Login Screenlet upon
successful login. The session’s addEntrymethodmakes the server call. The Screenlet calls the onSuccess
or onFailuremethod to notify the listener of the server call’s success or failure, respectively. In either
case, the BasicEvent object contains the server call’s results. Since this Screenlet doesn’t retrieve
anything from the server, however, there’s no need to process the BasicEvent object in the onSuccess
method; calling the listener’s onAddBookmarkSuccessmethod is sufficient. Here’s the complete code for
AddBookmarkInteractor:

public class AddBookmarkInteractor extends BaseRemoteInteractor<AddBookmarkListener, BasicEvent> {

@Override

public BasicEvent execute(Object[] args) throws Exception {

String url = (String) args[0];

String title = (String) args[1];

long folderId = (long) args[2];

validate(url, folderId);

JSONObject jsonObject = getJSONObject(url, title, folderId);

return new BasicEvent(jsonObject);

}

@Override

public void onSuccess(BasicEvent event) throws Exception {

getListener().onAddBookmarkSuccess();

}

@Override

public void onFailure(BasicEvent event) {

getListener().onAddBookmarkFailure(event.getException());

}

private void validate(String url, long folderId) {

if (url == null || url.isEmpty() || !URLUtil.isValidUrl(url)) {

throw new IllegalArgumentException("Invalid url");

} else if (folderId == 0) {

throw new IllegalArgumentException("folderId not set");

}

}

@NonNull

private JSONObject getJSONObject(String url, String title, long folderId) throws Exception {

if (LiferayServerContext.isLiferay7()) {

return new BookmarksEntryService(getSession()).addEntry(LiferayServerContext.getGroupId(),

folderId, title, url, "", null);

} else {

843

https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/interactor/AddBookmarkInteractor.java

return new com.liferay.mobile.android.v62.bookmarksentry.BookmarksEntryService(

getSession()).addEntry(LiferayServerContext.getGroupId(), folderId, title, url, "", null);

}

}

}

Sweetness! Your Screenlet’s Interactor is done. Next, you’ll create the Screenlet class.

Defining Screenlet Attributes in Your App

Before creating the Screenlet class, you should define its attributes. These are the attributes the app developer
can set when inserting the Screenlet’s XML in an activity or fragment layout. For example, to use Login
Screenlet, the app developer could insert the following Login Screenlet XML in an activity or fragment layout:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:basicAuthMethod="email"

app:layoutId="@layout/login_default"

/>

Theapp developer can set the liferay attributes basicAuthMethod and layoutId to set Login Screenlet’s au-
thenticationmethod andView, respectively. The Screenlet class reads these settings to enable the appropriate
functionality.

When creating a Screenlet, you can define the attributes you want to make available to app developers.
You do this in an XML file inside your Android project’s res/values directory. For example, Add Bookmark
Screenlet’s attributes are defined in the Screenlet’s bookmark_attrs.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<declare-styleable name="AddBookmarkScreenlet">

<attr name="layoutId"/>

<attr name="folderId"/>

<attr name="defaultTitle" format="string"/>

</declare-styleable>

</resources>

This defines the attributes layoutId, folderId, and defaultTitle. Add Bookmark Screenlet’s Screenlet
class adds functionality to these attributes. Here’s a brief description of what each does:

• layoutId: Sets the View that displays the Screenlet. This functions the same as the layoutId attribute
in Liferay’s existing Screenlets.

• folderId: Sets the folder ID in the Bookmarks portlet where the Screenlet adds bookmarks.

• defaultTitle: Sets each Bookmark’s default title.

Now that you’ve defined your Screenlet’s attributes, you’re ready to create the Screenlet class.

844

https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/res/values/bookmark_attrs.xml

Creating the Screenlet Class

The Screenlet class is the central hub of a Screenlet. It contains attributes for configuring the Screenlet’s
behavior, a reference to the Screenlet’s View,methods for invoking Interactor operations, andmore. When
using a Screenlet, app developers primarily interact with its Screenlet class. In other words, if a Screenlet
were to become self-aware, it would happen in its Screenlet class (though we’re reasonably confident this
won’t happen).

To make all this possible, your Screenlet class must implement the Interactor’s listener interface and
extend Screens’s BaseScreenlet class with the ViewModel interface and Interactor class as type arguments.
Your Screenlet class should also contain instance variables and accompanying getters and setters for the
listener and any other attributes that the app developer needs to access. For constructors, you can call
BaseScreenlet’s constructors.

For example, Add Bookmark Screenlet’s Screenlet class extends BaseScreenlet<AddBookmarkViewModel,
AddBookmarkInteractor> and implements AddBookmarkListener. It also contains instance variables for
AddBookmarkListener and the bookmark’s folder ID, and getters and setters for these variables. Also note the
constructors call BaseScreenlet’s constructors:

public class AddBookmarkScreenlet extends

BaseScreenlet<AddBookmarkViewModel, AddBookmarkInteractor>

implements AddBookmarkListener {

private long folderId;

private AddBookmarkListener listener;

public AddBookmarkScreenlet(Context context) {

super(context);

}

public AddBookmarkScreenlet(Context context, AttributeSet attributes) {

super(context, attributes);

}

public AddBookmarkScreenlet(Context context, AttributeSet attributes, int defaultStyle) {

super(context, attributes, defaultStyle);

}

public long getFolderId() {

return folderId;

}

public void setFolderId(long folderId) {

this.folderId = folderId;

}

public AddBookmarkListener getListener() {

return listener;

}

public void setListener(AddBookmarkListener listener) {

this.listener = listener;

}

...

Next, implement the Screenlet’s listener methods. This lets the Screenlet class receive the server call’s
results and thus act as the listener. These methods should communicate the server call’s results to the View
(via the ViewModel) and any other listener instances (via the Screenlet class’s listener instance). For example,
here are Add Bookmark Screenlet’s listener method implementations:

public void onAddBookmarkSuccess() {

845

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/BaseScreenlet.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/BaseScreenlet.java#L45-L61
https://github.com/liferay/liferay-screens/blob/master/android/samples/addbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/bookmark/AddBookmarkScreenlet.java

getViewModel().showFinishOperation(null);

if (listener != null) {

listener.onAddBookmarkSuccess();

}

}

public void onAddBookmarkFailure(Exception e) {

getViewModel().showFailedOperation(null, e);

if (listener != null) {

listener.onAddBookmarkFailure(e);

}

}

These methods are called when the server call succeeds or fails, respectively. They first use
getViewModel() to get a ViewModel instance and then call the BaseViewModelmethods showFinishOperation
and showFailedOperation to send the server call’s results to the View. The showFinishOperation call sends null
because a successful server call to add a bookmark doesn’t return any objects. If a successful server call in your
Screenlet returns any objects you need to display, then you should send them in this showFinishOperation
call. The showFailedOperation call sends the Exception that results from a failed server call to the View.
This lets you display an informative error to the user. The onAddBookmarkSuccess and onAddBookmarkFailure

implementations then call the listener instance’s method of the same name. This sends the server call’s
results to any other classes that implement the listener interface, such as the activity or fragment that uses
the Screenlet.

Next, youmust implement BaseScreenlet’s abstract methods:

• createScreenletView: Reads the app developer’s Screenlet attribute settings, and inflates the View.
You’ll use an Android TypedArray to retrieve the attribute settings. You should set the attribute values
to the appropriate variables, and set any default values you need to display via a ViewModel reference.

For example, Add Bookmark Screenlet’s createScreenletView method gets the app developer’s at-
tribute settings via a TypedArray. This includes the layoutId, defaultTitle, and folderId attributes.
The layoutId is used to inflate a View reference (view), which is then cast to a View Model instance
(viewModel). The View Model instance’s setTitlemethod is then called with defaultTitle to set the
bookmark’s default title. Themethod concludes by returning the View reference.

@Override

protected View createScreenletView(Context context, AttributeSet attributes) {

TypedArray typedArray = context.getTheme()

.obtainStyledAttributes(attributes, R.styleable.AddBookmarkScreenlet, 0, 0);

int layoutId = typedArray.getResourceId(R.styleable.AddBookmarkScreenlet_layoutId, 0);

View view = LayoutInflater.from(context).inflate(layoutId, null);

String defaultTitle = typedArray.getString(R.styleable.AddBookmarkScreenlet_defaultTitle);

folderId = castToLong(typedArray.getString(R.styleable.AddBookmarkScreenlet_folderId));

typedArray.recycle();

AddBookmarkViewModel viewModel = (AddBookmarkViewModel) view;

viewModel.setTitle(defaultTitle);

return view;

}

846

https://developer.android.com/reference/android/content/res/TypedArray.html

• createInteractor: Instantiates the Screenlet’s Interactor. For example, Add Bookmark Screenlet’s
createInteractormethod calls the AddBookmarkInteractor constructor to create a new instance of this
Interactor:

@Override

protected AddBookmarkInteractor createInteractor(String actionName) {

return new AddBookmarkInteractor(getScreenletId());

}

• onUserAction: Retrieves any data the user has entered in the View, and starts the Screenlet’s server
operation via an Interactor instance. If your Screenlet doesn’t take user input, this method only needs
to do the latter.

The example Add Bookmark Screenlet takes user input (the bookmark’s URL and title), so its
onUserAction method must retrieve this data. This method does so via a View Model instance it
retrieves with the getViewModel()method. The onUserActionmethod starts the server operation by
calling the Interactor’s startmethod with the user input. Note that the Interactor inherits the start
method from the BaseInteractor class. Invoking the startmethod causes the Interactor’s execute
method to run in a background thread:

@Override

protected void onUserAction(String userActionName, AddBookmarkInteractor interactor, Object... args) {

AddBookmarkViewModel viewModel = getViewModel();

String url = viewModel.getURL();

String title = viewModel.getTitle();

interactor.start(url, title, folderId);

}

Nice! Your Screenlet is finished! You can now use it the same way you would any other. If you created
your Screenlet in its own project, you can also package and distribute it via the Screens project, JCenter, or
Maven Central.

To finish the Add Bookmark Screenlet example, the following section shows you how to use this Screenlet.
It also shows how you can set default attribute values in an app’s server_context.xml file. Although youmay
not need to do this when using your Screenlets, it might come in handy on your way to becoming amaster of
Screenlets.

Using Your Screenlet

To use any Screenlet, youmust follow these general steps:

1. Insert the Screenlet’s XML in the activity or fragment layout you want the Screenlet to appear in. You
can fine-tune the Screenlet’s behavior by setting the Screenlet XML’s attributes.

2. Implement the Screenlet’s listener in the activity or fragment class.

As an example of this, the Liferay Screens Test App uses Add Bookmark Screenlet. You can find the
following Add Bookmark Screenlet XML in the Test App’s add_bookmark.xml layout:

<com.liferay.mobile.screens.bookmark.AddBookmarkScreenlet

android:id="@+id/bookmark_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:folderId="@string/bookmark_folder"

app:layoutId="@layout/bookmark_default" />

847

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/BaseInteractor.java
https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/layout/add_bookmark.xml

Note that the layout specified by app:layoutId (bookmark_default)matches the layout file of the Screenlet’s
View (bookmark_default.xml). This is how you specify the View that displays your Screenlet. For example, if
Add Bookmark Screenlet had another View defined in a layout file named bookmark_awesome.xml, you could
use that layout by specifying @layout/bookmark_awesome as the app:layoutId attribute’s value.

Also note that the app:folderId attribute specifies @string/bookmark_folder as the bookmark folder’s ID.
This is an alternative way of specifying an attribute’s value. Instead of specifying the value directly, the Test
App specifies the value in its server_context.xml file:

...

<string name="bookmark_folder">20622</string>

...

This name attribute’s value, bookmark_folder is then used in the Screenlet XML to set the app:folderId
attribute to 20622.

Great! Now you know how to use the Screenlets you create. You also know a convenient way to specify
default values for a Screenlet’s attributes.

Related Topics

Using Screenlets in Android Apps
Architecture of Liferay Screens for Android
Creating Android Views
Creating iOS Screenlets

76.8 Creating Android List Screenlets
It’s very common for mobile apps to display lists. Liferay Screens lets you display asset lists and DDL lists in
your Android app by using Asset List Screenlet and DDL List Screenlet, respectively. Screens also includes
list Screenlets for displaying lists of other Liferay entities like web content articles, images, andmore. The
Screenlet reference documentation lists all the Screenlets included with Liferay Screens. If there’s not a list
Screenlet for the entity you want to display in a list, youmust create your own. A list Screenlet can display
any entity from a Liferay instance. For example, you can create a list Screenlet that displays standard Liferay
entities like User, or custom entities from custom Liferay apps.

This tutorial uses code from the sample Bookmark List Screenlet to show you how to create your own list
Screenlet. This Screenlet displays a list of bookmarks from Liferay’s Bookmarks portlet. You can find this
Screenlet’s complete code here in GitHub.

Note that because this tutorial focuses on creating a list Screenlet, it doesn’t explain general Screenlet
concepts and components. Before beginning, you should therefore read the following tutorials:

• Screens architecture tutorial
• Basic Screenlet creation tutorial

You’ll create the list Screenlet by following these steps:

1. Creating the Model Class
2. Creating the View
3. Creating the Interactor
4. Creating the Screenlet Class

First though, you should understand how pagination works with list Screenlets.

848

https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/values/server_context.xml#L23-L24
https://github.com/liferay/liferay-screens/tree/master/android/samples/listbookmarkscreenlet

Pagination

To ensure that users can scroll smoothly through large lists of items, list Screenlets support fluent pagination.
Support for this is built into the list Screenlet framework. You’ll see this as you construct your list Screenlet.

Now you’re ready to begin!

Creating the Model Class

Entities come back from Liferay in JSON. To work with these results efficiently in your app, youmust convert
them tomodel objects that represent the entity in Liferay. Although Screens’s BaseListInteractor transforms
the JSON entities into Map objects for you, you still must convert these into proper entity objects for use in
your app. You’ll do this via a model class.

For example, Bookmark List Screenlet’s model class (Bookmark) creates Bookmark objects that contain a
bookmark’s URL and other data. To ensure quick access to the URL, the constructor that takes a Map<String,
Object> extracts it from the Map and sets it to the url variable. To allow access to any other data, the same
constructor sets the entire Map to the values variable. Besides the getters and setter, the rest of this class
implements Android’s Parcelable interface:

import android.os.Parcel;

import android.os.Parcelable;

import java.util.Map;

public class Bookmark implements Parcelable {

private String url;

private Map values;

public static final Creator<Bookmark> CREATOR = new Creator<Bookmark>() {

@Override

public Bookmark createFromParcel(Parcel in) {

return new Bookmark(in);

}

@Override

public Bookmark[] newArray(int size) {

return new Bookmark[size];

}

};

public Bookmark() {

super();

}

protected Bookmark(Parcel in) {

url = in.readString();

}

public Bookmark(Map<String, Object> stringObjectMap) {

url = (String) stringObjectMap.get("url");

values = stringObjectMap;

}

@Override

public void writeToParcel(Parcel dest, int flags) {

dest.writeString(url);

}

@Override

public int describeContents() {

return 0;

}

849

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/BaseListInteractor.java
https://developer.android.com/reference/android/os/Parcelable.html

public String getUrl() {

return url;

}

public Map getValues() {

return values;

}

public void setValues(Map values) {

this.values = values;

}

}

Now that you have your model class, you can create your Screenlet’s View.

Creating the Screenlet's View

Recall from the basic Screenlet creation tutorial that a View defines a Screenlet’s UI. To accommodate its
list, a list Screenlet’s View is constructed a bit differently than that of a non-list Screenlet. To create a List
Screenlet’s View, you’ll create the following components:

1. Row Layout: the layout for each list row.
2. Adapter Class: an Android adapter class that populates each list row with data.
3. View Class: the class that controls the View. This class serves the same purpose in list Screenlets as it
does in non-list Screenlets.

4. Main Layout: the layout for the list as a whole. Note this is different from the row layout, which defines
the UI for individual rows.

First, you’ll create the row layout.

Creating the Row Layout

Before constructing the rest of the View, you should first define the layout to use for each row in the
list. For example, Bookmark List Screenlet needs to display a bookmark in each row. Its row layout
(res/layout/bookmark_row.xml) is therefore a LinearLayout containing a single TextView that displays the
bookmark’s URL:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

<TextView

android:id="@+id/bookmark_url"

android:layout_width="match_parent"

android:layout_height="wrap_content"/>

</LinearLayout>

As you can see, this example is very simple. Row layouts, however, can be as simple or complex as you
need them to be to display your content.

Next, you’ll create the adapter class.

850

http://developer.android.com/guide/topics/ui/declaring-layout.html#AdapterViews

Creating the Adapter Class

Android adapters fill a layout with content. In the example Bookmark List Screenlet, the layout is the
row layout (bookmark_row.xml) and the content is each list item (a URL). Tomake list scrolling smooth, the
adapter class should use an Android view holder. To make this easier, you can extend the list Screenlet
framework’s BaseListAdapter class with your model class and view holder as type arguments. By extending
BaseListAdapter, your adapter needs only twomethods:

• createViewHolder: instantiates the view holder
• fillHolder: fills in the view holder for each row

Your view holder should also contain variables for any data each row needs to display. The view holder
must assign these variables to the corresponding row layout elements, and set the appropriate data to them.

For example, Bookmark List Screenlet’s adapter class (BookmarkAdapter) extends BaseListAdapterwith
Bookmark and BookmarkAdapter.BookmarkViewHolder as type arguments. This class’s view holder is an inner
class that extends BaseListAdapter’s view holder. Since Bookmark List Screenlet only needs to display a URL
in each row, the view holder only needs one variable: url. The view holder’s constructor assigns the TextView
from bookmark_row.xml to this variable. The bindmethod then sets the bookmark’s URL as the TextView’s text.
The other methods in BookmarkAdapter leverage the view holder. The createViewHoldermethod instantiates
BookmarkViewHolder. The fillHoldermethod calls the view holder’s bindmethod to set the bookmark’s URL
as the url variable’s text:

public class BookmarkAdapter extends BaseListAdapter<Bookmark, BookmarkAdapter.BookmarkViewHolder> {

public BookmarkAdapter(int layoutId, int progressLayoutId, BaseListAdapterListener listener) {

super(layoutId, progressLayoutId, listener);

}

@NonNull

@Override

public BookmarkViewHolder createViewHolder(View view, BaseListAdapterListener listener) {

return new BookmarkAdapter.BookmarkViewHolder(view, listener);

}

@Override

protected void fillHolder(Bookmark entry, BookmarkViewHolder holder) {

holder.bind(entry);

}

public class BookmarkViewHolder extends BaseListAdapter.ViewHolder {

private final TextView url;

public BookmarkViewHolder(View view, BaseListAdapterListener listener) {

super(view, listener);

url = (TextView) view.findViewById(R.id.bookmark_url);

}

public void bind(Bookmark entry) {

url.setText(entry.getUrl());

}

}

}

Great! Your adapter class is finished. Next, you’ll create the View class.

851

https://developer.android.com/guide/topics/ui/declaring-layout.html#AdapterViews
https://developer.android.com/training/improving-layouts/smooth-scrolling.html#ViewHolder
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListAdapter.java

Creating the View Class

Now that your adapter exists, you can create your list Screenlet’s View class. Recall from the basic Screenlet
creation tutorial that the View class is the central hub of any Screenlet’s UI. It renders the UI, handles user
interactions, and communicates with the Screenlet class. The list Screenlet framework provides most of this
functionality for you via the BaseListScreenletView class. Your View class must extend this class to provide
your row layout ID and an instance of your adapter. You’ll do this by overriding BaseListScreenletView’s
getItemLayoutId and createListAdaptermethods. Note that in many cases this is the only custom function-
ality your View class needs. If it needs more, you can provide it by creating newmethods or overriding other
BaseListScreenletViewmethods.

Create your View class by extending BaseListScreenletView with your model class, view holder, and
adapter as type arguments. This is required for your View class to represent your model objects in a view
holder, inside an adapter. For example, Bookmark List Screenlet’s View class (BookmarkListView) must repre-
sent Bookmark instances in a BookmarkViewHolder inside a BookmarkAdapter. The BookmarkListView class must
therefore extend BaseListScreenletView parameterizedwith Bookmark, BookmarkAdapter.BookmarkViewHolder,
and BookmarkAdapter. Besides overriding createListAdapter to return a BookmarkAdapter instance, the only
other functionality that this View class needs to support is to get the layout for each row in the list. The
overridden getItemLayoutIdmethod does this by returning the row layout bookmark_row:

import android.content.Context;

import android.util.AttributeSet;

import com.liferay.mobile.screens.base.list.BaseListScreenletView;

public class BookmarkListView

extends BaseListScreenletView<Bookmark, BookmarkAdapter.BookmarkViewHolder, BookmarkAdapter> {

public BookmarkListView(Context context) {

super(context);

}

public BookmarkListView(Context context, AttributeSet attributes) {

super(context, attributes);

}

public BookmarkListView(Context context, AttributeSet attributes, int defaultStyle) {

super(context, attributes, defaultStyle);

}

@Override

protected BookmarkAdapter createListAdapter(int itemLayoutId, int itemProgressLayoutId) {

return new BookmarkAdapter(itemLayoutId, itemProgressLayoutId, this);

}

@Override

protected int getItemLayoutId() {

return R.layout.bookmark_row;

}

}

Next, you’ll create your View’s main layout.

Creating the View's Main Layout

Although you already created a layout for your list rows, youmust still create a layout to define the list as a
whole. This layout must contain:

• The View class’s fully qualified name as the layout’s first element.

852

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListScreenletView.java

• An Android RecyclerView to let your app efficiently scroll through a potentially large list of items.
• An Android ProgressBar to indicate progress when loading the list.

Apart from the View class and styling, this layout’s code is the same for all list Screenlets. For example,
here’s Bookmark List Screenlet’s layout res/layout/list_bookmarks.xml:

<com.liferay.mobile.screens.listbookmark.BookmarkListView

xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/liferay_list_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent">

<ProgressBar

android:id="@+id/liferay_progress"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_gravity="center"

android:visibility="gone"/>

<android.support.v7.widget.RecyclerView

android:id="@+id/liferay_recycler_list"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:visibility="gone"/>

</com.liferay.mobile.screens.listbookmark.BookmarkListView>

Warning:The android:id values in your View’s layout XMLmust exactlymatch the ones shown here.
These values are hardcoded into the Screens framework and changing themwill cause your app to crash.

Great job! Your View is finished. Next, you’ll create your Screenlet’s Interactor.

Creating the Screenlet's Interactor

Recall from the basic Screenlet creation tutorial that Interactors retrieve and process a server call’s results.
Also recall that the following components make up an Interactor:

1. Event
2. Listener
3. Interactor Class

These components perform the same basic functions in list Screenlets as they do in non-list Screenlets.
Creating them, however, is a bit different. Each of the following sections show you how to create one of these
components. First, you’ll create the event.

Creating the Event

Screens uses the EventBus library to handle communication within Screenlets. Screenlet components
therefore communicate with each other by using event classes that contain the server call’s results. Your list
Screenlet’s event classmust extend the ListEvent class parameterizedwith yourmodel class. Your event class
should also contain a private instance variable for the model class, a constructor that sets this variable, and a
no-argument constructor that calls the superclass constructor. For example, Bookmark List Screenlet’s event
class (BookmarkEvent) communicates Bookmark objects. It therefore extends ListEventwith Bookmark as a type
argument, and defines a private Bookmark variable that its BookmarkEvent(Bookmark bookmark) constructor
sets:

853

http://developer.android.com/training/material/lists-cards.html#RecyclerView
https://developer.android.com/reference/android/widget/ProgressBar.html
http://greenrobot.org/eventbus/
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/ListEvent.java

public class BookmarkEvent extends ListEvent<Bookmark> {

private Bookmark bookmark;

public BookmarkEvent() {

super();

}

public BookmarkEvent(Bookmark bookmark) {

this.bookmark = bookmark;

}

...

You must also implement ListEvent’s abstract methods in your event class. Note that these methods
support offline mode. Although these methods are briefly described here, supporting offline mode in your
Screenlets is addressed in detail in a separate tutorial.

• getListKey: returns the ID for the cache. This ID is typically the data each list rowdisplays. For example,
the getListKeymethod in BookmarkEvent returns the bookmark’s URL:

@Override

public String getListKey() {

return bookmark.getUrl();

}

• getModel: unwraps the model entity to the cache by returning the model class instance. For example,
the getModelmethod in BookmarkEventmethod returns the bookmark:

@Override

public Bookmark getModel() {

return bookmark;

}

Next, you’ll create your Screenlet’s listener.

Creating the Listener

Recall that listeners let the app developer respond to events that occur in Screenlets. For example, an app
developer using Login Screenlet in an activity must implement LoginListener in that activity to respond to
login success or failure. When creating a list Screenlet, however, you don’t have to create a separate listener.
Developers can use your list Screenlet in an activity or fragment by implementing the BaseListListener
interface parameterized with your model class. For example, to use Bookmark List Screenlet in an activity,
an app developer’s activity declaration could look like this:

public class BookmarkListActivity extends AppCompatActivity

implements BaseListListener<Bookmark> {...

The BaseListListener interface defines the followingmethods that the app developer can implement in
their activity or fragment:

• void onListPageFailed(int startRow, Exception e): Responds to the Screenlet’s failure to retrieve
entities from the server.

• void onListPageReceived(int startRow, int endRow, List<E> entries, int rowCount): Responds to
the Screenlet’s success in retrieving entities from the server.

854

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java

• void onListItemSelected(E element, View view): Responds to a user selection in the list.

If thesemethodsmeet your list Screenlet’s needs, then you canmove on to the next section in this tutorial.
If you want to let app developers respond to more actions, however, you must create your own listener
that extends BaseListListener parameterized with your model class. For example, Bookmark List Screenlet
contains such a listener: BookmarkListListener. This listener defines a single method that notifies the app
developer when the Interactor is called:

public interface BookmarkListListener extends BaseListListener<Bookmark> {

void interactorCalled();

}

Next, you’ll create the Interactor class.

Creating the Interactor Class

Recall that as an Interactor’s central component, the Interactor classmakes the service call to retrieve entities
from Liferay DXP, and processes the results of that call. The list Screenlet framework’s BaseListInteractor
class provides most of the functionality that Interactor classes in list Screenlets require. You must,
however, extend BaseListInteractor to make your service calls and handle their results via your model
and event classes. Your Interactor class must therefore extend BaseListInteractor, parameterized
with BaseListInteractorListener<YourModelClass> and your event class. For example, Bookmark List
Screenlet’s Interactor class, BookmarkListInteractor, extends BaseListInteractor parameterized with
BaseListInteractorListener<Bookmark> and BookmarkEvent:

public class BookmarkListInteractor extends

BaseListInteractor<BaseListInteractorListener<Bookmark>, BookmarkEvent> {...

Your Interactor must also override the methods needed to make the server call and process the results:

• getPageRowsRequest: Retrieves the specified page of entities. In the example BookmarkListInteractor,
this method first uses the args parameter to retrieve the ID of the folder to retrieve bookmarks
from. It then sets the comparator (more on this shortly) if the app developer sets one when insert-
ing the Screenlet XML in a fragment or activity. The getPageRowsRequestmethod finishes by calling
BookmarksEntryService’s getEntriesmethod to retrieve a page of bookmarks. Note that the service call,
like the service call in the basic Screenlet creation tutorial, uses LiferayServerContext.isLiferay7() to
check the portal version to make sure the correct service instance is used. This isn’t required if you
only plan to use your Screenlet with one portal version. Also note that the groupId variable used to
make the service calls isn’t set anywhere in getPageRowsRequest or BookmarkListInteractor. Interac-
tors that extend BaseListInteractor, like BookmarkListInteractor, inherit this variable via the Screens
framework. You’ll set it when you create the Screenlet class. Here’s BookmarkListInteractor’s complete
getPageRowsRequestmethod:

@Override

protected JSONArray getPageRowsRequest(Query query, Object... args) throws Exception {

long folderId = (long) args[0];

if (args[1] != null) {

query.setComparator((String) args[1]);

}

if (LiferayServerContext.isLiferay7()) {

return new BookmarksEntryService(getSession()).getEntries(groupId, folderId,

query.getStartRow(), query.getEndRow(), query.getComparatorJSONWrapper());

855

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/BaseListInteractor.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/interactor/BaseListInteractor.java

} else {

return new com.liferay.mobile.android.v62.bookmarksentry.BookmarksEntryService(

getSession()).getEntries(groupId, folderId, query.getStartRow(),

query.getEndRow(), query.getComparatorJSONWrapper());

}

}

Youmight now be asking yourself what a comparator is. A comparator is a class in the Liferay DXP
instance that sorts a portlet’s entities. For example, the Bookmarks portlet contains several compara-
tors that can sort entities by different criteria. Click here to see these comparators. Although it’s not
required, you can develop your list Screenlet to use a comparator to sort its entities. Since Bookmark
List Screenlet supports comparators, you’ll see more of this as you progress through this tutorial.

• getPageRowCountRequest: Retrieves the number of entities, to enable pagination. In the example
BookmarkListInteractor, this method first uses the args parameter to get the ID of the folder in which
to count bookmarks. It then calls BookmarksEntryService’s getEntriesCountmethod to retrieve the
number of bookmarks:

@Override

protected Integer getPageRowCountRequest(Object... args) throws Exception {

long folderId = (long) args[0];

if (LiferayServerContext.isLiferay7()) {

return new BookmarksEntryService(getSession()).getEntriesCount(groupId, folderId);

} else {

return new com.liferay.mobile.android.v62.bookmarksentry.BookmarksEntryService(

getSession()).getEntriesCount(groupId, folderId);

}

}

• createEntity: Returns an instance of your event that contains the server call’s results. This method
receives the results as Map<String, Object>, which it uses to instantiate your model class. It then uses
this model instance to create the event object. In the example BookmarkListInteractor, this method
passes the Map<String, Object> to the Bookmark constructor. It then uses the resulting Bookmark to
create and return a BookmarkEvent:

@Override

protected BookmarkEvent createEntity(Map<String, Object> stringObjectMap) {

Bookmark bookmark = new Bookmark(stringObjectMap);

return new BookmarkEvent(bookmark);

}

• getIdFromArgs: a boilerplate method that returns the value of the first object argument as a string.
This serves as a cache key for offline mode:

@Override

protected String getIdFromArgs(Object... args) {

return String.valueOf(args[0]);

}

Youmust implement this method even if you don’t intend to support offline mode in your Screenlet.
Having this method in your Interactor class makes it simpler to add offline mode functionality later.
Supporting offline mode in your Screenlets is addressed in detail in a separate tutorial.

To see the complete BookmarkListInteractor class, click here.
Next, you’ll create the Screenlet class.

856

https://github.com/liferay/liferay-portal/tree/master/modules/apps/collaboration/bookmarks/bookmarks-api/src/main/java/com/liferay/bookmarks/util/comparator
https://github.com/liferay/liferay-screens/blob/master/android/samples/listbookmarkscreenlet/src/main/java/com/liferay/mobile/screens/listbookmark/BookmarkListInteractor.java

Creating the Screenlet Class

Recall from the basic Screenlet creation tutorial that the Screenlet class serves as your Screenlet’s focal point.
It governs the Screenlet’s behavior and is the primary component the app developer interacts with. As with
non-list Screenlets, you should first define any XML attributes that you want to make available to the app
developer. For example, Bookmark List Screenlet defines the following attributes:

• groupId: the ID of the site containing the Bookmarks portlet
• folderId: the ID of the Bookmarks portlet folder to retrieve bookmarks from
• comparator: the name of the comparator to use to sort the bookmarks

The Screenlet defines these attributes in its res/values/bookmark_attrs.xml file:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<declare-styleable name="BookmarkListScreenlet">

<attr name="groupId"/>

<attr name="folderId"/>

<attr format="string" name="comparator"/>

</declare-styleable>

</resources>

Now you’re ready to create your Screenlet class. Because the BaseListScreenlet class provides the basic
functionality for all Screenlet classes in list Screenlets, including methods for pagination and other default
behavior, your Screenlet class must extend BaseListScreenletwith your model class and Interactor as type
arguments.

For example,BookmarkList Screenlet’s Screenlet class–BookmarkListScreenlet–extends BaseListScreenlet
parameterized with Bookmark and BookmarkListInteractor:

public class BookmarkListScreenlet

extends BaseListScreenlet<Bookmark, BookmarkListInteractor> {...

Youmust also create instance variables for the XML attributes that you want to pass to your Interactor.
For example, recall that the request methods in BookmarkListInteractor receive two Object arguments: the
folder ID and the comparator. The BookmarkListScreenlet class must therefore contain variables for these
parameters so it can pass them to the Interactor:

private long folderId;

private String comparator;

For constructors, leverage the superclass constructors. For example, here are BookmarkListScreenlet’s
constructors:

public BookmarkListScreenlet(Context context) {

super(context);

}

public BookmarkListScreenlet(Context context, AttributeSet attrs) {

super(context, attrs);

}

public BookmarkListScreenlet(Context context, AttributeSet attrs, int defStyleAttr) {

super(context, attrs, defStyleAttr);

}

public BookmarkListScreenlet(Context context, AttributeSet attrs, int defStyleAttr,

int defStyleRes) {

super(context, attrs, defStyleAttr, defStyleRes);

}

857

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListScreenlet.java

Now you must implement the errormethod. This is a boilerplate method that uses a listener in the
Screenlet framework to propagate any exception, and the user action that produced it, that occurs during
the service call. This method does this by checking for a listener and then calling its errormethod with the
Exception and userAction:

@Override

public void error(Exception e, String userAction) {

if (getListener() != null) {

getListener().error(e, userAction);

}

}

Next, override the createScreenletViewmethod to read the values of the XML attributes you defined ear-
lier and create the Screenlet’s View. Recall from the basic Screenlet creation tutorial that this method assigns
the attribute values to their corresponding instance variables. For example, the createScreenletViewmethod
in BookmarkListScreenlet assigns the folderId and comparator attribute values to variables of the same name.
This method also sets the local variable groupId. Recall that the Screens framework propagates this variable
to your Interactor. Finish the createScreenletViewmethod by calling the superclass’s createScreenletView
method. This instantiates the View for you:

@Override

protected View createScreenletView(Context context, AttributeSet attributes) {

TypedArray typedArray = context.getTheme().obtainStyledAttributes(attributes,

R.styleable.BookmarkListScreenlet, 0, 0);

groupId = typedArray.getInt(R.styleable.BookmarkListScreenlet_groupId,

(int) LiferayServerContext.getGroupId());

folderId = typedArray.getInt(R.styleable.BookmarkListScreenlet_folderId, 0);

comparator = typedArray.getString(R.styleable.BookmarkListScreenlet_comparator);

typedArray.recycle();

return super.createScreenletView(context, attributes);

}

Next, override the loadRows method to start your Interactor and thereby retrieve the list rows from
the server. This method takes an instance of your Interactor as an argument, which you use to call the
Interactor’s startmethod. Note that the Interactor inherits start from BaseListInteractor. You can also
use the loadRowsmethod to execute any other code that you want to run when the Interactor starts. For
example, the loadRowsmethod in BookmarkListScreenlet first retrieves a listener instance so it can call the
listener’s interactorCalledmethod. It then starts the server operation to retrieve the list rows by calling the
Interactor’s startmethod with folderId and comparator:

@Override

protected void loadRows(BookmarkListInteractor interactor) {

((BookmarkListListener) getListener()).interactorCalled();

interactor.start(folderId, comparator);

}

Note that if your Interactor doesn’t require arguments, then you can pass the startmethod 0 or null.
Calling startwith no arguments, however, causes the server call to fail.

Lastly, override the createInteractor method to instantiate your Interactor. Since that’s all this
method needs to do, call your Interactor’s constructor and return the new instance. For example,
BookmarkListScreenlet’s createInteractormethod returns a new BookmarkListInteractor:

@Override

protected BookmarkListInteractor createInteractor(String actionName) {

return new BookmarkListInteractor();

}

858

You’re done! Your Screenlet is a ready-to-use component that you can use in your app. You can even
package your Screenlet and contribute it to the Screens project, or distribute it in Maven Central or jCenter.

Using the Screenlet

You can now use your new list Screenlet the same way you use any other Screenlet:

1. Insert the Screenlet’s XML in the layout of the activity or fragment you want to use the Screenlet in.
For example, here’s Bookmark List Screenlet’s XML:

<com.liferay.mobile.screens.listbookmark.BookmarkListScreenlet

android:id="@+id/bookmarklist_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:comparator="FULLY_QUALIFIED_COMPARATOR_CLASS"

app:folderId="YOUR_FOLDER_ID"

app:groupId="YOUR_GROUP_ID"

app:layoutId="@layout/list_bookmarks"/>

Note that to set a comparator, you must use its fully qualified class name. For example, to use the
Bookmarks portlet’s EntryURLComparator, set app:comparator in the Screenlet XML as follows:

app:comparator="com.liferay.bookmarks.util.comparator.EntryURLComparator"

2. Implement the Screenlet’s listener in the activity or fragment class. If your list Screenlet doesn’t have
a custom listener, then you can do this by implementing BaseListListener parameterized with your
model class. For example:

public class YourListActivity extends AppCompatActivity

implements BaseListListener<YourModelClass> {...

If you created a custom listener for your list Screenlet, however, then your activity or fragment must
implement it instead. For example, recall that the example Bookmark List Screenlet’s listener is
BookmarkListListener. To use this Screenlet, youmust therefore implement this listener in the class
of the activity or fragment that you want to use the Screenlet in. For example:

public class ListBookmarksActivity extends AppCompatActivity

implements BookmarkListListener {...

See the full example of this here in GitHub.

Well done! Now you know how to create list Screenlets.

Related Topics

Creating Android Screenlets
Architecture of Liferay Screens for Android
Packaging Your Android Screenlets
Using Views in Android Screenlets
Using Screenlets in Android Apps

859

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-api/src/main/java/com/liferay/bookmarks/util/comparator/EntryURLComparator.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-api/src/main/java/com/liferay/bookmarks/util/comparator/EntryURLComparator.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/ListBookmarksActivity.java

76.9 Creating Android Views

By creating your own Views, you can customize your mobile app’s layout, style, and functionality. You
can create them from scratch or use an existing View as a foundation. Views include a View class for
implementing Screenlet behavior, a Screenlet class for notifying listeners and invoking Interactors, and an
XML file for specifying the UI.The four Liferay Screens View types support different levels of customization
and parent View inheritance. Here’s what each View type offers:

ThemedView: presents the same structure as the current View, but alters the theme colors and tints of the
View’s resources. All existing Views can be themed with different styles. The View’s colors reflect the current
value of the Android color palette. If you want to use one View Set with another View Set’s colors, you can use
those colors in your app’s theme (e.g. colorPrimary_default, colorPrimary_material, colorPrimary_westeros).

Child View: presents the same UI components as its parent View, but lets you change their appearance
and position.

Extended View: inherits its parent View’s functionality and appearance, but lets you add to andmodify
both.

Full View: provides a complete standalone View for a Screenlet. A full View is ideal for implementing
completely different functionality and appearance from a Screenlet’s current theme.

This tutorial explains how to create all four types of Views. To understandView concepts and components,
youmightwant to examine the architecture of Liferay Screens for Android. And the tutorial Creating Android
Screenlets can help you create or extend any Screenlet classes your View requires. Now get ready to create
some great Views!

Determining Your View's Location

First, decide whether you’ll reuse your view or if it’s just for your current app. If you don’t plan to reuse it in
another app or don’t want to redistribute it, create it in your app project.

If you want to reuse your View in another app, create it in a new Android applicationmodule; the tutorial
Packaging Android Screenlets explains how. When your View’s project is in place, you can start creating it.

First, you’ll learn how to create aThemed View.

Themed View

Screens provides several existing View Sets that you can reuse and customize in your app to create aThemed
View. If you use or override the Android color palette’s values (for example, primaryColor, secondaryColor,
etc…), you’ll reuse theViewSet’s general structure, but be able touse thenewcolors (alsowith tinted resources).
Note that you must createThemed Views inside your app. This is becauseThemed Views depend on the app
or activity theme.

Each View Set has its own Android theme. These are listed here:

• Default View Set: default_theme
• Material View Set: material_theme
• Westeros View Set: westeros_theme

You can easily style all your Screenlets by setting your app or activity theme to inherit a View Set’s Android
theme. For example, you can use the following code to reuse the styles (and layouts) from material_theme in
your own theme:

<style name="AppTheme.NoActionBar" parent="material_theme">

<item name="colorPrimary">#B91D6D</item>

<item name="colorPrimaryDark">#670E3B</item>

860

https://www.google.com/design/spec/style/color.html#color-color-palette

<item name="colorAccent">#BBBBBB</item>

</style>

<application android:theme="@style/AppTheme.NoActionBar"

...

>

Note that this code overrides the AppTheme.NoActionBar theme’s colors with your own color settings for
colorPrimary, colorPrimaryDark, and colorAccent. Screenlets will also use these new colors, and tint images
and other resources accordingly. Liferay Screens uses the default Android color palette names from the
Support Library.

You can also override only the parent View Set’s theme colors. This way you can set a default color
palette and override only the View Set colors you want. The color names for each View Set are the default
Android names, followed by an underscore and the View Set’s lowercase name (_default, _material, and
_westeros). For example, the following code overrides colorPrimary, colorPrimaryDark, and colorAccent for
only the material_theme:

<resources>

<color name="colorPrimary_material">#B91D6D</color>

<color name="colorPrimaryDark_material">#670E3B</color>

<color name="colorAccent_material">#BBBBBB</color>

</resources>

Liferay Screens also lets you use one View Set’s layout with a Screenlet, and use another View Set’s general
style and colors. To do this, pass a layoutId attribute to a Screenlet that is already styled with another View
Set’s theme. The Screenlet uses the layout structure specified in layoutId, but inherits the general style and
colors from the View Set’s theme. For example, this code tells Login Screenlet to use the Default View Set’s
layout structure, but use the styles and colors defined earlier in AppTheme.NoActionBar:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:basicAuthMethod="email"

app:layoutId="@layout/login_default"

app:credentialsStorage="shared_preferences" />

<application android:theme="@style/AppTheme.NoActionBar"

...

>

Next, you’ll learn how to create a Child View.

Child View

AChildViewpresents the samebehavior andUI components as its parent, but can change theUI components’
appearance and position. It can’t add or remove any UI components. A Child View specifies visual changes
in its own layout XML file; it inherits the parent’s View class and Screenlet class. The parent must be a Full
View.

The Child View discussed here presents the same UI components as the Login Screenlet’s Default View,
but uses a more compact layout.

You can follow these steps to create a Child View:

1. Create a new layout XML file named after the View’s Screenlet and its intended use case. A good way
to start building your UI is to duplicate the parent’s layout XML file and use it as a template. However

861

https://github.com/liferay/liferay-screens/tree/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login

you start building your UI, name the root element after the parent View’s fully-qualified class name
and specify the parent’s UI components with the same IDs.

In the example here, the Child View’s layout file login_compact.xml resembles its parent’s layout file
login_default.xml– the layout of the Login Screenlet’s Default View. The child View’s name compact
describes its use case: display the Screenlet’s components in a more compact layout. The IDs of its
EditText and Button components match those of the parent View. Its root element uses the parent
View class’s fully-qualified name:

<?xml version="1.0" encoding="utf-8"?>

<com.liferay.mobile.screens.viewsets.defaultviews.auth.login.LoginView

xmlns:android="http://schemas.android.com/apk/res/android"

style="@style/default_screenlet">

<EditText

android:id="@+id/liferay_login"

style="@style/default_edit_text"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginBottom="15dp"

android:drawableLeft="@drawable/default_mail_icon"

android:hint="@string/email_address"

android:inputType="text" />

<EditText

android:id="@+id/liferay_password"

style="@style/default_edit_text"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginBottom="15dp"

android:drawableLeft="@drawable/default_lock_icon"

android:hint="@string/password"

android:inputType="textPassword" />

<Button

android:id="@+id/liferay_login_button"

android:layout_width="match_parent"

android:layout_height="match_parent"

style="@style/default_button"

android:text="@string/sign_in" />

</com.liferay.mobile.screens.viewsets.defaultviews.auth.login.LoginView>

You can browse other layouts for Screens’s Default Views on GitHub.

2. Insert your View’s Screenlet in any of your activities or fragments, using your new layout’s name
as the liferay:layoutId attribute’s value. For example, to use the new login_compact layout, insert
LoginScreenlet in an activity or fragment and set liferay:layoutId="@layout/login_compact".

Another good Child View layout file to examine is sign_up_material.xml. It presents the same UI compo-
nents and functionality as the Sign Up Screenlet’s Default View, but using Android’s Material design.

Stupendous! Now you know how to create Child Views. Next, you’ll learn how to create Extended Views.

Extended View

An Extended View inherits the parent View’s behavior and appearance, but lets you change and add to both.
You can do so by writing a custom View class and a new layout XML file. An Extended View inherits all of the
parent View’s other classes, including its Screenlet, listeners, and Interactors. An Extended View’s parent
must be a Full View.

862

https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/res/layout/login_default.xml
https://github.com/liferay/liferay-screens/tree/master/android/library/core/src/main/res/layout
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/material/src/main/res/layout/sign_up_material.xml
http://www.google.com/design/spec/material-design/introduction.html

The example Extended View discussed here presents the same UI components as the Login Screenlet’s
Default View, but adds functionality: computing password strength. Of course, you’re not restricted to
password strength computations; you can implement anything you want.

1. Create a new layout XML file named after the View’s Screenlet and its intended use case. A good way
to start building your UI is to duplicate the parent’s layout XML file and use it as a template. The new
layout file for the Login Screenlet’s Extended View is called login_password.xml, because it’s based
on the Login Screenlet’s Default View layout file login_default.xml and it adds a password strength
computation.

2. Create a new custom View class that extends the parent View class. Name it after the Screenlet and
the functionality you’ll add or override. The example View class LoginCheckPasswordView extends the
Default View’s LoginView class, overriding the onClickmethod to compute password strength:

public class LoginCheckPasswordView extends LoginView {

// parent's constructors go here...

@Override

public void onClick(View view) {

// compute password strength

if (passwordIsStrong) {

super.onClick(view);

}

else {

// Present user message

}

}

}

3. Rename the layout XML file’s root element after your custom View’s fully-qualified class name. For
example, the root element in login_password.xml is com.your.package.LoginCheckPasswordView:

<com.your.package.LoginCheckPasswordView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

...

4. Insert your View’s Screenlet in any of your activities or fragments, using your new layout’s name
as the liferay:layoutId attribute’s value. For example, to use the new login_password layout, insert
LoginScreenlet in an activity or fragment, and set liferay:layoutId="@layout/login_password".

The Bank of Westeros sample app’s Westeros View Set has a couple of Extended Views that you can
examine. It has an Extended View that adds a new button to show the password in the clear for the Login
Screenlet. The View uses custom layout file login_westeros.xml and custom View class LoginView. The
Westeros View Set also contains an Extended View for the User Portrait Screenlet; it changes the border
color and width of the user’s portrait picture and it uses the custom layout file userportrait_westeros.xml
and the custom View class UserPortraitView.

Awesome! Now you know how to create Extended Views. Next, you can learn how to create a Full View.

863

https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/res/layout/login_default.xml
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/viewsets/defaultviews/auth/login/LoginView.java
https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/res/layout/login_westeros.xml
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/auth/login/LoginView.java
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/res/layout/userportrait_westeros.xml
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/userportrait/UserPortraitView.java

Full View

A Full View has a unique Screenlet class, a View class, and layout XML file. It’s standalone and doesn’t inherit
from any View. You should create a Full View if there’s no other View that you can extend to meet your
needs or if your Screenlet’s behavior can only be augmented by customizing its listeners or calling custom
Interactors. To create a Full View, youmust create its Screenlet class, View class, and layout XML file. The
example Full View here for the Login Screenlet presents a single EditText component for the user name. For
the password, it uses Secure.ANDROID_ID.The Screens Test App uses this Full View.

You can follow these steps to create a Full View:

1. Create a new layout XMLfile and build yourUI in it. A goodway to start building yourUI is to duplicate
another View’s layout XML file and use it as a template. Name your layout XML file after the View’s
Screenlet and intended use case. Name its root element after the fully-qualified class name of your
custom View (you’ll create this next).

The Test App’s Full View layout XML file for the Login Screenlet is called login_full.xml. It specifies
EditText and Button elements copied from the LongScreenlet’s Default View file login_default.xml.

<?xml version="1.0" encoding="utf-8"?>

<com.your.package.LoginFullView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

<EditText

android:id="@+id/liferay_login"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginBottom="20dp"

android:hint="Email Address"

android:inputType="textEmailAddress"/>

<Button

android:id="@+id/liferay_login_button"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:text="Sign In"/>

</com.your.package.LoginFullView>

2. Create a new custom View class named after the layout’s root element. The tutorial on creating
Android Screenlets explains how to create a View class. Note that you don’t have to extend a View
class to implement a View Model interface, but you might want to for convenience. The custom
View class LoginFullView, for example, implements the LoginViewModel interface by extending the
Default LoginView class. To return the ANDROID_ID, the LoginFullView custom View class overrides the
getPassword()method.

3. Create a new Screenlet class that inherits the base Screenlet class. This new class is where you can add
custom behavior to the listeners or call custom Interactors. The Screenlet class LoginFullScreenlet,
for example, extends LoginScreenlet and overrides the onUserActionmethod to log Interactor calls.

4. Insert your View’s Screenlet in any of your activities or fragments, using your new layout’s name
as the liferay:layoutId attribute’s value. For example, to use the new login_password layout, insert
LoginScreenlet in an activity or fragment, and set liferay:layoutId="@layout/login_password".

864

http://developer.android.com/reference/android/provider/Settings.Secure.html#ANDROID_ID
https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app
https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/fullview
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/layout/login_full.xml
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/res/layout/login_default.xml
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/fullview/LoginFullView.java
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login/view/LoginViewModel.java
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/viewsets/defaultviews/auth/login/LoginView.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/fullview/LoginFullScreenlet.java
https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/auth/login/LoginScreenlet.java

TheWesteros View Set’s full view for the Sign Up Screenlet uses a custom Screenlet class to add a new lis-
tener. The custom Screenlet class also adds a new user action that calls the base Interactor SignUpInteractor.

Sweetness! Now you know how to create a Full View. Next, you’ll learn how to package Views for
distribution.

Packaging Your Views

If you want to distribute or reuse Views, you should package them in a module that is then added as an app’s
project dependency. To do this, use the material sub-project as a template for your new build.gradle file.

To use a packaged View, youmust import its module into your project by specifying its location in your
settings.gradle file. The Bank ofWesteros and test-app projects use custom Views westeros and material,
respectively. These projects exemplify using independent Views in a project.

If you want to redistribute your View and let others use it, you can upload it to jCenter or Maven Central.
In the example build.gradle file, after entering your bintray api key you can execute gradlew bintrayupload

to upload your project to jCenter. When finished, anyone can use the View as they would any Android
dependency by adding the repository, artifact, group ID, and version to their Gradle file.

Super! Now you know how to create and package Views in Liferay Screens for Android. This gives you
extensive control over your app’s visual design and behavior and also lets you distribute and reuse your Views.

Related Topics

Using Views in Android Screenlets
Architecture of Liferay Screens for Android
Creating Android Screenlets

76.10 Packaging Your Android Screenlets

To reuse your Screenlet in another app or distribute it, you can package it in a module (Android library). You
can optionally share it with other developers via jCenter or Maven Central. Developers can then use your
Screenlet by adding its module as a project dependency in their apps. This tutorial explains how to package
and distribute Screenlets by following these steps:

1. Create a new Android module.
2. Configure dependencies between eachmodule.
3. Distribute the module by uploading it to jCenter or Maven Central.

Now get ready to package and distribute Screenlets like a pro!

Create a New Android Module

Android Studio’s Create New Module wizard can automatically create a module and add it to your
settings.gradle file. Go to File →NewModule…, select Android Library in the More Modules section, and click
Next. Then name your module and clickNext. The wizard’s final step lets you add a new activity. Since your
module doesn’t need one, select Blank Activity and click Finish. Android Studio creates a new build.gradle

file with an Android Library configuration and adds the newmodule to your settings.gradle file.
If you prefer to create a newmodule manually, examine the build.gradle file from the Material View

set orWesteros app as an example. After creating the module, import it into your project by specifying its
location in settings.gradle. Here’s an example configuration:

865

https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/auth/signup
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/auth/signup/SignUpScreenlet.java
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/auth/signup/SignUpListener.java
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/src/main/java/com/liferay/mobile/screens/viewsets/westeros/auth/signup/SignUpListener.java
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/material/build.gradle
https://github.com/liferay/liferay-screens/blob/master/android/samples/bankofwesteros/settings.gradle
https://github.com/liferay/liferay-screens/blob/master/android/samples/bankofwesteros/build.gradle
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/material/build.gradle
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/material/build.gradle
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/build.gradle
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/settings.gradle

// Change YOUR_MODULE_NAME and RELATIVE_ROUTE_TO_YOUR_MODULE to match your module

include ':YOUR_MODULE_NAME'

project(':YOUR_MODULE_NAME').projectDir = new File(settingsDir, 'RELATIVE_ROUTE_TO_YOUR_MODULE')

Now that you have a module, you’re ready to configure its dependencies.

Configure Dependencies Between Each Module

Next, you must configure your app to use the module. To do so, add a project implementation statement to
your build.gradle file’s dependencies:

// Change YOUR_MODULE_NAME to match your module's name

dependencies {

...

implementation project (':YOUR_MODULE_NAME')

...

}

Your module must also specify dependencies for overriding existing Screenlets and creating new
ones. This usually requires adding Liferay Screens and the View Sets your Screenlet currently uses to your
build.gradle file’s dependencies. To add Liferay Screens as a dependency, add to your build.gradle file’s
dependencies the following project implementation statement:

implementation 'com.liferay.mobile:liferay-screens:+'

Awesome! Now you’re ready to share your Screenlet with the world!

Upload the Module to jCenter or Maven Central

Tomake your module available to anyone, you can upload your module to jCenter or Maven Central. Before
doing so, youmust configure your build.gradle file appropriately for those repositories. Use the material
or Westeros View Set’s build.gradle file as an example. After entering your bintray api key, execute gradlew
bintrayupload to upload your project to jCenter. Developers can then use your Screenlet as any other Android
dependency by specifying its repository, artifact, group ID, and version in their Gradle files. Congratulations
on publishing your Screenlet!

Related Topics

Creating Android Screenlets
Preparing Android Projects for Liferay Screens
Using Screenlets in Android Apps
Creating Android Views

76.11 Using Liferay Push in Android Apps

Liferay Screens supports push notifications in Android apps. To use them, youmust configure some APIs
andmodify your app to consume and/or produce push notifications. This tutorial shows how to do all these
things.

866

https://github.com/liferay/liferay-screens/blob/master/android/viewsets/westeros/build.gradle

Configuring to Use Liferay Push Notifications

Your first step is to create and configure a Google project to use Google CloudMessaging (GCM). You also
need to configure the Liferay Push app to use the project’s GCM API.

Follow these steps to create and configure a Google project to support cloudmessaging:

1. On the Google CloudMessaging page, create a configuration file by clicking Get a Configuration File. On
the screen that appears, set your App name and Android package name, and then click Continue To Choose
and Configure Services. On the next screen, click Enable Google CloudMessaging.

2. Copy and save the Server API Key and Sender ID values you’re presented with. You’ll need to use these
values later as the push notifications API keys for Liferay Push.

![You need the Server API Key and Sender ID to enable Liferay Push.](./images/screens-android-push-project-and-server-key.png)

Now that you’ve set up your Google project, you can configure the Liferay Push app to use the project’s
GCM API. Install the Liferay Push app from the Liferay Marketplace. In your Liferay DXP instance’s Control
Panel, navigate to Configuration → System Settings, select theOther tab, then select Android PushNotifications
Sender. Set the push notifications API Key to the value of the Server API Key you generated in your Google
project. You can also set the number of retries in the event that sending a notification fails.

Figure 76.16: Set the API key and number of retries in your Liferay DXP instance.

Great! Your Liferay DXP instance is now ready to send push notifications to your Android apps!

867

https://developers.google.com/cloud-messaging/
https://developers.google.com/cloud-messaging/android/start/
http://www.liferay.com/marketplace

Receiving and Sending Push Notifications

TheLiferay Push Client for Android streamlines registering a device with the portal for receiving and sending
push notifications. Although the information below contains the main steps needed to use the client, the
readme explains them in detail.

In your Android application’s Gradle build file, add a new dependency on the Liferay Push Client for
Android:

dependencies {

...

implementation 'com.liferay.mobile:liferay-push:1.2.1'

}

Make sure your app’s liferay-plugin-package.properties file specifies the Push Notifications portlet as
a required deployment context:

required-deployment-contexts=\

push-notifications-portlet\

...

Next, you’ll learn how to register listeners for push notifications.

Receiving Push Notifications

First, register your device in GCMwith the SENDER_ID you generated previously:

Session session = new SessionImpl(YOUR_SERVER, new BasicAuthentication(YOUR_USER, YOUR_PASSWORD));

Push.with(session).register(this, YOUR_SENDER_ID);

If you’re using Liferay Screens to maintain a session, you can retrieve it and use it instead of creating a
new one:

Push.with(SessionContext.createSessionFromCurrentSession()).register(this, YOUR_SENDER_ID);

If you use these example lines of code,make sure to replace YOUR_SERVER, YOUR_USER, YOUR_PASSWORD, and
YOUR_SENDER_IDwith your own values.

That’s it! You can attach a listener to store the registration ID or to process the notification sent to the
activity (using onPushNotification()). You can also register a receiver and service to process the notification.
You can refer to the Push Notifications project as an example push notifications implementation.

Next, you’ll learn how to send push notifications.

Sending Push Notifications

Using the Liferay Push app, sending notifications to your app’s users is straightforward. You can specify the
user IDs along with the message content:

PushNotificationsDeviceLocalServiceUtil.sendPushNotification(userIds, content);

This example hook plugin sends a push notification each time a user creates a newDDL record or updates
an existing one.

In your app’s portal.properties file, you can add a listener for a class by creating a value.object.listener
property, set to a comma separated list of intended listener classes. Here’s an example listener setting for
DDLRecord objects:

868

https://github.com/liferay-mobile/liferay-push-android
https://github.com/liferay-mobile/liferay-push-android/blob/master/README.md
https://github.com/liferay/liferay-screens/tree/master/android/samples/pushnotifications
https://github.com/nhpatt/push-with-ddl-hook
https://docs.liferay.com/portal/6.2/propertiesdoc/portal.properties.html#Value%20Object

value.object.listener.com.liferay.portlet.dynamicdatalists.model.DDLRecord=com.liferay.push.hooks.DDLRecordModelListener

Great! Now you know how to configure your Android apps to receive push notifications from Liferay
DXP.

In this tutorial, you’ve configured your portal to accommodate push notifications, registered notification
listeners, and implemented sending push notifications. Way to go!

Related Topics

Preparing Android Projects for Liferay Screens
Using Screenlets in Android Apps

76.12 Accessing the Liferay Session in Android

A session is a conversation state between the client and server. It typically consists of multiple requests and
responses between the two. To facilitate this communication, the session must have the server IP address,
and a user’s login credentials. Liferay Screens uses a Liferay Session to access and query the JSON web
services provided by Liferay Portal. When you log in using a Liferay Session, the portal returns the user’s
information (name, email, user ID, etc…). Screens stores this information and the active Liferay Session in
Screens’s SessionContext class.

The SessionContext class is very powerful and lets you use Screens in many different scenarios. For
example, you can use SessionContext to request information with the JSONWS API provided by Liferay.
You can also use SessionContext to create anonymous sessions, or to log in a user without showing a Login
Screenlet.

This tutorial explains some common SessionContext use cases, and and also describes the class’s most
important methods.

Creating a Session from an Existing Session

When working with Liferay Screens, you may wish to call the remote JSON web services provided by the
Liferay Mobile SDK. Every operation with the Liferay Mobile SDK needs a Liferay Session to provide the
server address, user credentials, and any other required parameters. Since the Login Screenlet creates
a session when a user successfully logs in, you can retrieve this session with the SessionContextmethod
createSessionFromCurrentSession(). You can then use that session to make the Mobile SDK service call. The
following example shows this for calling the Mobile SDK’s BookmarksEntryService:

Session sessionFromCurrentSession = SessionContext.createSessionFromCurrentSession();

sessionFromCurrentSession.setCallback(callback);

new BookmarksEntryService(sessionFromCurrentSession).methodCall()

If you need to check first to see if a user has logged in, you can use SessionContext.isLoggedIn().
Great! Now you know how to retrieve an existing session in your app. But what if you’re not using the

Login Screenlet? There won’t be an existing session to retrieve. No sweat! You can still use SessionContext to
create one manually. The next section shows you how to do this.

869

Creating a Session Manually

If you don’t use the Login Screenlet, then SessionContext doesn’t have a session for you to retrieve. In this
case, you must create one manually. You can do this with the SessionContextmethod createBasicSession.
Themethod takes a username and password as parameters, and creates a session with those credentials.
If you also need to access a user’s information, you must manually call the User JSON web service, or call
SessionContext.setLoggedUser(). The following code creates a session with createBasicSession and then
uses setLoggedUser to set the user in SessionContext:

LiferayScreensContext.init(this);

Session session = SessionContext.createBasicSession(USERNAME, PASSWORD);

SessionContext.setLoggedUser(USER);

Note that you can achieve the same thing by calling the interactor directly:

LoginBasicInteractor loginBasicInteractor = new LoginBasicInteractor(0);

loginBasicInteractor.onScreenletAttached(this);

loginBasicInteractor.setLogin(USERNAME);

loginBasicInteractor.setPassword(PASSWORD);

loginBasicInteractor.login();

Super! Now you know how to create a session manually. The next section shows you how to implement
auto-login, and save or restore a session.

Implementing Auto-login and Saving or Restoring a Session

Although the Login Screenlet is awesome, your users may not want to enter their credentials every time they
open your app. It’s very common for apps to only require a single login. To implement this in your app, see
this video.

In short, youneed topass a storage type to theLoginScreenlet, and thenuse SessionContext.isLoggedIn()
to check for a session. If a session doesn’t exist, load the stored session from CredentialsStorage with
loadStoredCredentials(StorageType storageType). The following code shows a typical implementation of
this:

LiferayScreensContext.init(this); // If you haven't called a Screenlet yet

SessionContext.loadStoredCredentials(SHARED_PREFERENCES);

if (SessionContext.isLoggedIn()) {

// logged in

// consider doing a relogin here (see next section)

} else {

// send user to login form

}

Awesome! Now you know how to implement auto-login in your Liferay Screens apps. For more informa-
tion on available SessionContextmethods, see the Methods section at the end of this tutorial. Next, you’ll
learn how to implement relogin for cases where a user’s credentials change on the server while they’re logged
in.

Implementing Relogin

A session, whether created via Login Screenlet or auto-login, contains basic user data that verifies the user in
the Liferay instance. If that data changes in the server, then your session is outdated, which may cause your
app to behave inconsistently. Also, if a user is deleted, deactivated, or otherwise changes their credentials in

870

https://www.youtube.com/watch?v=kEZEahTzuck

the server, the auto-login feature won’t deny access because it doesn’t perform server transactions: it only
retrieves an existing session from local storage. This isn’t an optimal situation!

For such scenarios, you can use the relogin feature. This feature is implemented in a simple method that
determines if the current session is still valid. If the session is still valid, the user’s data is updated with the
most recent data from the server. If the session isn’t valid, the user is logged out andmust then log in again
to create a new session.

To use this feature, call the SessionContext method relogin, with an object that implements the
LoginListener interface as an argument:

SessionContext.relogin(listener);

This method handles success or failure via the listener’s onLoginSuccess and onLoginFailuremethods,
respectively. Note that this operation is done asynchronously in a background thread, so the listener is called
in that thread. If you also want to perform any UI operations, youmust do so in your UI thread. For example:

@Override

public void onLoginSuccess(final User user) {

runOnUiThread(new Runnable() {

@Override

public void run() {

// do any UI operation here

}

});

}

Great! Now you know how to implement relogin in your app. You’ve also seen how handy SessionContext
can be. It can do even more! The next section lists some additional SessionContextmethods, and somemore
detail on the ones used in this tutorial.

Methods

Method | Return Type | Explanation | logout() | void | Clears the stored user attributes and session. |
relogin(LoginListener) | void | Refreshes user data from the server. This recreates the currentUser object if
successful, or calls logout() on failure. When the server data is received, the listener method onLoginSuccess

is called with received user’s attributes. If an error occurs, the listener method onLoginFailure is
called. | isLoggedIn() | boolean | Returns true if there is a stored Liferay Session in SessionContext. |
createBasicSession(String username, String password) | Session | Creates a Liferay Session using the
default server and the supplied username and password. | createSessionFromCurrentSession() | Session |
Creates a Liferay Session based on the stored credentials and server. | getCurrentUser() | User | Returns a
User object containing the server attributes of the logged-in user. This includes the user’s email, user ID,
name, and portrait ID. | storeCredentials(StorageType storageType) | void | Stores the current session
in the StorageType supplied as a parameter. | removeStoredCredentials(StorageType storageType) | void
| Clears the StorageType of any user information and session. | loadStoredCredentials(StorageType

storageType) | void | Loads the session and user information from the StorageType parameter, and uses it as
the current session and user. |

For more information, see the SessionContext source code in GitHub.

Related Topics

Login Screenlet for Android
Using Screenlets in Android Apps

871

https://github.com/liferay/liferay-screens/blob/master/android/library/core/src/main/java/com/liferay/mobile/screens/context/SessionContext.java

76.13 Adding Custom Interactors to Android Screenlets

Interactors are Screenlet components that implement server communication for a specific use case. For
example, the Login Screenlet’s interactor calls the LiferayMobile SDK service that authenticates a user to the
portal. Similarly, the interactor for the Add Bookmark Screenlet calls the Liferay Mobile SDK service that
adds a bookmark to the Bookmarks portlet.

That’s all fine and well, but what if you want to customize a Screenlet’s server call? What if you want
to use a different back-end with a Screenlet? No problem! You can implement a custom interactor for the
Screenlet. You can plug in a different interactor that makes its server call by using custom logic or network
code. To do this, you must implement the current interactor’s interface and then pass it to the Screenlet you
want to override. You should do this inside your app’s code, either in an inner class or a separate class.

In this tutorial, you’ll see an example interactor that overrides the Login Screenlet to always log in the
same user, without a password. You can find the complete code in the test-app on GitHub.. Note that this
example implements the custom interactor in an inner class of an activity.

Implementing a Custom Interactor

1. Implement your custom interactor. Youmust inherit the original interactor’s interface, as shown here:

private class CustomLoginInteractor extends LoginBasicInteractor {

public CustomLoginInteractor(int targetScreenletId) {

super(targetScreenletId);

}

@Override

public void login() throws Exception {

//custom implementation

}

}

2. Call the interactor’s listener. In your custom logic, you must call the interactor’s listener. In this
example, youmust call onLoginFailure and onLoginSuccess, depending on your custom logic’s result:

if (SUCCESS) {

getListener().onLoginSuccess(fakeUser);

}

else {

getListener().onLoginFailure(new AuthenticationException("bad login"));

}

3. Return your interactor in the custom listener. You must use setCustomInteractorListener to set a
specific listener that expects an Interactor created with actionName (a string):

_screenlet.setCustomInteractorListener(this);

@Override

public LoginInteractor createInteractor(String actionName) {

return new CustomLoginInteractor(_loginScreenlet.getScreenletId());

}

Great! Now you know how to implement custom interactors for Android Screenlets. The next example
builds on this by showing you how to access non-Liferay backends with a custom interactor.

872

https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/CustomInteractorActivity.java

Using Custom Interactors to Access Other Backends

Custom interactors are also capable of communicating with non-Liferay backends. The following example
illustrates this by creating a custom interactor for the Add Bookmark Screenlet that can store bookmarks at
Delicious. You can find this example’s complete code at this gist.

1. Create a new custom interactor. This interactor inherits BaseRemoteInteractor, the base class of all in-
teractors,with AddBookmarkListener as a typeparameter. It also implements the AddBookmarkInteractor
class. The base code for this new interactor is shown here:

public class AddDeliciousInteractorImpl extends BaseRemoteInteractor<AddBookmarkListener>

implements AddBookmarkInteractor {

public AddDeliciousInteractorImpl(int targetScreenletId) {

super(targetScreenletId);

}

public void addBookmark(final String url, final String title, long folderId) throws Exception {

...

}

}

2. Implement your custom logic. In this example, you must implement the code for accessing Delicious
and inserting a new bookmark with the Delicious API. You can use the OkHttp library to pass the API
your bookmark’s URL and description. The following code shows this:

new Thread(new Runnable() {

@Override

public void run() {

try {

Headers headers = Headers.of("Authorization", "Bearer _OAUTH_TOKEN_");

OkHttpClient client = new OkHttpClient();

Request add = new Request.Builder()

.url("https://api.del.icio.us/api/v1/posts/add?url=" + url + "&description=" + title)

.headers(headers)

.build();

com.squareup.okhttp.Response response = client.newCall(get).execute();

String text = response.body().string();

...

}

catch (IOException e) {

LiferayLogger.e("Error sending", e);

...

}

}

}).start();

3. Notify your app of the results. You should use the EventBusUtil class to post an event for this. Use the
event to let other classes listen for the event. The following code uses EventBusUtil.post(text) to post
the event, and the onEventmethod to notify the listener:

873

https://delicious.com
https://gist.github.com/nhpatt/7cbeb0df6f39ec8a9176
http://square.github.io/okhttp/

EventBusUtil.post(text);

...

public void onEvent(String text) {

getListener().onAddBookmarkSuccess();

}

Note that the code in the gist uses the custom BookmarkAdded class to model the operation’s results.

4. In the activity or fragment you’re using the Screenlet in, implement CustomInteractorListener. You
must also reference your new custom interactor and connect it to the Screenlet:

_screenlet.setCustomInteractorListener(this);

@Override

public Interactor createInteractor(String actionName) {

return new AddDeliciousInteractorImpl(_screenlet.getScreenletId());

}

Awesome! Now you know how to create a custom interactor that can communicate with a non-Liferay
backend. This opens up evenmore possibilities for your apps.

Related Topics

Architecture of Liferay Screens for Android
Creating Android Screenlets

76.14 Rendering Web Content in Your Android App
Liferay DXP represents web content articles as JournalArticle entities. Liferay Screens provides several
ways to render these entities in your apps.

The simplest way to display a JournalArticle’s HTML in your app is to useWebContent Display Screenlet.
This Screenlet is very powerful and supports several complex use cases to fit your needs. You can also use
Web Content List Screenlet to display lists of web content articles. This tutorial shows you how to use both
Screenlets to display web content in your apps.

Retrieving Basic Web Content

Web Content Display Screenlet’s simplest use case is to render a JournalArticle’s HTML in an Android
WebView. Simply provide the JournalArticle’s articleId in the Screenlet XML, and the Screenlet takes care
of the rest (including decorating itself with the CSS needed to render it in a small display). The following
Screenlet XML shows this:

<com.liferay.mobile.screens.webcontent.display.WebContentDisplayScreenlet

android:layout_width="match_parent"

android:layout_height="match_parent"

app:articleId="YOUR_ARTICLE_ID" />

To render the content exactly as it appears on your mobile site, however, you must provide the CSS inline
or use a template. The HTML returned isn’t aware of a Liferay instance’s global CSS.

You can also use a listener to modify the HTML, as explained in the Screenlet reference documentation.
In the default security policy, an Android WebView doesn’t execute a page’s JavaScript. You can enable

such JavaScript execution by setting the javascriptEnabled property via XML:

874

https://gist.github.com/nhpatt/7cbeb0df6f39ec8a9176
http://developer.android.com/guide/webapps/webview.html
http://developer.android.com/guide/webapps/webview.html

<com.liferay.mobile.screens.webcontent.display.WebContentDisplayScreenlet

android:layout_width="match_parent"

android:layout_height="match_parent"

app:articleId="YOUR_ARTICLE_ID"

app:javascriptEnabled="true" />

Alternatively, you can set this property in your app’s fragment or activity class that contains the Screenlet:

...

screenlet.setJavascriptEnabled(true);

...

You can also use the isJavascriptEnabled()method to check this property’s setting.
As you can see, this is all straightforward. What could go wrong? Famous last words. A commonmistake

is to use the default groupId instead of the one for the site that contains your JournalArticle entities.
If you need to use a default groupId in the rest of your app, but render another site’s HTML, you can set

theWeb Content Display Screenlet’s groupIdwith the app:groupId attribute. You can alternatively use the
setGroupIdmethod in the activity or fragment code that uses the Screenlet.

Using Templates

Web Content Display Screenlet can also use templates to render JournalArticle entities. For example, your
Liferay instance may have a custom template specifically designed to display content onmobile devices.

To use a template, specify its ID in the Screenlet XML’s templateId property:

<com.liferay.mobile.screens.webcontent.display.WebContentDisplayScreenlet

android:layout_width="match_parent"

android:layout_height="wrap_content"

app:articleId="YOUR_ARTICLE_ID"

app:templateId="YOUR_TEMPLATE_ID" />

Using Structures

Since mobile devices have limited screen space, you must often display only the most important parts of
a web content article. If your web content is structured, you can do this by using Web Content Display
Screenlet to display only specific fields from a JournalArticle’s structure. The simplest way to do this is
to specify the structure’s ID and a comma-delimited list of fields in the Screenlet XML’s structureId and
labelFields attributes, respectively. The following example illustrates this:

<com.liferay.mobile.screens.webcontent.display.WebContentDisplayScreenlet

android:layout_width="match_parent"

android:layout_height="wrap_content"

liferay:articleId="YOUR_ARTICLE_ID"

liferay:labelFields="YOUR_LABELS"

liferay:layoutId="@layout/webcontentdisplay_structured_default"

liferay:structureId="YOUR_STRUCTURE_ID" />

You can also use your own layout to render the structure fields exactly how you want. To do this, your
layout should inherit from WebContentStructuredDisplayView and read the information parsed and stored in
the webContent entity. By displaying two structure fields with such a custom layout, the test app contains a
complete example of this:

1. The layout file webcontentdisplaystructured_example.xml defines the custom layout:

875

https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/layout/webcontentdisplaystructured_example.xml

<com.liferay.mobile.screens.testapp.webviewstructured.WebContentDisplayView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="match_parent">

<TextView

android:id="@+id/web_content_first_field"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:background="@android:color/holo_red_light" />

<TextView

android:id="@+id/web_content_second_field"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:background="@android:color/holo_green_light" />

</com.liferay.mobile.screens.testapp.webviewstructured.WebContentDisplayView>

2. The WebContentDisplayView class sets the custom layout’s functionality:

public class WebContentDisplayView extends WebContentStructuredDisplayView {

...

@Override

public void showFinishOperation(WebContent webContent) {

super.showFinishOperation(webContent);

DDMStructure ddmStructure = webContent.getDDMStructure();

TextView firstField = (TextView) findViewById(R.id.first_field);

firstField.setText(String.valueOf(ddmStructure.getField(0).getCurrentValue()));

TextView secondField = (TextView) findViewById(R.id.second_field);

secondField.setText(String.valueOf(ddmStructure.getField(1).getCurrentValue()));

}

}

3. The Screenlet XML’s layoutId attribute specifies the custom layout to use:

<com.liferay.mobile.screens.webcontent.display.WebContentDisplayScreenlet

android:layout_width="match_parent"

android:layout_height="wrap_content"

liferay:articleId="@string/liferay_article_structured_article_id"

liferay:labelFields="@string/liferay_article_structured_label_fields_first_field"

liferay:layoutId="@layout/webcontentdisplaystructured_example"

liferay:offlinePolicy="REMOTE_FIRST"

liferay:structureId="@string/liferay_article_structured_structure_id" />

Great! Now you know how to use structured web content withWeb Content Display Screenlet. Next,
you’ll learn how to display a list of web content articles in your app.

Displaying a List of Web Content Articles

The preceding examples show you how to useWeb Content Display Screenlet to display a single web content
article’s contents in your app. But what if you want to display a list of articles instead? No problem! You
can useWeb Content List Screenlet for this. Web Content List Screenlet can retrieve the contents of a web
content folder and display only the labels you want. The Screenlet is also aware of structured content, so you
can render each row with certain structure fields. You can also do this via a custom layout.

876

https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/webviewstructured/WebContentDisplayView.java
https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/layout/web_content_display_structured.xml

To use a web content folder with Web Content List Screenlet, specify the folder’s ID in the Screenlet
XML’s folderId attribute. To render a specific structure field for each article in the list, specify that field in
the Screenlet XML’s labelFields attribute. For example:

<com.liferay.mobile.screens.webcontent.list.WebContentListScreenlet

android:layout_width="match_parent"

android:layout_height="match_parent"

app:folderId="YOUR_FOLDER_ID"

app:labelFields="Text" />

You can also see an example of this in the test app’s web_content_display_list.xml layout file.
Alsonote that severalmethods inScreens’s WebContent class help you render content fromdifferent locales.

For example, getLocalized(name) receives a field’s name and returns the value in the mobile device’s current
locale. Such methods help you render a custom view without worrying about the underlying structure, XML
parsing, or HTTP calls.

Displaying a List of Assets

To render a list of different assets in your app, includingweb content articles, you can use Asset List Screenlet.
Asset List Screenlet can display a list of any assets from a Liferay instance. LikeWeb Content List Screenlet,
you can also access a web content article’s structure fields, or use a custom layout to render each asset type.
For more information, see the reference documentation for Asset List Screenlet.

Related Topics

Using Screenlets in Android Apps
Using Views in Android Screenlets
Web Content Display Screenlet for Android
Web Content List Screenlet for Android
Asset List Screenlet for Android

76.15 Rendering Web Pages in Your Android App

TheRenderingWeb Content tutorial shows you how to display web content from a Liferay DXP site in your
Android app. Displaying content is great, but what if you want to display an entire page? No problem!
Web Screenlet lets you display any web page. You can even customize the page by injecting local or remote
JavaScript and CSS files. When combined with Liferay DXP’s server-side customization features (e.g.,
Application Display Templates),Web Screenlet gives you almost limitless possibilities for displaying web
pages in your Android apps.

In this tutorial, you’ll learn how to useWeb Screenlet to display web pages in your Android app.

Inserting Web Screenlet in Your App

InsertingWeb Screenlet in your app is the same as inserting any Screenlet in your app:

1. Insert the Screenlet’s XML in the layout of the activity or fragment you want to use the Screenlet in.
Also be sure to set any attributes that you need. For a list of Web Screenlet’s available attributes, see
the Attributes section of theWeb Screenlet reference doc.

For example, here’s Web Screenlet’s XML with the Screenlet’s layoutId and autoLoad attributes set to
web_default and false, respectively:

877

https://github.com/liferay/liferay-screens/blob/master/android/samples/test-app/src/main/res/layout/web_content_display_list.xml
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/webcontent/WebContent.java

<com.liferay.mobile.screens.web.WebScreenlet

android:id="@+id/web_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:layoutId="@layout/web_default"

app:autoLoad="false"

/>

Note that web_default specifies the Screenlet’s Default View, which is part of the Default View Set.

2. To use a View that is part of a View Set, like the Default View, the app or activity thememust inherit the
theme that sets the View Set’s styles. For the Default View Set, this is default_theme. For example, to
set the app’s theme to inherit default_theme, open res/values/styles.xml and set the base app theme’s
parent to default_theme. In this example, the base app theme is AppTheme:

<style name="AppTheme" parent="default_theme">

...

Next, you’ll implementWeb Screenlet’s listener.

Implementing Web Screenlet's Listener

TouseanyScreenlet in anactivity or fragment, youmust also implement theScreenlet’s listener in that activity
or fragment’s class. Web Screenlet’s listener is WebListener. Follow these steps to implement WebListener:

1. Change the classdeclaration to implement WebListener, and import com.liferay.mobile.screens.web.WebListener:

...

import com.liferay.mobile.screens.web.WebListener;

...

public class YourActivity extends AppCompatActivity implements WebListener {...

2. Implement WebListener’s onPageLoadedmethod. This method is called when the Screenlet loads the
page successfully. How you implement it depends onwhat (if anything) you want to happen upon page
load. For example, this onPageLoaded implementation displays a toast message indicating success:

@Override

public void onPageLoaded(String url) {

Toast.makeText(this, "Page load successful!", Toast.LENGTH_SHORT).show();

}

3. Implement WebListener’s onScriptMessageHandlermethod. This method is called when the Screenlet’s
WebView sends amessage. The namespace argument is the source namespace key, and the body argument
is the source namespace body. For example, this onScriptMessageHandler implementation parses data
from the source namespace body if it matches a specific namespace, and then starts a new activity
with that data via an intent:

@Override

public void onScriptMessageHandler(String namespace, String body) {

if ("gallery".equals(namespace)) {

String[] allImgSrc = body.split(",");

int imgSrcPosition = Integer.parseInt(allImgSrc[allImgSrc.length - 1]);

Intent intent = new Intent(getApplicationContext(), DetailMediaGalleryActivity.class);

878

https://developer.android.com/reference/android/webkit/WebView.html
https://developer.android.com/reference/android/webkit/WebView.html

intent.putExtra("allImgSrc", allImgSrc);

intent.putExtra("imgSrcPosition", imgSrcPosition);

startActivity(intent);

}

}

4. Implement the error method. This method is called when an error occurs in the process. The e

argument contains the exception, and the userAction argument distinguishes the specific action in
which the error occurred. In most cases, you’ll use these arguments to log or display the error. For
example, this error implementation displays a toast message with the exception’s message:

@Override

public void error(Exception e, String userAction) {

Toast.makeText(this, "Bad things happened: " + e.getMessage(), Toast.LENGTH_LONG).show();

}

5. Get a WebScreenlet reference and set the activity or fragment class as its listener. To do so, import
com.liferay.mobile.screens.web.WebScreenlet and add the following code to the end of the onCreate
method:

WebScreenlet screenlet = (WebScreenlet) findViewById(R.id.web_screenlet);

screenlet.setListener(this);

Note that the findViewById references the android:id value set in the Screenlet’s XML.

Next, you’ll use the same WebScreenlet reference to set the Screenlet’s parameters.

Setting Web Screenlet's Parameters

Web Screenlet has WebScreenletConfiguration and WebScreenletConfiguration.Builder objects that supply
the parameters the Screenlet needs to work. These parameters include the URL of the page to load and
the location of any JavaScript or CSS files that customize the page. You’ll set most of these parameters via
WebScreenletConfiguration.Builder’s methods.

Note: For a full list of WebScreenletConfiguration.Builder’s methods, and a description of each, see the
table in the Configuration section ofWeb Screenlet’s reference doc.

To set Web Screenlet’s parameters, follow these steps in the method that initializes the activity or
fragment containing the Screenlet (e.g., onCreate in activities, onCreateView in fragments). You can, however,
do this in other methods as needed.

1. Use WebScreenletConfiguration.Builder(<url>), where <url> is the web page’s URL string, to create a
WebScreenletConfiguration.Builder object. If the page requires Liferay DXP authentication, then the
usermust be logged in via Login Screenlet or a SessionContextmethod, and youmust provide a relative
URL to the WebScreenletConfiguration.Builder constructor. For example, if such a page’s full URL is
http://your.liferay.instance/web/guest/blog, then the constructor’s argument is /web/guest/blog.
For any other page that doesn’t require Liferay DXP authentication, youmust supply the full URL to
the constructor.

2. Call the WebScreenletConfiguration.Buildermethods to set the parameters that you need.

879

Note: If the URL you supplied to the `WebScreenletConfiguration.Builder`

constructor is to a page that doesn't require Liferay DXP authentication, then

you must call the `WebScreenletConfiguration.Builder` method

`setWebType(WebScreenletConfiguration.WebType.OTHER)`. The default `WebType`

is `LIFERAY_AUTHENTICATED`, which is required to load Liferay DXP pages that

require authentication. If you need to set `LIFERAY_AUTHENTICATED` manually,

call `setWebType(WebScreenletConfiguration.WebType.LIFERAY_AUTHENTICATED)`.

3. Call the WebScreenletConfiguration.Builder instance’s load()method,which returnsa WebScreenletConfiguration
object.

4. UseWeb Screenlet’s setWebScreenletConfigurationmethod to set the WebScreenletConfiguration ob-
ject to theWeb Screenlet instance.

5. Call theWeb Screenlet instance’s load()method.

Here’s an example snippet of these steps in the onCreate() method of an activity in which the Web
Screenlet instance is screenlet, and the WebScreenletConfiguration object is webScreenletConfiguration:

WebScreenletConfiguration webScreenletConfiguration =

new WebScreenletConfiguration.Builder("/web/westeros-hybrid/companynews")

.addRawCss(R.raw.portlet, "portlet.css")

.addLocalCss("gallery.css")

.addLocalJs("gallery.js")

.load();

screenlet.setWebScreenletConfiguration(webScreenletConfiguration);

screenlet.load();

There are a few things to note about this example:

• TherelativeURL /web/westeros-hybrid/companynews supplied to the WebScreenletConfiguration.Builder
constructor, and the lack of a setWebType(WebScreenletConfiguration.WebType.OTHER) call, indicates
that this Web Screenlet instance loads a Liferay DXP page that requires authentication.

• The addRawCssmethodadds theCSSfile portlet.css fromthe app’s res/raw folder. Anyfiles that youadd
via the methods addRawCss or addRawJsmust be located in res/raw (create this folder if it doesn’t exist).
Also note that youmust reference these files with R.raw.yourfilename. For instance, the portlet.css
file in this is example is referenced with R.raw.portlet.

• The addLocalCss and addLocalJsmethods add the local files gallery.css and gallery.js, respectively.
Any files that you add via these methods must be in the first level of your app’s assets folder. This
folder must exist at the same level as your app’s res folder. Create the assets folder in that location if it
doesn’t exist.

Great! Now you know how to useWeb Screenlet in your Android apps.

Related Topics

Web Screenlet for Android
UsingWeb Screenlet with Cordova in Your Android App
Using Screenlets in Android Apps
RenderingWeb Content in Your Android App

880

76.16 Using Web Screenlet with Cordova in Your Android App
By using Cordova plugins in Web Screenlet, you can extend the functionality of the web page that the
Screenlet renders. This lets you tailor that page to your app’s needs.

You’ll get started by installing and configuring Cordova. There are two ways to do this: automatically, or
manually. The automatic method is covered first.

Installing and Configuring Cordova Automatically

Follow these steps to automatically create an empty Android project configured to use Cordova. Note that
youmust have git, Node.js, and npm installed.

1. Install screens-cli:

npm install -g screens-cli

2. Create the file .plugins.screens in the folder you want to create your project in. In this file, add all
the Cordova plugins you want to use in your app. For example, you can add plugins from Cordova or
GitHub:

https://github.com/apache/cordova-plugin-wkwebview-engine.git

cordova-plugin-call-number

cordova-plugin-camera

3. In the folder containing your .plugins.screens file, run screens-cli to create your project:

screens-cli android <project-name>

This creates your project in the folder platforms/android/<project-name>. You can open itwith Android
Studio.

Installing and Configuring Cordova Manually

To install and configure Cordova manually, follow these steps:

1. Follow the Cordova getting started guide to install Cordova, create a Cordova project, and add the
Android platform to your Cordova project.

2. Install any Cordova plugins you want to use in your app. For example, this command adds the Cordova
plugin cordova-plugin-call-number:

cordova plugin add cordova-plugin-call-number

You can use cordova plugin to view the currently installed plugins.

3. Copy the following files and folders from your Cordova project to your Android project’s root folder:

• /platforms/android/res/xml/config.xml

• /platforms/android/assets/www

You should also review other files like AndroidManifest.xml, resource files, and so on. Some plugins
add permissions or styles in such files that you may need to copy for those plugins to work correctly in
your Android app.

881

https://cordova.apache.org/plugins/
https://git-scm.com/
https://nodejs.org/en/
https://cordova.apache.org/#getstarted
https://www.npmjs.com/package/cordova-plugin-call-number
https://www.npmjs.com/package/cordova-plugin-call-number

Using Cordova in Web Screenlet

Now that you’ve installed and configured Cordova in your Android project, you’re ready to use it withWeb
Screenlet. Follow these steps to do so:

1. Insert and configureWeb Screenlet in your app.

2. When you set Web Screenlet’s parameters via the WebScreenletConfiguration.Builder object, you
must enable Cordova by calling the enableCordovamethod with a CordovaLifeCycleObserver argument.
CordovaLifeCycleObserver informs Cordova about the activity lifecycle. You can create an instance of
this observer by using its no-argument constructor.

For example, this code creates a CordovaLifeCycleObserver object that it then uses with enableCordova

when settingWeb Screenlet’s parameters:

CordovaLifeCycleObserver observer = new CordovaLifeCycleObserver();

WebScreenletConfiguration configuration =

new WebScreenletConfiguration

.Builder("/")

.addLocalJs("call.js")

.enableCordova(observer)

.load();

webScreenlet.setWebScreenletConfiguration(configuration);

webScreenlet.load();

3. Override the following Activitymethods to call their corresponding observer methods:

@Override

protected void onStart() {

super.onStart();

observer.onStart();

}

@Override

protected void onStop() {

super.onStop();

observer.onStop();

}

@Override

public void onPause() {

super.onPause();

observer.onPause();

}

@Override

public void onResume() {

super.onResume();

observer.onResume();

}

@Override

public void onDestroy() {

super.onDestroy();

observer.onDestroy();

}

882

@Override

public void onSaveInstanceState(Bundle outState) {

super.onSaveInstanceState(outState);

observer.onSaveInstanceState(outState);

}

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

observer.onActivityResult(requestCode, resultCode, data);

}

@Override

public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions,

@NonNull int[] grantResults) {

super.onRequestPermissionsResult(requestCode, permissions, grantResults);

observer.onRequestPermissionsResult(requestCode, permissions, grantResults);

}

@Override

public void onConfigurationChanged(Configuration newConfig) {

super.onConfigurationChanged(newConfig);

observer.onConfigurationChanged(newConfig);

}

That’s it! Note, however, that youmay also need to invoke Cordova from a JavaScript file, depending on
what you’re doing. For example, to use the Cordova plugin cordova-plugin-call-number to call a number, you
must add a JavaScript file with the following code:

function callNumber() {

//This line triggers the Cordova plugin and makes a call

window.plugins.CallNumber.callNumber(null, function(){ alert("Calling failed.") }, "900000000", true);

}

setTimeout(callNumber, 3000);

If you run the app containing this code and wait three seconds, the plugin activates and calls the number
in the JavaScript file.

Great! Now you know how to useWeb Screenlet with Cordova.

Related Topics

RenderingWeb Pages in Your Android App
Web Screenlet for Android

76.17 Adding Offline Mode Support to Your Android Screenlet

Offline mode lets Screenlets function without a network connection. For offline mode to work with your
Screenlet, youmust manually add support for it. Fortunately, Liferay Screens 2.0 introduced a simpler way
of implementing offline mode support in Android Screenlets:

• Update your Screenlet’s classes to leverage the offline mode cache
• Create an event class (if your Screenlet doesn’t already have one)

883

https://www.npmjs.com/package/cordova-plugin-call-number

Implementing these steps, however, differs somewhat depending on how your Screenlet communicates
with the server:

• Awrite Screenlet: writes data to a server. The Add Bookmark Screenlet created in the basic Screenlet
creation tutorial is a good example of a simple write Screenlet. It asks the user to enter a URL and a
title, which it then sends to the Bookmarks portlet in Liferay DXP to create a bookmark.

• A read Screenlet: reads data from a server. TheWeb Content Display Screenlet included with Liferay
Screens is a good example of a read Screenlet. It retrieves web content from Liferay DXP for display in
an Android app. Click here to seeWeb Content Display Screenlet’s documentation.

This tutorial shows you how to add offline mode support to both kinds of Screenlets. You’ll start with
write Screenlets, using Add Bookmark Screenlet as an example. Before getting started, be sure to read the
basic Screenlet creation tutorial to familiarize yourself with Add Bookmark Screenlet’s code. You’ll conclude
by learning how offline mode implementation in read Screenlets differs from that of write Screenlets.

Adding Offline Mode Support to Write Screenlets

To add offline mode support to write Screenlets, you’ll follow these steps:

1. Create or update the event class.
2. Update the listener interface.
3. Update the Interactor class.
4. Update the Screenlet class.
5. Sync the cache with the server.

Each of the sections that follow detail one of these steps. You’ll begin by creating or updating the event
class.

Create or Update the Event Class

Recall from the basic Screenlet creation tutorial that an event class is required to handle communication
between Screenlet components. Also recall that many Screenlets can use the event class included with
Screens, BasicEvent, as their event class. For offline mode to work, however, youmust create an event class
that extends CacheEvent (click here to see CacheEvent). Your event class has one primary responsibility: store
and provide access to the arguments passed to the Interactor. To accomplish this, your event class should do
these things:

• Extend CacheEvent. For the arguments, define variables and public getter methods.
• Define a no-argument constructor that only calls the corresponding superclass constructor.
• Define a constructor that sets the Interactor’s arguments.

In the case of Add Bookmark Screenlet, the arguments are the bookmark’s URL, folder ID, and title. For
example, here’s the full code for this Screenlet’s event class, BookmarkEvent:

public class BookmarkEvent extends CacheEvent {

private String url;

private String title;

private long folderId;

public BookmarkEvent() {

super();

884

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/event/CacheEvent.java

}

public BookmarkEvent(String url, String title, long folderId) {

this.url = url;

this.title = title;

this.folderId = folderId;

}

public String getURL() {

return url;

}

public String getTitle() {

return title;

}

public long getFolderId() {

return folderId;

}

}

Next, you’ll update the listener.

Update the Listener

Recall from the basic Screenlet creation tutorial that the listener interface defines a success method and a
failure method. This lets implementing classes respond to the server call’s success or failure. Listeners that
support offline mode offer the same functionality, although differently. Offline mode listeners must extend
BaseCacheListener, which defines only this errormethod:

void error(Exception e, String userAction);

By extending BaseCacheListener, your listener no longer needs an explicit failure method because it
inherits the errormethod instead. This errormethod also includes an argument for the user action that
triggered the exception.

You can therefore update your listener to support offline mode by extending BaseCacheListener and
deleting the failure method. For example, here’s Add Bookmark Screenlet’s listener, AddBookmarkListener,
after being updated to support offline mode:

public interface AddBookmarkListener extends BaseCacheListener {

onAddBookmarkSuccess();

}

Note that you must also remove any failure method implementations (such as in an activity or fragment
that implements the listener), and replace any failure method calls with errormethod calls. You’ll do the
latter next when updating the Interactor class.

Update the Interactor Class

Recall from the basic Screenlet creation tutorial that Interactor classes extend BaseRemoteInteractorwith
the listener and event as type arguments. To support offlinemode, your Interactor class must instead extend
one of the following classes. Which one depends on whether your Interactor writes data to or reads data
from a server:

• BaseCacheWriteInteractor: writes data to a server. Extend this class if your Screenlet is a write Screen-
let. Click here to see this class.

885

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/BaseCacheWriteInteractor.java

• BaseCacheReadInteractor: reads data from a server. Extend this class if your Screenlet is a read Screen-
let. Click here to see this class.

In either case, the type arguments are the same: the listener and the event. Note, however, that the event
must extend CacheEvent as described above. For example, since Add Bookmark Screenlet is a write Screenlet,
to support offlinemode its Interactor classmust extend BaseCacheWriteInteractorwith AddBookmarkListener
and AddBookmarkEvent as type arguments:

public class AddBookmarkInteractor extends

BaseCacheWriteInteractor<AddBookmarkListener, BookmarkEvent> {...

Youmust also make a few changes to the Interactor class’s code. Themain change is that the execute
method now takes the event instead of var args. You can then retrieve the data you need from the event.
For example, to support offline mode, the executemethod in AddBookmarkInteractor takes BookmarkEvent
as an argument. The bookmark’s URL, title, and folder ID are then retrieved from the event for use in
the getJSONObjectmethod that makes the server call. The executemethod finishes by setting the resulting
JSONObject to the event, and then returning the event:

@Override

public BookmarkEvent execute(BookmarkEvent bookmarkEvent) throws Exception {

validate(bookmarkEvent.getUrl(), bookmarkEvent.getFolderId());

JSONObject jsonObject = getJSONObject(bookmarkEvent.getUrl(), bookmarkEvent.getTitle(),

bookmarkEvent.getFolderId());

bookmarkEvent.setJSONObject(jsonObject);

return bookmarkEvent;

}

You should also change the onSuccess method to take an instance of your event class instead of
BasicEvent. This is the only change you need to make to this method. For example, the onSuccessmethod in
AddBookmarkInteractor supports offline mode by taking a BookmarkEvent instead of a BasicEvent:

@Override

public void onSuccess(BookmarkEvent event) {

getListener().onAddBookmarkSuccess();

}

Nowmake the same change to the onFailuremethod, but replace the listener’s failure method call with a
call to the errormethod inherited from BaseCacheListener (see the listener section above for an explanation
of this method). For the error method’s arguments, you can retrieve the exception from the event and
define a string to use as the user action. For example, to support offline mode the onFailuremethod in
AddBookmarkInteractor takes a BookmarkEvent instead of a BasicEvent. Also, the method’s error call defines
the “ADD_BOOKMARK” string to indicate that the error occurred while trying to add a bookmark to the
server:

@Override public void onFailure(BookmarkEvent event) {

getListener().error(event.getException(), "ADD_BOOKMARK");

}

886

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/BaseCacheReadInteractor.java

Update the Screenlet Class

Updating theScreenlet class for offlinemode is straightforward. In theScreenlet class’s onUserActionmethod,
you’ll change the call to the Interactor’s startmethod so that it takes only an event as an argument. Before
doing this, however, you should create an event instance and set its cache key. A cache key is a value that
identifies an entity in the local cache. This lets you retrieve the entity from the cache for later synchronization
with the server.

In Add Bookmark Screenlet, for example, a bookmark’s URL makes a good cache key. To support
offline mode, the onUserActionmethod in AddBookmarkScreenlet creates a new BookmarkEvent instance with a
bookmark’s data and then uses the setCacheKeymethod to set the bookmark’s URL as the event’s cache key.
The Interactor’s start method takes this event as its argument:

BookmarkEvent event = new BookmarkEvent(url, title, folderId);

event.setCacheKey(url);

interactor.start(event);

Note that you don’t have to set a cache key to use offline mode. Instead, you can pass the event to the
startmethod without calling setCacheKey. However, this means that you’ll only be able to access the most
recent entity in the cache.

That’s it! Your write Screenlet now supports offline mode. There’s one more detail to keep in mind,
however, when using the Screenlet: syncing the cache with the server. You’ll learn about this next.

Sync the Cache with the Server

When using a write Screenlet that supports offline mode, new data written to the cache must also be synced
with the server. The write Screenlets included with Liferay Screens do this for you. However, youmust do
this manually when using a custom write Screenlet. You should do this in the activity or fragment that uses
the Screenlet–exactly where in this activity or fragment is up to you though.

To sync a write Screenlet’s data with the server manually, follow these steps:

1. Retrieve the event that needs to be synced with the server. To do this, youmust first get the cache key
associated with the event. Then use the key as an argument to the Cache.getObjectmethod.

2. Call the Interactor with the event. This syncs the data with the server.

For example, the following code uses the Cache.findKeysmethod to retrieve all BookmarkEvent keys in the
cache. The loop that follows then retrieves the event that corresponds to each key, and syncs it to the server
by calling the Interactor:

String[] keys = Cache.findKeys(BookmarkEvent.class, groupId, userId, locale, 0,

Integer.MAX_VALUE);

for (String key : keys) {

BookmarkEvent event = Cache.getObject(BookmarkEvent.class, groupId, userId, key);

new AddBookmarkInteractor().execute(event);

}

Note that if you opted not to set a cache key in your Screenlet class, you can pass null in place of a key.
Also note that you can use Android’s SharedPreferences APIs as an alternative way to store and retrieve

cache keys. For example, the following code stores cache keys in shared preferences:

SharedPreferences sharedPreferences = getSharedPreferences("MY_PREFERENCES", Context.MODE_PRIVATE);

HashSet<String> values = new HashSet<>();

sharedPreferences.edit().putStringSet("keysToSync", values).apply();

887

You can then retrieve the keys as you would retrieve any other key-value set from shared preferences:

SharedPreferences sharedPreferences = getSharedPreferences("MY_PREFERENCES", Context.MODE_PRIVATE);

HashSet<String> keysToSync = sharedPreferences.getStringSet("keysToSync", new HashSet<>());

Next, you’ll learn how to add offline mode support to read Screenlets.

Adding Offline Mode Support to Read Screenlets

Implementing offline mode support in a read Screenlet is almost identical to doing so in a write Screenlet.
There are two small differences, though:

1. You can still pass arguments to the Interactor with var args instead of an event.

2. The Interactor class must extend BaseCacheReadInteractor, which forces you to implement the
getIdFromArgsmethod. This method takes the var args passed to the Interactor so you can return
the argument that identifies your entity. Note that because this method requires you to return a
String, you’ll often use String.valueOf to return non-string arguments as a string. For example, the
getIdFromArgs implementation in Comment Display Screenlet’s CommentLoadInteractor retrieves the
comment ID (a long) from the first argument and then returns it as a String:

@Override

protected String getIdFromArgs(Object... args) {

long commentId = (long) args[0];

return String.valueOf(commentId);

}

That’s it! Next, you’ll learn about list Screenlets and offline mode support.

Adding Offline Mode Support to List Screenlets

A list Screenlet is a special type of read Screenlet that displays entities in a list. Recall from the list Screenlet
creation tutorial that list Screenlets have a model class that encapsulates entities retrieved from the server.
To support offline mode, a list Screenlet’s event class must extend ListEventwith the model class as a type
argument. This event class also needs three things:

1. A default constructor
2. A getListKeymethod that returns a unique ID to store the entity with
3. A getModelmethod that returns the model instance

The list Screenlet creation tutorial contains example model and event classes that support offline mode
for Bookmark List Screenlet. Click the following links to see the sections in the tutorial that show you how to
create these classes:

• Creating the Model Class
• Creating the Event

And that’s all! Now you know how to support offline mode in your Screenlets.

888

Related Topics

Using Offline Mode in Android
Architecture of Offline Mode in Liferay Screens
Creating Android Screenlets
Creating Android List Screenlets

76.18 Android Best Practices

When developing Android projects with Liferay Screens, there are a few best practices that you should follow
to ensure your code is as clean and bug-free as possible. This tutorial lists these.

Update Your Tools

You should first make sure that you have the latest tools installed. You should use the latest Android API level
with the latest version of Android Studio. Although Screensmaywork with Eclipse ADT or manual Gradle
builds, Android Studio is the preferred IDE.

See the Breaking Changes Document

Whenupdating an app or Screenlet to a new version of Liferay Screens,make sure to see the Android breaking
changes reference article. This article lists changes to Screens that break functionality in prior versions. In
most cases, updating your code is relatively straightforward.

Naming Conventions

Using the naming conventions described here leads to consistency and a better understanding of the Screens
library. This makes working with your Screenlets much simpler.

Also note that Liferay Screens follows Square’s Java conventions for Android, with tabs as separator. The
configuration for IDEA, findbugs, PMD, and checkstyle is available in the project’s source code.

Screenlet Folder

Your Screenlet folder’s name should indicate your Screenlet’s functionality. For example, Login Screenlet’s
folder is named login.

If you havemultiple Screenlets that operate on the same entity, you can place them inside a folder named
for that entity. For example, Asset Display Screenlet and Asset List Screenlet both work with Liferay assets.
They’re therefore in the Screens library’s asset folder.

Screenlets

Naming Screenlets properly is very important; they’re the main focus of Liferay Screens. You should name
your Screenlet with its principal action first, followed by Screenlet. Its Screenlet class should also follow this
pattern. For example, Login Screenlet’s principal action is to log users into a Liferay DXP installation. This
Screenlet’s Screenlet class is therefore LoginScreenlet.

889

https://github.com/square/java-code-styles
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/java/com/liferay/mobile/screens/auth/login
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/java/com/liferay/mobile/screens/auth/login
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/java/com/liferay/mobile/screens/asset

View Models

Name your Viewmodels the same way you name Screenlets, but substitute ViewModel for Screenlet. Also,
place your ViewModels in a view folder in your Screenlet’s root folder. For example, Login Screenlet’s View
Model is named LoginViewModel and is in the login/view folder.

Interactors

Place your Screenlet’s Interactors in a folder named interactor in your Screenlet’s root folder. Name each
Interactor first with the object it operates on, followed by its action and the suffix Interactor. If you wish, you
can also put each Interactor in its own folder named after its action. For example, Rating Screenlet has three
Interactors. Each is in its own folder inside the interactor folder:

• delete/RatingDeleteInteractor: Deletes an asset’s ratings
• load/RatingLoadInteractor: Loads an asset’s ratings
• update/RatingUpdateInteractor: Updates an asset’s ratings

Views

Place Views in a view folder in the Screenlet’s root folder. If you’re creating a View Set, however, you
can place its Views in a separate viewsets folder outside your Screenlets’ root folders. This is what
the Screens Library does for its Material and Westeros View Sets. The material and westeros folders
contain those View Sets, respectively. Also note that in each View, each Screenlet’s View class is in its
own folder. For example, the View class for Forgot Password Screenlet’s Material View is in the folder
viewsets/material/src/main/java/com/liferay/mobile/screens/viewsets/material/auth/forgotpassword.
Note that the auth folder in this path is the Screenlet’s module. Creating your Screenlets and Views
in modules isn’t required. Also note that the View’s layout file forgotpassword_material.xml is in
viewsets/material/src/main/res/layout.

Name a View’s layout XML and View class after your Screenlet, substituting View for Screenlet where
necessary. The layout’s filename should also be suffixed with _yourViewName. For example, the XIB file
and View class for Forgot Password Screenlet’s Material View are forgotpassword_material.xml and
ForgotPasswordView.java, respectively.

Avoid Hard Coded Elements

Using constants instead of hard-coded elements is a simple way to avoid bugs. Constants reduce the
likelihood that you’ll make a typo when referring to common elements. They also gather these elements in a
single location. For example, DDL Form Screenlet’s Screenlet class defines the following constants for the
user action names:

public static final String LOAD_FORM_ACTION = "loadForm";

public static final String LOAD_RECORD_ACTION = "loadRecord";

public static final String ADD_RECORD_ACTION = "addRecord";

public static final String UPDATE_RECORD_ACTION = "updateRecord";

public static final String UPLOAD_DOCUMENT_ACTION = "uploadDocument";

Avoid State in Interactors

Liferay Screens uses EventBus to ensure that the network or background operation isn’t lost when the device
changes orientation. For this to work, however, youmust ensure that your Interactor’s request is stateless.

If an Interactor needs some piece of information, you should pass it to the Interactor via the start call
and then attach it to the event. You can see an example of this in the sample Add Bookmark Screenlet from

890

https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/java/com/liferay/mobile/screens/auth/login/view
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/java/com/liferay/mobile/screens/rating/interactor
https://github.com/liferay/liferay-screens/tree/master/android/viewsets
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material/src/main/java/com/liferay/mobile/screens/viewsets/material/auth/forgotpassword
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material/src/main/java/com/liferay/mobile/screens/viewsets/material/auth/forgotpassword
https://github.com/liferay/liferay-screens/blob/master/android/viewsets/material/src/main/res/layout/forgotpassword_material.xml
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/ddl/form/DDLFormScreenlet.java
http://greenrobot.org/eventbus/

the Screenlet creation tutorial. The onUserActionmethod in the Screenlet class (AddBookmarkScreenlet) passes
a Bookmark’s URL and title from the ViewModel to the Interactor via the Interactor’s startmethod:

@Override

protected void onUserAction(String userActionName, AddBookmarkInteractor interactor,

Object... args) {

AddBookmarkViewModel viewModel = getViewModel();

String url = viewModel.getURL();

String title = viewModel.getTitle();

interactor.start(url, title, folderId);

}

The startmethod calls the Interactor’s executemethod in a background thread. The executemethod in
Add Bookmark Screenlet’s Interactor (AddBookmarkInteractor) creates a BasicEvent object that contains the
startmethod’s arguments:

@Override

public BasicEvent execute(Object[] args) throws Exception {

String url = (String) args[0];

String title = (String) args[1];

long folderId = (long) args[2];

validate(url, folderId);

JSONObject jsonObject = getJSONObject(url, title, folderId);

return new BasicEvent(jsonObject);

}

Stay in Your Layer

When accessing variables that belong to other Screenlet components, you should avoid those outside your
current Screenlet layer. This achieves better decoupling between the layers, which tends to reduce bugs and
simplify maintenance. For an explanation of the layers in Liferay Screens, see the architecture tutorial. For
example, don’t directly access View variables from an Interactor. Instead, pass data from a ViewModel to
the Interactor via the Interactor’s startmethod. The example onUserActionmethod in the previous section
illustrates this.

Related Topics

Liferay Screens for Android Troubleshooting and FAQs
Architecture of Liferay Screens for Android
Creating Android Screenlets
Android Breaking Changes

76.19 Liferay Screens for Android Troubleshooting and FAQs

Even though Liferay developed Screens for Android with great care, youmay still run into some common
issues. Here are solutions and tips for solving these issues. You’ll also find answers to common questions
about Screens for Android.

891

General Troubleshooting

Before delving into specific issues, you should first make sure that you have the latest tools installed and
know where to get additional help if you need it. You should use the latest Android API level, with the latest
version of Android Studio. Although Screens canwork with Eclipse ADT or manual Gradle builds, Android
Studio is the preferred IDE.

If you’re having trouble using Liferay Screens, it may help to investigate the sample apps developed by
Liferay. Both serve as good examples of how to use Screenlets and Views:

• Westeros Bank
• Test App

When updating an app or Screenlet to a new version of Liferay Screens,make sure to see the Android
breaking changes reference article. This article lists changes to Screens that break functionality in prior
versions. In most cases, updating your code is relatively straightforward.

If you get stuck at any point, you can post your question on our forum. We’re happy to assist you! If you
found a bug or want to suggest an improvement, file a ticket in our Jira. Note that you must log in first to be
able to see the project.

Common Issues

This section contains information on common issues that can occur when using Liferay Screens.

1. Could not find com.liferay.mobile:liferay-screens

This error occurs when Gradle isn’t able to find Liferay Screens or the repository. First, check that the
Screens version number you’re trying to use exists in jCenter. You can use this link to see all uploaded
versions.

It’s also possible that you’re using an oldGradle plugin that doesn’t use jCenter as the default repository.
Screens uses version 1.2.3 and later. You can add jCenter as a new repository by placing this code in
your project’s build.gradle file:

repositories {

jcenter()

}

2. Failed to resolve: com.android.support:appcompat-v7

Liferay Screens uses the appcompat library from Google, as do all new Android projects created with
the latest Android Studio. The appcompat library uses a custom repository maintained by Google, so
it must be updated manually using the Android SDKManager.

In the Android SDKManager (located at Tools → Android → SDKManager in Android Studio), youmust
install at least version 14 of the Android Support Repository (in the Extrasmenu), and version 22.1.1 of
the Android Support Library.

3. Duplicate files copied in APK META-INF…

This is a common Android error when using libraries. It occurs because Gradle can’t merge duplicated
files such as license or notice files. To prevent this error, add the following code to your build.gradle
file:

892

https://github.com/liferay/liferay-screens/tree/master/android/samples/bankofwesteros
https://github.com/liferay/liferay-screens/tree/master/android/samples/test-app
https://www.liferay.com/community/forums/-/message_boards/category/42706063
https://issues.liferay.com/browse/LMW/
https://issues.liferay.com/login.jsp?os_destination=%2Fbrowse%2F
https://bintray.com/liferay/liferay-mobile/liferay-screens/view

android {

...

packagingOptions {

exclude 'META-INF/LICENSE'

exclude 'META-INF/NOTICE'

}

...

}

This error may not happen right away, but may only appear later on in the development process. For
this reason, it’s recommended that you put the above code in your build.gradle file after creating your
project.

4. Connect failed: ECONNREFUSED(Connection refused), or org.apache.http.conn.HttpHostConnectException

This error occurs when Liferay Screens and the underlying Liferay Mobile SDK can’t connect to the
Liferay Portal instance. If you get this error, you should first check the IP address of the server to make
sure it’s available. If you’ve overridden the default IP address in server_context.xml, you should check
to make sure that you’ve set it to the correct IP. Also, if you’re using the Genymotion emulator, you
must use 192.168.56.1 instead of localhost for your app to communicate with a local Liferay instance.

5. java.io.IOException: open failed: EACCES (Permission denied)

Some Screenlets use temporary files to store information, such as when the User Portrait Screenlet
uploads a new portrait, or the DDL Form Screenlet uploads new files to the portal. Your app needs
to have the necessary permissions to use a specific Screenlet’s functionality. In this case, add the
following line to your AndroidManifest.xml:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

If you’re using the device’s camera, you also need to add the following permission:

<uses-permission android:name="android.permission.CAMERA"/>

6. No JSONweb service action with path …

This error most commonly occurs if you haven’t installed the Liferay Screens Compatibility Plugin.
This plugin adds new API calls to Liferay Portal.

FAQs

1. Do I have to use Android Studio?

No, Liferay Screens also works with Eclipse ADT. You can also compile your project manually with
Gradle or another build system. Just make sure you use the compiled aar in your project’s lib folder.

We strongly recommend, however, that you use Android Studio. Android Studio is the official IDE for
developing Android apps, and Eclipse ADT is no longer supported. Using Eclipse ADT or compiling
manually may cause unexpected issues that are difficult to overcome.

2. How does Screens handle orientation changes?

Liferay Screens uses an event bus, the EventBus library, to notify activities when the interactor has
finished its work.

893

https://github.com/liferay/liferay-screens/tree/master/portal
http://greenrobot.github.io/EventBus/

3. How can I use a Liferay feature not available in Screens?

There are several ways you can use Liferay features not currently available in Screens. The Liferay
Mobile SDK gives you access to all of Liferay’s remote APIs. You can also create a custom Screenlet to
support any features not included in Screens by default.

4. How do I create a new Screenlet?

Screenlet creation is explained in detail here.

5. How can I customize a Screenlet?

You can customize Screenlets by creating new Views. Fortunately, there’s a tutorial for this!

6. Does Screens have offline support?

Yes, since Liferay Screens 1.3!

Related Topics

Preparing Android Projects for Liferay Screens
Creating Android Screenlets
Creating Android Views
Mobile SDK
Android Breaking Changes

894

https://github.com/liferay/liferay-mobile-sdk
https://github.com/liferay/liferay-mobile-sdk

Chapter 77

iOS Apps with Liferay Screens

Liferay Screens speeds up and simplifies developing native mobile apps that use Liferay. Its power lies in its
Screenlets. A Screenlet is a visual component that you insert into your native app to leverage Liferay Portal’s
content and services. On iOS, Screenlets are available to log in to your portal, create accounts, submit forms,
display content, andmore. You can use any number of Screenlets in your app; they’re independent, so you
can use them inmodular fashion. Screenlets on iOS also deliver UI flexibility with pluggableThemes that
implement elegant user interfaces. Liferay’s reference documentation for iOS Screenlets describes each
Screenlet’s features andThemes.

Youmight be thinking, “These Screenlets sound like the greatest thing since taco Tuesdays, but what if
they don’t fit in with my app’s UI?What if they don’t behave exactly how I want them to? What if there’s no
Screenlet for what I want to do?” Fret not! You can customize Screenlets to fit your needs by changing or
extending their UI and behavior. You can even write your own Screenlets! What’s more, Screens seamlessly
integrates with your existing iOS projects.

Screenlets leverage the Liferay Mobile SDK to make server calls. The Mobile SDK is a low-level layer
on top of the Liferay JSON API. To write your own Screenlets, youmust familiarize yourself with Liferay’s
remote services. If no existing Screenlet meets your needs, consider customizing an existing Screenlet,
creating a Screenlet, or directly using the Mobile SDK. Creating a Screenlet involves writingMobile SDK
calls and constructing the Screenlet; if you don’t plan to reuse or distribute the implementation then you
may want to forgo writing a Screenlet and, instead, work with the Mobile SDK. A benefit of integrating an
existing Screenlet into your app, however, is that the Mobile SDK’s details are abstracted from you.

These tutorials show you how to use, customize, create, and distribute Screenlets for iOS.They show you
how to createThemes too. There’s even a tutorial that explains the nitty-gritty details of the Liferay Screens
architecture. Nomatter how deep you want to go, you’ll use Screenlets in no time. Start by preparing your
iOS project to use Liferay Screens.

77.1 Preparing iOS Projects for Liferay Screens

To develop iOS apps with Liferay Screens, youmust first install and configure Screens in your iOS project.
Screens is released as a standard CocoaPods dependency. Youmust therefore install Screens via CocoaPods.
After completing the installation, youmust configure your iOS project to communicate with your Liferay
DXP instance. This tutorial walks you through these processes. You’ll be up and running in no time!

First, you’ll review the requirements for Liferay Screens.

895

https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview
https://cocoapods.org

Figure 77.1: Here’s an app that uses a Liferay Screens Sign Up Screenlet.

Requirements

Liferay Screens for iOS includes the Component Library (the Screenlets) and some sample projects written
in Swift. Screens is developed using Swift and development techniques that leverage functional Swift code
and the Model View Presenter architecture. You can use Swift or Objective-C with Screens, and you can run
Screens apps on iOS 9 and above.

Liferay Screens for iOS requires the following software:

• Xcode 9.3 or newer
• iOS 11 SDK
• CocoaPods 1 or newer
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, or Liferay DXP 7.0
• Liferay Screens Compatibility Plugin (CE or DXP/EE, depending on your portal edition). This app is
preinstalled in Liferay CE Portal 7.0/7.1 CE and Liferay DXP 7.0.

Securing JSON Web Services

Each Screenlet in Liferay Screens calls one or more of Liferay DXP’s JSONweb services, which are enabled
by default. The Screenlet reference documentation lists the web services that each Screenlet calls. To use a

896

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter
http://cocoapods.org
http://www.liferay.com/downloads/liferay-portal/available-releases
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Screenlet, its web services must be enabled in the portal. It’s possible, however, to disable the web services
needed by Screenlets you’re not using. For instructions on this, see the tutorial Configuring JSONWeb
Services. You can also use Service Access Policies for more fine-grained control over accessible services.

Configuring Your Project with CocoaPods

To use CocoaPods to prepare your iOS 9.0 (or above) project for Liferay Screens, follow these steps:

1. In your project’s root folder, add the following code to the file named Podfile, or create this file if it
doesn’t exist. Be sure to replace Your Targetwith your target’s name:

source 'https://github.com/CocoaPods/Specs.git'

platform :ios, '9.0'

use_frameworks!

target "Your Target" do

pod 'LiferayScreens'

end

the rest of your podfile

Note that Liferay Screens and some of its dependencies aren’t compatible with Swift 3.2 or Swift 4.0.
If your iOS project is compiled in Swift 3.2 or Swift 4.0, then your Podfilemust specify Screens and
those dependencies for compilation in Swift 4.2. The post_install code in the following Podfile does
this. Youmust therefore use this Podfile if you want to use Screens in a Swift 3.2 or Swift 4.0 app:

source 'https://github.com/CocoaPods/Specs.git'

platform :ios, '9.0'

use_frameworks!

target "Your Target" do

pod 'LiferayScreens'

end

post_install do |installer|

incompatiblePods = [

'Cosmos',

'CryptoSwift',

'KeychainAccess',

'Liferay-iOS-SDK',

'Liferay-OAuth',

'LiferayScreens',

'Kingfisher'

]

installer.pods_project.targets.each do |target|

if incompatiblePods.include? target.name

target.build_configurations.each do |config|

config.build_settings['SWIFT_VERSION'] = '4.2'

end

end

target.build_configurations.each do |config|

config.build_settings['CONFIGURATION_BUILD_DIR'] = '$PODS_CONFIGURATION_BUILD_DIR'

end

end

end

the rest of your podfile

897

2. On the terminal, navigate to your project’s root folder and run this command:

pod repo update

This ensures you have the latest version of the CocoaPods repository on your machine. Note that this
command can take a while to run.

3. Still in your project’s root folder in the terminal, run this command:

pod install

Once this completes, quit Xcode and reopen your project by using the *.xcworkspace file in your
project’s root folder. From now on, youmust use this file to open your project.

Great! To configure your project’s communication with Liferay DXP, you can skip the next section and
follow the instructions in the final section.

Configuring Communication with Liferay DXP

Configuring communication between Screenlets and Liferay DXP is easy. Liferay Screens uses a property list
(.plist) file to access your Liferay DXP instance. It must include the server’s URL, the portal’s company ID,
and the site’s group ID. Create a liferay-server-context.plist file and specify values required for commu-
nicating with your Liferay DXP instance. As an example, refer to liferay-server-context-sample.plist.

The values you need to specify in your liferay-server-context.plist are:

• server: Your Liferay DXP instance’s URL.
• version: Your Liferay DXP instance’s version. Supported values are 71 for Liferay CE Portal 7.1 or
Liferay DXP 7.1, 70 for Liferay CE Portal 7.0 or Liferay DXP 7.0, and 62 for Liferay Portal 6.2 CE/EE.

• companyId: Your Liferay DXP instance’s identifier. You can find this value in the Instance ID column of
Control Panel → Portal Instances.

• groupId: The ID of the default site you want Screens to communicate with. You can find this value in
the Site ID field of the site’s Site Administration → Configuration → Site Settingsmenu.

• connectorFactoryClassName: Your Connector’s factory class name. This is optional. If you don’t include
it, the version value is used to determine which factory is the most suitable for that version of Liferay
DXP.

Great! Your iOS project is ready for Liferay Screens.

Related Topics

Using Screenlets in iOS Apps
UsingThemes in iOS Screenlets
Preparing Android Projects for Liferay Screens

77.2 Using Screenlets in iOS Apps
Once you’ve prepared your iOS project to use Liferay Screens, you can use Screenlets in your app. There are
plenty of Liferay Screenlets available, and they’re described in the Screenlet reference documentation. This
tutorial shows you how to insert and configure Screenlets in iOS apps written in Swift and Objective-C. It
also explains how to localize them. You’ll be a Screenlet master in no time!

898

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Resources/liferay-server-context-sample.plist

Figure 77.2: Here’s a property list file, called liferay-context.plist.

Inserting and Configuring Screenlets in iOS Apps

The first step to using Screenlets in your iOS project is to add a new UIView to your project. In Interface
Builder, insert a new UIView into your Storyboard or XIB file. Figure 1 shows this.

Next, enter the Screenlet’s name as the Custom Class. For example, if you’re using the Login Screenlet,
then enter Login Screenlet as the class.

Now you need to conform the Screenlet’s delegate protocol in your ViewController class. For example,
the Login Screenlet’s delegate class is LoginScreenletDelegate. This is shown in the code that follows. Note
that you need to implement the functionality of onLoginResponse and onLoginError. This is indicated by the
comments in the code here:

class ViewController: UIViewController, LoginScreenletDelegate {

...

func screenlet(screenlet: BaseScreenlet,

onLoginResponseUserAttributes attributes: [String:AnyObject]) {

// handle succeeded login using passed user attributes

}

func screenlet(screenlet: BaseScreenlet,

onLoginError error: NSError) {

// handle failed login using passed error

}

899

Figure 77.3: Add a new UIView to your project.

900

Figure 77.4: Change the Custom Class to match the Screenlet.

...

If you’re using CocoaPods, you need to import Liferay Screens in your View Controller:

import LiferayScreens

Now that the Screenlet’s delegate protocol conforms in your ViewController class, go back to Interface
Builder and connect the Screenlet’s delegate to your View Controller. If the Screenlet you’re using has more
outlets, you can assign them as well.

Note that currently Xcode has some issues connecting outlets to Swift source code. To get around this,
you can change the delegate data type or assign the outlets in your code. In your View Controller, follow
these steps:

1. Declare an outlet to hold a reference to the Screenlet. You can connect it in Interface Builder without
any issues.

2. Assign the Screenlet’s delegate the viewDidLoad method. This is the connection typically done in
Interface Builder.

These steps are shown in the following code for Login Screenlet’s View Controller.

class ViewController: UIViewController, LoginScreenletDelegate {

@IBOutlet var screenlet: LoginScreenlet?

override func viewDidLoad() {

super.viewDidLoad()

self.screenlet?.delegate = self

}

...

Awesome! Now you know how to use Screenlets in your apps. If you need to use Screenlets from
Objective-C code, follow the instructions in the next section.

901

http://stackoverflow.com/questions/26180268/interface-builder-iboutlet-and-protocols-for-delegate-and-datasource-in-swift/26180481#26180481

Figure 77.5: Connect the outlet with the Screenlet reference.

Using Screenlets from Objective-C

If youwant to invoke Screenlet classes fromObjective-C code, there is an additional header file that youmust
import. You can import the header file LiferayScreens-Swift.h in all your Objective-C files or configure a
precompiler header file.

The first option involves adding the following import line all of your Objective-C files:

#import "LiferayScreens-Swift.h"

Alternatively, you can configure a precompiler header file by following these steps:

1. Create a precompiler header file (e.g., PrefixHeader.pch) and add it to your project.

2. Import LiferayScreens-Swift.h in the precompiler header file you just created.

3. Edit the following build settings of your target. Remember to replace path/to/your/file/ with the
path to your PrefixHeader.pch file:

• Precompile Prefix Header: Yes
• Prefix Header: path/to/your/file/PrefixHeader.pch

902

Figure 77.6: Connect the Screenlet’s delegate in Interface Builder.

Figure 77.7: The PrefixHeader.pch configuration in Xcode settings.

903

You can use the precompiler header file PrefixHeader.pch as a template.
Super! Now you know how to use Screenlets fromObjective-C code in your apps.

Localizing Screenlets

Follow Apple’s standard mechanism to implement localization in your Screenlet. Note: even though a
Screenlet may support several languages, youmust also support those languages in your app. In other words,
a Screenlet’s support for a language is only valid if your app supports that language. To support a language,
make sure to add it as a localization in your project’s settings.

Figure 77.8: The Xcode localizations in the project’s settings.

Way to go! You now know how to use Screenlets in your iOS apps.

Related Topics

Preparing iOS Projects for Liferay Screens
UsingThemes in iOS Screenlets
Creating iOS Screenlets

904

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Showcase-objc/LiferayScreens-Showcase-Objc/PrefixHeader.pch
https://developer.apple.com/library/ios/documentation/MacOSX/Conceptual/BPInternational/Introduction/Introduction.html

Using Screenlets in Android apps

77.3 Using Themes in iOS Screenlets

Using a Liferay ScreensTheme, you can set your Screenlet’s UI components, style, and behavior. They let you
focus on a Screenlet’s UI and UX, without having to worry about its core functionality. Liferay’s Screenlets
comewith severalThemes, andmore are being developed by Liferay and the community. A Liferay Screenlet’s
Themes are specified in its reference documentation. This tutorial shows you how to useThemes in your iOS
Screenlets.

To install aTheme in your iOS app’s Screenlet, you have two options, depending on how theTheme has
been published:

1. If theTheme has been packaged as a CocoaPods pod dependency, you can install it by adding a line to
your Podfile:

pod 'LiferayScreensThemeName'

Make sure to replace LiferayScreensThemeNamewith theTheme’s CocoaPods project name.

2. If theTheme isn’t available through CocoaPods, you can drag and drop theTheme’s folder into your
project. Liferay Screens detects the new classes and then applies the new design in the runtime and in
Interface Builder.

To use the installed Theme, specify its name in theTheme Name property field of the Base Screenlet in
Interface Builder. The names of each Screenlet’sThemes are listed in theThemes section of the Screenlet’s
reference documentation. If you leave theTheme name property blank or enter a name for aTheme that
can’t be found, the Screenlet’s DefaultTheme is used.

The initial release of Liferay Screens for iOS includes the followingThemes for its Screenlets:

• Default: Comes standard with a Screenlet. It’s used by a Screenlet if noTheme name is specified or the
namedTheme can’t be found. The DefaultTheme can be used as the parentTheme for your custom
Themes. Refer to the architecture tutorial for more details.

• Flat7: Demonstrates aThememade from scratch. Refer to theTheme creation tutorial for instructions
on creating your ownTheme.

• Westeros: Customizes the behavior and appearance of theWesteros Bank demo app.

That’s all there is to it! Great! Now you know how to useThemes to dress up Screenlets in your iOS app.
This opens up a world of possibilities–like writing your ownThemes.

Related Topics
Preparing iOS Projects for Liferay Screens
Creating iOSThemes
Using Screenlets in iOS Apps
Architecture of Liferay Screens for iOS
Using Views in Android Screenlets

905

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/WesterosBank

Figure 77.9: To install a Theme into an Xcode project, drag and drop the Theme’s folder into it.

Figure 77.10: In Interface Builder, you specify a Screenlet’s Theme by entering its name in the Theme Name field; this sets the Screenlet’s themeName property.

906

77.4 Using Offline Mode in iOS

Offline mode in Liferay Screens lets your apps function when connectivity is unavailable or intermittent.
Even though the steady march of technology makes connections more stable and prevalent, there are still
plenty of places the Internet has trouble reaching. Areas with complex terrain, including cities with large
buildings, often lack stable connections. Remote areas typically don’t have connections at all. Using Screens’s
offline mode in your apps gives your users flexibility in these situations.

This tutorial shows you how to use offline mode in Screenlets. For an explanation of how offline mode
works, see the tutorial Architecture of Offline Mode in Liferay Screens. Offline mode’s architecture is the
same on iOS and Android, although its use on these platforms differs.

Configuring Screenlets for Offline Mode

If you want to enable the offline mode in any of your screenlets, you must configure the attribute
offlinePolicy. This attribute can take four possible values. For a description of these values, see the section
Using Policies with Offline Mode in the offline mode architecture tutorial. Note that each Screenlet behaves
a bit differently with offline mode. For specific details, see the Screenlet reference documentation.

Handling Synchronization

Under some scenarios, values stored in the local cache need to be synchronized with the portal. For that
purpose youmust use the SyncManager class. This class is responsible for sending the information stored in
the local cache that hasn’t been sent to the portal yet.

Use the following steps to start a synchronization process:

1. Create an instance of the SyncManager class. Youmust pass a CacheManager object in the constructor.
You can get the current cache manager using SessionContext.currentCacheManager.

2. Set the delegate property. This delegate object receives the events produced in the synchronization
process. For more details on the delegate’s methods, see the API reference documentation for the
SyncManagerDelegate class.

3. Make sure you keep a strong reference to the SyncManager object while the process is running.

Related Topics

Architecture of Offline Mode in Liferay Screens
Using Screenlets in iOS Apps
Using Offline Mode in Android
Using Screenlets in Android Apps

77.5 Architecture of Liferay Screens for iOS

Liferay Screens separates its presentation and business-logic code using ideas fromModel View Presenter,
ModelViewViewModel, andVIPER.However, Screens isn’t a canonical implementationof these architectures
because they’re designed for apps. Screens isn’t an app; it’s a suite of visual components intended for use in
apps.

This tutorial explains the architecture of Liferay Screens for iOS. It begins with an overview of the
high level components that make up the system. This includes the Core, Screenlets, and Themes. These

907

http://en.wikipedia.org/wiki/Model-view-presenter
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://www.objc.io/issue-13/viper.html

components are then described in detail in the sections that follow. After you get done examining Screens’s
building blocks, you’ll be ready to create some amazing Screenlets andThemes!

High Level Architecture of Liferay Screens for iOS

Liferay Screens for iOS is composed of a Core, a Screenlet layer, a View layer, and Server Connectors. Server
Connectors are technically part of the Core, but are worth describing separately. They facilitate interaction
with local and remote data sources and communication between the Screenlet layer and the Liferay Mobile
SDK.

Figure 77.11: The high level components of Liferay Screens for iOS.

Each component is described below.
Core: includes all the base classes for developing other Screens components. It’s a micro-framework

that lets developers write their own Screenlets, views, and Server Connector classes.
Screenlets: Swift classes for inserting into any UIView. They render a selectedTheme in the runtime and

in Interface Builder. They also react to UI events to start server requests (via Server Connectors), and define
a set of @IBInspectable properties that can be configured from Interface Builder. The Screenlets bundled
with Liferay Screens are known as the Screenlet library.

Interactors: implement specific use cases for communicating with servers or any other data store.
Interactors can use local and remote data sources by using Server Connectors or custom classes. If a user
action or use case needs to execute more than one query on a local or remote store, the sequence is done in
the corresponding Interactor. If a Screenlet supports more than one user action or use case, an Interactor
must be created for each.

Connectors (or Server Connectors): a collection of classes that can interact with local and remote data
sources and Liferay instances. Liferay’s own set of Connectors, Liferay Connector, use the LiferayMobile
SDK. All Server Connectors can be run concurrently since they use the NSOperation framework. It’s very easy
to define priorities and dependencies between Connectors, so you can build your own graph of Connectors
(aka operations) that can be resolved by the framework. Connectors are always created using a factory class
so they can be injected by the app developer.

908

https://developer.apple.com/library/mac/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationObjects/OperationObjects.html#//apple_ref/doc/uid/TP40008091-CH101-SW1
https://en.wikipedia.org/wiki/Abstract_factory_pattern

Themes: a set of XIB files and accompanying UIView classes that present Screenlets to the user.
The next section describes the Core in detail.

Core

TheCore is the micro-framework that lets developers write Screenlets in a structured and isolated way. All
Screenlets share a common structure based on the Core classes, but each Screenlet can have a unique purpose
and communication API.

Figure 77.12: Here’s the core layer of Liferay Screens for iOS.

From right to left, these are the main components:
BaseScreenletView: the base class for all Screenlet View classes. Its child classes belong to theTheme

layer. View classes use standard XIB files to render a UI and then update it when the data changes. The
BaseScreenletView class contains template methods that child classes may overwrite. When developing your
ownTheme from a parentTheme, you can read the Screenlet’s properties or call its methods from this class.
Any user action in the UI is received in this class, and then redirected to the Screenlet class.

BaseScreenlet: the base class for all Screenlet classes. Screenlet classes receive UI events through
the ScreenletView class, then instantiate Interactors to process and respond to that UI event. When the

909

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenlet.swift

Interactor’s result is received, the ScreenletView (the UI) is updated accordingly. The BaseScreenlet class
contains a set of template methods that child classes may overwrite.

Interactor: the base class for all Interactors that a Screenlet supports. The Interactor class implements a
specific use case supported by the Screenlet. If the Screenlet supports several use cases, it needs different
Interactors. If the Interactor needs to retrieve remote data, it uses a Server Connector to do so. When
the Server Connector returns the operation’s result, the Interactor returns that result to the Screenlet. The
Screenlet then changes the ScreenletView (the UI) status.

ServerConnector: the base class for all Liferay Connectors that a Screenlet supports. Connectors retrieve
data asynchronously from local or remote data sources. The Interactor classes instantiate and start these
Connector classes.

SessionContext: an object (typically a singleton) that holds the logged in user’s session. Apps can use an
implicit login, invisible to the user, or a login that relies on explicit user input to create the session. User
logins can be implemented with Login Screenlet. This is explained in detail here.

LiferayServerContext: a singleton object that holds server configuration parameters. It’s loaded from
the liferay-server-context.plist file. Most Screenlets use these parameters as default values.

Now that you know what the Core contains, you’re ready to learn the Screenlet layer’s details.

Screenlet Layer

The Screenlet layer contains the available Screenlets in Liferay Screens for iOS.The following diagram shows
the Screenlet layer in relation to the Core, Interactor,Theme, and Connector layers. The Screenlet classes in
the diagram are explained in this section.

Screenlets are comprised of several Swift classes and an XIB file:
MyScreenletViewModel: a protocol that defines the attributes shown in the UI. It typically accounts for

all the input and output values presented to the user. For example, LoginViewModel includes attributes like
the user name and password. A Connector can be configured by reading and validating these values. Also,
the Screenlet can change these values based on any default values and operation results.

MyScreenlet: a class that represents the Screenlet component the app developer interacts with. It
includes the following things:

• Inspectable parameters for configuring the Screenlet’s behavior. The initial state can be set in the
Screenlet’s data.

• A reference to the Screenlet’s View, based on the selectedTheme. Tomeet the Screenlet’s requirements,
all Themes must implement the ViewModel protocol.

• Any number of methods for invoking Connectors. You can optionally make them public for app
developers to call.

• An optional (but recommended) delegate object the Screenlet can call on for particular events.

MyUserCaseInteractor: Each Interactor runs the operations that implement the use case. These can be
local operations, remote operations, or a combination thereof. Operations can be executed sequentially or in
parallel. The final results are stored in a result object that can be read by the Screenlet when notified. The
number of Interactor classes a Screenlet requires depends on the number of use cases it supports.

MyOperationConnector:This is related to the Interactor, but has one or more Connectors. If the Server
Connector is a back-end call, then there’s typically only a single request. Each Server Connector is responsible
for retrieving a set of related values. The results are stored in a result object that can be read by the Interactor
when notified. The number of Server Connector classes an Interactor requires depends on the number of
endpoints you need to query, or even the number of different servers you need to support. Connectors are

910

http://www.oodesign.com/template-method-pattern.html
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/Interactor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/ServerConnector.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Context/SessionContext.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Context/LiferayServerContext.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Auth/LoginScreenlet/LoginViewModel.swift
https://developer.apple.com/library/ios/documentation/general/conceptual/DevPedia-CocoaCore/Delegation.html

Figure 77.13: This diagram illustrates the iOS Screenlet Layer’s relationship to other Screens components.

always created using a factory class. You can therefore take advantage of Inversion of Control. This way, you
can implement your own factory class to use to create your ownConnector objects. To tell Screens to use your
factory class, specify it in the liferay-server-context.plist file as described in the tutorial on preparing
your iOS project for Screens.

MyScreenletView_themeX: A class that belongs to one specific Theme. In the diagram, this Theme
isThemeX. The class renders the Screenlet’s UI by using its related XIB file. The View object and XIB file
communicate using standard mechanisms like @IBOutlet and @IBAction. When a user action occurs in
the XIB file, it’s received by BaseScreenletView and then passed to the Screenlet class via the performAction
method. To identify different events, the component’s restorationIdentifier property is passed to the
performActionmethod.

MyScreenletView_themeX.xib: an XIB file that specifies how to render the Screenlet’s View. Its name is
very important. By convention, a Screenlet with a view class named FooScreenletView and aTheme named
BarThememust have an XIB file named FooScreenletView_barTheme.xib.

For more details, refer to the tutorial Creating iOS Screenlets. Next, theTheme Layer of Screens for iOS
is described.

911

https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Inversion_of_control

Theme Layer

TheTheme Layer lets developers set a Screenlet’s look and feel. The Screenlet property themeName determines
theTheme to load. This can be set by the Screenlet’sThemeNamefield in Interface Builder. ATheme consists of
a view class for Screenlet behavior and an XIB file for the UI. By inheriting one or more of these components
from anotherTheme, the differentTheme types allow varying levels of control over a Screenlet’s UI design
and behavior.

There are several differentTheme types:
DefaultTheme:The standardTheme provided by Liferay. It can be used as a template to create other

Themes, or as the parentTheme of otherThemes. EachTheme for each Screenlet requires a View class. A
DefaultTheme’s View class is named MyScreenletView_default, where MyScreenlet is the Screenlet’s name.
This class is similar to the standard ViewController in iOS; it receives and handles UI events by using the
standard @IBAction and @IBOutlet. The View class usually uses an XIB file to build the UI components. This
XIB file is bound to the class.

ChildTheme: Presents the sameUI components as the parentTheme, but can change the UI components’
appearance and position. A ChildTheme specifies visual changes in its own XIB file; it can’t add or remove
any UI components. In the diagram, the ChildTheme inherits from the DefaultTheme. Creating a Child
Theme is ideal when you only need to make visual changes to an existingTheme. For example, you can create
a Child Theme that sets new positions and sizes for the standard text boxes in Login Screenlet’s Default
Theme, but without adding or overwriting existing code.

Full: Provides a complete standalone theme. It has no parentTheme and implements unique behavior
and appearance for a Screenlet. Its View classmust extend Screens’s BaseScreenletView class and conform to
the Screenlet’s viewmodel protocol. It must also specify a new UI in an XIB file. Refer to the Default Theme
for an example of a Full Theme.

Extended: Inherits the parentTheme’s behavior and appearance, but lets you change and add code to
both. You can do so by creating a new XIB file and a custom View class that extends the parentTheme’s View
class. In the diagram, the ExtendedTheme inherits the FullTheme and extends its Screenlet’s View class.
Refer to the Flat7Theme for an example of an ExtendedTheme.

Themes in Liferay Screens are organized into sets that containThemes for several Screenlets. Liferay’s
availableTheme sets are listed here:

• Default: AmandatoryTheme set supplied by Liferay. It’s used if the Screenlet’s themeName isn’t specified
or is invalid. TheDefaultThemeuses aneutral, flatwhite andbluedesignwith standardUI components.
For example, the Login Screenlet uses standard text boxes for the user name and password fields, but
uses the DefaultTheme’s flat white and blue design.

• Flat7: A collection ofThemes that use a flat black and green design, and UI components with rounded
edges. They’re ExtendedThemes.

• Westeros:TheTheme for the Bank ofWesteros sample app.

For more details onTheme creation, see the tutorial Creating iOSThemes.
Awesome! Now you know the nitty gritty details of Liferay Screens for iOS.This information is invaluable

when using Screens to develop your apps.

Related Topics

Using Screenlets in iOS Apps
UsingThemes in iOS Screenlets
Creating iOS Screenlets

912

https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Default
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Flat7
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Default
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/LoginScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Flat7
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/WesterosBank/Theme
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/WesterosBank/App

Figure 77.14: The Theme Layer of Liferay Screens for iOS.

913

Creating iOSThemes

77.6 Creating iOS Screenlets

The built-in Screenlets cover common use cases for mobile apps that use Liferay. They authenticate users,
interact with Dynamic Data Lists, display assets, andmore. What if, however, there’s no Screenlet for your
use case? No problem! You can create your own. Extensibility is a key strength of Liferay Screens.

This tutorial explains how to create your own Screenlets. As an example, it references code from the
sample Add Bookmark Screenlet, that saves bookmarks to Liferay’s Bookmarks portlet.

In general, you use the following steps to create Screenlets:

1. Plan Your Screenlet: Your Screenlet’s features and use cases determine where you’ll create it and the
Liferay remote services you’ll call.

2. Create Your Screenlet’s UI (itsTheme): Although this tutorial presents all the information you need
to create aTheme for your Screenlet, youmay first want to learn the steps for creating aTheme. For
more information onThemes in general, see the tutorial on usingThemes with Screenlets.

3. Create the Screenlet’s Interactor. Interactors are Screenlet components that make server calls.

4. Create the Screenlet class. The Screenlet class is the Screenlet’s central component. It controls the
Screenlet’s behavior and is the component the app developer interacts with when inserting a Screenlet.

Before getting started,make sure that you’re familiar with the architecture of Liferay Screens. Click here
to read the Screens architecture tutorial.

Without further ado, let the Screenlet creation begin!

Planning Your Screenlet

Before creating your Screenlet, you must determine what it needs to do and how you want developers to use
it. This determines where you’ll create your Screenlet and its functionality.

Where you should create your Screenlet depends on how you plan to use it. If you want to reuse or
redistribute it, you should create it in an empty Cocoa Touch Framework project in Xcode. You can then use
CocoaPods to publish it. The tutorial Packaging iOSThemes explains how to publish an iOS Screenlet. Even
though that tutorial refers toThemes, the steps for preparing Screenlets for publication are the same. If you
don’t plan to reuse or redistribute your Screenlet, create it in your app’s Xcode project.

Youmust also determine your Screenlet’s functionality andwhat data your Screenlet requires. This deter-
mines the actions your Screenlet must support and the Liferay remote services it must call. For example, Add
Bookmark Screenlet only needs to respond to one action: adding a bookmark to Liferay’s Bookmarks portlet.
To add a bookmark, this Screenlet must call the Liferay instance’s add-entry service for BookmarksEntry. If
you’re running a Liferay instance locally on port 8080, click here to see this service. To add a bookmark, this
service requires the following parameters:

• groupId: The site ID in the Liferay instance that contains the Bookmarks portlet.

• folderId: The folder ID in the Bookmarks portlet that receives the new bookmark.

• name: The new bookmark’s title.

• url: The new bookmark’s URL.

914

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark
http://localhost:8080/api/jsonws?contextName=bookmarks&signature=%2Fbookmarks.bookmarksentry%2Fadd-entry-6-groupId-folderId-name-url-description-serviceContext

• description: The new bookmark’s description.

• serviceContext: A Liferay ServiceContext object.

Add Bookmark Screenletmust therefore account for each of these parameters. When saving a bookmark,
the Screenlet asks the user to enter the bookmark’s URL and name. The user isn’t required, however, to enter
any other parameters. This is because the app developer sets the groupId and folderId via the app’s code.
Also, the Screenlet’s code automatically populates the description and serviceContext.

Great! Now you’re ready to create your Screenlet’sTheme!

Creating the Screenlet's UI

In Liferay Screens for iOS, a Screenlet’s UI is called aTheme. Every Screenlet must have at least oneTheme.
ATheme has the following components:

1. An XIB file: defines the UI components that theTheme presents to the end user.

2. A View class: renders the UI, handles user interactions, and communicates with the Screenlet class.

First, create a new XIB file and use Interface Builder to construct your Screenlet’s UI. In many
cases, the Screenlet’s actions must be triggered from the Theme. To achieve this, make sure to use a
restorationIdentifier property to assign a unique ID to each UI component that triggers an action. The
user triggers the action by interacting with the UI component. If the action only changes the UI’s state
(that is, changes the UI component’s properties), then you can associate that component’s event to an
IBActionmethod as usual. Actions using restorationIdentifier are intended for use by actions that need an
Interactor, such as actions that make server requests or retrieve data from a database.

For example, Add Bookmark Screenlet’s UI needs text boxes for entering a bookmark’s URL and title.
This UI also needs a button to support the Screenlet’s action: sending the bookmark to a Liferay instance.
The XIB file AddBookmarkView_default.xib defines this UI. Because the button triggers the Screenlet’s action,
it contains restorationIdentifier="add-bookmark".

Figure 77.15: Here’s the sample Add Bookmark Screenlet’s XIB file rendered in Interface Builder.

915

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/Themes/AddBookmarkView_default.xib

Note: The Screenlet in this tutorial doesn’t support multiple Themes. If you want your Screenlet to
support multiple Themes, your View class must also conform a View Model protocol that you create. For
instructions on this, see the tutorial Supporting MultipleThemes in Your Screenlet.

Now you must create your Screenlet’s View class. This class controls the UI you just defined. In the
BaseScreenletView class, Screens provides the default functionality required by all View classes. Your View
class must therefore extend BaseScreenletView to provide the functionality unique to your Screenlet. To
support your UI, use standard @IBOutlets and @IBActions to connect all your XIB’s UI components and events
to your View class. You should also implement getters and setters to get values from and set values to the UI
components. Your View class should also implement any required animations or front-end logic.

For example, AddBookmarkView_default is Add Bookmark Screenlet’s View class. This class extends
BaseScreenletView and contains @IBOutlet references to the XIB’s text fields. The getters for these refer-
ences let theTheme retrieve the data the user enters into the corresponding text field:

import UIKit

import LiferayScreens

class AddBookmarkView_default: BaseScreenletView {

@IBOutlet weak var URLTextField: UITextField?

@IBOutlet weak var titleTextField: UITextField?

var URL: String? {

return URLTextField?.text

}

var title: String? {

return titleTextField?.text

}

}

In Interface Builder, you must now specify your View class as your XIB file’s custom class. In Add
Bookmark Screenlet, for example, AddBookmarkView_default is set as the AddBookmarkView_default.xib file’s
custom class in Interface Builder.

If you’re using CocoaPods,make sure to explicitly set a valid module for the custom class–the grayed-out
Current default value only suggests a module.

Figure 77.16: In this XIB file, the custom class’s module is NOT specified.

Next, you’ll create your Screenlet’s Interactor.

Creating the Interactor

Create an Interactor class for each of your Screenlet’s actions. In the Interactor class, Screens provides
the default functionality required by all Interactor classes. Your Interactor class must therefore extend
Interactor to provide the functionality unique to your Screenlet.

916

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/Themes/AddBookmarkView_default.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/Interactor.swift

Figure 77.17: The XIB file is bound to the custom class name, with the specified module.

Note: Youmay wish to make your server call in a Connector instead of an Interactor. Doing so provides
an additional abstraction layer for your server call, leaving your Interactor to instantiate your Connector and
receive its results. For instructions on this, see the tutorial Create and Use a Connector with Your Screenlet.

Interactors work synchronously, but you can use callbacks (delegates) or Connectors to run their oper-
ations in the background. For example, the Liferay Mobile SDK provides the LRCallback protocol for this
purpose. This is described in the Mobile SDK tutorial on invoking Liferay services asynchronously. Screens
bridges this protocol to make it available in Swift. Your Interactor class can conform this protocol to make
its server calls asynchronously. To implement an Interactor class:

• Your initializer must receive all required properties and a reference to the Screenlet.
• Override Interactor’s startmethod to perform the server operations your Screenlet requires (e.g.,
invoke a Liferay operation via a Liferay Mobile SDK service).

• Save the server response to an accessible property, if necessary. For example, if the server call returns
objects from a Liferay instance, you should store these objects in an accessible property. This way your
Screenlet can display those results to the user.

• Youmust invoke the methods callOnSuccess and callOnFailure to execute the closures onSuccess and
onFailure, respectively.

For example, the sample Add Bookmark Screenlet’s Interactor class AddBookmarkInteractormakes the
server call that adds a bookmark to a Liferay instance. This class extends the Interactor class and conforms
the LRCallback protocol. The latter ensures that the Interactor’s server call runs asynchronously:

public class AddBookmarkInteractor: Interactor, LRCallback {...

To save the server call’s results, AddBookmarkInteractor defines the public variable resultBookmarkInfo.
This class also defines public constants for the bookmark’s folder ID, title, and URL.The initializer sets these
variables and calls Interactor’s constructor with a reference to the base Screenlet class (BaseScreenlet):

public var resultBookmarkInfo: [String:AnyObject]?

public let folderId: Int64

public let title: String

public let url: String

public init(screenlet: BaseScreenlet, folderId: Int64, title: String, url: String) {

self.folderId = folderId

self.title = title

self.url = url

super.init(screenlet: screenlet)

}

The AddBookmarkInteractor class’s startmethodmakes the server call. To do so, itmust first get a Session.
Since Login Screenlet creates a session automatically upon successful login, the startmethod retrieves this

917

https://github.com/liferay/liferay-mobile-sdk/blob/master/ios/Source/Core/LRCallback.h
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/Interactor/AddBookmarkInteractor.swift

session with SessionContext.createSessionFromCurrentSession(). To make the server call asynchronously,
the startmethodmust set a callback to this session. Because AddBookmarkInteractor conforms the LRCallback
protocol, setting self as the session’s callback accomplishes this. The start method must then create a
LRBookmarksEntryService_v7 instance and call this instance’s addEntryWithGroupIdmethod. The lattermethod
calls a Liferay instance’s add-entry service for BookmarksEntry. The start method therefore provides the
groupId, folderId, name, url, description, and serviceContext arguments to addEntryWithGroupId. Note that
this example provides a hard-coded string for the description. Also, the serviceContext is nil because the
Mobile SDK handles the ServiceContext object for you:

override public func start() -> Bool {

let session = SessionContext.createSessionFromCurrentSession()

session?.callback = self

let service = LRBookmarksEntryService_v7(session: session)

do {

try service.addEntryWithGroupId(LiferayServerContext.groupId,

folderId: folderId,

name: title,

url: url,

description: "Added from Liferay Screens",

serviceContext: nil)

return true

}

catch {

return false

}

}

Finally, the AddBookmarkInteractor class must conform the LRCallback protocol by implementing the
onFailure and onSuccessmethods. The onFailuremethod communicates the NSError object that results from
a failed server call. It does this by calling the base Interactor class’s callOnFailuremethod with the error.
When the server call succeeds, the onSuccess method sets the server call’s results (the result argument)
to the resultBookmarkInfo variable. The onSuccess method finishes by calling the base Interactor class’s
callOnSuccessmethod to communicate the success status throughout the Screenlet:

public func onFailure(error: NSError!) {

self.callOnFailure(error)

}

public func onSuccess(result: AnyObject!) {

//Save result bookmark info

resultBookmarkInfo = (result as! [String:AnyObject])

self.callOnSuccess()

}

Next, you’ll create the Screenlet class.

Creating the Screenlet Class

The Screenlet class is the central hub of a Screenlet. It contains the Screenlet’s properties, a reference to
the Screenlet’s View class, methods for invoking Interactor operations, andmore. When using a Screenlet,
app developers primarily interact with its Screenlet class. In other words, if a Screenlet were to become
self-aware, it would happen in its Screenlet class (though we’re reasonably confident this won’t happen).

Screens’s BaseScreenlet class is a base Screenlet class implementation. Since BaseScreenlet provides
most of a Screenlet class’s required functionality, your Screenlet class should extend BaseScreenlet. This lets

918

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenlet.swift

you focus on your Screenlet’s unique functionality. Your Screenlet classmust also include any @IBInspectable
properties your Screenlet requires and a reference to your Screenlet’s View class. To perform your Screenlet’s
action, your Screenlet class must override BaseScreenlet’s createInteractormethod. This method should
create an instance of your Interactor and then set the Interactor’s onSuccess and onFailure closures to define
what happens when the server call succeeds or fails, respectively.

For example, the AddBookmarkScreenlet class is the Screenlet class in Add Bookmark Screenlet. This
class extends BaseScreenlet and contains an @IBInspectable variable for the bookmark folder’s ID
(folderId). The AddBookmarkScreenlet class’s createInteractor method first gets a reference to the View
class (AddBookmarkView_default). It then creates an AddBookmarkInteractor instance with this Screenlet class
(self), the folderId, the bookmark’s title, and the bookmark’s URL. Note that the View class reference
contains the bookmark title and URL that the user entered into the UI.The createInteractormethod then
sets the Interactor’s onSuccess closure to print a success message when the server call succeeds. Likewise,
the Interactor’s onFailure closure is set to print an error message when the server call fails. Note that you’re
not restricted to only printing messages here: you should set these closures to do whatever is best for your
Screenlet. The createInteractormethod finishes by returning the Interactor instance. Here’s the complete
AddBookmarkScreenlet class:

import UIKit

import LiferayScreens

public class AddBookmarkScreenlet: BaseScreenlet {

//MARK: Inspectables

@IBInspectable var folderId: Int64 = 0

//MARK: BaseScreenlet

override public func createInteractor(name name: String?, sender: AnyObject?) -> Interactor? {

let view = self.screenletView as! AddBookmarkView_default

let interactor = AddBookmarkInteractor(screenlet: self,

folderId: folderId,

title: view.title!,

url: view.URL!)

//Called when the Interactor's server call finishes succesfully

interactor.onSuccess = {

let bookmarkName = interactor.resultBookmarkInfo!["name"] as! String

print("Bookmark \"\(bookmarkName)\" saved!")

}

//Called when the Interactor's server call fails

interactor.onFailure = { _ in

print("An error occurred saving the bookmark")

}

return interactor

}

}

For reference, the sample Add Bookmark Screenlet’s final code is here on GitHub.
You’re done! Your Screenlet is a ready-to-use component that you can add to your storyboard. You can

even package it to contribute to the Screens project or distribute it with CocoaPods. Now you know how to
create iOS Screenlets!

919

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/AddBookmarkScreenlet.swift
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/AddBookmarkScreenlet.swift

Related Topics

Supporting MultipleThemes in Your Screenlet
Adding Screenlet Actions
Create and Use a Connector with Your Screenlet
Add a Screenlet Delegate
Using and Creating Progress Presenters
Creating and Using Your Screenlet’s Model Class
Using Screenlets in iOS Apps
Architecture of Liferay Screens for iOS
Creating iOSThemes
Creating Android Screenlets

77.7 Supporting Multiple Themes in Your Screenlet

Themes let you present the same Screenlet with a different look and feel. For example, if you have multiple
apps that use the same Screenlet, you can use differentThemes to match the Screenlet’s appearance to each
app’s style. Each Screenlet that comes with Liferay Screens supports the use of multipleThemes. For your
custom Screenlet to support differentThemes, however, it must contain a ViewModel protocol. A ViewModel
abstracts theTheme used to display the Screenlet, thus letting developers use otherThemes. For example,
note that the Screenlet class’s createInteractormethod in the Screenlet creation tutorial accesses the View
class (AddBookmarkView_default) directly when getting a reference to the View class:

let view = self.screenletView as! AddBookmarkView_default

This is all fine and well, except it hard codes theTheme defined by AddBookmarkView_default! To use a
differentTheme, you’d have to rewrite this line of code to use thatTheme’s View class. This isn’t very flexible!
Instead of making your Screenlet take expensive yoga classes, you can abstract theTheme’s View class via a
ViewModel protocol.

This tutorial shows you how to add a ViewModel to your Screenlet. The Add Bookmark Screenlet created
in the Screenlet creation tutorial is used as an example. Note that you can also follow these steps to add a
ViewModel while creating your Screenlet.

Creating and Using a View Model

Follow these steps to add and use a ViewModel in your Screenlet:

1. Create a ViewModel protocol that defines your Screenlet’s attributes. These attributes are the View
class properties your Screenlet class uses. For example, the Screenlet class in Add Bookmark Screen-
let uses the View class properties title and URL. Add Bookmark Screenlet’s View Model protocol
(AddBookmarkViewModel) must therefore define variables for these properties:

import UIKit

@objc protocol AddBookmarkViewModel {

var URL: String? {get}

var title: String? {get}

}

920

https://github.com/liferay/liferay-screens/blob/develop/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/AddBookmarkScreenlet.swift
https://github.com/liferay/liferay-screens/blob/develop/ios/Samples/Bookmark/AddBookmarkScreenlet/Basic/AddBookmarkScreenlet.swift

2. Conform your View class to your Screenlet’s ViewModel protocol. Make sure to get/set all the proto-
col’s properties. For example, here’s Add Bookmark Screenlet’s View Class (AddBookmarkView_default)
conformed to AddBookmarkViewModel:

import UIKit

import LiferayScreens

class AddBookmarkView_default: BaseScreenletView, AddBookmarkViewModel {

@IBOutlet weak var URLTextField: UITextField?

@IBOutlet weak var titleTextField: UITextField?

var URL: String? {

return URLTextField?.text

}

var title: String? {

return titleTextField?.text

}

}

3. Create and use a View Model reference in your Screenlet class. By retrieving data from this refer-
ence instead of a direct View class reference, you can use your Screenlet with other Themes. For
example, here’s the AddBookmarkScreenlet class with a viewModel property instead of a direct reference
to AddBookmarkView_default. This class’s createInteractormethod then uses this property to get the
title and URL properties in the AddBookmarkInteractor constructor:

...

//View Model reference

var viewModel: AddBookmarkViewModel {

return self.screenletView as! AddBookmarkViewModel

}

override public func createInteractor(name name: String?, sender: AnyObject?) -> Interactor? {

let interactor = AddBookmarkInteractor(screenlet: self,

folderId: folderId,

title: viewModel.title!,

url: viewModel.URL!)

// Called when the Interactor finishes succesfully

interactor.onSuccess = {

let bookmarkName = interactor.resultBookmarkInfo!["name"] as! String

print("Bookmark \"\(bookmarkName)\" saved!")

}

// Called when the Interactor finishes with an error

interactor.onFailure = { _ in

print("An error occurred saving the bookmark")

}

return interactor

}

...

That’s it! Now your Screenlet is ready to use otherThemes that you create for it. See the tutorial Creating
iOSThemes for instructions on creating aTheme.

921

Related Topics

Creating iOSThemes
Creating iOS Screenlets
Architecture of Liferay Screens for iOS
Creating iOS List Screenlets

77.8 Adding Screenlet Actions

Withmultiple Interactors, it’s possible for a Screenlet to havemultiple actions. Youmust create an Interactor
class for each action. For example, if your Screenlet needs to make two server calls, then you need two
Interactors: one for each call. Your Screenlet class’s createInteractormethodmust return an instance of
each Interactor. Also, recall that eachactionname is givenby the restorationIdentifierof theUI components
that trigger them. You should set this restorationIdentifier to a constant in your Screenlet.

This tutorial walks you through the steps necessary to add an action to your Screenlet, and trigger an
action programmatically. As an example, this tutorial uses the advanced version of the sample AddBookmark
Screenlet. This Screenlet is similar to the sample Add Bookmark Screenlet created in the Screenlet creation
tutorial. The advanced Add Bookmark Screenlet, however, contains two actions:

1. Add Bookmark: Adds a bookmark to the Bookmarks portlet in a Liferay DXP installation. This is the
Screenlet’s main action, created in the Screenlet creation tutorial.

2. Get Title: Retrieves the title from a bookmark URL entered by the user. This tutorial shows you how to
implement this action.

Note that this tutorial doesn’t explain Screenlet creation in general. Before proceeding,make sure you’ve
read the Screenlet creation tutorial. And without any further ado, it’s time to implement your Screenlet’s
action!

Implementing Your Action

Use the following steps to add an action to your your Screenlet:

1. Create a constant in your Screenlet class for each of your Screenlet’s actions. For example, here are the
constants in Add Bookmark Screenlet’s Screenlet class (AddBookmarkScreenlet):

static let AddBookmarkAction = "add-bookmark"

static let GetTitleAction = "get-title"

2. In yourTheme’s XIBfile, add any newUI components that you need to perform the action. For example,
Add Boookmark Screenlet’s XIB file needs a new button for getting the URL’s title:

3. Wire the UI components in your XIB file to your View class. In your View class, youmust also regis-
ter the events you want to react to (e.g., button clicks). The BaseScreenletView class contains a set of
userActionmethods that you can call in yourViewclass to performactions programmatically. For exam-
ple, it’s possible to trigger Add Bookmark Screenlet’s GetTitleAction automatically whenever the user
leaves the URLTextField. Since BaseScreenletView is the delegate for all UITextField objects by default,
this is done in the View class (AddBookmarkView_default) by implementing the textFieldDidEndEditing
method to call the userActionmethod with the action name:

922

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift
https://developer.apple.com/reference/uikit/uitextfielddelegate/1619591-textfielddidendediting
https://developer.apple.com/reference/uikit/uitextfielddelegate/1619591-textfielddidendediting

Figure 77.18: The sample Add Bookmark Screenlet’s XIB file contains a new button next to the Title field for retrieving the URL’s title.

func textFieldDidEndEditing(textField: UITextField) {

if textField == URLTextField {

userAction(name: AddBookmarkScreenlet.GetTitleAction)

}

}

4. Update your View class or View Model protocol to account for the new action. For example, Add
Bookmark Screenlet contains a ViewModel (AddBookmarkViewModel) so it can support multipleThemes.
This ViewModel must allow the new action to set its title variable:

import UIKit

@objc protocol AddBookmarkViewModel {

var URL: String? {get}

var title: String? {set get}

}

5. If your Screenlet uses a ViewModel, conform your View class to the updated ViewModel. For example,
the title variable in Add Bookmark Screenlet’s View class (AddBookmarkView_default) must implement
the setter from the previous step:

var title: String? {

get {

return titleTextField?.text

}

set {

self.titleTextField?.text = newValue

}

}

6. Create a new Interactor class for the new action. To do this, use the same steps detailed in the Screenlet
creation tutorial. For example, here’s the Interactor class for AddBookmark Screenlet’s Get Title action:

import UIKit

import LiferayScreens

923

public class GetWebTitleInteractor: Interactor {

public var resultTitle: String?

var url: String

//MARK: Initializer

public init(screenlet: BaseScreenlet, url: String) {

self.url = url

super.init(screenlet: screenlet)

}

override public func start() -> Bool {

if let URL = NSURL(string: url) {

// Use the NSURLSession class to retrieve the HTML

NSURLSession.sharedSession().dataTaskWithURL(URL) {

(data, response, error) in

if let errorValue = error {

self.callOnFailure(errorValue)

}

else {

if let data = data, html = NSString(data: data, encoding: NSUTF8StringEncoding) {

self.resultTitle = self.parseTitle(html)

}

self.callOnSuccess()

}

}.resume()

return true

}

return false

}

// Parse the title from a webpage HTML

private func parseTitle(html: NSString) -> String {

let range1 = html.rangeOfString("<title>")

let range2 = html.rangeOfString("</title>")

let start = range1.location + range1.length

return html.substringWithRange(NSMakeRange(start, range2.location - start))

}

}

7. Update your Screenlet class’s createInteractor method so it returns the correct Interactor for
each action. For example, the createInteractor method in Add Bookmark Screenlet’s Screenlet
class (AddBookmarkScreenlet) contains a switch statement that returns an AddBookmarkInteractor or
GetWebTitleInteractor instance when the Add Bookmark or Get Title action is called, respectively.
Note that the createAddBookmarkInteractor() and createGetTitleInteractor()methods create these
instances. Although you don’t have to create your Interactor instances in separate methods, doing so
leads to cleaner code:

...

override public func createInteractor(name name: String, sender: AnyObject?)

-> Interactor? {

switch name {

924

case AddBookmarkScreenlet.AddBookmarkAction:

return createAddBookmarkInteractor()

case AddBookmarkScreenlet.GetTitleAction:

return createGetTitleInteractor()

default:

return nil

}

}

private func createAddBookmarkInteractor() -> Interactor {

let interactor = AddBookmarkInteractor(screenlet: self,

folderId: folderId,

title: viewModel.title!,

url: viewModel.URL!)

// Called when the Interactor finishes succesfully

interactor.onSuccess = {

let bookmarkName = interactor.resultBookmarkInfo!["name"] as! String

print("Bookmark \"\(bookmarkName)\" saved!")

}

// Called when the Interactor finishes with an error

interactor.onFailure = { _ in

print("An error occurred saving the bookmark")

}

return interactor

}

private func createGetTitleInteractor() -> Interactor {

let interactor = GetWebTitleInteractor(screenlet: self, url: viewModel.URL!)

// Called when the Interactor finishes succesfully

interactor.onSuccess = {

let title = interactor.resultTitle

self.viewModel.title = title

}

// Called when the Interactor finishes with an error

interactor.onFailure = { _ in

print("An error occurred retrieving the title")

}

return interactor

}

...

Great! Now you know how to support multiple actions in your Screenlets.

Related Topics

Creating iOS Screenlets
Create and Use a Connector with Your Screenlet
Creating iOS List Screenlets
Architecture of Liferay Screens for iOS

77.9 Create and Use a Connector with Your Screenlet

In Liferay Screens, a Connector is a class that interacts asynchronously with local and remote data sources
and Liferay instances. Recall that callbacks also make asynchronous service calls. So why bother with a
Connector? Connectors provide a layer of abstraction bymaking your service call outside your Interactor.

925

For example, the Interactor in the Screenlet creation tutorial makes the server call and and processes its
results via LRCallback. This Screenlet could insteadmake its server call in a separate Connector class, leaving
the Interactor to instantiate the Connector and receive its results. Connectors also let you validate your
Screenlet’s data. For more information on Connectors, see the tutorial on the architecture of Liferay Screens
for iOS.

This tutorial walks you through the steps required to create and use a Connector with your Screenlets,
using the advanced version of the sample Add Bookmark Screenlet as an example. This Screenlet contains
two actions:

1. Add Bookmark: Adds a bookmark to the Bookmarks portlet in a Liferay DXP installation. This tutorial
shows you how to create and use a Connector for this action.

2. Get Title: Retrieves the title from a bookmark URL entered by the user. This tutorial shows you how to
use a pre-existing Connector with this action.

Before proceeding,make sure you’ve read the Screenlet creation tutorial. First, you’ll learn how to create
your Connector.

Creating Connectors

When you create your Connector class, be sure to follow the naming convention specified in the best practices
tutorial.

Use the following steps to implement your Connector class:

1. Create your Connector class by extending the ServerConnector class. For example, here’s the class
declaration for Add Bookmark Screenlet’s Connector class, AddBookmarkLiferayConnector:

public class AddBookmarkLiferayConnector: ServerConnector {

...

}

2. Add the properties needed to call the Mobile SDK service, then create an initializer that sets those
properties. For example, AddBookmarkLiferayConnector needs properties for the bookmark’s folder ID,
title, and URL. It also needs an initializer to set those properties:

public let folderId: Int64

public let title: String

public let url: String

public init(folderId: Int64, title: String, url: String) {

self.folderId = folderId

self.title = title

self.url = url

super.init()

}

3. If you want to validate any of your Screenlet’s properties, override the validateDatamethod to imple-
ment validation for those properties. You can use the ValidationError class to encapsulate the errors.
For example, the following validateData implementation in AddBookmarkLiferayConnector ensures that
folderId is greater than 0, and title and url contain values. This method also uses ValidationError to
represent the error:

926

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/ServerConnector.swift
https://github.com/liferay/liferay-screens/blob/develop/ios/Framework/Core/Extensions/NSError%2BScreens.swift

override public func validateData() -> ValidationError? {

let error = super.validateData()

if error == nil {

if folderId <= 0 {

return ValidationError("Undefined folderId")

}

if title.isEmpty {

return ValidationError("Title cannot be empty")

}

if url.isEmpty {

return ValidationError("URL cannot be empty")

}

}

return error

}

4. Override the doRunmethod to call theMobile SDK service you need to call. Thismethod should retrieve
the result from the service and store it in a public property. Also be sure to handle errors and empty
results. For example, the following code defines the resultBookmarkInfo property for storing the
service’s results retrieved in the doRunmethod. Note that this method’s service call is identical to the
one in the AddBookmarkInteractor class’s startmethod in the Screenlet creation tutorial. The doRun
method, however, takes the additional step of saving the result to the resultBookmarkInfo property.
Also note that this doRunmethod handles errors as NSError objects:

public var resultBookmarkInfo: [String:AnyObject]?

override public func doRun(session session: LRSession) {

let service = LRBookmarksEntryService_v7(session: session)

do {

let result = try service.addEntryWithGroupId(LiferayServerContext.groupId,

folderId: folderId,

name: title,

url: url,

description: "Added from Liferay Screens",

serviceContext: nil)

if let result = result as? [String: AnyObject] {

resultBookmarkInfo = result

lastError = nil

}

else {

lastError = NSError.errorWithCause(.InvalidServerResponse)

resultBookmarkInfo = nil

}

}

catch let error as NSError {

lastError = error

resultBookmarkInfo = nil

}

}

Well done! Now you know how to create a Connector class. To see the finished example
AddBookmarkLiferayConnector class, click here.

927

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Connector/AddBookmarkLiferayConnector.swift

Using Connectors

To use a Connector, your Interactor class must extend the ServerConnectorInteractor class or one of its
following subclasses:

• ServerReadConnectorInteractor: Your Interactor class should extend this class when implementing an
action that retrieves information from a server or data source.

• ServerWriteConnectorInteractor: Your Interactor class should extend this class when implementing
an action that writes information to a server or data source.

When extending ServerConnectorInteractor or one of its subclasses, your Interactor class only needs to
override the createConnector and completedConnectormethods. These methods create a Connector instance
and recover the Connector’s result, respectively.

Follow these steps to use a Connector in your Interactor:

1. Set your Interactor class’s superclass to ServerConnectorInteractor or one of its subclasses. You should
also remove any code that conforms a callback protocol, if it exists. For example, Add Bookmark
Screenlet’s Interactor class (AddBookmarkInteractor) extends ServerWriteConnectorInteractor because
it writes data to a Liferay DXP installation. At this point, your Interactor should contain only the
properties and initializer that it requires:

public class AddBookmarkInteractor: ServerWriteConnectorInteractor {

public let folderId: Int64

public let title: String

public let url: String

public var resultBookmark: Bookmark?

//MARK: Initializer

public init(screenlet: BaseScreenlet, folderId: Int64, title: String, url: String) {

self.folderId = folderId

self.title = title

self.url = url

super.init(screenlet: screenlet)

}

}

2. Override the createConnector method to return an instance of your Connector. For example, the
createConnectormethod in AddBookmarkInteractor returns an AddBookmarkLiferayConnector instance
created with the folderId, title, and url properties:

public override func createConnector() -> ServerConnector? {

return AddBookmarkLiferayConnector(folderId: folderId, title: title, url: url)

}

3. Override the completedConnector method to get the result from the Connector and store it in the
appropriate property. For example, the completedConnectormethod in AddBookmarkInteractor first
casts its ServerConnector argument to AddBookmarkLiferayConnector. It then gets the Connector’s
resultBookmarkInfo property and sets it to the Interactor’s resultBookmark property:

928

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/ServerConnectorInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/ServerReadConnectorInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/ServerWriteConnectorInteractor.swift

override public func completedConnector(c: ServerConnector) {

if let addCon = (c as? AddBookmarkLiferayConnector),

bookmarkInfo = addCon.resultBookmarkInfo {

self.resultBookmark = bookmarkInfo

}

}

That’s it! To see the complete example AddBookmarkInteractor, click here.
If your Screenlet uses multiple Interactors, follow the same steps to use Connectors. Also, Screens

provides the ready-to-use HttpConnector for interacting with non-Liferay URL’s. To use this Connector, set
your Interactor to use HttpConnector. For example, the Add Bookmark Screenlet action that retrieves a URL’s
title doesn’t interact with a Liferay DXP installation; it retrieves the title directly from the URL. Because this
action’s Interactor class (GetWebTitleInteractor) retrieves data, it extends ServerReadConnectorInteractor.
It also overrides the createConnector and completedConnector methods to use HttpConnector. Here’s the
complete GetWebTitleInteractor:

import UIKit

import LiferayScreens

public class GetWebTitleInteractor: ServerReadConnectorInteractor {

public let url: String?

// title from the webpage

public var resultTitle: String?

//MARK: Initializer

public init(screenlet: BaseScreenlet, url: String) {

self.url = url

super.init(screenlet: screenlet)

}

//MARK: ServerConnectorInteractor

public override func createConnector() -> ServerConnector? {

if let url = url, URL = NSURL(string: url) {

return HttpConnector(url: URL)

}

return nil

}

override public func completedConnector(c: ServerConnector) {

if let httpCon = (c as? HttpConnector), data = httpCon.resultData,

html = NSString(data: data, encoding: NSUTF8StringEncoding) {

self.resultTitle = parseTitle(html)

}

}

//MARK: Private methods

// Parse the title from the webpage's HTML

private func parseTitle(html: NSString) -> String {

let range1 = html.rangeOfString("<title>")

let range2 = html.rangeOfString("</title>")

let start = range1.location + range1.length

return html.substringWithRange(NSMakeRange(start, range2.location - start))

}

}

929

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Interactor/AddBookmarkInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseConnectors/HttpConnector.swift

Awesome! Now you know how to create and use Connectors in your Screenlets.

Related Topics

Creating iOS Screenlets
Adding Screenlet Actions
Architecture of Liferay Screens for iOS
Creating iOS List Screenlets

77.10 Add a Screenlet Delegate

Screenlet delegates let other classes respond to your Screenlet’s actions. For example, Login Screenlet’s
delegate lets the app developer implement methods that respond to login success or failure. Note that the
reference documentation for each Screenlet that comes with Liferay Screens lists the Screenlet’s delegate
methods.

You can also create a delegate for your own Screenlet. This tutorial walks you through the steps required
to do this, using code from the advanced version of the sample Add Bookmark Screenlet as an example.
All the example code in this tutorial resides in this Screenlet’s Screenlet class. Also note that this sample
Screenlet has two actions: adding a bookmark to a Liferay instance’s Bookmarks portlet, and retrieving a
bookmark’s title from its URL.This tutorial only details creating a delegate for adding a bookmark.

Follow these steps to add a delegate to your Screenlet:

1. Define a delegate protocol that extends the BaseScreenletDelegate class. In this protocol, define
success and failuremethods so the conforming class can respond to the server call’s success and failure,
respectively. As parameters, these methods should take a Screenlet instance and the success or failure
object. For example, Add Bookmark Screenlet’s delegate protocol (AddBookmarkScreenletDelegate)
defines the following success and failure methods:

@objc public protocol AddBookmarkScreenletDelegate: BaseScreenletDelegate {

optional func screenlet(screenlet: AddBookmarkScreenlet,

onBookmarkAdded bookmark: [String: AnyObject])

optional func screenlet(screenlet: AddBookmarkScreenlet,

onAddBookmarkError error: NSError)

}

Both take an AddBookmarkScreenlet instance as their first argument. For their second argument, the
success method contains the bookmark added to the server, and the failure method contains the
NSError object. Note that in this example, themethods are optional. Thismeans that the delegate class
doesn’t have to implement them.

2. In your Screenlet class, add a property for your delegate. This property should return BaseScreenlet’s
delegate property as an instance of your delegate. For example, the addBookmarkDelegate property in
AddBookmarkScreenlet returns the self.delegate property as AddBookmarkScreenletDelegate:

var addBookmarkDelegate: AddBookmarkScreenletDelegate? {

return self.delegate as? AddBookmarkScreenletDelegate

}

930

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/AddBookmarkScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenlet.swift

3. Also in your Screenlet class, invoke the appropriate delegate methods in your Interactor’s closures.
For example, the interactor.onSuccess closure in AddBookmarkScreenlet calls the delegate method
that responds when the Screenlet successfully adds a bookmark. The interactor.onFailure closure
calls the delegate method that responds when the Screenlet fails to add a bookmark. Note that in
this example, these closures are in the Screenlet class’s Interactor method that adds a bookmark
(createAddBookmarkInteractor). Be sure to call your delegate methods wherever the appropriate Inter-
actor’s closures are in your Screenlet class:

private func createAddBookmarkInteractor() -> Interactor {

let interactor = AddBookmarkInteractor(screenlet: self,

folderId: folderId,

title: viewModel.title!,

url: viewModel.URL!)

// Called when the Interactor finishes successfully

interactor.onSuccess = {

if let bookmark = interactor.resultBookmark {

self.addBookmarkDelegate?.screenlet?(self, onBookmarkAdded: bookmark)

}

}

// Called when the Interactor finishes with an error

interactor.onFailure = { error in

self.addBookmarkDelegate?.screenlet?(self, onAddBookmarkError: error)

}

return interactor

}

Great! Now you know how to add a delegate to your Screenlets.
Related Topics
Creating iOS Screenlets
Adding Screenlet Actions
Creating iOS List Screenlets
Architecture of Liferay Screens for iOS

77.11 Using and Creating Progress Presenters

Many apps display a progress indicator while performing an operation. For example, you’ve likely seen the
spinners in iOS apps that let you know the app is performing some kind of work. For more information, see
the iOS Human Interface Guidelines article on Progress Indicators.

You can display these in Screenlets by using classes that conform the ProgressPresenter protocol. Liferay
Screens includes two such classes:

• MBProgressHUDPresenter: Shows a message with a spinner in the middle of the screen. Liferay Screens
shows this presenter by default.

• NetworkActivityIndicatorPresenter: Shows the progress using the iOSnetwork activity indicator. This
presenter doesn’t support messages.

This tutorial shows you how to use and create progress presenters, using code from the advanced version
of the sample Add Bookmark Screenlet as an example. First, you’ll learn how to use progress presenters.

931

https://developer.apple.com/ios/human-interface-guidelines/ui-controls/progress-indicators/
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/ProgressPresenter.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/MBProgressHUDPresenter.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/NetworkActivityIndicatorPresenter.swift
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced

Using Progress Presenters

The BaseScreenletView class contains the default progress presenter functionality. To show a presenter other
than the default MBProgressHUDPresenter, your View class must therefore override certain BaseScreenletView

functionality. Follow these steps to do this:

1. In your View class, override the BaseScreenletView method createProgressPresenter to return
an instance of the desired presenter. For example, to use NetworkActivityIndicatorPresenter in
the sample Add Bookmark Screenlet, you must override the createProgressPresenter method in
AddBookmarkView_default to return a NetworkActivityIndicatorPresenter instance:

override func createProgressPresenter() -> ProgressPresenter {

return NetworkActivityIndicatorPresenter()

}

2. In your View class, override the BaseScreenletView property progressMessages to return the messages
you want to use in the presenter. If the presenter doesn’t display messages, then return an empty
string. The progressMessages property should return the messages as [String : ProgressMessages],
where String is the Screenlet’s action name. ProgressMessages is a type alias representing a dictionary
where the progress type is the key, and the actual message is the value. The three possible progress
types correspond to the Screenlet action’s status: Working, Failure, or Success. The progressMessages
property therefore lets the presenter display the appropriatemessage for the Screenlet action’s current
status.

For example, the following code overrides the progressMessages property in Add Bookmark
Screenlet’s View class (AddBookmarkView_default). For each Screenlet action (AddBookmarkAction and
GetTitleAction), a message (NoProgressMessage) is assigned to the Screenlet operation’s Working status.
Since NoProgressMessage is an alias for an empty string, this tells the presenter to display nomessage
when the Screenlet attempts to add a bookmark or get a title. Note, however, that the presenter still
displays its progress indicator:

override var progressMessages: [String : ProgressMessages] {

return [

AddBookmarkScreenlet.AddBookmarkAction : [.Working: NoProgressMessage],

AddBookmarkScreenlet.GetTitleAction : [.Working: NoProgressMessage],

]

}

To display a message, replace NoProgressMessagewith your message. For example, the following code
defines separate messages for Working, Success, and Failure:

override var progressMessages: [String : ProgressMessages] {

return [

AddBookmarkScreenlet.AddBookmarkAction : [

.Working: "Saving bookmark...",

.Success: "Bookmark saved!",

.Failure: "An error occurred saving the bookmark"

],

AddBookmarkScreenlet.GetTitleAction : [

.Working: "Getting site title...",

.Failure: "An error occurred retrieving the title"

],

]

}

Great! Now you know how to use progress presenters. Next, you’ll learn how to create your own.

932

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/ProgressPresenter.swift

Creating Progress Presenters

Creating your own progress presenter isn’t as complicated as you might think. Recall that a presenter in
Liferay Screens is a class that conforms the ProgressPresenter protocol. You can create your presenter by
conforming this protocol from scratch, or by extending one of Screens’s existing presenters that already
conform this protocol (MBProgressHUDPresenter or NetworkActivityIndicatorPresenter). In most cases, ex-
tending MBProgressHUDPresenter is sufficient.

For example, Add Bookmark Screenlet’s AddBookmarkProgressPresenter extends MBProgressHUDPresenter
to display a different progress indicator for the Screenlet’s get title action. Use the following steps to
create a progress presenter that extends from an existing presenter. As an example, these steps extend
MBProgressHUDPresenter to add a progress indicator for the get title button:

1. In your View’s XIB file, add the activity indicator you want to use. For example, the XIB file in Add
Bookmark Screenlet contains an iOS UIActivityIndicatorView over the get title button:

Figure 77.19: The updated Add Bookmark Screenlet’s XIB file contains a new activity indicator over the get title button.

2. In your View class, create an outlet for the XIB’s new activity indicator. For example, Add
Bookmark Screenlet’s View class (AddBookmarkView_default) contains an @IBOutlet for the
UIActivityIndicatorView from the XIB:

@IBOutlet weak var activityIndicatorView: UIActivityIndicatorView?

Now youmust create your presenter class. You’ll do this here by extending an existing presenter class.
Use the following steps to do this:

1. Extend the existing presenter class you want to base your presenter on. Your presenter class must
contain properties for your presenter’s activity indicator and any other UI components. It must also
contain an initializer that sets these properties. For example, AddBookmarkProgressPresenter extends
MBProgressHUDPresenter and contains properties for the get title button and UIActivityIndicatorView.
Its initializer sets these properties:

933

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/ProgressPresenter.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/ProgressPresenter/AddBookmarkProgressPresenter.swift

public class AddBookmarkProgressPresenter: MBProgressHUDPresenter {

let button: UIButton?

let activityIndicator: UIActivityIndicatorView?

public init(button: UIButton?, activityIndicator: UIActivityIndicatorView?) {

self.button = button

self.activityIndicator = activityIndicator

super.init()

}

...

2. Implement your presenter’s behavior by overriding the appropriate methods from the presenter class
that you’re extending. For example, AddBookmarkProgressPresenter overrides MBProgressHUDPresenter’s
showHUDInView and hideHUDFromViewmethods. The overridden showHUDInViewmethod hides the but-
ton and starts animating the activity indicator. The overridden hideHUDFromViewmethod stops this
animation and restores the button:

public override func showHUDInView(view: UIView, message: String?,

forInteractor interactor: Interactor) {

guard interactor is GetWebTitleInteractor else {

return super.showHUDInView(view, message: message,

forInteractor: interactor)

}

button?.hidden = true

activityIndicator?.startAnimating()

}

public override func hideHUDFromView(view: UIView?, message: String?,

forInteractor interactor: Interactor, withError error: NSError?) {

guard interactor is GetWebTitleInteractor else {

return super.hideHUDFromView(view, message: message,

forInteractor: interactor, withError: error)

}

activityIndicator?.stopAnimating()

button?.hidden = false

}

}

Great, that’s it! Now you can use your presenter the same way you would any other.

Related Topics

Creating iOS Screenlets
Creating iOS List Screenlets
Architecture of Liferay Screens for iOS

77.12 Creating and Using Your Screenlet's Model Class

Liferay Screens typically receives entities from a Liferay instance as [String:AnyObject], where String is
the entity’s attribute and AnyObject is the attribute’s value. Although you can use these dictionary objects
throughout your Screenlet, it’s often easier to create a model class that converts each into an object that
represents the corresponding Liferay entity. This is especially convenient for complex entities composed of

934

many attribute-value pairs. Note that Liferay Screens already provides several model classes for you. Click
here to see them.

At this point, youmight be saying, “Ugh! I have complex entities and Screens doesn’t provide a model
class for them! I’m just going to give up and watch football.” Fret not! Although we’d never come between
you and football, creating and using your ownmodel class is straightforward.

Using the advanced version of the sample Add Bookmark Screenlet as an example, this tutorial shows
you how to create and use a model class in your Screenlet. First, you’ll create your model class.

Creating Your Model Class

Your model class must contain all the code necessary to transform each [String:AnyObject] that comes back
from the server into amodel object that represents the corresponding Liferay entity. This includes a constant
for holding each [String:AnyObject], and initializer that sets this constant, and a public property for each
attribute value.

For example, the sample Add Bookmark Screenlet adds a bookmark to a Liferay instance’s Bookmarks
portlet. Since the Mobile SDK service method that adds the bookmark also returns it as [String:AnyObject],
the Screenlet can convert it into an object that represents bookmarks. It does sowith its Bookmarkmodel class.
This class extends NSObject and sets the [String:AnyObject] to the attributes constant via the initializer.
This class also defines computed properties that return the attribute values for each bookmark’s name and
URL:

@objc public class Bookmark : NSObject {

public let attributes: [String:AnyObject]

public var name: String {

return attributes["name"] as! String

}

override public var description: String {

return attributes["description"] as! String

}

public var url: String {

return attributes["url"] as! String

}

public init(attributes: [String:AnyObject]) {

self.attributes = attributes

}

}

Next, you’ll put your model class to work.

Using Your Model Class

Now that yourmodel class exists, you can usemodel objects anywhere your Screenlet handles results. Exactly
where depends on what Screenlet components your Screenlet uses. For example, Add Bookmark Screenlet’s
Connector, Interactor, delegate, and Screenlet class all handle the Screenlet’s results. The steps here therefore
show you how to use model objects in each of these components. Note, however, that your Screenlet may
lack a Connector or delegate: these components are optional. Variations on these steps are therefore noted
where applicable.

1. Create model objects where the [String: AnyObject] results originate. For example, the [String:

AnyObject] results in Add Bookmark Screenlet originate in the Connector. Therefore, this is

935

https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Models
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Models
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Model/Bookmark.swift

where the Screenlet creates Bookmark objects. The following code in the Screenlet’s Connector
(AddBookmarkLiferayConnector) does this. The if statement following the service call casts the results to
[String: AnyObject], calls the Bookmark initializer with those results, and stores the resulting Bookmark
object to the public resultBookmarkInfo variable. Note that this is only the code that makes the service
call and creates the Bookmark object. Click here to see the complete AddBookmarkLiferayConnector class:

...

// Public property for the results

public var resultBookmarkInfo: Bookmark?

...

override public func doRun(session session: LRSession) {

let service = LRBookmarksEntryService_v7(session: session)

do {

let result = try service.addEntryWithGroupId(LiferayServerContext.groupId,

folderId: folderId,

name: title,

url: url,

description: "Added from Liferay Screens",

serviceContext: nil)

// Creates Bookmark objects from the service call's results

if let result = result as? [String: AnyObject] {

resultBookmarkInfo = Bookmark(attributes: result)

lastError = nil

}

...

}

...

}

If your Screenlet doesn’t have Connector, then your Interactor’s startmethodmakes your server call
andhandles its results. Otherwise, the process for creating a Bookmark object from [String: AnyObject]

is the same.

2. Handle your model objects in your Screenlet’s Interactor. The Interactor processes your Screenlet’s
results, so it must also handle your model objects. If your Screenlet doesn’t use a Connector, then you
already did this in your Interactor’s startmethod as mentioned at the end of the previous step. If
your Screenlet uses a Connector, however, then this happens in your Interactor’s completedConnector
method. For example, the completedConnector method in Add Bookmark Screenlet’s Interactor
(AddBookmarkInteractor) retrieves the Bookmark via the Connector’s resultBookmarkInfo variable. This
method then assigns the Bookmark to the Interactor’s public resultBookmark variable. Note that this is
only the code that handles Bookmark objects. Click here to see the complete AddBookmarkInteractor
class:

...

// Public property for the results

public var resultBookmark: Bookmark?

...

// The completedConnector method gets the results from the Connector

override public func completedConnector(c: ServerConnector) {

if let addCon = (c as? AddBookmarkLiferayConnector),

bookmark = addCon.resultBookmarkInfo {

self.resultBookmark = bookmark

}

}

936

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Connector/AddBookmarkLiferayConnector.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Interactor/AddBookmarkInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/Interactor/AddBookmarkInteractor.swift

3. If your Screenlet uses a delegate, your delegate protocol must account for your model objects.
Skip this step if you don’t have a delegate. For example, Add Bookmark Screenlet’s delegate
(AddBookmarkScreenletDelegate) must communicate Bookmark objects. The delegate’s first method does
this via its second argument:

@objc public protocol AddBookmarkScreenletDelegate: BaseScreenletDelegate {

optional func screenlet(screenlet: AddBookmarkScreenlet,

onBookmarkAdded bookmark: Bookmark)

optional func screenlet(screenlet: AddBookmarkScreenlet,

onAddBookmarkError error: NSError)

}

4. Get the model object from the Interactor in your Screenlet class’s interactor.onSuccess closure. You
can then use the model object however you wish. For example, the interactor.onSuccess closure
in Add Bookmark Screenlet’s Screenlet class (AddBookmarkScreenlet) retrieves the Bookmark from
the Interactor’s resultBookmark property. It then handles the Bookmark via the delegate. Note that
in this example, the closure is in the Screenlet class’s Interactor method that adds a bookmark
(createAddBookmarkInteractor). Be sure to get your model object wherever the interactor.onSuccess
closure is in your Screenlet class. Click here to see the complete AddBookmarkScreenlet:

...

private func createAddBookmarkInteractor() -> Interactor {

let interactor = AddBookmarkInteractor(screenlet: self,

folderId: folderId,

title: viewModel.title!,

url: viewModel.URL!)

// Called when the Interactor finishes successfully

interactor.onSuccess = {

if let bookmark = interactor.resultBookmark {

self.addBookmarkDelegate?.screenlet?(self, onBookmarkAdded: bookmark)

}

}

// Called when the Interactor finishes with an error

interactor.onFailure = { error in

self.addBookmarkDelegate?.screenlet?(self, onAddBookmarkError: error)

}

return interactor

}

...

Awesome! Now you know how to create and use a model class in your Screenlet.

Related Topics

Creating iOS Screenlets
Adding Screenlet Actions
Creating iOS List Screenlets
Architecture of Liferay Screens for iOS

937

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/AddBookmarkScreenlet/Advanced/AddBookmarkScreenlet.swift

77.13 Creating iOS List Screenlets

It’s very common for mobile apps to display lists. Liferay Screens lets you display asset lists and DDL lists
in your iOS app by using Asset List Screenlet and DDL List Screenlet, respectively. Screens also includes
list Screenlets for displaying lists of other Liferay entities like web content articles, images, andmore. The
Screenlet reference documentation lists all the Screenlets included with Liferay Screens. If there’s not a list
Screenlet for the entity you want to display in a list, you must create your own list Screenlet. A list Screenlet
can display any entity from a Liferay instance. For example, you can create a list Screenlet that displays
standard Liferay entities like User, or custom entities from custom Liferay apps.

This tutorial uses code from the sample Bookmark List Screenlet to show you how to create your own list
Screenlet. This Screenlet displays a list of bookmarks from Liferay’s Bookmarks portlet. You can find this
Screenlet’s complete code here in GitHub.

Note that because this tutorial focuses on creating a list Screenlet, it doesn’t explain general Screenlet
concepts and components. Before beginning, you should therefore read the following tutorials:

• Creating iOS Screenlets
• Supporting MultipleThemes in Your Screenlet
• Create and Use a Connector with Your Screenlet
• Add a Screenlet Delegate
• Creating and Using Your Screenlet’s Model Class

This tutorial uses the following steps to show you how to create a list Screenlet:

1. Creating the Model class
2. Creating theTheme
3. Creating the Connector
4. Creating the Interactor
5. Creating the Delegate
6. Creating the Screenlet class

First though, you should understand how pagination works with list Screenlets.

Pagination

To ensure that users can scroll smoothly through large lists of items, list Screenlets support fluent pagination.
Support for this is built into the list Screenlet framework. You’ll see this as you construct your list Screenlet.

Now you’re ready to begin!

Creating the Model Class

Recall that amodel class transforms each [String:AnyObject] entity Screens receives into amodel object that
represents the corresponding Liferay entity. For instructions on creating your model class, see the tutorial
Creating and Using Your Screenlet’s Model Class. The example model class in that tutorial is identical to
Bookmark List Screenlet’s.

Next, you’ll create your Screenlet’sTheme.

938

https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/BookmarkListScreenlet
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Creating the Theme

Recall that each Screenlet needs a Theme to serve as its UI. A Theme needs an XIB file to define the UI’s
components and layout. Since a list Screenlet displays a list of entities, its XIB file must contain a Table View.
Use these steps to create yourTheme’s XIB file:

1. In Xcode, create a new XIB file and name it according to these naming conventions. For example, the
XIB for Bookmark List Screenlet’s DefaultTheme is BookmarkListView_default.xib.

2. In Interface Builder, drag and drop a View from the Object Library to the canvas. Then add a Table
View to the View.

3. Resize the Table View to take up the entire View, and set the constraints the Table View needs to
maintain this size dynamically. This ensures that the list fills the Screenlet’s UI regardless of the iOS
device’s size or orientation.

For example, Bookmark List Screenlet’s XIB file uses a UITableView inside a parent View to show the list
of bookmarks.

Nowyou’ll create yourTheme’sViewclass. EveryThemeneeds aViewclass that controls its behavior. Since
theXIBfileuses a UITableView to showa list of guestbooks, yourViewclassmust extend the BaseListTableView
class. Liferay Screens provides this class to serve as the base class for list Screenlets’ View classes. Since
BaseListTableView provides most of the required functionality, extending it lets you focus on the parts of
your View class that are unique to your Screenlet. Youmust also configure the XIB file to use your View class.

Follow these steps to create your Screenlet’s View class and configure the XIB file to use it:

1. Create yourTheme’s View class, and name it according to these naming conventions. Since the XIB
uses UITableView, your View class must extend BaseListTableView. For example, this is Bookmark List
Screenlet’s View class declaration:

public class BookmarkListView_default: BaseListTableView {...

2. Now youmust override the View classmethods that fill the table cells’ contents. There are twomethods
for this, depending on the cell type:

• Normal cells: the cells that show the entities. These cells typically use UILabel, UIImage, or
another UI component to show the entity. Override the doFillLoadedCellmethod to fill these
cells. For example, Bookmark List Screenlet’s View class overrides doFillLoadedCell to set each
cell’s textLabel to a bookmark’s name:

override public func doFillLoadedCell(row row: Int, cell: UITableViewCell,

object: AnyObject) {

let bookmark = object as! Bookmark

cell.textLabel?.text = bookmark.name

}

• Progress cell: the cell at the bottom of the list that indicates the list is loading the next page of
items. Override the doFillInProgressCellmethod to fill this cell. For example, Bookmark List
Screenlet’s View class overrides this method to set the cell’s textLabel to the string "Loading...":

939

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/Themes/Default/BookmarkListView_default.xib
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/TableView/BaseListTableView.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/TableView/BaseListTableView.swift

override public func doFillInProgressCell(row row: Int, cell: UITableViewCell) {

cell.textLabel?.text = "Loading..."

}

3. Return to theTheme’s XIB in Interface Builder, and set the View class as the the parent View’s custom
class. For example, if you were doing this for Bookmark List Screenlet you’d select the Table View’s
parent View, click the Identity inspector, and enter BookmarkListView_default as the custom class.

4. With theTheme’s XIB still open in Interface Builder, set the parent View’s tableView outlet to the Table
View. To do this, select the parent View and click the Connections inspector. In the Outlets section,
drag and drop from the tableView’s circle icon (it turns into a plus icon on mouseover) to the Table
View in the XIB.The new outlet then appears in the Connections inspector.

That’s it! Now that yourTheme is finished, you can create the Connector.

Creating the Connector

Recall that Connectors make a server call. To support pagination, a List Screenlet’s Connector class must
extend the PaginationLiferayConnector class. The Connector class must also contain any properties it needs
to make the server call, and an initializer that sets them. To support pagination, the initializer must also
contain the following arguments, which you’ll pass to the superclass initializer:

• startRow: The number representing the page’s first row.
• endRow: The number representing the page’s last row.
• computeRowCount: Whether to call the Connector’s doAddRowCountServiceCallmethod (you’ll learn about
this method shortly).

For example, Bookmark List Screenlet must retrieve bookmarks from a Bookmarks portlet folder in a
specific site. The Screenlet’s Connector class must therefore have properties for the groupId (site ID) and
folderId (Bookmarks folder ID), and an initializer that sets them. The initializer also calls the superclass
initializer with the startRow, endRow, and computeRowCount arguments:

import UIKit

import LiferayScreens

public class BookmarkListPageLiferayConnector: PaginationLiferayConnector {

public let groupId: Int64

public let folderId: Int64

//MARK: Initializer

public init(startRow: Int, endRow: Int, computeRowCount: Bool, groupId: Int64,

folderId: Int64) {

self.groupId = groupId

self.folderId = folderId

super.init(startRow: startRow, endRow: endRow, computeRowCount: computeRowCount)

}

...

Next, if you want to validate any of your Screenlet’s properties, override the validateDatamethod as
described in the tutorial on creating Connectors. Note that Bookmark List Screenlet only needs to validate
the folderId:

940

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/PaginationLiferayConnector.swift

override public func validateData() -> ValidationError? {

let error = super.validateData()

if error == nil {

if folderId <= 0 {

return ValidationError("Undefined folderId")

}

}

return error

}

Lastly, youmust override the following twomethods in the Connector class:

• doAddPageRowsServiceCall: calls the Liferay Mobile SDK service method that retrieves a page of en-
tities. The doAddPageRowsServiceCall method’s startRow and endRow arguments specify the page’s
first and last entities, respectively. Make the service call as you would in any Screenlet. For ex-
ample, the doAddPageRowsServiceCallmethod in BookmarkListPageLiferayConnector calls the service’s
getEntriesWithGroupIdmethod to retrieve a page of bookmarks from the folder specified by folderId:

public override func doAddPageRowsServiceCall(session session: LRBatchSession,

startRow: Int, endRow: Int, obc: LRJSONObjectWrapper?) {

let service = LRBookmarksEntryService_v7(session: session)

do {

try service.getEntriesWithGroupId(groupId,

folderId: folderId,

start: Int32(startRow),

end: Int32(endRow))

}

catch {

// ignore error: the service method returns nil because

// the request is sent later, in batch

}

}

Note that youdon’t need to do anything in the catch statement because the request is sent later, in batch.
The session type LRBatchSession handles this for you. You’ll receive the request’s results elsewhere,
once the request completes.

• doAddRowCountServiceCall: calls the Liferay Mobile SDK service method that retrieves the total num-
ber of entities. This supports pagination. Make the service call as you would in any Screenlet.
For example, the doAddRowCountServiceCall in BookmarkListPageLiferayConnector calls the service’s
getEntriesCountWithGroupIdmethod to retrieve the total number of bookmarks in the folder specified
by folderId:

override public func doAddRowCountServiceCall(session session: LRBatchSession) {

let service = LRBookmarksEntryService_v7(session: session)

do {

try service.getEntriesCountWithGroupId(groupId, folderId: folderId)

}

catch {

// ignore error: the service method returns nil because

// the request is sent later, in batch

}

}

Now that you have your Connector class, you’re ready to create the Interactor.

941

Creating the Interactor

Recall that Interactors implement your Screenlet’s actions. In list Screenlets, loading entities is usually the
only action a user can take. The Interactor class of a list Screenlet that implements fluent paginationmust
extend the BaseListPageLoadInteractor class. Your Interactor class must also contain any properties the
Screenlet needs, and an initializer that sets them. This initializer also needs arguments for the following
properties, which it passes to the superclass initializer:

• screenlet: A BaseListScreenlet reference. This ensures the Interactor always has a Screenlet reference.
• page: The page number to retrieve.
• computeRowCount: Whether to call the Connector’s doAddRowCountServiceCallmethod.

For example, Bookmark List Screenlet’s Interactor class contains the same groupId and folderId proper-
ties as the Connector, and an initializer that sets them. This initializer also passes the screenlet, page, and
computeRowCount arguments to the superclass initializer:

public class BookmarkListPageLoadInteractor : BaseListPageLoadInteractor {

private let groupId: Int64

private let folderId: Int64

init(screenlet: BaseListScreenlet,

page: Int,

computeRowCount: Bool,

groupId: Int64,

folderId: Int64) {

self.groupId = (groupId != 0) ? groupId : LiferayServerContext.groupId

self.folderId = folderId

super.init(screenlet: screenlet, page: page, computeRowCount: computeRowCount)

}

...

The Interactor class must also initiate the server request by instantiating the Connector, and convert the
results into model objects. Override the createListPageConnectormethod to create and return an instance
of your Connector. This method must first get a reference to the Screenlet via the screenlet property.
When calling the Connector’s initializer, use screenlet.firstRowForPage to convert the page number (page)
to the page’s start and end indices. You must also pass the initializer any other properties it needs, like
groupId. For example, BookmarkListPageLoadInteractor’s createListPageConnectormethoddoes this to create
a BookmarkListPageLiferayConnector instance:

public override func createListPageConnector() -> PaginationLiferayConnector {

let screenlet = self.screenlet as! BaseListScreenlet

return BookmarkListPageLiferayConnector(

startRow: screenlet.firstRowForPage(self.page),

endRow: screenlet.firstRowForPage(self.page + 1),

computeRowCount: self.computeRowCount,

groupId: groupId,

folderId: folderId)

}

Next, override the convertResult method to convert each [String:AnyObject] result into a model
object. The Screenlet calls this method once for each entity retrieved from the server. For example,
BookmarkListPageLoadInteractor’s convertResult method converts the [String:AnyObject] result into a
Bookmark object:

942

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListPageLoadInteractor.swift

override public func convertResult(_ serverResult: [String:AnyObject]) -> AnyObject {

return Bookmark(attributes: serverResult)

}

Youmay also want to support offline mode in your Interactor. To do so, the Interactor must override the
cacheKeymethod to returna cachekeyunique toyourScreenlet. For example, BookmarkListPageLoadInteractor’s
cacheKeymethod returns a cache key that includes the Screenlet’s groupId and folderId settings:

override public func cacheKey(_ op: PaginationLiferayConnector) -> String {

return "\(groupId)-\(folderId)"

}

Great! Next, you’ll create your Screenlet’s delegate.

Creating the Delegate

Recall that a delegate is required if you want other classes to respond to your Screenlet’s actions. Create your
delegate by following the first step in the tutorial on adding a Screenlet delegate. A list Screenlet’s delegate
must also define amethod for responding to a list item selection. For example, Bookmark List Screenlet’s
delegate needs the followingmethods:

• screenlet(_:onBookmarkListResponse:): Returns the Bookmark results when the server call succeeds.
• screenlet(_:onBookmarkListError:): Returns the NSError object when the server call fails.
• screenlet(_:onBookmarkSelected:): Returns the Bookmarkwhen a user selects it in the list.

The BookmarkListScreenletDelegate protocol defines these methods:

@objc public protocol BookmarkListScreenletDelegate : BaseScreenletDelegate {

optional func screenlet(screenlet: BookmarkListScreenlet,

onBookmarkListResponse bookmarks: [Bookmark])

optional func screenlet(screenlet: BookmarkListScreenlet,

onBookmarkListError error: NSError)

optional func screenlet(screenlet: BookmarkListScreenlet,

onBookmarkSelected bookmark: Bookmark)

}

Nice work! Next, you’ll create the Screenlet class.

Creating the Screenlet Class

Now that your list Screenlet’s other components exist, you can create the Screenlet class. A list Screenlet’s
Screenlet class must extend the BaseListScreenlet class and define the configurable properties the Screenlet
needs. You should define these as IBInspectable properties. If you want to support offline mode, you should
also add an offlinePolicy property.

For example, Bookmark List Screenlet’s Screenlet class contains the IBInspectable properties groupId,
folderId, and offlinePolicy:

public class BookmarkListScreenlet: BaseListScreenlet {

@IBInspectable public var groupId: Int64 = 0

@IBInspectable public var folderId: Int64 = 0

@IBInspectable public var offlinePolicy: String? = CacheStrategyType.RemoteFirst.rawValue

...

943

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/BaseListScreenlet.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/BookmarkListScreenlet.swift

Next, override the createPageLoadInteractormethod to create and return the Interactor. If yourScreenlet
supports offline mode, you should also use offlinePolicy to pass a CacheStrategyType object to the Inter-
actor. For example, the createPageLoadInteractormethod in BookmarkListScreenlet creates and returns a
BookmarkListPageLoadInteractor instance. This method also sets the Interactor’s cacheStrategy property to
a CacheStrategyType object created with offlinePolicy:

override public func createPageLoadInteractor(

page page: Int,

computeRowCount: Bool) -> BaseListPageLoadInteractor {

let interactor = BookmarkListPageLoadInteractor(screenlet: self,

page: page,

computeRowCount: computeRowCount,

groupId: self.groupId,

folderId: self.folderId)

interactor.cacheStrategy = CacheStrategyType(rawValue: self.offlinePolicy ?? "") ?? .RemoteFirst

return interactor

}

Now get a reference to your delegate. The BaseScreenlet class, which BaseListScreenlet extends, al-
ready defines the delegate property for the delegate object. Every list Screenlet therefore has this prop-
erty, and any app developer using the Screenlet can access it. To avoid casting this property to your del-
egate every time you use it, add a computed property to your Screenlet class that does so. For exam-
ple, the following bookmarkListDelegate property in BookmarkListScreenlet casts the delegate property to
BookmarkListScreenletDelegate:

public var bookmarkListDelegate: BookmarkListScreenletDelegate? {

return delegate as? BookmarkListScreenletDelegate

}

Next, override the BaseListScreenlet methods that handle the Screenlet’s events. Because these
events correspond to the events your delegate methods handle, you’ll call your delegate methods in these
BaseListScreenletmethods:

• onLoadPageResult: Called when the Screenlet loads a page successfully. Override this method
to call your delegate’s screenlet(_:onBookmarkListResponse:) method. For example, here’s
BookmarkListScreenlet’s onLoadPageResultmethod:

override public func onLoadPageResult(page page: Int, rows: [AnyObject], rowCount: Int) {

super.onLoadPageResult(page: page, rows: rows, rowCount: rowCount)

bookmarkListDelegate?.screenlet?(screenlet: self, onBookmarkListResponse: rows as! [Bookmark])

}

• onLoadPageError: Called when the Screenlet fails to load a page. Override this method to call your
delegate’s screenlet(_:onBookmarkListError:) method. For example, here’s BookmarkListScreenlet’s
onLoadPageErrormethod:

override public func onLoadPageError(page page: Int, error: NSError) {

super.onLoadPageError(page: page, error: error)

bookmarkListDelegate?.screenlet?(screenlet: self, onBookmarkListError: error)

}

944

• onSelectedRow: Called when an item is selected in the list. Override this method to call your
delegate’s screenlet(_:onBookmarkSelected:) method. For example, here’s BookmarkListScreenlet’s
onSelectedRowmethod:

override public func onSelectedRow(_ row: AnyObject) {

bookmarkListDelegate?.screenlet?(screenlet: self, onBookmarkSelected: row as! Bookmark)

}

Awesome! You’re done! Your list Screenlet, like any other Screenlet, is a ready-to-use component that
you can add to your storyboard. You can even package it using the same steps you use to package aTheme,
and then contribute it to the Liferay Screens project or distribute it with CocoaPods.

Related Topics

Creating iOS Screenlets
Supporting MultipleThemes in Your Screenlet
Create and Use a Connector with Your Screenlet
Add a Screenlet Delegate
Creating and Using Your Screenlet’s Model Class
Using Custom Cells with List Screenlets
Sorting Your List Screenlet
Creating Complex Lists in Your List Screenlet
Architecture of Liferay Screens for iOS

77.14 Using Custom Cells with List Screenlets

In most list Screenlets, including those that come with Liferay Screens, the DefaultTheme uses the default
cells in iOS’s UITableView to show the list. TheTheme creation steps in the list Screenlet creation tutorial also
instruct you to use these cells. You can, however, use custom cells to tailor the list to your needs. To do this,
youmust create an extendedTheme from aTheme that uses UITableView’s default cells. This usually means
extending a list Screenlet’s Default theme. This tutorial shows you how to create such an extendedTheme
that contains a custom cell for your list Screenlet. As an example, this tutorial uses code from the sample
Bookmark List Screenlet’s CustomTheme. You can refer to thisTheme’s finished code here in GitHub at any
time.

Note that besides creating your custom cell, this tutorial follows the same basic steps as the Theme
creation tutorial for creating an extendedTheme. For example, you must still determine where to create
yourTheme, and create yourTheme’s XIB and View class.

First, you’ll create yourTheme’s custom cell.

Creating Your Custom Cell

Once you decide where to create yourTheme, you can get started. First, create your custom cell’s XIB file
and its companion class. Name them according to the naming conventions in the best practices tutorial.
After defining your cell’s UI in the XIB, create as many outlets and actions as you need in its companion class.
Also be sure to assign this class as the XIB’s custom class in Interface Builder. Note that if you want to use
different layouts for different rows, youmust create an XIB file and companion class for each.

For example, the following screenshot shows theXIBfile BookmarkCell_default-custom.xib for Bookmark
List Screenlet’s custom cell. This cell must show a bookmark’s name and URL, so it contains two labels.

945

https://developer.apple.com/reference/uikit/uitableview
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/BookmarkListScreenlet/Themes/TableView

Figure 77.20: The XIB file for Bookmark List Screenlet’s custom cell.

This XIB’s custom class, BookmarkCell_default_custom, contains an outlet for each label. The bookmark
variable also contains a didSet observer that sets the bookmark’s name and URL to the respective label:

import UIKit

class BookmarkCell_default_custom: UITableViewCell {

@IBOutlet weak var nameLabel: UILabel?

@IBOutlet weak var urlLabel: UILabel?

var bookmark: Bookmark? {

didSet {

nameLabel?.text = bookmark?.name

urlLabel?.text = bookmark?.url

}

}

}

Great! Now you have your custom cell. Next, you’ll create the rest of yourTheme.

Creating Your Theme's XIB and View Class

Now you’re ready to create your Theme’s XIB file and View class. Create your XIB by copying the parent
Theme’s XIB and making any changes you need. You may not need to make any changes besides the file
name and custom class name. For example, the custom cell is the only difference between Bookmark List
Screenlet’s Custom and DefaultThemes. TheseThemes’ XIB files (BookmarkListView_default-custom.xib and
BookmarkListView_default.xib) are therefore identical besides their name and custom class; the size and
position of their UI components are the same.

Now create your View class by extending the parentTheme’s View class. You should also add a string
constant to serve as the cell ID. In amoment, you’ll use this constant to register your custom cell. For example,
the View class in Bookmark List Screenlet’s CustomTheme (BookmarkListView_default_custom) extends the
DefaultTheme’s View class (BookmarkListView_default) and defines the string constant BookmarkCellId:

public class BookmarkListView_default_custom: BookmarkListView_default {

let BookmarkCellId = "bookmarkCell"

…

Next, override the doRegisterCellNibs method to register your custom cell. In this method, create
a UINib instance for your cell and then register it with the UITableView instance (tableView) inherited
from the BaseListTableView class. When registering the nib file, you must use the string constant you
created earlier as the forCellReuseIdentifier. For example, here’s the doRegisterCellNibs method in
BookmarkListView_default-custom:

946

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/TableView/BaseListTableView.swift

public override func doRegisterCellNibs() {

let nib = UINib(nibName: "BookmarkCell_default-custom", bundle: NSBundle.mainBundle())

tableView?.registerNib(nib, forCellReuseIdentifier: BookmarkCellId)

}

Also in your View class, override the doGetCellIdmethod to return the cell ID for each row. All you need
to do in this method is return the string constant you created earlier. For example, the doGetCellIdmethod
in BookmarkListView_default-custom returns the BookmarkCellId constant:

override public func doGetCellId(row row: Int, object: AnyObject?) -> String {

return BookmarkCellId

}

Now override the doFillLoadedCellmethod to fill the cell with data. Note that this method isn’t called
for in-progress cells; it’s only called for cells that display data. Also note that this method’s object argument
contains the data as AnyObject. You must cast this to your desired type and then set it to the appropriate cell
variable. For example, the doFillLoadedCellmethod in BookmarkListView_default-custom casts the object
argument to Bookmark and then sets it to the cell’s bookmark variable:

override public func doFillLoadedCell(row row: Int, cell: UITableViewCell, object:AnyObject) {

if let bookmarkCell = cell as? BookmarkCell_default_custom, bookmark = object as? Bookmark {

bookmarkCell.bookmark = bookmark

}

}

The typical iOS UITableViewDelegate protocol and UITableViewDataSource protocolmethods are also avail-
able in your View class. You can override any of them if you need to (check first to make sure they’re not
already overridden). For example, BookmarkListView_default-custom implements the followingmethod to
use a different cell height for each row:

public func tableView(tableView: UITableView, heightForRowAtIndexPath indexPath: NSIndexPath) -> CGFloat {

return 80

}

When you finish, set your View class as your XIB file’s custom class.
Awesome! You’re done! Now you know how to implement your own custom cells for use in list Screenlets.

Related Topics

Creating iOS List Screenlets
Creating iOSThemes
Sorting Your List Screenlet
Creating Complex Lists in Your List Screenlet
iOS Best Practices

77.15 Sorting Your List Screenlet

To sort your list Screenlet, youmust point it to a comparator class in yourportal. A comparator class implements
the logic that sorts your entities. You can create your own comparator class or use those that already exist in
your portal. Once your list is sorted, you can split it into sections. This tutorial shows you how to sort your
list Screenlet with a comparator and create sections for your sorted list.

947

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableViewDelegate_Protocol/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableViewDataSource_Protocol/

Note: To create a new comparator, youmust create a class that extends the portal’s OrderByComparator
class with your entity as a type argument. Then youmust override the methods that implement the sort. For
example, the portal’s EntryURLComparator class sorts bookmarks in Liferay’s Bookmarks portlet by URL.

First, you’ll learn how to use a comparator to sort your list Screenlet.

Using a Comparator

Touse a comparator, youmust set the list Screenlet’s obcClassNameproperty to the comparator’s fully qualified
class name. Do this in Interface Builder when inserting the Screenlet in an app, just as you would set any
other Screenlet property. For example, to set the sample Bookmark List Screenlet to sort its list of bookmarks
by URL, youmust setObc Class Name to com.liferay.bookmarks.util.comparator.EntryURLComparator in Interface
Builder:

Figure 77.21: To use a comparator, set the Obc Class Name property in Interface Builder to the comparator’s fully qualified class name.

That’s it! Note that although all list Screenlets inherit the obcClassName property from the
BaseListScreenlet class, the list Screenlet must also make its service call with this property. See
the Screenlet reference documentation to see which list Screenlets included with Liferay Screens support
the obcClassName property. Also, Liferay DXP’s comparator classes can change between versions. If you’re
using one of these comparators, make sure you specify the one that matches your Liferay DXP version.

Create Sections for Your List

Dividing lists into sections that contain like elements is common in iOS apps. To do this in list Screenlets,
first use a comparator to sort the list by the criteria you’ll use to create the sections. Then override the

948

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/OrderByComparator.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/OrderByComparator.html
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/collaboration/bookmarks/bookmarks-api/src/main/java/com/liferay/bookmarks/util/comparator/EntryURLComparator.java
https://github.com/liferay/liferay-screens/blob/develop/ios/Framework/Core/Base/BaseListScreenlet/BaseListScreenlet.swift
https://github.com/liferay/liferay-screens/blob/develop/ios/Framework/Core/Base/BaseListScreenlet/BaseListScreenlet.swift

BookmarkListPageLoadInteractor class’s sectionForRowObjectmethod in your list Screenlet’s Interactor. This
method is called for each item in the list and should return the information necessary to place the item in a
section. For example, the sample Bookmark List Screenlet’s Interactor overrides the sectionForRowObject
method to group results by hostname:

public override func sectionForRowObject(object: AnyObject) -> String? {

guard let bookmark = object as? Bookmark else {

return nil

}

let host = NSURL(string: bookmark.url)?.host?.lowercaseString

return host?.stringByReplacingOccurrencesOfString("www.", withString: "")

}

Note that this only produces predictable results when Bookmark List Screenlet is sorted by
EntryURLComparator as detailed in the preceding section.

And that’s all there is to it! Now you know how to sort and section your list Screenlet’s list.

Related Topics

Creating iOS List Screenlets
Using Custom Cells with List Screenlets
Creating Complex Lists in Your List Screenlet
iOS Best Practices

77.16 Creating Complex Lists in Your List Screenlet

Most list Screenlets’Themes use iOS’s UITableView to display simple lists. Although UITableView is great for
this, it’s not so great for complex lists like grids or stacks. To create complex lists, you should use iOS’s
UICollectionView in your list Screenlet’sTheme.

This tutorial shows youhow to create such aTheme,using the sampleBookmarkList Screenlet’sCollection
Theme as an example. First, you’ll create the list’s cell.

Creating the Cell

You’ll create your list’s cell with the same sequence of steps used to create any list Screenlet’s cell. Note,
however, that how you perform these steps is a bit different:

1. Define your cell’s UI in a new XIB file. Because this cell is part of aTheme that uses UICollectionView,
you can shape it however you want. For example, here’s the BookmarkCell_default-collection.xib

file for the cell in Bookmark List Screenlet’s CollectionTheme. It’s a simple square that displays the
bookmark’s URL and the URL’s first letter.

2. Create your XIB file’s class by extending UICollectionViewCell. Create as many outlets and actions
as you need for your UI components and write the logic required for your cell’s UI to function. For
example, BookmarkCell_default_collection is the XIB file’s class in Bookmark List Screenlet’s Custom
Theme. This class extends UICollectionViewCell and contains outlets for the URL (urlLabel) and the
URL’s first letter (centerLabel). The bookmark variable’s didSet observer sets the bookmark’s name and
URL to the respective label. Also note that the overridden prepareForReusemethod resets the labels for
reuse:

949

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/Interactor/BookmarkListPageLoadInteractor.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/Interactor/BookmarkListPageLoadInteractor.swift
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UITableView_Class/
https://developer.apple.com/reference/uikit/uicollectionview
https://developer.apple.com/reference/uikit/uicollectionview
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/BookmarkListScreenlet/Themes/CollectionView
https://github.com/liferay/liferay-screens/tree/master/ios/Samples/Bookmark/BookmarkListScreenlet/Themes/CollectionView

Figure 77.22: The XIB file for the cell in Bookmark List Screenlet’s custom View.

import UIKit

import LiferayScreens

public class BookmarkCell_default_collection: UICollectionViewCell {

//MARK: Outlets

@IBOutlet weak var centerLabel: UILabel?

@IBOutlet weak var urlLabel: UILabel?

//MARK: Public properties

public var bookmark: Bookmark? {

didSet {

if let bookmark = bookmark, url = NSURL(string: bookmark.url),

firstLetter = url.host?.remove("www.").characters.first {

self.centerLabel?.text = String(firstLetter).uppercaseString

self.urlLabel?.text = bookmark.url.remove("http://").remove("https://").remove("www.")

}

}

}

//MARK: UICollectionViewCell

override public func prepareForReuse() {

super.prepareForReuse()

centerLabel?.text = "..."

urlLabel?.text = "..."

}

}

Now that your cell exists, you can create the rest of yourTheme.

Creating the Theme's XIB and View Class

You’ll create the rest of your Theme with the same sequence of steps used to create any list Screenlet’s
Theme. Like creating the cell, how you perform these steps is a bit different because your Theme uses
UICollectionView instead of UITableView.

First, define yourTheme’s UI in a new XIB file. Add a UICollectionView instead of a UITableView to this
file. For example, the BookmarkListView_default-collection.xib file for Bookmark List Screenlet’s Custom
Theme contains a collection view.

Next, create the View class. Instead of extending BaseListTableView, this class must extend Screens’s
BaseListCollectionView class. The BaseListCollectionView class implements most of the code necessary
to use UICollectionView in your Screenlet. By extending it, you can focus on the code unique to your

950

https://github.com/liferay/liferay-screens/blob/master/ios/Samples/Bookmark/BookmarkListScreenlet/Themes/CollectionView/BookmarkListView_default-collection.xib
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseListScreenlet/CollectionView/BaseListCollectionView.swift

Screenlet. Your View class should also contain a string constant to serve as the cell ID. You’ll use this
constant when you register your cell. For example, the View class in Bookmark List Screenlet’s Collec-
tionTheme (BookmarkListView_default_collection) extends BaseListCollectionView and defines the string
constant BookmarkCellId:

public class BookmarkListView_default_collection : BaseListCollectionView {

let BookmarkCellId = "bookmarkCell"

…

In Interface Builder, set this new class as the XIB’s Custom Class.
Next, override the doRegisterCellNibsmethod to register the cell you created in the previous section.

In this method, create a UINib instance for your cell and then register it with the UICollectionView instance
(collectionView) inherited from BaseListCollectionView. When registering the nib file, you must use the
string constant you created earlier as the forCellReuseIdentifier. For example,here’s the doRegisterCellNibs
method in BookmarkListView_default_collection:

public override func doRegisterCellNibs() {

let cellNib = UINib(nibName: "BookmarkCell_default-collection", bundle: nil)

collectionView?.registerNib(cellNib, forCellWithReuseIdentifier: BookmarkCellId)

}

Also in your View class, override the doGetCellIdmethod to return the ID you registered the cell with.
For example, the doGetCellIdmethod in BookmarkListView_default_collection returns the string constant
BookmarkCellId:

public override func doGetCellId(indexPath indexPath: NSIndexPath, object: AnyObject?) -> String {

return BookmarkCellId

}

Next, override the doFillLoadedCellmethod to fill the cell with data. This method’s object argument
contains the data as AnyObject. You must cast this to your desired type and then set it to the appropriate
cell variable. For example, the doFillLoadedCellmethod in BookmarkListView_default_collection casts the
object argument to Bookmark and then sets it to the cell’s bookmark variable:

public override func doFillLoadedCell(

indexPath indexPath: NSIndexPath,

cell: UICollectionViewCell,

object: AnyObject) {

if let cell = cell as? BookmarkCell_default_collection, bookmark = object as? Bookmark {

cell.bookmark = bookmark

}

}

Next, you’ll create the layout.

Creating the Layout

The layout object is a key part of UICollectionView. This object controls the position of the UI ele-
ments, their size, and more. To customize the layout object, override the doCreateLayout method in
your View class. For example, the doCreateLayout method in Bookmark List Screenlet’s View class
(BookmarkListView_default_collection) returns a UICollectionViewFlowLayout for the layout object. This is a
basic layout that gives you a simple way to customize things like item size, spacing between items, scroll
direction, andmore:

951

public override func doCreateLayout() -> UICollectionViewLayout {

let layout = UICollectionViewFlowLayout()

layout.itemSize = CGSize(width: 110, height: 110)

layout.minimumLineSpacing = 10

layout.minimumInteritemSpacing = 10

return layout

}

Great! You’re done! You can now use your newTheme the same way you would any other.
If you want to package yourTheme to contribute it to the Liferay Screens project or distribute it with

CocoaPods, see the tutorial on packagingThemes.

Related Topics

Creating iOS List Screenlets
Creating iOSThemes
Sorting Your List Screenlet
Using Custom Cells with List Screenlets
iOS Best Practices

77.17 Creating iOS Themes

By creating your ownThemes, you can customize your mobile app’s design and functionality. You can create
them from scratch or use an existingTheme as a foundation. Themes include a View class for implementing
Screenlet behavior and an XIB file for specifying the UI. The three Liferay Screens Theme types support
different levels of customization and parentTheme inheritance. Here’s what eachTheme type offers:

ChildTheme: presents the sameUI components as its parentTheme,but lets you change their appearance
and position.

ExtendedTheme: inherits its parent Theme’s functionality and appearance, but lets you add to and
modify both.

FullTheme: provides a complete standalone View for a Screenlet. A full Theme is ideal for implementing
functionality and appearance completely different from a Screenlet’s currentTheme.

This tutorial explains how to create all three types. To understandTheme concepts and components, you
might want to examine the architecture of Liferay Screens for iOS.The tutorial Creating iOS Screenlets can
help you create any Screenlet classes yourTheme requires. Now get ready to create someThemes!

Determining Your Theme's Location

After determining the type ofTheme to create, you need to decide where to create it. If you want to reuse or
redistribute it, you should create it in an empty Cocoa Touch Framework project in Xcode. The packaging
tutorial explains how to package and publish with CocoaPods. If you’re not planning to reuse or redistribute
yourTheme, you can create it directly inside your app project.

The rest of this tutorial explains how to create each type ofTheme. First, you’ll learn how to create a Child
Theme.

Creating a Child Theme

In a Child Theme, you leverage a parent Theme’s behavior and UI components, but you can modify the
appearance and position of the UI components. Note that you can’t add or remove any components and the

952

parent Theme must be a Full Theme. The Child Theme presents visual changes with its own XIB file and
inherits the parent’s View class.

For example, the Child Theme in Figure 1 presents the same UI components as the Login Screenlet’s
DefaultTheme, but enlarges them for viewing on devices with larger screens.

Figure 77.23: The UI components are enlarged in the example Child Theme’s XIB file.

You can follow these steps to create a ChildTheme:

1. InXcode, create a newXIBfile that’s named after the Screenlet’s View class and yourTheme. By conven-
tion, an XIB file for a Screenlet with a View class named FooScreenletView and aTheme named BarTheme
must be named FooScreenletView_barTheme.xib. You can use content from the parentTheme’s XIB file
as a foundation for your new XIB file. In your new XIB, you can change the UI components’ visual
properties (e.g., their position and size). You mustn’t change, however, the XIB file’s custom class,
outlet connection, or restorationIdentifier–these must match those of the parent’s XIB file.

The XIB file name serves as the Theme's Xcode name. For example, the Theme

in Figure 1 inherits from the Login Screenlet's Default Theme, which uses

the View class `LoginView_default`. The new child Theme is named *Large*

because it's purpose is to enlarge the Screenlet's UI components. In Xcode,

it's assigned the Theme Name *large*. The XIB file is named

`LoginView_large.xib`, after the Login Screenlet's View class and the

Theme's Xcode name.

You can optionally package yourTheme and/or start using it. Fantastic! Next, you’ll learn how to create
an ExtendedTheme.

Extended Theme

An ExtendedTheme inherits anotherTheme’s UI components and behavior, but lets you add to or alter it by
extending the parentTheme’s View class and creating a new XIB file. An ExtendedTheme’s parent must be a
Full Theme. The Flat7Theme is an ExtendedTheme.

These steps explain how to create an ExtendedTheme:

953

https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/LoginScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Flat7

1. In Xcode, create a new XIB file named after the Screenlet’s View class and yourTheme. By convention,
an XIB file for a Screenlet with a View class named FooScreenletView and aTheme named BarTheme
must be named FooScreenletView_barTheme.xib. You can use the XIB file of your parentTheme as a
template. Build your UI changes in your new XIB file with Interface Builder.

Figure 77.24: This example Extended Theme’s XIB file extends the Login Portlet’s UI and behavior with a switch that lets the user show or hide the password field value.

2. Create a new View class that extends the parentTheme’s View class. You should name this class after
the XIB file you just created. You can add or override functionality of the parentTheme’s View class.

3. Set your new View class as the custom class for your Theme’s XIB file. If you added @IBOutlet or
@IBAction actions, bind them to your class.

Well done! You can optionally package yourTheme and/or start using it. Now you know how to create
and use an ExtendedTheme. Next, you’ll learn how to create a Full Theme.

Full Theme

A FullTheme implements unique behavior and appearance for a Screenlet, without using a parentTheme.
Its View class must inherit Screens’s BaseScreenletView and conform to the Screenlet’s ViewModel protocol.
It must also specify a new UI in an XIB file. As you create a Full Theme, you can refer to the tutorial Creating
iOS Screenlets to learn how to create these classes.

Follow these steps to create a Full Theme:

1. Create a new XIB file and use Interface Builder to build your UI. By convention, an XIB file for a
Screenlet with a View class named FooScreenletView and a Theme named BarThememust be named
FooScreenletView_barTheme.xib. You can use the XIB file from the Screenlet’s default Theme as a
template.

954

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift

Figure 77.25: This Full Theme for the Login Screenlet, includes a text field for entering the user name, uses the UDID for the password, and adds a Sign In button with the
same restorationIdentifier as the Default Theme.

2. Create a new View class for your Theme named after the XIB file you just created. As a template,
you can use the View class of your Screenlet’s Default Theme. Your new View class must inherit
BaseScreenletView and conform to the Screenlet’s *ScreenletViewModel protocol, implementing the
corresponding getters and setters. It should also add all the @IBOutlet properties or @IBActionmethods
you need to bind your UI components.

3. Set yourTheme’s new View class as your XIB file’s custom class and bind any @IBOutlet and @IBAction

actions to your class.

Super! You can optionally package yourTheme and/or start using it. Now you know how to create a Full
Theme. Note that a Full Theme can serve as a parent to a Child and ExtendedTheme.

You’ve masteredThemes!

Related Topics

Packaging iOSThemes
UsingThemes in iOS Screenlets
Architecture of Liferay Screens for iOS
Creating iOS Screenlets

77.18 Packaging iOS Themes

Once you’ve created aTheme, you can package it up to install and use with its Screenlet. YourTheme is a
code library that you can package using CocoaPods.

Follow the steps below to package yourTheme for use with CocoaPods. (Note that it’s important that you
use the same names and identifiers described in these steps):

1. Create an empty Cocoa Touch Framework Xcode project.

2. Name your project LiferayScreensThemeName, replacing Namewith yourTheme’s name. You can specify
any name, but it’s a best practice to use your Theme’s Xcode name, capitalizing its first letter. The
entire name becomes theTheme’s CocoaPods name.

3. Configure Liferay Screens for CocoaPods, using the steps described in Preparing iOS Projects for
Liferay Screens.

955

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Base/BaseScreenletView.swift

Figure 77.26: Choose Cocoa Touch Framework when creating a project for your Theme.

Figure 77.27: This XIB file’s custom class’s module is NOT specified.

4. Prepare yourTheme’s classes and resources by making sure your classes compile successfully in Xcode
and by explicitly specifying a valid module for the custom class–the grayed-out Current default value
only suggests a module.

In the following screenshot, the setting for the custom class is correct:

Figure 77.28: The XIB file is bound to the custom class name, with the specified module.

5. In your project’s root folder, add a file named LiferayScreensTheme-Name.podspec (change Name to your

956

Theme’s CocoaPods name–the value you used to replace Name in step 2). Note: you must start your the
.podspec file’s name and the project’s name with LiferayScreens.

Add the following content to the file:

Pod::Spec.new do |s|

s.name = 'LiferayScreensThemeName'

s.version = '1.0'

s.summary = 'Your theme description'

s.source = {

:git => 'https://your_repository_url.git',

:tag => 'v1.0'

}

s.platform = :ios, '8.0'

s.requires_arc = true

s.source_files = 'Your/Relative/Folder/**/*.{h,m,swift}'

s.resources = 'Your/Relative/Folder/**/*.{xib,png,plist,lproj}'

s.dependency 'LiferayScreens'

end

Make the following substitutions in the .podspec file:

• Replace Name in LiferayScreensThemeName, with your Theme’s CocoaPods name–the value you
used to replace Name in step 2.

• Replace your_repository_urlwith your repository’s URL.
• Replace Your/Relative/Folder/with the path to your source and resource files.

6. Commit your changes and push your project’s branch to your Git repository.

YourTheme is now available for other developers to pull from your Git repository. You can, alternatively,
publish your Theme as a public Pod. For instructions, see the chapter Deploying a library in the official
CocoaPods guide.

Developers can now use yourTheme by adding the following line to their app’s Podfile; they must, of
course, change Name to theTheme’s CocoaPods name and your_repository_url to your repository’s URL:

pod 'LiferayScreensThemeName', :git => 'https://your_repository_url.git'

Nice work! Now you know how to package and distribute ScreenletThemes with CocoaPods.
Related Topics
UsingThemes in iOS Screenlets
Architecture of Liferay Screens for iOS
Creating iOSThemes
Creating iOS Screenlets
Preparing Android Projects for Liferay Screens

957

https://guides.cocoapods.org/making/getting-setup-with-trunk.html#deploying-a-library
https://guides.cocoapods.org/making/getting-setup-with-trunk.html#deploying-a-library

77.19 Accessing the Liferay Session in iOS
A session is a conversation state between the client and server. It typically consists of multiple requests and
responses between the two. To facilitate this communication, the session must have the server IP address,
and a user’s login credentials. Liferay Screens uses a Liferay Session to access and query the JSON web
services provided by Liferay Portal. When you log in using a Liferay Session, the portal returns the user’s
information (name, email, user ID, etc…). Screens stores this information and the active Liferay Session in
Screens’s SessionContext class.

The SessionContext class is very powerful and lets you use Screens in many different scenarios. For
example, you can use SessionContext to request information with the JSONWS API provided by Liferay, or
with the Liferay Mobile SDK. You can also use SessionContext to create anonymous sessions, or log in a user
without showing Login Screenlet.

This tutorial explains some common SessionContext use cases, and also describes the class’s most impor-
tant methods.

Getting the current session

The current session is established after the user successfully logs in with Login Screenlet. Use
SessionContext.currentContext to retrieve the session. Note this will return nil if the user didn’t sign in
with Login Screenlet. You can also use the SessionContext property isLoggedIn to determine if a session
exists. This returns false if there’s no current session.

Creating a Liferay Session

When working with Liferay Screens, you may wish to call the remote JSON web services provided by the
LiferayMobile SDK.Every operationwith the LiferayMobile SDKneeds a Liferay Session to provide the server
address, user credentials, and any other required parameters. Login Screenlet creates a session when a user
successfully logs in. You can retrieve this session with the SessionContextmethod createRequestSession().
Typically, you call this method through the currentContext object. For example:

SessionContext.currentContext?.createRequestSession()

You can then use the session to make theMobile SDK service call. If you need to check first to see if a
user has logged in, you can use the SessionContext property isLoggedIn.

Great! Now you know how to retrieve an existing session in your app. But what if you’re not using Login
Screenlet? There won’t be an existing session to retrieve. No sweat! You can still use SessionContext to create
one manually. The next section shows you how to do this.

Creating a Session Manually

If you don’t use Login Screenlet, then SessionContext doesn’t have a session for you to retrieve. In this case,
youmust create onemanually. You can do this with the SessionContextmethod loginWithBasic. Themethod
takes a username, password, and user attributes as parameters, and creates a session with those credentials.
The following code uses loginWithBasic to create a session:

Session session = SessionContext.loginWithBasic(username: USERNAME, password: PASSWORD, userAttributes: [:]);

For the userAttributes parameter, you must provide some attributes associated with the logged in user,
such as their userId. For a complete list of attributes, see the user model interface.

Super! Now you know how to create a session manually. The next section shows you how to implement
auto-login, and save or restore a session.

958

https://docs.liferay.com/portal/6.2/javadocs/com/liferay/portal/model/User.html

Implementing Auto-login and Saving or Restoring a Session

Although Login Screenlet is awesome, your users may not want to enter their credentials every time they
open your app. It’s very common for apps to only require a single login. To implement this in your app, see
this video.

In short, you need to set saveCredentials to true in Login Screenlet. The next login then uses the saved
credentials. To make sure this also works when the app restarts, you must retrieve the stored creden-
tials by using the SessionContextmethod loadStoredCredentials. The following Swift code shows a typical
implementation of this:

if SessionContext.loadStoredCredentials() {

// user auto-logged in

// consider doing a relogin here (see next section)

}

else {

// send user to login screen with the login screenlet

}

Awesome! Now you know how to implement auto-login in your Liferay Screens apps. For more informa-
tion on available SessionContextmethods, see the Methods section at the end of this tutorial. Next, you’ll
learn how to implement relogin for cases where a user’s credentials change on the server while they’re logged
in.

Implementing Relogin

A session, whether created via Login Screenlet or auto-login, contains basic user data that verifies the user in
the Liferay instance. If that data changes in the server, then your session is outdated, which may cause your
app to behave inconsistently. Also, if a user is deleted, deactivated, or otherwise changes their credentials in
the server, the auto-login feature won’t deny access because it doesn’t perform server transactions: it only
retrieves an existing session from local storage. This isn’t an optimal situation!

For such scenarios, you can use the relogin feature. This feature is implemented in a method that
determines if the current session is still valid. If the session is still valid, the user’s data is updated with the
most recent data from the server. If the session isn’t valid, the user is logged out andmust then log in again
to create a new session.

To this feature, call the SessionContext.currentContextmethod relogin:

SessionContext.currentContext?.relogin(closure)

Note that this operation is done asynchronously in a background thread. The closure argument is a
function that eventually receives the new user attributes. In case of error, the closure is called with nil

attributes and the user is logged out of the session. The typical Swift code for a full relogin is as follows. Note
a trailing closure is used:

SessionContext.currentContext?.relogin { userAttributes in

if userAttributes == nil {

// couldn't retrieve the user attributes: user invalidated or password changed?

}

else {

// full re-login made. Everything is updated

}

}

Great! Now you know how to implement relogin in your app. You’ve also seen how handy SessionContext
can be. It can do even more! The next section lists some additional SessionContextmethods, and somemore
detail on the ones used in this tutorial.

959

https://www.youtube.com/watch?v=kEZEahTzuck

Methods

Method | Return Type | Explanation | logout() | void | Clears the stored user attributes and session. |
relogin(closure) | void | Refreshes user data from the server. This recreates currentContext if successful, or
calls logout() on failure. When the server data is received, the closure is called with received user’s attributes.
If an error occurs, the closure is called with nil. | loginWithBasic(username, password, userAttributes) |
LRSession | Creates a Liferay Session using the default server, and the supplied username, password, and
user information. | loginWithOAuth(authentication, userAttributes) | LRSession | Creates a Liferay Session
using the default server and the supplied OAuth tokens. This is intended to be used together with the Liferay
iOS OAuth library. | createRequestSession() | LRSession | Creates a Liferay Session based on the current
session’s server anduser credentials. This Liferay Session is intended to be used for only a single request (don’t
reuse it). | createEphemeralBasicSession(username, password) | LRSession | Creates a Liferay Session based
on the provided username and password. Note that this session isn’t stored anywhere. This is the method
used to create a session for anonymous access. Anonymous access is used by the SignUp and Forgot Password
Screenlets. | userAttribute(key: String) | AnyObject | Returns a User object with the server attributes of the
logged-in user. This includes the user’s email, user ID, name, and portrait ID. | storeCredentials() | Bool |
Stores the current session. | removeStoredCredentials() | Bool | Clears the session anduser information from
storage. | loadStoredCredentials() | Bool | Loads the session and user information from storage. They’re
then used, respectively, as the current session and user. |

Properties

Property | Type |Explanation | currentContext | SessionContext |The current session established through
Login Screenlet, or the loginWithBasic or loginWithOAuth methods. | isLoggedIn | Bool | Returns true if
SessionContext contains a Liferay Session. | basicAuthUsername | String |The username used to establish the
current session (if any).| basicAuthPassword | String |The password used to establish the current session (if
any).| userId | Number |The user identifier used to establish the current session (if any). |

For more information, see the SessionContext source code in GitHub.

Related Topics

Login Screenlet for iOS
Using Screenlets in iOS Apps

77.20 Adding Custom Interactors to iOS Screenlets
Interactors are Screenlet components that implement server communication for a specific use case. For
example, the Login Screenlet’s interactor calls the LiferayMobile SDK service that authenticates a user to the
portal. Similarly, the interactor for the Add Bookmark Screenlet calls the Liferay Mobile SDK service that
adds a bookmark to the Bookmarks portlet.

That’s all fine and well, but what if you want to customize a Screenlet’s server call? What if you want
to use a different back-end with a Screenlet? No problem! You can implement a custom interactor for the
Screenlet. You can plug in a different interactor that makes its server call by using custom logic or network
code. To do this, you must implement the current interactor’s interface and then pass it to the Screenlet you
want to override. You should do this inside your app’s code.

960

https://github.com/brunofarache/liferay-ios-sdk-oauth
https://github.com/brunofarache/liferay-ios-sdk-oauth
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Context/SessionContext.swift

In this tutorial, you’ll see an example interactor that overrides the Login Screenlet to always log in the
same user, without a password.

Implementing a Custom Interactor

1. Implement your custom interactor. Youmust inherit ServerConnectorInteractor, as shown here:

class LoginCustomInteractor: ServerConnectorInteractor {

override func createConnector() -> ServerConnector? {

...

return connector

}

}

2. Implement the optional protocol that receives a customInteractorForAction, and return your own
interactor:

func screenlet(screenlet: BaseScreenlet,

customInteractorForAction: String,

withSender: AnyObject?) -> Interactor? {

return LoginCustomInteractor()

}

Great! Now you know how to implement custom interactors for iOS Screenlets.

Related Topics

Architecture of Liferay Screens for iOS
Creating iOS Screenlets

77.21 Rendering Web Content in Your iOS App

Liferay Screens provides several ways to render web content in your app. For historical reasons, web content
articles are JournalArticle entities in Liferay. UsingWeb Content Display Screenlet is a simple and powerful
way to display HTML from a JournalArticle in your app. To fit your needs, this Screenlet supports several
use cases. This tutorial describes them.

Retrieving Basic Web Content

The simplest use case for Web Content Display Screenlet is to retrieve a web content article’s HTML and
render it in a UIWebView. To do this, provide the web content article’s ID via the Article Id attribute in Interface
Builder. The Screenlet takes care of the rest. This includes rendering the content to fit mobile devices,
performing any required caching, andmore.

To render the content exactly as it appears on your mobile site, however, you must provide the CSS inline
or use a template. The HTML returned isn’t aware of a Liferay instance’s global CSS.

You can also modify the rendered HTML with a delegate, as explained in the Web Content Display
Screenlet reference documentation.

961

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/

As you can see, this is all fairly straightforward. What could go wrong? Famous last words. A common
mistake is to use the default site ID (groupId) instead of the one for the site that contains your web content
articles. To continue using a default groupId in your app, but use a different one forWeb Content Display
Screenlet, assign the Screenlet’s Group Id property in Interface Builder.

Using Templates

Web Content Display Screenlet can also use templates to render web content articles. For example, your
Liferay instance may have a custom template specifically designed to display content onmobile devices. To
use a template, set the template’s ID as the Screenlet’s templateId property (Template Id in Interface Builder).

Recall that structuredweb content in Liferay can havemany templates. You can create your own template
if there’s not one suitable for displaying web content in your app.

Rendering Structured Web Content

To render structuredweb content inWebContent Display Screenlet, youmust create a custom theme capable
of doing so. Also, you must create a custom theme for each structure you want to display in your app. In this
case, youmayfind it convenient to create each theme inside a single parent theme anduse compoundnaming
to indicate this relationship. For example, if you have structures in your Liferay instance called book, employee,
andmeeting, you must create a custom theme for each. If you create these themes as children of another
custom theme calledmytheme, you could name themmytheme.book,mytheme.employee, andmytheme.meeting.

Regardless of where you create your themes or what you name them, use the following steps to create
them:

1. Create a theme to render your web content. If you’ve already created your own theme, you can skip
this step.

2. In your theme, create a new class called WebContentDisplayView_themeName, extending from
BaseScreenletView. This class will hold the outlets and actions associated with the web content’s UI.

3. Create the UI in the WebContentDisplayView_themeName.xib file. This file should have a UIView that
contains the components you need to render the web content’s structure fields. For example, if your
structured web content contains latitude and longitude fields, you can use a MKMapView component to
render the map point.

4. Once your components are ready, change the root view’s class to WebContentDisplayView_themeName

(the class you created in the first step), and create the outlets and actions you need to manage your UI
components.

5. Conform the WebContentDisplayViewModel protocol in the WebContentDisplayView_themeName class. This
protocol requires you to add the htmlContent and recordContent properties. The htmlContent property
is intended forHTMLweb content; this isn’t your theme’s use case. Your thememust display structured
web content; use the recordContent property for this content. In this property, set the structure field’s
value as the corresponding outlet’s value. For example:

public var htmlContent: String? {

get {

return nil

}

set {

// not used for structured Web Contents

}

962

}

public var recordContent: DDLRecord? {

didSet {

// set the outlets with record's values

set.myOutlet.myProperty = recordContent?["my_field_name"]?.currentValueAsLabel

}

}

Next, you’ll learn how to display a list of web content articles in your app.

Displaying a List of Web Content Articles

The preceding examples show you how to useWeb Content Display Screenlet to display a single web content
article’s contents in your app. But what if you want to display a list of articles instead? No problem! You can
do this by usingWeb Content List Screenlet, or Asset List Screenlet.

First, you’ll learn how to useWeb Content List Screenlet.

Using Web Content List Screenlet

Web Content List Screenlet lets you retrieve and display a list of web content articles from a web content
folder. Follow these steps to use the Screenlet:

• Insert Web Content List Screenlet in your View Controller.

• Configure the Group Id and Folder Id properties in Interface Builder. The folder ID is the ID of the web
content folder you want to display articles from. To use the root folder, use 0 for the Folder Id.

• To receive events related to the list, conform WebContentListScreenletDelegate. The events contain the
WebContent objects.

Formore information on the Screenlet and its supported functionality, see theWebContent List Screenlet
reference documentation.

Using Asset List Screenlet

Asset List Screenlet is similar toWeb Content Display Screenlet in that it can display a list of items from a
Liferay instance. Asset List Screenlet, however, displays a list of assets. Since web content is an asset, you
can use Asset List Screenlet to show a list of web content articles. Consider the following when doing this:

• In thedelegate, screenlet:onAssetListResponsegets an array of Assetobjects that represent WebContent
objects. Since WebContent is a child of Asset, you can cast the Asset objects to WebContent. Each
WebContent object has the html, structure, or structuredRecord properties.

• To render Asset List Screenlet with WebContent objects, youmust create your own theme. Create a class
in your theme that extends AssetListView_default, and override the doFillLoadedCellmethod. In this
method, cast the object parameter as WebContent and then retrieve field values from the web content’s
structuredRecord property. If you want custom cells, you can also override the doRegisterCellNibs
and doCreateCellmethods. See the Asset List Screenlet reference documentation for more details on
customizing your asset list.

963

Related Topics

Using Screenlets in iOS Apps
UsingThemes in iOS Screenlets
Creating iOSThemes
Web Content Display Screenlet for iOS
Web Content List Screenlet for iOS
Asset List Screenlet for iOS

77.22 Rendering Web Pages in Your iOS App

TheRenderingWebContent tutorial shows youhow todisplayweb content fromaLiferayDXP site in your iOS
app. Displaying content is great, but what if you want to display an entire page? No problem! Web Screenlet
lets you display any web page. You can even customize the page by injecting local or remote JavaScript and
CSS files. When combined with Liferay DXP’s server-side customization features (e.g., Application Display
Templates),Web Screenlet gives you almost limitless possibilities for displaying web pages in your iOS apps.

In this tutorial, you’ll learn how to useWeb Screenlet to display web pages in your iOS app.

Inserting Web Screenlet in Your App

InsertingWeb Screenlet in your app is the same as inserting any Screenlet in your app:

1. In Interface Builder, insert a new view (UIView) in a new view controller. This new view should be
nested under the view controller’s existing view.

2. With the new view selected, open the Identity inspector and set the view’s Custom Class to
WebScreenlet.

3. Set any constraints that you want for the Screenlet in the scene.

The exact steps for configuringWeb Screenlet are unique toWeb Screenlet. First, you’ll conform your
view controller toWeb Screenlet’s delegate protocol.

Conforming to Web Screenlet's Delegate Protocol

To use any Screenlet, you must conform the class of the view controller that contains it to the Screenlet’s
delegate protocol. Web Screenlet’s delegate protocol is WebScreenletDelegate. Follow these steps to conform
your view controller to WebScreenletDelegate:

1. Import LiferayScreens and set your view controller to adopt the WebScreenletDelegate protocol:

import UIKit

import LiferayScreens

class ViewController: UIViewController, WebScreenletDelegate {...

2. Implement the WebScreenletDelegate method onWebLoad(_:url:). This method is called when the
Screenlet loads the page successfully. How you implement it depends onwhat (if anything) youwant to
happen upon page load. Its arguments are the WebScreenlet instance and the page URL.This example
prints a message to the console indicating that the page was loaded:

964

func onWebLoad(_ screenlet: WebScreenlet, url: String) {

// Called when the page is loaded

print("\(url) was just loaded")

}

3. Implement the WebScreenletDelegatemethod screenlet(_:onError:). This method is called when an
error occurs loading the page, and therefore includes the NSError object. This lets you log or print the
error. For example, this implementation prints a message containing the error’s description:

func screenlet(_ screenlet: WebScreenlet, onError error: NSError) {

print("Failed to load the page: \(error.localizedDescription)")

}

4. Implement the WebScreenletDelegatemethod screenlet(_:onScriptMessageNamespace:onScriptMessage:).
This method is called when the Screenlet’s WKWebView sends a message. This method’s arguments
include the message’s namespace and the message. How you implement this method depends on
what you want to happen when the message is sent. For example, you could perform a segue and
include the message as the segue’s sender:

func screenlet(_ screenlet: WebScreenlet,

onScriptMessageNamespace namespace: String,

onScriptMessage message: String) {

performSegue(withIdentifier: "detail", sender: message)

}

5. Get a reference to theWeb Screenlet on your storyboard by using Interface Builder to create an outlet to
it in your view controller. It’s a best practice to name a Screenlet outlet after the Screenlet it references,
or simply screenlet. Here’s an exampleWeb Screenlet outlet:

@IBOutlet weak var webScreenlet: WebScreenlet?

6. In the view controller’s viewDidLoad()method, use theWeb Screenlet reference you just created to set
the view controller as the Screenlet’s delegate. To do this, add the following line of code just below the
super.viewDidLoad() call:

self.webScreenlet?.delegate = self

Next, you’ll use the sameWeb Screenlet reference to set the Screenlet’s parameters.

Setting Web Screenlet's Parameters

Web Screenlet has WebScreenletConfiguration and WebScreenletConfigurationBuilder objects that supply
the parameters the Screenlet needs to work. These parameters include the URL of the page to load and
the location of any JavaScript or CSS files that customize the page. You’ll set most of these parameters via
WebScreenletConfigurationBuilder’s methods.

Note: For a full list of WebScreenletConfigurationBuilder’s methods, and a description of each, see the
table in the Configuration section ofWeb Screenlet’s reference doc.

To setWeb Screenlet’s parameters, follow these steps in the viewDidLoad()method of a view controller
that usesWeb Screenlet:

965

https://developer.apple.com/documentation/webkit/wkwebview

1. Use WebScreenletConfigurationBuilder(<url>), where <url> is the web page’s URL string, to create a
WebScreenletConfigurationBuilder object. If the page requires Liferay DXP authentication, then the
usermust be logged in via Login Screenlet or a SessionContextmethod, and youmust provide a relative
URL to the WebScreenletConfigurationBuilder constructor. For example, if such a page’s full URL is
http://your.liferay.instance/web/guest/blog, then the constructor’s argument is /web/guest/blog.
For any other page that doesn’t require Liferay DXP authentication, youmust supply the full URL to
the constructor.

2. Call the WebScreenletConfigurationBuildermethods to set the parameters that you need.

Note: If the URL you supplied to the `WebScreenletConfigurationBuilder`

constructor is to a page that doesn't require Liferay DXP authentication, then

you must call the `WebScreenletConfigurationBuilder` method

`set(webType: .other)`. The default `WebType` is `.liferayAuthenticated`,

which is required to load Liferay DXP pages that require authentication. If

you need to set `.liferayAuthenticated` manually, call

`set(webType: .liferayAuthenticated)`.

3. Call the WebScreenletConfigurationBuilder instance’s load()method,which returnsa WebScreenletConfiguration
object.

4. Set the WebScreenletConfiguration object to theWeb Screenlet instance’s configuration property.

5. Call theWeb Screenlet instance’s load()method.

Here’s an example snippet of these steps in the viewDidLoad() method of a view controller
in which the Web Screenlet instance is webScreenlet, and the WebScreenletConfiguration object is
webScreenletConfiguration:

override func viewDidLoad() {

super.viewDidLoad()

self.webScreenlet?.delegate = self

let webScreenletConfiguration =

WebScreenletConfigurationBuilder(url: "/web/westeros-hybrid/companynews")

.addCss(localFile: "blogs")

.addJs(localFile: "blogs")

.load()

webScreenlet.configuration = webScreenletConfiguration

webScreenlet.load()

}

The relative URL /web/westeros-hybrid/companynews supplied to the WebScreenletConfigurationBuilder
constructor, and the lack of a set(webType: .other) call, indicates that thisWeb Screenlet instance loads a
Liferay DXP page that requires authentication. The addCss and addJs calls add local CSS and JavaScript files,
respectively. Both files are named blogs.

Great! Now you know how to useWeb Screenlet in your iOS apps.

966

Related Topics

Web Screenlet for iOS
UsingWeb Screenlet with Cordova in Your iOS App
Using Screenlets in iOS Apps
RenderingWeb Content in Your iOS App

77.23 Using Web Screenlet with Cordova in Your iOS App

By using Cordova plugins in Web Screenlet, you can extend the functionality of the web page that the
Screenlet renders. This lets you tailor that page to your app’s needs. You’ll get started by installing Cordova.

Installing and Configuring Cordova Automatically

Follow these steps to automatically create an empty Android project configured to use Cordova. Note that
youmust have git, Node.js and npm, and CocoaPods installed.

1. Install screens-cli:

npm install -g screens-cli

2. Create the file .plugins.screens in the folder you want to create your project in. In this file, add all
the Cordova plugins you want to use in your app. For example, you can add plugins from Cordova or
GitHub:

https://github.com/apache/cordova-plugin-wkwebview-engine.git

cordova-plugin-call-number

cordova-plugin-camera

Note that the WKWebView Engine plugin is mandatory in iOS.

3. In the folder containing your .plugins.screens file, run screens-cli to create your project:

screens-cli ios <project-name>

This creates your project in the folder platforms/ios/<project-name>.

4. Run the following in platforms/ios/<project-name>:

pod install

5. Open the <project-name>.xcworkspace file with Xcode.

967

https://cordova.apache.org/plugins/
https://git-scm.com/
https://nodejs.org/en/
https://cocoapods.org/

Installing and Configuring Cordova Manually

Follow these steps to install and configure Cordova:

1. Follow the Cordova getting started guide to install Cordova, create a Cordova project, and add the iOS
platform to your Cordova project.

2. Install the Cordova WKWebView engine:

cordova plugin add cordova-plugin-wkwebview-engine

3. Install any other Cordova plugins you want to use in your app. You can use cordova plugin to view the
currently installed plugins.

4. Copy the following files and folders from your Cordova project to your iOS project’s root folder:

• platforms/ios/<your-cordova-project>/config.xml

• platforms/ios/<your-cordova-project>/Plugins

• platforms/ios/www

5. In the config.xml file you just copied to your iOS project’s root folder, add <allow-navigationhref="*"

/> below <access origin="*" />.

Using Cordova in Web Screenlet

Now that you’ve installed and configured Cordova in your iOS project, you’re ready to use it with Web
Screenlet. Follow these steps to do so:

1. Insert and configureWeb Screenlet in your app.

2. When you setWeb Screenlet’s parameters via the WebScreenletConfigurationBuilder object, call the
enableCordova()method. For example, this code adds a local JavaScript file via addJs and then calls
enableCordova() before loading the configuration and the Screenlet:

let configuration = WebScreenletConfigurationBuilder(url: "url")

.addJs(localFile: "call")

.enableCordova()

.load()

webScreenlet?.configuration = configuration

webScreenlet?.load();

That’s it! Note, however, that you may also need to invoke Cordova from a JavaScript file, depending
on what you’re doing. For example, to use the Cordova plugin cordova-plugin-call-number to call a number,
then youmust add a JavaScript file with the following code:

function callNumber() {

//This line triggers the Cordova plugin and makes a call

window.plugins.CallNumber.callNumber(null, function(){ alert("Calling failed.") }, "900000000", true);

}

setTimeout(callNumber, 3000);

If you run the app containing this code and wait three seconds, the plugin activates and calls the number
in the JavaScript file.

Great! Now you know how to useWeb Screenlet with Cordova.

968

https://cordova.apache.org/#getstarted
https://www.npmjs.com/package/cordova-plugin-ionic-wkwebview-engine
https://www.npmjs.com/package/cordova-plugin-call-number

Related Topics

RenderingWeb Pages in Your iOS App
Web Screenlet for iOS

77.24 iOS Best Practices

When developing iOS projects with Liferay Screens, there are a few best practices that you should follow to
ensure your code is as clean and bug-free as possible. This tutorial lists these. Note that this tutorial doesn’t
cover Swift coding conventions for contributing to the Liferay Screens project on GitHub. Click here to see
these.

Naming Conventions

Using the naming conventions described here leads to consistency and a better understanding of the Screens
library. This makes working with your Screenlets much simpler.

Screenlet Folder

Your Screenlet folder’s name should indicate your Screenlet’s functionality. For example, Login Screenlet’s
folder is named LoginScreenlet.

If you havemultiple Screenlets that operate on the same entity, you can place them inside a folder named
for that entity. For example, Asset Display Screenlet and Asset List Screenlet both work with Liferay assets.
They’re therefore in the Screens library’s Asset folder.

Screenlets

Naming Screenlets properly is very important; they’re the main focus of Liferay Screens. Your Screenlet
should be namedwith its principal action first, followed by Screenlet. Its Screenlet class should also follow this
pattern. For example, Login Screenlet’s principal action is to log users into a Liferay instance. Its Screenlet
class is LoginScreenlet.

View Models

You should place View Models in your Screenlet’s root folder and name them after your Screenlet. For
example, Forgot Password Screenlet’s View Model is in the ForgotPasswordScreenlet folder and is named
ForgotPasswordViewModel.

Interactors

You should place your Screenlet’s Interactors in a folder named Interactors in your Screenlet’s root folder.
You should name each Interactor with its action first, followed by Interactor. For example, Rating Screenlet
has three Interactors in its Interactors folder:

• DeleteRatingInteractor: Deletes an asset’s ratings
• LoadRatingsInteractor: Loads an asset’s ratings
• UpdateRatingInteractor: Updates an asset’s ratings

969

https://github.com/liferay/liferay-screens/blob/master/ios/swift-style-guide.md
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/LoginScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/LoginScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Asset
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Auth/ForgotPasswordScreenlet
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Core/Rating/Interactors

Connectors

Name your Connectors with the same naming conventions as Interactors, replacing Interactor with Connec-
tor. If your Connector calls a Liferay service, precede Connector with Liferay. For example, the Connector
CommentAddLiferayConnector adds comments to an asset in a Liferay instance. A Connector that retrieves a
webpage’s title from any URL would be called GetWebsiteTitleConnector.

Themes

Place your Screenlet’sThemes in a folder namedThemes in your Screenlet’s root folder. If you’re creating a
group of similarly styledThemes for multiple Screenlets, however, then you can place them in a separate
Themes folder outside of your Screenlets’ root folders. This is what the Screens Library does for its Default and
Flat7Themes. The Default and Flat7 folders each contain similarly styledThemes for several Screenlets. Also
note that each Screenlet’sTheme is in its own folder. For example, Forgot Password Screenlet’s DefaultTheme
is in the folder Themes/Default/Auth/ForgotPasswordScreenlet. Note that the Auth folder is the Screenlet’s
module. Creating your Screenlets andThemes in modules isn’t required.

Recall that aTheme consists of an XIB file and a View class. Name these after your Screenlet, but with
View instead of Screenlet. The filenames should also be suffixed with _yourThemeName. For example, the XIB
file and View class for Forgot Password Screenlet’s Default theme are ForgotPasswordView_default.xib and
ForgotPasswordView_default.swift, respectively.

Avoid Hardcoded Elements

Using constants instead of hard coded elements is a simple way to avoid bugs. Constants reduce the like-
lihood that you’ll make a typo when referring to common elements. They also gather these elements in a
single location. For example, when you add an action to your Screenlet, each Screenlet action used as a
restorationIdentifier in the View class is defined as a constant in the Screenlet class. The Screenlet class’s
createInteractormethod then uses the constants to distinguish between the actions. If you instead typed
each action manually in both places, a typo could break your Screenlet and would be difficult to track down.
Defining the actions in one place via constants avoids this potentially maddening complication.

Screenlet attributes, like those listed in each Screenlet’s reference documentation, are another good
example of this. Although you can set these directly in Interface Builder, it’s better to set them via constants
in a plistfile. This puts all your Screenlets’ attributes in a single location that is also subject to version control.
For instructions on setting attributes in a plistfile, see the Configuring Communicationwith Liferay section
of the tutorial on preparing iOS projects for Liferay Screens.

To retrieve these values in your code, you can use the following LiferayServerContextmethods:

• propertyForKey: Get a property as an AnyObject

• numberPropertyForKey: Get a property as an NSNumber.
• longPropertyForKey: Get a property as an Int64.
• intPropertyForKey: Get a property as an Int.
• booleanPropertyForKey: Get a property as a Bool.
• datePropertyForKey: Get a property as an NSDate.
• stringPropertyForKey: Get a property as a String.

For example, the following code retrieves the galleryFolderId value and sets it to ImageGalleryScreenlet’s
folderId attribute:

@IBOutlet weak var imageGalleryScreenlet: ImageGalleryScreenlet? {

didSet {

970

https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Comment/Add/Connectors/CommentAddLiferayConnector.swift
https://github.com/liferay/liferay-screens/blob/master/ios/Framework/Core/Comment/Add/Connectors/CommentAddLiferayConnector.swift
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes
https://github.com/liferay/liferay-screens/tree/master/ios/Framework/Themes/Default/Auth/ForgotPasswordScreenlet

imageGalleryScreenlet?.delegate = self

imageGalleryScreenlet?.presentingViewController = self

imageGalleryScreenlet?.repositoryId = LiferayServerContext.groupId

imageGalleryScreenlet?.folderId = LiferayServerContext.longPropertyForKey("galleryFolderId")

}

}

Stay in Your Layer

When accessing variables that belong to other Screenlet components, you should avoid those outside your
current Screenlet layer. This achieves better decoupling between the layers, which tends to reduce bugs and
simplify maintenance. For an explanation of the layers in Liferay Screens, see the architecture tutorial. For
example, you shouldn’t directly access View variables from an Interactor. This Interactor’s startmethod gets
a View instance and accesses its title variable:

public class MyInteractor: Interactor {

override func start() -> Bool {

if let view = self.screenlet.screenletView as? MyView {

let title = view.title

...

}

}

}

Instead, you should pass the variable to the Interactor’s initializer. The Interactor now contains its own
title variable, set in its initializer:

public class MyInteractor: Interactor {

public let title: String

//MARK: Initializer

public init(screenlet: BaseScreenlet, title: String) {

self.title = title

super.init(screenlet: screenlet)

}

}

The Screenlet class’s createInteractor method calls this initializer when creating an instance of the
Interactor. Also note that the Screenlet’s ViewModel is used to retrieve the View’s title. As explained in the
tutorial Supporting MultipleThemes in Your Screenlet, a ViewModel serves as an abstraction layer for your
View, which lets you use differentThemes with a Screenlet:

public class MyScreenlet: BaseScreenlet {

...

override public func createInteractor(name name: String, sender: AnyObject?) -> Interactor? {

let interactor = MyInteractor(self, title: viewModel.title)

...

}

...

}

There are, however, a few places where you can break this rule (otherwise it wouldn’t be possible for layers
to interact):

• The Screenlet class’s createInteractormethod. To get the user’s input, this methodmust access the
View’s computed properties.

971

• The Interactor’s onSuccess closure in the Screenlet class. Here, youmust retrieve the Interactor’s result
object.

• When using a Connector, the Interactor’s completedConnector method. In this method, you must
retrieve the Connector’s result object.

• The Screenlet class’s ViewModel references. This is required for the Screenlet to communicate with
the View.

Related Topics

Creating iOS Screenlets
Creating iOS List Screenlets
Creating iOSThemes
Supporting MultipleThemes in Your Screenlet
Adding Screenlet Actions
Create and Use a Connector with Your Screenlet
Architecture of Liferay Screens for iOS

972

Chapter 78

Using Xamarin with Liferay Screens

Liferay Screens for Android and iOS lets you use Screenlets to develop native mobile apps on each platform.
Screenlets are complete visual components that you insert in your app to leverage Liferay DXP’s content and
services. As of Liferay Screens 3.0, you can use Screenlets with Xamarin to develop hybrid mobile apps for
Android and iOS.

The tutorials in this section show you how to develop hybrid mobile apps using Liferay Screens and
Xamarin. You’ll start by preparing your Xamarin project for Screens. You’ll then learn how to use Screenlets
in Xamarin, customize their appearance, andmore.

Note:These tutorials assume that you know how to use Xamarin. If you need assistance with Xamarin,
see its documentation.

78.1 Preparing Xamarin Projects for Liferay Screens
To use Liferay Screens with Xamarin, you must install Screens in your Xamarin project. You must then
configure your project to communicate with your Liferay DXP instance. Note that Liferay Screens for
Xamarin is released as a NuGet package hosted in NuGet.org.

Note: After installation, you must configure Liferay Screens to communicate with your Liferay DXP
instance. The last section in this tutorial shows you how to do this.

Requirements and Example Projects

Liferay Screens for Xamarin includes the bindings necessary to use all Screenlets included with Screens. The
following software is required:

• Visual Studio
• Android SDK 4.1 (API Level 16) or above
• Liferay CE Portal 7.0/7.1, or Liferay DXP 7.0
• Liferay Screens NuGet package

Also note that if you get confused or stuck while using Screens for Xamarin, the official Liferay Screens
repository contains two sample Xamarin projects that you can reference:

973

https://www.xamarin.com/
https://developer.xamarin.com/
https://docs.microsoft.com/en-us/nuget/what-is-nuget
https://www.nuget.org/packages/LiferayScreens
http://www.liferay.com/downloads/liferay-portal/available-releases
https://www.nuget.org/packages/LiferayScreens
https://github.com/liferay/liferay-screens
https://github.com/liferay/liferay-screens

• Showcase-Android: Anexample app forXamarin.Android containing all the currently available Screen-
lets.

• Showcase-iOS: An example app for Xamarin.iOS containing all the currently available Screenlets.

Securing JSON Web Services

Each Screenlet in Liferay Screens calls one or more of Liferay DXP’s JSONweb services, which are enabled
by default. The Screenlet reference documentation for Android and iOS lists the web services that each
Screenlet calls. To use a Screenlet, its web services must be enabled in the portal. It’s possible, however,
to disable the web services needed by Screenlets you’re not using. For instructions on this, see the tutorial
Configuring JSONWeb Services. You can also use Service Access Policies for more fine-grained control over
accessible services.

Install Liferay Screens in Xamarin Solutions

Follow these steps to install Liferay Screens in your Xamarin project:

1. Open your project in Visual Studio.

2. Right click your project’s Packages folder and then select Add packages….

3. Look for LiferayScreens and install the latest version.

4. Accept the license agreements for any dependencies. These are necessary to use Liferay Screens in
Xamarin.

5. Check your configuration one of these ways:

• Rebuildandexecute yourproject, and import aLiferayScreenspath (e.g., Com.Liferay.Mobile.Screens.Auth.Login).
• In your project, select References → From Packages and look for the LiferayScreens* file. Open that
file in the Assembly Browser. You should then see all the available Liferay Screens files.

Next, you’ll set up communication with Liferay DXP.

Configuring Communication with Liferay DXP

Before using Liferay Screens, you must configure your project to communicate with your Liferay DXP
instance. To do this, youmust provide your project with the following information:

• Your Liferay DXP instance’s ID.
• The ID of the Liferay DXP site your app needs to communicate with.
• Your Liferay DXP instance’s version.
• Any other information required by specific Screenlets.

Fortunately, this is straightforward. Do the following in your Xamarin projects:

• For Xamarin.Android, create a new file called server_context.xml in the Resources/values folder. Add
the following code to this file:

974

https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-Android
https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-iOS

<?xml version="1.0" encoding="utf-8"?>

<resources>

<!-- Change these values for your portal installation -->

<string name="liferay_server">http://10.0.2.2:8080</string>

<integer name="liferay_company_id">20116</integer>

<integer name="liferay_group_id">20143</integer>

<integer name="liferay_portal_version">70</integer>

</resources>

• For Xamarin.iOS, create a new file called liferay-server-context.plist in the Resources folder. Add
the following code to this file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>server</key>

<string>http://localhost:8080</string>

<key>version</key>

<integer>70</integer>

<key>companyId</key>

<real>20116</real>

<key>groupId</key>

<real>20143</real>

</dict>

</plist>

Make sure to change these values to match those of your Liferay DXP instance. The server address
http://10.0.2.2:8080 is suitable for testing with Android Studio’s emulator, because it corresponds to
localhost:8080 through the emulator. If you’re using the Genymotion emulator, you should, however, use
192.168.56.1 instead of localhost.

The liferay_company_id and companyId values are your Liferay DXP instance’s ID. You can find this in
your Liferay DXP instance atControl Panel →Configuration → Virtual Instances. The instance’s ID is in the Instance
ID column.

The liferay_group_id and groupId values are the ID of the site your app needs to communicate with. To
find this value, first go to the site in your Liferay DXP instance that you want your app to communicate with.
In the Site Administrationmenu, select Configuration → Site Settings. The site ID is listed at the top of the General
tab.

The liferay_portal_version and version value 70 tells Screens that it’s communicating with a Liferay CE
Portal 7.0 or Liferay DXP 7.0 instance. Here are the supported values and the portal versions they correspond
to:

• 71: Liferay CE Portal 7.1 or Liferay DXP 7.1
• 70: Liferay CE Portal 7.0 or Liferay DXP 7.0
• 62: Liferay Portal 6.2 CE/EE

You can also configure Screenlet properties in server_context.xml and liferay-server-context.plist.
Theexample server_context.xmlproperties listedbelow, liferay_recordset_idand liferay_recordset_fields,
enable DDL Form Screenlet and DDL List Screenlet to interact with a Liferay DXP instance’s DDLs:

<!-- Change these values for your portal installation -->

<integer name="liferay_recordset_id">20935</integer>

<string name="liferay_recordset_fields">Title</string>

975

For additional examples of these files, see the Showcase-Android and Showcase-iOS sample projects.
Super! Your Xamarin projects are ready for Liferay Screens.

Related Topics

Using Screenlets in Xamarin Apps
Using Views in Xamarin.Android
UsingThemes in Xamarin.iOS
Creating Xamarin Views andThemes
Liferay Screens for Xamarin Troubleshooting and FAQs

78.2 Using Screenlets in Xamarin Apps

You can start usingScreenlets once you’ve prepared yourXamarinproject to use LiferayScreens. TheScreenlet
reference documentation describes the available Screenlets:

• Screenlets in Liferay Screens for Android
• Screenlets in Liferay Screens for iOS

Using Screenlets is very straightforward. This tutorial shows you how to insert and configure Screenlets
in your Xamarin app. You’ll be a Screenlet master in no time!

Xamarin.iOS

Follow these steps to insert Screenlets in your Xamarin.iOS app:

1. Insert a view (UIView) in your storyboard (in Visual Studio’s iOS Designer or Xcode’s Interface Builder).
Note that if you’re editing an XIB file, youmust insert the view inside the XIB’s parent view.

2. Set the view’s class to the class of the Screenlet you want to use. For example, Login Screenlet’s class
is LoginScreenlet. If you’re using Xamarin Designer for iOS in Visual Studio, youmust also give the
view a name so you can refer to it in your view controller’s code.

For example, the following video shows the first two steps for inserting Login Screenlet in a Xamarin
Designer for iOS storyboard.

3. Configure the Screenlet’s behavior in your app by implementing the Screenlet’s delegate in your view
controller. To configure your app to listen for events the Screenlet triggers, implement the Screenlet’s
delegatemethods and register the view controller as the delegate. Make sure to annotate each delegate
methodwith [Export(...)]. This ensures themethod can be called fromObjective-C,which is required
for it to work in Screens. You should also set any Screenlet attributes you need. Each Liferay Screenlet’s
reference documentation lists its available attributes and delegate methods.

Note: In Liferay Screens for Xamarin, Screenlet delegates are prefixed

with an `I`. For example, Login Screenlet's delegate in native code is

`LoginScreenletDelegate`, while in Xamarin it's `ILoginScreenletDelegate`.

976

https://github.com/liferay/liferay-screens/blob/develop/xamarin/Samples/Showcase-Android/Resources/values/server_context.xml
https://github.com/liferay/liferay-screens/blob/develop/xamarin/Samples/Showcase-iOS/Resources/liferay-server-context.plist

For example, here's a view controller that implements Login Screenlet's

delegate, `ILoginScreenletDelegate`. Note that the `ViewDidLoad()` method

sets the Screenlet's `ThemeName` attribute (`ThemeName` is available for all

Screenlets via `BaseScreenlet` inheritance) and registers the view

controller as the delegate. This view controller also implements the

`OnLoginResponseUserAttributes` method, which is called upon successful

login. Also note this method's `[Export(...)]` annotation:

public partial class ViewController : UIViewController, ILoginScreenletDelegate

{

protected ViewController(IntPtr handle) : base(handle) {}

public override void ViewDidLoad()

{

base.ViewDidLoad();

// Set the Screenlet's attributes

this.loginScreenlet.ThemeName = "demo";

// Registers this view controller as the delegate

this.loginScreenlet.Delegate = this;

}

...

// Delegate methods

[Export("screenlet:onLoginResponseUserAttributes:")]

public virtual void OnLoginResponseUserAttributes(BaseScreenlet screenlet,

NSDictionary<NSString, NSObject> attributes)

{

...

}

}

See the Showcase-iOS app for more examples of view controllers that use Liferay’s Screenlets.

Xamarin.Android

Follow these steps to insert Screenlets in your Xamarin.Android app:

1. Open your app’s layout AXML file and insert the Screenlet’s XML in your activity or fragment layout.
For example, here’s Login Screenlet’s XML in an activity’s FrameLayout:

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

android:orientation="vertical"

android:layout_width="match_parent"

android:layout_height="match_parent">

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

app:basicAuthMethod="email"/>

</FrameLayout>

2. Set the Screenlet’s attributes. If it’s a Liferay Screenlet, refer to the Screenlet reference documentation
to learn the Screenlet’s required and supported attributes. This screenshot shows Login Screenlet’s
attributes being set:

977

https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-iOS/ViewController

Figure 78.1: You can set a Screenlet’s attributes via the app’s layout AXML file.

3. To configure your app to listen for events the Screenlet triggers, implement the Screenlet’s listener
interface in your activity or fragment class. Refer to the Screenlet’s reference documentation to learn
its listener interface. Then register that activity or fragment as the Screenlet’s listener.

Note: In Liferay Screens for Xamarin, Screenlet listeners are prefixed

with an `I`. For example, Login Screenlet's listener in native code is

`LoginListener`, while in Xamarin it's `ILoginListener`.

For example, the following activity class implements Login Screenlet's

`ILoginListener` interface, and registers itself as the Screenlet's

listener via `loginScreenlet.Listener = this`. Note that the listener

methods `OnLoginSuccess` and `OnLoginFailure` are called when login succeeds

and fails, respectively. In this case, these methods print simple toast

messages:

[Activity]

public class LoginActivity : Activity, ILoginListener

{

LoginScreenlet loginScreenlet;

protected override void OnCreate(Bundle savedInstanceState)

{

base.OnCreate(savedInstanceState);

SetContentView(Resource.Layout.LoginView);

loginScreenlet = (LoginScreenlet) FindViewById(Resource.Id.login_screenlet);

loginScreenlet.Listener = this;

}

// ILoginListener

public void OnLoginSuccess(User p0)

{

Toast.MakeText(this, "Login success: " + p0.Id, ToastLength.Short).Show();

}

public void OnLoginFailure(Java.Lang.Exception p0)

{

978

Android.Util.Log.Debug("LoginScreenlet", $"Login failed: {p0.Message}");

}

}

See the Showcase-Android app for more examples of activities that use Liferay’s Screenlets.

Related Topics

Preparing Xamarin Projects for Liferay Screens
Using Views in Xamarin.Android
UsingThemes in Xamarin.iOS
Creating Xamarin Views andThemes
Liferay Screens for Xamarin Troubleshooting and FAQs

78.3 Using Views in Xamarin.Android
You can use a Liferay Screens View to set a Screenlet’s look and feel independent of the Screenlet’s core
functionality. Liferay’s Screenlets come with several Views, and more are being developed by Liferay and the
community. The Screenlet reference documentation lists the Views available for each Screenlet included
with Screens. This tutorial shows you how to use Views in Xamarin.Android.

Views and View Sets

The concepts and components that comprise Views and View Sets in Liferay Screens for Xamarin are the
same as they are in Liferay Screens for Android. For a brief description of these components, see the section
on Views and View Sets in the general tutorial on using Views. For a detailed description of the View layer in
Liferay Screens, see the tutorial Architecture of Liferay Screens for Android.

Using Views

Follow these steps to use a View in Xamarin.Android:

1. Copy the layout of theView youwant to use from the Liferay Screens repository to your app’s res/layout
folder. Alternatively, you can create a new layout. The following links list the View layouts available in
each View Set:

• Default
• Material
• Westeros

For example, this is Login Screenlet’s Material View, login_material.xml:

<com.liferay.mobile.screens.viewsets.material.auth.login.LoginView

xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:liferay="http://schemas.android.com/apk/res-auto"

android:paddingLeft="40dp"

android:paddingRight="40dp"

style="@style/default_screenlet">

<LinearLayout

android:id="@+id/basic_authentication_login"

979

https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-Android/Activities
https://github.com/liferay/liferay-screens
https://github.com/liferay/liferay-screens/tree/master/android/library/src/main/res/layout
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/material/src/main/res/layout
https://github.com/liferay/liferay-screens/tree/master/android/viewsets/westeros/src/main/res/layout

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

<LinearLayout style="@style/material_row">

<ImageView

android:id="@+id/drawable_login"

android:contentDescription="@string/user_login_icon"

android:src="@drawable/material_email"

style="@style/material_icon"/>

<EditText

android:id="@+id/liferay_login"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:layout_marginTop="8dp"

android:inputType="text"

android:labelFor="@+id/liferay_login"/>

</LinearLayout>

<LinearLayout style="@style/material_row">

<ImageView

android:id="@+id/drawable_password"

android:contentDescription="@string/password_icon"

android:src="@drawable/material_https"

style="@style/material_icon"/>

<EditText

android:id="@+id/liferay_password"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:layout_marginTop="8dp"

android:hint="@string/password"

android:inputType="textPassword"/>

</LinearLayout>

<FrameLayout

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_marginTop="32dp">

<Button

android:id="@+id/liferay_login_button"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:layout_margin="10dp"

android:text="@string/sign_in"/>

<com.liferay.mobile.screens.base.ModalProgressBar

android:id="@+id/liferay_progress"

android:layout_width="wrap_content"

android:layout_height="match_parent"

android:layout_gravity="center_vertical|left"

android:layout_margin="10dp"

android:theme="@style/white_theme"

android:visibility="invisible"

liferay:actionViewId="@id/liferay_login_button"/>

</FrameLayout>

</LinearLayout>

<Button

android:id="@+id/oauth_authentication_login"

android:layout_width="match_parent"

android:layout_height="wrap_content"

980

android:text="@string/authorize_application"

android:visibility="gone"/>

</com.liferay.mobile.screens.viewsets.material.auth.login.LoginView>

2. When you insert the Screenlet’s XML in the layout of the activity or fragment you want the Screenlet to
appear in, set the liferay:layoutId attribute to the View’s layout. For example, here’s Login Screenlet’s
XML with liferay:layoutId set to @layout/login_material, which specifies Login Screenlet’s Material
View from the previous step:

<com.liferay.mobile.screens.auth.login.LoginScreenlet

android:id="@+id/login_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

liferay:layoutId="@layout/login_material"

/>

3. If the View you want to use is part of a View Set (e.g., the Material View is part of the Material View
Set), your app or activity’s thememust also inherit the theme that defines that View Set’s styles. For
example, the following code in an app’s Resources/values/Styles.xml tells AppTheme.NoActionBar to use
the Material View Set as its parent theme:

<resources>

<style name="AppTheme.NoActionBar" parent="material_theme">

<item name="colorPrimary">@color/colorPrimary</item>

<item name="colorPrimaryDark">@color/colorPrimaryDark</item>

<item name="colorAccent">@color/colorAccent</item>

<item name="windowActionBar">false</item>

<item name="windowNoTitle">true</item>

</style>

...

</resources>

To use the Default orWesteros View Set, inherit default_theme or westeros_theme, respectively.

Awesome! Now you know how to use Views to spruce up your Xamarin.Android Screenlets.

Related Topics

Preparing Xamarin Projects for Liferay Screens
Using Screenlets in Xamarin Apps
UsingThemes in Xamarin.iOS
Creating Xamarin Views andThemes
Liferay Screens for Xamarin Troubleshooting and FAQs

78.4 Using Themes in Xamarin.iOS

Themes in Xamarin.iOS are analogous to Views in Xamarin.Android. Like Views, Themes let you set a
Screenlet’s look and feel independent of the Screenlet’s core functionality. Liferay’s Screenlets come with
several Themes, and more are being developed by Liferay and the community. The Screenlet reference
documentation lists theThemes available for each Screenlet included with Screens. This tutorial shows you
how to useThemes in Xamarin.iOS.

981

Installing and Using Themes

Follow these steps to install and use aTheme:

1. If theTheme is packaged as a NuGet dependency, you can install it in your project via NuGet. To do so,
right-click your project’s Packages folder and then select Add packages…. Then search for theTheme and
install it. If theTheme isn’t available in NuGet, you can drag and drop theTheme’s folder directly into
your project.

2. To use the installedTheme, set its name to the Screenlet instance’s ThemeName property in your view con-
troller that implements theScreenlet’s delegate. All Screenlets inherit this property from BaseScreenlet.
For example, this code sets Login Screenlet’s ThemeName property to the Material Theme:

loginScreenlet.ThemeName = "material"

If you don’t set this property or enter an invalid or missing Theme, the Screenlet uses its Default
Theme. Each Screenlet’s availableThemes are listed in theThemes section of the Screenlet’s reference
documentation.

Great, that’s it! Now you know how to useThemes to dress up Screenlets in your Xamarin.iOS apps.

Related Topics

Preparing Xamarin Projects for Liferay Screens
Using Screenlets in Xamarin Apps
Using Views in Xamarin.Android
Creating Xamarin Views andThemes
Liferay Screens for Xamarin Troubleshooting and FAQs

78.5 Creating Xamarin Views and Themes

Recall that Views in Xamarin.Android andThemes in Xamarin.iOS are analogous components that let you
customize a Screenlet’s look and feel. You can use the Views andThemes provided by Liferay Screens, or
write your own. Writing your own lets you tailor a Screenlet’s UI to your exact specifications. This tutorial
shows you how to do this.

You can create Views and Themes from scratch, or use an existing one as a foundation. Views and
Themes include a View class for implementing the Screenlet UI’s behavior, a Screenlet class for notifying
listeners/delegates and invoking Interactors, and an AXML or XIB file for defining the UI.

There are also different types of Views andThemes. These are discussed in the tutorials on creating Views
andThemes in native code. You should read those tutorials before creating Views in Xamarin.Android or
Themes in Xamarin.iOS.

First, you’ll determine where to create your View orTheme.

Determining the Location of Your View or Theme

If you plan to reuse or redistribute your View orTheme, create it in a newXamarin project as amultiplatform
library for code sharing. Otherwise, create it in your app’s project.

982

https://developer.xamarin.com/guides/cross-platform/application_fundamentals/nuget-multiplatform-libraries/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/nuget-multiplatform-libraries/

Creating a Xamarin.Android View

Creating Views for Xamarin.Android is very similar to doing so in native code. You can create the following
View types:

• ThemedView: Creating aThemed View in Xamarin.Android is identical to doing so in native code. In
Xamarin.Android, however, only the Default View Set is available to extend.

• Child View: Creating a Child View in Xamarin.Android is identical to doing so in native code.

• Extended View: Creating an Extended View in Xamarin.Android differs from doing so in native code.
The next section shows you how.

Extended View

To create an Extended View in Xamarin.Android, follow the steps for creating an Extended View in native
code, but make sure your custom View class in the second step is the appropriate C# class. For example,
here’s the View class from the native code tutorial, converted to C#:

using System;

using Android.Content;

using Android.Util;

using Com.Liferay.Mobile.Screens.Viewsets.Defaultviews.Auth.Login;

namespace ShowcaseAndroid.CustomViews

{

public class LoginCheckPasswordView : LoginView

{

public LoginCheckPasswordView(Context context) : base(context) { }

public LoginCheckPasswordView(Context context, IAttributeSet attributes) : base(context, attributes) {}

public LoginCheckPasswordView(Context context, IAttributeSet attributes, int defaultStyle) : base(context, attributes, defaultStyle) {}

public override void OnClick(Android.Views.View view)

{

// compute password strength

if (PasswordIsStrong) {

base.OnClick(view);

}

else {

// Present user message

}

}

}

}

Awesome! Now you know how to create Extended Views in Xamarin.Android.

Creating a Xamarin.iOS Theme

CreatingThemes for Xamarin.iOS is very similar to doing so in native code. You can create the following
Theme types in Xamarin.iOS:

• ChildTheme: presents the same UI components as its parentTheme, but lets you change their appear-
ance and position.

• ExtendedTheme: inherits its parentTheme’s functionality and appearance, but lets you add to and
modify both.

First, you’ll learn how to create a ChildTheme in Xamarin.iOS.

983

Child Theme

ChildThemes leverage a parentTheme’s behavior andUI components, letting youmodify the appearance and
position of those components. Note that you can’t add or remove components, and the parentThememust
be a Full Theme. The ChildTheme presents visual changes with its own XIB file and inherits the parent’s
View class.

Follow these steps to create a ChildTheme in Xamarin.iOS:

1. In Visual Studio, create a new XIB file named after the Screenlet’s View class and your Theme. By
convention, an XIB file for a Screenlet with a View class named LoginView and aTheme named demo

should be named LoginView_demo. You can use content from the parentTheme’s XIBfile as a foundation
for your new XIB file. In your new XIB, you can change the UI components’ visual properties (e.g.,
their position and size). Youmustn’t change, however, the XIB file’s custom class, outlet connection,
or restorationIdentifier. These must match those of the parent XIB file.

2. In the View Controller, set the Screenlet’s ThemeName property to theTheme’s name. For example, this
sets Login Screenlet’s ThemeName property to the demoTheme from the first step:

this.loginScreenlet.ThemeName = "demo";

This causes Liferay Screens to look for the file LoginView_demo in all apps’ bundles. If that file doesn’t
exist, Screens uses the DefaultTheme instead (LoginView_default).

You can see an example of LoginView_demo in the Showcase-iOS demo app. Fantastic! Next, you’ll learn
how to create an ExtendedTheme.

Extended Theme

An ExtendedTheme inherits anotherTheme’s UI components and behavior, but lets you add to or alter both.
For example, you can extend the parentTheme’s View class to change the parentTheme’s behavior. You can
also create a new XIB file that contains new or modified UI components. An ExtendedTheme’s parent must
be a Full Theme.

Follow these steps to create an ExtendedTheme:

1. In Visual Studio, create a new XIB file named after the Screenlet’s View class and your Theme. By
convention, an XIB file for a Screenlet with a View class named LoginView and aTheme named demo

should be named LoginView_demo. You can use the parentTheme’s XIB file as a template. Make your
Theme’s UI changes by editing your XIB file in Visual Studio’s iOS Designer or Xcode’s Interface
Builder.

2. Create a new View class that extends the parentTheme’s View class. You should name this class after
the XIB file you just created. You can add to or override functionality of the parentTheme’s View class.
Here’s an example that extends the View class of Login Screenlet’s defaultTheme (LoginView_default).
Note that it changes the login button’s background color and disables the progress presenter:

using LiferayScreens;

using System;

namespace ShowcaseiOS

{

public partial class LoginView_demo : LoginView_default

{

984

https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-iOS/CustomViews

public LoginView_demo (IntPtr handle) : base (handle) { }

public override void OnCreated()

{

// You can change the login button color from code

this.LoginButton.BackgroundColor = UIKit.UIColor.DarkGray;

}

// If you don't want a progress presenter, create an empty one

public override IProgressPresenter CreateProgressPresenter()

{

return new NoneProgressPresenter();

}

}

}

3. Set your new View class as the custom class for yourTheme’s XIB file:

Figure 78.2: Set new View class in XIB Theme file.

Well done! Now you know how to create an ExtendedTheme.

Related Topics

Creating Android Views (native code)
Creating iOSThemes (native code)
Preparing Xamarin Projects for Liferay Screens
Using Screenlets in Xamarin Apps
Using Views in Xamarin.Android
UsingThemes in Xamarin.iOS
Liferay Screens for Xamarin Troubleshooting and FAQs

985

78.6 Liferay Screens for Xamarin Troubleshooting and FAQs

Even though Liferay developed Liferay Screens for Xamarin with great care, you may still run into some
common issues. This tutorial lists tips and solutions for these issues, as well as answers to common questions
about Screens for Xamarin.

General Troubleshooting

Before exploring specific issues, you should first make sure that you’ve installed the correct versions of Visual
Studio and theMono .NET framework. Each Screenlet’s reference documentation (available for Android and
iOS) lists these versions.

It may also help to investigate the sample Xamarin.Android and Xamarin.iOS apps developed by Liferay.
Both are good examples of how to use Screenlets, Views (Android), andThemes (iOS):

• Showcase-Android
• Showcase-iOS

If you get stuck at any point, you can post your question on our forum. We’re happy to assist you!

Common Issues

1. Build issues:

Running Clean in Visual Studio may not be enough. Close Visual Studio, remove all the bin and obj

folders that weren’t removed by the clean, then rebuild your project.

2. NSUnknownKeyException error in Xamarin.iOS:

This error occurs when Liferay Screens for iOS has a wrong module name in an XIB file. You must
solve this in Xcode, removing the module name in the XIB file’s CustomClass assignment in Interface
Builder.

3. The selector is already registered error in Xamarin.iOS:

This error occurs because one ormoremethods share the same name. To fix this, the binding file must
be updated. Please file a ticket in our Jira or post the issue on our forum.

4. Xamarin.iOS crashes unexpectedly without any error messages in the console:

Check the log file. OnMac OS, do this via the Console. OnWindows, use the Event Viewer. In the app,
youmust click User Reports and then look for your app’s name. Note that there may be more than one
log file.

5. The app doesn’t call delegate methods in Xamarin.iOS:

When you implement the delegate methods in your view controller, make sure to annotate them
with [Export(...)]. You must also set the view controller to the Screenlet instance’s Delegate

property. Here’s an example of such a view controller that implements Login Screenlet’s delegate,
ILoginScreenletDelegate:

public partial class ViewController : UIViewController, ILoginScreenletDelegate

{

protected ViewController(IntPtr handle) : base(handle) {}

public override void ViewDidLoad()

986

https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-Android
https://github.com/liferay/liferay-screens/tree/develop/xamarin/Samples/Showcase-Android
https://www.liferay.com/community/forums/-/message_boards/category/42706063
https://issues.liferay.com/browse/LMW/
https://www.liferay.com/community/forums/-/message_boards/category/42706063

{

base.ViewDidLoad();

this.loginScreenlet.Delegate = this;

}

[Export("screenlet:onLoginResponseUserAttributes:")]

public virtual void OnLoginResponseUserAttributes(BaseScreenlet screenlet,

NSDictionary<NSString, NSObject> attributes)

{

...

}

...

}

DataType Mapping

For a better understanding ofXamarin code and example apps, see this list to compare typemapping between
platforms. Youmust write Xamarin apps in C#, which has some differences compared to native code:

• Delegate (iOS) or listener (Android) classes:

These classes are important because they listen for a Screenlet’s events. In Liferay Screens for Xamarin,
Screenlet delegates and listeners are prefixed with an I. For example, Login Screenlet’s delegate in
native code is LoginScreenletDelegate,while inXamarin it’s ILoginScreenletDelegate. Similarly, Login
Screenlet’s listener in native code is LoginListener, while in Xamarin it’s ILoginListener. Use a similar
naming scheme when you define a class/interface pair where the class is a standard implementation
of the interface.

• Getter and setter methods:

To get or set a value in native code, you use its getter and setter methods. In Liferay Screens for
Xamarin, you should convert such methods to properties. If you have only one of these methods, you
can call the method itself. For example:

// If you implemented a setter and a getter, call the property

loginScreenlet.Listener = this;

// Otherwise, call the method

loginScreenlet.getListener();

• Pascal case convention:

C# code is usually written in Pascal case. However, you should use Camel case for protected instance
fields or parameters.

Language Equivalents between Swift and C

• Protocols in Swift are analogous to interfaces in C#:

// Swift

protocol DoThings {

func MyMethod() -> String

}

// C#

interface DoThings

987

{

string MyMethod();

}

• Initializers in Swift are analogous to constructors in C#:

// Swift

class MyClass {

var myVar : String = ""

init(myVar : String) {

self.myVar = myVar

}

}

var testing = MyClass(myVar: "Test")

// C#

class MyClass {

protected string myVar = "";

public MyClass() {}

public MyClass(string myVar) {

this.myVar = myVar;

}

}

var testing = new MyClass(myVar: "Test");

To learn more about language equivalents between Swift and C#, see this quick reference.

Language Equivalents between Java and C

To extend or implement a class or interface, Java requires that you use the extends or implements keywords.
C# doesn’t require this:

// Java

class Bird extends Vertebrate implements Actions {

...

}

// C#

class Bird : Vertebrate, Actions {

...

}

To learn more about language equivalents between Java and C#, see the C# for Java developers cheat
sheet.

FAQs

1. Do I have to use Visual Studio?
No, but we strongly recommend it. If you wish, however, you can use Xamarin Studio or Visual Studio
Code instead.

2. What’s the meaning of [Export(...)] above delegate method names?
In short, this attribute makes properties andmethods available in Objective-C. Xamarin’s documenta-
tion explains this attribute in detail.

988

https://download.microsoft.com/download/4/6/9/469501F4-5F6B-4E51-897C-9A216CFB30A3/SwiftCSharpPoster.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjbr8bgz_XXAhWMMyYKHeUPA5wQFgg7MAA&url=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2FD%2FE%2FE%2FDEE91FC0-7AA9-4F6E-9FFA-8658AA0FA080%2FCSharp%2520for%2520Java%2520Developers%2520-%2520Cheat%2520Sheet.pdf&usg=AOvVaw1i0RzOcmyol7LhD59k9cUE
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjbr8bgz_XXAhWMMyYKHeUPA5wQFgg7MAA&url=http%3A%2F%2Fdownload.microsoft.com%2Fdownload%2FD%2FE%2FE%2FDEE91FC0-7AA9-4F6E-9FFA-8658AA0FA080%2FCSharp%2520for%2520Java%2520Developers%2520-%2520Cheat%2520Sheet.pdf&usg=AOvVaw1i0RzOcmyol7LhD59k9cUE
https://developer.xamarin.com/api/type/MonoTouch.Foundation.ExportAttribute/
https://developer.xamarin.com/api/type/MonoTouch.Foundation.ExportAttribute/

Related Topics

Preparing Xamarin Projects for Liferay Screens
Using Screenlets in Xamarin Apps
Using Views in Xamarin.Android
Creating Xamarin Views andThemes
UsingThemes in Xamarin.iOS

989

Chapter 79

Mobile SDK

Want to wield Liferay’s power in your mobile apps? Thanks to Liferay’s Mobile SDK, you can do just that.
The Liferay Mobile SDK provides a way to streamline consuming Liferay core web services, Liferay utilities,
and custom app web services. It’s a low-level layer that wraps Liferay JSON web services, making them
easy to call in native mobile apps. It takes care of authentication, makes HTTP requests (synchronously
or asynchronously), parses JSON results, and handles server-side exceptions so you can concentrate on
using the services in your app. The Liferay Mobile SDK bridges the gap between your native app and Liferay
services. The official project page gives you access to the SDK releases, provides the latest SDK news, and
has forums for you to engage in mobile app development discussions. The Liferay Mobile SDK is available as
separate downloads for Android and iOS.

There are two different types of Mobile SDKs that you need to add to your app’s project, depending on
the remote services you need to call. Liferay’s prebuilt Mobile SDK includes the classes required to construct
remote service calls in general. It also contains the classes required to call the specific remote services of
Liferay’s core portlets. Core portlets are included with every Liferay installation (these are also referred to
as out-of-the-box or built-in portlets). However, you need to build an additional Mobile SDK if you want
to leverage your custom portlet’s remote services. Once built, this Mobile SDK contains only the classes
required to call those services. Therefore, youmust install it in your app alongside Liferay’s prebuilt Mobile
SDK to leverage your custom portlet’s remote services.

Note that Liferay also provides Liferay Screens for constructing mobile apps that connect to Liferay.
Screens uses components called screenlets to leverage and abstract the Mobile SDK’s low-level service calls.
However, if there’s not a screenlet for your use case, or you need more control over the service call, then you
may want to use theMobile SDK directly. You should read the Screens tutorials in addition to theMobile
SDK tutorials here to decide which better fits your needs.

This section’s tutorials cover using the Mobile SDK in Android and iOS app development. The following
tutorials introduce these topics and are followed by in-depth tutorials on each:

• Creating Android Apps that Use the Mobile SDK
• Creating iOS Apps that Use the Mobile SDK

In addition, the following tutorial covers building Mobile SDKs to support your custom portlet services:

• BuildingMobile SDKs

Fasten your seatbelt–it’s time to gomobile with Liferay’s Mobile SDK!

991

https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview
https://www.liferay.com/products/liferay-screens

Figure 79.1: Liferay’s Mobile SDK enables your native app to communicate with Liferay.

992

Related Topics:
Android Apps with Liferay Screens
iOS Apps with Liferay Screens
BuildingMobile SDKs

79.1 Creating Android Apps that Use the Mobile SDK
TheLiferayMobile SDK provides a way to streamline the consumption of Liferay DXP’s core web services and
utilities, as well as those of custom apps. It wraps Liferay DXP’s JSONweb services,making them easy to call
in native mobile apps. It handles authentication,makes HTTP requests (synchronously or asynchronously),
parses JSON results, and handles server-side exceptions so you can concentrate on using the services in your
app.

The Liferay Mobile SDK comes with the Liferay Android SDK.The official project page gives you access to
the SDK releases, provides the latest SDKnews, and has forums for you to engage inmobile app development
discussions. Once you configure the Mobile SDK in your app, you can invoke Liferay DXP services in it.

The Android Mobile SDK app development tutorials cover these topics:

• Making Liferay and Custom Portlet Services Available in Your Android App
• Invoking Liferay Services in Your Android App
• Invoking Services Asynchronously from Your Android App
• Sending Your Android App’s Requests Using Batch Processing

A great way to start is by setting up the Mobile SDK your Android project. This makes Liferay DXP’s
services available in your app.

Related Topics

Invoking Liferay Services in Your Android App
Creating iOS Apps that Use the Mobile SDK
BuildingMobile SDKs

79.2 Making Liferay and Custom Portlet Services Available in Your
Android App

You must install the correct Mobile SDKs in your Android project to call the remote services you need in
your app. You should first install Liferay’s prebuilt Mobile SDK.This is required for any app that leverages
Liferay. To call your custom portlet’s services, you also need to install the Mobile SDK that you built for it.
For instructions on building a Mobile SDK for your custom portlet, see the tutorial BuildingMobile SDKs.

This tutorial shows you how to install Liferay’s prebuilt Mobile SDK, and any custom built Mobile SDKs.
First, you’ll learn how to use Gradle or Maven to install Liferay’s prebuilt Mobile SDK. You’ll then learn how
to install a Mobile SDKmanually, which is required for installing any custom built Mobile SDKs. Now go
forth and fear no remote service!

Adding the SDK to Your Gradle Project

If your Android project is using Gradle as the build system, you can add Liferay’s prebuilt Mobile SDK as a
dependency to your project. All versions are available at the JCenter andMaven Central repositories. Both
repositories are listed here, but you only need to have one in your app:

993

https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview

Figure 79.2: Liferay’s Mobile SDK enables your native app to communicate with Liferay DXP.

994

repositories {

jcenter()

mavenCentral()

}

dependencies {

compile group: 'com.liferay.mobile', name: 'liferay-android-sdk', version: '7.0.+'

}

If you get errors such as Duplicate files copied in APK META-INF/NOTICE when building with Gradle,
add this to your build.gradle file:

android {

...

packagingOptions {

exclude 'META-INF/LICENSE'

exclude 'META-INF/NOTICE'

}

...

}

That’s all there is to it! When your project syncs with your Gradle files, Liferay’s prebuilt Mobile SDK
downloads to your project. The instructions for doing this with Maven are shown next.

Adding the SDK to Your Maven Project

You can also add the Liferay’s prebuilt Mobile SDK as a dependency to your project usingMaven. To do so,
add the following code to your pom.xml file:

<dependency>

<groupId>com.liferay.mobile</groupId>

<artifactId>liferay-android-sdk</artifactId>

<version>LATEST</version>

</dependency>

Awesome! However, what if you’re not using Gradle or Maven? What if you want to install a custom built
Mobile SDK? No problem! The next section shows you how to install a Mobile SDKmanually.

Manually Adding the SDK to Your Android Project

Use the following steps to manually set up aMobile SDK in your Android project:

1. To install Liferay’s prebuilt Mobile SDK, first download the latest version of liferay-android-sdk-
[version].jar. If you built your ownMobile SDK, find its JAR file on your machine. This is detailed in
the BuildingMobile SDKs tutorial.

2. Copy the JAR into your Android project’s /libs folder.

3. If you’re manually installing Liferay’s prebuilt Mobile SDK, you also need to download and copy these
dependencies to your Android Project’s /libs folder: httpclient-android-4.3.3.jar and httpmime-

4.3.3.jar.

4. Start using it!

Great! Now you know how to manually install a Mobile SDK in your Android apps.

995

https://github.com/liferay/liferay-mobile-sdk/releases/
http://search.maven.org/remotecontent?filepath=org/apache/httpcomponents/httpclient-android/4.3.3/httpclient-android-4.3.3.jar
http://search.maven.org/remotecontent?filepath=org/apache/httpcomponents/httpmime/4.3.3/httpmime-4.3.3.jar
http://search.maven.org/remotecontent?filepath=org/apache/httpcomponents/httpmime/4.3.3/httpmime-4.3.3.jar

Making Custom Portlet Services Available in Your Android App

If you want to invoke remote web services for your custom portlet, then you need to generate its client
libraries by building an AndroidMobile SDK yourself. Building an SDK is covered in the tutorial Building
Mobile SDKs. Once you build an SDK to a JAR file, you can install it using the manual installation steps
above (make sure to use the JAR file you built instead of Liferay’s prebuilt JAR file). Note that because your
custom built SDKs contain only the client libraries for calling your custom portlet services, youmust install
them alongside Liferay’s prebuilt SDK. Liferay’s prebuilt SDK contains additional classes that are required
to construct any remote service call.

Super! Now that the remote services you need are available in your app, you’re ready to call them.

Related Topics

Invoking Liferay Services in Your Android App
Creating iOS Apps that Use the Mobile SDK
BuildingMobile SDKs

79.3 Invoking Liferay Services in Your Android App

Once the appropriate Mobile SDKs are set up in your Android project, you can access and invoke Liferay DXP
services in your app. This tutorial takes you through the steps youmust follow to invoke these services:

1. Create a session.
2. Import the Liferay DXP services you need to call.
3. Create a service object and call the service methods.

Since some service calls require special treatment, this tutorial also shows you how to handle them. But
first, you’ll learn about securing Liferay DXP’s JSONweb services in the portal.

Securing JSON Web Services

TheLiferayMobile SDK calls Liferay DXP’s JSONweb services,which are enabled by default. Theweb services
you call via the Mobile SDKmust remain enabled for those calls to work. It’s possible, however, to disable
the web services that you don’t need to call. For instructions on this, see the tutorial Configuring JSONWeb
Services. You can also use Service Access Policies for more fine-grained control over accessible services.

Step 1: Create a Session

A session is a conversion state between the client and server, that consists of multiple requests and responses
between the two. You need a session to pass requests between your app and the Mobile SDK. In most cases,
sessions need to be created with user authentication. The imports and code required to create a session are
shown here:

import com.liferay.mobile.android.auth.basic.BasicAuthentication;

import com.liferay.mobile.android.service.Session;

import com.liferay.mobile.android.service.SessionImpl;

...

Session session = new SessionImpl("http://10.0.2.2:8080",

new BasicAuthentication("test@example.com", "test"));

996

The arguments to SessionImpl are used to create the session. The first parameter is the URL of the Liferay
instance you’re connecting to. If you’re running your apponAndroid Studio’s emulator, http://10.0.2.2:8080
is equivalent to http://localhost:8080. Be sure to replace this with the correct address for your server.

Warning: Be carefulwhenusing administrator credentials on a production Liferay instance, as you’ll have
permission to call any service. Make sure not tomodify data by accident. Of course, the default administrator
credentials should be disabled on a production Liferay instance.

The second parameter creates a new BasicAuthentication object containing the user’s credentials. De-
pending on the authenticationmethod used by your Liferay instance, you need to provide the user’s email
address, screen name, or user ID. You also need to provide the user’s password. The BasicAuthentication
object tells the session to use Basic Authentication to authenticate each service call. TheMobile SDK also
supports OAuth authentication, as long as the OAuth Provider portlet is deployed to your Liferay instance.
To learn how to use OAuth authentication with the Mobile SDK, see the OAuth sample app. Also, note that
the OAuth Provider portlet is only available to customers with an active Liferay subscription.

If you’re building a sign in view for your app, you can use the SignIn utility class to check if the credentials
given by the user are valid.

import com.liferay.mobile.android.auth.SignIn;

...

SignIn.signIn(session, new JSONObjectAsyncTaskCallback() {

@Override

public void onSuccess(JSONObject userJSONObject) {

System.out.println("Successful sign-in, user details: " + userJSONObject)

}

@Override

public void onFailure(Exception e) {

e.printStackTrace();

}

});

Note that the Mobile SDK doesn’t keep a persistent connection or session with the server. Each request
is sent with the user’s credentials (except when using OAuth). However, the SignIn class provides a way to
return user information after a successful sign-in.

Next, you’re shown how to create an unauthenticated session in the limited cases where this is possible.

Creating an Unauthenticated Session

In some cases, it’s possible to create a Session instance without user credentials. However, most Liferay
remote methods don’t accept unauthenticated remote calls. Making a call with an unauthenticated session
generates an Authentication access required exception in most cases.

Unauthenticated service calls only work if the remote method in the Liferay instance or your plugin
has the @AccessControlled annotation. This is shown here for the hypothetical class FooServiceImpl and its
method bar:

import com.liferay.portal.security.ac.AccessControlled;

...

public class FooServiceImpl extends FooServiceBaseImpl {

...

@AccessControlled(guestAccessEnabled = true)

public void bar() { ... }

...

997

https://github.com/brunofarache/liferay-android-sdk-oauth

Tomake such a call, you need to use the constructor that accepts the server URL only:

Session session = new SessionImpl("http://10.0.2.2:8080");

Fantastic! Now that you have a session, you can use it to call Liferay’s services.

Step 2: Import the Liferay Services You Need

First, you should determine the Liferay services you need to call. You can find the available services at
http://localhost:8080/api/jsonws. Be sure to replace http://localhost:8080 in this URL with your server’s
address.

Add the imports for the services you need to call. For example, if you’re building a blogs app, you can
import BlogsEntryService:

import com.liferay.mobile.android.v62.blogsentry.BlogsEntryService;

Note that the Liferay version (.v62) is used in the package namespace. Since the Mobile SDK is built for a
specific Liferay version, service classes for different Liferay versions are separated by their package names.
In this example, the Mobile SDK classes use the .v62 package, which means this Mobile SDK is compatible
with Liferay 6.2. Mobile SDK classes compatible with Liferay 7.0 use the v7 package. This namespacing lets
your app support multiple Liferay versions.

Step 3: Create a Service Object and Call its Service Methods

Once you have a session and the required imports, you’re ready to make the service call. This is done by
creating a service object for the service you want to call, and then calling its service methods. For example, if
you’re creating a blogs app, you need to use BlogsEntryService to get all the blogs entries from a site. This is
demonstrated by the following code:

BlogsEntryService service = new BlogsEntryService(session);

JSONArray jsonArray = service.getGroupEntries(10184, 0, 0, -1, -1);

This fetches all blog entries from the Guest site. In this example, the Guest site’s groupId is 10184. Note
that many service methods require groupId as a parameter. You can get the user’s groups by calling the
getUserSites()method from GroupService.

Service method return types can be void, String, JSONArray, or JSONObject. Primitive type wrappers can
be Boolean, Integer, Long, or Double.

This BlogsEntryService call is a basic example of a synchronous service call; the method only returns
after the request finishes. However, Android doesn’t allow network communication from an app’s main UI
thread. Service calls issued from the main UI thread need need to be asynchronous. For instructions on
doing this, see the tutorial Invoking Services Asynchronously from Your Android App.

Great! Nowyou’re familiarwith the basics of accessing Liferay services through theMobile SDK.However,
there are some special cases you may run into whenmaking service calls from your app. These are discussed
in the following sections.

998

http://localhost:8080/api/jsonws

Non-Primitive Arguments

There are some special cases in which a service method’s arguments aren’t primitives. In these cases, you
should use JSONObjectWrapper. For example:

JSONObjectWrapper wrapper = new JSONObjectWrapper(new JSONObject());

Youmust pass a JSON containing the object properties and their values. On the server side, your object
is instantiated and setters for each property are called with the values from the JSON you passed.

There are other cases in which service methods require interfaces or abstract classes as arguments.
Since it’s impossible for the SDK to guess which implementation you want to use, you must initialize
JSONObjectWrapperwith the class name. For example:

JSONObjectWrapper wrapper = new JSONObjectWrapper(className, new JSONObject());

The server looks for the class name in its classpath and instantiates the object for you. It then calls setters,
as in the previous example. The abstract class OrderByComparator is a good example of this. This is discussed
next.

OrderByComparator

On the server side, OrderByComparator is an abstract class. Youmust therefore pass the name of a class that
implements it. For example:

String className = "com.liferay.portlet.bookmarks.util.comparator.EntryNameComparator";

JSONObjectWrapper orderByComparator = new JSONObjectWrapper(className, new JSONObject());

If the service you’re calling accepts null for a comparator argument, pass null to the service call.
You may want to set the ascending property for a comparator. Unfortunately, as of Liferay 6.2, most

Liferay OrderByComparator implementations don’t have a setter for this property and it isn’t possible to
set from the Mobile SDK. Future Liferay versions may address this. However, you may have a custom
OrderByComparator that has a setter for ascending. In this case, you can use the following code:

String className = "com.example.MyOrderByComparator";

JSONObject jsonObject = new JSONObject();

jsonObject.put("ascending", true);

JSONObjectWrapper orderByComparator = new JSONObjectWrapper(className, jsonObject);

For more examples, see the test case OrderByComparatorTest.java.

ServiceContext

Another non-primitive argument is ServiceContext. It requires special attention becausemost Liferay service
methods require it. However, you aren’t required to pass it to the SDK; you can pass null instead. The server
then creates a ServiceContext instance for you, using default values.

If you need to set properties for ServiceContext, you can do so by adding them to a new JSONObject and
then passing it as the ServiceContext argument:

JSONObject jsonObject = new JSONObject();

jsonObject.put("addGroupPermissions", true);

jsonObject.put("addGuestPermissions", true);

JSONObjectWrapper serviceContext = new JSONObjectWrapper(jsonObject);

For more examples, see the test case ServiceContextTest.java.

999

https://github.com/liferay/liferay-mobile-sdk/blob/master/android/src/test/java/com/liferay/mobile/android/OrderByComparatorTest.java
https://github.com/liferay/liferay-mobile-sdk/blob/master/android/src/test/java/com/liferay/mobile/android/ServiceContextTest.java

Binaries

Some Liferay services require argument types such as byte arrays (byte[]) and Files (java.io.File).
The Mobile SDK converts byte arrays to strings before sending the POST request. For example,

"hello".getBytes("UTF-8") becomes a JSON array such as "[104,101,108,108,111]". TheMobile SDK does
this for you so you don’t have worry about it; you only need to pass the byte array to the method.

However, you need to be careful when using such methods. This is because you’re allocating memory for
the whole byte array, which may cause memory issues if the content is large.

Other Liferay service methods require java.io.File as an argument. In these cases, the Mobile SDK
requires InputStreamBody instead. To accomodate this, you need to create an InputStream and pass it to the
InputStreamBody constructor, along with the file’s mime type and name. For example:

InputStream is = context.getAssets().open("file.png");

InputStreamBody file = new InputStreamBody(is, "image/png", "file.png");

TheMobile SDK sends amultipart form request to the Liferay instance. On the server side, a File instance
is created and sent to the service method you’re calling.

It’s also possible to cancel or monitor service calls that upload data to Liferay. Every service that uploads
data returns an AsyncTask instance. You can use it to cancel the upload if needed. If want to listen for upload
progress to create a progress bar, you can create an UploadProgressAsyncTaskCallback callback and set it
to the current Session object. Its onProgressmethod is called for each byte chunk sent. It passes the total
number of uploaded bytes so far. For example:

session.setCallback(

new UploadProgressAsyncTaskCallback<JSONObject>() {

(...)

public void onProgress(int totalBytes) {

// This method will be called for each byte chunk sent.

// The totalBytes argument will contain the total number

// of uploaded bytes, from 0 to the total size of the

// request.

}

(...)

}

);

For more examples on this subject, see the addFileEntry*methods in DLAppServiceTest.java

As you can see, the Mobile SDK does a great deal of work for you even when special service method
arguments are required.

Related Topics

Invoking Services Asynchronously from Your Android App
BuildingMobile SDKs
Creating iOS Apps that Use the Mobile SDK

79.4 Invoking Services Asynchronously from Your Android App
Androiddoesn’t allow synchronousHTTP requests to bemade from themainUI thread. You canuseAndroid’s
AsyncTask tomake synchronous requests from threads other than themainUI thread. If you don’t want to use

1000

https://github.com/liferay/liferay-mobile-sdk/blob/master/android/src/test/java/com/liferay/mobile/android/DLAppServiceTest.java
http://developer.android.com/reference/android/os/AsyncTask.html

AsyncTask, you canmake asynchronous requests through the Mobile SDK. To do so, you need to implement
and instantiate a callback class, and then set it to the session. When the Mobile SDKmakes your service
calls for that session, it thenmakes them asynchronously. To make synchronous calls again, set null as the
session’s callback.

With the following steps, this tutorial shows you how to implement asynchronous requests in your
Android app:

1. Implement and instantiate your callback class.
2. Set the callback on the session.
3. Call Liferay services.

Now go ahead and get started!

Implementing and Instantiating Your Callback Class

Before implementing and instantiating your callback class, you should add the required imports. The imports
you add depend on the return type of the service method you’re calling. For example, if you need to call the
service method getGroupEntries to retrieve blog entries from a site’s Blogs portlet, you need to import the
Mobile SDK’s AsyncTaskCallback and JSONArrayAsyncTaskCallback:

import com.liferay.mobile.android.task.callback.AsyncTaskCallback;

import com.liferay.mobile.android.task.callback.typed.JSONArrayAsyncTaskCallback;

This is because the getGroupEntries returns a JSONArray. There are multiple AsyncTaskCallback imple-
mentations, one for each method return type:

• JSONObjectAsyncTaskCallback

• JSONArrayAsyncTackCallback

• StringAsyncTaskCallback

• BooleanAsyncTaskCallback

• IntegerAsyncTaskCallback

• LongAsyncTaskCallback

• DoubleAsyncTaskCallback

It’s also possible to use a generic AsyncTaskCallback implementation called GenericAsyncTaskCallback.
To do so, youmust implement a transformmethod and handle JSON parsing yourself.

If you still don’t want to use any of these callbacks, you can implement AsyncTaskCallback directly. How-
ever, you should be careful when doing so. You should always get the first element of the JSONArray passed as
a parameter to the onPostExecute(JSONArray jsonArray)method (for example, jsonArray.get(0)).

Next, implement and instantiate your callback class. When implementing your callback class, you need
to implement its onFailure and onSuccessmethods. These methods respectivley determine what your app
does when the request fails or succeeds. The onFailure()method is called if an exception occurs during the
request. This could be triggered by a connection exception (e.g., a request timeout) or a ServerException. If
a ServerException occurs, it’s because something went wrong on the server side. For example, if you pass
a groupId that doesn’t exist, the Liferay instance complains about it, and the Mobile SDK wraps the error
message with ServerException.

The onSuccessmethod is called on the main UI thread after the request finishes. Since the request is
asynchronous, the service call immediately returns a null object. The service delivers the service’s real return
value to the callback’s onSuccess()method, instead.

Example code is shown here for AsyncTaskCallback and JSONArrayAsyncTaskCallback:

1001

AsyncTaskCallback callback = new JSONArrayAsyncTaskCallback() {

public void onFailure(Exception exception) {

// Implement exception handling code

}

public void onSuccess(JSONArray result) {

// Called after request has finished successfully

}

};

Now that you have your callback class, you can set it to the session.

Setting the Callback to the Session

Once you’ve implemented and instantiated your callback class, you’re ready to set it to the session. If you
haven’t created a session yet, do so now. The tutorial Invoking Liferay Services in Your Android App shows
you how to create a session. Now you’re ready to set the callback to the session. For example, this is done
here for AsyncTaskCallback:

session.setCallback(callback);

Pretty simple! Now you’re ready to make the service call.

Making the Service Call

Last but certainly not least, make the service call. This is done the same as calling any other service: create
a service object from the session and use it to make the service call. This is also described in the tutorial
Invoking Liferay Services in Your Android App. An example service call that gets all the blog entries from a
site’s Blogs portlet is shown here:

service.getGroupEntries(10184, 0, 0, -1, -1);

The example code from the above sections is shown together here:

import com.liferay.mobile.android.task.callback.AsyncTaskCallback;

import com.liferay.mobile.android.task.callback.typed.JSONArrayAsyncTaskCallback;

...

AsyncTaskCallback callback = new JSONArrayAsyncTaskCallback() {

public void onFailure(Exception exception) {

// Implement exception handling code

}

public void onSuccess(JSONArray result) {

// Called after request has finished successfully

}

};

// create a session first

session.setCallback(callback);

// create a service object first

service.getGroupEntries(10184, 0, 0, -1, -1);

Great! Now you know how to invoke services asynchronously from your Android app.

1002

Related Topics

Creating iOS Apps that Use the Mobile SDK
BuildingMobile SDKs

79.5 Sending Your Android App's Requests Using Batch Processing

TheMobile SDK also allows sending requests in batch. This can bemuchmore efficient than sending separate
requests. For example, suppose you want to delete ten blog entries in a site’s Blogs portlet at the same time.
Instead of making a request for each deletion, you can create a batch of calls and send them all together.

This tutorial shows you how to implement batch processing for your Android app. It’s assumed that you
already know how to invoke Liferay services from your Android app. If you don’t, see the tutorial Invoking
Liferay Services in Your Android App. Now get ready to whip up a fresh batch of service calls!

Implementing Batch Processing

Making service calls in batch only requires two extra steps over making them one at a time:

• Create a batch session with BatchSessionImpl.
• Make the batch service calls with the invokemethod of BatchSessionImpl.

The rest of the steps are the same as making other service calls. You still need a service object, and you
still need to call its service methods. As an example, here’s a code snippet from an app that deletes a Blogs
portlet’s blog entries synchronously in batch:

import com.liferay.mobile.android.service.BatchSessionImpl;

BatchSessionImpl batch = new BatchSessionImpl(session);

BlogsEntryService service = new BlogsEntryService(batch);

service.deleteEntry(1);

service.deleteEntry(2);

service.deleteEntry(3);

JSONArray jsonArray = batch.invoke();

So what’s going on here? After the import, BatchSessionImpl is used with a pre-existing session to create
a batch session. Note that the BatchSessionImpl constructor takes either credentials or a session. Passing
a session to the constructor is useful when you already have a Session object and want to reuse the same
credentials. After creating the service object, several deleteEntry service calls are created. Since the service
object is created with a batch session, these calls aren’t made immediately; they return null instead. The
calls aren’t made until issued in batch by calling the invoke()method on the batch session object. It returns
a JSONArray containing the results for each service call. Since this example contains three deleteEntry calls,
the jsonArray contains three objects. The results are ordered the same as the service calls.

Great! But what if you want to make batch calls asynchronously? No problem! Set the callback as a
BatchAsyncTaskCallback instance:

import com.liferay.mobile.android.task.callback.BatchAsyncTaskCallback;

batch.setCallback(new BatchAsyncTaskCallback() {

public void onFailure(Exception exception) {

}

1003

public void onSuccess(JSONArray results) {

// The result is always a JSONArray

}

});

This is similar to the procedure for making asynchronous calls as described in the tutorial Invoking
Services Asynchronously from Your Android App. Awesome! Now you know how tomake efficient service
calls in batch!

Related Topics

Invoking Liferay Services in Your Android App
Invoking Services Asynchronously from Your Android App
Creating iOS Apps that Use the Mobile SDK

79.6 Creating iOS Apps that Use the Mobile SDK

TheLiferayMobile SDK provides a way to streamline the consumption of Liferay DXP’s core web services and
utilities, as well as those of custom apps. It wraps Liferay DXP’s JSONweb services,making them easy to call
in native mobile apps. It handles authentication,makes HTTP requests (synchronously or asynchronously),
parses JSON results, and handles server-side exceptions so you can concentrate on using the services in your
app.

The Liferay Mobile SDK comes with the Liferay iOS SDK.The official project page gives you access to the
SDK releases, provides the latest SDK news, and has forums for you to engage in mobile app development
discussions. Once you configure the Mobile SDK in your app, you can invoke Liferay DXP services in it.

The iOSMobile SDK app development tutorials cover these topics:

• Making Liferay and Custom Portlet Services Available in Your iOS App
• Invoking Liferay Services in Your iOS App
• Invoking Services Asynchronously from Your iOS App
• Sending Your iOS App’s Requests Using Batch Processing

A great way to start is by setting up theMobile SDK in your iOS project. Thismakes LiferayDXP’s services
available in your app.

Related Topics

Invoking Liferay Services in Your iOS App
BuildingMobile SDKs
Creating Android Apps that Use the Mobile SDK

79.7 Making Liferay and Custom Portlet Services Available in Your
iOS App

Your iOS app is no doubt pretty great, or at least off to a great start. Now youwant it to access Liferay services.
How do you accomplish this? Use Liferay’s iOSMobile SDK, of course! Youmust install the correct Mobile
SDKs in your iOS project to call the remote services you need in your app. You should first install Liferay’s
prebuilt Mobile SDK.This is required for any app that leverages Liferay. To call your custom portlet’s services,

1004

https://www.liferay.com/community/liferay-projects/liferay-mobile-sdk/overview

Figure 79.3: Liferay’s Mobile SDK enables your native app to communicate with Liferay DXP.

1005

you also need to install the Mobile SDK that you built for it. For instructions on building aMobile SDK for
your custom portlet, see the tutorial BuildingMobile SDKs.

This tutorial shows you how to install Liferay’s prebuilt Mobile SDK, and any custom built Mobile SDKs.
First, you’ll learn how to use CocoaPods to install Liferay’s prebuilt Mobile SDK. You’ll then learn how to
install a Mobile SDKmanually, which is required for installing any custom built Mobile SDKs. Now go forth
and fear no remote service!

Installing the SDK Using CocoaPods

Using CocoaPods is the simplest way to install Liferay’s prebuilt Mobile SDK.The steps for doing so are
shown here:

1. Make sure you have CocoaPods installed.

2. Create a file called Podfile in your project. Add the following line in this file:

pod 'Liferay-iOS-SDK'

3. Run pod install from your project’s directory. This downloads the latest version of the Liferay iOS
Mobile SDK and creates a .xcworkspace file. CocoaPods also downloads all the necessary dependencies
and configures your workspace. Note that youmay have to run pod repo update before running pod

install; this ensures you have the latest version of the CocoaPods repository on your machine.

4. Use the .xcworkspace file to open your project in Xcode.

5. If you’re importing dependencies as frameworks (use_frameworks! in your Podfile), you need to import
the LRMobileSDKmodule:

@import LRMobileSDK; // (Objective-C)

import LRMobileSDK // (Swift)

For more information on how CocoaPods works, see their documentation. Next, you’ll learn how to
install a Mobile SDKmanually.

Installing an iOS SDK Manually

You can also install Mobile SDKsmanually. This is required if you built one for your custom portlet’s services.
You can also install install Liferay’s prebuilt Mobile SDKmanually if you don’t want to use CocoaPods.

1. To install Liferay’s prebuilt Mobile SDK, first download the latest version of the Liferay iOSMobile
SDK ZIP file. If you built your ownMobile SDK, find its ZIP file on your machine. This is detailed in
the BuildingMobile SDKs tutorial.

2. Unzip the file into your Xcode project.

3. Within Xcode, right-click on your project and click Add Files to ‘Project Name’.

4. Add the core and v7 folders. Note the v7 folder’s name can change for each Liferay version. In this
example, the SDK is built for Liferay 7.0.

5. If you’re manually installing Liferay’s prebuilt Mobile SDK, it also requires AFNetworking 2.6.3. Add
its source code to your project.

Great! Now you know how to manually install a Mobile SDK in your iOS apps.

1006

https://cocoapods.org/
https://cocoapods.org/
http://guides.cocoapods.org/using/index.html
https://github.com/liferay/liferay-mobile-sdk/releases
https://github.com/AFNetworking/AFNetworking/releases/tag/2.6.3

Understanding Liferay and iOS Compatibility

Each Liferay Mobile SDK is designed to work with a specific Liferay version. The Liferay Mobile SDK version
number reflects this. The first two digits of eachMobile SDK’s version number correspond to the compatible
Liferay version. For example, a Mobile SDK version 6.2.* is compatible with Liferay 6.2, while a Mobile SDK
version 7.0.* is compatible with Liferay 7.0. Any digits after the first two correspond to the internal Liferay
Mobile SDK build.

TheMobile SDK’s service class names are also suffixed with the Mobile SDK’s version number. This lets
your app support several Liferay versions. For example, you can addMobile SDK versions 6.2.0.22 and 7.0.3

to the same project. TheMobile SDK service classes supporting Liferay versions 6.2 and 7.0 end in _v62.m

and _v7.m, respectively. To find out the Liferay versions your app connects to, use the [LRPortalVersionUtil
getPortalVersion:...] method.

The Liferay iOSMobile SDK is compatible with iOS versions 7.0 and up. Older iOS versions may work,
but compatibility is untested.

Making Custom Portlet Services Available in Your iOS App

If you want to invoke remote web services for your custom portlet, then you need to generate its client
libraries by building an iOSMobile SDK yourself. Building an SDK is covered in the tutorial Building Mobile
SDKs. Once you build an SDK to a ZIP file, you can install it using the manual installation steps above (make
sure to use the ZIP file you built instead of Liferay’s prebuilt ZIP file). Note that because your custom built
SDKs contain only the client libraries for calling your customportlet services, youmust install them alongside
Liferay’s prebuilt SDK. Liferay’s prebuilt SDK contains additional classes that are required to construct any
remote service call.

Related Topics

BuildingMobile SDKs
Creating Android Apps that Use the Mobile SDK

79.8 Invoking Liferay Services in Your iOS App

Once the appropriate Mobile SDKs are set up in your iOS project, you can access and invoke Liferay DXP
services in your app. This tutorial takes you through the steps youmust follow to invoke these services:

1. Create a session.
2. Import the Liferay DXP services you need to call.
3. Create a service object and call the service methods.

Since some service calls require special treatment, this tutorial also shows you how to handle them. Note
that the code snippets in this tutorial are written in Objective-C.

First, you’ll learn about securing Liferay DXP’s JSONweb services in the portal.

Securing JSON Web Services

TheLiferayMobile SDK calls Liferay DXP’s JSONweb services,which are enabled by default. Theweb services
you call via the Mobile SDKmust remain enabled for those calls to work. It’s possible, however, to disable
the web services that you don’t need to call. For instructions on this, see the tutorial Configuring JSONWeb
Services. You can also use Service Access Policies for more fine-grained control over accessible services.

1007

Step 1: Create a Session

A session is a conversion state between the client and server, consisting of multiple requests and responses
between the two. You need a session to pass requests between your app and the Mobile SDK. In most cases,
sessions need to be created with user authentication. The imports and code required to create a session are
shown here:

#import "LRBasicAuthentication.h"

#import "LRSession.h"

LRSession *session = [[LRSession alloc] initWithServer:@"http://localhost:8080"

authentication:[[LRBasicAuthentication alloc] initWithUsername:@"test@example.com" password:@"test"]];

The LRSession object is created with initializers specifying the Liferay instance to connect to and the
credentials of the user to authenticate. The initWithServer parameter sets the URL of the Liferay instance
you’re connecting to. In this case, the Liferay instance is running on http://localhost:8080. The iOSemulator
is also running on the samemachine. Next, the authentication parameter takes an LRBasicAuthentication

instance with the credentials of the user to authenticate. Depending on the authenticationmethod used
by your Liferay instance, you need to provide the user’s email address, screen name, or user ID to the
initWithUsername parameter. You also need to provide the user’s password to the password parameter.

Using LRBasicAuthentication tells the session to authenticate each service call with Basic Authentication.
TheMobile SDK also supports OAuth authentication, as long as the OAuth Provider app is deployed to your
Liferay DXP instance. To learn how to use OAuth authentication with the Mobile SDK, see the OAuth sample
app. Also, note that the OAuth Provider app is only available to customers with an active Liferay subscription.

Warning: Be careful when using administrator credentials on a production portal instance, as you’ll
have permission to call any service. Make sure not to modify data accidentally. Of course, the default
administrator credentials should be disabled on a production portal instance.

If you’re building a sign in view for your app, you can use the LRSignIn utility class to check if the
credentials given by the user are valid:

#import "LRSignIn.h"

[session

onSuccess:^(id result) {

user = result;

[monitor signal];

}

onFailure:^(NSError *e) {

error = e;

[monitor signal];

}

];

[LRSignIn signInWithSession:session callback:session.callback error:&error];

TheMobile SDK doesn’t keep a persistent connection or session with the server. Each request is sent
with the user’s credentials (except when using OAuth). However, the SignIn class provides a way to return
user information after a successful sign-in.

You can persist credentials with LRCredentialStorage. It safely saves the username and password in the
keychain:

[LRCredentialStorage storeCredentialForServer:@"http://localhost:8080"

username:@"test@example.com" password:@"test"];

1008

https://web.liferay.com/marketplace/-/mp/application/45261909
https://github.com/brunofarache/liferay-ios-sdk-oauth
https://github.com/brunofarache/liferay-ios-sdk-oauth

After credentials are stored, you can retrieve themwith:

NSURLCredential *credential = [LRCredentialStorage getCredential];

Alternatively, you can create an LRSession instance directly with:

LRSession *session = [LRCredentialStorage getSession];

For more examples of this, see CredentialStorageTest.m.
Next, you’re shown how to create an unauthenticated session in the limited cases where this is possible.

Creating an Unauthenticated Session

In some cases, it’s possible to create an LRSession instance without user credentials. However, most Liferay
remote methods don’t accept unauthenticated remote calls. Making a call with an unauthenticated session
generates an Authentication access required exception in most cases.

Unauthenticated service calls only work if the remote method in the Liferay instance or your plugin
has the @AccessControlled annotation. This is shown here for the hypothetical class FooServiceImpl and its
method bar:

import com.liferay.portal.security.ac.AccessControlled;

...

public class FooServiceImpl extends FooServiceBaseImpl {

...

@AccessControlled(guestAccessEnabled = true)

public void bar() { ... }

...

Tomake such a call, you need to use the constructor that accepts the server URL only:

LRSession *session = [[LRSession alloc] initWithServer:@"http://localhost:8080"];

Fantastic! Now that you have a session, you can use it to call Liferay’s services.

Step 2: Import the Service

First, you should determine the Liferay services you need to call. You can find the available services at
http://localhost:8080/api/jsonws. Be sure to replace http://localhost:8080 in this URL with your server’s
address.

Once you determine the services you need to call, add their imports. For example, if you’re building a
blogs app, you can import LRBlogsEntryService:

#import "LRBlogsEntryService_v62.h"

Note that the Liferay version (_v62) is used in the service class’s name. This corresponds to the Liferay
version it’s compatible with. In this example, _v62 is used, which means this Mobile SDK class is compatible
with Liferay 6.2. Mobile SDK classes compatible with Liferay 7.0 use _v7 instead. Because service class
names contain the Liferay version they’re compatible with, you can use several Mobile SDKs simultaneously
to support different Liferay versions in the same app.

1009

https://github.com/liferay/liferay-mobile-sdk/blob/ios-6.2.0.17/ios/Test/CredentialStorageTest.m
http://localhost:8080/api/jsonws

Step 3: Calling the Service

Once you have a session and have imported the service class, you’re ready to make the service call. This is
done by creating a service object for the service you want to call, and then calling its service methods. For
example, if you’re creating a blogs app, you need to use LRBlogsEntryService to get all the blogs entries from
a site. This is demonstrated by the following code.

LRBlogsEntryService_v62 *service = [[LRBlogsEntryService_v62 alloc] initWithSession:session];

NSError *error;

NSArray *entries = [service getGroupEntriesWithGroupId:10184 status:0 start:-1 end:-1 error:&error];

This fetches all blog entries from the Guest site. In this example, the Guest site’s groupId is 10184.
Note that many service methods require groupId as a parameter. You can get the user’s groups by calling
[LRGroupService_v62 getUserSites:&error].

Service method return types can be void, NSString, NSArray, NSDictionary, NSNumber, and BOOL.
This LRBlogsEntryService call is a basic example of a synchronous service call. The method in a syn-

chronous service call returns only after the request is finished.

Non-Primitive Arguments

There are some special cases in which servicemethod arguments aren’t primitives. In these cases, you should
use LRJSONObjectWrapper. For example:

LRJSONObjectWrapper *wrapper = [[LRJSONObjectWrapper alloc]

initWithJSONObject:[NSDictionary dictionary]];

Youmust pass a dictionary containing the object’s properties and their values. On the server side, your
object is instantiated and setters for each property are called with the values from the dictionary.

There are some other cases in which service methods require interfaces or abstract classes as arguments.
Since it’s impossible for the SDK to guess which implementation you want to use, you must initialize
LRJSONObjectWrapperwith the class name. For example:

LRJSONObjectWrapper *wrapper = [[LRJSONObjectWrapper alloc]

initWithClassName:@"com.example.MyClass" jsonObject:[NSDictionary dictionary]];

The server looks for the class name in its classpath and instantiates the object for you. It then calls setters,
as in the previous example. The abstract class OrderByComparator is a good example of this. This is discussed
next.

OrderByComparator

On the server side, OrderByComparator is an abstract class. Youmust therefore pass the name of a class that
implements it. For example:

NSString *className = @"com.liferay.portlet.bookmarks.util.comparator.EntryNameComparator";

LRJSONObjectWrapper *orderByComparator = [[LRJSONObjectWrapper alloc] initWithClassName:className jsonObject:[NSDictionary dictionary]];

If the service you’re calling accepts null for a comparator argument, pass nil to the service call.
You may want to set the ascending property for a comparator. Unfortunately, as of Liferay 6.2, most

Liferay OrderByComparator implementations don’t have a setter for this property and it isn’t possible to
set from the Mobile SDK. Future Liferay versions may address this. However, you may have a custom
OrderByComparator that has a setter for ascending. In this case, you can use the following code:

1010

NSString *className = @"com.example.MyOrderByComparator";

NSDictionary *jsonObject = @{

@"ascending": @(YES)

};

LRJSONObjectWrapper *orderByComparator = [[LRJSONObjectWrapper alloc]

initWithClassName:className jsonObject:jsonObject];

For more examples, see the test case OrderByComparatorTest.m.

ServiceContext

Another non-primitive argument is ServiceContext. It requires special attention becausemost Liferay service
methods require it. However, you aren’t required to pass it to the SDK; you can pass nil instead. The server
then creates a ServiceContext instance for you, using default values.

If you need to set properties for ServiceContext, you can do so by adding them to a new NSDictionary

and then passing it as the ServiceContext argument:

NSDictionary *jsonObject = @{

@"addGroupPermissions": @(YES),

@"addGuestPermissions": @(YES)

};

LRJSONObjectWrapper *serviceContext = [[LRJSONObjectWrapper alloc] initWithJSONObject:jsonObject];

For more examples, see the test case ServiceContextTest.m.

Binaries

Some Liferay services require binary argument types like NSData or LRUploadData. The Mobile SDK
converts NSData instances to NSString before sending the POST request. For example, [@"hello"

dataUsingEncoding:NSUTF8StringEncoding] becomes a JSON array such as "[104,101,108,108,111]". The
Mobile SDK does this for you, so you don’t have worry about it; you only need to pass the NSData instance to
the method.

However, you need to be careful when using such methods. This is because you’re allocating memory for
the whole NSData, which may cause memory issues if the content is large.

Other Liferay service methods require java.io.File as an argument. In these cases the Mobile SDK
requires LRUploadData instead. Here are two examples of creating LRUploadData instances:

LRUploadData *upload = [[LRUploadData alloc]

initWithData:data fileName:@"file.png" mimeType:@"image/png"];

LRUploadData *upload = [[LRUploadData alloc]

initWithInputStream:is length:length fileName:@"file.png" mimeType:@"image/png"];

Thefirst constructor accepts an NSData argument, while the second accepts NSInputStream. As you can
see, you also need to pass the file’s mime type and name. The length is the size in bytes of the content being
sent. The SDK sends a multipart form request to the Liferay instance. On the server side, a File instance is
created and sent to the service method you’re calling.

It’s also possible to monitor service calls that upload data to Liferay. If want to listen for upload progress
to create a progress bar, you can create a LRProgressDelegate delegate and set it to an LRUploadData object.
Its onProgressBytesmethod is called for each byte chunk sent. It passes the bytes that were sent, the total
number of bytes sent so far, and the total request size. For example:

1011

https://github.com/liferay/liferay-mobile-sdk/blob/ios-6.2.0.17/ios/Test/OrderByComparatorTest.m
https://github.com/liferay/liferay-mobile-sdk/blob/ios-6.2.0.17/ios/Test/ServiceContextTest.m

@interface ProgressDelegate : NSObject <LRProgressDelegate>

@end

@implementation ProgressDelegate

- (void)onProgressBytes:(NSUInteger)bytes sent:(long long)sent

total:(long long)total {

// bytes contains the byte values that were sent.

// sent will contain the total number of bytes sent.

// total will contain the total size of the request in bytes.

}

@end

For more examples of this, see the test case FileUploadTest.m.

Related Topics

BuildingMobile SDKs
Creating Android Apps that Use the Mobile SDK

79.9 Invoking Services Asynchronously from Your iOS App

Themain drawback of using synchronous requests from your app is that each request must terminate before
another can begin. If you’re sending a large number of synchronous requests, performance suffers as a
bottleneck forms while each one waits to be processed. Fortunately, Liferay’s iOS SDK allows asynchronous
HTTP requests. To do so, you need to set a callback to the session object. If you want to make synchronous
requests again, you can set the callback to nil.

With the following steps, this tutorial shows you how to implement asynchronous requests in your iOS
app:

1. Implement your callback class.
2. Instantiate your callback class and set it to the session.
3. Call Liferay services.

Objective-C is used in the code snippets that follow. Let the requesting begin!

Implementing Your Callback Class

To configure asynchronous requests, first create a class that conforms to the LRCallback protocol. When im-
plementing this callback class, you need to implement its onFailure and onSuccessmethods. These methods
respectively determine what your app does when the request fails or succeeds. If a server side exception or a
connection error occurs during the request, the onFailuremethod is called with an NSError instance that
contains information about the error. Note that the onSuccess result parameter doesn’t have a specific type.
When deciding what to cast it to, you need to check the type in the service method signature.

The example code here implements a callback class for an app that retrieves blog entries from a Blogs
portlet. The service method for this call is getGroupEntriesWithGroupId, which returns an NSArray instance.
The onSuccessmethod’s result parameter is therefore cast to this type:

1012

https://github.com/liferay/liferay-mobile-sdk/blob/ios-6.2.0.17/ios/Test/FileUploadTest.m

#import "LRCallback.h"

@interface BlogsEntriesCallback : NSObject <LRCallback>

@end

#import "BlogsEntriesCallback.h"

@implementation BlogsEntriesCallback

- (void)onFailure:(NSError *)error {

// Implement error handling code

}

- (void)onSuccess:(id)result {

// Called after request has finished successfully

NSArray *entries = (NSArray *)result;

}

@end

Awesome! Now you have a callback class that you can use with the session.

Set the Callback to the Session

Next, create an instance of this callback and set it to the session. If you haven’t created a session yet, do so
now. The tutorial Invoking Liferay Services in Your iOS App shows you how to create a session. Now you’re
ready to set the callback to the session. For example, this is done here for BlogsEntriesCallback:

BlogsEntriesCallback *callback = [[BlogsEntriesCallback alloc] init];

[session setCallback:callback];

Pretty simple! Now you’re ready to make the service call.

Making the Service Call

Last but certainly not least, make the service call. This is done the same as calling any other service: create
a service object from the session and use it to make the service call. This is also described in the tutorial
Invoking Liferay Services in Your iOS App. Here, an example service call that gets all the blog entries from a
site’s Blogs portlet is shown:

[service getGroupEntriesWithGroupId:10184 status:0 start:-1 end:-1 error:&error];

Since the request is asynchronous, getGroupEntriesWithGroupId immediately returns nil. Once the
request finishes successfully, the onSuccessmethod of your callback is invoked with the results on the main
UI thread.

Great! Now you know how to make asynchronous requests in your iOS apps. However, there’s another
way to accomplish the same thing. This is discussed next.

Using Blocks as Callbacks

Instead of implementing a separate callback class, you can use anObjective-C block as a callback. An example
of this is shown here for an asynchronous call that retrieves a user’s sites. Note that this includes all the code
required to make the call:

1013

LRSession *session = [[LRSession alloc]

initWithServer:@"http://localhost:8080" username:@"test@example.com" password:@"test"];

[session

onSuccess:^(id result) {

// Called after request has finished successfully

}

onFailure:^(NSError *e) {

// Implement error handling code

}

];

LRGroupService_v62 *service = [[LRGroupService_v62 alloc] initWithSession:session];

NSError *error;

[service getUserSites:&error];

When using a block as a callback, take care not to also set an LRCallback instance to the session. If you do,
it gets overridden. Otherwise, support for blocks works the same way as described in the previous sections.

Super! Now you know two different ways to make asynchronous service requests in your iOS apps.

Related Topics

Invoking Liferay Services in Your iOS App
Creating Android Apps that Use the Mobile SDK

79.10 Sending Your iOS App's Requests Using Batch Processing

TheMobile SDK also allows sending requests in batch. This can bemuchmore efficient than sending separate
requests. For example, suppose you want to delete ten blog entries in a site’s Blogs portlet at the same time.
Instead of making a request for each deletion, you can create a batch of calls and send them all together.

This tutorial shows you how to implement batch processing for your iOS app. It’s assumed that you
already know how to invoke Liferay services from your iOS app. If you don’t, see the tutorial Invoking Liferay
Services in Your iOS App. Objective-C is used in the code snippets that follow. Now it’s time to whip up a
fresh batch of requests!

Implementing Batch Processing

Making service calls in batch only requires two extra steps over making them one at a time:

• Create a batch session with LRBatchSession.
• Make the batch service calls with the invokemethod of LRBatchSession.

The rest of the steps are the same as making other service calls. You still need a service object, and you
still need to call its service methods. As an example, here’s a code snippet from an app that deletes a Blogs
portlet’s blog entries synchronously in batch:

#import "LRBatchSession.h"

LRBatchSession *batch = [[LRBatchSession alloc]

initWithServer:@"http://localhost:8080" username:@"test@example.com" password:@"test"];

LRBlogsEntryService_v62 *service = [[LRBlogsEntryService_v62 alloc] initWithSession:batch];

NSError *error;

[service deleteEntryWithEntryId:1 error:&error];

[service deleteEntryWithEntryId:2 error:&error];

1014

[service deleteEntryWithEntryId:3 error:&error];

NSArray *entries = [batch invoke:&error];

So what’s going on here? After the import, LRBatchSession is used with a Liferay instance’s URL and a
user’s credentials to create abatch session. Youcanalternatively pass apre-existing session to the constructor.
This is useful when you already have a session object andwant to reuse the same credentials. Next, the service
calls aremade as usual (in this case, deleteEntryWithEntryId). With asynchronous calls, thesemethods return
nil right away. Finally, call [batch invoke:&error]. This returns an NSArray containing the results for each
service call (the return type for batch calls is always NSArray). Since there are three deleteEntryWithEntryId
calls, the entries array contains three objects. The order of the results matches the order of the service calls.

If you want to make batch calls asynchronously, set the callback to the session as usual.

[batch setCallback:callback];

Great! Now you know how to utilize batch processing to speed up your app’s requests.

Related Topics

Invoking Liferay Services in Your iOS App
Creating Android Apps that Use the Mobile SDK

79.11 Building Mobile SDKs

The Liferay Mobile SDK lets you connect your Android and iOS apps to a Liferay DXP instance. By accessing
built-in portal services through Liferay’s prebuilt Mobile SDK, your apps can access the out-of-the-box
functionality in a Liferay DXP instance. But what if you want to call custom services that belong to a custom
portlet? No problem! In this case, you need to build your ownMobile SDK that can call these custom portlet
services.

Note that when you build a Mobile SDK for a portlet, it contains only the classes needed to call that
portlet’s remote services. You still need to install Liferay’s prebuilt Mobile SDK in your app. It contains the
framework required to construct remote service calls in general.

The Liferay Mobile SDK project contains a Mobile SDK Builder that generates a customMobile SDK for
the Android and iOS platforms. TheMobile SDK Builder does this by generating client libraries that let your
native mobile apps invoke a custom portlet’s remote web services. Think of the Mobile SDK Builder as a
Service Builder on the client side.

This tutorial covers how to build a customMobile SDK for Android and iOS. You’ll begin by making sure
the remote services are configured for any custom portlets you have.

Configuring Your Portlet's Remote Services

For the Mobile SDK Builder to discover a portlet’s remote services, the services must be available and
accompanied by a Web Service Deployment Descriptor (WSDD). For instructions on creating a portlet’s
remote services and building its WSDD, click here.

Next, you’ll download the Liferay Mobile SDK’s source code.

1015

Downloading the Liferay Mobile SDK

To build a Mobile SDK for your custom portlet’s services, you need to have the Liferay Mobile SDK’s source
code on your local machine. This code also contains theMobile SDK Builder. You can get this code by cloning
the Mobile SDK project via Git, or by downloading it from GitHub. To clone the Mobile SDK project with Git,
open a terminal and navigate to the directory on your machine in which you want to put the Mobile SDK.
Then run this command:

git clone git@github.com:liferay/liferay-mobile-sdk.git

Since the Mobile SDK changes frequently, you should check out the latest stable release for your chosen
mobile platform (Android or iOS). Click here to see the list of available stable releases. Stable releases
correspond to tags in GitHub that begin with the mobile platform and end with the Liferay Mobile SDK
version. For example, the android-7.0.6 tag corresponds to version 7.0.6 of the Liferay Mobile SDK for
Android. To check out this tag in a new branch of the same name, you can use this command:

git checkout tags/android-7.0.6 -b android-7.0.6

Alternatively, you can download the ZIP or TAR.GZ file listed under each tag on GitHub.
Now you’re ready to build the Mobile SDK!

Building a Liferay Mobile SDK

After you’ve downloaded the Mobile SDK’s source code, you must build the module in which you’ll build your
custom portlet’s Mobile SDK.TheMobile SDK Builder comes with a command line wizard that helps you
build this module. To start the wizard, run the following command in the Mobile SDK source code’s root
folder:

./gradlew createModule

This starts the wizard with the most commonly required properties it needs to generate code for your
portlet. If you needmore control over these properties, run the same command with the all argument:

./gradlew createModule -P=all

Thewizard should look similar to this screenshot. Note that default values are in square brackets with
blue text:

So what properties are available, and what do they do? Fantastic question! You can set the following
properties during or after running createModule. If you want or need to set these properties after running
createModule, you can do so in your module’s gradle.properties file. The values in parentheses are the keys
used in gradle.properties:

• Context (context): Your portlet’s web context. For example, if you’re generating a Mobile SDK for
Liferay DXP’s Calendar portlet, which is generally deployed to the calendar context, then you should
set the context value to calendar. If there are no services available at the specified context, youmay
have forgotten to generate your portlet’s WSDD.

• Platforms (platforms): The platforms to build the Mobile SDK for. By default, you can generate code
for Android and iOS (android,ios).

• Server URL (url): Your Liferay DXP instance’s URL. To discover your services, theMobile SDK Builder
tries to connect to this instance at the specified context.

1016

https://github.com/liferay/liferay-mobile-sdk
https://github.com/liferay/liferay-mobile-sdk
https://github.com/liferay/liferay-mobile-sdk/releases

Figure 79.4: The Mobile SDK Builder’s wizard lets you specify property values for building your module.

• Filter (filter): Specifies the portlet entities the Mobile SDK can access. A blank value specifies
all portlet entity services. For example, the Calendar portlet’s entities include CalendarBooking and
CalendarResource. To generate a Mobile SDK for only the CalendarBooking entity, set the filter’s value
to calendarbooking (all lowercase).

• Module Version (version): The version number appended to your Mobile SDK’s JAR (Android) and
ZIP files (iOS).The sections on packaging your Mobile SDK explain this further.

• Package Name (packageName): On Android, this is the package your Mobile SDK’s classes are written to
(iOS doesn’t use packages). Note that the Liferay DXP version is appended to the end of the package
name. For example, if you’re using Liferay Portal 7.0 or Liferay DXP Digital Enterprise 7.0, and specify
com.liferay.mobile.android as the package name, the Mobile SDK Builder appends v7 to the package
name, yielding com.liferay.mobile.android.v7. This prevents collisions between classeswith the same
name, which lets you use Mobile SDKs for more than one portal version in the same app. You can use
the Portal Version property to change the portal version.

• POM Description (description): Your POM file’s description.

Note that there’s also a destination property that can only be set in the gradle.properties file. This
property specifies the destination for the generated source files. You won’t generally need to change this.

After you set the properties you need, the Mobile SDK Builder generates your module in the folder
modules/${your_portlet_context}.

Now you can build your Mobile SDK. To do this, navigate to your module and run this command:

../../gradlew generate

By default, the builder writes the source files to android/src/gen/java and ios/Source in your module’s
folder.

If you update your portlet’s remote services on the server side and need to update your Mobile SDK,
simply run ../../gradlew generate again.

Awesome! Now you know how to create and regenerate a Mobile SDK for your custom portlet’s remote
services. Next, you’ll finish by packaging your Mobile SDK for the Android and iOS.

1017

Packaging Your Mobile SDK for Android

To package your Mobile SDK in a JAR file for use in an Android project, run the following command from
your module’s folder:

../../gradlew jar

This packages your Mobile SDK in the following file:

• modules/${your_portlet_context}/build/libs/liferay-${your_portlet_context}-android-sdk-

${version}.jar

To call your portlet’s remote services, you must first install this file in your Android project. To do so,
copy the file into your Android app’s app/libs folder. Note that youmust also install Liferay’s prebuilt Mobile
SDK in your app. Click here for instructions on doing this.

Also note that if you regenerate your Mobile SDK to include new functionality, you can update your
module’s version in its gradle.properties file. For example, if you added or changed a service method in
the Mobile SDK you initially built, you could update it’s version by setting version=1.1 in your module’s
gradle.properties file.

To learn how to use the Mobile SDK in your Android app, see the rest of the Android Mobile SDK
documentation. You can also use your Mobile SDK to create custom Screenlets in Liferay Screens.

Packaging Your Mobile SDK for iOS

To package your Mobile SDK in a ZIP file for use in an iOS project, run the following command from your
module’s folder:

../../gradlew zip

This packages your Mobile SDK in the following file:

• modules/${your_portlet_context}/build/liferay-${your_portlet_context}-ios-sdk-${version}.zip

To call your portlet’s remote services, youmust first install this file in your Xcode project. To do so, simply
unzip it and add its files to your Xcode project.

To learn how to use the Mobile SDK in your iOS app, see the rest of the iOSMobile SDK documentation.
You can also use your Mobile SDK to create custom Screenlets in Liferay Screens.

Related Topics

Creating Android Apps that Use the Mobile SDK
Creating iOS Apps that Use the Mobile SDK
Android Apps with Liferay Screens
iOS Apps with Liferay Screens

1018

Chapter 80

Service Builder

An applicationwithout reliable business logic or persistence isn’tmuch of an application at all. Unfortunately,
writing your own persistence code often takes a great deal of time. Fortunately, Liferay provides the Liferay
Service Builder to generate it for you. Youmight now be thinking, “What?! I hate code generators!” Not to
fear; you can still write your own persistence code if you wish. And if you choose to use Service Builder, you
can edit and customize the code it generates. Regardless of how you produce your persistence code, you can
then use it to implement your app’s business logic.

This section of tutorials shows you how to use Service Builder to generate your persistence framework
and implement your business logic. You’re also shown how to use Spring in your app.

80.1 What is Service Builder?

Service Builder is amodel-driven code generation tool built by Liferay that allows developers to define custom
object models called entities. Service Builder generates a service layer through object-relational mapping
(ORM) technology that provides a clean separation between your object model and code for the underlying
database. This frees you to add the necessary business logic for your application. Service Builder takes an
XML file as input and generates the necessary model, persistence, and service layers for your application.
These layers provide a clean separation of concerns. Service Builder generates most of the common code
needed to implement create, read, update, delete, and find operations on the database, allowing you to focus
on the higher level aspects of service design. In this section, you’ll learn some of the main benefits of using
Service Builder:

• Integration with Liferay
• Automatically generated model, persistence, and service layers
• Automatically generated local and remote services
• Automatically generated Hibernate and Spring configurations
• Support for generating finder methods for entities and finder methods that account for permissions
• Built-in entity caching support
• Support for custom SQL queries and dynamic queries
• Saved development time

Liferay uses Service Builder to generate all of its internal database persistence code. In fact, all of Liferay’s
services, both local and remote, are generated by Service Builder. Additionally, the servicemodules in Liferay

1019

https://github.com/liferay/liferay-portal/tree/7.0.x/modules

are generated by Service Builder. Service Builder’s use in Liferay Portal demonstrates it to be a robust and
reliable tool. Service Builder is easy to use and can save developers lots of development time. Although the
number of files Service Builder generates can seem intimidating at first, developers only need to work with
a few files in order to make customizations to their applications and add business logic.

Note: You don’t have to use Service Builder for Liferay application development. It’s entirely possible to
develop Liferay plugins by writing custom code for database persistence using your persistence framework
of choice. If you so choose, you can work directly with JPA or Hibernate.

One of the main ways Service Builder saves development time is by completely eliminating the need
to write and maintain database access code. To generate a basic service layer, you only need to create a
service.xmlfile and run Service Builder. This generates a new service .jarfile for your project. The generated
service .jar file includes a model layer, a persistence layer, a service layer, and related infrastructure. These
distinct layers represent a healthy separation of concerns. Themodel layer is responsible for defining objects
to represent your project’s entities, the persistence layer is responsible for saving entities to and retrieving
entities from the database, and the service layer is responsible for exposing CRUD and related methods for
your entities as an API.The code Service Builder generates is database-agnostic, as is Liferay itself.

Each entity generated by Service Builder contains a model implementation class. Each entity also
contains a local service implementation class, a remote service implementation class, or both, depending
on how you configure Service Builder in your service.xml file. Customizations and business logic can be
implemented in these three classes; in fact, these are the only classes generated by Service Builder that
are intended to be customized. Ensuring that all customizations take place in only a few classes makes
Service Builder projects easy to maintain. The local service implementation class is responsible for calling
the persistence layer to retrieve and store data entities. Local services contain the business logic and access
the persistence layer. They can be invoked by client code running in the same Java Virtual Machine. Remote
services usually have additional code for permission checking and are meant to be accessible from anywhere
over the Internet or your local network. Service Builder automatically generates the code necessary to allow
access to the remote services. The remote services generated by Service Builder include SOAP utilities and
can be accessed via SOAP or JSON.

AnotherwayServiceBuilder saves development time is by providingSpring andHibernate configurations
for yourproject. ServiceBuilder uses Springdependency injection formaking service implementation classes
available at runtime and uses Spring AOP for database transaction management. Service Builder also uses
the Hibernate persistence framework for object-relational mapping. As a convenience to developers, Service
Builder hides the complexities of using these technologies. Developers can take advantage of Dependency
Injection (DI), Aspect Oriented Programming (AOP), and Object-Relational Mapping (ORM) in their projects
without having to manually set up a Spring or Hibernate environment or make any configurations.

Another benefit of using Service Builder is that it provides support for generating findermethods. Finder
methods retrieve entity objects from the database based on specified parameters. You just need to specify
the kinds of finder methods to be generated in the service.xml configuration file and Service Builder does
the rest. The generated finder methods allow you, for example, to retrieve a list of all entities associated
with a certain site or a list of all entities associated with a certain site and a certain user. Service Builder
not only provides support for generating these kinds of simple finder methods but also for finder methods
that take Liferay’s permissions into account. For example, if you are using Liferay’s permissions system
to protect access to your entities, Service Builder can generate a different kind of finder method that only
returns entities that the logged-in user has permission to view.

Service Builder also provides built-in caching support. Liferay caches objects at three levels: entity, finder,
andHibernate. By default, Liferay uses Ehcache as an underlying cache provider for each of these cache levels.
However, this is configurable via portal properties. All you have to do to enable entity and finder caching

1020

for an entity in your project is to set the cache-enabled=true attribute of your entity’s <entity> element in
your service.xml configuration file. Please refer to the Distributed Caching documentation for more details
about Liferay caching.

Service Builder is a flexible tool. It automates many of the common tasks associated with creating
database persistence code but it doesn’t prevent you from creating custom SQL queries or custom finder
methods. Service Builder allows developers to define custom SQL queries in an XML file and to implement
custom finder methods to run the queries. This could be useful, for example, for retrieving specific pieces
of information from multiple tables via an SQL join. Service Builder also supports retrieving database
information via dynamic query. Liferay’s dynamic query API leverages Hibernate’s criteria API.

In summary, we encourage developers to use Service Builder for portlet and plugin development because
it’s a proven solution used by many Liferay plugins and by Liferay Portal itself. It generates distinct model,
persistence, and service layers, local and remote services, Spring and Hibernate configurations, and related
infrastructure without requiring anymanual intervention by developers. It also allows basic SQL queries
and finder methods to be generated and ones that filter results, taking Liferay’s permissions into account.
Service Builder also provides support for entity and query caching. Each of these features can save lots
of development time, both initial development time and time that would have to be spent maintaining,
extending, or customizing a project. Finally, Service Builder is not a restrictive tool: it allows custom SQL
queries and finder methods to be added and it also supports dynamic query.

Service Builder supports Liferay 7’s modular application development style. When you configure Service
Builder in a Liferay 7 OSGi module, this module functions as a servicemodule and its a convention to append
service to the module’s name. Liferay includes a Service Builder plugin and a build tool-specific plugins
such as the Gradle Service Builder plugin. The Gradle Service Builder plugins includes Liferay’s Service
Builder plugin as a dependency. The basic-api, basic-service, basic-webmodules in the Service Builder
Blade Sample project serve as example Service Builder projects.

1021

https://github.com/liferay/liferay-portal/tree/7.0.x/modules/util/portal-tools-service-builder
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/util/portal-tools-service-builder
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/apps/service-builder/basic
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/apps/service-builder/basic

Chapter 81

Service Builder Persistence

Liferay’s Service Builder can generate your project’s persistence layer by automating the creation of interfaces
and classes. Your application’s persistence layer persists data represented by your configured entities to a
database. In fact, your local service implementation classes are responsible for calling the persistence layer
to retrieve and store your application’s data. So instead of taking the time-consuming route of writing your
own persistence layer, you can use Liferay’s Service Builder to quickly define your entities and generate the
layer instantaneously.

In this section of tutorials, you’ll learn how to define an object-relational map and generate your persis-
tence layer from that map. You’ll also learn about the local and remote services Service Builder generates,
and how you can use them for your own application. You’ll also discuss how to use the ServiceContext class,
model hints, SQL queries, and Hibernate’s criteria API.

81.1 Defining an Object-Relational Map with Service Builder

In this tutorial, you’ll learn how to define an object relational map for your application so that it can persist
data. As an example, you’ll examine the existing Liferay Bookmarks application that uses Service Builder.

TheBookmarks application is an example portlet project that an organization can use to bookmark assets
in Liferay. The application defines two entities, or model types, to represent an organization’s bookmarks
and their folders. These entities are called bookmark entries and bookmark folders. Since a bookmark must have
a folder (even if it’s a root folder), the entry entity references a folder entity as one of its attributes.

You can design your application’s modules anyway you like, but for the Bookmarks application, its
Java sources reside in the bookmarks-api, bookmarks-service, and bookmarks-web modules. Notice the
BookmarksAdminPortlet.java and BookmarksPortlet.java files in the com.liferay.bookmarks.web.portlet

package in the bookmarks-webmodule. These portlet classes extend Liferay’s MVCPortlet class. They act as the
controllers in the MVC pattern. These classes contain the business logic that invokes the Service Builder
generated bookmarks services that you’ll learn how to create in this section. The application’s view layer is
implemented in the JSPs in the bookmarks-web/src/main/resources/META-INF/resources folder.

You can learnhow togenerate a genericmodular application fromscratch that includes the *api, *service,
and *webmodules by default in the Modularizing an Existing Portlet tutorial. This tutorial assumes you’ve
assembled your application’s modules similarly to the linked tutorial above. Be sure to also visit the Funda-
mentals tutorial for additional info on the *api, *service, and *webmodules.

The first step in using Service Builder is to define yourmodel classes and their attributes in a service.xml
file. This file’s location typically resides in the root folder of the *-servicemodule, although you can con-

1023

figure your build tool to recognize it from other directories. In Service Builder terminology, your model
classes are called entities. For example, the Bookmarks application has two entities: BookmarksEntry and
BookmarksFolder. The requirements for each of these entities are defined in the bookmarks-servicemodule’s
service.xml listed in the <column /> elements.

Once Service Builder reads the service.xml file, you can define your entities. Liferay @ide@makes it
very easy to define entities in your application’s service.xml file. To define a custom entity, follow these steps:

1. Create the service.xml file in your project’s *-servicemodule. It resides in the root folder of that
module, if one does not already exist there.

2. Define global information for the service.

3. Define service entities.

4. Define the columns (attributes) for each service entity.

5. Define relationships between entities.

6. Define a default order for the entity instances to be retrieved from the database.

7. Define finder methods that retrieve objects from the database based on specified parameters.

You’ll examine these steps in detail next, starting with creating a service.xml file.

Step 1: Creating the service.xml File

To define a service for your portlet project, you must create a service.xml file. The DTD (Document Type
Declaration) file http://www.liferay.com/dtd/liferay-service-builder_7_0_0.dtd specifies the format and
requirements of the XML to use. You can create your service.xml file manually, following the DTD, or you
can use Liferay @ide@. @ide@ helps you build the service.xml file piece-by-piece, taking the guesswork out
of creating XML that adheres to the DTD.

If a default service.xmlfile already exists in your *-servicemodule folder, check to see if it has an <entity
/> element named Foo. If it has the Foo entity, remove the entire <entity name="Foo" ...> ... </entity>

element. The Liferay @ide@ project wizard creates the Foo entity as an example. It has no practical use for
you.

If you don’t already have a service.xmlfile, create one in your *-servicemodule. Once it’s created, open it.
Liferay @ide@ provides a Diagrammode and a Source mode to give you different perspectives of the service
information in your service.xml file. Diagrammode is helpful for creating and visualizing relationships
between service entities. Source mode brings up the service.xml file’s raw XML content in the editor. You
can switch between these modes as you wish.

Next, you can start filling out the global information for your service.

Step 2: Defining Global Service Information

A service’s global information applies to all of its entities, so it’s a good place to start. In Liferay @ide@,
select the Service Builder node in the upper left corner of the Overview mode of your service.xml file. The
main section of the view now shows the Service Builder form in which you can enter your service’s global
information. The fields include the service’s package path, author, and namespace options.

The package path specifies the package in which the service and persistence classes are gen-
erated. The package path defined above ensures that the service classes are generated in the
com.liferay.docs.eventlisting package in the *-api module. The persistence classes are generated

1024

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-service/service.xml
http://www.liferay.com/dtd/liferay-service-builder_7_0_0.dtd

Figure 81.1: This is the Service Builder form from a fictitious Event Listing application’s service.xml.

in a package of the same name in the *-service module. For examples, you can look in the Bookmarks
application’s bookmarks-api and bookmarks-service modules to see an example of how these are
automatically generated for you. Refer to the Running Service Builder and Understanding the Generated
Code tutorial for a description of the contents of these packages.

Service Builder uses the service namespace in naming the database tables it generates for the service.
For example, Event could serve as the namespace for an Event Listing portlet service.

<namespace>Event</namespace>

ServiceBuilderuses thenamespace in the followingSQLscripts it generates in your src/main/resources/META-
INF/sql folder:

• indexes.sql

• sequences.sql

• tables.sql

Note:The folder location for holding your generated SQL scripts is configurable. For example, if you’re
using Ant can configure an argument in your build.xml similar to this:

<arg value="service.sql.dir=${basedir}/../sql"/>

If you’re usingGradle, you can define the sqlDir setting in the project’s build.gradlefile orMaven pom.xml
file, the same way the databaseNameMaxLength setting is applied in the examples below.

Liferay DXP uses these scripts to create database tables for all the entities defined in the service.xml
file. Service Builder prepends the namespace to the database table names. Since the namespace value
above is Event, the names of the database tables created for the entities start with Event_ as their prefix.
The namespace for each Service Builder project must be unique. Separate plugins should use separate

1025

https://github.com/liferay/liferay-portal/tree/master/modules/apps/collaboration/bookmarks/bookmarks-api
https://github.com/liferay/liferay-portal/tree/master/modules/apps/collaboration/bookmarks/bookmarks-service

namespaces and should not use a namespace already used by Liferay (such as Users or Groups). Check the
table names in Liferay’s database if you’re wondering which namespaces are already in use.

Warning: Use caution when assigning namespace values. Some databases have strong restrictions
on database table and column name lengths. The Service Builder Gradle and Maven plugin parameter
databaseNameMaxLength sets the maximum length you can use for your table and column names. Here are
paraphrased examples of setting databaseNameMaxLength in build files:

Gradle build.gradle

buildService {

...

databaseNameMaxLength = 64

...

}

Maven pom.xml

<configuration>

...

<databaseNameMaxLength>64</databaseNameMaxLength>

...

</configuration>

As the last piece of global information, enter your name as the service’s author in your service.xml file.
Service Builder adds @author annotations with the specified name to all of the generated Java classes and
interfaces. Save your service.xml file to preserve the information you added. Next, you’ll add entities for
your service’s events and locations.

Step 3: Defining Service Entities

Entities are the heart and soul of a service. Entities represent the map between the model objects in Java
and the fields and tables in your database. Once your entities are defined, Service Builder handles the
mapping automatically, giving you a facility for taking Java objects and persisting them. For the Bookmarks
application, two entities are created according to its service.xml –one for bookmark entries and one for
bookmark folders.

Here’s a summary of the information used for the BookmarksEntry entity:

• Name: BookmarksEntry
• Local service: yes
• Remote service: yes

And here’s what was used for the BookmarksFolder entity:

• Name: BookmarksFolder
• Local service: yes
• Remote service: yes

To create your entities using Liferay @ide@, select the Entities node under the Service Builder node in
the outline on the left side of the service.xml editor in Overviewmode. In the main part of the view, notice
that the Entities table is empty. Create an entity by clicking on the Add Entity icon () to the right of the
table. Enter your entity’s name and if you’d like to generate local and remote services for that entity. Add as
many entities as you need.

1026

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-service/service.xml

Figure 81.2: Adding service entities is easy with Liferay @ide@’s Overview mode of your service.xml file.

An entity’s name is used to name the database table for persisting instances of the entity. The actual
name of the database table is prefixed with the namespace; the Bookmarks example creates one database
table named Bookmarks_BookmarksEntry and another named Bookmarks_BookmarksFolder.

Setting the local service attribute to true instructs Service Builder to generate local interfaces for the
entity’s services. The default value for local service is false. Local services can only be invoked from the
Liferay server onwhich they’re deployed. Therefore, if your applicationwill be deployed to Liferay, the service
will be local from your Liferay server’s point of view.

Setting the remote service attribute to true instructs Service Builder to generate remote interfaces for the
service. The default value for remote service is true. You could build a fully-functional application without
generating remote services. In that case, you could set local service to true and remote service to false for
your entities. If, however, you want to enable remote access to your application’s services, you should set
both local service and remote service to true.

Tip: Suppose you have an existing DAO service for an entity built using some other framework such
as JPA. You can set local service to false and remote service to true so that the methods of your remote
-Impl class can call the methods of your existing DAO.This enables your entity to integrate with Liferay’s
permission-checking system and provides access to the web service APIs generated by Service Builder. This
is a very handy, quite powerful, and often used feature of Liferay.

Now that you’ve seen how to create your application’s entities, you’ll learn how to describe their attributes
using entity columns.

Step 4: Defining the Columns (Attributes) for Each Service Entity

Each entity is described by its columns, which represent an entity’s attributes. These attributes map on the
one side to fields in a table and on the other side to attributes of a Java object. To add attributes for your
entity, you need to drill down to its columns in the Overviewmode outline of the service.xml file. From the

1027

outline, expand the Entities node and expand an entity node. Then select the Columns node. Liferay @ide@
displays a table of the entity’s columns.

Service Builder creates a database field for each column you add to the service.xml file. It maps a
database field type appropriate to the Java type specified for each column, and it does this across all the
databases Liferay supports. Once Service Builder runs, it generates a Hibernate configuration that handles
the object-relational mapping. Service Builder automatically generates getter/setter methods in the model
class for these attributes. The column’s Name specifies the name used in the getters and setters that are
created for the entity’s Java field. The column’s Type indicates the Java type of this field for the entity. If
a column’s Primary (i.e., primary key) attribute value is set to true, then the column becomes part of the
primary key for the entity. An entity’s primary key is a unique identifier for the entity. If only one column
has Primary set to true, then that column represents the entire primary key for the entity. This is the case in
the Event Listing example. However, it’s possible to use multiple columns as the primary key for an entity. In
this case, the combination of columnsmakes up a compound primary key for the entity.

Note: Each Service Builder generated *LocalServiceImpl class has a CounterLocalService field for gener-
ating unique entity instance primary keys. For details, see Creating Local Services.

Note: On deploying a *servicemodule, Service Builder automatically generates indexes for all entity
primary keys.

Similar to the way you used the form table for adding entities, add attribute columns for each of your
entities. Create each attribute by clicking on the Add icon (). Then fill in the name of the attribute, select
its type, and specify whether it is a primary key for the entity. While your cursor is in a column’s Type field,
an option icon appears. Click this icon to select the appropriate type for the column. Create a column for
each attribute of your entity or entities.

In addition to columns for your entity’s primary key and attributes, it’s recommended to add columns
for portal instance ID and site ID.They allow your portlet to support the multi-tenancy features of Liferay, so
that each portal instance and each site in a portal instance can have independent sets of portlet data. To hold
the site’s ID, add a column called groupId of type long. To hold the portal instance’s ID, add a column called
companyId of type long. If you’d like to add these columns to your entities, follow the table below.

Portal and site scope columns

Name Type Primary

companyId long no
groupId long no

You’ll also want to knowwho owns each entity instance. To keep track of that, add a column called userId

of type long.
User column

Name Type Primary

userId long no

Lastly, you can add columns to help audit your entities. For example, you could create a column named
createDateof type Date tonote thedate an entity instancewas created. Andadda columnnamed modifiedDate
of type Date to track the last time an entity instance was modified.

1028

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/counter/kernel/service/CounterLocalService.html

Audit columns

Name Type Primary

userId long no
createDate Date no

modifiedDate Date no

Great! Your entities are set with the columns that not only represent their attributes, but also support
multi-tenancy and entity auditing. Next, you’ll learn how to specify the relationship service entities.

Step 5: Defining Relationships Between Service Entities

Often you’ll want to reference one type of entity in the context of another entity. That is, you’ll want to relate
the entities. Liferay’s Bookmarks application defines a relationship between an entry and its folder.

As mentioned earlier, each bookmark must have a folder. Therefore, each BookmarksEntry entity must
relate to a BookmarksFolder entity. Liferay @ide@’s Diagrammode for service.xmlmakes relating entities
easy. First, select Diagrammode for the service.xmlfile. Then select theRelationship option underConnections
in the palette on the right side of the view. This relationship tool helps you draw relationships between
entities in the diagram. Click your first entity andmove your cursor over to the entity you’d like to relate it
with. Liferay @ide@ draws a dashed line from your selected entity to the cursor. Click the second entity to
complete drawing the relationship. Liferay IDE turns the dashed line into a solid line,with an arrow pointing
to the second entity. Save the service.xml file.

Congratulations! You’ve related two entities. Their relationship should show in Diagrammode and look
similar to that of the figure below.

Figure 81.3: Relating entities is a snap in Liferay @ide@’s Diagram mode for service.xml.

Switch to Source mode in the editor for your service.xml file and note that Liferay @ide@ created a
column element in the first selected entity to hold the ID of the corresponding entity instance reference. For
example:

1029

<column name="folderId" type="long" />

Now that your entity columns are in place, you can specify the default order in which the entity instances
are retrieved from the database.

Step 6: Defining Ordering of Service Entity Instances

Often, you want to retrieve multiple instances of a given entity and list them in a particular order. Liferay
lets you specify the default order of the entities in your service.xml file.

Suppose you want to return BookmarksEntry entities alphabetically by name. It’s easy to specify these
default orderings using Liferay @ide@. Switch back to Overviewmode in the editor for your service.xml file.
Then select theOrder node under the entity node in the outline on the left side of the view. The IDE displays
a form for ordering the chosen entity. Check the Specify ordering checkbox to show the form for specifying
the ordering. Create an order column by clicking the Add icon () to the right of the table. Enter the column
name (e.g., name, date, etc.) to use in ordering the entity. Click the Browse icon () to the right of the By field
and choose the asc or desc option. This orders the entity in ascending or descending order.

Now that you know how to order your service entities, the last thing to do is to define the finder methods
for retrieving entity instances from the database.

Step 7: Defining Service Entity Finder Methods

Finder methods retrieve entity objects from the database based on specified parameters. You’ll probably
want to create at least one findermethod for each entity you create in your services. Service Builder generates
several methods based on each finder you create for an entity. It creates methods to fetch, find, remove, and
count entity instances based on the finder’s parameters.

For many applications, it’s important to be able to find its entities per site. You can specify these finders
using Liferay @ide@’s Overviewmode of service.xml. Select the Finders node under the entity node in the
Outline on the left side of the screen. The IDE displays an empty Finders table in the main part of the view.
Create a new finder by clicking the Add icon () to the right of the table. Give your finder a name and return
type. Use the Java camel-case naming convention when naming finders since the finder’s name is used to
name the methods that Service Builder creates. The IDE creates a new finder sub-node under the Finders
node in the outline. Next, you’ll learn how to specify the finder column for this node.

Important: DO NOT create finders that use entity primary key as parameters. They’re unnecessary
as Service Builder automatically generates findByPrimaryKey and fetchByPrimaryKeymethods for all entity
primary keys. On deploying a *servicemodule, Service Builder creates indexes for all entity primary key
columns and finder columns. Adding finders that use entity primary keys results in attempts to create
multiple indexes for the same columns—Oracle DB, for example, reports these attempts as errors.

Under the new finder node, the IDE created a Finder Columns node. Select the Finder Columns node to
specify the columns for your finder’s parameters. Create a new finder column by clicking the Add icon and
specifying the column’s name. Keep in mind that you can specify multiple parameters (columns) for a finder.

If you’re creating site-scoped entities (entities whose data should be unique to each site), you should
follow the steps described above to create finders by groupId for retrieving your entities. Remember to save
your service.xml file after editing it to preserve the finders you define.

When you run Service Builder, it generates finder-related methods (e.g., fetchByGroupId, findByGroupId,
removeByGroupId, countByGroupId) for the your entities in the *Persistence and *PersistenceImpl classes.

1030

Figure 81.4: Creating Finder entities is easy with Liferay @ide@.

The first of these classes is the interface; the second is its implementation. For example, Liferay’s Book-
marks application generates its entity finder methods in the -Persistence classes found in the /bookmarks-
api/src/main/java/com/liferay/bookmarks/service/persistence folder and the -PersistenceImpl classes in
the /bookmarks-service/src/main/java/com/liferay/bookmarks/service/persistence/impl folder.

Now you know to configure Service Builder to create finder methods for your entity. Terrific!
Now that you’ve specified the service for your project, you’re ready to build the service by running Service

Builder. To learn how to run Service Builder and to learn about the code that Service Builder generates,
please refer to the Running Service Builder and Understanding the Generated Code tutorial.

Related Topics

What is Service Builder?
Running Service Builder and Understanding the Generated Code

81.2 Running Service Builder and Understanding the Generated
Code

This tutorial explains how to run Service Builder and provides an overview of the code that Service Builder
generates. If you’d like to use Service Builder in your application but haven’t yet created a service.xml file,
visit the Defining an Object-Relational Map with Service Builder tutorial and then come back to this one.

Running Service Builder

To build a service from a service.xml file, you can use Liferay @ide@ or a terminal window. In this tutorial,
you’ll refer to the Event Listing example project that’s referenced throughout the Liferay Service Builder
tutorials.

Now let’s learn how to run Service Builder.

1031

Using Liferay @ide@

From the Package Explorer, open the service.xml file from your *-servicemodule’s root folder. By default,
the file opens up in the Service Builder Editor. Make sure you are in Overviewmode. Then click the Build
Services button () near the top-right corner of the view.

Make sure to click the Build Services button and not the BuildWSDD button () that appears next to it.
Building theWSDDs won’t hurt anything, but you’ll generate files for the remote service instead of the local
one. For information aboutWSDDs (web service deployment descriptors), please refer to the SOAPWeb
Services tutorial.

Figure 81.5: The Overview mode in the editor provides a nested outline which you can expand, a form for editing basic Service Builder attributes, and buttons for building
services or building web service deployment descriptors.

Another simple way to run Service Builder is to right-click on your project’s name in the Package Explorer
and then select Liferay → build-service.

After running Service Builder, your generated files are available. More information about the generated
files appears below.

Using the Terminal

Open a terminal window and navigate to your module project’s root folder, which should be located in
your LiferayWorkspace’s modules directory. To learnmore about creating your module project in a Liferay
Workspace, visit the CreatingModuleswith Blade CLI tutorial. You can leverage the Service Builder Template
to create your own predefined Service Builder project.

Liferay Workspace offers a Gradle or Maven build environment; this tutorial shows how to use both.
Liferay is tool agnostic, however, and you can use other tools, as well.

For Gradle projects, enter the following command in your module project’s root folder to build your
services:

gradlew buildService

Note: LiferayWorkspaces provide the Gradle Wrapper script for usage, if you don’t have Gradle installed
globally in your classpath. It is located in the workspace’s root folder, so you can call it from yourmodule
project’s root folder, if necessary (e.g., ../../gradlew buildService).

1032

If your module project uses Maven, you can build services running the following command from the
module project’s root folder:

mvn service-builder:build

Important:The mvn service-builder:build commandonlyworks if you’reusing the com.liferay.portal.tools.service.builder
plugin version 1.0.145+. Maven projects using an earlier version of the Service Builder plugin should update
their POM accordingly. See the Using Service Builder in a Maven Project tutorial for more information on
usingMaven to run Service Builder.

When the service has been successfully generated, a BUILD SUCCESSFULmessage appears in your terminal
window. You should also see that a large number of files have been generated in your project. These files
include a model layer, service layer, and persistence layer. Don’t worry about the number of generated files–
you’ll never have to customize more than three of them. To review the code that Service Builder generates
for your entities, see the next section.

Understanding the Code Generated by Service Builder

Now you’ll examine the files Service Builder generated for your entity. Note that the files listed under
Local Service and Remote Service below are only generated for an entity that has both local-service and
remote-service attributes set to true. Service Builder generates services for these entities in two locations in
your project. These locations use the package path that you specified in your service.xml file. For Liferay’s
Bookmarks application, for example, these two locations are the following ones:

• /bookmarks-api/src/main/java/com/liferay/bookmarks

• /bookmarks-service/src/main/java/com/liferay/bookmarks

The bookmarks-apimodule contains the API for the Bookmarks project. All the classes and interfaces in
the *-apimodule are packaged in a .jar file called PROJECT_NAME-api.jar in the module’s build/libs folder.
This .jarfile is generatedwhenever you compile and deploy yourmodule. When deploying this JAR to Liferay,
the necessary interfaces to define the service API are available.

The bookmarks-service module contains the implementation of the interfaces defined in the
bookmarks-api module. These interfaces provide OSGi services for the portal instance to which your
application is deployed. Service Builder generates classes and interfaces belonging to the persistence
layer, service layer, and model layer in the /bookmarks-api/src/main/java/com/liferay/bookmarks and
/bookmarks-service/src/main/java/com/liferay/bookmarks packages.

Now you’ll look at the classes and interfaces generated for the entities you specified. Each entity has
similar classes generated for it, depending on what you specfied for them in the service.xml. You won’t
have to customize more than three classes for each entity. These customizable classes are *LocalServiceImpl,
*ServiceImpl, and *Impl.

• Persistence

– [ENTITY_NAME]Persistence: Persistence interface that defines CRUDmethods for the entity such
as create, remove, countAll, find, findAll, etc.

– [ENTITY_NAME]PersistenceImpl: Persistence implementation class that implements
[ENTITY_NAME]Persistence.

1033

– [ENTITY_NAME]Util: Persistence utility class that wraps [ENTITY_NAME]PersistenceImpl and
provides direct access to the database for CRUD operations. This utility should only be
used by the service layer; in your portlet classes, use [ENTITY_NAME]LocalServiceUtil or
[ENTITY_NAME]ServiceUtil instead.

Figure 81.6: Service Builder generates these persistence classes and interfaces. You shouldn’t (and you won’t need to) customize any of these classes or interfaces.

• Local Service (generated for an entity only if an entity’s local-service attribute is set to true in
service.xml)

– [ENTITY_NAME]LocalService: Local service interface.
– [ENTITY_NAME]LocalServiceImpl (LOCAL SERVICE IMPLEMENTATION): Local service imple-
mentation. This is the only class in the local service that you should modify manually. You can
add custom business logic here. For any custom methods added here, Service Builder adds
correspondingmethods to the [ENTITY_NAME]LocalService interface the next time you run it.

– [ENTITY_NAME]LocalServiceBaseImpl: Local service base implementation. This is an abstract
class. Service Builder injects a number of instances of various service and persistence classes
into this class. @abstract

– [ENTITY_NAME]LocalServiceUtil: Local serviceutility classwhichwraps [ENTITY_NAME]LocalServiceImpl
and serves as the primary local access point to the service layer.

– [ENTITY_NAME]LocalServiceWrapper: Local servicewrapperwhich implements [ENTITY_NAME]LocalService.
This class is designed to be extended and it allows developers to customize the entity’s local
services.

• Remote Service (generated for an entity only if an entity’s remote-service attribute is not set to false
in service.xml)

– [ENTITY_NAME]Service: Remote service interface.
– [ENTITY_NAME]ServiceImpl (REMOTE SERVICE IMPLEMENTATION): Remote service imple-
mentation. This is the only class in the remote service that you should modify manually.

1034

Figure 81.7: Service Builder generates these service classes and interfaces. Only EventLocalServiceImpl allows custom methods to be added to the service layer.

Here, you can write code that adds additional security checks and invokes the local services.
For any custom methods added here, Service Builder adds corresponding methods to the
[ENTITY_NAME]Service interface the next time you run it.

– [ENTITY_NAME]ServiceBaseImpl: Remote service base implementation. This is an abstract class.
@abstract

– [ENTITY_NAME]ServiceUtil: Remote service utility class which wraps [ENTITY_NAME]ServiceImpl
and serves as the primary remote access point to the service layer.

– [ENTITY_NAME]ServiceWrapper: Remote servicewrapperwhich implements [ENTITY_NAME]Service.
This class is designed to be extended and it allows developers to customize the remote entity’s
services.

– [ENTITY_NAME]ServiceSoap: SOAP utility which the remote [ENTITY_NAME]ServiceUtil remote
service utility can access.

– [ENTITY_NAME]Soap: SOAPmodel, similar to [ENTITY_NAME]ModelImpl. [ENTITY_NAME]Soap is seri-
alizable; it does not implement [ENTITY_NAME].

• Model

– [ENTITY_NAME]Model: Base model interface. This interface and its [ENTITY_NAME]ModelImpl im-
plementation serve only as a container for the default property accessors generated by Service
Builder. Any helper methods and all application logic should be added to [ENTITY_NAME]Impl.

1035

– [ENTITY_NAME]ModelImpl: Base model implementation.
– [ENTITY_NAME]: [ENTITY_NAME] model interface which extends [ENTITY_NAME]Model.
– [ENTITY_NAME]Impl: (MODEL IMPLEMENTATION) Model implementation. You can use this
class to add helper methods and application logic to your model. If you don’t add any helper
methods or application logic, only the auto-generated field getters and setters are available.
Whenever you add custommethods to this class, Service Builder adds correspondingmethods
to the [ENTITY_NAME] interface the next time you run it.

– [ENTITY_NAME]Wrapper: Wrapper, wraps [ENTITY_NAME].

Note: *Util classes are generated for backwards compatibility purposes only. Your module applications
should avoid calling the util classes.

Each file that Service Builder generates is assembled from an associated FreeMarker template. You can
find Service Builder’s FreeMarker templates in the portal-tools-service-builder module. For example, if you
want to find out how a *ServiceImpl.java file is generated, just look at the service_impl.ftl template.

Ofall the classesgeneratedbyServiceBuilder,only three shouldbemanuallymodified: *LocalServiceImpl,
*ServiceImpl and *Impl. If you manually modify the other classes, your changes are overwritten the next
time you run Service Builder. Whenever you addmethods to, removemethods from, or change amethod
signature of a *LocalServiceImpl class, *ServiceImpl class, or *Impl class, you should run Service Builder
again to regenerate the affected interfaces and the service JAR.

Congratulations! You’ve generated your application’s initial model, persistence, and service layers and
you understand the generated code.

Related Topics

What is Service Builder
Running Service Builder and Understanding the Generated Code
Understanding Service Context
Creating Local Services

81.3 Iterative Development

During the course of development, you’re likely to need to add fields to your database. This is a normal
process of iterative development: you get an idea for a new feature, or it’s suggested to you, and that feature
requires additional data in the database. It’s important to note, then, that newfields added to service.xml
are not automatically added to the database. To add the fields, youmust do one of two things:

1. Write an upgrade process to modify the tables and preserve the data, or

2. Run the cleanServiceBuilder Gradle task (also supported onMaven and Ant), which drops your tables
so they get re-created the next time your app is deployed. See the Maven DB Support Plugin reference
article for instructions on how to run this command from aMaven project.

Use the first option when you have a released application and youmust preserve your users’ data. Use
the second option when you’re in the middle of development and you’re adding new columns during that
process.

1036

https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-service-builder/src/main/resources/com/liferay/portal/tools/service/builder/dependencies
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/util/portal-tools-service-builder/src/main/resources/com/liferay/portal/tools/service/builder/dependencies/service_impl.ftl

Figure 81.8: Service Builder generates these model classes and interfaces. Only EventImpl allows custom methods to be added to the service layer.

1037

Related Topics

Upgrade Processes
Gradle DB Support Plugin
Maven DB Support Plugin

81.4 Understanding ServiceContext
The ServiceContext class is a parameter class used for passing contextual information for a service. Using a
parameter class lets you consolidate many different methods with different sets of optional parameters into
a single, easier-to-usemethod. The class also aggregates information necessary for features used throughout
Liferay’s core portlets, such as permissions, tagging, categorization, andmore.

In this section, you’ll examine the Service Context fields, learn how to create and populate a Service
Context, and learn to access Service Context data. First, you’ll look at the fields of the ServiceContext class.

Service Context Fields

The ServiceContext class has many fields. The best field descriptions are found in the Javadoc:
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/service/ServiceContext.html.
Here, you can review a categorical listing of the fields:

• Actions:

– _command

– _workflowAction

• Attributes:

– _attributes

– _expandoBridgeAttributes

• Classification:

– _assetCategoryIds

– _assetTagNames

• Exception

– _failOnPortalException

• IDs and Scope:

– _companyId

– _portletPreferencesIds

– _plid

– _scopeGroupId

– _userId

– _uuid

• Language:

1038

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/service/ServiceContext.html

– _languageId

• Miscellaneous:

– _headers

– _signedIn

• Permissions:

– _addGroupPermissions

– _addGuestPermissions

– _deriveDefaultPermissions

– _modelPermissions

• Request

– _request

• Resources:

– _assetEntryVisible

– _assetLinkEntryIds

– _assetPriority

– _createDate

– _formDate

– _indexingEnabled

– _modifiedDate

– _timeZone

• URLs, paths and addresses:

– _currentURL

– _layoutFullURL

– _layoutURL

– _pathMain

– _pathFriendlyURLPrivateGroup

– _pathFriendlyURLPrivateUser

– _pathFriendlyURLPublic

– _portalURL

– _remoteAddr

– _remoteHost

– _userDisplayURL

Are you wondering how the ServiceContext fields get populated? Good! You’ll learn about that next.

1039

Creating and Populating a Service Context

Although all the ServiceContext class fields are optional, services that store any kind of scopeable data need
to at least specify the scope group ID. Here’s a simple example of creating a ServiceContext instance and
passing it as a parameter to a Liferay service API using Java:

ServiceContext serviceContext = new ServiceContext();

serviceContext.setScopeGroupId(myGroupId);

...

_blogsEntryService.addEntry(..., serviceContext);

If you invoke the service from a servlet, a Struts action, or any other front-end end class which has access
to the PortletRequest, use one of the ServiceContextFactory.getInstance(...) methods. These methods
create a ServiceContext object from the request and automatically populate its fields with all the values
specified in the request. The above example looks different if you invoke the service from a servlet:

ServiceContext serviceContext =

ServiceContextFactory.getInstance(BlogsEntry.class.getName(), portletRequest);

...

_blogsEntryService.addEntry(..., serviceContext);

You can see an example of populating a ServiceContextwith information froma request object in the code
of the ServiceContextFactory.getInstance(...) methods. Themethods demonstrate how to set parameters
like scope group ID, company ID, language ID, andmore. They also demonstrate how to access and populate
more complex context parameters like tags, categories, asset links, headers, and the attributes parameter. By
calling ServiceContextFactory.getInstance(String className, PortletRequest portletRequest), you can
assure that your Expando bridge attributes are set on the ServiceContext. Expandos are the back-end
implementation of custom fields for entities in Liferay.

Creating and Populating a Service Context in JavaScript

Liferay’s API can be invoked in languages other than Java. Somemethods of Liferay’s API require or allow a
ServiceContext parameter. If you’re invoking such amethod via Liferay’s JSONweb services, youmight want
to create and populate a ServiceContext object in JavaScript. Creating a ServiceContext object in JavaScript
is no different from creating any other object in JavaScript.

Before examining a JSON web service invocation that uses a ServiceContext object, it helps to see a
simple JSONweb service example in JavaScript:

Liferay.Service(

'/user/get-user-by-email-address`,

{

companyId: Liferay.ThemeDisplay.getCompanyId(),

emailAddress: 'test@example.com`

},

function(obj) {

console.log(obj);

}

);

If you run this code, the test@example.com user (JSON object) is logged to the JavaScript console.
The Liferay.Service(...) function takes three arguments:

1. A string representing the service being invoked

1040

2. A parameters object
3. A callback function

The callback function takes the result of the service invocation as an argument.
The Liferay JSONweb services page (its URL is localhost:8080/api/jsonws if you’re running Liferay locally

on port 8080) generates example code for invoking web services. To see the generated code for a particular
service, click on the name of the service, enter the required parameters, and click Invoke. The JSON result
of your service invocation appears. There are multiple ways to invoke Liferay’s JSONweb services: click on
JavaScript Example to see how to invoke the web service via JavaScript, click on curl Example to see how to
invoke the web service via curl, or click on URL example to see how to invoke the web service via a URL.

Figure 81.9: When you invoke a service from Liferay’s JSON web services page, you can view the result of your service invocation as well as example code for invoking the
service via JavaScript, curl, or URL.

To learn more about Liferay’s JSONweb services, see the JSONWeb Services tutorial.

1041

localhost:8080/api/jsonws

Next, you’ll learn how to access information from a ServiceContext object.

Accessing Service Context Data

In this section, you’ll find code snippets from BlogsEntryLocalServiceImpl.addEntry(..., ServiceContext).
This code demonstrates how to access information from a ServiceContext and provides an example of how
the context information can be used.

Asmentioned above, services for scopeable entities need to get a scope group ID from the ServiceContext
object. This is true for the Blogs entry service because the scope group ID provides the scope of the Blogs
entry (the entity being persisted). For the Blogs entry, the scope group ID is used in the following way:

• It’s used as the groupId for the BlogsEntry entity.
• It’s used to generate a unique URL for the blog entry.
• It’s used to set the scope for comments on the blog entry.

Here are the corresponding code snippets:

long groupId = serviceContext.getScopeGroupId();

...

entry.setGroupId(groupId);

...

entry.setUrlTitle(getUniqueUrlTitle(entryId, groupId, title));

...

// Message boards

if (PropsValues.BLOGS_ENTRY_COMMENTS_ENABLED) {

mbMessageLocalService.addDiscussionMessage(

userId, entry.getUserName(), groupId,

BlogsEntry.class.getName(), entryId,

WorkflowConstants.ACTION_PUBLISH);

}

Can ServiceContext be used to access theUUIDof the blog entry? Absolutely! Can youuse ServiceContext
to set the time the blog entry was added? You sure can. See here:

entry.setUuid(serviceContext.getUuid());

...

entry.setCreateDate(serviceContext.getCreateDate(now));

Can ServiceContext be used in setting permissions on resources? You bet! When adding a blog entry,
you can add new permissions or apply existing permissions for the entry, like this:

// Resources

if (serviceContext.isAddGroupPermissions() ||

serviceContext.isAddGuestPermissions()) {

addEntryResources(

entry, serviceContext.isAddGroupPermissions(),

serviceContext.isAddGuestPermissions());

}

else {

addEntryResources(

entry, serviceContext.getGroupPermissions(),

serviceContext.getGuestPermissions());

}

1042

ServiceContext helps apply categories, tag names, and the link entry IDs to asset entries too. Asset links
are the back-end term for related assets in Liferay.

// Asset

updateAsset(

userId, entry, serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(),

serviceContext.getAssetLinkEntryIds());

Does ServiceContext also play a role in starting a workflow instance for the blogs entry? Must you ask?

// Workflow

if ((trackbacks != null) && (trackbacks.length > 0)) {

serviceContext.setAttribute("trackbacks", trackbacks);

}

else {

serviceContext.setAttribute("trackbacks", null);

}

_workflowHandlerRegistry.startWorkflowInstance(

user.getCompanyId(), groupId, userId, BlogsEntry.class.getName(),

entry.getEntryId(), entry, serviceContext);

The snippet above also demonstrates the trackbacks attribute, a standard attribute for the blogs entry
service. There may be cases where you need to pass in custom attributes to your blogs entry service. Use
Expando attributes to carry custom attributes along in your ServiceContext. Expando attributes are set on
the added blogs entry like this:

entry.setExpandoBridgeAttributes(serviceContext);

You can see that the ServiceContext can be used to transfer lots of useful information for your ser-
vices. Understanding how ServiceContext is used in Liferay helps you determine when and how to use
ServiceContext in your own Liferay application development.

Related Topics

Creating Local Services
Invoking Local Services

81.5 Customizing Model Entities With Model Hints

If you’ve already used Service Builder to define your model entities and have implemented business logic
for creating and modifying those entities, you might have some ideas for helping users to submit valid
model entity data. For example, suppose you’re working on a calendar app where users can select a date for a
calendar event. How can you specify that only future dates are selectable? Easy! Use portlet model hints!
Liferay Service Builder’s model hints provide a single place in your application where you can specify entity
data restrictions. Model hints are specified in a single file called portlet-model-hints.xml in your project.
If your project is comprised of an API module, a service module, and a webmodule, as is common for 7.0
applications, portlet-model-hints.xml should go in the servicemodule. For example, in Liferay’s Bookmarks
application, the portlet-model-hints.xml file goes in the bookmarks-service/src/main/resources/META-INF/
folder. Model hints are referred to as such because they suggest how entities should be presented to users.
Model hints let you to configure how the AlloyUI tag library, aui, shows model fields. As Liferay displays

1043

form fields in your application, it first checks the model hints you specified and customizes the form’s input
fields based on these hints. Model hints can also be used to specify the size of the database columns used to
store the entities and to specify other entity details.

Note: Service Builder generates a number of XML configuration files in your service module’s
src/main/resources/META-INF folder. Service Builder uses most of these files to manage Spring and
Hibernate configurations. Don’t modify the Spring or Hibernate configuration files; your changes will be
overwritten the next time Service Builder runs. However, you can safely edit the portlet-model-hints.xml
file.

As an example, consider the Bookmarks app’s model hints file:

<?xml version="1.0"?>

<model-hints>

<model name="com.liferay.bookmarks.model.BookmarksEntry">

<field name="uuid" type="String" />

<field name="entryId" type="long" />

<field name="groupId" type="long" />

<field name="companyId" type="long" />

<field name="userId" type="long" />

<field name="userName" type="String" />

<field name="createDate" type="Date" />

<field name="modifiedDate" type="Date" />

<field name="resourceBlockId" type="long" />

<field name="folderId" type="long" />

<field name="treePath" type="String">

<hint name="max-length">4000</hint>

</field>

<field name="name" type="String">

<hint name="max-length">255</hint>

</field>

<field name="url" type="String">

<hint-collection name="URL" />

<validator name="required" />

<validator name="url" />

</field>

<field name="description" type="String">

<hint-collection name="TEXTAREA" />

</field>

<field name="visits" type="int" />

<field name="priority" type="int">

<hint name="display-width">20</hint>

</field>

<field name="lastPublishDate" type="Date" />

<field name="status" type="int" />

<field name="statusByUserId" type="long" />

<field name="statusByUserName" type="String" />

<field name="statusDate" type="Date" />

</model>

<model name="com.liferay.bookmarks.model.BookmarksFolder">

...

</model>

</model-hints>

The root-level element is model-hints. All the model entities are represented by model sub-elements of
the model-hints element. Each model element must have a name attribute specifying the fully-qualifiedmodel
class name. Each model has field elements representing its model entity’s columns. Lastly, each field

element must have a name and a type. Each field element’s names and types correspond to the names and
types specified for each entity’s columns in the service module’s service.xml file. Service Builder generates
all these elements for you, based on service.xml.

1044

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/resources/META-INF/portlet-model-hints.xml

To add hints to a field, add a hint tag inside its field tag. For example, you can add a display-width hint

to specify the pixel width used to display the field. The default pixel width is 350. To show a String field with
50 pixels, you could nest a hint element named display-width and give it a value of 50.

To see the effect of a hint on a field, youmust run Service Builder again and redeploy your project. Note
that changing display-width doesn’t limit the number of characters a user can enter into the name field; it
only controls the field’s width in the AlloyUI input form.

To configure the maximum size of a model field’s database column (i.e., the maximum number of char-
acters that can be saved for the field), use the max-length hint. The default max-length value is 75 characters.
If you want the name field to persist up to 100 characters, add a max-length hint to that field:

<field name="name" type="String">

<hint name="display-width">50</hint>

<hint name="max-length">100</hint>

</field>

Remember to run Service Builder and redeploy your project after updating the portlet-model-hints.xml
file.

So far, you’ve seen a few different hints. The following table describes the portlet model hints available
for use.

Model Hint Values andDescriptions

Name | Value Type | Description | Default |

auto-escape | boolean | sets whether text values should be escaped via HtmlUtil.escape | true | autoSize
| boolean | displays the field in a for scrollable text area | false | day-nullable | boolean | allows the day to be
null in a date field | false | default-value | String | sets the default value of the form field rendered using
the aui taglib | (empty String) | display-height | integer | sets the display height of the form field rendered
using the aui taglib | 15 | display-width | integer | sets the display width of the form field rendered using
the aui taglib | 350 | editor | boolean | sets whether to provide an editor for the input | false | max-length |
integer | sets the maximum column size for SQL file generation | 75 | month-nullable | boolean | allows the
month to be null in a date field | false | secret | boolean | sets whether to hide the characters input by the
user | false | show-time | boolean | sets whether to show the time along with the date | true | upper-case |
boolean | converts all characters to upper case | false | year-nullable | boolean | allows a date field’s year
to be null | false | year-range-delta | integer | specifies the number of years to display from today’s date in
a date field rendered with the aui taglib | 5 | year-range-future | boolean | sets whether to include future
dates | true | year-range-past | boolean | sets whether to include past dates | true |

Note that Liferay has its own portal-model-hints.xml file. This file contains many hint examples, so you
can reference it when customizing your portlet-model-hints.xml file.

You can use the default-hints element to define a list of hints to apply to every field of a model. For
example, adding the following element inside a model element applies a display-width of 300 to each field:

<default-hints>

<hint name="display-width">300</hint>

</default-hints>

You can define hint-collection elements inside the model-hints root-level element to define a list of
hints to apply together. A hint collection must have a name. For example, Liferay’s portal-model-hints.xml
defines the following hint collections:

1045

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-impl/src/META-INF/portal-model-hints.xml

<hint-collection name="CLOB">

<hint name="max-length">2000000</hint>

</hint-collection>

<hint-collection name="EDITOR">

<hint name="editor">true</hint>

<hint name="max-length">2000000</hint>

</hint-collection>

<hint-collection name="SEARCHABLE-DATE">

<hint name="month-nullable">true</hint>

<hint name="day-nullable">true</hint>

<hint name="year-nullable">true</hint>

<hint name="show-time">false</hint>

</hint-collection>

<hint-collection name="TEXTAREA">

<hint name="display-height">105</hint>

<hint name="display-width">500</hint>

<hint name="max-length">4000</hint>

</hint-collection>

<hint-collection name="URL">

<hint name="max-length">4000</hint>

</hint-collection>

You can apply a hint collection to a model field by referencing the hint collection’s name. For example, if
you define a SEARCHABLE-DATE collection like the one above in your model-hints element, you can apply it to
your model’s date field by using a hint-collection element that references the collection by its name:

<field name="date" type="Date">

<hint-collection name="SEARCHABLE-DATE" />

</field>

As always, remember to run Service Builder and redeploy your project after updating your portlet-
model-hints.xml file.

For example, suppose you want to use a couple of model hints in your project. Start by providing users
with an editor for filling in their comment fields. To apply the same hint to multiple entities, define it as a
hint collection. Then reference the hint collection in each entity.

To define a hint collection, add a hint-collection element inside the model-hints root element in your
portlet-model-hints.xml file. For example:

<hint-collection name="COMMENT-TEXTAREA">

<hint name="display-height">105</hint>

<hint name="display-width">500</hint>

<hint name="max-length">4000</hint>

</hint-collection>

To reference a hint collection for a specific field, add the hint-collection element inside the field’s field
element:

<field name="comment" type="String">

<hint-collection name="COMMENT-TEXTAREA" />

</field>

After defining hint collections and adding hint collection references, rebuild your services using Service
Builder, redeploy your project, and check that the hints defined in your hint collection have taken effect.

Nice work! You’ve learned the art of persuasion through Liferay’s model hints. Now you can not only
influence how your model’s input fields are displayed, but you can also can set its database table column
sizes. You can organize hints, insert individual hints directly into your fields, apply a set of default hints to
all of a model’s fields, or define collections of hints to apply at either of those scopes. You’ve picked up the
“hints” on how Liferay model hints specify how to display app data!

1046

81.6 Custom SQL

Service Builder creates finder methods that retrieve entities by their attributes: their column values. When
you add a column as a parameter for the finder in your service.xml file and run Service Builder, it generates
the finder method in your persistence layer and adds methods to your service layer that invoke the finder. If
your queries are simple enough, consider using Dynamic Query to access Liferay’s database. If you want to
do something more complicated like JOINs, you can write your own custom SQL queries. You’ll learn how in
this tutorial.

Say you have a Guestbook application with two tables, one for guestbooks and one for guestbook entries.
The entry entity’s foreign key to its guestbook is the guestbook’s ID.That is, the entry entity table, GB_Entry,
tracks an entry’s guestbook by its long integer ID in the table’s guestbookId column. If you want to find a
guestbook entry based on its name,message, and guestbook name, youmust access the name of the entry’s
guestbook. Of course, with SQL you can join the entry and guestbook tables to include the guestbook name.
Service Builder lets you do this by specifying the SQL as Liferay custom SQL and invoking it in your service via
a custom finder method.

Liferay custom SQL is a Service Builder-supported method for performing custom, complex queries
against the database by invoking custom SQL from a findermethod in your persistence layer. Service Builder
helps you generate the interfaces to your finder method. It’s easy to do by following these steps:

1. Specify your custom SQL.

2. Implement your finder method.

3. Access your finder method from your service.

Next, using the Guestbook application as an example, you’ll learn how to accomplish these steps.

Step 1: Specify Your Custom SQL

After you’ve tested your SQL, youmust specify it in a particular file for Liferay to access it. CustomSQLUtil class
(frommodule com.liferay.portal.dao.orm.custom.sql) retrieves SQL from a file called default.xml in your
service module’s src/main/resources/META-INF/custom-sql/ folder. You must create the custom-sql folder
and create the default.xml file in that custom-sql folder. The default.xml file must adhere to the following
format:

<custom-sql>

<sql id="[fully-qualified class name + method]">

SQL query wrapped in <![CDATA[...]]>

No terminating semi-colon

</sql>

</custom-sql>

Create a custom-sql element for every SQL query you want in your application, and give each query a
unique ID.The recommended convention to use for the ID value is the fully-qualified class name of the finder
followed by a dot (.) character and the name of the finder method. More detail on the finder class and finder
methods is provided in Step 2.

For example, in the Guestbook application, you could use the following ID value to specify a query:

com.liferay.docs.guestbook.service.persistence.\

EntryFinder.findByEntryNameEntryMessageGuestbookName

1047

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.dao.orm.custom.sql/

CustomSQLmustbewrapped in characterdata (CDATA) for the sql element. Importantly,donot terminate
the SQL with a semi-colon. Following these rules, the default.xml file of the Guestbook application specifies
an SQL query that joins the GB_Entry and GB_Guestbook tables:

<?xml version="1.0" encoding="UTF-8"?>

<custom-sql>

<sql id="com.liferay.docs.guestbook.service.persistence.EntryFinder.findByEntryNameEntryMessageGuestbookName">

<![CDATA[

SELECT GB_Entry.*

FROM GB_Entry

INNER JOIN

GB_Guestbook ON GB_Entry.guestbookId = GB_Guestbook.guestbookId

WHERE

(GB_Entry.name LIKE ?) AND

(GB_Entry.message LIKE ?) AND

(GB_Guestbook.name LIKE ?)

]]>

</sql>

</custom-sql>

Now that you’ve specified some custom SQL, the next step is to implement a finder method to invoke it.
Themethod name for the finder should match the ID you just specified for the sql element.

Step 2: Implement Your Finder Method

Next, implement the finder method in your persistence layer to invoke your custom SQL query. Service
Builder generates the interface for the finder in your API module but youmust create the implementation.

Thefirst step is to create a *FinderImpl class in the service persistence package. For theGuestbook applica-
tion, you could create a EntryFinderImpl class in the com.liferay.docs.guestbook.service.persistence.impl
package. Your class should extend BasePersistenceImpl<Entry>.

Run Service Builder to generate the *Finder interface based on the *FinderImpl class. Modify your
*FinderImpl class tomake it a component (annotated with @Component) that implements the *Finder interface
you just generated:

@Component(service = EntryFinder.class)

public class EntryFinderImpl extends BasePersistenceImpl<Event>

implements EntryFinder {

}

Now you can create a finder method in your EntryFinderImpl class. Add your finder method and static
field to the *FinderImpl class. For example, here’s how you could write the EntryFinderImpl class:

public List<Entry> findByEntryNameEntryMessageGuestbookName(

String entryName, String entryMessage, String guestbookName,

int begin, int end) {

Session session = null;

try {

session = openSession();

String sql = CustomSQLUtil.get(

getClass(),

FIND_BY_ENTRYNAME_ENTRYMESSAGE_GUESTBOOKNAME);

SQLQuery q = session.createSQLQuery(sql);

q.setCacheable(false);

q.addEntity("GB_Entry", EntryImpl.class);

QueryPos qPos = QueryPos.getInstance(q);

1048

https://docs.osgi.org/javadoc/osgi.cmpn/7.0.0/org/osgi/service/component/annotations/Component.html

qPos.add(entryName);

qPos.add(entryMessage);

qPos.add(guestbookName);

return (List<Entry>) QueryUtil.list(q, getDialect(), begin, end);

}

catch (Exception e) {

try {

throw new SystemException(e);

}

catch (SystemException se) {

se.printStackTrace();

}

}

finally {

closeSession(session);

}

return null;

}

public static final String FIND_BY_ENTRYNAME_ENTRYMESSAGE_GUESTBOOKNAME =

EntryFinder.class.getName() +

".findByEntryNameEntryMessageGuestbookName";

ThecustomfindermethodopensanewHibernate sessionandusesLiferay’s com.liferay.portal.dao.orm.custom.sql.CustomSQLUtil.get(Class<?>
clazz, String id)method toget the customSQLtouse for thedatabasequery. The FIND_BY_ENTRYNAME_ENTRYMESSAGE_GUESTBOOKNAME
static field contains the custom SQL query’s ID. The FIND_BY_EVENTNAME_EVENTDESCRIPTON_LOCATIONNAME

string is based on the fully-qualified class name of the *Finder interface (EventFinder) and the name of the
finder method (findByEntryNameEntryMessageGuestbookName).

Awesome! Your custom SQL is in place and your finder method is implemented. Next, you’ll call the
finder method from your service.

Step 3: Access Your Finder Method from Your Service

So far, you’ve created a *FinderImpl class, generated the *Finder interface, and created a custom finder
method that gets your custom SQL. Your last step is to add a service method that calls your finder.

When you ran Service Builder after defining your custom finder method, the *Finder interface was
generated (e.g., GuestbookFinder). Your portlet class, however, should not call the *Finder interface: only
a local or remote service implementation (i.e., *LocalServiceImpl or *ServiceImpl) in your service module
should invoke the *Finder class. This encourages a proper separation of concerns: the portlet classes in your
application’s web module invoke the business logic of the services published from your application’s service
module. The services, in turn, access the data model using the persistence layer’s finder classes.

So you’ll add amethod in the *LocalServiceImpl class that invokes the finder method implementation
via the *Finder class. Then you’ll rebuild your application’s service layer so that the portlet classes and JSPs in
your webmodule can access the services.

For example, for theGuestbook application, you’d add the followingmethod to the EntryLocalServiceImpl
class:

public List<Entry> findByEntryNameGuestbookName(String entryName,

String guestbookName) throws SystemException {

return entryFinder.findByEntryNameGuestbookName(String entryName,

String guestbookName);

}

After you’ve added your findBy-method to your *LocalServiceImpl class, run Service Builder to generate
the interface andmake the finder method available in the EntryLocalService class.

1049

Now you can indirectly call the findermethod from your portlet class or a JSP in your webmodule. For ex-
ample, to call thefindermethod in theGuestbookapplication, just call entryLocalService.findByEntryNameEntryMessageGuestbookName(...)!

Congratulations on developing a custom SQL query and custom finder for your application!

Related Topics

Customizing Liferay Services
Service BuilderWeb Services

81.7 Dynamic Query

Liferay lets you use custom SQL queries to retrieve data from the database. However, it’s sometimes more
convenient to build queries dynamically at runtime than it is to invoke predefined SQL queries. Liferay
allows you to build queries dynamically using its DynamicQuery API, which wraps Hibernate’s Criteria
API. Using Liferay’s DynamicQuery API allows you to build queries without writing a single line of SQL.
The DynamicQuery API helps you think in terms of objects and member variables instead of in terms of
tables and columns. Complex queries constructed via Hibernate’s Criteria API can be significantly easier to
understand andmaintain than the equivalent custom SQL (or HQL) queries. While you technically don’t
need to know SQL to construct queries via Hibernate’s Criteria API, you still need to take care to construct
efficient queries. For information onHibernate’s Criteria API, please seeHibernate’smanual. In this tutorial,
you’ll learn how to create customfinders for Liferay applications using Service Builder and Liferay’s Dynamic
Query API.

To use Liferay’s Dynamic Query API, you need to create a finder implementation for your model entity.
You can definemodel entities in service.xml and run Service Builder to generate model, persistence, and
service layers for your application. See the Running Service Builder and Understanding the Generated Code
learning path for more information on using Service Builder. This tutorial assumes that you’re creating a
Liferay application that consists of a service module, an API module, and a webmodule. Once you’ve used
Service Builder to generate model, persistence, and service layers for your application, you can call custom
finders using Liferay’s Dynamic Query API by following these steps:

1. Create a custom -FinderImpl class and define a findBy-findermethod in this class. Run Service Builder
to generate the required interfaces and utility classes.

2. Implement your finder method using Liferay’s Dynamic Query API.

3. Add amethod to your -LocalServiceImpl class that invokes your finder method. Run Service Builder
to add the required method to the service interface.

Once you’ve taken these steps, you can access your custom finder as a service method. Note: You can
create multiple or overloaded findBy- finder methods in your -FinderImpl class. Next, let’s examine these
steps in more detail.

Step 1: Defining a Custom Finder Method

To define any custom query, either by specifying custom SQL or by defining a dynamic query, you need a
finder class. Create a [Entity]FinderImpl class in the generated [package path].service.persistence.impl

packageof your servicemodule’s src/main/java folder. Recall that you specify thepackagepath in service.xml.
Here’s an example:

1050

http://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/chapters/query/criteria/Criteria.html

<service-builder package-path="com.liferay.docs.guestbook">

...

</service-builder>

Then define a findBy- finder method in the class you created. Make sure to add any required arguments
to your finder method’s method signature.

For example, consider a fictitious Guestbook application. In this application, there are two entities:
guestbooks and entries. Each entry belongs to a guestbook so the entry entity has a guestbookId field as
a foreign key. Suppose you need to create a custom finder to search for guestbook entries by the entry
name and the guestbook name. In this case, you’d add a custom finder method to GuestbookFinderImpl

and name it something like findByEntryNameGuestbookName. The full method signature would appear as
findByEntryNameGuestbookName(String entryName, String guestbookName).

Once you’ve created a finder method with the appropriate method signature in your finder class, run
Service Builder to generate the appropriate interface in the [package path].service.persistence package in
the service folders of your API and service modules.

For example, after adding findByEntryNameGuestbookName(String entryName, String guestbookName) to
GuestbookFinderImplandrunningServiceBuilder, the interface com.liferay.docs.guestbook.service.persistence.GuestbookFinder
is generated.

Once the finder interface has been generated,make sure that the finder class implements the interface.
For example, the class declaration should look like this:

public class GuestbookFinderImpl extends BasePersistenceImpl<Guestbook> implements GuestbookFinder

Your next step is to actually define your query in your custom finder method using the Dynamic Query
API.

Step 2: Implementing Your Custom Finder Method Using Dynamic Query

Your first step in implementing your custom finder method in your -FinderImpl class is to open
a new Hibernate session. Since your -FinderImpl class extends BasePersistenceImpl<Entity>, and
BasePersistenceImpl<Entity> contains a session factory object and an openSession method, you can simply
invoke the openSessionmethod of your -FinderImpl’s parent class to open a new Hibernate session. The
basic structure of your finder method should look like this:

public List<Entity> findBy-(...) {

Session session = null;

try {

/*

Try to open a new Hibernate session and create a dynamic

query to retrieve and return the desired list of entity

objects

⁎/

}

catch (Exception e) {

// Exception handling

}

finally {

closeSession(session);

}

return null;

/*

Return null only if there was an error returning the

desired list of entity objects in the try block

⁎/

}

1051

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/service/persistence/impl/BasePersistenceImpl.html#openSession--

For example, in the case of the Guestbook application, you could write the following finder method to
retrieve a list of Guestbook entries that have a specific name and that also belong to a Guestbook of a specific
name:

public List<Event> findByEntryNameGuestbookName(String entryName, String guestbookName) {

Session session = null;

try {

session = openSession();

ClassLoader classLoader = getClass().getClassLoader();

DynamicQuery guestbookQuery = DynamicQueryFactoryUtil.forClass(Guestbook.class, classLoader)

.add(RestrictionsFactoryUtil.eq("name", guestbookName))

.setProjection(ProjectionFactoryUtil.property("guestbookId"));

Order order = OrderFactoryUtil.desc("modifiedDate");

DynamicQuery entryQuery = DynamicQueryFactoryUtil.forClass(Entry.class, classLoader)

.add(RestrictionsFactoryUtil.eq("name", entryName))

.add(PropertyFactoryUtil.forName("guestbookId").in(guestbookQuery))

.addOrder(order);

List<Event> entries = EventLocalServiceUtil.dynamicQuery(entryQuery);

return entries;

}

catch (Exception e) {

try {

throw new SystemException(e);

}

catch (SystemException se) {

se.printStackTrace();

}

}

finally {

closeSession(session);

}

Notice that in Liferay, you don’t create criteria objects directly from the Hibernate session. Instead, you
create dynamic query objects using Liferay’s DynamicQueryFactoryUtil service. Thus, instead of

Criteria entryCriteria = session.createCriteria(Entry.class);

you use

DynamicQuery entryQuery = DynamicQueryFactoryUtil.forClass(Entry.class,

classLoader);

Most features of Hibernate’s Criteria API, including restrictions, projections, and orders, can be used on
Liferay’s dynamic query objects. Restrictions in Hibernate’s Criteria API roughly correspond to the where
clause of an SQL query: they offer a variety of ways to limit the results returned by the query. You can use
restrictions, for example, to cause a query to return only results where a certain field has a particular value,
or a value in a certain range, or a non-null value, etc.

Projections inHibernate’s Criteria API let youmodify the kind of results returned by a query. For example,
if you don’t want your query to return a list of entity objects (the default), you can set a projection on a query
so that only a list of the values of a certain entity field, or fields, is returned. You can also use projections
on a query to return the maximum or minimum value of an entity field, or the sum of all the values of a
field, or the average, etc. For more information on restrictions and projections, please refer to Hibernate’s
documentation.

1052

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/DynamicQueryFactoryUtil.html
http://docs.jboss.org/hibernate/orm/3.6/reference/en-US/html/querycriteria.html

Orders, another feature of Hibernate’s Criteria API, let you control the order of the elements in the list
returned by a query. You can choose the property or properties to which an order should be applied and you
can choose for the properties to appear in ascending or descending order in the list.

Like Hibernate criteria, Liferay’s dynamic queries are chainable. This means that you can add criteria
to, set projections on, and add orders to Liferay’s dynamic query objects just by appending the appropriate
method calls to the query object. For example, the following snippet demonstrates chaining the addition of
a restriction criterion and a projection to a dynamic query object declaration:

DynamicQuery guestbookQuery = DynamicQueryFactoryUtil.forClass(Guestbook.class, classLoader)

.add(RestrictionsFactoryUtil.eq("name", guestbookName))

.setProjection(ProjectionFactoryUtil.property("guestbookId"));

When you need to add restrictions to a dynamic query in Liferay, don’t call Hibernate’s Restrictions class
directly. Instead, use the methods of Liferay’s RestrictionsFactoryUtil service. You’ll find the samemethods
in Liferay’s RestrictionsFactoryUtil service class that you’re used to fromHibernate’s Restrictions class:
in, between, like, eq, ne, gt, ge, lt, le, etc.

Thus, instead of

entryCriteria.add(Restrictions.eq("name", guestbookName));

to specify that a guestbookmust have a certain name, you use

entryQuery.add(RestrictionsFactoryUtil.eq("name", guestbookName));

Similarly, to set projections, you create properties via Liferay’s PropertyFactoryUtil service instead of
through Hibernate’s Property class. Thus, instead of

entryCriteria.setProjection(Property.forName("guestbookId"));

you use

entryQuery.setProjection(PropertyFactoryUtil.forName("guestbookId"));

Notice that in the custom findByGuestbookNameEntryName finder method, there are two distinct dynamic
queries. The first query retrieves a list of guestbook IDs corresponding to guestbook names that match the
guestbookName parameter of the finder method. The second query retrieves a list of guestbook entries with
entry names that match the entryName parameter and have guestbookId foreign keys belonging to the list
returned by the first query.

Here’s the first query:

DynamicQuery guestbookQuery = DynamicQueryFactoryUtil.forClass(Guestbook.class, classLoader)

.add(RestrictionsFactoryUtil.eq("name", guestbookName))

.setProjection(ProjectionFactoryUtil.property("guestbookId"));

By default, DynamicQueryFactoryUtil.forClass(Guestbook.class, classLoader) returns a query
that retrieves a list of all guestbook entities. Adding the .add(RestrictionsFactoryUtil.eq("name",

guestbookName)) restriction limits the results to only those guestbooks whose guestbook names match the
guestbookName parameter. The .setProjection(ProjectionFactoryUtil.property("guestbookId")) projection
changes the result set from a list of guestbook entries to a list of guestbook IDs. This is useful since
guestbook IDs are much less expensive to retrieve than full guestbook entities and the guestbook IDs are all
that the guestbook entry query requires.

Next is an order which applies to the list of entries returned by the findByEntryNameGuestbookName finder
method:

1053

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/RestrictionsFactoryUtil.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/PropertyFactoryUtil.html

Order order = OrderFactoryUtil.desc("modifiedDate");

When this order is applied to a query, the list of results returned by the query are arranged in descending
order of the query entity’s modifiedDate attribute. Thus the most recently modified entities (guestbook
entries, in our example) appear first and the least recently modified entities appear last.

Here’s the second query:

DynamicQuery eventQuery = DynamicQueryFactoryUtil.forClass(Entry.class, classLoader)

.add(RestrictionsFactoryUtil.eq("name", entryName))

.add(PropertyFactoryUtil.forName("guestbookId").in(guestbookQuery))

.addOrder(order);

List<Event> entries = _eventLocalService.dynamicQuery(entryQuery);

Bydefault, DynamicQueryFactoryUtil.forClass(Entry.class, classLoader) returns of list of all guestbook
entry entities. The .add(RestrictionsFactoryUtil.eq("name", entryName)) restriction limits the results to
only those guestbook entries whose names match the entryName parameter of the finder method. Prop-
ertyFactoryUtil is a Liferay utility class with the method forName(String propertyName), which returns the
specified property. This property can be passed to another Liferay dynamic query. This is exactly what
happens in the following line of our example:

.add(PropertyFactoryUtil.forName("guestbookId").in(guestbookQuery))

Here, the code makes sure that the guestbook IDs (foreign keys) of the entry entities in the entityQuery
must belong to the list of guestbook IDs returned by the guestbookQuery. Declaring that an entity property
in one query must belong to the result list of another query is a way to use Liferay’s dynamic query API to
create complex queries, similar to SQL joins.

Lastly, you apply the order defined earlier to the entries returned by the findByEntryNameGuestbookName
finder method:

.addOrder(order);

This orders the list of guestbook entities by the modifiedDate attribute, frommost recent to least recent.

Note: Service Builder not only generates a public List dynamicQuery(DynamicQuery dynamicQuery)

method in -LocalServiceBaseImpl but it also generates public List dynamicQuery(DynamicQuery

dynamicQuery, int start, int end) and public List dynamicQuery(DynamicQuery dynamicQuery, int

start, int end, OrderByComparator orderByComparator) methods. You can go back to step 1 and either
modify your custom finder method or create overloaded versions of your custom finder method to take
advantage of these extra methods and their parameters. The int start and int end parameters are useful
when paginating a result list. start is the lower bound of the range of model entity instances and end is the
upper bound. The OrderByComparator orderByComparator is the comparator by which to order the results.

To use the overloaded dynamicQuery methods of your -LocalServiceBaseImpl class in the (optionally
overloaded) customfinders of your -FinderImpl class, just choose the appropriatemethods for running the dy-
namicqueries: EventLocalService.dynamicQuery(eventQuery), or EventLocalService.dynamicQuery(eventQuery,
start, end) or EventLocalService.dynamicQuery(eventQuery, start, end, orderByComparator).

Great! You’ve now created a custom finder method using Liferay’s Dynamic Query API. Your last step is
to add a service method that calls your finder.

1054

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/PropertyFactoryUtil.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/orm/PropertyFactoryUtil.html

Step 3: Accessing Your Custom Finder Method from the Service Layer

So far, you’ve created a -FinderImpl class, defined a custom findBy- finder method in that class, and imple-
mented the custom finder method using Dynamic Query. Now how do you call your custom finder method
from the service layer?

When you ran Service Builder after defining your custom finder method, the -Finder interface was
generated (e.g., GuestbookFinder). Your portlet class, however, should not call the -Finder interface: only
a local or remote service implementation (i.e., -LocalServiceImpl or -ServiceImpl) in your service module
should invoke the -Finder class. This encourages a proper separation of concerns: the portlet classes in your
application’s web module invoke the business logic of the services published from your application’s service
module. The services, in turn, access the data model using the persistence layer’s finder classes.

Note: In previous versions of Liferay Portal, your finder methods were accessible via -FinderUtil utility
classes. Finder methods are now injected into your app’s local services, removing the need to call finder
utilities.

So you’ll add amethod in the -LocalServiceImpl class that invokes the finder method implementation
via the -Finder class. Then you’ll rebuild your application’s service layer so that the portlet classes and JSPs in
your webmodule can access the services.

For example, for theGuestbook application, you’d add the followingmethod to the EntryLocalServiceImpl
class:

public List<Entry> findByEntryNameGuestbookName(String entryName,

String guestbookName) throws SystemException {

return entryFinder.findByEntryNameGuestbookName(String entryName,

String guestbookName);

}

After you’ve added your findBy-method to your -LocalServiceImpl class, run Service Builder to generate
the interface andmake the finder method available in the EntryLocalService class.

Now you can indirectly call the finder method from your portlet class or from a JSP by calling
EntryLocalService.findByEntryNameGuestbookName(...)!

Congratulations on following the three step process of developing a dynamic query in a custom finder
and exposing it as a service for your portlet!

Actionable Dynamic Queries

Suppose you have over a million users on your portal, and you want to perform some kind of mass update
to a large portion of them. One approach might be to use a dynamic query to retrieve the list of users in
question. Once loaded into memory, you could loop through the list and update each user. However, with
over a million users, the memory cost of such an operation would be too great. In general, if you have very
large numbers of service builder entities, it can be too expensive in terms of memory and speed to run a
dynamic query to retrieve a list of such entities in order to do some processing on them.

Liferay provides actionable dynamic queries to solve this kind of situation. An actionable dynamic query
does not return a list of service builder entities like a regular dynamic query. Instead, it uses a pagination
strategy to load only small numbers of service builder entities into memory at a time and performs some
processing (i.e., performs an action) on each entity. So instead of trying to use a dynamic query to load a
million users into memory and then perform some processing on each of them, a much better strategy is to
use an actionable dynamic query to process them. This way, only small numbers of users are loaded into
memory at a time, but you still process all the users.

1055

When you run Service Builder, it includes actionable dynamic query support in the generated API and
service modules. For example, consider the API module of the BLADE service builder example project.

The FooLocalService interface in the API module contains these methods:

@Transactional(propagation = Propagation.SUPPORTS, readOnly = true)

public ActionableDynamicQuery getActionableDynamicQuery();

public DynamicQuery dynamicQuery();

@Transactional(propagation = Propagation.SUPPORTS, readOnly = true)

public ExportActionableDynamicQuery getExportActionableDynamicQuery(

PortletDataContext portletDataContext);

@Transactional(propagation = Propagation.SUPPORTS, readOnly = true)

public IndexableActionableDynamicQuery getIndexableActionableDynamicQuery();

The FooLocalServiceBaseImpl class in the service module implements each of these methods. See here
and here for details.

The implementation of FooLocalService.dynamicQuery() uses DynamicQueryFactoryUtil to obtain new
(regular) dynamic query instance for the Foo entity. This is the pattern shown earlier.

You can use FooLocalService.getActionableDynamicQuery() to obtain a new actionable dynamic
query instance for the Foo entity. Once you have the instance, you can use chaining to build up
the query using any of the techniques described above for regular dynamic queries, such as re-
strictions or projections. But the point of using an actionable dynamic query is to specify an
action to perform on each entity that results from the query. To specify such an action, use the
ActionableDynamicQuery.setPerformActionMethod<PerformActionMethod<?> method. Once the query has
been defined and an action has been specified, use the ActionableDynamicQuery.performActions to perform
the action on each entity that results from the query.

Here’s an example from a test for Liferay DXP’s Bookmarks application:

ActionableDynamicQuery actionableDynamicQuery = BookmarksEntryLocalServiceUtil.getActionableDynamicQuery();

actionableDynamicQuery.setPerformActionMethod(new ActionableDynamicQuery.PerformActionMethod<BookmarksEntry>() {

@Override

public void performAction(BookmarksEntry bookmarksEntry) {

Assert.assertNotNull(bookmarksEntry);

count.increment();

}

});

actionableDynamicQuery.performActions();

You can see the full context here.
Consider the FooLocalService from the BLADE service builder API project again. Formost of your action-

able dynamic query use cases, the actionable query returned by FooLocalService.getActionableDynamicQuery
will suffice. This actionable dynamic query is an instance of the concrete class DefaultActionableDynamicQuery.
However, in addition to FooLocalService.getActionableDynamicQuery, there are two additional meth-
ods related to actionable dynamic queries: FooLocalService.getExportActionableDynamicQuery and
FooLocalService.getIndexableActionableDynamicQuery. These methods return instances of con-
crete classes (either IndexableActionableDynamicQuery or ExportActionableDynamicQuery) that extend
DefaultActionableDynamicQuery. IndexableActionableDynamicQuery contains methods designed to facilitate
processing that involves search indexing and ExportActionableDynamicQuery contains methods designed to
facilitate processing that involves export / import functionality.

1056

https://github.com/liferay/liferay-blade-samples/blob/master/gradle/apps/service-builder/basic/basic-api/src/main/java/com/liferay/blade/samples/servicebuilder/service/FooLocalService.java#L156-L166
https://github.com/liferay/liferay-blade-samples/blob/master/gradle/apps/service-builder/basic/basic-service/src/main/java/com/liferay/blade/samples/servicebuilder/service/base/FooLocalServiceBaseImpl.java#L247-L330
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-test/src/testIntegration/java/com/liferay/bookmarks/service/persistence/test/BookmarksEntryPersistenceTest.java#L494-L512

To see examples of configuring indexer and export actionable dynamic queries, see the Bookmarks
application here and here. To see an example invocation of an indexable actionable dynamic query, see the
reindexEntriesmethod of the Bookmarks application’s indexer here.

Related Topics

Service BuilderWeb Services
Creating Local Service
Invoking Local Services

81.8 Configuring service.properties

In this tutorial, you’ll learn how to use and edit the service.properties file. You’ll also learn about the
properties included in this file and how to set them to fit your needs.

Service Builder generates a service.propertiesfile in your *-servicemodule’s src/main/resources folder.
Liferay DXP uses the properties in this file to alter your service’s database schema. You should not modify
this file, but rather make any necessary overrides in a service-ext.properties file in that same folder.

Here are some of the properties included in the service.properties file:

• build.namespace: This is the namespace you defined in your service.xml. Liferay distinguishes differ-
ent plugins from each other using their namespaces.

• build.number: Liferay distinguishes different builds of your plugin. Each time a distinct build of your
plugin is deployed to Liferay, Liferay increments this number.

• build.date: This is the time of the latest build of your plugin.
• include-and-override: Thedefault value of this property defines service-ext.properties as an override
file for service.properties.

Note: The build.auto.upgrade property is available for WAR-style Service Builder applications. This
property determines whether or not Liferay should automatically apply changes to the database model
when a new version of the plugin is deployed. This is true by default. This property is not necessary for
module-style applications.

It’s sometimes useful to override the build.auto.upgrade property in legacy projects from
service.properties. Setting build.auto.upgrade=false in your service-ext.properties file prevents
Liferay from trying automatically to apply any changes to the database model when a new version of
the plugin is deployed. This is needed in projects to manually manage the changes to the database
(recommended) or in which the SQL schema has intentionally beenmodifiedmanually after generation by
Service Builder.

Awesome! You now have all the tools necessary to set up your own service-ext.properties file.

Related Topics

What is Service Builder?
Creating Local Services

1057

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/base/BookmarksEntryLocalServiceBaseImpl.java#L291-L302
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/base/BookmarksEntryLocalServiceBaseImpl.java#L313-L336
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/search/BookmarksEntryIndexer.java#L155-L210

81.9 Connecting Service Builder to External Data Sources
Sometimes you want to use a data source other than Liferay DXP’s. To do this, the data source must be
defined in portal-ext.properties or configured as a JNDI data source on Liferay DXP’s app server. This
tutorial shows how to connect Service Builder to a data source.

Note: All entities defined in a Service Buildermodule’s service.xmlfile are bound to the same data source.
Binding different entities to different data sources requires defining the entities in separate Service Builder
modules and configuring each of the modules to use a different data source.

Here are the steps:

1. If Liferay DXP’s application server defines the data source using JNDI, skip this step. Otherwise,
specify the data source in a portal-ext.properties file. Distinguish it from Liferay DXP’s default data
source by giving it a prefix other than jdbc.default.. This example uses prefix jdbc.ext.:

jdbc.ext.driverClassName=org.mariadb.jdbc.Driver

jdbc.ext.password=userpassword

jdbc.ext.url=jdbc:mariadb://localhost/external?useUnicode=true&characterEncoding=UTF-8&useFastDateParsing=false

jdbc.ext.username=yourusername

2. Create a Spring bean that points to the data source. To do this, create an ext-spring.xml file in your
Service Builder module’s src/main/resources/META-INF/spring folder or in your traditional portlet’s
WEB-INF/src/META-INF folder. Define the following elements:

• A data source factory Spring bean for the data source. It’s different based on the type:

– JNDI: Specify an arbitrary property prefix and prepend the prefix to a JNDI name property
key. Here’s an example:

<bean class="com.liferay.portal.dao.jdbc.spring.DataSourceFactoryBean"

id="liferayDataSourceFactory">

<property name="propertyPrefix" value="custom." />

<property name="properties">

<props>

<prop key="custom.jndi.name">jdbc/externalDataSource</prop>

</props>

</property>

</bean>

– Portal Properties: Specify a property prefix that matches the prefix (e.g., jdbc.ext.) you
used in portal-ext.properties.

<bean class="com.liferay.portal.dao.jdbc.spring.DataSourceFactoryBean"

id="liferayDataSourceFactory">

<property name="propertyPrefix" value="jdbc.ext." />

</bean>

• A Liferay DXP data source bean that refers to the data source factory Spring bean.
• An alias for the Liferay DXP data source bean.

Here’s an example ext-spring.xml that points to a JNDI data source:

1058

<?xml version="1.0"?>

<beans default-destroy-method="destroy" default-init-method="afterPropertiesSet"

xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-

3.0.xsd">

<!-- To define an external data source, the liferayDataSource Spring bean

must be overridden. Other default Spring beans like liferaySessionFactory

and liferayTransactionManager may optionally be overridden.

liferayDataSourceFactory refers to the data source configured on the

application server. -->

<bean class="com.liferay.portal.dao.jdbc.spring.DataSourceFactoryBean"

id="liferayDataSourceFactory">

<property name="propertyPrefix" value="custom." />

<property name="properties">

<props>

<prop key="custom.jndi.name">jdbc/externalDataSource</prop>

</props>

</property>

</bean>

<!-- The data source bean refers to the factory to access the data source.

-->

<bean

class="org.springframework.jdbc.datasource.LazyConnectionDataSourceProxy"

id="liferayDataSource">

<property name="targetDataSource" ref="liferayDataSourceFactory" />

</bean>

<!-- In service.xml, we associated our entity with the extDataSource. To

associate the extDataSource with our overridden liferayDataSource, we define

this alias. -->

<alias alias="extDataSource" name="liferayDataSource" />

</beans>

The liferayDataSourceFactory above refers to a JNDI data source named jdbc/externalDataSource. If
the data sourcewas specified via data source properties in a portal-ext.propertiesfile, the beanwould
require only a propertyPrefix property that matches the data source property prefix.

Thedata sourcebean liferayDataSource is overriddenwithone that refers to the liferayDataSourceFactory
bean. The override affects this bundle (module orWeb Application Bundle) only.

The alias extDataSource refers to the liferayDataSource data source bean.

Note: To use an external data source in multiple Service Builder

bundles, you must override the `liferayDataSource` bean in each bundle.

2. In your Service Buildermodule’s service.xmlfile, set your entity’s data source to the liferayDataSource
alias you specified in your ext-spring.xml file. Here’s an example:

<?xml version="1.0"?>

<!DOCTYPE service-builder PUBLIC "-//Liferay//DTD Service Builder 7.0.0//EN"

"http://www.liferay.com/dtd/liferay-service-builder_7_0_0.dtd">

<service-builder package-path="com.liferay.example" >

<namespace>TestDB</namespace>

<entity local-service="true" name="Foo" table="testdata" data-source="extDataSource"

1059

remote-service="false" uuid="false">

<column name="id" db-name="id" primary="true" type="long" />

<column name="foo" db-name="foo" type="String" />

<column name="bar" db-name="bar" type="long" />

</entity>

</service-builder>

Note the example’s <entity> tag attributes:

• data-source: The liferayDataSource alias ext-spring.xml specifies.
• table: Your entity’s database table.

Also note that your entity’s <column>s must have a db-name attribute set to the column name.

3. Run Service Builder.

Now your Service Builder services use the data source. You can use the services in your business logic as
you always have regardless of the underlying data source.

Related Topics

Connecting to JNDI Data Sources
Service Builder
Running Service Builder and Understanding the Generated Code
Business Logic with Service Builder

1060

Chapter 82

Business Logic with Service Builder

Once you’ve defined your application’s entities and ran Service Builder to generate your service and per-
sistence layers, you can begin adding business logic. Each entity generated by Service Builder contains a
model implementation, local service implementation, and optionally a remote service implementation class.
Your application’s business logic can be implemented in these classes. The generated service layer contains
defaultmethods for CRUDoperations, but often times it’s necessary to implement additionalmethods. Once
you’ve added your business logic, running Service Builder again regenerates your application’s interfaces
andmakes your new logic available for invocation.

In this section of tutorials, you’ll learn about creating and invoking your application’s local services,
finding and invoking Liferay’s services, and customizing Liferay services.

82.1 Creating Local Services

The heart of your service is its *LocalServiceImpl class. This class is your entity’s local service extension
point. Local services can be invoked within your application or by other Liferay applications running on
the same Liferay instance as your application. Remote services differ from local services in that remote
services can be invoked from any application that can access your Liferay instance (e.g., over the Internet)
and has permission to do so. All of your application’s core business logic for working with your entity model
(or models) should be added as methods of your *LocalServiceImpl class. Before adding any custom service
methods, however, you should review the initial service classes that Service Builder generated during its
initial run.

Best Practice: If your application needs both local and remote services, determine the service
methods that your application needs for working with your entity model. Add these service methods to
*LocalServiceImpl. Then create corresponding remote services methods in *ServiceImpl. Add permission
checks to the remote servicemethods andmake the remote servicemethods invoke the local servicemethods.
The remote service methods can have the same names as the local service methods that they call. Within
your application, only call the remote services. This ensures that your service methods are secured and that
you don’t have to duplicate permissions code.

Note that Service Builder creates a *LocalService class which is the interface for the local ser-
vice. It contains the signatures of every method in *LocalServiceBaseImpl and *LocalServiceImpl.
*LocalServiceBaseImpl contains some automatically generated methods that provide functionality that’s
common to all local services. Since the *LocalService class is generated, you should never modify it. If you

1061

do, your changes will be overwritten the next time you run Service Builder. All custom code should be placed
in *LocalServiceImpl, where it will not be overwritten.

For example, the Bookmarks application’s BookmarksEntryLocalServiceImpl class demonstrates the
kinds of service methods that applications commonly need for working with an entity model. Click on the
class’s link to view some of its local service methods.

In order to add an entity to the database, you need an ID for the entity. Liferay provides a counter service
which you call to obtain a unique ID for each new entity. It’s possible to use the incrementmethod of Liferay’s
CounterLocalService class, but Service Builder already makes a CounterLocalService instance available to
your app’s *LocalServiceBaseImpl. The CounterLocalService instance is injected into a module as an OSGi
service:

@ServiceReference(type=com.liferay.counter.kernel.service.CounterLocalService.class)

protected com.liferay.counter.kernel.service.CounterLocalService counterLocalService;

If you’re creating local services in Liferay’s core, the CounterLocalService instance is injected as a Spring
bean:

@BeanReference(type=com.liferay.counter.kernel.service.CounterLocalService.class)

protected com.liferay.counter.kernel.service.CounterLocalService counterLocalService;

Sinceyour *LocalServiceImpl class extends *LocalServiceBaseImpl, youcanaccess this CounterLocalService
instance. See your app’s *LocalServiceBaseImpl for a list of all the Spring beans/OSGi services you have
available for use.

You can use either the injected class’s incrementmethod or you can call Liferay’s CounterLocalService’s
incrementmethod directly. For example, a bookmarks entry is assigned a unique ID like this:

long entryId = counterLocalService.increment();

The Bookmarks application uses the generated entryId as the ID for the new BookmarksEntry:

BookmarksEntry entry = bookmarksEntryPersistence.create(entryId);

bookmarksEntryPersistence is oneof theOSGi services injected into EventLocalServiceBaseImplbyService
Builder.

Next, the Bookmarks application sets the attribute fields that were specified for the BookmarksEntry
entity in the service.xml. These attributes include the groupId, userId, name, url, serviceContext, etc. Lastly,
a Bookmarks folder IDmust be associated to the entry.

It’s also important to assign values to the audit fields. In the Bookmarks application, the group of the en-
tity is set first. An entity’s group determines its scope. In this example, the group is the site. The company and
user are specified after the group is set. The company represents the portal instance and the user is the user
who created the bookmark. The Bookmarks application sets the createDate and modifiedDate of the Event to
the current time. After that, the generated addEntrymethod of BookmarksEntryLocalServiceBaseImpl is called
to add the bookmark to the database. Lastly, the bookmark is added as a resource so that permissions can be
applied to it later. To view the addEntrymethod in its entirety, see the BookmarksEntryLocalServiceImpl
class.

The Bookmarks application creates local services for BookmarksFolder entities as well as for Bookmark-
sEntry entities. Take a look at the custom servicemethods available in the BookmarksFolderLocalServiceImpl
class for a better understanding of services available for bookmark folders.

Before you can use any custommethods that you added to your *LocalServiceImpl class, youmust run
Service Builder again. Running Service Builder again adds the method signatures of your custom service

1062

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/counter/kernel/service/CounterLocalService.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/counter/kernel/service/CounterLocalService.html
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksEntryLocalServiceImpl.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/java/com/liferay/bookmarks/service/impl/BookmarksFolderLocalServiceImpl.java

methods to your *LocalService interface and updates your *LocalServiceUtil class. For more information
on running Service Builder see the Running Service Builder and Understanding the Generated Code tutorial.

Service Builder looks through your *LocalServiceImpl class and automatically copies the signatures of
each method into the corresponding *LocalService interface. After running Service Builder, you can test
that your services are working as intended by invoking one of the methods that Service Builder added to
your *LocalService class. For example, if you were developing the Bookmarks application, you could make
the following service invocation to make sure that your service was working as intended:

BookmarksEntryLocalService.addBookmarksEntry(bookmarksEntry);

In addition to all of the Java classes and interfaces, Service Builder also generates a service.properties
file. To learn about the service.properties file and how to configure it, please refer to the Configuring
service.properties tutorial. To learn how to invoke local services, please refer to the Invoking Local Services
tutorial.

Related Topics

Running Service Builder and Understanding the Generated Code
Invoking Local Services
Creating Remote Services

82.2 Invoking Local Services
In this tutorial, you’ll learn about the differences between local and remote services, and when you should
invoke local services rather than their remote service counterparts.

Once Service Builder has generated your module project’s services, you can call them from anywhere in
your application. When invoking a local service, you should call one of the servicemethods of a *LocalService
class. You should never call the service methods of an *Impl class directly. Local services in your project are
generated automatically when using Service Builder. To do this, set the local-service attribute to true for
an entity in the service.xml file. Service Builder generates methods that call existing services, but you can
create newmethods in the *LocalServiceImpl class that can be generated into new exposed methods in your
module’s services (*LocalService, *LocalServiceUtil, etc.).

Many of Liferay’s module applications use their generated remote services for important calls in their
controller layer, for example, because they offer conveniences like configured permissions checking. Remote
services perform a permission check and then invoke the corresponding local service. However, there are
many services you’d like to expose only to your local project, and do not want other applications to have
access to.

In the Bookmarks application, for example, the BookmarksEntryLocalService interface provides the
openEntrymethod, which opens a bookmark for viewing. The remote service interface BookmarksEntrySer-
vice, however, does not provide this method. Why could this be?

There are many services that you don’t want to expose to other applications in Liferay. In the example
mentioned above, Bookmarks are configured to only open locally,meaning that other apps do not have access
to open and view a bookmark entry. This should only be done by the Bookmarks application. Therefore,
in certain cases, you’ll need to invoke local services instead of remote services. For more information on
invoking remote services, see the Invoking Remote Services tutorial.

To see how you could call a local service from a portlet action class, you’ll examine the EditOrganization-
MVCActionCommand class. Notice that this class has a private instance variable called _dlAppLocalService.
The _dlAppLocalService instance variable of type DLAppLocalService gets an instance of DLAppLocalService
at runtime via dependency injection. The instance variable is set like this:

1063

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-api/src/main/java/com/liferay/bookmarks/service/BookmarksEntryLocalService.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-api/src/main/java/com/liferay/bookmarks/service/BookmarksEntryService.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/bookmarks/bookmarks-api/src/main/java/com/liferay/bookmarks/service/BookmarksEntryService.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/users-admin/users-admin-web/src/main/java/com/liferay/users/admin/web/portlet/action/EditOrganizationMVCActionCommand.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/users-admin/users-admin-web/src/main/java/com/liferay/users/admin/web/portlet/action/EditOrganizationMVCActionCommand.java

@Reference(unbind = "-")

protected void setDLAppLocalService(DLAppLocalService dlAppLocalService) {

_dlAppLocalService = dlAppLocalService;

}

This tutorial demonstrated how you can call the local services generated by Service Builder in your project.
To learn how to call Liferay services, see the Service Security Layers and Finding and Invoking Liferay Services
tutorials.

Related Topics

Creating Local Services
Creating Remote Services
Invoking Remote Services

82.3 Finding and Invoking Liferay Services
In this tutorial, you’ll learn how to search for portal services and portlet services. You can find Liferay’s
services by searching for them in the Javadocs: @platform-ref@/7.0-latest/javadocs/.

First, you’ll learn how to find a portal service using Liferay’s Javadocs.

Finding Liferay Portal Services

Searching for Liferay Portal services is easy and intuitive. The first two options, portal-impl and portal-

kernel, are the most popular options when searching for Liferay’s Javadocs. In summary, the portal-kernel
directory provides interfaces and utils, and the portal-impl directory provides service implementations that
implement those interfaces. The remaining options are miscellaneous util and test classes that are used in
Liferay DXP.

Liferay’s Javadocs are easy to browse and well-organized. Here’s how to find theOrganization services,
for example:

1. In your browser, open up the Javadocs: @platform-ref@/7.0-latest/javadocs/ You’re offered several
options, which were discussed earlier. Select portal-kernel.

2. Under Portal Kernel, click on the link for the com.liferay.portal.kernel.service package, since the
services for the Organization entity belong to the Portal scope.

3. Find and click on the *LocalService class (in this case, OrganizationLocalService) in theClass Summary
table or the Classes list at the bottom of the page.

That was easy! What if you want to findmodule services?

Finding Liferay Module Services

Searching for Liferay module services is also easy. The Javadocs for modules are hosted on Liferay’s Nexus
repository, and can be viewed by downloading and extracting the module’s *javadoc.jar file. You can learn
move about how amodule’s Java API is organized by reading the Java APIs section.

Here’s an example of how to find services for a bookmarks entry:

1. Navigate to Liferay’s Nexus repository and select com.liferay.bookmarks.api. Then select the appro-
priate version.

1064

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/

2. Select the com.liferay.bookmarks.api-[VERSION]-javadoc.jar link, which downloads that JAR file. Ex-
tract the JAR file, once downloaded.

3. Open the extracted contents and select the index.html file.

4. Select the com.liferay.bookmarks.service package from the main view, and then select the
BookmarksEntryLocalService class in the Class Summary table or the Classes list.

Awesome! You’ve successfully located the bookmark entry’s services.
Another easyway to search for services inmodule projects is by importing them into your IDE.For Liferay

@ide@, you can right-click in the Package Explorer and navigate to Import → LiferayModule Project(s). Then
browse for your module, select the build type, and click Finish. Now you can peruse your module services
from Liferay @ide@.

Now you’re ready to invoke Liferay services.

Invoking Liferay Services Locally

Every Liferay service provides a local interface to clients running in the same JVM as Liferay Portal. Many
local services (e.g., *LocalService classes) are called by remote services (e.g., *Service classes). The remote
classes mask the complexity of the local service implementations and include permission checks. The core
Liferay services that are provided as part of Liferay Portal were generated by the same Service Builder tool
that you can use in your applications. You can invoke a remote Liferay service by calling the appropriate
*LocalService or *Service class. The following code found in the journal-content-webmodule demonstrates
how to retrieve the portal instance’s group by calling Liferay’s GroupLocalService:

Group group = _groupLocalService.getCompanyGroup(companyId);

By Liferay convention, the _groupLocalService instance variable is created and set for usage in the class
it’s called from:

private GroupLocalService _groupLocalService;

@Reference(unbind = "-")

protected void setGroupLocalService(GroupLocalService groupLocalService) {

_groupLocalService = groupLocalService;

}

The @Reference(unbind="-") annotation retrieves a reference to a service of type GroupLocalService, and
ignores how this service has been published and who published it.

Besides the services Service Builder made available for your application, you can also access any service
published within the OSGi Registry. This means the following services are available:

• Beans defined in Liferay’s core
• Beans created in other module app contexts
• Services declared using Declarative Service
• Services registered using the OSGi low level API

Some types of portlets don’t have access to the OSGi Registry using Declarative Services (e.g., Spring
MVC and JSF). You can call OSGi services in these portlets by using Service Trackers.

You’ll learn more about referencing OSGi services next.

1065

Referencing OSGi Services

All the services createdwithin your Service Builder application arewired using an internal Spring Application
Context. This uses AOP proxies to give your services the ability to deal with transactions, indexing, and
security.

In many cases, however, you’ll need to reference an external service (i.e., something that is not defined
within your Spring Application Context). Liferay has included the ability to reference OSGi services from
your Spring beans using the @ServiceReference annotation.

You’ll step through a simple example next.
Suppose you’re building an application with a simple entity defined in your service.xml file. The applica-

tion needs to send an SMS every time a new entity is created, and the SMSService is provided by a module
installed in the system.

Howwould you get a reference from the -LocalServiceImpl (Spring bean) to an external service? You can
do this by using the @ServiceReference annotation:

@ServiceReference

private SMSService _smsService;

Using this annotation lets you retrieve a reference to an OSGi service from a regular Spring bean. This
provides some nice benefits. If the SMSService is not available, the whole Spring context is not created
until the service is available. Likewise, if the SMSService suddenly disappears, the whole Spring Application
Context is destroyed. This makes our Spring apps muchmore robust and versatile.

Fortunately, Service Builder generates this kind of code every time you have a reference to an entity
which is not defined in your service.xml file. For example, imagine that your entity has a reference provided
in your service.xml file, to the Group entity:

<reference entity="Group" package-path="com.liferay.portal" />

The generated code for this entity would look like the following:

@ServiceReference(type = com.liferay.portal.kernel.service.GroupLocalService.class)

protected com.liferay.portal.kernel.service.GroupLocalService groupLocalService;

Great! You know how to find Liferay’s core and module services, and can invoke them from your applica-
tion. You also learned about referencing OSGi services.

Related Topics

Invoking Local Services
Invoking Remote Services
JSONWeb Services Invoker
Service Trackers

1066

Chapter 83

Data Access

Liferay DXP’s data can be retrieved using its APIs. It’s important, however, to understand how data is used
amid all of Liferay DXP’s constructs. At a basic level, all the data is represented by an object model. This is
retrieved from the database and automatically mapped from SQL to the model by Service Builder. Using
Model Listeners, you can listen for events on these models and take action when they are stored or retrieved.

All data in Liferay DXP is scoped to a context: a site, a page, or global. When storing data in your
application, you should therefore take advantage of scope so your application integrates well with the system
and users can add your application in whatever scope they need it.

Read on to learn how to do both of these things.

83.1 Data Scopes

Apps in Liferay DXP can restrict their data to specific scopes. Scopes provide a context for the application’s
data. For example, a site-scoped app can display its data across a single site. For a detailed explanation of
scopes, see the user guide article Application Scope. To give your applications scope, you must manually add
support for it. This tutorial shows you how.

Scoping Your Entities

In your service layer, your entities must have a companyId attribute of type long to enable scoping by portal
instance and a groupId attribute of type long to enable scoping by site. Using Service Builder is the simplest
way to do this. For instructions on this, see the tutorial series Service Builder Persistence and Business Logic
with Service Builder.

Enabling Scoping

To enable scoping in your app, set the property "com.liferay.portlet.scopeable=true" in your portlet class’s
@Component annotation. For example, this property is set to true in the @Component annotation ofWeb Content
Display Portlet’s portlet class:

@Component(

immediate = true,

property = {

...

"com.liferay.portlet.scopeable=true",

1067

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/web-experience/journal/journal-content-web/src/main/java/com/liferay/journal/content/web/internal/portlet/JournalContentPortlet.java
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/web-experience/journal/journal-content-web/src/main/java/com/liferay/journal/content/web/internal/portlet/JournalContentPortlet.java

...,

},

service = Portlet.class

)

public class JournalContentPortlet extends MVCPortlet {...

That’s it! You can now access your app’s scope in your code. The next section shows you how.

Accessing Your App's Scope

Users can typically set an app’s scope to a page, a site, or the entire portal. To handle your app’s data, you
must access it in its current scope. Liferay DXP gives you techniques to do this. Your app’s scope is available:

1. Via the scopeGroupId variable that is injected in your JSPs whenever you use the <liferay-

theme:defineObjects /> tag. This variable contains your app’s current scope. For example, Liferay’s
Bookmarks app uses scopeGroupId in its view.jsp to retrieve the bookmarks and total number of
bookmarks in the current scope:

...

total = BookmarksEntryServiceUtil.getGroupEntriesCount(scopeGroupId, groupEntriesUserId);

bookmarksSearchContainer.setTotal(total);

bookmarksSearchContainer.setResults(BookmarksEntryServiceUtil.getGroupEntries(scopeGroupId, groupEntriesUserId, bookmarksSearchContainer.getStart(), bookmarksSearchContainer.getEnd()));

...

2. By calling the getScopeGroupId()method on the request’s ThemeDisplay instance. This method returns
your app’s current scope. For example, the EditEntryMVCActionCommand class in Liferay’s Blogs app does
this in its subscribe and unsubscribemethods:

protected void subscribe(ActionRequest actionRequest) throws Exception {

ThemeDisplay themeDisplay = (ThemeDisplay)actionRequest.getAttribute(

WebKeys.THEME_DISPLAY);

_blogsEntryService.subscribe(themeDisplay.getScopeGroupId());

}

protected void unsubscribe(ActionRequest actionRequest) throws Exception {

ThemeDisplay themeDisplay = (ThemeDisplay)actionRequest.getAttribute(

WebKeys.THEME_DISPLAY);

_blogsEntryService.unsubscribe(themeDisplay.getScopeGroupId());

}

If you know your app always needs the portal instance ID, use themeDisplay.getCompanyId().

3. By calling the getScopeGroupId()method on a ServiceContext object. You can findmore information
on this, and an example, in the tutorial Understanding ServiceContext. If you know your app always
needs the portal instance ID, use the getCompanyId()method on a ServiceContext object.

Awesome! Now you know how to get your app’s scope. Next, you’ll learn about a special use case: getting
the site scope for entities that belong to a different app.

1068

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/collaboration/bookmarks/bookmarks-web/src/main/resources/META-INF/resources/bookmarks/view.jsp
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/theme/ThemeDisplay.html
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/collaboration/blogs/blogs-web/src/main/java/com/liferay/blogs/web/internal/portlet/action/EditEntryMVCActionCommand.java

Accessing the Site Scope Across Apps

Theremay be times when you need to access a different app’s site-scoped data, even though your appmay
be scoped to a page or the portal. For example, web content articles can be created in the page, site, or
portal scope. Structures and Templates for such articles, however, can only exist in the site scope. If you
use the above techniques to retrieve the app’s current scope, you won’t always get the site scope required for
Structures and Templates. Youmight get the page or portal scope instead, if that’s how the user configured
your app. What a pickle! Never fear, the ThemeDisplaymethod getSiteGroupId() is here! This method always
gets the site scope, no matter your app’s current scope. For example, theWeb Content app’s edit_feed.jsp
uses this method to get the site ID needed to retrieve Structures:

...

ddmStructure = DDMStructureLocalServiceUtil.fetchStructure(themeDisplay.getSiteGroupId(),

PortalUtil.getClassNameId(JournalArticle.class), ddmStructureKey, true);

...

Great! Now you know how to scope your apps, access their scope, and even get the site scope of entities
that belong to other apps. Now that’s minty-fresh breath!

Related Topics

Application Scope
What is Service Builder?
Service Builder Persistence
Business Logic with Service Builder

1069

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/web-experience/journal/journal-web/src/main/resources/META-INF/resources/edit_feed.jsp#L40

Chapter 84

Web Services

Generating and invoking web services is a central part of the Liferay development experience. After all,
what good is it if you can’t generate remote services for an app you’re developing, or call Liferay’s built-in
remote services? It’s no good at all! Liferay without web services would be like a luxury car without wheels.
Fortunately, Liferay comes with full set of JSON and SOAPweb services that you can invoke until your heart’s
content. Liferay also provides Service Builder to generate local and remote services for your apps.

The tutorials that follow show you how to work with web services in Liferay. You’ll learn how to use
Service Builder to generate remote services for your apps. You’ll also learn how to invoke those services, and
any other Liferay web services.

1071

Chapter 85

Service Builder Web Services

Liferay’s Service Builder can generate local and remote services for your Liferay apps. The section of tutorials
on Service Builder gives a general introduction to Service Builder, as well as instructions on generating your
app’s local services. But what if you want to use Service Builder to generate your app’s remote services?
And how should you invoke remote services generated by Service Builder? No sweat! That’s exactly what
the tutorials here cover. This section shows you how to use Service Builder to create JSON and SOAP web
services, and how to invoke those services. Because Liferay’s own developers use Service Builder to generate
JSON and SOAP web services, knowing how to invoke these services is especially important. This section
includes the following tutorials:

• Creating Remote Services: Use Service Builder to generate your app’s JSON and SOAP web services.

• Invoking Remote Services: Learn the basics of invoking JSON and SOAP web services in Liferay.

• Service Security Layers: Learn how Liferay secures web services, and how to invoke themwith proper
authentication.

• Registering JSONWeb Services: Learn some of the details behind how Service Builder generates JSON
web services, and how you can tailor this process to your needs.

• Invoking JSON Web Services: Learn how to invoke Liferay’s JSON web services API via URL. This
includes information on passing URL parameters, troubleshooting, andmore.

• JSONWeb Services Invoker: Learn how to use Liferay’s JSONWeb Services Invoker to optimize your
JSONweb service calls.

• JSONWeb Services Invocation Examples: See examples of how to invoke Liferay’s JSONweb services
via JavaScript, URL, and cURL.

• Configuring JSONWeb Services: Learnwhich properties you can use to control how JSONweb services
behave in your Liferay instance.

• SOAPWeb Services: Learn how SOAP web services work in Liferay.

1073

85.1 Creating Remote Services
Many default Liferay DXP services are available as web services. Liferay DXP exposes its web services via
JSON and SOAP web services. If you’re running the portal locally on port 8080, visit the following URL to
browse Liferay DXP’s default JSONweb services:

http://localhost:8080/api/jsonws/

To browse Liferay DXP’s default SOAP web services, visit this URL:

http://localhost:8080/api/axis

These web services APIs can be accessed bymany different kinds of clients, including non-portlet and
even non-Java clients. You can use Service Builder to generate similar remote services for your projects’
custom entities. When you run Service Builder with the remote-service attribute set to true for an entity, all
the classes, interfaces, and files required to support both SOAP and JSONweb services are generated for
that entity. Service Builder generates methods that call existing services, but it’s up to you to implement the
methods that are exposed remotely. In this tutorial, you’ll learn how to generate remote services for your
application. When you’re done, your application’s remote service methods can be called remotely via JSON
and SOAP web services.

Using Service Builder to Generate Remote Services

Remember that you should implement your application’s local service methods in *LocalServiceImpl. You
should implement your application’s remote service methods in *ServiceImpl.

Best Practice: If your application needs both local and remote services, determine the service
methods that your application needs for working with your entity model. Add these service methods to
*LocalServiceImpl. Then create corresponding remote services methods in *ServiceImpl. Add permission
checks to the remote servicemethods andmake the remote servicemethods invoke the local servicemethods.
The remote service methods can have the same names as the local service methods that they call. Within
your application, only call the remote services. This ensures that your service methods are secured and that
you don’t have to duplicate permissions code.

As an example, consider Liferay DXP’s Blogs app. Articles are represented by the JournalArticle entity.
This entity is declared in the journal-servicemodule’s service.xml file with the remote-service attribute set
to true. Service Builder therefore generates the remote service class JournalArticleServiceImpl to hold the
remote service method implementations. If you were developing this app from scratch, this class would
initially be empty; you must use it to implement the entity’s remote service methods. Also, note that the
remote service method implementations in JournalArticleServiceImpl follow best practice by checking
permissions and calling the corresponding local service method. For example, each addArticlemethod in
JournalArticleServiceImpl checks permissions via the custom permissions class JournalFolderPermission
and then calls the local service’s matching addArticlemethod:

@Override

public JournalArticle addArticle(...)

throws PortalException {

JournalFolderPermission.check(

getPermissionChecker(), groupId, folderId, ActionKeys.ADD_ARTICLE);

return journalArticleLocalService.addArticle(...);

}

1074

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/web-experience/journal/journal-service/service.xml
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/web-experience/journal/journal-service/src/main/java/com/liferay/journal/service/impl/JournalArticleServiceImpl.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/web-experience/journal/journal-service/src/main/java/com/liferay/journal/service/permission/JournalFolderPermission.java

You’ll also need to develop custom permissions classes for each entity you need to perform permis-
sions checks on. Also note that the local service is called via the journalArticleLocalService field. This
is a Spring bean of type JournalArticleLocalServiceImpl that’s injected into JournalArticleServiceImpl by
Service Builder. See the class JournalArticleServiceBaseImpl for a complete list of Spring beans available in
JournalArticleServiceImpl.

After you’ve finished adding remote service methods to your *ServiceImpl class, save it and run Service
Builder again. After running Service Builder, deploy your project and check the Liferay DXP JSON web
services URL http://localhost:8080/api/jsonws/ to make sure that your remote services appear when you
select your application’s context path.

Nice work! You’ve successfully used Service Builder to generate your app’s remote services. To make
these services available via SOAP, however, youmust build and deploy your app’s Web Service Deployment
Descriptor (WSDD).The next section shows you how to do this. If you don’t need to generate SOAP web
services, you canmove on to the tutorial Invoking Remote Services.

Generating Your App's WSDD

Liferay DXP uses Apache Axis to make SOAP web services available. Since Axis requires aWSDD tomake
an app’s remote services available via SOAP, you must build and deploy a WSDD for your app. To create
yourWSDD, youmust install Liferay’s WSDD Builder Gradle plugin in your app’s project. How you do this,
however, depends on what kind of project you have. For multi-module projects like a Service Builder project
in a Liferay Workspace, you’ll install the plugin via the workspace’s settings.gradle file. This applies the
WSDD Builder plugin to every module in the workspace that uses Service Builder (typically the *-api and
*-servicemodules). If you have a standalone *-servicemodule that uses Service Builder, however, you’ll
install theWSDD Builder plugin in the module’s build.gradle file.

The next section shows you how to install theWSDD builder in a multi-module project. If you have a
standalone module project, skip ahead to the section Installing theWSDDBuilder Plugin in a StandaloneModule
Project.

Installing the WSDD Builder Plugin in a Multi-module Project

To install the WSDD Builder plugin in a multi-module project like a Service Builder project in a Liferay
Workspace, do the following in the workspace’s settings.gradle file:

1. Add the ServiceBuilderPlugin and WSDDBuilderPlugin imports to the top of the file:

import com.liferay.gradle.plugins.service.builder.ServiceBuilderPlugin

import com.liferay.gradle.plugins.wsdd.builder.WSDDBuilderPlugin

2. In the repositories block, add the Liferay CDN repository via Maven:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

This repository hosts theWSDDBuilder library, its transitive dependencies, and other Liferay libraries.
Note that if you created your Service Builder project with the service-builder template in Blade CLI
or Liferay @ide@, then your settings.gradle file should already contain this.

3. Add this code to the end of the file:

1075

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/web-experience/journal/journal-service/src/main/java/com/liferay/journal/service/base/JournalArticleServiceBaseImpl.java
http://localhost:8080/api/jsonws/

gradle.beforeProject {

project ->

project.plugins.withType(ServiceBuilderPlugin) {

project.apply plugin: WSDDBuilderPlugin

}

}

This is the code that applies theWSDD Builder plugin in every module in the LiferayWorkspace that
uses Service Builder. Your settings.gradle file should now look something like this:

import com.liferay.gradle.plugins.service.builder.ServiceBuilderPlugin

import com.liferay.gradle.plugins.wsdd.builder.WSDDBuilderPlugin

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.workspace", version: "1.2.0"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.workspace"

gradle.beforeProject {

project ->

project.plugins.withType(ServiceBuilderPlugin) {

project.apply plugin: WSDDBuilderPlugin

}

}

4. Refresh the LiferayWorkspace’s Gradle project. Close and restart Liferay @ide@ if you’re using it.

Now that you’ve installed theWSDD Builder plugin, you’re ready to build and deploy theWSDD. For
instructions on this, proceed to the section Building andDeploying theWSDD.

Installing the WSDD Builder Plugin in a Standalone Module Project

To install the WSDD Builder plugin in a standalone *-service module that uses Service Builder, do the
following in the module’s build.gradle file:

1. Add the plugin as a dependency in your buildscript.
2. Add the Liferay CDN repository via Maven.
3. Apply the plugin to your project.

For example, the followingpart of an example build.gradlefile in a standalone *-servicemodule includes
theWSDD Builder plugin and applies it to the project:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.wsdd.builder", version: "1.0.9"

}

repositories {

1076

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.wsdd.builder"

Now you’re ready to build and deploy theWSDD.The next section shows you how to do this.

Building and Deploying the WSDD

To build theWSDD, youmust run the buildWSDDGradle task in your *-servicemodule. Exactly how you do
this depends on your development tools:

• Liferay@ide@: From the LiferayWorkspace perspective’s Gradle Tasks pane (typically on the right),
open your *-servicemodule’s build folder and double-click buildWSDD.

• Command Line: Navigate to your *-servicemodule and run ../../../gradlew buildWSDD. Note that
the exact location of the Gradle wrapper (gradlew) may vary. For Liferay Workspace projects, it’s
typically in the root workspace folder.

So what should you do if buildWSDD fails? A common cause of buildWSDD failures is failing to satisfy the
dependencies needed by theWSDD Builder for your *-servicemodule. Note that these dependencies vary
depending on your project’s code–there’s no standard set. That said, the following are often required for
portlet development:

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "com.liferay", name: "com.liferay.registry.api", version: "1.0.0"

Click here for more information on finding and configuring dependencies for your apps.
In your *-service project’s build/libs folder, the buildWSDD task generated a *-service-wsdd-

[version].jar file that contains yourWSDD.Deploy this JAR to your Liferay DXP instance. Your SOAP web
services are then available at a URL that uses the following pattern:

yourportaladdress/o/your.apps.service.module.context/api/axis

For example, if an app called Foo consists of the modules foo-api, foo-service, and foo-web, then the
app’s service module context is foo-service. If this app is deployed to a local Liferay DXP instance running
at http://localhost:8080, you could access its SOAP services at:

http://localhost:8080/o/foo-service/api/axis

If you don’t know an app’s *-servicemodule context, you can find it by searching for the app in the App
Manager of the Liferay DXP instance in which the app is running. For example, the following screenshot
shows the Foo app’s modules in the AppManager. The name of the *-servicemodule in the AppManager,
foo-service, is also its context. Also note that the app’s WSDDmodule is grayed out and listed as Resolved
instead of Active. This is normal. WSDDmodules are OSGi fragments, which can’t be activated. They still
work as intended, though.

Next, you’ll learn how to build the WSDDmodule for Liferay DXP’s built-in apps that don’t include a
WSDD by default. If you don’t need to do this, you canmove on to the tutorial Invoking Remote Services.

1077

Figure 85.1: To find your app’s modules, including its WSDD module, search for your app in the App Manager. The *-service module’s name in the App Manager is also
the module’s context.

1078

Building the WSDD for Built-in Liferay DXP Apps

Liferay DXP doesn’t provideWSDDmodules for built-in apps that exist outside of the portal context. This
means that by default you can’t access SOAP web services for apps like Bookmarks or Blogs. To make SOAP
web services available for such an app, youmust build and deploy itsWSDD from the liferay-portalGitHub
repository. The apps are in the liferay-portal/modules/apps folder. Note that to build WSDDs for these
apps, youmust first download the liferay-portal source code to your machine. You’ll run theWSDD build
from your local liferay-portal copy.

When you build an app’sWSDD,make sure to use gradlew in liferay-portal instead of the gradle on your
machine. After building, you canfind theWSDDJAR in the tools/sdk/dist folder of your local liferay-portal
copy. Otherwise, building an app’s WSDD is the same as in the preceding section.

For example, tobuild theWSDDfor theBookmarksapp,firstnavigate to the liferay-portal/modules/apps/collaboration/bookmarks/bookmarks-
service folder in your terminal. Then run the following command:

../../../../../gradlew buildWSDD

Next,deploy the liferay-portal/tools/sdk/dist/com.liferay.bookmarks.service-wsdd-[version].jar to
your Liferay DXP instance. If your instance is running locally on localhost:8080, you should then be able to
view the Bookmarks app’s SOAP services at http://localhost:8080/o/com.liferay.bookmarks.service/api/axis.

Fantastic! Once you’ve created remote web services, you’ll want to know how to invoke them. To learn
how, see the tutorial Invoking Remote Services.

Related Topics

Invoking Remote Services
Invoking JSONWeb Services
JSONWeb Services Invoker
JSONWeb Services Invocation Examples
What is Service Builder?

85.2 Invoking Remote Services

You can invoke the remote services of any installed Liferay application the same way that you invoke your
local services. Doing so could be described as “invoking remote services locally.” One reason to invoke a
remote service instead of the corresponding local service might be to take advantage of the remote service’s
permission checks. Consider the following common scenario:

• Both a local service implementation and a remote service implementation have been created for a
particular service.

• The remote service performs a permission check and then invokes the corresponding local service.

In the above scenario, it’s a best practice to invoke the remote service instead of the local service. Doing
so ensures that you don’t need to duplicate permission checking code. This is the practice followed by the
services in Liferay’s Blogs app.

Of course, the main reason for creating remote services is to invoke them remotely. Service Builder can
expose your project’s remote web services both via a JSON API and via SOAP. By default, running Service
Builder with remote-service set to true for your entities generates a JSONweb services API for your project.
You can access your project’s JSON-based RESTful services via a convenient web interface.

1079

https://github.com/liferay/liferay-portal
https://github.com/liferay/liferay-portal
http://localhost:8080/o/com.liferay.bookmarks.service/api/axis
https://github.com/liferay/liferay-portal/tree/master/modules/apps/web-experience/journal/journal-service/src/main/java/com/liferay/journal/service/impl

Invoking Liferay Services Remotely

Many default Liferay services are available as web services. Liferay exposes its web services via SOAP and
JSONweb services. If you’re running Liferay locally on port 8080, visit the following URL to browse Liferay’s
default SOAP web services:

http://localhost:8080/api/axis

To browse Liferay’s default JSONweb services, visit this URL:

http://localhost:8080/api/jsonws/

By default, the context path is set to /which means that core Liferay services are listed. By default, the
http://localhost:8080/api/jsonws/ page shows the JSON web services in the portal context. You can select a
different context in the Context Name selector menu. For example, selecting journal in Context Name shows
you the JSONweb services in Liferay’s Web Content app (this app’s entities all begin with Journal*). You can
also access a context’s JSONweb services via a direct URL. For example, the URL for theWeb Content app’s
JSONweb services is http://localhost:8080/api/jsonws?contextName=journal.

Important: To invoke Liferay services remotely, your Liferay instancemust be configured to allow remote
web service access. Please see the Understanding Liferay’s Service Security Model tutorial for details.

Each entity’s available service methods are listed in the left column of the JSONweb services page. To
view details about a service method, click it. The full package path to the service’s *Impl class is displayed
along with the method’s parameters, return type, and possible exceptions. You can also invoke the service
from this page. For example, in the portal context click the AnnouncementsEntry entity’s get-entrymethod.
This brings up that service method’s details page, where you can also invoke the service:

The only parameter required to invoke the get-entrymethod is an entryId. To invoke this web service,
you could enter an announcement entry’s ID in the entryId field and then click Invoke. Liferay returns
feedback from each invocation that indicates, for example, whether the service invocation succeeded or
failed. Invoking remote services in this manner is a great way to test your app’s remote services.

Service Builder can also make your project’s web services available via SOAP using Apache Axis. After
you’ve built your *-service project’s WSDD (web service deployment descriptor) and deployed your project’s
modules, its services are available on your Liferay server. You can view your Liferay instance’s and app’s
SOAP services in a browser as described in the tutorial Creating Remote Services.

When viewing your SOAP services in a browser, Liferay lists the services available for all your entities
and provides links to their WSDL documents. For example, clicking on theWSDL link for the User service
takes you to the following URL:

http://localhost:8080/api/axis/Portal_UserService?wsdl

ThisWSDL document lists the entity’s SOAP web services. Once the web service’s WSDL is available, any
SOAP web service client can access it. To see examples of SOAP web service client implementations, see the
tutorial SOAPWeb Services.

Liferay web services are designed to be invoked by client applications. Liferay’s web services APIs can be
accessed bymany different kinds of clients, including non-portlet and even non-Java clients. For information
on how to develop client applications that can access Liferay’s JSONweb services, please see the Invoking
JSONWeb Services tutorial. For information on how to develop client applications that access Liferay’s
SOAP web services, please see the SOAPWeb Services tutorial. To learn how to create remote web services
for your own application, please refer to the Creating Remote Services tutorial.

For more information on Liferay services, see the Liferay Portal CE Javadocs at @platform-ref@/7.0-
latest/javadocs/.

1080

http://localhost:8080/api/jsonws?contextName=journal

Figure 85.2: The JSON web services page for an entity’s remote service method also lets you invoke that service.

1081

Related Topics

Invoking JSONWeb Services
JSONWeb Services Invoker
JSONWeb Services Invocation Examples
SOAPWeb Services
Creating Remote Services

85.3 Service Security Layers

Liferay’s remote services are secured by default. They sit behind a layer of security that allows only local
connections. To invoke Liferay services from a remote client, youmust take deliberate steps to enable such
access. Liferay’s coreweb services requireuser authentication andverification. Regardless ofwhether you call
the remote service from the samemachine or via a web service, Liferay’s standard security model performs
its function. The user invoking a web service must have the proper permissions (as defined by Liferay’s
permissions system) for the remote service invocation to complete successfully. This tutorial explains these
processes.

The first layer of security that a client encounters when calling a remote service is called invoker IP filtering.
Imagine that you have have a batch job that runs on anothermachine in your network. This job polls a shared
folder on your network and uses Liferay’s web services to upload documents to your Liferay site’sDocuments
andMedia app on a regular basis. To get your batch job through the IP filter, you must grant web service
access to the machine the batch job is running on. For example, if your batch job uses Liferay’s SOAP web
services to upload the documents, youmust add the IP address of the machine where the batch job runs to
the axis.servlet.hosts.allowed property. A typical entry might look like this:

axis.servlet.hosts.allowed=192.168.100.100, 127.0.0.1, [SERVER_IP]

If the IP address of the machine where the batch job runs is listed as an authorized host for the service,
the machine is allowed to connect to Liferay’s web services, pass in the appropriate user credentials, and
upload the documents.

Note: The portal.properties file resides on the Liferay instance’s host machine and is controlled by
the instance administrator. Instance administrators can configure security settings for the Axis Servlet,
the Liferay Tunnel Servlet, the Spring Remoting Servlet, the JSON Servlet, the JSONWeb Service Servlet,
and the WebDAV Servlet. The portal.properties file (online version is available at @platform-ref@/7.0-
latest/propertiesdoc/portal.properties.html) describes these properties.

Next, if you invoke the remote service via web services (e.g., JSONWS, old JSON, Axis, REST, etc.), a two
step process of authentication and authentication verification takes place. Each call to a Liferay web service
must be accompanied by a user authentication token: p_auth. It’s up to the web service caller to produce
the token (e.g., through Liferay’s utilities or through some third-party software). Liferay verifies that there
is a Liferay user matching the token. If the credentials are invalid, the web service invocation is aborted.
Otherwise, processing enters Liferay’s user permission layer.

Liferay’s user permission layer is the last Liferay security layer triggered when services are invoked
remotely. It’s used for every object in the Liferay instance, regardless of whether a local or remote service
is involved. The user ID associated with a web service invocation must possess the proper permission to
operate on the objects it’s trying to access. A remote exception is thrown if the user ID doesn’t possess the
required permissions. An instance administrator can grant users access to these resources. For example,

1082

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html
@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html

suppose you created a Documents andMedia Library folder calledDocuments in a site, created a role called
Document Uploaders, and granted this role the rights to add documents to your new folder. If your batch job
accesses Liferay’s web services to upload documents into the folder, youmust call the web service using a
user ID of a member of this role (or using the user ID of a user with individual rights to add documents to
this folder, such as an instance administrator). If you don’t, Liferay denies you access to the web service.

When invoking remote Liferay services from a non-browser client, you can specify the user credentials
using HTTP basic authentication. For security reasons, you must be logged in and supply a valid p_auth

authentication token to invoke a Liferay web service via a browser. Since you should never pass credentials
over the network unencrypted, we recommend using HTTPS whenever accessing Liferay services on an
untrusted network. Most HTTP clients (e.g., cURL) let you specify the basic authentication credentials in the
URL–this is very handy for testing.

Important: To invoke a Liferay web service via your browser, you must be logged in to Liferay. Youmust
also supply an authentication token (the p_auth parameter). If you navigate to your Liferay instance’s JSON
web services API page (localhost:8080/api/jsonws, by default) and click on a remote service method, you’ll
see the p_auth token for your browser session. This token is automatically supplied when you invoke a Liferay
web service via the JSONweb services API page or via JavaScript using Liferay.Service(...).

Use the following syntax to call the Axis web service using credentials.

http://" + emailAddressOrScreenNameOrUserIdAsString + ":" + password + "@[server.com]:\

[port]/api/axis/" + serviceName

The emailAddressOrScreenNameOrUserIdAsString should be the user’s email address, screen name, or user
ID.The Liferay instance’s authentication type setting determines which one to use. A user can find his or
her ID by logging in as the user and accessingMyAccount → Account Settings from the User Menu. On this
interface, the user ID appears below the user’s profile picture and above the birthday field.

Suppose that your Liferay instance is set to authenticate by user ID, and that there’s a user with an ID of
2 and a password of test. You can access Liferay’s remote Organization service with the following URL:

http://2:test@localhost:8080/api/axis/Portal_OrganizationService

Note that if an email address appears in the URL path, it must be URL-encoded (e.g. test@example.com
becomes test%40liferay.com).

Suppose that your Liferay instance is now set to authenticate by email address. To call the same web
service for the same user, change the URL to this:

http://test%40liferay.com:test@localhost:8080/api/axis/Portal_OrganizationService

Asmentioned, the authentication type specified for your Liferay instance dictates the authentication
type you’ll use to access your web service. The instance administrator can set the instance’s authentication
type to email address, screen name, or user ID.

You can set the authentication type via the Control Panel or via the portal-ext.properties file. To set the
authentication type via the Control Panel, navigate to Control Panel → Configuration → Instance Settings, and
select the General tab under Authentication. Choose your authentication type in theHow do users authenticate?
menu. To set the authentication type via properties file, add the following lines to your Liferay instance’s
portal-ext.properties file and uncomment the line for the appropriate authentication type:

#company.security.auth.type=emailAddress

#company.security.auth.type=screenName

#company.security.auth.type=userId

1083

http://curl.haxx.se/
localhost:8080/api/jsonws

You should also review your Liferay instance’s password policies, since they’ll be enforced on your
administrative user as well. If the instance enforces password policies on its users (e.g., requires them to
change their passwords on a periodic basis), an administrative user accessing Liferay’s web services in a
batch job will have his or her password expire too.

To prevent a password from expiring, an instance administrator can add a new password policy that
doesn’t enforce password expiration, and then add a specific administrative user to the policy. Then your
batch job can run as many times as you need it to, without your administrative user’s password expiring.

To summarize, accessing Liferay remotely requires you to pass the following layers of security checks:

• IP permission layer: The IP address must be pre-configured in the server’s portal properties.
• Authentication/verification layer (web services only): Liferay verifies that the caller’s authorization token
can be associated with an instance user.

• User permission layer: The user needs permission to access the related resources.

If you’d like to develop client applications that can invoke Liferay’s web services, make sure that your
Liferay instance’s web service security settings have been configured to allow access.

Related Topics
Configuring JSONWeb Services
Invoking Remote Services
Invoking JSONWeb Services
JSONWeb Services Invoker
JSONWeb Services Invocation Examples
SOAPWeb Services

85.4 Registering JSON Web Services

Liferay’s developers use a tool called Service Builder to build services. When you build services with Service
Builder, all remote-enabled services (i.e., service.xml entities with the property remote-service="true") are
exposed as JSONweb services. When each *Service.java interface is created for a remote-enabled service,
the @JSONWebService annotation is added to that interface at the class level. All of the public methods of that
interface become registered and available as JSONweb services.

The *Service.java interface source file should never be modified by the user. If you need more con-
trol over its methods (e.g., if you need to hide some methods while exposing others), you can config-
ure the *ServiceImpl class. When the service implementation class (*ServiceImpl) is annotated with the
@JSONWebService annotation, the service interface is ignored and the service implementation class is used
for configuration in its place. In other words, @JSONWebService annotations in the service implementation
override any JSONweb service configuration in the service interface.

That’s it! Liferay scans all OSGi bundles registered with the @Component annotation or in a
*BundleActivator class for remote services. Each class that uses the @JSONWebService annotation is
examined and its methods become exposed via the JSON web services API. As explained previously, the
*ServiceImpl configuration overrides the *Service interface configuration during registration.

Note: Liferay’s developers use Service Builder to expose their services via JSON automatically. If you
haven’t used Service Builder before, please see the Service Builder section of tutorials.

1084

Next, you’ll see how you can register your application’s remote services as JSONweb services. Keep in
mind that Liferay uses this samemechanism. This is why Liferay’s remote services are exposed as JSONweb
services out-of-the-box.

Registering an App's JSON Web Services

As an example, say you have an app named SupraSurf that has some services, and you decide to expose
them as remote services. After enabling the remote-service attribute on its SurfBoard entity, you rebuild the
services. Service Builder regenerates the SurfBoardService interface, adding the @JSONWebService annotation
to it. This annotation tells Liferay that the interface’s public methods are to be exposed as JSONweb services,
making them a part of the app’s JSON API. Start up your Liferay instance if it isn’t running, and then deploy
your app to Liferay.

To get some feedback from your Liferay instance on registering your application’s services, configure the
instance to log the application’s informational messages (i.e., its INFO ... messages). See the tutorials on
Liferay’s logging system for details.

To test Liferay’s JSON web service registration process, add a simple method to your app’s services. Edit
your *ServiceImpl class and add the followingmethod:

public String helloWorld(String worldName) {

return "Hello world: " + worldName;

}

Rebuild the services and re-deploy your app’s modules. You can now invoke this servicemethod via JSON.
For instructions on doing this, see the JSON invocation tutorials listed in this section of tutorials.

This samemechanism registers Liferay’s own services. They’re conveniently enabled by default, so you
don’t have to configure them.

Next, you’ll learn how to form amapped URL for the remote service so you can access it.

Mapping and Naming Conventions

You can form the mapped URL of an exposed service by following the naming convention below:

http://[server]:[port]/api/jsonws/[context-path].[service-class-name]/[service-method-name]

Look at the last three bracketed itemsmore closely:

• context-name is the app’s context name (e.g., suprasurf in the previous example). Its value is specified
via the json.web.service.context.path property in the @OSGiBeanProperties annotation. For example,
for Liferay web content articles, Liferay’s JournalArticleService class includes the following annota-
tion (among others):

@OSGiBeanProperties(property = {

"json.web.service.context.name=journal", "json.web.service.context.path=JournalArticle"}, service = JournalArticleService.class)

• service-class-name is generated from the service’s class name in lower case, minus its Service or
ServiceImpl suffix. For example, specify surfboard as the app-context-name for the SurfBoardService
class.

• service-method-name is generated from the service’smethod name by converting its camel case to lower
case and using dashes (-) to separate words.

1085

The following example demonstrates these naming conventions by mapping a service method’s URL
using the naming conventions both on a custom service and on a Liferay service.

For the custom service method, the URL looks like:

http://localhost:8080/api/jsonws/suprasurf.surfboard/hello-world

Note the context name part of the URL. For Liferay, it’s similar. Here’s a Liferay service method:

@JSONWebService

public interface UserService {

public com.liferay.portal.model.User getUserById(long userId) {...}

Here’s that Liferay service method’s URL:

http://localhost:8080/api/jsonws/user/get-user-by-id

Each service method is bound to one HTTPmethod type. Any method with a name starting with get,
is, or has is assumed to be a read-only method and is mapped as a GETHTTPmethod by default. All other
methods are mapped as POSTHTTPmethods.

Recall that you can see a list of your Liferay instance’s JSON web services at http://localhost:8080
/api/jsonws. When you select a method on this page, the part of its HTTP method URL that follows
http://[server]:[port]/api/jsonws is listed at the top of the screen.

Conveniently, remote service requests can leverage the authentication credentials associated with the
user’s current Liferay session. Next, you’ll learn how to prevent a method from being exposed as a service.

Ignoring a Method

To keep a method from being exposed as a service, annotate the method with the following option:

@JSONWebService(mode = JSONWebServiceMode.IGNORE)

Methods with this annotation don’t become part of the JSONWeb Service API. Next, you’ll learn how to
define customHTTPmethod and URL names.

HTTP Method and URL Names

At the method level, you can define customHTTPmethod names and URL names. Just use an annotation
like this one:

@JSONWebService(value = "add-board-wow", method = "PUT")

public boolean addBoard(

In this example, the application’s servicemethod addBoard ismapped toURLmethodname add-board-wow.
Its complete URL is now http://localhost:8080/api/jsonws/suprasurf.surfboard/add-board-wow and can be
accessed using the HTTP PUTmethod.

If the URL method name in a JSON web service annotation starts with a slash character (/), only the
method name is used to form the service URL; the class name is ignored:

@JSONWebService("/add-something-very-specific")

public boolean addBoard(

Similarly, you can change the class name part of the URL, by setting the value in a class-level annotation:

@JSONWebService("sbs")

public class SurfBoardServiceImpl extends SurfBoardServiceBaseImpl {

Thismaps all of the service’smethods to a URL class name sbs instead of the default class name surfboard.
Next, you’ll learn a different approach to exposing your methods via manual registration.

1086

http://localhost:8080/api/jsonws
http://localhost:8080/api/jsonws

Manual Registration Mode

Up to now, it’s assumed that you want to expose most of your service methods, while hiding some specific
methods (the blacklist approach). Sometimes, however, you want the opposite: to explicitly specify only
the methods you want to expose (the whitelist approach). This is possible by specifyingmanual mode on the
class-level annotation. Then it’s up to you to annotate only those methods you want to expose. For example:

@JSONWebService(mode = JSONWebServiceMode.MANUAL)

public class SurfBoardServiceImpl extends SurfBoardServiceBaseImpl{

...

@JSONWebService

public boolean addBoard(

Now only the addBoardmethod and any other method annotated with @JSONWebService are part of the
JSONWeb Service API; all of this service’s other methods are excluded from the API.

Related Topics

Invoking JSONWeb Services
JSONWeb Services Invoker
JSONWeb Services Invocation Examples

85.5 Invoking JSON Web Services

If you know theURL and are connected to the internet, invoke Liferay’s JSONweb service API in any language
you want or directly with the URL or cURL. Additionally, Liferay provides a handy JSONweb services page
that allows you to browse and invoke service methods.

If you’re running Liferay locally on port 8080, you can find the JSONweb services page at http://localhost:
8080/api/jsonws. You can use this page to generate example code for invoking web services. When you
invoke a service on this page as described in the tutorial Invoking Remote Services, the JSON result of your
service invocation appears. Click on the JavaScript Example, curl Example, or URLExample tabs to see different
ways of invoking the web service.

This tutorial explains general techniques for working with JSONweb services and includes details about
invoking them via URL. For examples of invoking Liferay’s JSONweb services via JavaScript, URL, and cURL,
see the JSONWeb Services Invocation Examples tutorial.

There aremultiple ways to invoke a JSONweb service since there are different ways to supply parameters.
In this tutorial, you’ll learn how to include parameters inweb service invocations. First, youmust understand
how your invocation is matched to a method, especially in the case of overloaded service methods.

The general rule is that you provide the service method’s name and all the service method’s parameters–
even if you only provide null values. It’s important to provide all parameters, but it doesn’t matter how you
do it (e.g., as part of the URL line, as request parameters, etc.). The order of the parameters doesn’t matter
either.

Note: An authentication related token (p_auth) must accompany each Liferay web service invocation. For
details, see the Service Security Layers tutorial. Also, see the note in the following section to learn how to
find the p_auth token value that corresponds to your Liferay session.

Exceptions abound in life, and there’s an exception to the rule that all parameters are required. When
using numeric hints to match methods, not all of the parameters are required. You’ll learn to use hints next.

1087

http://curl.haxx.se/
http://localhost:8080/api/jsonws
http://localhost:8080/api/jsonws

Figure 85.3: When you invoke a service from Liferay’s JSON web services page, you can view the result of your service invocation as well as example code for invoking the
service via JavaScript, curl, or URL.

1088

Using Hints When Invoking a Service via URL

Adding numeric hints lets you specify howmanymethod arguments a service has. If you don’t specify an
argument for a parameter, it’s automatically passed in as null. Syntactically, you can add hints as numbers
separated by a dot in the method name. Here’s an example:

/foo/get-bar.2/param1/123/-param2

Here, the .2 is a numeric hint specifying that only service methods with two arguments are matched;
others will be ignored for matching.

There’s an important distinction to make between matching with hints and matching without hints.
When a hint is specified, you don’t have to specify all of the parameters. Any missing arguments are treated
as null. The previous example may be called like this:

/foo/get-bar.2/param1/123

In this example, param2will automatically be set to null.
Here’s a real Liferay example:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/add-folder.4/parent-folder-id/0/name/News?p_auth=[value]

In this example, the hint number is 4 because there are four parameters: parentFolderId, name,
description, and p_auth. Since the description parameter is omitted, its value is assumed to be null. If you
try to invoke this web service with another hint number such as 3 or 5, you’ll get an exception since there
is no bookmarks/add-foldermethod that takes that number of parameters. The authentication parameter
p_auth is associated with your Liferay session. See below for more information.

Important: When invoking a Liferay web service by entering a URL into your browser, you must be
logged into Liferay with an account that has permission to invoke the web service. Youmust also supply an
authentication token as a URL parameter. This authentication token is associated with your browser session
and is called p_auth. Using this authentication token helps prevent CSRF attacks.

Here are two easy ways to find the p_auth token:

1. Go to Liferay’s JSONweb services page and click on any service method. The value of the p_auth token
appears under the Execute heading.

2. If you’re working from a JavaScript context and have access to the Liferay object, invoking
Liferay.authToken provides the value of the p_auth parameter.

For example, if your p_auth parameter’s value is n35K1pb2, you could invoke the preceding URL examples
like this:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/add-folder.4/parent-folder-id/0/name/News?p_auth=n35K1pb2

For simplicity, the remainder of this tutorial omits the p_auth parameter from the example URLs for
invoking web services. Remember that youmust include it if you want to invoke services from your browser!

Next, you’ll learn how to pass parameters as part of the URL path.

1089

Passing Parameters as Part of a URL Path

To pass method parameters as part of the URL path, specify them in name-value pairs after the service URL.
Parameter namesmust be formed frommethod argument names by converting them from camel case to
names that use all lower case, dash-separatedwords. For example, this returns all top-level bookmark folders
from the specified site:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/get-folders/group-id/20181/parent-folder-id/0

You can pass parameters in any order; it’s not necessary to follow the order in which the arguments are
specified in the method signatures.

When a method name is overloaded, the best match will be used. The method that contains the least
number of undefined arguments is chosen and invoked for you.

You can also pass parameters in a URL query. The next section shows you how to do this.

Passing Parameters as a URL Query

To pass in parameters as request parameters, specify them as-is (camel case) and set them equal to their
argument value. For example:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/add-folder?parentFolderId=0&name=News&description=news

As with passing parameters as part of a URL path, the parameter order is not important and the best
match rule applies for overloadedmethods.

Now you know a few different ways to pass parameters. It’s also possible to pass URL parameters in
a mixed way. For example, some can be part of the URL path while others can be specified as request
parameters.

Parameter values are sent as strings using the HTTP protocol. Before a matching Java service method is
invoked, each parameter value is converted from a String to its target Java type. Liferay uses a third party
open source library to convert each object to its appropriate common type. Although it’s possible to add or
change the conversion for certain types, this tutorial only covers the standard conversion process.

Conversion for common types (e.g., long, String, boolean) is straightforward. Dates can be given in
milliseconds. Locales can be passed as locale names (e.g. en and en_US). To pass in an array of numbers, send
a string of comma-separated numbers (e.g. the string 4,8,15,16,23,42 can be converted to long[] type). You
get the picture!

In addition to the common types, arguments can be of type List or Map. To pass a List argument, send a
JSON array. To pass a Map argument, send a JSON object. These types of conversions are performed in two
steps:

• Step 1–JSON deserialization: JSON arrays are converted into List<String>, and JSON objects are con-
verted to Map<String, String>. For security reasons, it’s forbidden to instantiate any type within JSON
deserialization.

• Step 2–Generification: Each String element of the List and Map is converted to its target type (the ar-
gument’s generic Java type specified in the method signature). This step is only executed if the Java
argument type uses generics.

As an example, consider the conversion of a String array [en,fr] as JSONweb service parameters for a
List<Locale> Java method argument type:

• Step 1–JSON deserialization: The JSON array is deserialized to a List<String> containing Strings en and
fr.

1090

• Step 2–Generification: Each String is converted to the Locale (the generic type), resulting in the
List<Locale> Java argument type.

Next, you’ll learn how to specify an argument as null.

Sending Null Values

To pass a null value for an argument, prefix the parameter name with a dash. Here’s an example:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/add-folder/parent-folder-id/0/name/News/-description

Here’s the equivalent example using URL query parameters instead of URL path parameters:

http://localhost:8080/api/jsonws/bookmarks.bookmarksfolder/add-folder?parentFolderId=0&name=News&-description

The description parameter is interpreted as null. Note that this parameter doesn’t have to be last in the
URL.

Null parameters don’t have specified values. When a null parameter is passed as a request parameter, its
value is ignored and null is used instead:

<input type="hidden" name="-description" value=""/>

When using JSON-RPC (see the JSON-RPC section below), you can send null values explicitly, even
without a prefix. Here’s an example:

"description":null

Next, you’ll learn about encoding parameters.

Encoding Parameters

There’s a difference between URL encoding and query (i.e., request parameters) encoding. The difference
lies in how the space character is encoded. When the space character is part of the URL path, it’s encoded as
%20; when it’s part of the query it’s encoded as a plus sign (+).

All these encoding rules apply to ASCII and international (non-ASCII) characters. Since Liferay works
in UTF-8mode, parameter values must be encoded as UTF-8 values. Liferay doesn’t decode request URLs
and request parameter values to UTF-8 itself; it relies on the web server layer. When accessing services
through JSON-RPC, encoding parameters to UTF-8 isn’t enough–you need to send the encoding type in a
Content-Type header (e.g. Content-Type : "text/plain; charset=utf-8").

For example, suppose you want to pass the value “Супер” (“Super” in Cyrillic) to a JSON web service
method. This name first has to be converted to UTF-8 (resulting in an array of 10 bytes) and then encoded
for URLs or request parameters. The resulting value is the string %D0%A1%D1%83%D0%BF%D0%B5%D1%80 that can
be passed to your service method. When received, this value is first translated to an array of 10 bytes (URL
decoded), and then converted to a UTF-8 string of the 5 original characters.

Next, you’ll learn how to send files as arguments.

1091

Sending Files as Arguments

Files can be uploaded using multi-part forms and requests. Here’s an example:

<form

action="http://localhost:8080/api/jsonws/dlapp/add-file-entry"

method="POST"

enctype="multipart/form-data">

<input type="hidden" name="repositoryId" value="10172"/>

<input type="hidden" name="folderId" value="0"/>

<input type="hidden" name="title" value="test.jpg"/>

<input type="hidden" name="description" value="File upload example"/>

<input type="hidden" name="changeLog" value="v1"/>

<input type="file" name="file"/>

<input type="submit" value="addFileEntry(file)"/>

</form>

This is a common upload form that invokes the DLAppService class’s addFileEntrymethod.
Now you’ll learn how to invoke JSONweb services using JSON-RPC.

JSON-RPC

You can invoke JSONWeb Service using JSON-RPC.Most of the JSON-RPC 2.0 specification is supported in
Liferay JSONweb services. One important limitation is that parameters must be passed in as named parame-
ters. Positional parameters aren’t supported, as there are too many overloadedmethods for convenient use
of positional parameters.

Here’s an example of invoking a JSONweb service using JSON-RPC:

POST http://localhost:8080/api/jsonws/dlapp

{

"method":"get-folders",

"params":{"repositoryId":10172, "parentFolderId":0},

"id":123,

"jsonrpc":"2.0"

}

Next, you’ll learn about parameters that are made available to secure JSONweb services by default.

Default Parameters

When accessing secure JSONweb services (i.e., services for which the user must be authenticated), some
parameters are made available to the web services by default. All of Liferay’s web services are secured by
default. Unless you want to change the available parameters’ values to something other than their defaults,
you don’t have to specify them explicitly.

Here are the available default parameters:

• userId: The primary key of the authenticated user
• user: The full user object
• companyId: The primary key of the user’s company
• serviceContext: The empty service context object

Next, you’ll learn about object parameters.

1092

http://json-rpc.org

Object Parameters

Most services accept simple parameters like numbers and strings. However, sometimes youmight need to
provide an object (a non-simple type) as a service parameter.

To create an instance of an object parameter, prefix the parameter with a plus sign, + and don’t assign it
any other parameter value. This is similar to specifying a null parameter by prefixing the parameter with a
dash symbol, -.

Here’s an example:

/jsonws/foo/get-bar/zap-id/10172/start/0/end/1/+foo

To create an instance of an object parameter as a request parameter, make sure you encode the + symbol:

/jsonws/foo/get-bar?zapId=10172&start=0&end=1&%2Bfoo

Here’s an alternative syntax:

<input type="hidden" name="+foo" value=""/>

If a parameter is an abstract class or an interface, it can’t be instantiated as such. Instead, a concrete
implementation class must be specified to create the argument value. You can do this by specifying the
+ prefix before the parameter name, followed by specifying the concrete implementation class. Here’s an
example:

/jsonws/foo/get-bar/zap-id/10172/start/0/end/1/+foo:com.liferay.impl.FooBean

Here’s another way of doing it:

<input type="hidden" name="+foo:com.liferay.impl.FooBean" value=""/>

The examples above specify that a com.liferay.impl.FooBean object, presumed to implement the class of
the parameter named foo, is created.

You can also set a concrete implementation as a value. Here’s an example:

<input type="hidden" name="+foo" value="com.liferay.impl.FooBean"/>

In JSON-RPC, here’s what it looks like:

"+foo" : "com.liferay.impl.FooBean"

All the preceding examples specify a concrete implementation for the foo service method parameter.
Once you pass in an object parameter, youmight want to populate the object. Find out how next.

1093

Inner Parameters

Whenyoupass in anobject parameter, you’ll oftenneed topopulate its innerparameters (i.e.,fields). Consider
a default parameter serviceContext of type ServiceContext. To make an appropriate call to JSONWS, you
might need to set the serviceContext parameter’s addGroupPermissions and scopeGroupId fields.

You can pass inner parameters by using dot notation to specify them. Just append the name
of the parameter with a dot (i.e., a period, .), followed by the inner parameter’s name. For the
ServiceContext inner parameters mentioned previously, you’ll specify serviceContext.addGroupPermissions
and serviceContext.scopeGroupId. These are recognized as inner parameters and their values are injected
into existing parameters before the API service method is executed.

Inner parameters aren’t counted as regular parameters for matching methods and are ignored during
matching.

Tip: Use inner parameters with object parameters to set inner contents of created object parameter
instances!

Next, let’s see what values are returned when a JSONweb service is invoked.

Returned Values

Nomatter how a JSONweb service is invoked, it returns a JSON string that represents the service method
result. Returned objects are loosely serialized to a JSON string and returned to the caller.

Now you’ll look at some values returned from service calls. You’ll create a UserGroup as in the SOAP web
service client examples. To make it easy, you’ll use the test form provided with the JSONweb service in our
browser.

1. Sign in to a local Liferay instance as an administrator and then point your browser to the JSONweb
service method that adds a BookmarksFolder:

http://localhost:8080/api/jsonws?contextName=bookmarks&signature=%2Fbookmarks.bookmarksfolder%2Fadd-folder-4-parentFolderId-

name-description-serviceContext

Alternatively, navigate to it by starting at http://localhost:8080/api/jsonws and then scrolling down
to the section for BookmarksFolder. Then click add-folder.

2. In the parentFolderId field, enter 0. Top-level bookmarks folders have a parentFolderId value of 0. Set
the name to an arbitrary value likeNews. Set the description to something like Created via JSONWS.

3. Click Invoke and you’ll get a result similar to the following:

{

"companyId": "20202",

"createDate": 1459969296960,

"description": "Created via JSON WS",

"folderId": "31001",

"groupId": "20233",

"lastPublishDate": null,

"modifiedDate": 1459969297005,

"name": "News",

"parentFolderId": "0",

"resourceBlockId": "1",

"status": 0,

"statusByUserId": "0",

"statusByUserName": "",

1094

"statusDate": null,

"treePath": "/31001/",

"userId": "20250",

"userName": "Joe Bloggs",

"uuid": "0682170c-f9d7-f295-aa67-26ceea37a6e5"

}

The returned String represents the BookmarksFolder object you just created, serialized into a JSON string.
To find out more about JSON strings, go to json.org.

Common JSON Web Service Errors

While working with JSONweb services, youmay encounter errors. Some common errors are listed here:

• Authenticated access required

If you see this error, itmeans youdon’t havepermission to invoke the remote service. Double-check that
you’re signed in as a user with the appropriate permissions. If necessary, sign in as an administrator
to invoke the remote service.

• Missing value for parameter

If you see this error, you didn’t pass a parameter value along with the parameter name in your URL
path. The parameter value must follow the parameter name, like in this example:

/api/jsonws/user/get-user-by-id/userId

The path above specifies a parameter named userId, but doesn’t specify the parameter’s value. You can
resolve this error by providing the parameter value after the parameter name:

/api/jsonws/user/get-user-by-id/userId/173

• No JSONweb service action associated

This is error means no service method could be matched with the provided data (method name and
argument names). This can be due to various reasons. For example, arguments may bemisspelled, the
method namemay be formatted incorrectly, and so on. Since JSONweb services reflect the underlying
Java API, any changes in the respective Java API are automatically propagated to the JSONweb services.
For example, if a new argument is added to a method or an existing argument is removed from a
method, the parameter data must match that of the newmethod signature.

• Unmatched argument type

This error appears when you try to instantiate a method argument using an incompatible argument
type.

Related Topics

JSONWeb Services Invoker
JSONWeb Services Invocation Examples
Service Security Layers
Invoking Remote Services

1095

http://www.json.org/

85.6 JSON Web Services Invoker

To use JSON web services, you send a request that defines a service method and parameters, and you receive
the result as a JSON object. As straightforward as this seems, it can be improved. In this tutorial, you’ll learn
how to use JSONweb services more efficiently and pragmatically.

Consider the following example. You’re working with two related objects: a User and its corresponding
Contact. With simple JSONweb service calls, you first call the user service to get the user object, and then
you use that object’s contact ID to call the contact service. You end up sending two HTTP requests to get
two JSON objects that aren’t even bound together. There’s no contact information in the user object (i.e. no
user.contact). This approach is suboptimal with respect to performance (sending two HTTP calls) and
usability (manually managing the relationship between two objects). It’d be nicer if you had a tool to address
these inefficiencies. Fortunately, the JSONWeb Service Invoker does just that!

Liferay’s JSONWebService Invoker helps optimize your JSONWebServices use. In the following sections,
you’ll learn how.

Simple Invoker Calls

The Invoker is accessible from the following fixed address:

http://[address]:[port]/api/jsonws/invoke

It only accepts a cmd request parameter–this is the Invoker’s command. If the command request param-
eter is missing, the request body is used as the command. So you can specify the command by either using
the request parameter cmd or the request body.

The Invoker command is a plain JSONmap that describes how JSONweb services are called and how the
results are managed. Here’s an example of how to call a simple service using the Invoker:

{

"/user/get-user-by-id": {

"userId": 123,

"param1": null

}

}

The service call is defined as a JSONmap. The key specifies the service URL (i.e. the service method to be
invoked) and the key’s value specifies a map of service parameter names (i.e. userId and param1) and their
values. In the example above, the retrieved user is returned as a JSON object. Since the command is a JSON
string, null values can be specified either by explicitly using the null keyword or by placing a dash before the
parameter name and leaving the value empty (e.g. "-param1": '').

The example Invoker calls functions exactly the same way as the following standard JSONWeb Service
call:

/user/get-user-by-id?userId=123&-param1

Next, suppose that you’re running Liferay locally on port 8080. Consider the following example of a
real Liferay JSON web service invoker call. Suppose that you’re signed in to Liferay as the default admin
user whose email address is test@example.com and whose user ID is 20127. And suppose that the value of
your p_auth authentication token is htXjvt5d. You can then invoke the following URL to obtain a JSON
representation of your user object:

http://localhost:8080/api/jsonws/invoke?cmd={%22/user/get-user-by-id%22:{%22userId%22:20172}}&p_auth=htXjvt5d

1096

ThisURLuses the following JSONmap. Note that it’s supplied in theURL by using the cmdURLparameter:

{

"/user/get-user-by-id": {

"userId": 20172

}

}

Note in the URL that the double quotes are URL-encoded. Also, if you’re not sure what your user ID is,
you can find it in the User Menu underMyAccount → Account Settings. If you’re not sure what the value of your
p_auth authentication token is, navigate to Liferay’s JSONweb services API page and click on any method in
the list. The value of your p_auth token appears under the Execute heading along with any other parameters
of the selected API method.

You canuse JSONsyntax for supplying values for objects and arrays that youneed to supply as parameters.
To supply a value for an object, use curly brackets: { and }. To supply a value for an array, use square brackets:
[and]. Suppose as before that you’re signed in to Liferay as an admin user and that the value of your
p_auth authentication token is htXjvt5d. Furthermore, suppose that two vocabularies have been created with
vocabulary IDs of 20783 and 20784. Here’s a Liferay JSONweb service invoker example that demonstrates
how to pass an array as a parameter:

http://localhost:8080/api/jsonws/invoke?cmd={%22/assetvocabulary/get-vocabularies%22:{%22vocabularyIds%22:[20783,20784]}}&p_auth=htXjvt5d

This URL uses the following JSONmap:

{

"/assetvocabulary/get-vocabularies": {

"vocabularyIds": [20783,20784]

}

}

As before, the double quotes in the URL are URL-encoded. Also, the vocabularyIds parameter is an array,
so its value is supplied as a JSON array.

Finally, here’s one more Liferay JSONweb service invoker example that demonstrates how to pass an
object containing an array as a parameter:

http://localhost:8080/api/jsonws/invoke?cmd={%22/user/add-user%22:{%22companyId%22:20127,%22autoPassword%22:false,%22password1%22:%22test%22,%22password2%22:%22test%22,%22autoScreenName%22:false,%22screenName%22:%22joe.bloggs%22,%22emailAddress%22:%22joe.bloggs@example.com%22,%22facebookId%22:0,%22openId%22:%22%22,%22locale%22:%22en_US%22,%22firstName%22:%22Joe%22,%22middleName%22:%22T%22,%22lastName%22:%22Bloggs%22,%22prefixId%22:0,%22suffixId%22:0,%22male%22:true,%22birthdayMonth%22:1,%22birthdayDay%22:1,%22birthdayYear%22:1970,%22jobTitle%22:%22Tester%22,%22groupIds%22:null,%22organizationIds%22:null,%22roleIds%22:null,%22userGroupIds%22:null,%22sendEmail%22:false,%22serviceContext%22:{%22assetTagNames%22:[%22test%22]}}}&p_auth=htXjvt5d

This URL uses the following JSONmap:

{

"/user/add-user": {

"companyId": 20127,

"autoPassword": false,

"password1": "test",

"password2": "test",

"autoScreenName": false,

"screenName": "joe.bloggs",

"emailAddress": "joe.bloggs@example.com",

"facebookId": 0,

"openId": "",

"locale": "en_US",

"firstName": "Joe",

"middleName": "T",

"lastName": "Bloggs",

"prefixId": 0,

"suffixId": 0,

"male": true,

"birthdayMonth": 1,

"birthdayDay": 1,

1097

http://localhost:8080/api/jsonws

"birthdayYear": 1970,

"jobTitle": "Tester",

"groupIds": null,

"organizationIds": null,

"roleIds": null,

"userGroupIds": null,

"sendEmail": false,

"serviceContext": {"assetTagNames":["test"]}

}

}

The serviceContext is the object containing an array in this example. It contains the array assetTagNames.
Of course, the JSONWeb Service Invoker handles calls to plugin methods as well:

{

"/suprasurf/hello-world": {

"worldName": "Mavericks"

}

}

The code above calls the (fictitious) SupraSurf application’s remote service.
You can use variables to reference objects returned from service calls. Variable names must start with a

dollar sign, $. In the previous example, the service call returned a user object you can assign to a variable:

{

"$user = /user/get-user-by-id": {

"userId": 123,

}

}

The $user variable holds the returned user object. You can reference the user’s contact ID using the
syntax $user.contactId.

Next, see how you can use nested service calls to join information from two related objects.

Nesting Service Calls

With nested service calls, you can bind information from related objects together in a JSON object. You can
call other services within the sameHTTP request and nest returned objects in a convenient way. Here’s a
nested service call in action:

{

"$user = /user/get-user-by-id": {

"userId": 123,

"$contact = /contact/get-contact-by-id": {

"@contactId": "$user.contactId"

}

}

}

This command defines two service calls: the contact object returned from the second service call is nested
in (i.e. injected into) the user object, as a property named contact. Now you can bind the user and his or her
contact information together!

Now you’ll see what the Invoker does in the background when using a single HTTP request to make the
preceding nested service call:

• First, the Invoker calls the Java service mapped to /user/get-user-by-id, passing in a value for the
userId parameter.

1098

• Next, the resulting user object is assigned to the variable $user.
• The nested service calls are invoked.
• The Invoker calls the Java service mapped to /contact/get-contact-by-id by using the contactId pa-
rameter, with the $user.contactId value from the object $user.

• The resulting contact object is assigned to the variable $contact.
• Lastly, the Invoker injects the contact object referenced by $contact into the user object’s property
named contact.

Note: Youmust flag parameters that take values from existing variables. To flag a parameter, insert the
@ prefix before the parameter name.

Next, you’ll learn about filtering object properties so that only the properties you need are returned when
you invoke a service.

Filtering Results

Many of Liferay’s model objects are rich with properties. If you only need a handful of an object’s properties
for your business logic, making a web service invocation that returns all of an object’s properties is a waste
of network bandwidth. With the JSONWeb Service Invoker, you can define a whitelist of properties: only
the specific properties you request in the object are returned from your web service call. Here’s how you
whitelist the properties you need:

{

"$user[firstName,emailAddress] = /user/get-user-by-id": {

"userId": 123,

"$contact = /contact/get-contact-by-id": {

"@contactId": "$user.contactId"

}

}

}

In this example, the returned user object has only the firstName and emailAddress properties (it still has
the contact property, too). To specify whitelist properties, you simply place the properties in square brackets
(e.g., [whiteList]) immediately following the name of your variable.

Next, you’ll learn about making calls in batch.

Making Batch Calls

When nesting service calls, the intent is to invoke multiple services with a single HTTP request. Using a
single request for multiple service calls is helpful for gathering related information from the service call
results, but it can also be advantageous to use a single request to invoke multiple unrelated service calls. The
Invoker lets you batch service calls together to improve performance. It’s simple: just pass in a JSON array of
commands using the following format:

[

{/* first command ⁎/},

{/* second command ⁎/}

]

The result is a JSON array populated with results from each command. The commands are collectively
invoked in a single HTTP request, one after another.

Great! Now you know how to use Liferay’s JSONWeb Service Invoker to simplify your JSON calls to
Liferay.

1099

Related Topics

Invoking Remote Services
Invoking JSONWeb Services
JSONWeb Services Invocation Examples

85.7 JSON Web Services Invocation Examples
This tutorial provides examples of invoking Liferay’s JSONweb services via JavaScript, URL, and cURL. To
illustrate the differences between these, the same two use cases (getting a user and adding a user) are shown
in each example. This tutorial also includes an example of using JavaScript to invoke Liferay’s JSON web
services from a portlet.

Loading AlloyUI

Liferay web pages use the AlloyUI JavaScript framework. Among the JavaScript objects created for each
Liferay page is a Liferay object. This object includes a Service function that you canuse to invoke Liferay’s API.
To invoke Liferay web services via Liferay.Service(...), your JavaScript context must include the AlloyUI
JavaScript framework. Liferay uses AlloyUI 3.0. If you’re working in a JSP, you can load the AlloyUI taglib
and wrap your JavaScript code in an <aui:script> tag. Here’s the required import:

<%@ taglib uri="http://alloy.liferay.com/tld/aui" prefix="aui" %>

By default, the <aui:script> tag includes the base AUI module. To load specific AUI modules, specify
them via the use attribute. For example, to use the AUI node and eventmodules, wrap your code like this:

<aui:script use="node, event">

// Liferay service invocation here

</aui:script>

If you’re notworking in a JSP, youwon’t have access to taglibs. In this case, create anAUI contextmanually.
For example, use the following HTML fragment to load the AUI seed and CSS files:

<script src="http://cdn.alloyui.com/3.0.0/aui/aui-min.js"></script>

<link href="http://cdn.alloyui.com/3.0.0/aui-css/css/bootstrap.min.css" rel="stylesheet"></link>

Then you can create an AUI context like this:

AUI().use('aui-base', function(A){

// Liferay service invocation here

});

Now you’re ready to invoke Liferay’s JSONweb services.

Get User JSON Web Service Invocation via JavaScript

First, examine the following JSONweb service invocation, written in JavaScript:

Liferay.Service(

'/user/get-user-by-email-address',

{

companyId: Liferay.ThemeDisplay.getCompanyId(),

emailAddress: 'test@example.com`

},

function(obj) {

console.log(obj);

}

);

1100

http://curl.haxx.se/

If you run this code, the test@example.com user (JSON object) is logged to the JavaScript console.
The Liferay.Service(...) function takes three arguments:

1. A string representing the service to invoke
2. A parameters object
3. A callback function

The callback function takes the result of the service invocation as an argument.

Add User JSON Web Service Invocation via JavaScript

Here’s an example JSONweb service invocation, also written in JavaScript, that adds a new user. It requires
manymore parameters than the one for retrieving a user!

Liferay.Service(

'/user/add-user',

{

companyId: Liferay.ThemeDisplay.getCompanyId(),

autoPassword: false,

password1: 'test',

password2: 'test',

autoScreenName: false,

screenName: 'joe.bloggs',

emailAddress: 'joe.bloggs@example.com',

facebookId: 0,

openId: '',

locale: 'en_US',

firstName: 'Joe',

middleName: 'T',

lastName: 'Bloggs',

prefixId: 0,

suffixId: 0,

male: true,

birthdayMonth: 1,

birthdayDay: 1,

birthdayYear: 1970,

jobTitle: 'Tester',

groupIds: null,

organizationIds: null,

roleIds: null,

userGroupIds: null,

sendEmail: false,

serviceContext: {assetTagNames: ['test']}

},

function(obj) {

console.log(obj);

}

);

The serviceContext object assigns the test tag to the newly created user. Note that you can use JSON
syntax to supply values for objects and arrays. For example, to supply a value for the serviceContext object,
you use curly brackets: { and }. To supply a value for the assetTagNames array, you use square brackets: [
and]. Thus, the line serviceContext: {assetTagNames: ['test']} indicates that serviceContext is an object
containing an array named assetTagNames, which contains the string test.

Invoking JSON Web Services via JavaScript in a Application

You can adapt the example from the previous section for use in a Liferay app. For example, the JSP page
below creates a form that lets the user specify a first name,middle name, last name, screen name, and email
address. When the user clicks the AddUser button, the app uses these values to create a new user.

1101

<%@ taglib uri="http://alloy.liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<portlet:defineObjects />

<portlet:renderURL var="successURL">

<portlet:param name="mvcPath" value="/success.jsp"/>

</portlet:renderURL>

<portlet:renderURL var="failureURL">

<portlet:param name="mvcPath" value="/failure.jsp"/>

</portlet:renderURL>

<aui:form method="GET" name="<portlet:namespace />fm">

<aui:fieldset>

<aui:input label="First Name" name="first-name"></aui:input>

<aui:input label="Middle Name" name="middle-name"></aui:input>

<aui:input label="Last Name" name="last-name"></aui:input>

<aui:input label="Screen Name" name="screen-name"></aui:input>

<aui:input label="Email Address" name="email-address"></aui:input>

</aui:fieldset>

<p>Click the button below to add a new user by invoking Liferay's JSON web services.</p>

<aui:button-row>

<aui:button id="add-user" value="Add User">

</aui:button>

</aui:button-row>

</aui:form>

<aui:script use="node, event">

var addUserButton = A.one('#add-user');

var firstNameNode = A.one('#<portlet:namespace />first-name');

var middleNameNode = A.one('#<portlet:namespace />middle-name');

var lastNameNode = A.one('#<portlet:namespace />last-name');

var screenNameNode = A.one('#<portlet:namespace />screen-name');

var emailAddressNode = A.one('#<portlet:namespace />email-address');

addUserButton.on('click', function(event) {

var firstName = firstNameNode.get('value');

var middleName = middleNameNode.get('value');

var lastName = lastNameNode.get('value');

var screenName = screenNameNode.get('value');

var emailAddress = emailAddressNode.get('value');

var user = Liferay.Service(

'/user/add-user',

{

companyId: Liferay.ThemeDisplay.getCompanyId(),

autoPassword: false,

password1: 'test',

password2: 'test',

autoScreenName: false,

screenName: screenName,

emailAddress: emailAddress,

facebookId: 0,

openId: '',

locale: 'en_US',

firstName: firstName,

middleName: middleName,

lastName: lastName,

prefixId: 0,

suffixId: 0,

male: true,

birthdayMonth: 1,

birthdayDay: 1,

birthdayYear: 1970,

1102

jobTitle: 'Tester',

groupIds: null,

organizationIds: null,

roleIds: null,

userGroupIds: null,

sendEmail: false,

serviceContext: {assetTagNames: ['test']}

},

function(obj) {

console.log(obj);

if (obj.hasOwnProperty('createDate')) {

window.open('<%= successURL %>', '_self');

}

else {

window.open('<%= failureURL %>', '_self');

}

}

);

});

</aui:script>

In this example, it’s assumed that the JSP page is part of a webmodule with a portlet class that extends
Liferay’s MVCPortlet class. This is required since the code uses the mvcPathURL parameter. It’s also assumed
that the JSP code is in a file named view.jsp, and that there are also success.jsp and failure.jsp files in the
same directory.

Get User JSON Web Service Invocation via URL

Here’s a simple JSONweb service invocation via URL that returns the user with the specified email address:

http://localhost:8080/api/jsonws/user/get-user-by-email-address/company-id/20154/email-address/test%40liferay.com?p_auth=[value]

This web service invocation returns the test@example.com user. After invoking a service via Liferay’s
JSONWS API page, the URL provided when you click on theURLExample tab omits the p_authURL query
parameter. It’s assumed that you’ll add this parameter yourself. Remember that youmust be logged in as a
user with the required permission to invoke a web service. To find the p_auth token that corresponds to your
session, see the Invoking JSONWeb Services tutorial.

If you read that tutorial, you know that you can supply parameters as either URL path parameters or
URL query parameters. In the preceding example, the company ID and email address are supplied as URL
path parameters. Here’s an equivalent example using URL query parameters:

http://localhost:8080/api/jsonws/user/get-user-by-email-address?companyId=20154&emailAddress=test@example.com&p_auth=[value]

Next, you’ll consider an example that requires manymore parameters!

Add User JSON Web Service Invocation via URL

Here’s an example JSONweb service invocation via URL that adds a new user with the specified attributes:

http://localhost:8080/api/jsonws/user/add-user/company-id/20154/auto-password/false/password1/test/password2/test/auto-screen-

name/false/screen-name/joe.bloggs/email-address/joe.bloggs%40liferay.com/facebook-id/0/-open-id/locale/en_US/first-name/Joe/middle-

name/T/last-name/Bloggs/prefix-id/0/suffix-id/0/male/true/birthday-month/1/birthday-day/1/birthday-year/1970/job-title/Tester/-group-

ids/-organization-ids/-role-ids/-user-group-ids/send-email/false?p_auth=[value]

And here’s the same example using URL query parameters instead of URL path parameters:

http://localhost:8080/api/jsonws/user/add-user?companyId=20154&autoPassword=false&password1=test&password2=test&autoScreenName=false&screenName=joe.bloggs&emailAddress=joe.bloggs@example.com&facebookId=0&-

openId&locale=en_US&firstName=Joe&middleName=T&lastName=Bloggs&prefixId=0&suffixId=0&male=true&birthdayMonth=1&birthdayDay=1&birthdayYear=1970&jobTitle=Tester&-

groupIds&-organizationIds&-roleIds&-userGroupIds&sendEmail=false&p_auth=[value]

1103

Get User JSON Web Service Invocation via cURL

Here’s an example JSONweb service invocation via the cURL tool that returns the user with the specified
email address:

curl http://localhost:8080/api/jsonws/user/get-user-by-email-address \

-u test@example.com:test \

-d companyId=20154 \

-d emailAddress='test@example.com'

Note that cURL is a command line tool. You can execute this command from a terminal or command
prompt.

Add User JSON Web Service Invocation via cURL

Here’s an example JSON web service invocation via the cURL tool that adds the user with the specified
attributes:

curl http://localhost:8080/api/jsonws/user/add-user \

-u test@example.com:test \

-d companyId=20154 \

-d autoPassword=false \

-d password1='test' \

-d password2='test' \

-d autoScreenName=false \

-d screenName='joe.bloggs' \

-d emailAddress='joe.bloggs@example.com' \

-d facebookId=0 \

-d openId='0' \

-d locale=en_US \

-d firstName='Joe' \

-d middleName='T' \

-d lastName='Bloggs' \

-d prefixId=0 \

-d suffixId=0 \

-d male=true \

-d birthdayMonth=1 \

-d birthdayDay=1 \

-d birthdayYear=1970 \

-d jobTitle='Tester' \

-d groupIds= \

-d organizationIds= \

-d roleIds= \

-d userGroupIds= \

-d sendEmail=false

Great! Now you’ve seen how to invoke Liferay’s JSONweb services from JavaScript, URL, and cURL.

Related Topics

Invoking JSONWeb Services
JSONWeb Services Invoker
Invoking Remote Services

85.8 Configuring JSON Web Services

JSON web services are enabled in Liferay by default. If you need to disable them, specify this portal property
setting in a portal-ext.properties file:

1104

json.web.service.enabled=false

This tutorial presents other such properties that you can use to fine-tune exactly how JSONweb services
work in your Liferay instance. You can find these, and other properties, in the portal properties reference
documentation. As with the preceding property, you should set portal properties in a portal-ext.properties
file.

First, you’ll learn about setting whether JSONweb services are discoverable via the API page.

Discoverability

By default, JSONweb services are discoverable via the API page at http://[address]:[port]/api/jsonws. To
disable this, set the following property:

jsonws.web.service.api.discoverable=false

Next, you’ll learn how to disable HTTPmethods.

Disabling HTTP Methods

When strict HTTPmethodmode is enabled, you can filter web service access based on HTTPmethods used
by the services. For example, you can set your Liferay instance’s JSON web services to work in read-only
mode by disabling HTTPmethods other than GET. For example:

jsonws.web.service.invalid.http.methods=DELETE,POST,PUT

With this setting, all requests that use DELETE, POST, or PUTHTTPmethods are ignored.
Next, you’ll learn how to restrict public access to exposed JSON APIs.

Strict HTTP Methods

All JSONweb services are mapped to either GET or POSTHTTPmethods. If a service method name starts with
get, is or has, the service is assumed to be read-only and is bound to the GETmethod. Otherwise, it’s bound
to POST.

By default, Liferay doesn’t check HTTPmethods when invoking a service call; it works in non-strict http
method mode, where services may be invoked using any HTTPmethod. If you need the strict mode, you can
set it as follows:

jsonws.web.service.strict.http.method=true

When using strict mode, youmust use the correct HTTPmethods to calll service methods. When strict
HTTPmode is enabled, you still might need to disable HTTPmethods. You’ll learn how next.

Controlling Public Access

Each service method knows whether a given user has permission to invoke the chosen action. If you’re
concerned about security, you can restrict access to exposed JSON APIs by explicitly permitting or restricting
certain JSONweb service paths.

The property jsonws.web.service.paths.includes denotes patterns for JSON web service action paths
that are allowed. Set a blank pattern to allow any service action path.

The property jsonws.web.service.paths.excludes denotes patterns for JSON web service action paths
that aren’t allowed even if they match one of the patterns set in jsonws.web.service.paths.includes.

1105

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html
@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html

Note that theseproperties supportwildcards. For example, if youset jsonws.web.service.paths.includes=get*,has*,is*,
Liferay makes all read-only JSONmethods publicly accessible. All other JSONmethods are secured. To dis-
able access to all exposed methods, you can leave the right side of the = symbol empty. To enable access to all
exposed methods, specify *. Remember that if a path matches both the jsonws.web.service.paths.includes
and jsonws.web.service.paths.excludes properties, the jsonws.web.service.paths.excludes property takes
precedence.

Related Topics

Registering JSONWeb Services
Creating Remote Services
Invoking Remote Services

85.9 SOAP Web Services
You can access Liferay’s web services via Simple Object Access Protocol (SOAP) over HTTP.The packaging
protocol is SOAP, and the transport protocol is HTTP.

Note: An authentication token must accompany each Liferay web service invocation. For details, see the
tutorial on Service Security Layers.

As an example, consider some example SOAPweb service clients for Liferay’s Company, User, and UserGroup
services that perform these tasks:

1. List each user group the user with the screenname test belongs to.

2. Add a new user group namedMyGroup.

3. Add your Liferay instance’s administrative user to the new user group. For demonstration purposes,
you’ll use an administrative user whose email address is test@example.com.

You’ll use these SOAP related classes:

import com.liferay.portal.kernel.model.CompanySoap;

import com.liferay.portal.kernel.model.CompanySoap;

import com.liferay.portal.kernel.model.UserGroupSoap;

import com.liferay.portal.kernel.model.UserGroupSoap;

import com.liferay.portal.service.http.CompanyServiceSoap;

import com.liferay.portal.service.http.CompanyServiceSoapServiceLocator;

import com.liferay.portal.service.http.UserGroupServiceSoap;

import com.liferay.portal.service.http.UserGroupServiceSoapServiceLocator;

import com.liferay.portal.service.http.UserServiceSoap;

import com.liferay.portal.service.http.UserServiceSoapServiceLocator;

Can you see the naming convention for SOAP related classes? These classes have
either -ServiceSoapServiceLocator, -ServiceSoap, or -Soap as suffixes. The -ServiceSoapServiceLocator class
finds the -ServiceSoap class via the service’s URL you provide. The -ServiceSoap class is the interface to the
services specified in theWeb Services Definition Language (WSDL) file for each service. The -Soap classes
are the serializable implementations of the models.

So how do you determine the URLs for these services? This is a most excellent question! You can see a list
of the services deployed on your Liferay instance by opening your browser to the following URL:

http://[host]:[port]/api/axis

1106

Note that this URL only lists services in the portal context. To learn how to find services in other contexts
in your Liferay instance, see the SOAP sections in the tutorial Creating Remote Services.

Regardless of the context you’re viewing SOAP services in, each web service is listed with its name,
operations, and a link to itsWSDL file. For example, here’s the list of secure web services listed for UserGroup:

• Portal_UserGroupService (wsdl)

– addGroupUserGroups

– addTeamUserGroups

– addUserGroup

– deleteUserGroup

– fetchUserGroup

– getUserGroup

– getUserGroups

– getUserUserGroups

– unsetGroupUserGroups

– unsetTeamUserGroups

– updateUserGroup

Note that some of these methods are overloaded.
Liferay uses Service Builder to automatically generate JSON and SOAP web service interfaces. If you

haven’t used Service Builder before, see its introductory tutorial.
TheWSDL file is written in XML and provides amodel for describing and locating the web service. Here’s

aWSDL excerpt of the addUserGroup operation of UserGroup:

<wsdl:operation name="addUserGroup" parameterOrder="name description">

<wsdl:input message="intf:addUserGroupRequest" name="addUserGroupRequest"/>

<wsdl:output message="intf:addUserGroupResponse" name="addUserGroupResponse"/>

</wsdl:operation>

To use the service, you pass in the WSDL URL along with your login credentials to the SOAP service
locator for your service. The next section shows you an example of this.

SOAP Java Client

Now you’ll learn how to invoke Liferay’s SOAP web services. As an example, you’ll do this by setting up a Java
web services client in Eclipse. You can use Eclipse’s Web Service Client wizard to either create a new web
service client project or add a client to an existing project. Youmust add a newweb service client to your
project for each service that you want to consume in your client code. For this example, you’ll build a web
service client to invoke Liferay’s Company, User, and UserGroup services.

To create a new web service client project in Eclipse, click File → New → Other…, then expand theWeb
Services category. SelectWeb Service Client.

For each client you create, you’re prompted to enter the service definition (WSDL) for the desired ser-
vice. Since your example web service client needs Liferay’s Company, User, and UserGroup services, enter the
followingWSDLs:

http://localhost:8080/api/axis/Portal_CompanyService?wsdl

http://localhost:8080/api/axis/Portal_UserService?wsdl

http://localhost:8080/api/axis/Portal_UserGroupService?wsdl

1107

Figure 85.4: Service Definition

Whenyouspecify aWSDL,Eclipse automatically adds theauxiliaryfiles and libraries required to consume
that web service. After you’ve created your web service client project using one of the aboveWSDLs, you
need to create additional clients in the project using the remainingWSDLs. To create an additional client in
an existing project, right-click on the project and selectNew →Other →Web Service Client. ClickNext, enter the
WSDL, and complete the wizard.

The following code locates and invokes operations to create a new user group named MyUserGroup and
add a user with the screen name test to it. Create a LiferaySoapClient.java file in your web service client
project and add this code to it. If you create this class in a package other than the one that’s specified in this
code, replace the package with your package. To run the client from Eclipse, make sure that your Liferay
server is running, right-click the LiferaySoapClient.java class, and select Run as Java application. Check your
console to check that your service calls succeeded.

package com.liferay.test;

import java.net.URL;

import com.liferay.portal.kernel.model.CompanySoap;

import com.liferay.portal.kernel.model.UserGroupSoap;

import com.liferay.portal.service.http.CompanyServiceSoap;

import com.liferay.portal.service.http.CompanyServiceSoapServiceLocator;

import com.liferay.portal.service.http.UserGroupServiceSoap;

import com.liferay.portal.service.http.UserGroupServiceSoapServiceLocator;

import com.liferay.portal.service.http.UserServiceSoap;

import com.liferay.portal.service.http.UserServiceSoapServiceLocator;

1108

public class LiferaySoapClient {

public static void main(String[] args) {

try {

String remoteUser = "test";

String password = "test";

String virtualHost = "localhost";

String groupName = "MyUserGroup";

String serviceCompanyName = "Portal_CompanyService";

String serviceUserName = "Portal_UserService";

String serviceUserGroupName = "Portal_UserGroupService";

long userId = 0;

// Locate the Company

CompanyServiceSoapServiceLocator locatorCompany =

new CompanyServiceSoapServiceLocator();

CompanyServiceSoap soapCompany =

locatorCompany.getPortal_CompanyService(

_getURL(remoteUser, password, serviceCompanyName,

true));

CompanySoap companySoap =

soapCompany.getCompanyByVirtualHost(virtualHost);

// Locate the User service

UserServiceSoapServiceLocator locatorUser =

new UserServiceSoapServiceLocator();

UserServiceSoap userSoap = locatorUser.getPortal_UserService(

_getURL(remoteUser, password, serviceUserName, true));

// Get the ID of the remote user

userId = userSoap.getUserIdByScreenName(

companySoap.getCompanyId(), remoteUser);

System.out.println("userId for user named " + remoteUser +

" is " + userId);

// Locate the UserGroup service

UserGroupServiceSoapServiceLocator locator =

new UserGroupServiceSoapServiceLocator();

UserGroupServiceSoap usergroupsoap =

locator.getPortal_UserGroupService(

_getURL(remoteUser, password, serviceUserGroupName,

true));

// Get the user's user groups

UserGroupSoap[] usergroups = usergroupsoap.getUserUserGroups(

userId);

System.out.println("User groups for userId " + userId + " ...");

for (int i = 0; i < usergroups.length; i++) {

System.out.println("\t" + usergroups[i].getName());

}

// Adds the user group if it does not already exist

String groupDesc = "My new user group";

UserGroupSoap newUserGroup = null;

boolean userGroupAlreadyExists = false;

try {

newUserGroup = usergroupsoap.getUserGroup(groupName);

if (newUserGroup != null) {

System.out.println("User with userId " + userId +

1109

" is already a member of UserGroup " +

newUserGroup.getName());

userGroupAlreadyExists = true;

}

} catch (Exception e) {

// Print cause, but continue

System.out.println(e.getLocalizedMessage());

}

if (!userGroupAlreadyExists) {

newUserGroup = usergroupsoap.addUserGroup(

groupName, groupDesc);

System.out.println("Added user group named " + groupName);

long users[] = {userId};

userSoap.addUserGroupUsers(newUserGroup.getUserGroupId(),

users);

}

// Get the user's user groups

usergroups = usergroupsoap.getUserUserGroups(userId);

System.out.println("User groups for userId " + userId + " ...");

for (int i = 0; i < usergroups.length; i++) {

System.out.println("\t" + usergroups[i].getName());

}

}

catch (Exception e) {

e.getLocalizedMessage();

}

}

private static URL _getURL(String remoteUser, String password,

String serviceName, boolean authenticate)

throws Exception {

// Unauthenticated url

String url = "http://localhost:8080/api/axis/" + serviceName;

// Authenticated url

if (authenticate) {

url = "http://" + remoteUser + ":" + password

+ "@localhost:8080/api/axis/"

+ serviceName;

}

return new URL(url);

}

}

Running this client should produce output like this:

userId for user named test is 10196

User groups for user 10196 ...

java.rmi.RemoteException: No UserGroup exists with the key {companyId=10154,

name=MyUserGroup}

Added user group named

Added user to user group named MyUserGroup

User groups for user 10196 ...

MyUserGroup

The output tells you the user had no groups, but was added to the user group MyUserGroup.
You might be thinking, “But an error was thrown! Something is wrong!” Yes, an error is thrown

(java.rmi.RemoteException:), but you can sit here as cool as an ice cream sandwich all the same. The ex-
ception is thrown because the UserGroup check is invoked before the UserGroup is created. Because the very

1110

next line of the output says Added user group named..., you’re okay. The SOAP web service invocations
worked!

Here are a few things to note about this example:

• Authentication is done using HTTP Basic Authentication, which isn’t appropriate for a production
environment since the password is unencrypted. It’s simply used for convenience in this exam-
ple. In production, you should use SSL. Refer to Liferay’s portal.properties file and look up the
company.security.auth.requires.https and web.server.protocol properties for more information.

• The screen name and password are passed in the URL as credentials.
• The name of the service (e.g. Portal_UserGroupService) is specified at the end of the URL. Remember
that the service name can be found in the web service listing.

Theoperations getCompanyByVirtualHost(), getUserIdByScreenName(), getUserUserGroups(), addUserGroup()
and addUserGroupUsers() are specified for the -ServiceSOAP classes CompanyServiceSoap, UserServiceSoap
and UserGroupServiceSoap in the WSDL files. Information on parameter types, parameter order, request
type, response type, and return type are conveniently specified in theWSDL for each Liferay web service. It’s
all there for you!

Next, you’ll learn how to implement a web service client in PHP.

SOAP PHP Client

You can write your client in any language that supports web services invocation. The following example code
invokes the same operations as before, but uses PHP and a PHP SOAP client instead of Java:

<?php

$userGroupName = "MyUserGroup2";

$userName = "test";

$clientOptions = array('login' => $userName, 'password' => 'test');

// Add user group

$userGroupClient = new

SoapClient(

"http://localhost:8080/api/axis/Portal_UserGroupService?wsdl",

$clientOptions);

$userGroup = $userGroupClient->addUserGroup($userGroupName,

"This user group was created by the PHP client! ");

print ("User group ID is $userGroup->userGroupId ");

// Add user to user group

$companyClient = new SoapClient(

"http://localhost:8080/api/axis/Portal_CompanyService?wsdl",

$clientOptions);

$company = $companyClient->getCompanyByVirtualHost("localhost");

$userClient = new SoapClient(

"http://localhost:8080/api/axis/Portal_UserService?wsdl",

$clientOptions);

$userId = $userClient->getUserIdByScreenName($company->companyId,

$userName);

print ("User ID for $userName is $userId ");

$users = array($userId);

$userClient->addUserGroupUsers($userGroup->userGroupId, $users);

// Print the user groups to which the user belongs

$userGroups = $userGroupClient->getUserUserGroups($userId);

print ("User groups for user $userId ... ");

foreach($userGroups as $ug)

print ("$ug->name, $ug->userGroupId ")

?>

Remember, you can implement a web service client in any language that supports SOAP web services.

1111

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html

Related Topics

Service Security Layers
Creating Remote Services
Invoking Remote Services
What is Service Builder?

85.10 JAX-WS and JAX-RS
Liferay supports JAX-WSand JAX-RS via the ApacheCXF implementation. Apps can publish JAXweb services
to the CXF endpoints defined in your Liferay instance. CXF endpoints are effectively context paths the JAX
web services are deployed to and accessible from. To publish any kind of JAX web service, one or more CXF
endpoints must be defined in your Liferay instance. To access JAX web services, an extender must also be
configured in your Liferay instance. Extenders specify where the services are deployed and whether they are
augmented with handlers, providers, and so on. There are two types of extenders:

1. SOAP Extenders: Required to publish JAX-WS web services. Each SOAP extender can deploy the
services to one or more CXF endpoints and can use a set of JAX-WS handlers to augment the services.

2. RESTExtenders: Required to publish JAX-RS web services. REST extenders for JAX-RS services are
analogous toSOAPextenders for JAX-WSservices. To create JAX-RSservices that canworkacrossdiffer-
ent JAX-RS implementations, youmust provide an implementation of javax.ws.rs.core.Application
to the OSGi framework. You can do this by registering an instance of this implementation as an OSGi
service via BundleContext or the Declarative Services @Component annotation. The JAX-RS application
encompasses the services that represent JAX-RS endpoints and the services that represent JAX-RS
providers. By specifying OSGi filters in a REST extender, you can also dynamically add endpoints or
JAX-RS providers to a JAX-RS application.

SOAP extenders and REST extenders are subsystems that track the services the app developer registers
in OSGi (those matching the provided OSGi filters), and deploy them under the specified CXF endpoints.
For example, if you create the CXF endpoints /soap and /rest, you could later create a REST extender for
/rest that publishes REST applications, and a SOAP extender for /soap that publishes SOAP services. Of
course, this is only a rough example: you can fine tune things to your liking.

CXF endpoints and both types of extenders can be created programmatically or with Liferay’s Control
Panel. This tutorial shows you how to do both, and then shows you how to publish JAX-WS and JAX-RS web
services. The following topics are covered:

• Configuring Endpoints and Extenders with the Control Panel

– CXF Endpoints

– SOAP Extenders

– REST Extenders

• Configuring Endpoints and Extenders Programmatically

• Publishing JAX-WSWeb Services

• Publishing JAX-RSWeb Services

1112

https://en.wikipedia.org/wiki/Java_API_for_XML_Web_Services
https://en.wikipedia.org/wiki/Java_API_for_RESTful_Web_Services
http://cxf.apache.org/
https://jax-ws.java.net/articles/handlers_introduction.html
https://osgi.org/javadoc/r6/core/org/osgi/framework/Filter.html

Configuring Endpoints and Extenders with the Control Panel

Liferay’s Control Panel lets administrators configure endpoints and extenders for JAX web services. Note
that you must be an administrator in your Liferay instance to access the settings here. First, you’ll learn how
to create CXF endpoints.

CXF Endpoints

To configure a CXF endpoint with the Control Panel, first go to Control Panel → Configuration → SystemSettings →
Foundation. Then select CXF Endpoints from the table. If there are any existing CXF endpoints, they’re shown
here. To add a new one, select the Add button () in the lower right-hand corner. The form that appears lets
you configure a new CXF endpoint by filling out these fields:

• Context path: The path the JAX web services are deployed to on the Liferay server. For example, if
you define the context path /web-services, any services deployed there are available at http://your-
server:your-port/o/web-services.

• AuthVerifier properties: Any properties defined here are passed as-is to the AuthVerifier filter. See
the AuthVerifier documentation for more details.

• Required extensions: CXF normally loads its default extension classes, but in some cases you can
override them to replace the default behavior. In most cases, you can leave this field blank: overriding
extensions isn’t common. By specifying custom extensions here via OSGi filters, Liferay waits until
those extensions are registered in the OSGi framework before creating the CXF servlet and passing
the extensions to the servlet.

Figure 85.5: Fill out this form to create a CXF endpoint.

Next, you’ll learn how to use the Control Panel to create SOAP extenders for JAX-WSweb services.

1113

https://osgi.org/javadoc/r6/core/org/osgi/framework/Filter.html

SOAP Extenders

For an app to deploy JAX-WS web services, you must configure a SOAP extender. To configure a SOAP
extender with the Control Panel, first go to Control Panel → Configuration → System Settings → Foundation. Then
select SOAP Extenders from the table. If there are any existing SOAP extenders, they’re shown here. To add a
new one, select the Add button () in the lower right-hand corner. The form that appears lets you configure
a new SOAP extender by filling out these fields:

• Context paths: Specify at least one CXF endpoint here. This is where the services affected by this
extender are deployed. In the preceding CXF endpoint example, this would be /web-services. Note
that you can specify more than one CXF endpoint here.

• jax.ws.handler.filters: Here you can specify a set of OSGi filters that select certain services registered
in the OSGi framework. The selected services should implement JAX-WS handlers and augment the
JAX-WS services specified in the jax.ws.service.filters property. These JAX-WS handlers apply to each
service selected in this extender.

• jax.ws.service.filters: Here you can specify a set of OSGi filters that select the services registered in
the OSGi framework that will be deployed to the CXF endpoints. These OSGi services must be proper
JAX-WS services.

• soap.descriptor.builder: Leave this option empty to use JAX-WS annotations to describe the SOAP
service. To use a different way to describe the SOAP service, you can provide an OSGi filter here that
selects an implementation of com.liferay.portal.remote.soap.extender.SoapDescriptorBuilder.

Figure 85.6: Fill out this form to create a SOAP extender.

Next, you’ll learn how to use the Control Panel to create REST extenders for JAX-RS web services.

1114

https://osgi.org/javadoc/r6/core/org/osgi/framework/Filter.html
https://docs.oracle.com/javaee/7/tutorial/jaxws001.htm
https://docs.oracle.com/javaee/7/tutorial/jaxws001.htm

REST Extenders

To configure a REST extender with the Control Panel, first go to Control Panel → Configuration → System Settings
→ Foundation. Then select REST Extender from the table. If there are any existing REST extenders, they’re
shown here. To add a new one, select the Add button () in the lower right-hand corner. The form that
appears lets you configure a new REST extender by filling out these fields:

• Context paths: Specify at least one CXF endpoint here. This is where the services affected by this
extender are deployed. In the preceding CXF endpoint example, this would be /web-services. Note
that you can specify more than one CXF endpoint here. This works the same way as the Context paths
setting in SOAP Extenders.

• jax.rs.application.filters: Here you can specify a set of OSGi filters that select services that implement
javax.ws.rs.core.Application. These JAX-RS applications are deployed to theCXF endpoints specified
in the Context paths property.

• jsx.rs.provider.filters: Here you can specify a set of OSGi filters that select services registered in the
OSGi framework. The selected services should implement any of the interfaces supported by JAX-RS
for providers. These JAX-RS providers are added to the JAX-RS application as if they had been returned
by the getSingletons()method of javax.ws.rs.core.Application. The following links list some of the
supported JAX-RS providers:

– JAX-RS Entity Providers
– Filters and Interceptors

• jax.rs.service.filters: Here you can specify a set of OSGi filters that selects services registered in the
OSGi framework that are valid JAX-RS endpoints. These endpoints are added to the JAX-RS application
as if they had been returned by the getSingletons()method of javax.ws.rs.core.Application.

Next, you’ll learn how to configure endpoints and extenders programmatically.

Configuring Endpoints and Extenders Programmatically

To configure endpoints or extenders programmatically, youmust use Liferay’s configurator extender. The
configurator extender provides a way for OSGi modules to deploy default configuration values. Modules
that use the configurator extender must provide a ConfigurationPath header that points to the configuration
files’ location inside the module. For example, the following configuration sets the ConfigurationPath to
src/main/resources/configuration:

Bundle-Name: Liferay Export Import Service JAX-WS

Bundle-SymbolicName: com.liferay.exportimport.service.jaxws

Bundle-Version: 1.0.0

Liferay-Configuration-Path: /configuration

Include-Resource: configuration=src/main/resources/configuration

Liferay-Releng-Module-Group-Description:

Liferay-Releng-Module-Group-Title: Data Management

Note: If you’re using any version before Liferay CE GA4 or Liferay DXP Fixpack 22, the Liferay-

Configuration-Path directive above is Configuration-Path. As of LPS-62571, Liferay-specific Bnd instructions
are prefixed with Liferay to avoid conflicts.

1115

https://jersey.java.net/documentation/latest/message-body-workers.html
https://jersey.java.net/documentation/latest/filters-and-interceptors.html
https://issues.liferay.com/browse/LPS-62571

Figure 85.7: Fill out this form to create a REST extender.

There are two different configuration types in OSGi’s ConfigurationAdmin: single, and factory. Factory
configurations can have several configuration instances per factory name. Liferay DXP uses factory configu-
rations. Youmust provide a factory configuration’s default values in a *.properties file. In this properties
file, use a suffix on the end of the PID (persistent identifier) and then provide your settings. For example,
the following code uses the -staging suffix on the PID and creates a CXF endpoint at the context path
/staging-ws:

com.liferay.portal.remote.cxf.common.configuration.CXFEndpointPublisherConfiguration-staging.properties:

contextPath=/staging-ws

As another example, the following code uses the suffix -stagingjaxws on the PID and creates a SOAP
extender at the context path /staging-ws. This code also includes settings for the configuration fields
jaxWsHandlerFilterStrings and jaxWsServiceFilterStrings:

com.liferay.portal.remote.soap.extender.configuration.SoapExtenderConfiguration-stagingjaxws.properties:

contextPaths=/staging-ws

jaxWsHandlerFilterStrings=(staging.jax.ws.handler=true)

jaxWsServiceFilterStrings=(staging.jax.ws.service=true)

You must then use these configuration fields in the configuration class. For example, the
SoapExtenderConfiguration interfacebelowcontains the configurationfields contextPaths, jaxWsHandlerFilterStrings,
and jaxWsServiceFilterStrings:

@ExtendedObjectClassDefinition(

category = "foundation", factoryInstanceLabelAttribute = "contextPaths"

)

@Meta.OCD(

factory = true,

id = "com.liferay.portal.remote.soap.extender.configuration.SoapExtenderConfiguration",

1116

https://osgi.org/javadoc/r4v42/org/osgi/service/cm/ConfigurationAdmin.html

localization = "content/Language", name = "soap.extender.configuration.name"

)

public interface SoapExtenderConfiguration {

@Meta.AD(required = false)

public String[] contextPaths();

@Meta.AD(name = "jax.ws.handler.filters", required = false)

public String[] jaxWsHandlerFilterStrings();

@Meta.AD(name = "jax.ws.service.filters", required = false)

public String[] jaxWsServiceFilterStrings();

@Meta.AD(name = "soap.descriptor.builder", required = false)

public String soapDescriptorBuilderFilter();

}

Youcanuse similar techniques to createRESTextenders. For example, see the RestExtenderConfiguration
interface in Liferay’s source code.

Next, you’ll learn how to publish JAX-WSweb services.

Publishing JAX-WS Web Services

To publish JAX-WS web services via SOAP in a 7.0 module, annotate the class and its methods with standard
JAX-WS annotations, and then register it as a service in the OSGi framework. For example, the following
class uses the @WebService annotation for the class and @WebMethod annotations for its methods. Youmust
also set the jaxws property to true in the OSGi @Component annotation:

import javax.jws.WebMethod;

import javax.jws.WebService;

import org.osgi.service.component.annotations.Component;

@Component(

immediate = true, property = "jaxws=true", service = Calculator.class

)

@WebService

public class Calculator {

@WebMethod

public int divide(int a, int b) {

return a / b;

}

@WebMethod

public int multiply(int a, int b) {

return a * b;

}

@WebMethod

public int subtract(int a, int b) {

return a - b;

}

@WebMethod

public int sum(int a, int b) {

return a + b;

}

}

You should also make sure that you include org.osgi.core and org.osgi.service.component.annotations

as dependencies to your project.

1117

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/portal-remote/portal-remote-rest-extender/src/main/java/com/liferay/portal/remote/rest/extender/configuration/RestExtenderConfiguration.java
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/portal-remote/portal-remote-rest-extender/src/main/java/com/liferay/portal/remote/rest/extender/configuration/RestExtenderConfiguration.java

Next, you’ll learn how to publish JAX-RS web services.

Publishing JAX-RS Web Services

You can publish JAX-RS web services in a Liferay module the same way you would outside of Liferay. You
must also, however, register the class in the OSGi framework. Note that the services must match the OSGi
filters provided in the respective extenders. This is how the instances that become services are selected.
There’s no classpath scanning or other automatic mechanism at work here: it’s the developer’s responsibility
to register the services in the OSGi framework.

The following example registers anOSGi component that publishes a JAX-RSweb service at /application-
path/hello. Get requests to this web service return a simple “Hello!”:

import org.osgi.service.component.annotations.Component;

import javax.ws.rs.ApplicationPath;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.Application;

import java.util.Collections;

import java.util.Set;

@Component(immediate = true, service = Application.class)

@ApplicationPath("/application-path")

public class RestEndpoint extends Application {

public Set<Object> getSingletons() {

return Collections.<Object>singleton(this);

}

@GET

@Path("/hello")

@Produces("text/text")

public String sayHello() {

return "Hello!";

}

}

Nice work! Now you know how JAX-WS and JAX-RS works in Liferay.

Related Topics

Service BuilderWeb Services

85.11 Liferay WebSocket Whiteboard

Modern web apps exchange large amounts of data with clients. TheWebSockets specification lets this ex-
change occur over a full-duplex connection that remains open, therefore enabling real-time communication.
This approach is more efficient than techniques like long polling, which open two connections to emulate a
full-duplex connection. Click here for more information onWebSockets.

SinceWebSockets are ubiquitous throughout the web and in all modern browsers, you need a way to
register new WebSocket endpoints in Liferay DXP. The Liferay WebSocket Whiteboard lets you define new
WebSocket endpoints as regular OSGi services. This tutorial shows you how to do this. Onward!

1118

https://www.websocket.org/aboutwebsocket.html

Configuring a Non-Liferay OSGi Container

Theremay be instances where you want to use a Liferay OSGi module in a non-Liferay OSGi container, and
need to define aWebSocket endpoint. To do this, you must register a javax.servlet.ServletContext service
with the property websocket.active set to true:

Dictionary<String, Object> servletContextProps = new Hashtable<String, Object>();

servletContextProps.put("websocket.active", Boolean.TRUE);

bundleContext.registerService(ServletContext.class, servletContext, servletContextProps);

Youmust also configure the javax.websocket-api’s ServiceLoader. You can do this by creating your own
module as a javax.websocket-api fragment. Here’s an example of a manifest for such a module:

Fragment-Host: javax.websocket-api

Require-Capability:\

osgi.serviceloader;\

filter:='(osgi.serviceloader=javax.websocket.server.ServerEndpointConfig$Configurator)';\

cardinality:=multiple,\

osgi.extender;\

filter:='(osgi.extender=osgi.serviceloader.processor)'

Next, you’ll learn how to define a newWebSocket server endpoint in a Liferay OSGi container.

Configuring a Liferay OSGi Container

Defining a newWebSocket server endpoint in Liferay DXP is straightforward. Follow these steps:

1. If you’re running Liferay Portal 7.0.2 GA3 or Liferay Digital Enterprise 7.0 Fix Pack 7 or earlier, add the
following property to your portal-ext.properties file. Otherwise, you can skip this andmove on to
the next step.

module.framework.system.packages.extra=\

com.ibm.crypto.provider,\

com.ibm.db2.jcc,\

com.microsoft.sqlserver.jdbc,\

com.mysql.jdbc,\

com.p6spy.engine.spy,\

com.sun.security.auth.module,\

com.sybase.jdbc4.jdbc,\

oracle.jdbc,\

org.postgresql,\

org.apache.naming.java,\

org.hsqldb.jdbc,\

org.mariadb.jdbc,\

sun.misc,\

sun.net.util,\

sun.security.provider,\

javax.websocket;version="1.1.0",\

javax.websocket.server;version="1.1.0"

2. Deploy the LiferayWebSocketWhiteboardmodule (com.liferay.websocket.whiteboard) to your Liferay
DXP instance. You can download thismodule from JCenter orMaven Central by clicking the respective
link:

• JCenter

1119

https://bintray.com/bintray/jcenter/com.liferay%3Acom.liferay.websocket.whiteboard

• Maven Central

3. In your module’s build file, add a dependency to the LiferayWebSocketWhiteboard:

com.liferay:com.liferay.websocket.whiteboard:1.0.1

4. In your module, define a WebSocket server endpoint as you normally would. Note, however, that
Liferay DXP doesn’t currently support the annotation-driven approach; only the interface-driven
approach is supported. To create a WebSocket server endpoint, register an OSGi Service for
javax.websocket.Endpoint.classwith the following properties:

• org.osgi.http.websocket.endpoint.path: theWebSocket’s path (required)
• org.osgi.http.websocket.endpoint.decoders: theWebSocket’s decoders (optional)
• org.osgi.http.websocket.endpoint.encoders: theWebSocket’s encoders (optional)
• org.osgi.http.websocket.endpoint.subprotocols: theWebSocket’s subprotocols (optional)

For example, the following steps show you how to define a WebSocket endpoint in a portlet. For the
purposes of this example, the portlet also contains a client that communicates with the endpoint. This
example portlet, Echo Portlet, uses WebSocket functionality to echo a simple message the client sends to the
server.

Although the following steps show only code snippets, you can click here to see the complete example
code.

Use these steps to define aWebSocket endpoint:

1. Add theWebSocket dependency to your module’s build file. For example, here’s the dependency in a
build.gradle file:

javax.websocket:javax.websocket-api:1.1

2. Create theWebSocket endpoint. Note that the @Component annotation contains the required property
org.osgi.http.websocket.endpoint.path, which defines the endpoint /o/echo. Also note that service
= Endpoint.class in the @Component annotation registers this class as an Endpoint service in Liferay
DXP’s OSGi framework. Otherwise, there’s nothing special about the EchoWebSocketEndpoint class’s
code; it resembles that of any otherWebSocket endpoint:

@Component(

immediate = true,

property = {"org.osgi.http.websocket.endpoint.path=/o/echo"},

service = Endpoint.class

)

public class EchoWebSocketEndpoint extends Endpoint {

@Override

public void onOpen(final Session session, EndpointConfig endpointConfig) {

session.addMessageHandler(

new MessageHandler.Whole<String>() {

@Override

public void onMessage(String text) {

try {

RemoteEndpoint.Basic remoteEndpoint =

session.getBasicRemote();

remoteEndpoint.sendText(text);

}

1120

https://search.maven.org/#search%7Cga%7C1%7Cliferay.websocket.whiteboard
https://github.com/cgoncas/liferay-websocket-echo

Figure 85.8: The example Echo portlet sends and receives a simple message via a WebSocket endpoint.

catch (IOException ioe) {

throw new RuntimeException(ioe);

}

}

});

}

}

3. Write your client code. In this example, the Echo portlet’s view.jsp defines aWebSocket client. Again,
there’s nothing special about this code; it resembles that of otherWebSocket clients:

<%@ include file="/init.jsp" %>

<div id="content">

<div id="left_col">

Websocket URL:

<input id="urlInputText" type="text" readonly />

</br>

</br>

1121

<button onClick="initWebSocket();">Connect</button>

<button onClick="stopWebSocket();">Disconnect</button>

<button onClick="checkSocket();">State</button>

Message:

<input id="inputText" onkeydown="if(event.keyCode==13)sendMessage();" type="text" />

<button onClick="sendMessage();">Send</button>

</div>

<div id="right_col">

Log:

<textarea id="debugTextArea" style="width:400px;height:200px;" readonly></textarea>

</div>

</div>

<script type="text/javascript">

var debugTextArea = document.getElementById("debugTextArea");

var wsUri = "ws://localhost:8080/o/echo";

urlInputText.value=wsUri;

resizeUrlInputText(urlInputText.value);

function resizeUrlInputText(message) {

urlInputText.size=message.length;

}

function debug(message) {

debugTextArea.value += message + "\n\n";

debugTextArea.scrollTop = debugTextArea.scrollHeight;

}

function sendMessage() {

var msg = document.getElementById("inputText").value;

if (websocket != null) {

document.getElementById("inputText").value = "";

websocket.send(msg);

debug("Message sent: " + msg);

console.log("string sent :", '"'+msg+'"');

}

else {

debug("Can't sent message, the connection is not open");

}

}

var websocket = null;

function initWebSocket() {

try {

if (typeof MozWebSocket == 'function')

WebSocket = MozWebSocket;

if (websocket && websocket.readyState == 1)

websocket.close();

websocket = new WebSocket(wsUri);

websocket.onopen = function(evt) {

debug("CONNECTED");

};

websocket.onclose = function(evt) {

debug("DISCONNECTED");

};

websocket.onmessage = function(evt) {

console.log("Message received: ", evt.data);

debug("Message received: " + evt.data);

};

1122

websocket.onerror = function(evt) {

debug('ERROR: ' + evt.data);

};

}

catch (exception) {

debug('ERROR: ' + exception);

}

}

function stopWebSocket() {

if (websocket) {

websocket.close();

}

}

function checkSocket() {

if (websocket != null) {

var stateStr;

switch (websocket.readyState) {

case 0: {

stateStr = "CONNECTING";

break;

}

case 1: {

stateStr = "OPEN";

break;

}

case 2: {

stateStr = "CLOSING";

break;

}

case 3: {

stateStr = "CLOSED";

break;

}

default: {

stateStr = "UNKNOW";

break;

}

}

debug("WebSocket state = " + websocket.readyState + " (" + stateStr + ")");

} else {

debug("WebSocket is null");

}

}

</script>

That’s it! Now you know how to createWebSocket endpoints in Liferay DXP.

Related Topics

JAX-WS and JAX-RS
Service BuilderWeb Services

1123

Chapter 86

Asset Framework

Liferay’s asset framework is a system that allows you to add core Liferay features to your application. For
example, if you’ve built an eventmanagement application that displays a list of upcoming events, you can use
the asset framework to let users add tags, categories, or comments to make entries more self-descriptive.

Tags, categories, and comments are just a few of the features in Liferay’s asset framework. You’ll also
find it easy to use: you’ll be infusing your application with these features in no time.

As background, the term asset refers to any type of content in the portal. This could be text, a file, a URL,
an image, documents, blog entries, bookmarks, wiki pages, or anything you create in your applications.

The asset framework tutorials assume that you’ve used Liferay’s Service Builder to generate your per-
sistence layer, that you’ve implemented permissions on the entities that you’re persisting, and that you’ve
enabled them for search and indexing. You can learn more about Liferay’s Service Builder and how to use it
in the Service Builder tutorial section.

If you’ve yet to do any of those things, you can see how each is done in respective tutorials Generating
the Back-end, Using Resources and Permissions, and Leveraging Search. Lastly, the Learning Path Assets:
Integrating with Liferay’s Framework takes you through the fundamentals of enabling an example applica-
tion’s custom entities to use the asset framework. If you haven’t traveled through that Learning Path, we
recommend you do so before continuing with the tutorials in this section.

The tutorials that follow in this section explore the details of leveraging the asset framework’s various
features. Here are some features that you’ll give your users as you implement them in your app:

• Extensively render your assets.
• Associate tags to custom content types. Users can create and assign new tags or use existing tags.
• Associate categories to custom content types.
• Manage tags from the Control Panel. Administrators can evenmerge tags.
• Manage categories from the Control Panel. This includes the ability to create category hierarchies.
• Relate assets to one another.

At this point, you might be saying, “Liferay’s asset framework sounds great, but how do I leverage all of
its awesome features?” Excellent question, and perfect timing!

Before diving headfirst into the tutorials, youmust implement away to let the framework knowwhenever
any of your custom content entries is added, updated, or deleted. The next tutorial covers that. From that
point onward, each tutorial shows you how to leverage a particular asset framework feature in your UI. It’s
time to start your asset framework training!

1125

86.1 Related Topics

What is Service Builder
Service Builder Persistence
Configuration

86.2 Adding, Updating, and Deleting Assets for Custom Entities

To use Liferay’s asset framework with an entity, you must inform the asset framework about each entity
instance you create,modify, and delete. In this sense, it’s similar to informing Liferay’s permissions frame-
work about a new resource. All you have to do is invoke a method of the asset framework that associates
an AssetEntrywith the entity so Liferay can keep track of the entity as an asset. When it’s time to update
the entity, you update the asset at the same time. To see how to asset-enable entities in a working example
portlet, visit the tutorial Assets: Integrating with Liferay’s Framework.

To leverage assets, youmust also implement indexers for your portlet’s entities. Liferay’s asset framework
uses indexers to manage assets. For instructions on creating an indexer in a working example portlet, see
the tutorial Enabling Search and Indexing.

This tutorial shows you how to enable assets for your custom entities and implement indexes for them.
It’s time to get started!

Preparing Your Project for the Asset Framework

In your project’s service.xmlfile, add an asset entry entity reference for your customentity. Add the following
reference tag before your custom entity’s closing </entity> tag.

<reference package-path="com.liferay.portlet.asset" entity="AssetEntry" />

Then run Service Builder.
Now you’re ready to implement adding and updating assets!

Adding and Updating Assets

Your -LocalServiceImpl Java class inherits from its parent base class an AssetEntryLocalService instance;
it’s assigned to the variable assetEntryLocalService. To add your custom entity as a Liferay asset, youmust
invoke the assetEntryLocalService’s updateEntrymethod.

Here’s what the updateEntrymethod’s signature looks like:

AssetEntry updateEntry(

long userId, long groupId, Date createDate, Date modifiedDate,

String className, long classPK, String classUuid, long classTypeId,

long[] categoryIds, String[] tagNames, boolean listable,

boolean visible, Date startDate, Date endDate, Date publishDate,

Date expirationDate, String mimeType, String title,

String description, String summary, String url, String layoutUuid,

int height, int width, Double priority)

throws PortalException

Here are descriptions of each of the updateEntrymethod’s parameters:

• userId: identifies the user updating the content.
• groupId: identifies the scope of the created content. If your content doesn’t support scopes (extremely
rare), pass 0 as the value.

1126

@platform-ref@/7.0-latest/javadocs/portal-impl/com/liferay/portlet/asset/service/impl/AssetEntryLocalServiceImpl.html#updateEntry-long-long-java.util.Date-java.util.Date-java.lang.String-long-java.lang.String-long-long:A-java.lang.String:A-boolean-boolean-java.util.Date-java.util.Date-java.util.Date-java.util.Date-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.lang.String-java.lang.String-int-int-java.lang.Double-

• createDate: the date the entity was created.
• modifiedDate: the date of this change to the entity.
• className: identifies the entity’s class. The recommended convention is to use the name of the
Java class that represents your content type. For example, you can pass in the value returned from
[YourClassName].class.getName().

• classPK: identifies the specific entity instance, distinguishing it from other instances of the same type.
It’s usually the primary key of the table where the entity is stored.

• classUuid: serves as a secondary identifier that’s guaranteed to be universally unique. It correlates
entity instances across scopes. It’s especially useful if your content is exported and imported across
separate portals.

• classTypeId: identifies the particular variation of this class, if it has any variations. Otherwise, use 0.
• categoryIds: represent the categories selected for the entity. The asset framework stores them for you.
• tagNames: represent the tags selected for the entity. The asset framework stores them for you.
• listable: specifies whether the entity can be shown in dynamic lists of content (such as asset publisher
configured dynamically).

• visible: specifies whether the entity is approved.
• startDate: the entity’s publish date. You can use it to specify when an Asset Publisher should show the
entity’s content.

• endDate: the date the entity is taken down. You can use it to specify when an Asset Publisher should
stop showing the entity’s content.

• publishDate: the date the entity will start to be shown.
• expirationDate: the date the entity will no longer be shown.
• mimetype: the Multi-Purpose Internet Mail Extensions type, such as ContentTypes.TEXT_HTML, used
for the content.

• title: the entity’s name.
• description: a String-based textual description of the entity.
• summary: a shortened or truncated sample of the entity’s content.
• url: a URL to optionally associate with the entity.
• layoutUuid: the universally unique ID of the layout of the entry’s default display page.
• height: this can be set to 0.
• width: this can be set to 0.
• priority: specifies how the entity is ranked among peer entity instances. Low numbers take priority
over higher numbers.

The following code from Liferay’s Wiki application’s WikiPageLocalServiceImpl Java class demonstrates
invoking the updateEntrymethod on the wiki page entity called WikiPage. In your add-method, you could
invoke updateEntry after adding your entity’s resources. Likewise, in your update-method, you could invoke
updateEntry after calling the super.update-method. The code below is called in the WikiPageLocalServiceImpl
class’s updateStatus(...) method.

AssetEntry assetEntry = assetEntryLocalService.updateEntry(

userId, page.getGroupId(), page.getCreateDate(),

page.getModifiedDate(), WikiPage.class.getName(),

page.getResourcePrimKey(), page.getUuid(), 0,

assetCategoryIds, assetTagNames, true, true, null, null,

page.getCreateDate(), null, ContentTypes.TEXT_HTML,

page.getTitle(), null, null, null, null, 0, 0, null);

Indexer<JournalArticle> indexer = IndexerRegistryUtil.nullSafeGetIndexer(

WikiPage.class);

indexer.reindex(page);

1127

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ContentTypes.html#TEXT_HTML
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/wiki/wiki-service/src/main/java/com/liferay/wiki/service/impl/WikiPageLocalServiceImpl.java

Immediately after invoking the updateEntrymethod, youmust update the respective asset and index the
entity instance. The above code calls the indexer to index (or re-index, if updating) the entity. It’s that easy to
update assets and indexes.

Tip: The current user’s ID and the scope group ID are commonly made available in service context
parameters. If the service context you use contains them, then you can access them in calls like these:

long userId = serviceContext.getUserId(); long groupId = serviceContext.getScopeGroupId();

Next, you’ll learn what’s needed to properly delete an entity that’s associated with an asset.

Deleting Assets

When deleting your entities, you should delete the associated assets and indexes at the same time. This
cleans up stored asset and index information, which keeps the Asset Publisher from showing information
for the entities you’ve deleted.

In your -LocalServiceImpl Java class, open your delete-method. After the code that deletes the entity’s
resource, youmust delete the entity instance’s asset entry and index.

Here’s some code which deletes an asset entry and an index associated with a portlet’s entity.

assetEntryLocalService.deleteEntry(

ENTITY.class.getName(), ENTITY.getInsultId());

Indexer indexer = IndexerRegistryUtil.nullSafeGetIndexer(ENTITY.class);

indexer.delete(ENTITY);

In your -LocalServiceImpl class, you can write similar code. Replace the ENTITY class name and variable
with your entity’s name.

Important: In order for Liferay’s Asset Publisher application to show your entity, the entity must have an
Asset Renderer. To learn how to implement an Asset Renderer for your custom entity, refer to the Rendering
an Asset tutorial. Note also that an Asset Renderer is how you show a user the components of your entity in
the Asset Publisher. On deploying your portlet with asset, indexer, and asset rendering implementations in
place, an Asset Publisher can show your custom entities!

Great! Now you know how to add, update, and delete assets in your apps!

Related Topics

Relating Assets
What is Service Builder?

86.3 Implementing Asset Categorization and Tagging

In this tutorial, you’ll allow content authors the ability to specify tags and categories for their entities in the
UI. Liferay provides a set of JSP tags for showing category and tag inputs in your UI. Before beginning, your
entities should be asset-enabled and you should have asset renderers enabled for them.

Now it’s time to get started!
You can use the following tags in the JSPs you provide for adding/editing custom entities. Here’s what

the tags look like in the edit_entry.jsp for the Blogs portlet:

1128

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/blogs/blogs-web/src/main/resources/META-INF/resources/blogs/edit_entry.jsp

Figure 86.1: It can be useful to show custom entities, like this wiki page entity, in a JSP or in an Asset Publisher.

Figure 86.2: Adding category and tag input options lets authors aggregate and label custom entities.

<liferay-ui:asset-categories-error />

<liferay-ui:asset-tags-error />

...

<aui:fieldset-group markupView="lexicon">

...

<aui:fieldset collapsed="<%= true %>" collapsible="<%= true %>" label="categorization">

<aui:input name="categories" type="assetCategories" />

<aui:input name="tags" type="assetTags" />

</aui:fieldset>

...

</aui:fieldset-group>

These category and tag aui:input tags generate form controls that let users browse/select a categories
for the entity, browse/select tags, and/or create new tags to associate with the entity.

The liferay-ui:asset-categories-error and liferay-ui:asset-tags-error tags showmessages for errors
occurring during the asset category or tag input process. The aui:fieldset tag uses a container that lets
users hide or show the category and tag input options.

1129

For styling purposes, the aui:fieldset-group tag is given the lexiconmarkdup view.
Once the tags and categories have been entered, you’ll want to show them along with the content of the

asset. Here’s how to display the tags and categories:

<p><liferay-ui:message key="categories" />:</p>

<div class="entry-categories">

<liferay-ui:asset-categories-summary

className="<%= BlogsEntry.class.getName() %>"

classPK="<%= entry.getEntryId() %>"

portletURL="<%= renderResponse.createRenderURL() %>"

/>

</div>

...

<div class="entry-tags">

<p><liferay-ui:message key="tags" />:</p>

<liferay-ui:asset-tags-summary

className="<%= BlogsEntry.class.getName() %>"

classPK="<%= entry.getEntryId() %>"

portletURL="<%= renderResponse.createRenderURL() %>"

/>

</div>

You’ll notice the portletURL parameter is used for both tags and categories, which supports navigation
amongst the two. Each tag that uses this parameter becomes a link containing the portletURL and tag or
categoryId parameter value. To implement this, you need to implement the look-up functionality in your
portlet code. Do this by reading the values of those two parameters and using AssetEntryService to query
the database for entries based on the specified tag or category.

Deploy your changes and add/edit a custom entity in your UI. Your form shows the categorization and
tag input options in a panel that the user can hide/show.

Great! Now you know how tomake category and tag input options available to your app’s content authors.

Related Topics

Relating Assets
Adding, Updating, and Deleting Assets for Custom Entities
What is Service Builder?

86.4 Relating Assets
The ability to relate assets is one of the most powerful features of Liferay’s asset framework. By relating
assets, you can connect individual pieces of content across your site or portal. This helps your users discover
related content, particularly when there’s an abundance of other available content. For example, assets
related to a web content article appear alongside that entry in the Asset Publisher application.

This tutorial shows you how to provide a way for authors to relate content. This tutorial assumes that
you’ve asset enabled your appliation. If you’ve already done this, go ahead and begin relating your assets!

Relating Assets in the Service Layer

First, youmust make somemodifications to your portlet’s service layer. Youmust implement persisting your
entity’s asset relationships. In your portlet’s service.xml, put the following line of code below any finder
method elements and then run Service Builder:

1130

Figure 86.3: You and your users can find it helpful to relate assets to entities, such as this blogs entry.

<reference package-path="com.liferay.portlet.asset" entity="AssetLink" />

Next, you need tomodify the add-, delete-, and update-methods in your -LocalServiceImpl to persist the
asset relationships. You’ll use your -LocalServiceImpl’s assetLinkLocalService instance variable to execute
persistence actions.

For example, consider theWiki application. When you update wiki assets and statuses, both methods
utilize the updateLinks via your instance variable assetLinkLocalService. Here’s the updateLinks invocation
in theWiki application’s WikiPageLocalServiceImpl.updateStatus(...) method:

assetLinkLocalService.updateLinks(

userId, assetEntry.getEntryId(), assetLinkEntryIds,

AssetLinkConstants.TYPE_RELATED);

To call the updateLinks method, you need to pass in the current user’s ID, the asset entry’s ID,
the ID’s of the asset link entries, and the link type. You should invoke this method after creating the
asset entry. You can assign to an AssetEntry variable (e.g., one called assetEntry) the value returned
from invoking assetEntryLocalService.updateEntry. That way you can get the asset entry’s ID for
updating its asset links. Lastly, in order to specify the link type parameter, make sure to import
com.liferay.portlet.asset.model.AssetLinkConstants.

In your -LocalServiceImpl class’ delete-method, youmust delete the asset’s relationships before deleting
the asset. For example, you could delete your existing asset link relationships by using the following code:

AssetEntry assetEntry = assetEntryLocalService.fetchEntry(

ENTITY.class.getName(), ENTITYId);

assetLinkLocalService.deleteLinks(assetEntry.getEntryId());

Make sure to replace the ENTITY place holders for your custom -deletemethod.
Super! Now your portlet’s service layer can handle related assets. Even so, there’s still nothing in your

portlet’s UI that lets your users relate assets. You’ll take care of that in the next step.

1131

Relating Assets in the UI

You typically implement the UI for linking assets in the JSP that you provide users the ability to create
and edit your entity,This way only content creators can relate other assets to the entity. Related assets are
implemented in the JSPbyusing the LiferayUI tag liferay-ui:input-asset-links inside of a collapsible panel.
This code is placed inside the aui:fieldset tags of the JSP.The panel and liferay-ui:input-asset-links tag
are shown below for the Blogs application:

<aui:fieldset collapsed="<%= true %>" collapsible="<%= true %>" label="related-assets">

<liferay-ui:input-asset-links

className="<%= BlogsEntry.class.getName() %>"

classPK="<%= entryId %>"

/>

Your content authors are able to relate assets once you add this code and redeploy your portlet.
The following screenshot shows the Related Assets menu for an appliation. Note that it is contained in a

collapsible panel titled Related Assets.

Figure 86.4: Your portlet’s entity is now available in the Related Assets Select menu.

Even though you’ve provided a way for authors to assign related assets, the Related Assets menu shows
your entity’s fully qualified class name, instead of a more concise name. To replace the long fully qualified
class name shown in the menu with a simplified name for your entity, add a language key that uses the fully
qualified class name as the key’s name and the new simplified name as the key’s value. Put the language key
in file docroot/WEB-INF/src/content/Language.properties in your portlet. You can refer to the Overriding
Language Keys tutorial for more documentation on using language properties.

Upon redeploying your portlet, the value you assigned to the fully qualified class name in your
Language.properties file shows in the Related Assets menu:

Awesome! Now content creators and editors can relate the assets of your application. The next thing you
need to do is reveal any such related assets to the rest of your application’s users. After all, you don’t want to
give everyone edit access just so they can view related assets!

Showing Related Assets

You can show related assets in your application’s view of that entity or, if you’ve implemented asset rendering
for your custom entity, you can show related assets in the full content view of your entity for users to view in
an Asset Publisher portlet.

This section shows you how to access an entity’s asset entry in your entity’s view JSP and how to display
links to its related assets. When you finish, users can click on the entity instances in your portlet to view any
related assets.

In your entity’s view JSP you can use ParamUtil to get the ID of the entity from the render request. Then
you can create an entity object using your -LocalServiceUtil class. You can use an entity instance object to
get the AssetEntry object associated with it.

<%

long insultId = ParamUtil.getLong(renderRequest, "insultId");

1132

Insult ins = InsultLocalServiceUtil.getInsult(insultId);

AssetEntry assetEntry = AssetEntryLocalServiceUtil.getEntry(Insult.class.getName(), ins.getInsultId());

%>

To show the entity’s related assets, you can use the liferay-ui:asset-links tag. For this tag, you should
retrieve the entity’s class name and the variable holding your instance object, so you can return its ID.The
example code below uses the example entity class Insult and an instance object variable called ins:

<liferay-ui:asset-links

assetEntryId="<%=(assetEntry != null) ? assetEntry.getEntryId() : 0%>"

className="<%=Insult.class.getName()%>"

classPK="<%=ins.getInsultId()%>" />

Go ahead and use a the liferay-ui:asset-links tag in your JSP. Great! Now you have the JSP that lets
your users view related assets.

If you’ve already connected your portlet’s view to the view JSP for your entity, you’ve completed the
tutorial. You can otherwise follow the remainder of this tutorial to learn how to implement that connection.

Creating a URL to Your New JSP

Now that you’ve implemented showing off this asset feature, you must connect your application’s main view
JSP to your entity’s view JSP. If your main view JSP uses a search container to list your entity instances, you
can insert a portlet:renderURL tag just after the liferay-ui:search-container-row tag. For example, your
view.jsp could look like this:

<liferay-ui:search-container-row

className="com.sample.portlet.insults.model.Insult"

keyProperty="insultId"

modelVar="insult" escapedModel="<%= true %>"

>

<portlet:renderURL windowState="maximized" var="rowURL">

<portlet:param name="mvcPath" value="/html/insult/view_insult.jsp" />

<portlet:param name="insultId" value="<%= String.valueOf(insult.getInsultId()) %>" />

</portlet:renderURL>

Next, add to the first search container column an href attribute with the value of the URL you just created
in the portlet:renderURL tag. For example, the value of href that corresponds with the render URL created
above is "<%=rowURL %>". Your search-container-column-text tag can look similar to this tag:

<liferay-ui:search-container-column-text

name="Insult"

value="<%= insult.getInsultString() %>"

href="<%=rowURL %>"

/>

Now, redeploy your portlet and refresh the page so that your portlet’s view JSP reloads. Each entity listed
is a link. Click on one to view your entity’s JSP that youmade in the previous step of this tutorial.

Related assets, if you’ve created any yet, should be visible near the bottom of the page.
Excellent! Now you know how to implement related assets in your apps. Another thing you might

want to do is investigate permissioning in the UI. For more information on this, see the tutorial Checking
Permissions in the UI.

1133

Related Topics

Adding, Updating, and Deleting Assets for Custom Entities
What is Service Builder?
Defining Content Relationships

86.5 Implementing Asset Priority
The Asset Publisher lets you order assets by priority. For this to work, however, users must be able to set the
asset’s priority when creating or editing the asset. For example, when creating or editing web content, users
can assign a priority in the Metadata section’s Priority field.

Figure 86.5: The Priority field lets users set an asset’s priority.

This field isn’t enabled by default for your custom assets. Youmust manually add support for it. Fortu-
nately, this is very straightforward. This tutorial shows you how. Onwards!

Add the Priority Field to Your JSP

In the JSP for adding and editing your asset, add the following input field that lets users set the asset’s
priority. This example also validates the input to make sure the value the user sets is a number higher than
zero:

<aui:input label="priority" name="assetPriority" type="text" value="<%= priority %>">

<aui:validator name="number" />

<aui:validator name="min">[0]</aui:validator>

</aui:input>

That’s it for the view layer! Nowwhen users create or edit your custom asset, they can enter its priority.
Next, you’ll learn how to use that value in your service layer.

1134

Using the Priority Value in Your Service Layer

To make the priority value functional, you must retrieve it from the view and add it to the asset in your
database. The priority value is automatically available in your service layer via the ServiceContext variable
serviceContext. Retrieve it with serviceContext.getAssetPriority(), and then pass it as the last argument
to the assetEntryLocalService.updateEntry call in your -LocalServiceImpl. You can see an example of this in
the BlogsEntryLocalServiceImpl class of Liferay DXP’s Blogs app. The updateAssetmethod takes a priority
argument, which it passes as the last argument to its assetEntryLocalService.updateEntry call:

@Override

public void updateAsset(

long userId, BlogsEntry entry, long[] assetCategoryIds,

String[] assetTagNames, long[] assetLinkEntryIds, Double priority)

throws PortalException {

...

AssetEntry assetEntry = assetEntryLocalService.updateEntry(

userId, entry.getGroupId(), entry.getCreateDate(),

entry.getModifiedDate(), BlogsEntry.class.getName(),

entry.getEntryId(), entry.getUuid(), 0, assetCategoryIds,

assetTagNames, true, visible, null, null, null, null,

ContentTypes.TEXT_HTML, entry.getTitle(), entry.getDescription(),

summary, null, null, 0, 0, priority);

...

}

The BlogsEntryLocalServiceImpl class calls this updateAssetmethod when adding or updating a blog
entry. Note that serviceContext.getAssetPriority() retrieves the priority:

updateAsset(

userId, entry, serviceContext.getAssetCategoryIds(),

serviceContext.getAssetTagNames(),

serviceContext.getAssetLinkEntryIds(),

serviceContext.getAssetPriority());

Sweet! Now you know how to enable priorities for your app’s assets.

Related Topics

Adding, Updating, and Deleting Assets For Custom Entities
Implementing Asset Categorization and Tagging
Relating Assets
Rendering an Asset
Publishing Assets

86.6 Rendering an Asset

There are several options you have for rendering an asset in Liferay DXP. Before setting up the rendering
process for your asset, make sure it’s added to the asset framework by following the Adding, Updating, and
Deleting Assets tutorial. Once you have your asset added to the framework, Liferay DXP can render the
asset by default using the Asset Publisher application. The default rendering process Liferay DXP provides,
however, only displays the asset’s title and description text. Any further rendering of your asset requires
additional coding. For instance, youmight want these additional things:

1135

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-impl/src/com/liferay/portlet/blogs/service/impl/BlogsEntryLocalServiceImpl.java

• An edit feature for modifying an asset.
• Viewing an asset in its original context (e.g., a blog in the Blogs application; a post in the Message
Boards application).

• Embedding images, videos, and audio.
• Restricting access to users who do not have permissions to interact with the asset.
• Allowing users to comment on the asset.

Liferay lets you dictate your asset’s rendering capabilities by providing the Asset Renderer framework.
Implementing an asset renderer for an existing asset is easy because Liferay offers interfaces and factories
to help get your custom asset rendering implemented fast. There are two things you must do to get your
asset renderer functioning properly for your asset:

• Create an asset renderer for your custom asset.
• Create an asset renderer factory to create an instance of the asset renderer for each asset entity.

Figure 86.6: The asset renderer factory creates an asset renderer for each asset instance.

You’ll learn how to create an asset renderer and an asset renderer factory by studying a Liferay asset that
already uses both by default: Blogs. The Blogs application offers many different ways to access and render a
blogs asset. You’ll learn how a blogs asset provides an edit feature, comment section, original context viewing
(i.e., viewing an asset from the Blogs application), workflow, etc. You’ll also learn how it uses JSP templates
to display various blog views. The Blogs application is an extensive example of how an asset renderer can be
customized to fit your needs.

If you want to create an asset and make it do more than display its title and description, read on to learn
more!

1136

Prerequisites for Asset Enabling and Application

To asset-enable your application, you need two things:

1. The application must store asset data. Applications that store a data model meet this requirement.

2. The application must contain at least one non-instanceable portlet. Edit links for the asset cannot be
generated without a non-instanceable portlet.

Some applications may consist of only one non-instanceable portlet, while others may consist of a
both instanceable and non-instanceable portlets. If your application does not currently include a non-
instanceable portlet, adding a configuration interface through a panel app will both enhance the usability of
the application, and meet the requirement for adding a non-instanceable component to the application. See
our tutorial on Adding Custom Panel Apps to learn how to add one.

Now that you have all that taken care of, you canmove on to creating an Asset Renderer.

Creating an Asset Renderer

An asset renderer lets you provide your own HTML for your asset. The AssetRenderer interface requires that
you choose a templating technology (JSP, FreeMarker, Soy, etc.) to display an asset’s HTML. For this tutorial,
you’ll use JSP templates to render an asset’s HTML. You’ll learn how to associate your JSP templates with an
asset renderer, along with configuring several other options.

To learn how an asset renderer is created, you’ll create the pre-existing BlogsEntryAssetRenderer class,
which configures the asset renderer framework for the Blogs application.

1. Create a new package in your existing project for your asset-related classes. For instance, the
BlogsEntryAssetRenderer class resides in the com.liferay.blogs.webmodule’s com.liferay.blogs.web.asset
package.

2. Create your -AssetEntry class for your application in the new -.asset package and have it implement
the AssetEntry interface. Consider the BlogsEntryAssetRenderer class as an example:

public class BlogsEntryAssetRenderer

extends BaseJSPAssetRenderer<BlogsEntry> implements TrashRenderer {

The BlogsEntryAssetRenderer class extends the BaseJSPAssetRenderer, which is an extension
class intended for those who plan on using JSP templates to generate their asset’s HTML. The
BaseJSPAssetRenderer class implements the AssetRenderer interface. You’ll notice the asset renderer is
also implementing the TrashRenderer interface. This is a common practice for many Liferay DXP
applications, which enables its assets to use Liferay DXP’s Recycle Bin.

3. Define the asset renderer class’s constructor, which typically sets the asset object to use in the asset
renderer class.

public BlogsEntryAssetRenderer(

BlogsEntry entry, ResourceBundleLoader resourceBundleLoader) {

_entry = entry;

_resourceBundleLoader = resourceBundleLoader;

}

1137

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/blogs/blogs-web/src/main/java/com/liferay/blogs/web/asset/BlogsEntryAssetRenderer.java
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/asset/kernel/model/AssetEntry.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/asset/kernel/model/BaseJSPAssetRenderer.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/trash/TrashRenderer.html

The BlogsEntryAssetRenderer also sets the resource bundle loader, which loads the language keys for
a module. You can learn more about the resource bundle loader in the Overriding Language Keys
tutorial.

Also,make sure to define the _entry and _resourceBundleLoader fields in the class:

private final BlogsEntry _entry;

private final ResourceBundleLoader _resourceBundleLoader;

4. Now that your class declaration and constructor are defined for the blogs asset renderer, youmust
begin connecting your asset renderer to your asset. The following getter methods accomplish this:

@Override

public BlogsEntry getAssetObject() {

return _entry;

}

@Override

public String getClassName() {

return BlogsEntry.class.getName();

}

@Override

public long getClassPK() {

return _entry.getEntryId();

}

@Override

public long getGroupId() {

return _entry.getGroupId();

}

@Override

public String getType() {

return BlogsEntryAssetRendererFactory.TYPE;

}

@Override

public String getUuid() {

return _entry.getUuid();

}

These methods are pretty self-explanatory, but there are a couple things to point out. The
getAssetObject()method sets the BlogsEntry that was set in the constructor as your asset to track.
Likewise, the getType()method references the blogs asset renderer factory for the type of asset your
asset renderer renders. Of course, the asset renderer type is blog, which you’ll set in the factory later.

5. Your asset renderer must link to the portlet that owns the entity. In the case of a blogs asset, its portlet
ID should be linked to the Blogs application.

@Override

public String getPortletId() {

AssetRendererFactory<BlogsEntry> assetRendererFactory =

getAssetRendererFactory();

return assetRendererFactory.getPortletId();

}

The getPortletId()method instantiates an asset renderer factory for a BlogsEntry and retrieves the
portlet ID for the portlet used to display blogs entries.

1138

6. If you’re interested in enabling workflow for your asset, add the following method similar to what was
done for the Blogs application:

@Override

public int getStatus() {

return _entry.getStatus();

}

Thismethod retrieves the workflow status for the asset.

7. Another popular feature many developers want for their asset is to comment on it. This is enabled for
the Blogs application with the followingmethod:

@Override

public String getDiscussionPath() {

if (PropsValues.BLOGS_ENTRY_COMMENTS_ENABLED) {

return "edit_entry_discussion";

}

else {

return null;

}

}

A comments section is an available option if it returns a non-null value. A JSP template defining a
comments section is not required. For the comments section to display for your asset, youmust enable
it in the Asset Publisher’sOptions () → Configuration → Setup →Display Settings section.

8. At a minimum, you should create a title and summary for your asset. Here’s how the
BlogsEntryAssetRenderer does it:

@Override

public String getSummary(

PortletRequest portletRequest, PortletResponse portletResponse) {

int abstractLength = AssetUtil.ASSET_ENTRY_ABSTRACT_LENGTH;

if (portletRequest != null) {

abstractLength = GetterUtil.getInteger(

portletRequest.getAttribute(

WebKeys.ASSET_ENTRY_ABSTRACT_LENGTH),

AssetUtil.ASSET_ENTRY_ABSTRACT_LENGTH);

}

String summary = _entry.getDescription();

if (Validator.isNull(summary)) {

summary = HtmlUtil.stripHtml(

StringUtil.shorten(_entry.getContent(), abstractLength));

}

return summary;

}

@Override

public String getTitle(Locale locale) {

ResourceBundle resourceBundle =

_resourceBundleLoader.loadResourceBundle(

LanguageUtil.getLanguageId(locale));

return BlogsEntryUtil.getDisplayTitle(resourceBundle, _entry);

}

1139

These twomethods return information about your asset in a generic way, so the asset publisher can
display it. Anything appropriate for your asset can be the title or the summary.

The getSummary(...) method for Blogs returns the abstract description for a blog asset. If the abstract
description does not exist, the content of the blog is used as an abstract. You’ll learn more about
abstracts and other content specifications later.

The getTitle(...) method for Blogs uses the resource bundle loader you configured in the constructor
to load your module’s resource bundle and return the display title for your asset.

9. If you want to provide a unique URL for your asset, you can specify a URL title. A URL title is the URL
used to access your asset directly (e.g., localhost:8080/-/this-is-my-blog-asset). You can do this by
providing the followingmethod:

@Override

public String getUrlTitle() {

return _entry.getUrlTitle();

}

10. Insert the isPrintable()method, which enables the Asset Publisher’s printing capability for your
asset.

@Override

public boolean isPrintable() {

return true;

}

This displays a Print icon when your asset is displayed in the Asset Publisher. For the icon to appear,
youmust enable it in the Asset Publisher’sOptions () → Configuration → Setup →Display Settings section.

Figure 86.7: Enable printing in the Asset Publisher to display the Print icon for your asset.

11. If your asset is protected by permissions, you should set permissions for the asset. You can do this
via the asset renderer as well. See the logic below for an example used in the BlogsEntryAssetRenderer
class:

@Override

public long getUserId() {

return _entry.getUserId();

}

1140

@Override

public String getUserName() {

return _entry.getUserName();

}

public boolean hasDeletePermission(PermissionChecker permissionChecker) {

return BlogsEntryPermission.contains(

permissionChecker, _entry, ActionKeys.DELETE);

}

@Override

public boolean hasEditPermission(PermissionChecker permissionChecker) {

return BlogsEntryPermission.contains(

permissionChecker, _entry, ActionKeys.UPDATE);

}

@Override

public boolean hasViewPermission(PermissionChecker permissionChecker) {

return BlogsEntryPermission.contains(

permissionChecker, _entry, ActionKeys.VIEW);

}

Before you can check if a user has permission to view your asset, youmust distinguish the user. The
getUserId() and getUserName() retrieves the entry’s user ID and username, respectively. Then there
are three boolean permission methods, which check if the user can view, edit, or delete your blogs
entry. These permissions are for specific entity instances. Global permissions for blog entries are
implemented in the factory, which you’ll do later.

Awesome! You’ve learned how to set up the blogs asset renderer to

• connect to an asset
• connect to the asset’s portlet
• use workflowmanagement
• use a comments section
• retrieve the asset’s title and summary
• generate the asset’s unique URL
• display a print icon
• set up permissioning for the asset

You may recall that a major cog in asset renderer development generating HTML using a templating
technology. The BlogsEntryAssetRenderer is configured to use JSP templates to generate HTML for the Asset
Publisher. You’ll learn more about how to do this next.

Configuring JSP Templates for an Asset Renderer

An asset can be displayed in several differentways in the Asset Publisher, by default. There are three templates
to implement provided by the AssetRenderer interface:

• abstract

• full_content

• preview

Besides these supported templates, you can also create JSPs for buttons you’d like to provide for direct
access andmanipulation of the asset. For example,

1141

• Edit
• View
• View in Context

The BlogsEntryAssetRenderer customizes the AssetRenderer’s provided JSP templates and adds a few
other features using JSPs. You’ll inspect how the blogs asset renderer is put together to satisfy JSP template
development requirements.

1. Add the getJspPath(...) method to your asset renderer. This method should return the path to your
JSP, which is rendered inside the Asset Publisher. This is how the BlogsEntryAssetRenderer uses this
method:

@Override

public String getJspPath(HttpServletRequest request, String template) {

if (template.equals(TEMPLATE_ABSTRACT) ||

template.equals(TEMPLATE_FULL_CONTENT)) {

return "/blogs/asset/" + template + ".jsp";

}

else {

return null;

}

}

Blogs assets provide abstract.jsp and full_content.jsp templates. This means that a blogs asset can
render a blog’s abstract description or the blog’s full content in the Asset Publisher. Those templates are
located in the com.liferay.blogs.webmodule’s src/main/resources/META-INF/resources/blogs/asset
folder. You could create a similar folder for your JSP templates used for this method. The other
template provided by the AssetRenderer interface, preview.jsp, is not customized by the blogs asset
renderer, so its default template is implemented.

Youmust create a link to display the full content of the asset. You’ll do this later.

2. Nowthat you’ve added thepath to your JSP,youmust include that JSP.Since the BlogsEntryAssetRenderer
class extends the BaseJSPAssetRenderer, it already has an include(...) method to render a specific
JSP. Youmust override this method to set an attribute in the request to use in the blog’s views:

@Override

public boolean include(

HttpServletRequest request, HttpServletResponse response,

String template)

throws Exception {

request.setAttribute(WebKeys.BLOGS_ENTRY, _entry);

return super.include(request, response, template);

}

The attribute includes the blogs entry object. Adding the blog object this way is not mandatory; you
could obtain the blog entry directly from the view. Using the include(...) method, however, follows
the best practice for MVC portlets.

Terrific! You’ve learned how to apply JSPs supported by the Asset Publisher for your asset. That’s not all
you can do with JSP templates, however! The asset renderer framework provides several other methods that
let you render convenient buttons for your asset.

1142

Figure 86.8: The abstract and full content views are rendererd differently for blogs.

1. Blogs assets provide an Edit button () that lets you edit the asset. This is provided by adding the
followingmethod to the BlogsEntryAssetRenderer class:

@Override

public PortletURL getURLEdit(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse)

throws Exception {

Group group = GroupLocalServiceUtil.fetchGroup(_entry.getGroupId());

PortletURL portletURL = PortalUtil.getControlPanelPortletURL(

liferayPortletRequest, group, BlogsPortletKeys.BLOGS, 0, 0,

PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/blogs/edit_entry");

portletURL.setParameter("entryId", String.valueOf(_entry.getEntryId()));

1143

return portletURL;

}

TheAsset Publisher loads the blogs asset using theBlogs application. Then the edit_entry.jsp template
generates the HTML for an editing UI. Once the necessary edits are made to the asset, it can be saved
from the Asset Publisher. Pretty cool, right?

2. You can specify how to view your asset by providingmethods similar to the methods outlined below in
the BlogsEntryAssetRenderer class:

@Override

public String getURLView(

LiferayPortletResponse liferayPortletResponse,

WindowState windowState)

throws Exception {

AssetRendererFactory<BlogsEntry> assetRendererFactory =

getAssetRendererFactory();

PortletURL portletURL = assetRendererFactory.getURLView(

liferayPortletResponse, windowState);

portletURL.setParameter("mvcRenderCommandName", "/blogs/view_entry");

portletURL.setParameter("entryId", String.valueOf(_entry.getEntryId()));

portletURL.setWindowState(windowState);

return portletURL.toString();

}

@Override

public String getURLViewInContext(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse,

String noSuchEntryRedirect) {

return getURLViewInContext(

liferayPortletRequest, noSuchEntryRedirect, "/blogs/find_entry",

"entryId", _entry.getEntryId());

}

The getURLView(...) method generates a URL that displays the full content of the asset in the Asset
Publisher. This is assigned to the clickable asset name. The getURLViewInContext(...) methodprovides
a similar URL assigned to the asset name, but the URL redirects to the original context of the asset
(e.g., viewing a blogs asset in the Blogs application). Deciding which view to render in Liferay DXP
is configurable by navigating to the Asset Publisher’s Options () → Configuration → Setup → Display
Settings section and choosing between Show Full Content and View in Context for the Asset Link Behavior
drop-downmenu.

The Blogs application provides abstract and full_content JSP templates that override the ones provided
by the AssetRenderer interface. The third template, preview, could also be customized. You can view the
default preview.jsp template rendered in the Add () → Content menu.

You’ve learned all about implementing the AssetRenderer’s provided templates and customizing them to
fit your needs. Next, you’ll put your asset renderer into action by creating a factory.

1144

Figure 86.9: The preview template displays a preview of the asset in the Content section of the Add menu.

Creating a Factory for the Asset Renderer

You’ve successfully created an asset renderer, but you must create a factory class to generate asset renderers
for each asset instance. For example, the blogs asset renderer factory instantiates BlogsEntryAssetRenderer
for each blogs asset displayed in an Asset Publisher.

You’ll continue the blogs asset renderer example by creating the blogs asset renderer factory.

1. Create an -AssetRenderFactory class in the same folder as its asset renderer class. For blogs,
the BlogsEntryAssetRendererFactory class resides in the com.liferay.blogs.web module’s
com.liferay.blogs.web.asset package. The factory class should extend the BaseAssetRendererFactory
class and the asset type should be specified as its parameter. You can see how this was done in the
BlogsEntryAssetRendererFactory class below

public class BlogsEntryAssetRendererFactory

extends BaseAssetRendererFactory<BlogsEntry> {

2. Create an @Component annotation section above the class declaration. This annotation is responsible
for registering the factory instance for the asset.

@Component(

immediate = true,

1145

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/collaboration/blogs/blogs-web/src/main/java/com/liferay/blogs/web/asset/BlogsEntryAssetRendererFactory.java

property = {"javax.portlet.name=" + BlogsPortletKeys.BLOGS},

service = AssetRendererFactory.class

)

public class BlogsEntryAssetRendererFactory

extends BaseAssetRendererFactory<BlogsEntry> {

There are a few annotation elements you should set:

• The immediate element directs the factory to start in Liferay DXP when its module starts.
• The property element sets the portlet that is associated with the asset. The Blogs portlet is
specified, since this is the Blogs asset renderer factory.

• The service element should point to the AssetRendererFactory.class interface.

Note: In previous versions of Liferay DXP, you had to register the asset

renderer factory in a portlet's `liferay-portlet.xml` file. The registration

process is now completed automatically by OSGi using the `@Component`

annotation.

3. Create a constructor for the factory class that presets private attributes of the factory.

public BlogsEntryAssetRendererFactory() {

setClassName(BlogsEntry.class.getName());

setCategorizable(true);

setLinkable(true);

setPortletId(BlogsPortletKeys.BLOGS);

setSearchable(true);

setSelectable(true);

}

• linkable: other assets can select blogs assets as their related assets.
• categorizable: blogs can be used to delimit the scope of a vocabulary from the Categories Admin-
istration.

• searchable: blogs can be found when searching for assets.
• selectable: blogs can be selected when choosing assets to display in the Asset Publisher.

Setting the class name and portlet ID links the asset renderer factory to the entity.

4. Create the asset renderer for your asset. This is done by calling its constructor.

@Override

public AssetRenderer<BlogsEntry> getAssetRenderer(long classPK, int type)

throws PortalException {

BlogsEntry entry = _blogsEntryLocalService.getEntry(classPK);

BlogsEntryAssetRenderer blogsEntryAssetRenderer =

new BlogsEntryAssetRenderer(entry, _resourceBundleLoader);

blogsEntryAssetRenderer.setAssetRendererType(type);

blogsEntryAssetRenderer.setServletContext(_servletContext);

return blogsEntryAssetRenderer;

}

1146

For blogs, the asset is retrieved by calling the Blogs application’s local service. Then the asset renderer
is instantiated using the blogs asset and resource bundle loader. Next, the type and servlet context is
set for the asset renderer. Finally, the configured asset renderer is returned.

There are a few variables in the getAssetRenderer(...) method you must create. You’ll set those
variables and learn what they’re doing next.

a. Youmust get the entry by calling the Blogs application’s local service. You can instantiate this
service by creating a private field and setting it using a setter method:

@Reference(unbind = “-”) protected void setBlogsEntryLocalService(BlogsEntryLocalService
blogsEntryLocalService) {

_blogsEntryLocalService = blogsEntryLocalService;

}

private BlogsEntryLocalService _blogsEntryLocalService;

The setter method is annotated with the @Reference tag. Visit the Invoking Liferay Services Locally
section of the Finding and Invoking Liferay Services tutorial for more information.

b. Youmust specify the resourcebundle loader since itwas specified in the BlogsEntryAssetRenderer’s
constructor:

@Reference(target = “(bundle.symbolic.name=com.liferay.blogs.web)”, unbind = “-”) public
void setResourceBundleLoader(ResourceBundleLoader resourceBundleLoader) {

_resourceBundleLoader = resourceBundleLoader;

}

private ResourceBundleLoader _resourceBundleLoader;

Make sure the osgi.web.symbolicname in the target property of the @Reference annotation is set to the
same value as the Bundle-SymbolicName defined in the bnd.bnd file of the module the factory resides in.

c. The asset renderer type integer is set for the asset renderer, but why an integer? Liferay DXP
needs to differentiate when it should display the latest approved version of the asset, or the latest
version, even if it’s unapproved (e.g., unapproved versions would be displayed for reviewers of
the asset in a workflow). For these situations, the asset renderer factory should receive either

• 0 for the latest version of the asset
• 1 for the latest approved version of the asset

d. Since the Blogs application provides its own JSPs, it must pass a reference of the servlet context
to the asset renderer. This is always required when using custom JSPs in an asset renderer:

@Reference(target = “(osgi.web.symbolicname=com.liferay.blogs.web)”, unbind = “-”) public
void setServletContext(ServletContext servletContext) { _servletContext = servletContext; }

private ServletContext _servletContext;

1147

5. Set the type of asset that the asset factory associates with and provide a getter method to retrieve that
type. Also, provide another getter to retrieve the blogs entry class name, which is required:

public static final String TYPE = "blog";

@Override

public String getType() {

return TYPE;

}

@Override

public String getClassName() {

return BlogsEntry.class.getName();

}

6. Set the Lexicon icon for the asset:

@Override

public String getIconCssClass() {

return "blogs";

}

You can find a list of all available Lexicon icons at https://liferay.github.io/clay/content/icons-lexicon/.

7. Addmethods that generate URLs to add and view the asset.

@Override

public PortletURL getURLAdd(

LiferayPortletRequest liferayPortletRequest,

LiferayPortletResponse liferayPortletResponse, long classTypeId) {

PortletURL portletURL = PortalUtil.getControlPanelPortletURL(

liferayPortletRequest, getGroup(liferayPortletRequest),

BlogsPortletKeys.BLOGS, 0, 0, PortletRequest.RENDER_PHASE);

portletURL.setParameter("mvcRenderCommandName", "/blogs/edit_entry");

return portletURL;

}

@Override

public PortletURL getURLView(

LiferayPortletResponse liferayPortletResponse,

WindowState windowState) {

LiferayPortletURL liferayPortletURL =

liferayPortletResponse.createLiferayPortletURL(

BlogsPortletKeys.BLOGS, PortletRequest.RENDER_PHASE);

try {

liferayPortletURL.setWindowState(windowState);

}

catch (WindowStateException wse) {

}

return liferayPortletURL;

}

If you’re paying close attention, you may have noticed the getURLView(...) method was also imple-
mented in the BlogsEntryAssetRenderer class. The asset renderer’s getURLView(...) method creates a
URL for the specific asset instance, whereas the factory uses the method to create a generic URL that
only points to the application managing the assets (e.g., Blogs application).

1148

https://liferay.github.io/clay/content/icons-lexicon/

8. Set the global permissions for all blogs assets:

@Override

public boolean hasAddPermission(

PermissionChecker permissionChecker, long groupId, long classTypeId)

throws Exception {

return BlogsPermission.contains(

permissionChecker, groupId, ActionKeys.ADD_ENTRY);

}

@Override

public boolean hasPermission(

PermissionChecker permissionChecker, long classPK, String actionId)

throws Exception {

return BlogsEntryPermission.contains(

permissionChecker, classPK, actionId);

}

Great! You’ve finished creating the Blogs application’s asset renderer factory! Now you have the knowl-
edge to implement an asset renderer and produce an asset renderer for each asset instance using a factory!

1149

Chapter 87

Liferay’s Workflow Framework

Enabling your application’s entities to support workflow is so easy, you could do it in your sleep (but don’t
try). Workflow enabled entities require a few things:

• A workflow handler class to interact with Liferay’s workflow back end and the entity’s service layer.

• Some extra fields in their database table that help keep track of their status.

In most Liferay applications, Service Builder will be used to create those fields.

• Updates to the service layer.

The service layer needs code to populate the new fields when entities are added to the database.

The service layer needs to send the entity through Liferay’s workflow, and it needs to handle the
workflow status of the entity when it’s returned by the workflow.

The service layer needs getters that return entities of the desired workflow status (usually approved).

• The View layer should account for the workflow status of displayed entities.

The code for most Liferay applications spans multiple modules, so where should you implement the
workflow handler? It should go in the module with your service implementations. It’s nice to keep your back
end code separate from your view layer and controller (in the MVC pattern).

87.1 Creating a Workflow Handler

First create a Component class. It should extend BaseWorkflowHandler<T>, an abstract class that provides
a default implementation of the WorkflowHandler<T> service. Pass the interface for your model as the type
parameter for the class.

FooEntity WorkflowHandler extends BaseWorkflowHandler<FooEntity>

Since you’re publishing a service to be consumed in the OSGi runtime, your workflow handler class
needs to be registered. If you’re using Declarative Services, make it a Component class, using the @Component
annotation.

1151

@Component(

property = {"model.class.name=com.my.app.package.model.FooEntity"},

service = WorkflowHandler.class

)

It needs one property, to set model.class.name to the fully qualified class name of the class you passed as
the type parameter. It also needs to declare the type of service being implemented (WorkflowHandler.class).

What methods do you need to override in your workflow handler? Just three:

@Override

public String getClassName() {

@Override

public String getType(Locale locale) {

@Override

public FooEntity updateStatus(int status, Map<String, Serializable> workflowContext) {

The first two are pretty boilerplate. Most of the heavy lifting is being done in the updateStatusmethod.
It returns a call to a local service method of the same name, so the status returned from the workflow back
end can be persisted to the entity table in the database.

The updateStatusmethod should take a user ID, the primary key for the class (for example, fooEntityId),
the workflow status, the service context, and the workflow context. The status and the workflow context
can be obtained from the workflow back end. You’ll need to define the rest of the parameters, which can be
obtained from the workflow context.

@Override

public FooEntity updateStatus(

int status, Map<String, Serializable> workflowContext)

throws PortalException {

long userId = GetterUtil.getLong(

(String)workflowContext.get(WorkflowConstants.CONTEXT_USER_ID));

long classPK = GetterUtil.getLong(

(String)workflowContext.get(

WorkflowConstants.CONTEXT_ENTRY_CLASS_PK));

ServiceContext serviceContext = (ServiceContext)workflowContext.get(

"serviceContext");

return _fooEntityLocalService.updateStatus(

userId, classPK, status, serviceContext, workflowContext);

}

Now your entity can be handled by Liferay’s workflow framework. Next, update the service methods to
account for workflow status, and add a newmethod to update the status of an entity in the database.

87.2 Updating the Service Layer
Make sure your entity database table has status, statusByUserId, statusByUserName, and statusDate fields.
If you’re using service builder, add this to your service.xml if you haven’t already:

<column name="status" type="int" />

<column name="statusByUserId" type="long" />

<column name="statusByUserName" type="String" />

<column name="statusDate" type="Date" />

Wherever you’re setting the other database fields in your persistence code, set the workflow status as a
draft and set the other fields.

1152

fooEntity.setStatus(WorkflowConstants.STATUS_DRAFT);

fooEntity.setStatusByUserId(userId);

fooEntity.setStatusByUserName(user.getFullName());

fooEntity.setStatusDate(serviceContext.getModifiedDate(null));

With Service Builder driven Liferay applications, this will be in the local service implementation class
(-LocalServiceImpl).

Whenever an entity is added to the database you need to detect whether workflow is installed and active.
If not, you need to automatically mark the entity as approved so it appears in the UI. If it is, you want to leave
it in draft status and send it to theworkflow back endwhere it can be properly handled. Thankfully, thiswhole
process is easily donewitha single call to WorkflowHandlerRegistryUtil.startWorkflowInstance. Thereare sev-
eral methods of this name which take a different parameter set, so inspect the WorkflowHandlerRegistryUtil
class and decide which is right for your case.

WorkflowHandlerRegistryUtil.startWorkflowInstance(fooEntity.getCompanyId(),

fooEntity.getGroupId(), fooEntity.getUserId(), FooEntity.class.getName(),

fooEntity.getPrimaryKey(), fooEntity, serviceContext);

Once you’ve set the database fields for workflow status and started the workflow instance, implement the
updateStatusmethod that you need to call in the workflow handler. The workflow handler gets the entity’s
status from the workflow back end and passes it to your service layer, which persists the updated entity to
the database.

fooEntity.setStatus(status);

fooEntity.setStatusByUserId(user.getUserId());

fooEntity.setStatusByUserName(user.getFullName());

fooEntity.setStatusDate(serviceContext.getModifiedDate(now));

fooEntityPersistence.update(fooEntity);

After setting the workflow fields for the entity, think about the specifics of your situation and whether
any additional logic should be added to this method. For instance, if your entities are Liferay Assets already,
you’ll want to change the visibility of the asset depending on its workflow status. You don’t want the Asset
Publisher displaying entities that haven’t yet been approved in the workflow process.

if (status == WorkflowConstants.STATUS_APPROVED) {

assetEntryLocalService.updateEntry(

FooEntity.class.getName(), fooEntityId, fooEntity.getDisplayDate(),

null, true, true);

}

else {

assetEntryLocalService.updateVisible(

fooEntity.class.getName(), entryId, false);

}

If approved, the asset is updated, with the publication date, a listable boolean, and a visible boolean
being updated to reflect the current state of the asset. If the workflow status is anything other than approved,
its visibility is set to false.

For anexampleof a fully implemented updateStatusmethod, see the com.liferay.portlet.blogs.service.impl.BlogsEntryLocalServiceImpl
class in portal-impl.

Before leaving the service layer, add a call to deleteWorkflowInstanceLinks in the deleteEntitymethod.
Here’s what it looks like:

1153

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/workflow/WorkflowHandlerRegistryUtil.html

workflowInstanceLinkLocalService.deleteWorkflowInstanceLinks(

fooEntity.getCompanyId(), fooEntity.getGroupId(),

FooEntity.class.getName(), fooEntity.getFooEntityId());

When you send an entity to the workflow framework via the startWorkflowInstance call, it creates an
entry in the workflowinstancelink database table. This delete call ensures there are no orphaned entries in
the workflowinstancelinks table.

Note, to get the WorkflowInstanceLocalService injected into your *LocalServiceBaseImpl so you can call
its methods in the LocalServiceImpl, add this to your entity declaration in service.xml:

<reference entity="WorkflowInstanceLink" package-path="com.liferay.portal" />

Save your work and run Service Builder. Once you’ve accounted for workflow status in your service layer,
there’s only one thing left to do: update the user interface.

87.3 Workflow Status and the View Layer
If you have an application with database entities, you’re likely displaying them. If you’re sending entities
through a workflow process, you only want to display approved entities to your end users.

This often involves the following steps:

• Create a finder for your entities that accounts for the status field in your database table.

• Expose the finder in a gettermethod of your service layer.

• Update the view layer to use the new getter for displaying entities (e.g., in a Search Container).

If you’re using Service Builder, define your finder in your application’s service.xml and let Service Builder
generate it for you.

<finder name="G_S" return-type="Collection">

<finder-column name="groupId"></finder-column>

<finder-column name="status"></finder-column>

</finder>

Thenmake sure you have a getter in your service layer that uses the new finder.

public List<FooEntity> getFooEntities(long groupId, int status)

throws SystemException {

return fooEntityPersistence.findByG_S(groupId,

WorkflowConstants.STATUS_APPROVED);

}

Now all you need to do is update your JSP to use the appropriate getter.

<liferay-ui:search-container-results

results="<%=FooEntityLocalServiceUtil.getFooEntities(scopeGroupId,

fooEntityId(), Workflowconstants.STATUS_APPROVED, searchContainer.getStart(),

searchContainer.getEnd())%>"

...

In an administrative type application (in other words, one that’s displayed in the Site Menu’s Content
section) youmight want to display all the entities, with their current workflow status (for example, include
workflow status as a column in the search container). To do so, use the <aui:worklfow-status> tag.

<aui:workflow-status markupView="lexicon" showIcon="<%= false %>" showLabel="<%= false %>" status="<%= fooEntity.getStatus() %>" />

You only needed one new class, one newmethod in the service layer, and some updates to your view, and
workflow is fully implemented and ready to use in your Liferay application.

1154

Figure 87.1: You can display the workflow status of your entities. This is useful in administrative applications.

1155

Chapter 88

Export/Import and Staging

Liferay DXP’s Export/Import and Staging features give users the power to plan page publication andmanage
content. The Export/Import feature lets users export content from the Portal and import external content
into the Portal. Providing the export feature in your application allows users the flexibility of exporting
content they’ve created in your application to other places, such as another portal instance, or to save the
content for a later use. Import does the opposite: it brings the data from a LAR file into your portal.

For instance, suppose you’re managing an online education course using Liferay DXP. Because of the
nature of an online course, the site’s data (grades, assignments, etc.) is purged every semester to make way
for new incoming students. In a scenario like this, there is a need frequently to store a complete record of
all data given during a course. The institution offering the course must usually keep records of the course’s
data for a minimum number of years. To abide by these requirements, having a gradebook application with
an export/import feature would allow you to clear the application’s data for a new semester, but save the
previous class’s work. You could export the students’ grades as a LAR file and save it outside the course’s site.
If the grades ever needed to be accessed again, you could import the LAR and view the student records.

The Export/Import feature adds another dimension to your application by letting you produce reusable
content and import content from other places. To learn more about using the Export/Import feature, visit
the Exporting/Importing App Data section of the User Guide.

Staging lets you change your site behind the scenes without affecting the live site, and then you can
publish all the changes in one fell swoop. Keep inmind that Staging leverages the Export/Import framework,
which is an essential part of the publishing process. If you include staging support in your application, your
users can stage its content until it’s ready.

For example, if you have an application that provides information intended only during a specific holiday,
supporting the Staging environment lets users save your application’s assets specific for that holiday. They’ll
reside in the Staging environment until they’re ready for publishing. To learn more about Staging, visit the
Staging Content for Publication section.

Besides configuring these features for yourapplication,Liferayalsoprovides anAPI that allowsdevelopers
to write custom code, extending Liferay’s default functionality.

In this section of tutorials, you’ll learn how to implement Staging and the Export/Import framework.
Themain areas of Staging code to focus on are outlined below:

1. StagedModel Interface: The StagedModel is the cornerstone of Staging. All content that must be handled
in Staging should implement this interface; it provides the behavior contract for the entities Staging
uses during the Staging process.

1157

2. StagedModelDataHandler: These data handlers are responsible for handling one specific entity class.
For example, the BookmarksEntryStagedModelDataHandler handles the BookmarksEntry during Staging:
exporting data, serializing content, finding existing entries, etc.

3. PortletDataHandler: These data handlers are responsible for handling aspects of the portlet’s configu-
ration and publication during Staging.

4. ExportActionableDynamicQuery: This framework is useful when developing Staging support. Its pur-
pose is to query data from the database and process it during publication. It’s automatically generated
if your entity contains the right fields so there’s no need to worry about configuring it.

5. ExportImportContentProcessor and ExportImportPortletPreferencesProcessor: Advanced frameworks
only needed in special cases. The ExportImportContentProcessor lets you process your content during
a publication process. The ExportImportPortletPreferencesProcessor lets you process your portlet
preferences (application’s configuration) during a publication process.

88.1 Decision to Implement Staging

Liferay DXP’s Staging feature is an advanced publication tool that lets you create or modify your site before
releasing it to the public. Most of Liferay DXP’s included applications (e.g.,Web Content and Bookmarks)
support Staging. Implementing Staging in your own application can be beneficial, but how do you know if
it’s the right move?

Not every application needs to support Staging and Export/Import. Themost important question to
consider during the decision process is

What part of your application are you primarily focused on using Staging for?
When Staging is enabled in Liferay DXP, all pages and applications are staged automatically. Liferay

DXP’s architecture separates the application and its configuration from the actual content,meaning that
content canexistwithout any application todisplay it and vice versa. AlthoughStagingand theExport/Import
framework supports all applications and their configurations by default, not all applications’ content is
supported by Staging.

Implementing Staging for your application means you’re defining the logic for how the Staging frame-
work should process, serialize, and de-serialize your app’s content, and how to insert it into a database.

Therefore, if you want to track your application’s content, you should implement Staging in your applica-
tion. Here are a few other scenarios where you should implement Staging in your application:

• You’re using remote staging. When publishing to a remote live site, your content must be transferred
to a different Liferay DXP installation. Therefore, Staging must be able to recognize the content to
facilitate the transfer.

• You want a space where you can freely edit and test your content before publishing it to a live audience.
• Your content is being referenced from another content type that supports Staging.
• You want to process your portlet’s preferences during publication (i.e., you might want to publish
some content with it or complete extra steps).

• You want to process the content during publication (e.g., writing validation for your content during
the import process).

If none of these options are beneficial for you, implementing Staging in your application is unnecessary.
When content supports Staging and Staging is enabled, it is created in a Staging group and is only

published to a live site when that site is published. When content is not supported by Staging, it is never

1158

added to a Staging group and is not reviewable during the Staging publication process; it’s added and
removed from the live site only.

From a technical standpoint, publishing an entity or content follows the process below:

1. The entity’s possible references are discovered and processed.
2. The entity’s fields are processed.
3. The entity is serialized into a LAR file.
4. The LAR is transferred to the live site (local or remote live).
5. After de-serialization, the entity’s fields are processed.
6. The entity is added to the database.

Awesome! You should now have a good idea about whether you should implement Staging for your
application.

88.2 Understanding Staged Models

To track an entity of an application with the Staging framework, you must implement the StagedModel
interface in the app’s model classes. It provides the behavior contract for entities during the Staging process.
For example, the Bookmarks application manages BookmarksEntrys and BookmarksFolders, and both
implement the StagedModel interface. Once you’ve configured your staged models, you can create staged
model data handlers, which supply information about a stagedmodel (entity) and its referenced content
to the Export/Import and Staging frameworks. See the Understanding Data Handlers tutorial for more
information.

There are two ways to create stagedmodels for your application’s entities:

• Using Service Builder to generate the required Staging implementations (tutorial).
• Implementing the required Staging interfaces manually (tutorial).

You can follow step-by-step procedures for creating staged models for your entities by visiting their
respective tutorials.

Using Service Builder to generate your staged models is the easiest way to create staged models for your
app. You define the necessary columns in your service.xml file and set the uuid attribute to true. Then you
run Service Builder, which generates the required code for your new stagedmodels.

Implementing the necessary staged model logicmanually should be done if you don’twant to extend
your model with special attributes only required to generate Staging logic (i.e., not needed by your business
logic). In this case, you should adapt your business logic to meet the Staging framework’s needs. You’ll learn
more about this later.

You’ll explore the provided stagedmodel interfaces next.

Staged Model Interfaces

The StagedModel interfacemust be implemented by your app’smodel classes, but this is typically done through
inheritance by implementing one of the interfaces that extend the base interface:

• StagedAuditedModel
• StagedGroupedModel

1159

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedModel.html
@app-ref@/collaboration/latest/javadocs/com/liferay/bookmarks/model/BookmarksEntry.html
@app-ref@/collaboration/latest/javadocs/com/liferay/bookmarks/model/BookmarksFolder.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedAuditedModel.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedGroupedModel.html

Youmust implement thesewhen youwant touse certain features of theStaging framework like automatic
groupmapping or entity level Last Publish Date handling. So how do you choose which is right for you?

The StagedAuditedModel interface provides all the audit fields to the model that implements it. You can
check the AuditedModel interface for the specific audit fields provided. The StagedAuditedModel interface is
intended for models that function independent from the group concept (sometimes referred to as company
models). If your model is a groupmodel, you should not implement the StagedAuditedModel interface.

The StagedGroupedModel interface must be implemented for group models. For example, if your
application requires the groupId column, your model is a group model. If your model satisfies both the
StagedGroupModel and StagedAuditedModel requirements, it should implement the StagedGroupedModel.
Your model should only implement the StagedAuditedModel if it doesn’t fulfill the grouped model needs,
but does fulfill the audited model needs. If your model does not fulfill either the StagedAuditedModel or
StagedGroupedModel requirements, you should implement the base StagedModel interface.

As an example for extending your model class, you can visit the BookmarksEntryModel class, which
extends the StagedGroupedModel interface; this is done because bookmark entries are groupmodels.

public interface BookmarksEntryModel extends BaseModel<BookmarksEntry>,

ShardedModel, StagedGroupedModel, TrashedModel, WorkflowedModel {

Now that you have a better understanding about stagedmodel interfaces, you’ll dive into the attributes
used in Staging and why they’re important.

Important Attributes in Staging

If you’d like to generate your stagedmodels using Service Builder, youmust define the proper attributes
in your project’s service.xml file. If you’d like more detail on how this is done, see the Generating Staged
Models using Service Builder tutorial. You’ll learn some general information about this process next.

One of the most important attributes used by the Staging framework is the UUID (Universally Unique
Identifier). This attribute must be set to true in your service.xml file for Service Builder to recognize your
model as an eligible stagedmodel. TheUUID is used to differentiate entities between environments. Because
the UUID always remains the same, it’s unique across multiple systems. Why is this so important?

Suppose you’re using remote staging and you create a new entity on your local staging site and publish it
to your remote live site. What happens when you go back to modify the entity on your local site and want to
publish those changes? Without a UUID, the Staging framework has no way to know the local and remote
entities are the same. To publish entities properly, the Staging framework needs entities uniquely identified
across systems to recognize the original entity on the remote site and update it. The UUID provides that.

In addition to the UUID, there are several columns that must be defined in your service.xml file for
Service Builder to define your model as a stagedmodel:

• companyId

• createDate

• modifiedDate

If you want a staged groupedmodel, also include the groupId and lastPublishDate columns. If you want
a staged audited model, include the userId and userName columns.

Next, you’ll learn how to build stagedmodels from scratch.

1160

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/AuditedModel.html
@app-ref@/collaboration/latest/javadocs/com/liferay/bookmarks/model/BookmarksEntryModel.html

Adapting Your Business Logic to Build Staged Models

What if you don’t want to extend your model with special attributes that may not be needed in your business
logic? In this case, you should adapt your business logic to meet the Staging framework’s needs. Liferay
provides the ModelAdapterBuilder framework, which lets you adapt your model classes to stagedmodels.

As an example, assume you have an app that is fully developed and you want to configure it to work with
Staging. Your app, however, does not require a UUID for any of its entities, and therefore, does not provide
them. Instead of configuring your app to handle UUIDs just for the sake of generating stagedmodels, you
can leverage the Model Adapter Builder to build your stagedmodels.

Another example for building stagedmodels from scratch is for applications that use REST services to
access their attributes instead of the database. Since this kind of app is developed to pull its attributes from
a remote system, it would be more convenient to build your staged models yourself instead of relying on
Service Builder, which is database driven.

To adapt your model classes to stagedmodels, follow the steps outlined below:

1. Create a Staged[Entity] interface, which extends the model specific interface (e.g., [Entity]) and the
appropriate staged model interface (e.g., StagedModel). This class serves as the StagedModel Adapter.

2. Create a Staged[Entity]Impl class that implements the Staged[Entity] interface and provides neces-
sary logic for your entity model to be recognized as a stagedmodel.

3. Create a Staged[Entity]ModelAdapterBuilder class that implements ModelAdapterBuilder<[Entity],
Staged[Entity]>. This class adapts the original model to the newly created StagedModel Adapter.

4. Adapt your existingmodel and call one of the providedAPIs to export or import the entity automatically.

Figure 88.1: The Staged Model Adapter class extends your entity and staged model interfaces.

To step through the process for leveraging the Model Adapter Builder for an existing app, visit the
Creating StagedModels Manually tutorial.

1161

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/adapter/builder/ModelAdapterBuilder.html

Figure 88.2: The Model Adapter Builder gets an instance of the model and outputs a staged model.

88.3 Generating Staged Models Using Service Builder
This document has been updated and ported to Liferay Learn and is no longer maintained here.

A Stagedmodel is an essential building block to implementing the Staging and Export/Import frame-
works in your application. Instead of having to create stagedmodels for your appmanually, you can leverage
Service Builder to generate the necessary staged model logic for you. Before diving into this tutorial, make
sure you’ve read the Understanding Staged Models tutorial for information on how staged models work.
Also, if your app doesn’t use Liferay’s Service Builder, you must configure it in your project. If you need help
doing this, follow the Defining an Object-Relational Map with Service Builder tutorial.

This tutorial assumes you have a Service Builder project with *api and *servicemodules. If you want to
follow along with this tutorial, download the staged-model-example Service Builder project. This is a bare-
bones project that you can test to observe the Staging-related changes generated by running Service Builder.
This tutorial assumes your project is built with Gradle. The example project’s service.xml file contains the
following configuration:

<service-builder package-path="com.liferay.docs">

<namespace>FOO</namespace>

<entity local-service="true" name="Foo" remote-service="true" uuid="true">

<!-- PK fields -->

<column name="fooId" primary="true" type="long" />

<!-- Group instance -->

<column name="groupId" type="long" />

<!-- Audit fields -->

1162

<column name="companyId" type="long" />

<column name="createDate" type="Date" />

<column name="modifiedDate" type="Date" />

...

...

</entity>

</service-builder>

For simplicity, you’ll track the ServiceBuilder-generated changes applied to an entitymodel file to observe
how stagedmodels are assigned to your entity. Keep in mind the specific staged attributes necessary for
each stagedmodel. Depending on the attributes defined in your service.xml file, Service Builder assigns
your entity model to a specific stagedmodel type.

1. Navigate to your project’s *servicemodule at the command line. Run Service Builder (e.g., gradlew
buildService) to generate your project’s models based on the current service.xml configuration.

2. Open your project’s [Entity]Model.java interface and observe the inherited interfaces.

public interface FooModel extends BaseModel<Foo>, ShardedModel, StagedModel {

Yourmodel was generated as a stagedmodel! This is because the UUID is set to true and the companyId,
createDate, and modifiedDate columns are defined. There is muchmore logic generated for your app
behind the scenes, but this shows that Service Builder deemed your entity eligible for the Staging and
Export/Import frameworks.

3. Add the userId and userName columns to your service.xml file:

<column name="userId" type="long" />

<column name="userName" type="String" />

4. Rerun Service Builder and observe your [Entity]Model.java interface again:

public interface FooModel extends BaseModel<Foo>, GroupedModel, ShardedModel,

StagedAuditedModel {

Your model is now a staged audited model!

5. Add the lastPublishDate column to your service.xml file:

<column name="lastPublishDate" type="Date" />

6. Rerun Service Builder and observe your [Entity]Model.java interface again:

public interface FooModel extends BaseModel<Foo>, ShardedModel,

StagedGroupedModel {

Your model is now a staged grouped model! The groupId column is also required to extend the
StagedGroupedModel interface, but it was already defined in the original service.xml file.

Fantastic! You’ve witnessed firsthand how easy it is to generate stagedmodels using Service Builder.

1163

88.4 Creating Staged Models Manually
There are times when using Service Builder to generate your stagedmodels is not practical. In these cases,
you should create your staged models manually. Make sure to read the Adapting Your Business Logic to
Build StagedModels section to determine if creating staged models manually is beneficial for your use case.

In this tutorial, you’ll explore how the Asset Link framework (a Liferay DXP framework used for relating
assets) manually creates stagedmodels. This framework is separate from Staging and is referenced solely
as an example for how to leverage the ModelAdapterBuilder framework, which lets you adapt your model
classes to stagedmodels.

Asset links do not provide UUIDs by default; however, they still need to be tracked in the Staging and
Export/Import frameworks. Therefore, they require stagedmodels. Since they don’t provide a UUID, Service
Builder cannot generate stagedmodels for asset links. The Asset Link framework has to create stagedmodels
differently using the Model Adapter Builder. The naming convention for this interface typically follows the
Staged[Entity] syntax. The Asset Link framework uses a generic entity called AssetLink.

Follow the steps below to leverage the Model Adapter Builder in your app.

1. Create anew interface that extendsoneof the stagedmodel interfaces andyourmodel specific interface.
For example,

public interface StagedAssetLink extends AssetLink, StagedModel {

}

This interface should definemethods required for your model to qualify as a stagedmodel. For asset
links,methods for retrieving entry UUIDs (among others) are defined:

public String getEntry1Uuid();

public String getEntry2Uuid();

These will be implemented by a new implementation class later.

2. Create an implementation class that implements your new Staged[Entity]. For example, the Asset
Link framework does this:

public class StagedAssetLinkImpl implements StagedAssetLink {

}

This class provides necessary logic for your entity model to be recognized as a stagedmodel. Below is a
subset of logic in the example StagedAssetLinkImpl class used to populate UUIDs for asset link entries:

public StagedAssetLinkImpl(AssetLink assetLink) {

_assetLink = assetLink;

...

populateUuid();

}

@Override

public String getEntry1Uuid() {

if (Validator.isNotNull(_entry1Uuid)) {

return _entry1Uuid;

1164

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/adapter/builder/ModelAdapterBuilder.html

}

populateEntry1Attributes();

return _entry1Uuid;

}

@Override

public String getEntry2Uuid() {

if (Validator.isNotNull(_entry2Uuid)) {

return _entry2Uuid;

}

populateEntry2Attributes();

return _entry2Uuid;

}

protected void populateEntry1Attributes() {

...

AssetEntry entry1 = AssetEntryLocalServiceUtil.fetchAssetEntry(

_assetLink.getEntryId1());

...

_entry1Uuid = entry1.getClassUuid();

}

protected void populateEntry2Attributes() {

...

AssetEntry entry2 = AssetEntryLocalServiceUtil.fetchAssetEntry(

_assetLink.getEntryId2());

...

_entry2Uuid = entry2.getClassUuid();

}

protected void populateUuid() {

...

String entry1Uuid = getEntry1Uuid();

String entry2Uuid = getEntry2Uuid();

...

_uuid = entry1Uuid + StringPool.POUND + entry2Uuid;

}

}

private AssetLink _assetLink;

private String _entry1Uuid;

private String _entry2Uuid;

private String _uuid;

This logic retrieves asset link entries and populates UUIDs for them usable by the Staging and Ex-
port/Import frameworks. With the newly generated UUIDs, asset link model classes can be converted
to stagedmodels.

3. Create a Model Adapter Builder class and implement the ModelAdapterBuilder interface. You should
define the entity type and your StagedModel Adapter class when implementing the interface:

1165

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/adapter/builder/ModelAdapterBuilder.html

public class StagedAssetLinkModelAdapterBuilder

implements ModelAdapterBuilder<AssetLink, StagedAssetLink> {

@Override

public StagedAssetLink build(AssetLink assetLink) {

return new StagedAssetLinkImpl(assetLink);

}

}

For the StagedAssetLinkModelAdapterBuilder, the entity type is AssetLink and the Staged Model
Adapter is StagedAssetLink. Your app should follow a similar design. The Model Adapter Builder
outputs a new instance of the Staged[Entity]Impl object.

4. Now you need to adapt your existing business logic to call the provided APIs. You can call the Mod-
elAdapterUtil class to create an instance of your Staged Model Adapter. See how the Asset Link
framework does this below:

StagedAssetLink stagedAssetLink = ModelAdapterUtil.adapt(

assetLink, AssetLink.class, StagedAssetLink.class);

Once you’ve created Staged Model Data Handlers, you can begin exporting/importing your now
Staging-compatible entities:

StagedModelDataHandlerUtil.exportStagedModel(

portletDataContext, stagedAssetLink);

Visit the Understanding Data Handlers tutorial if you’re unfamiliar with how data handlers work.

Awesome! You’ve successfully adapted your business logic to build stagedmodels!

88.5 Understanding Data Handlers
A common requirement for many data driven applications is to import and export data. This could be
accomplished by accessing your database directly and running SQL queries to export/import data; however,
this has several drawbacks:

• Working with different database vendors might require customized SQL scripts.
• Access to the database may be tightly controlled, restricting the ability to export/import on demand.
• You’d have to come up with your ownmeans of storing and parsing the data.

Liferay provides a more convenient and reliable way to export/import your data without accessing the
database.

Liferay Archive (LAR) File

An easier way to export/import your application’s data is to use a Liferay ARchive (LAR) file. Liferay provides
the LAR feature to address the need to export/import data in a database agnostic manner. So what exactly is
a LAR file?

A LAR file is a compressed file (ZIP archive) Liferay DXP uses to export/import data. LAR files can be
created for single portlets, pages, or sets of pages. Portlets that are LAR-capable provide an interface to let
you control how their data are imported/exported. There are several Liferay DXP use cases that require the
use of LAR files:

1166

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/adapter/ModelAdapterUtil.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/adapter/ModelAdapterUtil.html

• Backing up and restoring portlet-specific data without requiring a full database backup.
• Cloning sites.
• Specifying a template to be used for users’ public or private pages.
• Using Local Live or Remote Live staging.

Liferayprovides thedatahandler framework sodevelopersdon’t have to create/modify a LARfilemanually.
It is strongly recommendednever tomodifyaLARfile. You should alwaysuse Liferay’s provideddatahandler
APIs to construct it.

Knowing how a LAR file is constructed, however, is beneficial to understand the overall purpose of your
application’s data handlers. Next, you’ll explore a LAR file’s anatomy.

LAR File Anatomy

What is a LAR file? You know the general concept for why it’s used, but you may want to know what lives
inside to make your export/import processes work. With a fundamental understanding for how a LAR file is
constructed, you can better understand what your data handlers generate behind the scenes.

Below is the structure of a simple LAR file. It illustrates the exportation of a single Bookmarks entry and
the portlet’s configuration:

• Bookmarks_Admin-201701091904.portlet.lar

– group

* 20143

· com.liferay.bookmarks.model.BookmarksEntry

· 35005.xml

· portlet

· com_liferay_bookmarks_web_portlet_BookmarksAdminPortlet

· 20137

· portlet.xml

· 20143

· portlet-data.xml

– manifest.xml

You can tell from the LAR’s generated name what information is contained in the LAR: the Bookmarks
Admin app’s data. The manifest.xmlfile sits at the root of the LARfile. It provides essential information about
the export process. The manifest.xml for the sample Bookmarks LAR is pretty bare since it’s not exporting
much content, but this file can become large when exporting pages of content. There are four main parts
(tags) to a manifest.xml file.

• header: contains information about the LAR file, current process, and site you’re exporting (if nec-
essary). For example, it can include locales, build information, export date, company ID, group ID,
layouts, themes, etc.

1167

• missing-references: lists entities that must be validated during import. For example, suppose you’re
exporting a web content article that references an image (e.g., an embedded image residing in the
document library). If the image was not selected for export, the image must already exist in the site
where the article is imported. Therefore, the image would be flagged as amissing reference in the LAR
file. If the missing reference does not exist in the site when the LAR is imported, the import process
fails. If your import fails, the Import UI shows you the missing references that weren’t validated.

• portlets: defines the portlets (i.e., portlet data) exported in the LAR. Each portlet definition has basic
information on the exported portlet and points to the generated portlet.xml for more specialized
portlet information.

• manifest-summary: contains information on what has been exported. The Staging and Export frame-
works export or publish some entities even though they weren’t marked for it, because the process
respects data integrity. This section holds information for all the entities that have been processed.
The entities defining a non-zero addition-count attribute are displayed in the Export/Import UI.

The manifest.xml file also defines layout information if you’ve exported pages in your LAR. For example,
your manifest could have LayoutSet, Layout, and LayoutFriendlyURL tags specifying staged models and their
various references in an exported page.

Now that you’ve learned about the LAR’s manifest.xml and how it’s used to store high-level data about
your export process, you can dive deeper into the LAR file’s group folder. The group folder has twomain parts:

• Entities
• Portlets

If you look at the anatomy of the sample Bookmarks LAR, you’ll notice that group/[groupId] folder
holds a folder named after the entity you’re exporting (e.g., com.liferay.bookmarks.model.BookmarksEntry)
and a portlet folder holding a folder named after the portlet from which you’re exporting (e.g.,
com_liferay_bookmarks_web_portlet_BookmarksAdminPortlet). For each entity/portlet you export, there are
subsequent folders holding data about them. Entities and portlets can also be stored in a company folder.
Although the majority of entities belong to a group, some exist outside of a group scope (e.g., users).

If you open the /group/20143/com.liferay.bookmarks.model.BookmarksEntry/35005.xml file, you’ll find se-
rialized data about the entity, which is similar to what is stored in the database.

The portlet folder holds all the portlets you exported. Each portlet has its own folder that holds various
XML files with data describing the exported content. There are three main XML files that can be generated
for a single portlet:

• portlet.xml: provides essential information about the portlet, similar to a manifest file. For example,
this can include the portlet ID, high-level entity information stored in the portlet (e.g., web content
articles in a web content portlet), permissioning, etc.

• portlet-data.xml: describes specific entity data stored in the portlet. For example, for the web content
portlet, articles stored in the portlet are defined in staged-model tags and are linked to their serialized
entity XML files.

• portlet-preferences.xml: defines the settings of the portlet. For example, this can include portlet
preferences like the portlet owner, default user, article IDs, etc.

Note that when you import a LAR, it only includes the portlet data. You have to deploy the portlet to be
able to use it.

You now know how exported entities, portlets, and pages are defined in a LAR file. For a summarized
outline of what you’ve learned about LAR file construction, see the diagram below.

1168

Figure 88.3: Entities, Portlets, and Pages are defined in a LAR in different places.

Excellent! You now have a fundamental understanding for how a LAR file is generated and how it’s
structured.

Next, you’ll learn about data handler fundamentals and the prerequisites required to implement them.

Data Handler Fundamentals

To leverage the Export/Import framework’s ability to export/import a LAR file, you can implement Data
Handlers in your application. There are two types of data handlers: Portlet DataHandlers and StagedModel
DataHandlers.

A Portlet Data Handler imports/exports portlet specific data to a LAR file. These classes only have
the role of querying and coordinating between stagedmodel data handlers. For example, the Bookmarks
application’s portlet data handler tracks system events dealing with Bookmarks entities. It also configures
the Export/Import UI options for the Bookmarks application.

To track each entity of an application for staging, you should create staged models by implementing
the StagedModel interface. Stagedmodels are the parent interface of an entity in the Staging framework.
For example, the Bookmarks application manages BookmarksEntrys and BookmarksFolders, and both
implement the StagedModel interface.

A StagedModel Data Handler supplies information about a stagedmodel (entity) to the Export/Import
framework, defining a display name for the UI, deleting an entity, etc. It’s also responsible for exporting
referenced content. For example, if a Bookmarks entry resides in a Bookmarks folder, the BookmarksEntry
stagedmodel data handler invokes the export of the BookmarksFolder.

You’re not required to implement a stagedmodel data handler for every entity in your application, but
they’re necessary for any entity you want to export/import or have the staging framework track.

1169

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/StagedModel.html
@app-ref@/collaboration/latest/javadocs/com/liferay/bookmarks/model/BookmarksEntry.html
@app-ref@/collaboration/latest/javadocs/com/liferay/bookmarks/model/BookmarksFolder.html

Figure 88.4: The Data Handler framework uses portlet data handlers and staged model data handlers to track and export/import portlet and staged model information,
respectively.

Before implementing data handlers, make sure your application is ready for the Export/Import and
Staging frameworks by running Service Builder in your application. Using Service Builder to create staged
models is not required, but is recommended since it generatesmany requirements for you. To ensure Service
Builder recognizes your entity as a staged model, you must set the uuid attribute to true in your service.xml
file and have the following columns declared:

• companyId

• groupId

• userId

• userName

• createDate

• modifiedDate

You can learn how to create a service.xml file for your application by visiting the Defining an Object-
Relational Map with Service Builder tutorial.

To learn how to develop data handlers for your app, visit the Developing Data Handlers tutorial.

88.6 Developing Data Handlers

To leverage the Export/Import framework’s ability to export/import a LAR file, you can implement Data
Handlers in your application. There are two types of data handlers you can implement: Portlet DataHandlers

1170

and StagedModel DataHandlers. For more information on the fundamentals behind Liferay’s data handlers
and how a LAR file is constructed, see the Understanding Data Handlers tutorial. You also must ensure your
application is properly configured to use data handlers; this is also covered in the linked tutorial.

To learn how to implement data handlers for your custom application, you’ll examine how the Bookmarks
application does it. First you’ll start with its portlet data handler implementation.

Portlet Data Handlers

The following steps create the BookmarksPortletDataHandler class used for the Bookmarks application.

1. Create a new package in your existing Service Builder project for your data handler classes. For in-
stance, the Bookmarks application’s data handler classes reside in the com.liferay.bookmarks.service
module’s com.liferay.bookmarks.internal.exportimport.data.handler package.

2. Create your -PortletDataHandler class for your application in the new -exportimport.data.handler

package and have it implement the PortletDataHandler interface by extending the BasePortletData-
Handler class. See the BookmarksPortletDataHandler class as an example:

public class BookmarksPortletDataHandler extends BasePortletDataHandler {

3. Create an @Component annotation section above the class declaration. This annotation registers this
class as a portlet data handler in the OSGi service registry.

@Component(

immediate = true,

property = {

"javax.portlet.name=" + BookmarksPortletKeys.BOOKMARKS,

"javax.portlet.name=" + BookmarksPortletKeys.BOOKMARKS_ADMIN

},

service = PortletDataHandler.class

)

There are a few annotation attributes you should set:

• The immediate element directs the container to activate the component immediately once its
providedmodule has started.

• The property element sets various properties for the component service. You must associate
the portlets you wish to handle with this service so they function properly in the export/import
environment. For example, since the Bookmarks data handler is used for two portlets, they’re
both configured using the javax.portlet.name property.

• The service element should point to the PortletDataHandler.class interface.

Note: In previous versions of Liferay DXP, you had to register the portlet

data handler in a portlet's `liferay-portlet.xml` file. The registration

process is now completed automatically by OSGi using the `@Component`

annotation.

4. Set what the portlet data handler controls and the portlet’s Export/Import UI by adding an activate

method:

1171

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataHandler.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/BasePortletDataHandler.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/BasePortletDataHandler.html

@Activate

protected void activate() {

setDataPortletPreferences("rootFolderId");

setDeletionSystemEventStagedModelTypes(

new StagedModelType(BookmarksEntry.class),

new StagedModelType(BookmarksFolder.class));

setExportControls(

new PortletDataHandlerBoolean(

NAMESPACE, "entries", true, false, null,

BookmarksEntry.class.getName()));

setImportControls(getExportControls());

}

Thismethod is called during initialization of the component by using the @Activate annotation. This
method is invoked after dependencies are set and before services are registered.

The four set methods called in the BookmarksPortletDataHandler’s activate method are described
below:

• setDataPortletPreferences: sets portlet preferences the Bookmarks application should handle.
• setDeletionSystemEventStagedModelTypes: sets the stagedmodel deletions that the portlet data
handler should track. For the Bookmarks application, Bookmark entries and folders are tracked.

• setExportControls: adds fine grained controls over export behavior that are rendered in the
Export UI. For the Bookmarks application, a checkbox is added to select Bookmarks content
(entries) to export.

• setImportControls: adds fine grained controls over import behavior that are rendered in the
Import UI. For the Bookmarks application, a checkbox is added to select Bookmarks content
(entries) to import.

For more information on these methods, visit the PortletDataHandler API.

5. For the Bookmarks portlet data handler to reference its entry and folder stagedmodels successfully,
youmust set them in your class:

@Reference(unbind = "-")

protected void setBookmarksEntryLocalService(

BookmarksEntryLocalService bookmarksEntryLocalService) {

_bookmarksEntryLocalService = bookmarksEntryLocalService;

}

@Reference(unbind = "-")

protected void setBookmarksFolderLocalService(

BookmarksFolderLocalService bookmarksFolderLocalService) {

_bookmarksFolderLocalService = bookmarksFolderLocalService;

}

private BookmarksEntryLocalService _bookmarksEntryLocalService;

private BookmarksFolderLocalService _bookmarksFolderLocalService;

The set methods must be annotated with the @Reference annotation. Visit the Invoking Liferay
Services Locally section of the Finding and Invoking Liferay Services tutorial for more information on
using the ‘Liferay DXPproduct@.

1172

https://osgi.org/javadoc/r6/residential/org/osgi/service/component/annotations/Activate.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataHandler.html
https://osgi.org/javadoc/r6/residential/org/osgi/service/component/annotations/Reference.html

Figure 88.5: You can select the content types you’d like to export/import in the UI.

Important: Liferay DXP’s official Bookmarks app does not use local services in its portlet data handler;
instead, it uses the StagedModelRepository framework. This is not recommended for custom applica-
tions, however; it’s only intended for internal Liferay applications at this time. Because of this, the
code in this tutorial has beenmodified to highlight the recommended way for custom apps.

6. You must create a namespace for your entities so the Export/Import framework can identify your
application’s entities from other entities in Liferay DXP. The Bookmarks application’s namespace
declaration looks like this:

public static final String NAMESPACE = "bookmarks";

You’ll see how this namespace is used later.

7. Your portlet data handler should retrieve the data related to its stagedmodel entities so it can properly
export/import it. Add this functionality by inserting the followingmethods:

@Override

protected String doExportData(

final PortletDataContext portletDataContext, String portletId,

PortletPreferences portletPreferences)

throws Exception {

Element rootElement = addExportDataRootElement(portletDataContext);

if (!portletDataContext.getBooleanParameter(NAMESPACE, "entries")) {

1173

return getExportDataRootElementString(rootElement);

}

portletDataContext.addPortletPermissions(

BookmarksResourcePermissionChecker.RESOURCE_NAME);

rootElement.addAttribute(

"group-id", String.valueOf(portletDataContext.getScopeGroupId()));

ExportActionableDynamicQuery folderActionableDynamicQuery =

_bookmarksFolderLocalService.

getExportActionableDynamicQuery(portletDataContext);

folderActionableDynamicQuery.performActions();

ActionableDynamicQuery entryActionableDynamicQuery =

_bookmarksEntryLocalService.

getExportActionableDynamicQuery(portletDataContext);

entryActionableDynamicQuery.performActions();

return getExportDataRootElementString(rootElement);

}

@Override

protected PortletPreferences doImportData(

PortletDataContext portletDataContext, String portletId,

PortletPreferences portletPreferences, String data)

throws Exception {

if (!portletDataContext.getBooleanParameter(NAMESPACE, "entries")) {

return null;

}

portletDataContext.importPortletPermissions(

BookmarksResourcePermissionChecker.RESOURCE_NAME);

Element foldersElement = portletDataContext.getImportDataGroupElement(

BookmarksFolder.class);

List<Element> folderElements = foldersElement.elements();

for (Element folderElement : folderElements) {

StagedModelDataHandlerUtil.importStagedModel(

portletDataContext, folderElement);

}

Element entriesElement = portletDataContext.getImportDataGroupElement(

BookmarksEntry.class);

List<Element> entryElements = entriesElement.elements();

for (Element entryElement : entryElements) {

StagedModelDataHandlerUtil.importStagedModel(

portletDataContext, entryElement);

}

return null;

}

The doExportDatamethodfirst checks if anything shouldbeexported. The portletDataContext.getBooleanParameter(...)
methodchecks if theuser selectedBookmarks entries for export. Later, the ExportImportActionableDynamicQuery
framework runs a query against bookmarks folders and entries to find ones which should be exported
to the LAR file.

The -ActionableDynamicQuery classes are automatically generated by Service Builder and are available

1174

in your application’s local service. It queries the database searching for certain Staging-specific pa-
rameters (e.g., createDate and modifiedDate), and based on those parameters, finds a list of exportable
records from the stagedmodel data handler.

The doImportData queries for Bookmark entry and folder data in the imported LAR file that should
be added to the database. This is done by extracting XML elements from the LAR file by using utility
methods from the StagedModelDataHandlerUtil class. The extracted elements tell Liferay DXP what
data to import from the LAR file.

8. Add a method that deletes the portlet’s data. The Staging framework has an option called Delete
Portlet Data Before Importing that lets the user delete portlet data before importing any new data. The
doDeleteData(...) method is called to execute this deletion operation.

@Override

protected PortletPreferences doDeleteData(

PortletDataContext portletDataContext, String portletId,

PortletPreferences portletPreferences)

throws Exception {

if (portletDataContext.addPrimaryKey(

BookmarksPortletDataHandler.class, "deleteData")) {

return portletPreferences;

}

_bookmarksEntryLocalService.deleteEntries(

portletDataContext.getScopeGroupId(),

BookmarksFolderConstants.DEFAULT_PARENT_FOLDER_ID);

_bookmarksFolderLocalService.deleteFolders(

portletDataContext.getScopeGroupId());

return portletPreferences;

}

Thismethod can also return a modified version of the portlet preferences if it contains references to
data that no longer exists.

9. Add a method that counts the number of affected entities based on the current export or staging
process:

@Override

protected void doPrepareManifestSummary(

PortletDataContext portletDataContext,

PortletPreferences portletPreferences)

throws Exception {

ActionableDynamicQuery entryExportActionableDynamicQuery =

_bookmarksEntryLocalService.

getExportActionableDynamicQuery(portletDataContext);

entryExportActionableDynamicQuery.performCount();

ActionableDynamicQuery folderExportActionableDynamicQuery =

_bookmarksFolderLocalService.

getExportActionableDynamicQuery(portletDataContext);

folderExportActionableDynamicQuery.performCount();

}

1175

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/StagedModelDataHandlerUtil.html

Figure 88.6: The number of modified Bookmarks entities are displayed in the Export UI.

Thisnumber is displayed in theExport andStagingUI.Note that since the Staging framework traverses
the entity graph during export, the built-in components provide an approximate value in some cases.

10. Set the XML schema version for the XML files included in your exported LAR file:

public static final String SCHEMA_VERSION = "1.0.0";

@Override

public String getSchemaVersion() {

return SCHEMA_VERSION;

}

Awesome! You’ve set up your portlet data handler and your application can now support the Export/Im-
port framework anddisplay aUI for it. Thenext step for supporting data handlers in your app is to implement
stagedmodel data handlers for your stagedmodels. You’ll do this next.

Staged Model Data Handlers

Now that your application has a portlet data handler and stagedmodels, you’ll create the stagedmodel data
handlers. The Bookmarks application has two stagedmodels: entries and folders. Creating data handlers for
these two entities is similar, so you’ll examine how this is done for Bookmark entries.

1176

1. Create a -StagedModelDataHandler class in the same folder as its portlet data handler class. For Book-
marks, the BookmarksEntryStagedDataHandler class resides in the com.liferay.bookmarks.servicemod-
ule’s com.liferay.bookmarks.internal.exportimport.data.handler package. The staged model data
handler class should extend the BaseStagedModelDataHandler class and the entity type should be spec-
ified as its parameter. You can see how this was done for the BookmarksEntryStagedModelDataHandler
class below:

public class BookmarksEntryStagedModelDataHandler

extends BaseStagedModelDataHandler<BookmarksEntry> {

2. Create an @Component annotation section above the class declaration. This annotation is responsible
for registering the class as a stagedmodel data handler similar to the portlet data handler.

@Component(immediate = true, service = StagedModelDataHandler.class)

The immediate element directs the container to activate the component immediately once its provided
module has started. The service element should point to the StagedModelDataHandler.class interface.

Note: In previous versions of Liferay DXP, you had to register the staged

model data handler in a portlet's `liferay-portlet.xml` file. The

registration process is now completed automatically by OSGi using the

`@Component` annotation.

3. Create a getter and setter method for the local service of the staged model for which you want to
provide a data handler:

@Override

protected BookmarksEntryLocalService getBookmarksEntryLocalService() {

return _bookmarksEntryLocalService;

}

@Reference(unbind = "-")

protected void setBookmarksEntryLocalService(

BookmarksEntryLocalService bookmarksEntryLocalService) {

_bookmarksEntryLocalService = bookmarksEntryLocalService;

}

private BookmarksEntryLocalService _bookmarksEntryLocalService;

Thesemethods are used to link this data handler with the stagedmodel for bookmark entries.

Important: Liferay DXP’s official Bookmarks app does not use local services in its stagedmodel data
handlers; instead, it uses the StagedModelRepository framework. This is not recommended for custom
applications, however; it’s only intended for internal Liferay applications at this time. Because of this,
the code in this tutorial has beenmodified to highlight the recommended way for custom apps.

4. Youmust provide the class names of the models the data handler tracks. You can do this by overriding
the StagedModelDataHandler’s getClassnames()method:

1177

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/BaseStagedModelDataHandler.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/StagedModelDataHandler.html

public static final String[] CLASS_NAMES = {BookmarksEntry.class.getName()};

@Override

public String[] getClassNames() {

return CLASS_NAMES;

}

As a best practice, you should have one stagedmodel data handler per stagedmodel. It’s possible to
use multiple class types, but this is not recommended.

5. Add amethod that retrieves the stagedmodel’s display name:

@Override

public String getDisplayName(BookmarksEntry entry) {

return entry.getName();

}

The display name is presented with the progress bar during the export/import process.

Figure 88.7: Your staged model data handler provides the display name in the Export/Import UI.

6. A staged model data handler should ensure everything required for its operation is also exported. For
example, in the Bookmarks application, an entry requires its folder to keep the folder structure intact.
Therefore, the folder should be exported first followed by the entry.

Addmethods that import and export your stagedmodel and its references.

@Override

protected void doExportStagedModel(

PortletDataContext portletDataContext, BookmarksEntry entry)

throws Exception {

if (entry.getFolderId() !=

BookmarksFolderConstants.DEFAULT_PARENT_FOLDER_ID) {

StagedModelDataHandlerUtil.exportReferenceStagedModel(

portletDataContext, entry, entry.getFolder(),

PortletDataContext.REFERENCE_TYPE_PARENT);

}

Element entryElement = portletDataContext.getExportDataElement(entry);

portletDataContext.addClassedModel(

entryElement, ExportImportPathUtil.getModelPath(entry), entry);

}

@Override

protected void doImportStagedModel(

1178

PortletDataContext portletDataContext, BookmarksEntry entry)

throws Exception {

Map<Long, Long> folderIds =

(Map<Long, Long>)portletDataContext.getNewPrimaryKeysMap(

BookmarksFolder.class);

long folderId = MapUtil.getLong(

folderIds, entry.getFolderId(), entry.getFolderId());

ServiceContext serviceContext =

portletDataContext.createServiceContext(entry);

BookmarksEntry importedEntry = null;

if (portletDataContext.isDataStrategyMirror()) {

BookmarksEntry existingEntry =

_bookmarksEntryLocalService. fetchBookmarksEntryByUuidAndGroupId(

entry.getUuid(), portletDataContext.getScopeGroupId());

if (existingEntry == null) {

serviceContext.setUuid(entry.getUuid());

importedEntry = _bookmarksEntryLocalService.addEntry(

userId, portletDataContext.getScopeGroupId(), folderId, entry.getName(), entry.getUrl(), entry.getDescription(), serviceContext);

}

else {

importedEntry = _bookmarksEntryLocalService.updateEntry(

userId, existingEntry.getEntryId(), portletDataContext.getScopeGroupId(), folderId, entry.getName(), entry.getUrl(), entry.getDescription(), serviceContext);

}

}

else {

importedEntry = _bookmarksEntryLocalService.addEntry(userId, portletDataContext.getScopeGroupId(), folderId,entry.getName(), entry.getUrl(), entry.getDescription(), serviceContext);

}

portletDataContext.importClassedModel(entry, importedEntry);

}

The doExportStagedModelmethod retrieves the Bookmark entry’s data element from the PortletData-
Context and then adds the class model characterized by that data element to the PortletDataContext.
The PortletDataContext is used to populate the LAR file with your application’s data during the export
process. Note that once an entity has been exported, subsequent calls to the export method won’t
actually repeat the export process multiple times, ensuring optimal performance.

An important feature of the import process is that all exported reference elements in the Bookmarks
example are automatically imported when needed. The doImportStagedModelmethod does not need to
import the reference elements manually; it must only find the new assigned ID for the folder before
importing the entry.

The PortletDataContext keeps this information and a slew of other data up-to-date dur-
ing the import process. The old ID and new ID mapping can be reached by using the
portletDataContext.getNewPrimaryKeysMap() method as shown in the example. The method
proceeds with checking the import mode (e.g.,Copy As New orMirror) and depending on the process
configuration and existing environment, the entry is either added or updated.

7. When importing a LAR that specifies a missing reference, the import process expects the reference to
be available and must validate that it’s there. You must add a method that maps the missing reference
ID from the export to the existing ID during import.

For example, suppose you export a FileEntry as a missing reference with an ID of 1. When importing
that information, the LAR only provides the ID but not the entry itself. Therefore, during the import

1179

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataContext.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lar/PortletDataContext.html

process, the Data Handler framework searches for the entry to replace, but the entry to replace has
a different ID of 2. You must provide a method that maps these two IDs so the import process can
recognize the missing reference.

@Override

protected void doImportMissingReference(

PortletDataContext portletDataContext, String uuid, long groupId,

long entryId)

throws Exception {

BookmarksEntry existingEntry = fetchMissingReference(uuid, groupId);

if (existingEntry == null) {

return;

}

Map<Long, Long> entryIds =

(Map<Long, Long>)portletDataContext.getNewPrimaryKeysMap(

BookmarksEntry.class);

entryIds.put(entryId, existingEntry.getEntryId());

}

Thismethodmaps the existing staged model to the old ID in the reference element. When a reference
is exported as missing, the Data Handler framework calls this method during the import process and
updates the new primary key map in the portlet data context.

Fantastic! You’ve created a data handler for your staged model. The Export/Import framework can now
track your entity’s behavior and data.

With the ability to track entity data, your application is available during the Export/Import and Staging
processes.

88.7 Initiating New Processes with ExportImportConfiguration Ob-
jects

Liferay DXP’s Staging and Export/Import features are the building blocks for creating, managing, and
publishing a site. These features can be accessed in your Portal’s Publishing Toolsmenu. You can also, however,
start these processes programatically. This lets you provide new interfaces or mimic the functionality of
these features in your own application.

Providing the ability to stage your application’s assets makes using your application much more site
administrator-friendly. Your new assets no longer have to be saved somewhere off-site until they’re ready to
be published. You can publish them to a staging environment, test their usability, and save them to a page.
Once the time is right for publishing, you can publish your application’s assets to the live site with onemouse
click. The export/import feature offers similar conveniences: if you want to export your application’s assets
to use in another place or you need to clear its data but save a copy you can implement the export feature.
Implementing the import feature lets you bring your assets/data back into your application.

To initiate a export/import or staging process, you must pass in an ExportImportConfiguration object.
This object encapsulates many parameters and settings that are required while the export/import is running.
Having one single object with all your necessary data makes executing these frameworks quick and easy.

When you want to implement, for example, export, you must call services offered by the
ExportImportService interface. All the methods in this interface require an ExportImportConfiguration

object. Liferay DXP provides a way to generate these configuration objects, so you can easily pass them in
your service methods.

1180

It’s also important to know that ExportImportConfiguration is a Portal entity, similar to User or Group. This
means that the ExportImportConfiguration framework offers local and remote services, models, persistence
classes, andmore.

In this tutorial, you’ll learn about the ExportImportConfiguration framework and how you can take ad-
vantage of provided services and factories to create these controller obects. Once they’re created, you can
easily impment whatever import/export functionality you need.

Your first step is to create an ExportImportConfiguration object and use it to initiate your custom ex-
port/import or staging process.

1. Use the Export Import Configuration factory classes to build your ExportImportConfiguration object.
Below is a common way to do it:

Map<String, Serializable> exportLayoutSettingsMap =

ExportImportConfigurationSettingsMapFactory.

buildExportLayoutSettingsMap(...);

ExportImportConfiguration exportImportConfiguration =

exportImportConfigurationLocalService.

addDraftExportImportConfiguration(

user.getUserId(),

ExportImportConfigurationConstants.TYPE_EXPORT_LAYOUT,

exportLayoutSettingsMap);

This example uses the ExportImportConfigurationSettingsMapFactory to create a layout export set-
tings map. Then this map is used as a parameter to create an ExportImportConfiguration by calling
an addmethod in the entity’s local service interface. The ExportImportConfigurationLocalService
provides several useful methods to create andmodify your custom ExportImportConfiguration.

The ExportImportConfigurationSettingsMapFactory provides many buildmethods to create settings
maps for various scenarios, like importing, exporting, and publishing layouts and portlets. For
examples of this particular scenario, you can reference UserGroupLocalServiceImpl.exportLayouts(…)
and GroupLocalServiceImpl.addDefaultGuestPublicLayoutsByLAR(…).

There are two other important factories provided by this framework that are useful during the creation
of ExportImportConfiguration objects:

• ExportImportConfigurationFactory: This factory is used to build ExportImportConfiguration

objects used for default local/remote publishing.
• ExportImportConfigurationParameterMapFactory: This factory is used to build parameter
maps, which are required during export/import and publishing.

2. Call the appropriate service to initiate the export/import or staging process. There are two important
service interfaces that you can use in the cases of exporting, importing, and staging: ExportImport-
LocalService and StagingLocalService. In the previous step’s example code snippet, you created an
ExportImportConfiguration object intended for exporting layouts. Here’s how to initiate that process:

files[0] = exportImportLocalService.exportLayoutsAsFile(

exportImportConfiguration);

By calling this interface’s method, you’re exporting layouts from Portal into a java.io.File array.
Notice that your ExportImportConfiguration object is the only needed parameter in the method. Your
configuration object holds all the required parameters and settings necessary to export your layouts
from Portal. Although this example code resides in Liferay DXP, you could easily use this framework
from your own plugin or module.

1181

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/configuration/ExportImportConfigurationSettingsMapFactory.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/service/ExportImportConfigurationLocalService.html
@platform-ref@/7.0-latest/javadocs/portal-impl/com/liferay/portal/service/impl/UserGroupLocalServiceImpl.html#exportLayouts-long-java.util.Map-
@platform-ref@/7.0-latest/javadocs/portal-impl/com/liferay/portal/service/impl/GroupLocalServiceImpl.html#addDefaultGuestPublicLayoutsByLAR-com.liferay.portal.kernel.model.Group-java.io.File-
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/configuration/ExportImportConfigurationFactory.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/configuration/ExportImportConfigurationParameterMapFactory.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/service/ExportImportLocalService.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/service/ExportImportLocalService.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/service/StagingLocalService.html

Note: If you're not calling the export/import or staging service methods

from an OSGi module, you should not use the interface. The Liferay

OSGi container automatically handles interface referencing, which is why

using the interface is permitted for modules. If you're calling

export/import or staging service methods outside of a module, you should use

their service Util classes (e.g., `ExportImportLocalServiceUtil`).

It’s that easy! To start yourownexport/import or stagingprocess, youmust create an ExportImportConfiguration
object using a combination of the three provided ExportImportConfiguration factories. Once you have your
configuration object, provide it as a parameter in one of the many service methods available to you by the
Export/Import or Staging interfaces to begin your desired process.

88.8 Using the Export/Import Lifecycle Listener Framework
The ExportImportLifecycleListener framework allowsdevelopers towrite code that listens for certain staging
or export/import events during the publication process. The staging and export/import processes havemany
behind-the-scenes events that you cannot listen to by default. Some of these, like export successes and
import failures,may be events on which you’d want to take some action. You also have the ability to listen for
processes comprised of many events and implement custom code when these processes are initiated. Here
is a short list of events you can listen for:

• Staging has started
• A portlet export has failed
• An entity export has succeeded

The concept of listening for export/import and staging events sounds cool, but you may be curious
as to why listening for certain events is useful. Listening for events can help you know more about your
application’s state. Suppose you’d like a detailed log of when certain events occur during an import process.
You could configure a listener to listen for certain import events you’re interested in and print information
about those events to your console when they occur.

Liferay DXP uses this framework by default in several cases. For instance, Liferay clears the cache
when a web content import process finishes. To accomplish this, the lifecycle listener framework listens
for an event that specifies that a web content import process has completed. Once that event occurs, there
is an event listener that automatically clears the cache. You could implement this sort of functionality
yourself for any Portal event. You can listen for a specific event and then complete an action based on when
that event occurs. For a list of events you can listen for during Export/Import and Staging processes, see
ExportImportLifecycleConstants.

Some definitions are in order:
Events are particular actions that occur during processing.
Processes are longer running groups of events.
In this tutorial, you’ll learn how to use the ExportImportLifecycleListener framework to listen for pro-

cesses/events during the staging and export/import lifecycles.

Listening to Lifecycle Events

To begin creating your lifecycle listener, youmust create a module. Follow the steps below:

1. Create an OSGi module.

1182

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lifecycle/ExportImportLifecycleConstants.html

2. Create a unique package name in themodule’s src directory and create a new Java class in that package.
To follow naming conventions, begin the class name with the entity or action name you’re processing,
followed by ExportImportLifecycleListener (e.g., LoggerExportImportLifecycleListener).

3. You must extend one of the two Base classes provided with the Export/Import Lifecycle Listener
framework: BaseExportImportLifecycleListener or BaseProcessExportImportLifecycleListener. To
choose, you’ll need to consider what parts of a lifecycle you want to listen for.

Extend the BaseExportImportLifecycleListener class if you want to listen for specific events during a
lifecycle. For example, youmay want to write custom code if a layout export fails.

Extend the BaseProcessExportImportLifecycleListener class if you want to listen for processes during a
lifecycle. For example, youmay want to write custom code if a site publication fails. Keep in mind that
a process usually consists of many individual events. Methods provided by this base class are only run
once when the desired process action occurs.

4. Directly above the class’s declaration, insert the following annotation:

@Component(immediate = true,

service = ExportImportLifecycleListener.class)

This annotation declares the implementation class of the component and specifies that the portal
should start the module immediately.

5. Specify the methods you want to implement in your class.

Once you’ve successfully created your export/import lifecycle listener module, generate the module’s JAR
file and copy it to your Portal’s osgi/modules directory. Once your module is installed and activated in your
Portal’s service registry, your lifecycle listener is ready for use in your Portal instance.

If you’re still thirsting for more information on this framework, you’re in luck! Here’s an example, using
the LoggerExportImportLifecycleListener. This listener extends the BaseExportImportLifecycleListener, so
you should immediately know that it deals with lifecycle events.

The first method isParallel() determines whether your listener should run in parallel with the im-
port/export process, or if the calling method should stop, execute the listener, and return to where the event
was fired after the listener has finished. The nextmethod is the onExportImportLifecycleEvent(...) method,
which consumes the lifecycle event and passes it through the base class’s method (as long as Debugmode is
not enabled).

Each remaining method is called to print logging information for the user. For example, when a layout
export starts, succeeds, or fails, logging information directly related to that event is printed. In summary,
the LoggerExportImportLifecycleListener uses the lifecycle listener framework to print messages to the log
when an export/import event occurs. Other good examples of event lifecycle listeners are CacheExportIm-
portLifecycleListener and JournalCacheExportImportLifecycleListener.

For an example of a lifecycle listener extending the BaseProcessExportImportLifecycleListener class,
inspect the ExportImportProcessCallbackLifecycleListener class. Instead of listening for lifecycle events,
this class only listens for process actions.

Terrific! You learned about the Export/Import Lifecycle Listener framework, and you’ve learned how to
create your own listener for events/processes that occur during export/import of your portal’s content.

1183

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lifecycle/BaseExportImportLifecycleListener.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/exportimport/kernel/lifecycle/BaseProcessExportImportLifecycleListener.html
@app-ref@/web-experience/latest/javadocs/com/liferay/exportimport/lifecycle/LoggerExportImportLifecycleListener.html
@app-ref@/web-experience/latest/javadocs/com/liferay/exportimport/lifecycle/CacheExportImportLifecycleListener.html
@app-ref@/web-experience/latest/javadocs/com/liferay/exportimport/lifecycle/CacheExportImportLifecycleListener.html
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/web-experience/journal/journal-service/src/main/java/com/liferay/journal/internal/exportimport/lifecycle/JournalCacheExportImportLifecycleListener.java
@app-ref@/web-experience/latest/javadocs/com/liferay/exportimport/lifecycle/ExportImportProcessCallbackLifecycleListener.html

Chapter 89

Configuration

Many applications provide users a way of setting preferences for their use. In Liferay DXP, this could be
as simple as setting a location for a weather display or as complex as settings for a mail or a time sheet
application.

The Portlet standard defines an API for portlet preferences that can be used for this sort of thing, but
it’s limited and for that reason isn’t used much. Instead,many developers have tended to create their own
methods for configuring their applications.

But that isn’t necessary anymore: now there’s a configuration API that’s easy to use and full-featured.
It’s used throughout Liferay DXP’s applications, and because we like it, we think you’ll like it too.

The following tutorials show you how to use it.

89.1 Making Your Applications Configurable

This tutorial explains how to make your applications configurable. It starts with basic configuration and
then covers some advanced use cases.

Note that the methods described here are not mandatory. You canmake your applications configurable
using any other mechanism that you’re already familiar with. We have found, however, that the method
described below provides the greatest benefit with the least amount of effort.

Note: To quickly see a working application configuration, deploy the configuration-action Blade sample
and navigate to System Settings (Control Panel → Configuration → System Settings). In the Other category, click
theMessage display configuration entry.

Add the BladeMessage Portlet to a page to test your configuration choices.

Fundamentals

While youdon’t need to knowmuch tomake your applications configurable, understanding a fewkey concepts
helps you achieve a higher degree of configurability with little effort.

• Typed Configuration: The method described here uses typed configuration. This means that the
application configuration isn’t just a list of key-value pairs. The values can have types, like Integer, a list
of Strings, aURL, etc. It’s even possible to use your own custom types, although that’s beyond the scope

1185

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/configuration-action

of this tutorial. Typed configurations are easier to use than untyped configurations, and they prevent
many programmatic errors. Related to this, the configuration options should be programmatically
explicit, so that developers can use autocomplete in modern IDEs to find out all of the configuration
options of a given application or one of its components.

• Modularity: In Liferay DXP, applications are modular and built as a collection of lightweight com-
ponents. A component is just a class that has the @Component annotation, often along with a set of
properties to provide metadata. The configuration mechanisms described here leverage the concept
of components.

• Configuration Scope: If your applicationmust support different configurations at different scopes,
the APIs described below handle most of the burden for you. It’s still important, however, for you to
understand the term configuration scope. Here are the most common configuration scopes that Liferay
applications can have:

1. System: configuration that is unique for the complete installation of the application.

2. Virtual Instance: configuration that can vary per virtual instance.

3. Site: configuration that can vary per Liferay site.

4. Portlet Instance: applicable for applications that are placed on a page (i.e., portlets). Each
placement (instance) of the application on the page can have a different configuration.

Enoughwith the conceptual stuff. You’re ready to get started with some code. If you already had a portlet
or service that was configurable using the traditional mechanisms of Liferay Portal 6.2 and before, refer to
the Transitioning from Portlet Preferences to the Configuration API tutorial.

Making Your Application Configurable

There’s a minimal amount of code you need to write to make your application configurable the Liferay DXP
way. First, you’ll learn how to create a configuration at the system scope.

First create a Java interface to represent the configuration and its default values. Using a Java interface
allows for an advanced type system for each configuration option. Here is an example of such an interface:

@Meta.OCD(id = "com.liferay.docs.exampleconfig.ExampleConfiguration")

public interface ExampleConfiguration {

@Meta.AD(

deflt = "blue",

required = false

)

public String favoriteColor();

@Meta.AD(

deflt = "red|green|blue",

required = false

)

public String[] validColors();

@Meta.AD(required = false)

public int itemsPerPage();

}

1186

As you can see, you are using two Java annotations to provide somemetadata about the configuration.
Here is what they do:

1. Meta.OCD Registers this class as a configuration with a specific id.The IDmust be the fully qualified
configuration class name.

2. Meta.AD Specifies the default value of a configuration field as well as whether it’s required or not.
Note that if you set a field as required and don’t specify a default value, the system administrator
must specify a value in order for your application to work properly. Use the deflt property to specify a
default value.

The fully-qualified class name of the Meta class referred to above is aQute.bnd.annotation.metatype.Meta.
For more information about this class and the Meta.OCD and Meta.AD annotations, please refer to this bnd
documentation: http://bnd.bndtools.org/chapters/210-metatype.html. In order to use the Meta.OCD and
Meta.AD annotations in your modules, youmust specify a dependency on the bnd library. We recommend
using bnd version 3. Here’s an example of how to include this dependency in a Gradle project:

dependencies {

compile group: "biz.aQute.bnd", name: "biz.aQute.bndlib", version: "3.1.0"

}

Note:The annotations @Meta.OCD and @Meta.AD are part of the bnd library but have also been included
as part of the OSGi standard version R6 with the names @ObjectClassDefinition and @AttributeDefinition.
However, Liferay still uses the bnd annotations since the standard annotations are not available at runtime,
which is necessary for some of the Liferay specific features described below. For the basic usage (the one
described in this section) the standard annotations can be used safely.

Add the following line to your project’s bnd.bnd file:

-metatype: *

This line lets bnd use your configuration interface to generate an XML configuration file. With this
information, Liferay already knows a lot about your application’s configuration options. In fact, it knows
enough to generate a user interface automatically. Cool, isn’t it?

Even if you agree that this is pretty cool, youmight be wondering how to read the configuration from
your application’s code. It’s actually quite easy. Here’s a simple example:

@Component(configurationPid = "com.liferay.docs.exampleconfig.ExampleConfiguration")

public class MyAppManager {

public String getFavoriteColor(Map colors) {

return colors.get(_configuration.favoriteColor());

}

@Activate

@Modified

protected void activate(Map<String, Object> properties) {

_configuration = ConfigurableUtil.createConfigurable(

ExampleConfiguration.class, properties);

}

private volatile ExampleConfiguration _configuration;

}

1187

http://bnd.bndtools.org/chapters/210-metatype.html

Figure 89.1: Navigate to the Control Panel and then click on Configuration → System Settings. Then click on Other, find the Example configuration link, and click on it.

Here are the most relevant aspects of this example:

1. This class is a component, specified with the @Component annotation.
2. This componentuses the configurationwith the ID com.liferay.docs.exampleconfig.ExampleConfiguration.
As a result, this method is invoked when the application starts (due to the @Activate annotation) and
whenever the configuration is modified (due to the @Modified annotation).

3. The activate()method uses the method ConfigurableUtil.createConfigurable() to convert a map of
properties with the configuration to our typed class, which is easier to handle.

4. The configuration is stored in a volatile field. Don’t forget to make it volatile or you’ll run into weird
problems.

Note: The bnd library also provides a class called aQute.bnd.annotation.metatype.Configurable with a
createConfigurable()method. Youcanuse that insteadofLiferay’s com.liferay.portal.configuration.metatype.bnd.util.ConfigurableUtil

1188

without any problems. Liferay’s developers created the ConfigurableUtil class to improve the performance
of bnd’s implementation, and it’s used in internal code. Feel free to use whichever method you prefer.

That’s it. With very few lines of code, you have a configurable application that dynamically changes its
configuration, has an auto-generated UI, and uses a simple API to access the configuration.

Accessing Your Configuration in a JSP Portlet Application

In Liferay DXP it’s very common to read a configuration from a portlet class. If the portlet is a JSP portlet,
the configuration object can be added to the request object so that configurations can be read from the JSPs
that comprise the application’s view layer. In this section, you’ll see an example of reading a configuration
from a portlet class, adding it to the request, and reading from the view layer. The import statements are
included in the code snippets so that you can see the fully qualified class names of all the classes that are
used.

Note:There’s shortcut method for obtaining a portlet instance configuration. Themethod described in
this section takes a straightforward approach that does not use this shortcut. See the Accessing the Portlet
Instance ConfigurationThrough the PortletDisplay section below to learn about the shorter method.

package com.liferay.docs.exampleconfig;

import java.io.IOException;

import java.util.Map;

import javax.portlet.Portlet;

import javax.portlet.PortletException;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

import org.osgi.service.component.annotations.Activate;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Modified;

import com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet;

import com.liferay.portal.configuration.metatype.bnd.util.ConfigurableUtil;

@Component(

configurationPid = "com.liferay.docs.exampleconfig.ExampleConfiguration",

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.security-role-ref=power-user,user",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.resource-bundle=content.Language"

},

service = Portlet.class

)

public class ExampleConfigPortlet extends MVCPortlet {

@Override

public void doView(RenderRequest renderRequest,

RenderResponse renderResponse) throws IOException, PortletException {

renderRequest.setAttribute(

ExampleConfiguration.class.getName(), _configuration);

super.doView(renderRequest, renderResponse);

1189

}

public String getFavoriteColor(Map colors) {

return (String) colors.get(_configuration.favoriteColor());

}

@Activate

@Modified

protected void activate(Map<String, Object> properties) {

_configuration = ConfigurableUtil.createConfigurable(

ExampleConfiguration.class, properties);

}

private volatile ExampleConfiguration _configuration;

}

Themain difference between this example and the first one is that this class is a portlet class and it sets
the configuration object as a request attribute in its doView()method. To read configuration values from a
JSP, first add these imports to your init.jsp file:

<%@ page import="com.liferay.docs.exampleconfig.ExampleConfiguration" %>

<%@ page import="com.liferay.portal.kernel.util.GetterUtil" %>

In a JSP portlet application, your full init.jsp file should at least have contents like this:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://liferay.com/tld/portlet" prefix="liferay-portlet" %>

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme" %>

<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>

<%@ page import="com.liferay.docs.exampleconfig.ExampleConfiguration" %>

<%@ page import="com.liferay.portal.kernel.util.GetterUtil" %>

<portlet:defineObjects />

<liferay-theme:defineObjects />

It’s a Liferay convention that all JSP imports in your application should go in an init.jsp file. All of
your application’s other JSPs import init.jsp. This convention ensures that you only have to manage JSP
dependencies in a single file.

Next, obtain the configuration object from request object and read the desired configuration value from
it. Here’s an example view.jsp file that does this:

<%@ include file="/init.jsp" %>

<p>

Hello from the Example Configuration portlet!

</p>

<%

ExampleConfiguration configuration = (ExampleConfiguration) GetterUtil.getObject(

renderRequest.getAttribute(ExampleConfiguration.class.getName()));

String favoriteColor = configuration.favoriteColor();

%>

<p>Favorite color: <span style="color: <%= favoriteColor %>;"><%= favoriteColor %></p

The example code here would make the application display a message like this:

1190

Figure 89.2: Here, the Example Configuration portlet’s view.jsp is rendered. This JSP reads the value of the favoriteColor configuration and displays it.

Favorite color: blue

Theword ‘blue’ should be written in blue text. Note that ‘blue’ is displayed by default since you specified
it as the default in your ExampleConfiguration interface. If you go to System → System Settings → Other and
click on the Example configuration link, you can find the Favorite color setting and change its value. Your
application’s JSP will reflect this update when you refresh the page.

Categorizing the Configuration

Because it’s easy to make any application or service configurable, there are already lots of configuration
options in Liferay DXP by default. If you’ve deployed custom applications and services to your portal, there
will be even more. To make it easier for portal administrators to find the right configuration options, Liferay
provides a mechanism for developers to specify a category in which the configuration will be shown in the
auto-generated System Settings UI in the Control Panel.

Here’s how the System Settings UI looks:

Figure 89.3: Navigate to the Control Panel, click on Configuration and then System Settings. You’ll find five categories of configurations, including Other. Click on any
configuration to access a form through which the configuration values can be updated.

By default, the following configuration categories are defined:

1191

1. Web Experience
2. Collaboration
3. Forms andWorkflow
4. Foundation
5. Other

You can use any other category and it will be injected in alphabetical order after Platform. Other will
always be shown last. In order to specify a category, you must use the @ExtendedObjectClassDefinition

annotation as in the following example:

@ExtendedObjectClassDefinition(category = "platform")

@Meta.OCD(

factory = true,

id = "com.liferay.portal.ldap.configuration.SystemLDAPConfiguration",

localization = "content/Language"

)

Thefully qualifiedclassnameof the @ExtendedObjectClassDefinition class is com.liferay.portal.configuration.metatype.annotations.ExtendedObjectClassDefinition.
Note: Currently, the infrastructure used by System Settings relies on the configurationPid being the

same as the class name of the interface. If they don’t match, it will not be able to provide any information
provided through ExtendedObjectClassConfiguration.

The @ExtendedObjectClassDefinitionannotation isdistributed through the com.liferay.portal.configuration.metatype
module, which you can configure as a dependency.

Supporting Different Configurations per Virtual Instance, Site, or Portlet Instance

When an application is deployed to Liferay, it’s common to need different configurations depending on
the scope. That means having different configurations for a given application per virtual instance (a.k.a.
Company), site (a.k.a. Group), or portlet instance. Liferay DXP provides an easy way to achieve this with
little effort through a new framework called the Configuration API that is based on the standard OSGi
Configuration Admin API shown in the previous section.

Using the Configuration Provider

When using the Configuration Provider, instead of receiving the configuration directly, the class that wants
to access it will need to receive a ConfigurationProvider fromwhich to obtain the configuration. Additionally,
you need to “register” your class.

Note: ConfigurationProvider is part of Liferay’s kernel API so you don’t need to add a new dependency
to use it. However, its implementation is distributed as a module called portal-configuration-module-

configuration, so you will need to make sure it is installed in order to use it.
Before using the ConfigurationProvider, register the configuration class by writing a class that imple-

ments ConfigurationBeanDeclaration. This class only has one method that returns the class of the interface
you created in the previous section. By doing this, the system is able to keep track of any configuration
changes as they happen. This makes requests for the configuration very fast.

Declare the configuration interface by creating a ConfigurationBeanDeclaration class:

@Component

public class RSSPortletInstanceConfigurationBeanDeclaration

implements ConfigurationBeanDeclaration {

@Override

public Class getConfigurationBeanClass() {

return RSSPortletInstanceConfiguration.class;

1192

}

}

Once you have created your ConfigurationBeanDeclaration, you can use a ConfigurationProvider. Here’s
how you can obtain a reference to it:

• For components:

@Reference

protected void setConfigurationProvider(ConfigurationProvider configurationProvider) {

_configurationProvider = configurationProvider;

}

• For Service Builder services:

@ServiceReference(type = ConfigurationProvider.class)

protected ConfigurationProvider configurationProvider;

• For Spring beans: It is possible to use the same mechanism as for Service Builder services
(@ServiceReference). Check the documentation on how to integrate Spring beans with OSGi services
for more details.

Later, the configuration can be obtained using one of the followingmethods of the provider:

• getCompanyConfiguration(): Used when you want to support different configurations per virtual in-
stance. In this case, the configuration is usually entered by an admin through Control Panel → Config-
uration → Instance Settings. Since this UI is not automatically generated (yet) you will need to extend
the UI with your own form.

• getGroupConfiguration(): Used when you want to support different configurations per site (or, if
desired, per page scope). Usually this configuration is specified by an admin through theConfiguration
menu option in an app accessing through the site administration menu. That UI is developed as a
portlet configuration view.

• getPortletInstanceConfiguration(): Used to obtain the configuration for an specific portlet instance.
Most often you should not be using this directly and use the convenience method in PortletDisplay

instead as shown below.

• getSystemConfiguration: Used to obtain the configuration for the system scope. These settings are
specified by an admin via the System Settings application or with an OSGi configuration file.

Here are a couple real world examples from Liferay’s source code:

JournalGroupServiceConfiguration configuration =

configurationProvider.getGroupConfiguration(

JournalGroupServiceConfiguration.class, groupId);

MentionsGroupServiceConfiguration configuration =

_configurationProvider.getCompanyConfiguration(

MentionsGroupServiceConfiguration.class, entry.getCompanyId());

Next, you’ll learn how to access a portlet’s configuration from outside of an OSGi component.

1193

Accessing the Portlet Instance Configuration Through the PortletDisplay

Often it’s necessary to access a portlet’s settings from its JSPs or from Java classes that are not OSGi compo-
nents. To make it easier to read the settings in these cases, a newmethod has been added to PortletDisplay
(available as a request object). Here is an example of how to use it:

RSSPortletInstanceConfiguration rssPortletInstanceConfiguration =

portletDisplay.getPortletInstanceConfiguration(

RSSPortletInstanceConfiguration.class);

As you can see, it knows how to find the values and returns a typed bean containing them just by passing
the configuration class.

Specifying the Scope of the Configuration

The ExtendedObjectClassDefinition annotation allows you to specify the scope of the configuration. This
should match how the configuration object is retrieved through the provider (your choice). The valid options
are:

• Scope.GROUP: for site scope
• Scope.COMPANY: For virtual instance scope
• Scope.SYSTEM: for system scope

Here is an example:

@ExtendedObjectClassDefinition(

category = "productivity", scope = ExtendedObjectClassDefinition.Scope.GROUP

)

@Meta.OCD(

id = "com.liferay.dynamic.data.lists.form.web.configuration.DDLFormWebConfiguration",

localization = "content/Language", name = "%ddl.form.web.configuration.name"

)

public interface DDLFormWebConfiguration {

...

}

In Liferay DXP version 7.0, the scope property isn’t used for anything other thanmaking it appear in
System Settings so that an administrator can change its value. In future releases,may have more purposes.

Summary

In this tutorial, you’ve learned how to make your applications configurable. Creating a simple configuration
interface allows Liferay to auto-generate a configuration UI that’s accessible via System Settings in the
Control Panel. You’ve also learned how to categorize your configurations within System Settings, how read
configuration settings in your application at runtime, how to support different configurations at different
scopes, and how to reuse the same configuration class for different scenarios.

89.2 Implementing Configuration Actions

When developing an application, it’s important to think about the different configuration options that
your application should support. It’s also important to think about how users should be able to access
your application’s configuration interface. Liferay DXP supports a flexible mechanism for configuring
applications. You can read about it in the Making Your Applications Configurable tutorial. In this tutorial,

1194

Figure 89.4: When a user clicks the gear icon and selects Configuration, the application’s configuration action is invoked.

you’ll learn to implement a configuration action. The configuration action is invoked when a user clicks on
the gear icon and selects Configuration.

Liferay applications support a default configuration action. If you click on the gear icon of an application
that has not been customized and then select Configuration, you’ll find two standard tabs: Permissions and
Sharing. These tabs provide standard options for configuring who can access your application and how
you canmake your applicationmore widely available. If you follow the instructions in this tutorial, you’ll
learn how to create a Setup tab that allows custom configuration fields to be manipulated. To implement a
configuration action, follow these steps:

1. Create an interface to represent your configuration
2. Implement your application class and add a reference to your configuration in your application class
3. Implement your configuration action class and add a reference to your configuration in your configu-
ration action class

4. Implement the user interface for configuring your application

Note: To quickly see a working configuration action, deploy the configuration-action Blade sample and
add the BladeMessage Portlet to a page. Click the Options button () and select Configuration. Change the
configuration options and save them to see them in action.

Let’s get started.

Creating a Configuration Interface

As explained in the Making Your Applications Configurable tutorial, if you want to make your application
configurable, you should create a Java interface to represent the configuration. Decorate your interface
with the @Meta.OCD annotation and specify a unique ID using the annotation’s id attribute. A common
pattern is to use the fully qualified class name of the interface for the ID since fully qualified class names are
unique. Create public methods to represent configuration fields and decorate themethods with the @Meta.AD
annotation. The return type of themethod specifies the type of the field. To specify a field’s default value, use

1195

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/configuration-action

the annotation’s deflt attribute. To specify that a field is optional, set required=false. For more information
about the Meta.OCD and Meta.AD annotations, please see the bnd documentation. Here’s a simple example:

package com.liferay.docs.exampleconfig.configuration;

import aQute.bnd.annotation.metatype.Meta;

@Meta.OCD(id = "com.liferay.docs.exampleconfig.configuration.ExampleConfiguration")

public interface ExampleConfiguration {

@Meta.AD(required = false)

public String favoriteColor();

}

Add the following line to your project’s bnd.bnd file:

-metatype: *

This line lets bnd use your configuration interface to generate an XML configuration file. This lets Liferay
DXP auto-generate a UI for your configuration in the System Settings area of the Control Panel. However,
it’s sometimes preferable for users to be able to access your configuration directly from the portlet without
having to go to the Control Panel. In this tutorial, you’ll learn how to facilitate this.

This sample configuration contains a single string field called favoriteColor.

Referencing Your Configuration From Your Application Class

As was also explained in the Making Your Applications Configurable tutorial, if you want a reference to the
configuration in your application class, you need to declare the configuration as a volatilemember variable,
decorate your application class with the @Component annotation, specify the appropriate configurationPid in
the @Component annotation, add an appropriately annotated activatemethod that instantiates the configu-
ration variable, and add a public getter method for each configuration field. Here’s a simple example that
makes the sample configuration discussed earlier available to a portlet class:

package com.liferay.docs.exampleconfig.portlet;

import java.io.IOException;

import java.util.Map;

import javax.portlet.Portlet;

import javax.portlet.PortletException;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

import org.osgi.service.component.annotations.Activate;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Modified;

import com.liferay.docs.exampleconfig.configuration.ExampleConfiguration;

import com.liferay.portal.configuration.metatype.bnd.util.ConfigurableUtil;

import com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet;

@Component(

configurationPid =

"com.liferay.docs.exampleconfig.configuration.ExampleConfiguration",

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.security-role-ref=power-user,user",

"javax.portlet.init-param.template-path=/",

1196

http://www.aqute.biz/Bnd/MetaType

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.resource-bundle=content.Language"

},

service = Portlet.class

)

public class ExampleConfigPortlet extends MVCPortlet {

@Override

public void doView(RenderRequest renderRequest,

RenderResponse renderResponse) throws IOException, PortletException {

renderRequest.setAttribute(

ExampleConfiguration.class.getName(),

_exampleConfiguration);

super.doView(renderRequest, renderResponse);

}

public String getFavoriteColor(Map labels) {

return (String) labels.get(_exampleConfiguration.favoriteColor());

}

@Activate

@Modified

protected void activate(Map<Object, Object> properties) {

_exampleConfiguration = ConfigurableUtil.createConfigurable(

ExampleConfiguration.class, properties);

}

private volatile ExampleConfiguration _exampleConfiguration;

}

In this example, overriding the doViewmethod is not strictly necessary. However, it’s useful since adding
the configuration to the request object before calling super.doViewmakes the configuration able to be read
from the request by the application’s JSPs.

Implementing a Configuration Action

To implementa configurationaction, youshould create a class that extendsLiferayDXP’s DefaultConfigurationAction
class. Then you need to add a reference to your configuration the sameway that you added such a reference to
your application class. Declare the configuration as a volatilemember variable, decorate your configuration
action class with the @Component annotation, specify the appropriate configurationPid in the @Component

annotation, add an appropriately annotated activatemethod that instantiates the configuration variable,
and add a public getter method for each configuration field.

Next, youshould specify configurationPolicy = ConfigurationPolicy.OPTIONAL in your class’s @Component
annotation. An optional configuration policy means that the component is created regardless of whether or
not the configuration was set. You also need to specify the portlet to which your configuration action class
applies. To do so,make the following specification in your class’s @Component annotation:

property = {

"javax.portlet.name=com_liferay_docs_exampleconfig_portlet_ExampleConfigPortlet"

},

Your component should be registered as a configuration action class so you should specify service =

ConfigurationAction.class in your class’s @Component annotation.
Next, you should override the processAction method so that it reads a URL parameter from the

action request, sets the value as a portlet preference, and invokes the processAction method of the
SettingsConfigurationAction ancestor class. Finally, you should override the includemethod so that it sets

1197

the configuration as an attribute of the HTTP servlet request and then invokes the includemethod of the
BaseJSPSettingsConfigurationAction class. Here’s an example:

package com.liferay.docs.exampleconfig.action;

import java.util.Map;

import javax.portlet.ActionRequest;

import javax.portlet.ActionResponse;

import javax.portlet.PortletConfig;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.osgi.service.component.annotations.Activate;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.ConfigurationPolicy;

import org.osgi.service.component.annotations.Modified;

import com.liferay.docs.exampleconfig.configuration.ExampleConfiguration;

import com.liferay.portal.configuration.metatype.bnd.util.ConfigurableUtil;

import com.liferay.portal.kernel.portlet.ConfigurationAction;

import com.liferay.portal.kernel.portlet.DefaultConfigurationAction;

import com.liferay.portal.kernel.util.ParamUtil;

@Component(

configurationPid = "com.liferay.docs.exampleconfig.configuration.ExampleConfiguration",

configurationPolicy = ConfigurationPolicy.OPTIONAL,

immediate = true,

property = {

"javax.portlet.name=com_liferay_docs_exampleconfig_portlet_ExampleConfigPortlet"

},

service = ConfigurationAction.class

)

public class ExampleConfigurationAction extends DefaultConfigurationAction {

@Override

public void processAction(

PortletConfig portletConfig, ActionRequest actionRequest,

ActionResponse actionResponse)

throws Exception {

String favoriteColor = ParamUtil.getString(actionRequest, "favoriteColor");

setPreference(actionRequest, "favoriteColor", favoriteColor);

super.processAction(portletConfig, actionRequest, actionResponse);

}

@Override

public void include(

PortletConfig portletConfig, HttpServletRequest httpServletRequest,

HttpServletResponse httpServletResponse) throws Exception {

httpServletRequest.setAttribute(

ExampleConfiguration.class.getName(),

_exampleConfiguration);

super.include(portletConfig, httpServletRequest, httpServletResponse);

}

@Activate

@Modified

protected void activate(Map<Object, Object> properties) {

_exampleConfiguration = ConfigurableUtil.createConfigurable(

ExampleConfiguration.class, properties);

}

private volatile ExampleConfiguration _exampleConfiguration;

1198

}

Now that your configuration action class has been created, you’re ready to create a user interface for
selecting configuration options and submitting the selections.

Implementing the User Interface For Configuring Your Application

When creating a JSP-based user interface, it’s convenient to create an init.jsp page for your application.
The init.jsp page should contain all of the imports, tag library declarations, and other page components
are required by your other JSPs. Each of your other pages should import init.jsp so that you don’t need to
duplicate code. Liferay DXP follows this convention.

Here’s an example init.jsp file:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://liferay.com/tld/portlet" prefix="liferay-portlet" %>

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme" %>

<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>

<%@ page import="com.liferay.docs.exampleconfig.configuration.ExampleConfiguration" %>

<%@ page import="com.liferay.portal.kernel.util.StringPool" %>

<%@ page import="com.liferay.portal.kernel.util.Validator" %>

<portlet:defineObjects />

<liferay-theme:defineObjects />

<%

ExampleConfiguration exampleConfiguration =

(ExampleConfiguration)

renderRequest.getAttribute(ExampleConfiguration.class.getName());

String favoriteColor = StringPool.BLANK;

if (Validator.isNotNull(exampleConfiguration)) {

favoriteColor =

portletPreferences.getValue(

"favoriteColor", exampleConfiguration.favoriteColor());

}

%>

This JSPnot onlydeclares some tag libraries and imports someclasses. It uses the <portlet:defineObjects
/> and <liferay-theme:defineObjects /> tags to make certain variables available on the page. The scriptlet
at the end of the file uses one of these variables, renderRequest, to get the configuration which was stored
in the renderRequest by your portlet’s doViewmethod. Finally, the value of a specific field (favoriteColor) is
read from the configuration.

The default view of your application is provided by your application’s view.jsp. Your view.jsp should
import your init.jsp so that the same tag libraries, imports, and variables are available on the page. Here’s
an example view.jsp file:

<%@ include file="/init.jsp" %>

<p>

<liferay-ui:message key="com_liferay_docs_exampleconfig_portlet_ExampleConfigPortlet.caption"/>

</p>

<%

1199

boolean noConfig = Validator.isNull(favoriteColor);

%>

<c:choose>

<c:when test="<%= noConfig %>">

<p>

Please select use the portlet configuration to select a favorite color.

</p>

</c:when>

<c:otherwise>

<p style="color: <%= favoriteColor %>">

Favorite color: <%= favoriteColor %>!

</p>

</c:otherwise>

</c:choose>

This JSP simply checks whether or not the favoriteColor variable is empty. If it’s empty, a message is
displayed that tells the user that they need to select a favorite color in the portlet’s configuration. If the
favoriteColor variable is not empty, the name of the selected color is displayed in the selected color. Note:
The value of the com_liferay_docs_exampleconfig_portlet_ExampleConfigPortlet.caption language keymust
be specified in your application’s Language.properties file. The default location for this file is in the content
package.

The configuration user interface of your application is provided by your application’s configuration.jsp
file. This interface is displayed on the Setup tab when a user clicks on your application’s gear icon and
then selects Configuration. As previously discussed, your configuration.jsp should import your init.jsp file.
Here’s an example configuration.jsp file:

<%@ include file="/init.jsp" %>

<%@ page import="com.liferay.portal.kernel.util.Constants" %>

<liferay-portlet:actionURL portletConfiguration="<%= true %>"

var="configurationActionURL" />

<liferay-portlet:renderURL portletConfiguration="<%= true %>"

var="configurationRenderURL" />

<aui:form action="<%= configurationActionURL %>" method="post" name="fm">

<aui:input name="<%= Constants.CMD %>" type="hidden"

value="<%= Constants.UPDATE %>" />

<aui:input name="redirect" type="hidden"

value="<%= configurationRenderURL %>" />

<aui:fieldset>

<aui:select name="favoriteColor" label="Favorite Color"

value="<%= favoriteColor %>">

<aui:option value="indigo">Indigo</aui:option>

<aui:option value="blue">Blue</aui:option>

<aui:option value="green">Green</aui:option>

<aui:option value="yellow">Yellow</aui:option>

<aui:option value="orange">Orange</aui:option>

<aui:option value="red">Red</aui:option>

</aui:select>

</aui:fieldset>

<aui:button-row>

<aui:button type="submit"></aui:button>

</aui:button-row>

</aui:form>

1200

This JSP uses the <liferay-portlet:actionURL /> and <liferay-portlet:renderURL /> tags to con-
struct two URLs in the variables configurationActionURL and configurationRenderURL. The JSP presents
a simple form that allows the user to select a favorite color. When the user submits the form, the
configurationActionURL is invoked and the application’s processAction method is invoked with the
favoriteColor included as a request parameter:

<aui:form action="<%= configurationActionURL %>" method="post" name="fm">

If the request fails, the user is redirected to the configuration page:

<aui:input name="redirect" type="hidden"

value="<%= configurationRenderURL %>" />

It’s a best practice to supply aURL parameter named cmd (Constants.CMD equals cmd) whose value indicates
the purpose of the request. In this example, the value of the cmd parameter is update (Constants.CMD equals
update):

<aui:input name="<%= Constants.CMD %>" type="hidden"

value="<%= Constants.UPDATE %>" />

Many core applications read the value of the cmd parameter and perform some processing depending on
its value.

If you’re developing an application using the example code from this tutorial, deploy the application to
Liferay DXP, add it to a page, and click on the Options button (), then select Configuration. Select a favorite
color and click Save. To confirm that your selection was saved as a portlet configuration setting, look for the
application to display a message like this:

Favorite color: blue!

Excellent! Now you know how to create application configurations and how to create a mechanism to
allow users to edit the configuration.

89.3 Transitioning from Portlet Preferences to the Configuration API

This tutorial describes how to take an existing portlet developed for Liferay Portal 6.2 or prior,which uses port-
let preferences to allow administrators to configure the portlet, and convert it to use the new Configuration
API.

For more information on the Configuration API and the recommended ways to develop configurable
applications for 7.0, please see the Making your applications configurable tutorial.

Before you start, it’s important to understand the benefits of making this change. That will allow you to
decide whether to go ahead with the change or not, since previous configuration mechanisms of Liferay
Portal 6.2 and prior still work in 7.0.

Themain benefits are:

• Ability to modify the default portlet preferences through the new System Settings UI. Previously the
default configuration of a portlet could only be set by modifying the portlet.xml file, which was not
easy to extend.

• In the future Liferay will support modifying the default values for any portlet using this API for each
company or site. If you use the new API you won’t need to make any change to benefit from this.

1201

• You can now use the PortletPreferences API to allow users to have their own personal preferences for
the portlet, which was the original intention of this API.

• Have full programmatic control of the scope of the configuration (Portlet Instance or Group), instead
of leaving it to the liferay-portlet.xml file.

• It becomes easier to read the configuration of the portlet from any class or JSP just by knowing its
name. The configuration is also presented as a typed object which reduces the possibility of error
reading a property name or type.

One final thing to note is that using the new Configuration API preserves all existing configurations of
the portlet, since it uses the same persistence storage (the PortletPreferences table). That means that you can
deploy a new version of the portlet to a running system and the existing portlets that may have been added
to its pages and configured will not need to be reconfigured.

If your existing (Liferay Portal 6.2 or prior) application uses portlet preferences and you have decided to
convert it to use the new Configuration API, follow these steps to update your application:

1. Identify the existing preferences of the portlet configuration.

For example, you could check the configuration.jsp (where youwill findDOMelements with the name
preferences--XXX--, where XXX is the name of the preference).

2. Determine the scope of the portlet configuration. The traditional way of specifying it is through
liferay-portlet.xml. Look at the elements preferences-company-wide, preferences-unique-per-

layout and preferences-owned-by-group to determine the right scope. The following table maps out
the scopes:

liferay-portlet.xml | Scope |

---|------------------|

preferences-company-wide=true | Company |

preferences-owned-by-group=true AND preferences-unique-per-layout=false | Group |

preferences-owned-by-group=true AND preferences-unique-per-layout=true | Portlet Instance |

Related to this, we make the following recommendations for the scope of the

configuration of a portlet:

* For any portlet that can be added to a page it should be Portlet Instance.

* For any portlet that is accessible through the product menu and is used to

administer the site it should be Group.

3. Create a Java interface that will represent the configuration, with one method per existing preference.

ByLiferay’s convention, the suggestednames for these interfaces are [Portlet Name]PortletInstanceConfiguration

for the portlet scoped ones or [Portlet Name]GroupServiceConfiguration for the group scoped ones.
However you can choose different conventions.

This interface will use two annotations (@Meta.OCD and @ExtendedObjectClassDefinition) to declare
that it represents a configuration and to specify the desired scope. The id specified in the @Meta.OCD
annotation must be the fully qualified class name of the interface.

For example,

1202

@ExtendedObjectClassDefinition(

category = "[category]",

scope = ExtendedObjectClassDefinition.Scope.GROUP

)

@Meta.OCD(

id = "[package].[PortletName]GroupServiceConfiguration",

)

public interface [PortletName]GroupServiceConfiguration {

@Meta.AD(deflt = "", required = false)

public String displayStyle();

@Meta.AD(deflt = "0", required = false)

public long displayStyleGroupId(long defaultDisplayStyleGroupId);

}

4. In the code above replace [category] with a category name of your choice. Out of the box Liferay uses:
wem, forms, collaboration and foundation. If your portlet fits in any of those go ahead and use them.
If you pick any other name it will be added, but you will need to provide a translation as well.

5. If youwant to specify the name of the configuration as it will appear in System Settings (and optionally
translate it to several languages) add the attributes name and localization (to specify the location of a
resource bundle file) to the @Meta.OCD annotation:

@Meta.OCD(

localization = "content/Language",

name = "[PortletName].group.service.configuration.name"

id = "[package].[PortletName]GroupServiceConfiguration",

)

6. Create one class that implements theConfigurationBeanDeclaration interface to let theConfiguration
framework know about the Configuration class.

@Component

public class [PortletName]GroupServiceConfigurationBeanDeclaration

implements ConfigurationBeanDeclaration {

@Override

public class getConfigurationBeanClass() {

return [[PortletName]GroupServiceConfiguration.class;

}

}

7. Change the configuration JSP to retrieve the configuration using the Configuration API. If the scope
is “Portlet Instance” the configuration can be retrieved from portletDisplay:

[PortletName]PortletInstanceConfiguration portletInstanceConfiguration =

portletDisplay.getPortletInstanceConfiguration(

[PortletName]PortletInstanceConfiguration.class);

Once the configuration object is obtained, the individual preferences can now be changed from this:

String displayStyle = portletPreferences.getValue("displayStyle", defaultValue);

… to this …

String displayStyle = v.displayStyle();

1203

8. Finally it is usually necessary to read the configuration from Java classes or other JSPs. In cases where
the portletDisplay is not available, or when the scope is “Group” or “Company”, the PortletProvider
class offers methods to obtain the configuration. The best way to access the PortletProvider depends
on who is making the invocation:

Within an OSGi Component a reference to the ConfigurationProvider can be obtained and used as
follows:

@Component(service = Foo)

public class Foo {

protected void methodWhichNeedsConfiguration() {

_configurationProvider.getGroupConfiguration(

[PortletName]GroupServiceConfiguration.class, groupId);

}

@Reference

private ConfigurationProvider _configurationProvider;

}

Within a service created with Service Builder the code is very similar:

public class FooServiceImpl {

protected void methodWhichNeedsConfiguration() {

_configurationProvider.getGroupConfiguration(

[PortletName]GroupServiceConfiguration.class, groupId);

}

@Reference

private ConfigurationProvider _configurationProvider;

}

For all other cases it is preferred to get the configuration injected or passed as a parameter. As a
last resort it is possible to use ConfigurationProviderUtil to obtain the configuration, although this
methodmight have issues in highly dynamic environments:

[PortletName]GroupServiceConfiguration groupConfiguration

ConfigurationProviderUtil.getGroupConfiguration(

[PortletName]GroupServiceConfiguration.class, groupId);

1204

Chapter 90

Social

Liferay DXP’s social framework lets users provide feedback on content, share that content with others across
social networks, and subscribe to notifications on content, so they can stay up to date on the latest and
greatest that you have to share.

The tutorials that follow show you how to take advantage of Liferay DXP’s social framework to enable
these features in your own app.

90.1 Applying Social Bookmarks

When you enable social bookmarks, icons for sharing on Twitter, Facebook, and Google Plus appear below
your app’s content. Liferay DXP’s taglibs provide the markup you need to add this feature to your app.

Figure 90.1: Social bookmarks are enabled in the built-in Blogs portlet

Follow these steps to add social bookmarks to your app:

1. Make sure your entity is asset enabled.

1205

2. Choose a view in which to show the social bookmarks. For example, you can display them in one of
your portlet’s views, or if you’ve implemented asset rendering you can display them in the full content
view in the Asset Publisher portlet.

3. In your JSP, include the liferay-uitaglib declaration:

<%@ taglib prefix="liferay-ui" uri="http://liferay.com/tld/ui" %>

4. Use ParamUtil to get the entity’s ID from the render request. Then use your -LocalServiceUtil class to
create an entity object:

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

entry = EntryLocalServiceUtil.getEntry(entryId);

%>

5. Use the liferay-ui:social-bookmarks tag to add the social bookmarks component. The target attribute
refers to the HTML target. Pass the content’s URL in the url attribute, using PortalUtil to retrieve the
URL.The URL and title you provide is sent to the social network and becomes part of the link you
create there:

<liferay-ui:social-bookmarks

contentId="<%= String.valueOf(assetEntry.getEntryId()) %>"

displayStyle="menu"

target="_blank"

title="<%= String.valueOf(entry.getName()) %>"

url="<%= PortalUtil.getCanonicalURL((PortalUtil.getCurrentURL(request)),

themeDisplay, layout) %>"

/>

Pay special attention to the displayStyleattribute. This attribute sets the social bookmarks’ appearance.
Setting displayStyle to menu, as in this example, hides the share buttons in a clutter-free menu (see
above screenshot).

Setting displayStyle to simple displays the share buttons in a simple row without share stats.

Figure 90.2: Here are the share buttons with displayStyle set to simple.

Setting displayStyle to vertical displays the share buttons in a column, with share stats above each
(share stats show the number of times the asset has been shared on the corresponding social network).

Setting displayStyle to horizontal displays the share buttons in a row with share stats to the right of
each.

The social bookmarks UI component now shows in your entity’s view.

Note: You can install the Social Bookmarks app from the Marketplace (available for CE and DXP) to
let your users share your app’s content across more social networks. For more information, see the article
Integrating with Facebook, Twitter, andMore.

1206

@platform-ref@/7.0-latest/taglibs/util-taglib/liferay-ui/social-bookmarks.html
https://web.liferay.com/marketplace/-/mp/application/15194315
https://web.liferay.com/marketplace/-/mp/application/15188453

Figure 90.3: Here are the share buttons with displayStyle set to vertical.

Figure 90.4: Here are the share buttons with displayStyle set to horizontal.

Great! Now you know how to let users share content in your asset enabled apps.

Related Topics

Adding, Updating, and Deleting Assets for Custom Entities
Adding Permissions to Resources
Rendering an Asset
Using the Liferay UI Taglib

90.2 Adding Comments to your App

Users adding comments to your content makes your site come alive. Instead of you statically giving users
information, now the flow goes both ways. Liferay DXP’s asset framework makes it easy to add a comment
system to your app.

This tutorial shows you how to add the comment feature for your application’s content.
Follow these steps:

1. Make sure your entity is asset enabled.

2. Choose a read-only view of the entity for the comments. You can display the comments component in
your portlet’s view, or if you’ve implemented asset rendering, you can display it in the full content view
in the Asset Publisher portlet.

3. Include the Liferay-UI taglib and Portlet taglib declarations in your JSP:

<%@ taglib prefix="liferay-ui" uri="http://liferay.com/tld/ui" %>

<%@ taglib prefix="portlet" uri="http://java.sun.com/portlet_2_0" %>

1207

Figure 90.5: The new JSP lets users share app content to social networks.

4. Use ParamUtil to get the entity’s ID from the render request. Then create an entity object using the
-LocalServiceUtil class. Below is an example configuration:

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

entry = EntryLocalServiceUtil.getEntry(entryId);

%>

5. Create a collapsible panel for the comments using the liferay-ui:panel-container and liferay-

ui:panel tags. This makes the discussion area hide-able. Below is an example configuration:

<liferay-ui:panel-container extended="<%=false%>"

id="guestbookCollaborationPanelContainer" persistState="<%=true%>">

<liferay-ui:panel collapsible="<%=true%>" extended="<%=true%>"

id="guestbookCollaborationPanel" persistState="<%=true%>"

title="Collaboration">

6. Next, create a URL for the discussion using the portlet:actionURL tag:

<portlet:actionURL name="invokeTaglibDiscussion" var="discussionURL" />

1208

Figure 90.6: Your JSP lets users comment on content in your portlet.

7. Finally, add the discussion with the liferay-ui:discussion tag. Pass the current URL using
the redirect attribute, so the user can return to the JSP after making a comment. You can use
PortalUtil.getCurrentURL((renderRequest)) to get the current URL from the request object. Below is
an example configuration:

<liferay-ui:discussion className="<%=Entry.class.getName()%>"

classPK="<%=entry.getEntryId()%>"

formAction="<%=discussionURL%>" formName="fm2"

ratingsEnabled="<%=true%>" redirect="<%=currentURL%>"

userId="<%=entry.getUserId()%>" />

</liferay-ui:panel>

</liferay-ui:panel-container>

If you haven’t already connected your portlet’s view to the JSP for your entity, you can refer here to see
how to connect a portlet’s main view JSP to an entity’s view JSP.

Great! Now you know how to let users comment on content in your asset enabled portlets.

Related Topics

Adding, Updating, and Deleting Assets for Custom Entities
Adding Permissions to Resources
Rendering an Asset
Applying Social Bookmarks

1209

90.3 Rating Assets
Liferay DXP’s asset framework supports a system for rating content in apps. This feature appears in many
core apps, such as the Blogs portlet. Ratings give your users a voice, and you can benefit from their feedback.
Thanks to Liferay DXP’s taglibs, you can enable ratings for your app in only a few lines of code.

Figure 90.7: Ratings let users quickly provide feedback on content.

Follow these steps:

1. Make sure your entity is asset enabled.

2. Choose a read-only view of the entity for the ratings. You can display them in one of your portlet’s
views, or if you’ve implemented asset rendering you can display them in the full content view in the
Asset Publisher portlet.

3. In the JSP, include the liferay-uitaglib declaration:

<%@ taglib prefix="liferay-ui" uri="http://liferay.com/tld/ui" %>

4. Use ParamUtil to get the entity’s ID from the render request. Then use the -LocalServiceUtil class to
create an entity object:

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

entry = EntryLocalServiceUtil.getEntry(entryId);

%>

5. Use the liferay-ui:ratings tag to add the ratings component:

<liferay-ui:ratings className="<%=Entry.class.getName()%>"

classPK="<%=entry.getEntryId()%>" type="stars" />

The type attribute specifies the type of rating system to display:

• like: a likes rating system
• stars: a five star rating system
• thumbs: a thumbs-up or thumbs-down rating system, as shown in the figure above

Although the ratings type is specified here, you canmake the type configurable for administrators by
Implementing Ratings Type Selection and Value Type Transformation in your app.

Great! Now you know how to let users rate content in your asset-enabled portlets.

1210

Related Topics

Adding Comments to Your App
Applying Social Bookmarks

90.4 Implementing Ratings Type Selection andValue Transformation

Liferay DXP has three different mechanisms for rating content: Stars,Thumbs Up/Down, and Likes. Prior to
7.0, there was no way for administrators to select a ratings type as it was hard-coded. Now, portal and site
admins can select the ratings type for portlet entities through the Control Panel and Site Administration.
Portal admins can select default values for the ratings type while site admins can override values for their
sites. All Liferay portlets take advantage of this feature, and so can custom portlets.

A custom portlet that uses ratings must define its ratings type through an OSGi component that imple-
ments the PortletRatingsDefinition interface. This class declares the usage of ratings (specifying the portlet
and the entity) and the default ratings type (that can be overridden by portal and site admins). Developers
can include their portlet entities in this section by defining the ratings type for the entities using OSGi
modules.

The ratings values are stored in the database as normalized values to be able to easily switch among
different ratings types. When the administrators change the ratings type for an entity, Liferay does a best
match of the previous ratings values to values for the new ratings type. For example, when changing from
Thumbs Up/Down to Likes, Portal considers all the Thumbs Up values as if they are Likes and omits all
Thumbs Down values. Also, when changing from Stars toThumbs Up/Down Portal considers ratings with 3,
4, or 5 Stars asThumbs Up and ratings with 1 or 2 Stars asThumbs Down.

However, there are some cases where this may not be enough or where you want to apply different or
complex criteria to determine the new ratings values. Liferay provides a mechanism to allow developers to
transform the ratings values as needed when admins change the ratings type. Keep in mind, this is not an
interpretation of the data, this is modification of the stored ratings values. Third party developers can define
their own transformations by creating an OSGi component that implements the RatingsDataTransformer
interface. The highest OSGi ranking implementation is used.

Liferay by default doesn’t provide any RatingsDataTransformer implementation; the ratings values always
remain the same while Liferay interprets existing values for the selected ratings type.

Specifying an Entity's Ratings Type

Ratings type definitions needs to implement the PortletRatingsDefinition interface. The implementation of
method getDefaultRatingsType returns the entity’s default ratings type. Note, it can be overridden by portal
and site admins. The implementation of method getPortletId returns the portlet ID of the main portlet that
uses the entity.

Implementations of PortletRatingsDefinition need to be registered in OSGi to be used by the por-
tal. You do this in the implementation by specifying the OSGi annotation @Component with an attribute
model.class.name set to the name or names of the classes to use the ratings definition.

Here is an example of a PortletRatingsDefition implementation for the Blogs portlet that defines the
blogsEntry ratings data:

@Component(

property = {

"model.class.name=com.liferay.portlet.blogs.model.BlogsEntry"

}

)

public class BlogsPortletRatingsDefinition implements PortletRatingsDefinition {

1211

@Override

public RatingsType getDefaultRatingsType() {

return RatingsType.THUMBS;

}

@Override

public String getPortletId() {

return PortletKeys.BLOGS;

}

}

Next, let’s examine how to transform values between ratings types.

Transforming Ratings Values Between Ratings Types

If the site adminor portal admin changes the ratings type and there are existing ratings values in the database,
Liferay doesn’t modify any of them. It interprets the values using the selected ratings type according to the
followingmechanism:

1. When changing from Stars to …

• Like: 1 or 2 Stars aren’t considered. 3, 4, or 5 Stars is considered a Like.
• ThumbsUp/Down: 1 or 2 Stars are considered aThumbs Down. 3, 4, or 5 Stars is considered a
Thumbs Up.

2. When changing fromThumbs Up/Down to …

• Like: A Like is considered aThumbs Up.
• Stars: AThumbs Down is considered 1 Star. AThumbs Up is considered 5 Stars.

3. When changing from Like to …

• Stars: A Like is considered 5 Stars.
• ThumbsUp/Down: A Like is considered aThumbs Up.

There may be cases where this interpretation is insufficient for you or where a different criteria or
algorithm needs to be applied. For these cases, Liferay provides a mechanism to allow transforming the
existing ratings values. Keep in mind that this modifies the values stored in the database. Since these
changes may not be reversible, you must be careful. Developers will need to create an OSGi component that
implements the RatingsDataTransformer interface.

The implementation of method transformRatingsData performs the data transformation. In order to
obtain a fine-grained behaviour, the framework provides the methods fromRatingsType and toRatingsType.
The developer can implement them to transform data as needed, and perform different transformations for
different circumstances.

This is an example of a RatingsDataTransformer that resets the score from the ratings type when passing
from LIKE to STARS. In this particular case, changes are not reversible.

@Component

public class DummieRatingsDataTransformer implements RatingsDataTransformer {

@Override

public ActionableDynamicQuery.PerformActionMethod transformRatingsData(

final RatingsType fromRatingsType, final RatingsType toRatingsType)

throws PortalException {

1212

return new ActionableDynamicQuery.PerformActionMethod() {

@Override

public void performAction(Object object)

throws PortalException {

if (fromRatingsType.getValue().equals(RatingsType.LIKE) &&

toRatingsType.getValue().equals(RatingsType.STARS)) {

RatingsEntry ratingsEntry = (RatingsEntry) object;

ratingsEntry.setScore(0);

RatingsEntryLocalServiceUtil.updateRatingsEntry(

ratingsEntry);

}

}

};

}

}

Once you’ve implemented ratings type selection and value type transformation for your app’s entities, you
can configure the default ratings type values through the Control Panel by going to Configuration → Instance
Settings and selecting the Social tab. To override the default values for a site, go to Site Administration →
Configuration → Site Settings and select the Social tab.

In this tutorial, you have learned how to set a ratings type for an entity and how to implement a ratings
data transformer. Liferay salutes you with aThumbs Up!

Related Topics

Rating Assets
Adding Comments to Your App

90.5 Flagging Inappropriate Asset Content

In a perfect world, people would post nice, kind, and decent content. They would reply to comments with
constructive feedback and never lash out at one another. Unfortunately, sometimes people have a bad day
and decide to take their frustration out on Joe Bloggs in the form of an inappropriate post. No worries
though, Liferay DXP’s asset framework supports a system for flagging content in apps. Letting users flag
inappropriate content takes much of the work off site administrators.

This tutorial shows you how to enable flagging of content in a portlet.
Follow these steps:

1. Make sure your entity is asset enabled.

2. Choose a read-only view of the entity for the flags. You can display them in one of your portlet’s views,
or if you’ve implemented asset rendering, you can display them in the full content view in the Asset
Publisher portlet.

3. In the JSP, include the liferay-flags taglib declaration:

<%@ taglib prefix="liferay-flags" uri="http://liferay.com/tld/flags" %>

1213

Figure 90.8: Flags for letting users mark objectionable content are enabled in the Message Boards portlet.

4. Use the -LocalServiceUtil class to get the entity:

<%

long entryId = ParamUtil.getLong(renderRequest, "entryId");

entry = EntryLocalServiceUtil.getEntry(entryId);

%>

5. Use the liferay-flags:flags tag to add the flags component:

<liferay-flags:flags

className="<%= Entry.class.getName() %>"

classPK="<%= entry.getEntryId() %>"

contentTitle="<%= title %>"

message="flag-this-content"

reportedUserId="<%= reportedUserId %>"

/>

The reportedUserId attribute specifies the user who flagged the asset.

Great! Now you know how to let users flag content in your asset-enabled portlets.

Related Topics

Adding Comments to Your App
Applying Social Bookmarks

1214

@app-ref@/collaboration/latest/taglibdocs/liferay-flags/flags.html

Chapter 91

Item Selector

People’s tasks often involve making choices: which shirt to wear, what to eat for breakfast, or what profile
picture to use. The power of choice is a terrific privilege, but the means by which a personmakes his/her
selection canmake an experience good or bad. Here are some factors that influence the experience:

• Item organization
• Consistency
• UI intuitiveness

Liferay DXP’s Item Selector provides all these things. It is a UI component that enables users to select
entities in a consistent easy-to-use manner. Many Liferay portlets, such as Documents andMedia,Web Con-
tent, Blogs andmore, use Item Selectors for selecting things such as images, videos, audio files, documents,
and pages.

The Item Selector API provides a framework for developers to use and extend Item Selectors. They can
add Item Selectors to their apps, customize Liferay DXP’s Item Selectors, and create Item Selectors to select
any kind of entity.

Selection views are the framework’s key components. In an Item Selector, selection views show entities of
particular types from different sources.

For example, an Item Selector configured to show images might show selection views from the following
sources:

• Documents andMedia
• Third-party image provider
• Drag-and-drop interface

Here are some different Item Selector use cases:

1. Enabling your application to select Liferay DXP entities such as sites, pages, or documents from
Documents andMedia.

2. Customizing a selection experience by adding a new selection view for an entity (e.g., a view of images
from an external image repository).

3. Creating new selectable entities for other applications to use in their Item Selectors.

This group of tutorials demonstrates how to satisfy these use cases.

1215

Figure 91.1: Item Selectors let users browse and select different kinds of entities.

91.1 Selecting Entities Using the Item Selector
The Item Selector allows users to select entities, such as images, videos, documents, and sites.

Figure 91.2: The Item Selector makes selecting entities a breeze.

Here’s what’s required to use an Item Selector:

1. Determine ItemCriteria

1216

2. Get an ItemSelector for the Criteria

3. Use an ItemSelector Dialog

Determining Item Selector Criteria

The first step is determining entity types to select from the Item Selector and the data you expect from them.
What kind of entity do you want to select? Do you want to select a user, an image, a video, or something else?

Once you know the entities you want, you need criterion classes to represent them in the Item Selector.
Criterion classes must implement the ItemSelectorCriterion interface. The Item Selector Criterion and
Return Types reference lists criterion classes Liferay’s apps and app suites provide.

If there’s no criterion class for your entity, you can create your own ItemSelectorCriterion class (tutorial
coming soon).

Then determine the type of information (return type) you expect from the entities when users select
them. Do you expect a URL? A Universally Unique Identifier (UUID)? A primary key? Each return type must
be represented by an implementation of the ItemSelectorReturnType class. The Item Selector Criterion and
Return Types reference also lists return type classes Liferay’s apps and app suites provide.

If there’s no return type class thatmeets yourneeds, you can implement your own ItemSelectorReturnType
class (tutorial coming soon).

Note: Each criterion must have at least one ItemSelectorReturnType (return type) associated with it.

For example, if you want to allow users to select an image and want the image’s URL returned, you could
use the ImageItemSelectorCriterion criterion class and the URLItemSelectorReturnType return type.

The criterion and return types are collectively referred to as the Item Selector’s criteria. The Item Selector
uses it to decide which selection views (tabs of items) to show.

Once you’ve defined your criteria, you can get an Item Selector to use with it.

Getting an Item Selector for the Criteria

In order to use an Item Selector with your criteria, you must get an Item Selector URL based on the criteria.
The URL is needed to open the Item Selector dialog in your UI. In Java, you build the criteria and pass it in a
call to get the Item Selector’s URL.

First, get an Item Selector OSGi Service Component using Declarative Services.

import com.liferay.item.selector.ItemSelector;

import org.osgi.service.component.annotations.Reference;

@Reference

private ItemSelector _itemSelector

The component annotations are available in the org.osgi.service.component.annotationsmodule.
To get a URL to the Item Selector, you must call its getItemSelectorURL method using the following

parameters:

• RequestBackedPortletURLFactory: Factory that creates portlet URLs.
• ItemSelectedEventName: Unique arbitrary JavaScript event name that is triggered by the Item Selector
when the element is selected.

• ItemSelectorCriterion: Criterion (or an array of criterion objects) that specifies the type of elements
to make available in the Item Selector.

1217

@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html
http://mvnrepository.com/artifact/org.osgi/org.osgi.service.component.annotations
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelector.html#getItemSelectorURL-com.liferay.portal.kernel.portlet.RequestBackedPortletURLFactory-java.lang.String-com.liferay.item.selector.ItemSelectorCriterion...-

The following code demonstrates getting a URL to an Item Selector configured with criteria for images:

RequestBackedPortletURLFactory requestBackedPortletURLFactory =

RequestBackedPortletURLFactoryUtil.create(request);

List<ItemSelectorReturnType> desiredItemSelectorReturnTypes =

new ArrayList<>();

desiredItemSelectorReturnTypes.add(new URLItemSelectorReturnType());

ImageItemSelectorCriterion imageItemSelectorCriterion =

new ImageItemSelectorCriterion();

imageItemSelectorCriterion.setDesiredItemSelectorReturnTypes(

desiredItemSelectorReturnTypes);

PortletURL itemSelectorURL = _itemSelector.getItemSelectorURL(

requestBackedPortletURLFactory, "sampleTestSelectItem",

imageItemSelectorCriterion);

First it gets a factory to create the URL by invoking the RequestBackedPortletURLFactoryUtil.create

method, passing it the current request object. The request can be an HttpServletRequest or PortletRequest.
Then it creates a list of return types expected for the image entity and a criterion for images. The

return types list consists of a URL return type URLItemSelectorReturnType. The list is passed to the criterion’s
setDesiredItemSelectorReturnTypesmethod.

Lastly themethod getItemSelectorURL is called to return aURLbased on the criteria. Themethod requires
a URL factory, an arbitrary event name, and a series of criterion (one, in this case).

Note: You can invoke the URL object’s toStringmethod to get its value.

An Item Selector can be configured to use any number of criterion. The criterion can use any number of
return types.

The Item Selector’s criterion order determines the selection view order. For example, if you pass the item
selector criteria in this order: ImageItemSelectorCriterion, VideoItemSelectorCriterion, the Item Selector
displays the image selection views first and then the ones for videos. If you reverse the order, it shows the
video selection views first and the image selection views second.

Return type order is also significant. A view uses the first return type it supports from each criterion’s
return type list.

Now that you’ve got a URL to the Item Selector you’ve configured, you can start using the Item Selector
in your UI.

Using the Item Selector Dialog

To open the Item Selector in your UI, you must use the LiferayItemSelectorDialog JavaScript component
from AlloyUI’s liferay-item-selector-dialogmodule. The component listens for the item selected event
that you specified for the Item Selector URL.The event returns the selected element’s information according
to its return type.

Here are the steps for using the Item Selector dialog in a JSP:

1. Declare the AUI tag library.

<%@ taglib prefix="aui" uri="http://liferay.com/tld/aui" %>

2. Add the <aui:script> tag and configure it to use the liferay-item-selector-dialogmodule:

1218

http://alloyui.com/

<aui:script use="liferay-item-selector-dialog">

</aui:script>

3. Attach an event handler to the UI element you want to use to open the Item Selector dialog.

For example, the configuration below creates a Choose button with the ID chooseImage with a click
event and function attached.

<aui:button name="chooseImage" value="Choose" />

<aui:script use="liferay-item-selector-dialog">

$('#<portlet:namespace />chooseImage').on(

'click',

function(event) {

<!-- function logic goes here -->

}

);

</aui:script>

4. Inside the function, youmust create a new instance of the LiferayItemSelectorDialog AlloyUI Compo-
nent and configure it to use the Item Selector. Here’s what you need to do in the function:

• Set the function’s eventName attribute to the item selected event name you specified in your Java
code (the code that gets the Item Selector URL).

• For the on attribute, implement a function that operates on the selected item change. The
example code below demonstrates this.

• Set the function’s title attribute. This becomes the dialog’s title.
• Set the function’s url attribute to the Item Selector URL you obtained earlier.
• Call the dialog’s openmethod.

The example code below and steps that follow show how to configure an Item Selector dialog to work
with selected items.

<aui:button name="chooseImage" value="Choose" />

<%

String itemSelectorURL = GetterUtil.getString(request.getAttribute("itemSelectorURL"));

%>

<aui:script use="liferay-item-selector-dialog">

$('#<portlet:namespace />chooseImage').on(

'click',

function(event) {

var itemSelectorDialog = new A.LiferayItemSelectorDialog(

{

eventName: 'ItemSelectedEventName',

on: {

selectedItemChange: function(event) {

var selectedItem = event.newVal;

if (selectedItem) {

var itemValue = JSON.parse(

selectedItem.value

);

itemSrc = itemValue.url;

1219

<!-- use item as needed -->

}

}

},

title: '<liferay-ui:message key="select-image" />',

url: '<%= itemSelectorURL.toString() %>'

}

);

itemSelectorDialog.open();

}

);

</aui:script>

Here’s what the code does:

1. This line creates a new instance of the Liferay Item Selector dialog:

var itemSelectorDialog = new A.LiferayItemSelectorDialog(...)

2. The constructor sets the eventName attribute. This makes the dialog listen for the item selected event.
The event name is the same as the one specified for the Item Selector URL generated earlier in the Java
code.

3. When the user selects a new item, the selectedItemChange function fires, setting its variables for the
newly selected item. The information available to parse depends on the return type(s) that were set.

4. As the comment indicates, the developer adds logic for using the selected element here.

5. The LiferayItemSelectorDialog’s title attribute sets the dialog’s title.

6. The Item Selector URL retrieved previously in the Java code becomes the url attribute’s value.

7. The openmethod opens the Item Selector dialog.

When the user clicks the Choose button, a new dialog opens, rendering the Item Selector with the views
that support the criterion and return type(s) that were set.

Adding an Item Selector to your app is as easy as what’s been demonstrated! It involves specifying
criteria for the selectable items, applying them to an Item Selector, and configuring an Item Selector dialog
to operate on the selected item. Using Item Selector API, you can give app users the power of choice!

Related Articles

Creating Custom Item Selector Views
Creating Custom Item Selector Entities
Front-End Taglibs

91.2 Creating Custom Item Selector Entities

Does your app require users to select an item that the Item Selector isn’t configured for? No problem. You
can create a new entity.

This tutorial explains how to create a new entity for the Item Selector.

1220

Creating Item Selector Criterion

First, you must create a new criterion for your entity. Follow these steps to create an Item Selector criterion:

1. Create a class that extends the BaseItemSelectorCriterion class.

The example below creates a class called TaskItemSelectorCriterion:

public class TasksItemSelectorCriterion extends

BaseItemSelectorCriterion {

}

This class specifies what kind of entity the user is selecting and what information the Item Selector
should return. Themethods inherited from the BaseItemSelectorCriterion class provide the logic for
obtaining this information:

public abstract class BaseItemSelectorCriterion

implements ItemSelectorCriterion {

@Override

public List<ItemSelectorReturnType> getDesiredItemSelectorReturnTypes() {

return _desiredItemSelectorReturnTypes;

}

@Override

public void setDesiredItemSelectorReturnTypes(

List<ItemSelectorReturnType> desiredItemSelectorReturnTypes) {

_desiredItemSelectorReturnTypes = desiredItemSelectorReturnTypes;

}

private List<ItemSelectorReturnType> _desiredItemSelectorReturnTypes;

}

Note that you can use this class to pass information to the view if needed. For example, the
JournalItemSelectorCriterion class passes information about the primary key so the view can use it:

public class JournalItemSelectorCriterion extends

BaseItemSelectorCriterion {

public JournalItemSelectorCriterion() {

}

public JournalItemSelectorCriterion(long resourcePrimKey) {

_resourcePrimKey = resourcePrimKey;

}

public long getResourcePrimKey() {

return _resourcePrimKey;

}

public void setResourcePrimKey(long resourcePrimKey) {

_resourcePrimKey = resourcePrimKey;

}

private long _resourcePrimKey;

}

1221

@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/BaseItemSelectorCriterion.html
@app-ref@/web-experience/latest/javadocs/com/liferay/journal/item/selector/criterion/JournalItemSelectorCriterion.html

Note: Criterion fields should be serializable and should expose a

public empty constructor (as shown above).

2. Create an OSGi component class that implements the BaseItemSelectorCriterionHandler class. Each
criterion requires a criterion handler, which is responsible for obtaining the proper selection view.

The example below creates a criterion handler for the TaskItemSelectorCriterion class:

@Component(service = ItemSelectorCriterionHandler.class)

public class TaskItemSelectorCriterionHandler extends

BaseItemSelectorCriterionHandler<TaskItemSelectorCriterion> {

public Class <TaskItemSelectorCriterion>

getItemSelectorCriterionClass() {

return TasksItemSelectorCriterionHandler.class;

}

@Activate

@Override

protected void activate(BundleContext bundleContext) {

super.activate(bundleContext);

}

}

The @Activate and @Override tokens are required to activate this OSGi component.

Depending on the needs of your app, you may not need to create a return type. If your entity returns
information that is already defined by an existing return type, you can use that return type instead.

You can view the default available criteria in the Item Selector Criterion and Return Types reference.
If, however, your entity returns information that is not covered by an existing return type, you’ll need to

create a new return type next.

Creating Item Selector Return Types

To create a return type, youmust create a class that implements the ItemSelectorReturnType class.
The example below creates a new return type called TaskItemSelectorReturnType:

/**

* This return type should return the task ID and the user who

* created the task as a string.

*

* @author Joe Bloggs

⁎/

public class TaskItemSelectorReturnType implements ItemSelectorReturnType{

}

The *ItemSelectorReturnType class is used as an identifier by the Item Selector and does not return any
information itself. You should determine the information you expect returned (an ID, a URL, amore complex
object, etc.), and create a return type to handle that information. The return type class is an API that connects
the return type to the Item Selector views.Whenever the return type is used, the viewmust ensure that the
proper information is returned. It’s recommended that you specify the information that the return type
returns, as well as the format, as Javadoc (as shown in the TaskItemSelectorReturnType example above).

1222

@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/BaseItemSelectorCriterionHandler.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html

So far, you’ve created an API that you can use to create a selection view for your new entity. The entity’s
criterion and return type classes are used by your application to create the Item Selector URL. You can follow
the Selecting Entities using the Item Selector tutorial to learn how to obtain the Item Selector URL.

Theselection view is responsible for returning the proper entity information specified by the return
type. Currently there isn’t a selection view to select your entity. Follow the Creating Custom Item Selector
Views tutorial to learn how to create your new view.

Now you know how to create an entity for the Item Selector!

Related Topics

Selecting Entities using the Item Selector
Creating Custom Item Selector Views

91.3 Creating Custom Item Selector Views
Have you found you need to create a new selection view for your app? No problem. Item Selector views are
determined by the type of entity the user is selecting. The Item Selector can render multiple views for the
same entity type. For example, when a user requires an image from the Item Selector, the selection views
shown below are rendered:

Figure 91.3: An entity type can have multiple selection views.

Each tab: Blog Images, Documents and Media, URL, and Upload Image, is a selection view for the Item
Selector, each one represented by an *ItemSelectorCriterion class. The tabs in figure 1 are represented by
the following *ItemSelectorCriterion:

• BlogsItemSelectorCriterion class: Blog Images View
• ImageItemSelectorCriterion class: Documents andMedia View

1223

@app-ref@/collaboration/latest/javadocs/com/liferay/blogs/item/selector/criterion/BlogsItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/image/criterion/ImageItemSelectorCriterion.html

• URLItemSelectorCriterion class: URL View
• UploadItemSelectorCriterion class: Upload Image View

The default selection views may provide everything you need for your application. If, however, your
application requires a custom selection view, for instance to link to an external image provider, you can
follow the steps outlined in this tutorial.

This tutorial covers how to create new selection views for the Item Selector.
Get started by configuring the module for your view next.

Configuring the Module

Follow these steps to prepare your module:

1. Add these dependencies to your module’s build.gradle:

dependencies {

compileOnly group: "com.liferay", name: "com.liferay.item.selector.api", version: "2.0.0"

compileOnly group: "com.liferay", name: "com.liferay.item.selector.criteria.api", version: "2.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.impl", version: "2.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

2. Add your module’s information to the bnd.bnd file. For example, the configuration below adds the
information for a module called My Custom View.

Bundle-Name: My Custom View

Bundle-SymbolicName: com.liferay.docs.my.custom.view

Bundle-Version: 1.0.0

3. Add a Web-ContextPath to your bnd.bnd to point to the resources for your module. For example:

Include-Resource:\

META-INF/resources=src/main/resources/META-INF/resources

Web-ContextPath: /my-custom-view

If you don’t have a Web-ContextPath your module won’t knowwhere your resources are. The Include-
Resource header points to the relative path for the module’s resources.

Now that your module is configured, you can create the view next.

Implementing the View

To create a new view youmust first know what kind of entities you want to select in the new view: images,
videos, users, etc. The kind of entities you choose determines the specific ItemSelectorCriterion you need
to use. For example if you were selecting images, youmust use the ImageItemSelectorCriterion.

Next, you need to know the type of information the entity can return when it’s selected. For example, if
the entity returns its URL, you would use URLItemSelectorReturnType for the return type.

For a full list of the available criterion and returns types that Liferay’s apps and app suite’s provide see
the Item Selector Criterion and Return Types reference.

Once you’ve determined the kinds of entities youwish to select, follow these steps to create your selection
view:

1224

@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/url/criterion/URLItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/upload/criterion/UploadItemSelectorCriterion.html

1. Create an Item Selector View Component class:

@Component(

property = {"item.selector.view.order:Integer=200"},

service = ItemSelectorView.class

)

Note that the OSGi component is registered with the property item.selector.view.order. The Item
Selector view order (the order of the rendered tab views) is prioritized according to these settings:

• The criteria order specified in the getItemSelectorURLmethod of the application.

• The item.selector.view.order property’s value for multiple views with the same criteria. The
lower the value is, the more priority it has, and the sooner it will appear in the order.

2. Implement the ItemSelectorView interface using the criterion the view requires. For example, the
configuration below uses the ImageItemSelectorCriterion class to implement the view:

public class SampleItemSelectorView

implements ItemSelectorView<ImageItemSelectorCriterion> {

@Override

public Class<ImageItemSelectorCriterion> getItemSelectorCriterionClass()

{

return ImageItemSelectorCriterion.class;

}

@Override

public ServletContext getServletContext() {

return _servletContext;

}

@Override

public List<ItemSelectorReturnType> getSupportedItemSelectorReturnTypes() {

return _supportedItemSelectorReturnTypes;

}

}

The implementation above also sets up some methods you’ll use in the steps that follow. The
getSupportedItemSelectorReturnTypesmethod returns a list of ItemSelectorReturnTypes. You’ll populate
this list in a later step to specify the return types the selection view supports.

Note: If you want your new selection view to be available only when

selecting the entity for something specific such as a blog entry, replace

the `*ItemSelectorCriterion` in your `*ItemSelectorView` class with the

`*ItemSelectorCriterion` class you wish to use, such as the

[`BlogsItemSelectorCriterion` class](@app-ref@/collaboration/latest/javadocs/com/liferay/blogs/item/selector/criterion/BlogsItemSelectorCriterion.html).

3. Configure the title, search options, and visibility settings for the selection view:

An example configuration is shown below for a selection view called Sample Selector:

1225

@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelector.html#getItemSelectorURL-com.liferay.portal.kernel.portlet.RequestBackedPortletURLFactory-java.lang.String-com.liferay.item.selector.ItemSelectorCriterion...-
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/image/criterion/ImageItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html#getSupportedItemSelectorReturnTypes--

@Override

public String getTitle(Locale locale) {

return "Sample Selector";

}

@Override

public boolean isShowSearch() {

return false;

}

@Override

public boolean isVisible(ThemeDisplay themeDisplay) {

return true;

}

The followingmethods are demonstrated above:

• getTitlemethod: returns the localized title of the tab to display in the Item Selector dialog.

• isShowSearch()method: returns whether the Item Selector view should show the search field.

Note: To implement search, return `true` for this method. The

`renderHTML` method, covered in the next section, indicates whether a user

performed a search based on the value of the `search` parameter. Then the

keywords the user searched can be obtained as follows:

String keywords = ParamUtil.getString(request, "keywords");

- [`isVisible()` method](@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html#isVisible-com.liferay.portal.kernel.theme.ThemeDisplay-

):

returns whether the Item Selector view is visible. In most cases, you'll

want to set this to `true`. You can use this method to add conditional logic

to disable the view.

4. Next, set the render settings for your view, using the renderHTMLmethod. The example below points to
a JSP file to render the view:

@Override

public void renderHTML(

ServletRequest request, ServletResponse response,

ImageItemSelectorCriterion itemSelectorCriterion,

PortletURL portletURL, String itemSelectedEventName,

boolean search

)

throws IOException, ServletException {

request.setAttribute(_ITEM_SELECTED_EVENT_NAME,

itemSelectedEventName);

ServletContext servletContext = getServletContext();

RequestDispatcher requestDispatcher =

servletContext.getRequestDispatcher("/sample.jsp");

requestDispatcher.include(request, response);

}

1226

@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html#getTitle-java.util.Locale-
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html#isShowSearch--
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorView.html#renderHTML-javax.servlet.ServletRequest-javax.servlet.ServletResponse-T-javax.portlet.PortletURL-java.lang.String-boolean-

The renderHTML methods passes the *ItemSelectorCriterion required to display the selection view.
Next, the portletURL, used to invoke the Item Selector, is passed. Then the itemSelectedEventName is
passed. This is the event name that the caller listens for. When an element is selected, the view fires a
JavaScript event with this name. Finally, a search boolean is passed, specifying when the view should
render search results. When the user performs a search, this boolean should be set to true.

Note that the itemSelectedEventName is passed as a request attribute, so it can be used in the view
markup.

The viewmarkup is specified this way:

RequestDispatcher requestDispatcher =

servletContext.getRequestDispatcher("/sample.jsp");

Although the example uses JSPs, you can use another language such as FreeMarker to render the
markup.

5. Use the @Reference annotation to reference your module’s class for the setServletContextmethod.

Below is an example configuration:

@Reference(

target =

"(osgi.web.symbolicname=com.liferay.item.selector.sample.web)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) { _servletContext = servletContext; }

The targetparameter is used to specify the available services for the servlet context. In this case, it spec-
ifies the com.liferay.selector.sample.web class as the default value, using the osgi.web.symbolicname
property. Finally, the unbind = _ parameter specifies that there is no unbindmethod for this module.
A method is defined to set the servlet context as well.

6. Finally, populate the _supportedItemSelectorReturnTypes list specified in step 2 with the return types
that this view supports.

The example below adds the URLItemSelectorReturnType class and FileEntryItemSelectorReturnType

class to the list of supported return types, but you could use more return types if the view could return
them. More return types means that the view is more reusable:

private static final List<ItemSelectorReturnType>

_supportedItemSelectorReturnTypes =

Collections.unmodifiableList(

ListUtil.fromArray(

new ItemSelectorReturnType[] {

new FileEntryItemSelectorReturnType(),

new URLItemSelectorReturnType()

}));

private ServletContext _servletContext;

The servlet context variable is declared at the bottom of the file.

As a complete example, below is the full code for the FlickrItemSelectorView class:

1227

@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/URLItemSelectorReturnType.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/FileEntryItemSelectorReturnType.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/FileEntryItemSelectorReturnType.html
https://github.com/liferay/liferay-portal/blob/586f66c629b559e79c744559751ecb960218fe0b/modules/apps/collaboration/item-selector/item-selector-web/src/test/java/com/liferay/item/selector/web/internal/FlickrItemSelectorView.java

public class FlickrItemSelectorView

implements ItemSelectorView<FlickrItemSelectorCriterion> {

@Override

public Class<FlickrItemSelectorCriterion> getItemSelectorCriterionClass() {

return FlickrItemSelectorCriterion.class;

}

@Override

public List<ItemSelectorReturnType> getSupportedItemSelectorReturnTypes() {

return _supportedItemSelectorReturnTypes;

}

@Override

public String getTitle(Locale locale) {

return FlickrItemSelectorView.class.getName();

}

@Override

public boolean isShowSearch() {

return false;

}

@Override

public boolean isVisible(ThemeDisplay themeDisplay) {

return true;

}

@Override

public void renderHTML(

ServletRequest request, ServletResponse response,

FlickrItemSelectorCriterion flickrItemSelectorCriterion,

PortletURL portletURL, String itemSelectedEventName,

boolean search)

throws IOException {

PrintWriter printWriter = response.getWriter();

printWriter.print(

"<html>" + FlickrItemSelectorView.class.getName() +

"</html>");

}

private static final List<ItemSelectorReturnType>

_supportedItemSelectorReturnTypes =

Collections.unmodifiableList(

ListUtil.fromArray(

new ItemSelectorReturnType[] {

new TestURLItemSelectorReturnType()

}));

}

The diagram below illustrates how the Item Selector’s API works (right-click to view larger image):
Once you’ve implemented your Item Selector view, youmust create the viewmarkup.

Writing your View Markup

You’ve implemented your view, specifying the criteria and return types, along with important configuration
information, such as how to render the view. All that’s left is to write the markup for your selection view.

Naturally, the markup for your selection view will vary greatly depending on the requirements of your
app. You can use taglibs, AUI components, or even pure HTML and JavaScript if you prefer, to write your
view. Regardless of the approach you choose to create your view, the viewmust do two key things:

1228

Figure 91.4: Item Selector views are determined by the desired return types of the criterion, the supported return types of the view, and the criterion supported by the
view.

• Render the entities for the user to select
• Contain JavaScript logic that passes the information specified by the Item Selector return type via a
JavaScript event when an entity is selected.

If you’re following the example in the last section, the JavaScript event name has been passed as a request
attribute in the renderHTMLmethod of the *ItemSelectorView class, so it can be used in the viewmarkup as
follows:

Liferay.fire(

`<%= {ITEM_SELECTED_EVENT_NAME} %>',

{

data:{

the-data-your-client-needs-according-to-the-return-type

}

}

);

Below is the complete Layouts.jsp viewmarkup for the com.liferay.layout.item.selector.webmodule:
Some Java imports are defined first:

1229

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/web-experience/layout/layout-item-selector-web/src/main/resources/META-INF/resources/layouts.jsp
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/web-experience/layout/layout-item-selector-web

<%

LayoutItemSelectorViewDisplayContext layoutItemSelectorViewDisplayContext =

(LayoutItemSelectorViewDisplayContext)request.getAttribute(

BaseLayoutsItemSelectorView.LAYOUT_ITEM_SELECTOR_VIEW_DISPLAY_CONTEXT);

LayoutItemSelectorCriterion layoutItemSelectorCriterion =

layoutItemSelectorViewDisplayContext.getLayoutItemSelectorCriterion();

Portlet portlet = PortletLocalServiceUtil.getPortletById(

company.getCompanyId(), portletDisplay.getId());

%>

Note that the LayoutItemSelectorViewDisplayContext is an optional class that contains additional infor-
mation about the criteria and view, but it isn’t required.

The snippet below imports a CSS file for styling and places it in the <head> of the page:

<liferay-util:html-top>

<link href="<%= PortalUtil.getStaticResourceURL(

request, application.getContextPath() + "/css/main.css",

portlet.getTimestamp())

%>" rel="stylesheet" type="text/css" />

</liferay-util:html-top>

You can learn more about using the liferay-util taglibs in the Using the Liferay Util Taglib tutorial.
This snippet creates the UI to display the layout entities. It uses the liferay-layout:layouts-tree taglib

along with the Lexicon design language to create cards:

<div class="container-fluid-1280 layouts-selector">

<div class="card-horizontal main-content-card">

<div class="card-row card-row-padded">

<liferay-layout:layouts-tree

checkContentDisplayPage="<%= layoutItemSelectorCriterion.isCheckDisplayPage() %>"

draggableTree="<%= false %>"

expandFirstNode="<%= true %>"

groupId="<%= scopeGroupId %>"

portletURL="<%= layoutItemSelectorViewDisplayContext.getEditLayoutURL() %>"

privateLayout="<%= layoutItemSelectorViewDisplayContext.isPrivateLayout() %>"

rootNodeName="<%= layoutItemSelectorViewDisplayContext.getRootNodeName() %>"

saveState="<%= false %>"

selectedLayoutIds="<%= layoutItemSelectorViewDisplayContext.getSelectedLayoutIds() %>"

selPlid="<%= layoutItemSelectorViewDisplayContext.getSelPlid() %>"

treeId="treeContainer"

/>

</div>

</div>

</div>

The configuration above renders the UI shown in the figure below:
This portion of the aui:script returns the path for the page:

<aui:script use="aui-base">

var LString = A.Lang.String;

var getChosenPagePath = function(node) {

var buffer = [];

if (A.instanceOf(node, A.TreeNode)) {

var labelText = LString.escapeHTML(node.get('labelEl').text());

buffer.push(labelText);

node.eachParent(

function(treeNode) {

1230

@platform-ref@/7.0-latest/taglibs/modules/apps/web-experience/layout/com.liferay.layout.taglib/liferay-layout/layouts-tree.html
https://liferay.github.io/clay/
https://liferay.github.io/clay/content/cards/

Figure 91.5: The Layouts Item Selector view uses Lexicon and Liferay Layout taglibs to create the UI.

var labelEl = treeNode.get('labelEl');

if (labelEl) {

labelText = LString.escapeHTML(labelEl.text());

buffer.unshift(labelText);

}

}

);

}

return buffer.join(' > ');

};

The snippet below passes the return type data when the layout(entity) is selected. In particular, take note
of the url and uuid variables, which retrieve the URL or UUID for the layout:

var setSelectedPage = function(event) {

var disabled = true;

var messageText = '<%= UnicodeLanguageUtil.get(request, "there-is-no-selected-page") %>';

var lastSelectedNode = event.newVal;

var labelEl = lastSelectedNode.get('labelEl');

var link = labelEl.one('a');

var url = link.attr('data-url');

var uuid = link.attr('data-uuid');

var data = {};

if (link && url) {

disabled = false;

data.layoutpath = getChosenPagePath(lastSelectedNode);

This checks if the return type information is a URL or a UUID; then it sets the value for the JSON object’s
data attribute accordingly:

<c:choose>

<c:when test="<%= Objects.equals(layoutItemSelectorViewDisplayContext.getItemSelectorReturnTypeName(), URLItemSelectorReturnType.class.getName()) %>">

data.value = url;

1231

</c:when>

<c:when test="<%= Objects.equals(layoutItemSelectorViewDisplayContext.getItemSelectorReturnTypeName(), UUIDItemSelectorReturnType.class.getName()) %>">

data.value = uuid;

</c:when>

</c:choose>

}

<c:if test="<%= Validator.isNotNull(layoutItemSelectorViewDisplayContext.getCkEditorFuncNum()) %>">

data.ckeditorfuncnum: <%= layoutItemSelectorViewDisplayContext.getCkEditorFuncNum() %>;

</c:if>

The data-url and data-uuid attributes are in the HTMLmarkup for the Layouts Item Selector. TheHTML
markup for an instance of the Layouts Item Selector is shown below:

Figure 91.6: The URL and UUID can be seen in the data-url and data-uuid attributes of the Layout Item Selector’s HTML markup.

The last line adds the CKEditorFuncNum for the editor to the JSON object’s data attribute.
The JavaScript trigger event, specified in the Item Selector return type, is fired, passing the data JSON

object with the required return type information:

Liferay.Util.getOpener().Liferay.fire(

'<%= layoutItemSelectorViewDisplayContext.getItemSelectedEventName() %>',

{

data: data

}

);

};

Finally, the layout is set to the selected page:

var container = A.one('#<portlet:namespace />treeContainerOutput');

if (container) {

container.swallowEvent('click', true);

var tree = container.getData('tree-view');

tree.after('lastSelectedChange', setSelectedPage);

}

</aui:script>

Your new selection view is automatically rendered by the Item Selector in every portlet that uses the
criterion and return types you defined, without modifying anything in those portlets.

Now you know how to create custom views for the Item Selector!

1232

Related Topics

Selecting Entities Using the Item Selector
Creating Custom Item Selector Entities

1233

Chapter 92

Adaptive Media

The Adaptive Media app on Liferay Marketplace lets administrators tailor the quality of images in Liferay
DXP to the device viewing those images. For information on using this app, see the Adaptive Media user
guide.

But what if you want to leverage Adaptive Media in your own app? Then you’re in the right place! The
tutorials in this section explain how to use adapted images in your app. You’ll also learn how to change
Adaptive Media’s image processing.

Onwards!

92.1 Displaying Adapted Images in Your App

To display adapted images in your apps, Adaptive Media offers a convenient taglib in the module
com.liferay.adaptive.media.image.taglib. This taglib only has one mandatory attribute: fileVersion. This
attribute indicates the file version of the adapted image that you want to display. You can also add as many
attributes as needed, such as class, style, data-sample, and so on. Any attributes you add are then added to
the adapted images in the markup the taglib renders.

This tutorial uses the Adaptive Media Samples app to show you how to use this taglib. When added to a
page, this app displays all the adapted images from the current site’s Documents andMedia app, provided
that Adaptive Media image resolutions and Documents andMedia images exist.

Follow these steps to use the taglib:

1. Include the module taglib dependency in your project. If you’re using Gradle, for example, youmust
add the following line in your project’s build.gradle file:

provided group: "com.liferay", name: "com.liferay.adaptive.media.image.taglib", version: "1.0.0"

For example, the Adaptive Media Samples app’s build.gradle file contains this taglib.

2. Declare the taglib in your JSP:

<%@ taglib uri="http://liferay.com/tld/adaptive-media-image" prefix="liferay-adaptive-media" %>

For example, the Adaptive Media Samples app’s init.jsp declares all the taglibs the app needs.

1235

https://web.liferay.com/marketplace
https://github.com/liferay/com-liferay-adaptive-media/tree/master/adaptive-media-image-taglib
https://github.com/liferay/com-liferay-adaptive-media/tree/master/adaptive-media-image-taglib
https://github.com/sergiogonzalez/adaptive-media-samples
https://github.com/sergiogonzalez/adaptive-media-samples/blob/master/adaptive-media-sample-web/build.gradle
https://github.com/sergiogonzalez/adaptive-media-samples/blob/master/adaptive-media-sample-web/src/main/resources/META-INF/resources/init.jsp

3. Use the taglib wherever you want the adapted image to appear in your app’s JSP files:

<liferay-adaptive-media:img class="img-fluid" fileVersion="<%= fileEntry.getFileVersion() %>" />

For example, the Adaptive Media Samples app’s view.jsp uses the taglib to display the adapted images
in a grid with the col-md-6 column container class. Looking at the markup the app generates, you can
see that it uses the <picture> tag as described in the article Creating Content with Adapted Images.

Figure 92.1: The Adaptive Media Samples app shows all the site’s adapted images.

Well done! Now you know how to display adapted images in your app.

Related Topics

Finding Adapted Images
Changing Adaptive Media’s Image Processing
Adapting Your Media Across Multiple Devices

92.2 Finding Adapted Images
Inmost cases, you can rely on theAdaptiveMedia taglib todisplay adapted images in your app. This taglibuses
the file version you give it to query Adaptive Media’s finder API and display the adapted image appropriate

1236

https://github.com/sergiogonzalez/adaptive-media-samples/blob/master/adaptive-media-sample-web/src/main/resources/META-INF/resources/view.jsp

for the device making the request. If you needmore control, however, you can write your own query with
the API instead of using the taglib. For example, if you have an app that needs a specific image in a specific
dimension, it’s best to query Adaptive Media’s finder API directly. You can then display the image however
you like (e.g., with an HTML tag).

Adaptive Media’s finder API lets you write queries that get adapted images based on certain search
criteria and filters. For example, you can get adapted images that match a file version or resolution, or are
ordered by an attribute like imagewidth. You can even get adapted images thatmatch approximate attribute
values (fuzzy attributes).

This tutorial shows you how to call Adaptive Media’s API to get adapted images in your app. First, you’ll
learn how to construct such API calls.

Calling Adaptive Media's API

The entry point to Adaptive Media’s API is the AMImageFinder interface. To use it, you must first inject the
OSGi component in your class, which must also be an OSGi component, as follows:

@Reference

private AMImageFinder _amImageFinder;

Thismakes an AMImageFinder instance available. It has onemethod, getAdaptiveMediaStream, that returns
a streamof AdaptiveMedia objects. Thismethod takes a Function that creates an AMQuery (the query for adapted
images) via AMImageQueryBuilder, which can search adapted images based on different attributes (e.g., width,
height, order, etc.). The AMImageQueryBuilder methods you call depend on the exact query you want to
construct.

For example, here’s a general getAdaptiveMediaStream call:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.methodToCall(arg).done());

The argument to getAdaptiveMediaStream is a lambda expression that returns an AMQuery constructed via
AMImageQueryBuilder. Note that methodToCall(arg) is a placeholder for the AMImageQueryBuildermethod you
want to call and its argument. The exact call depends on the criteria you want to use to select adapted images.
The done() call that follows this, however, isn’t a placeholder–it creates and returns the AMQuery regardless of
which AMImageQueryBuildermethods you call.

For more information on creating AMQuery instances, see the Javadoc for AMImageQueryBuilder.
Next, you’ll see specific examples of constructing calls that get adapted images.

Getting Adapted Images for a Specific File Version

To get adapted images for a specific file version, you must call the AMImageQueryBuilder method
forFileVersionwith a FileVersion object as an argument:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(fileVersion).done());

To get the adapted images for the latest approved file version, use the forFileEntry method with a
FileEntry object:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileEntry(fileEntry).done());

1237

https://github.com/liferay/com-liferay-adaptive-media/blob/master/adaptive-media-image-api/src/main/java/com/liferay/adaptive/media/image/finder/AMImageFinder.java
https://github.com/liferay/com-liferay-adaptive-media/blob/master/adaptive-media-image-api/src/main/java/com/liferay/adaptive/media/image/finder/AMImageQueryBuilder.java
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/repository/model/FileVersion.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/repository/model/FileVersion.html

Note that these calls only return the adapted images for enabled image resolutions. Adapted im-
ages for disabled resolutions aren’t included in the stream. To retrieve all adapted images regardless of
any image resolution’s status, you must also call the withConfigurationStatusmethod with the constant
AMImageQueryBuilder.ConfigurationStatus.ANY:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(fileVersion)

.withConfigurationStatus(AMImageQueryBuilder.ConfigurationStatus.ANY).done());

To get adapted images for a specific file version when the image resolution is disabled,make the same
call but instead use the constant AMImageQueryBuilder.ConfigurationStatus.DISABLED:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(fileVersion)

.withConfigurationStatus(AMImageQueryBuilder.ConfigurationStatus.DISABLED).done());

Next, you’ll learn how to get adapted images for a specific image resolution.

Getting the Adapted Images for a Specific Image Resolution

By providing an image resolution’s UUID to AMImageFinder, you can get that resolution’s adapted images.
This UUID is defined when adding the resolution in the Adaptive Media app. To get a resolution’s adapted
images, youmust pass that resolution’s UUID to the forConfigurationmethod.

For example, this code gets the adapted images that match a file version, and belong to an image
resolution with the UUID hd-resolution. It returns the adapted images regardless of whether the resolution
is enabled or disabled:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinder.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(fileVersion)

.forConfiguration("hd-resolution").done());

Next, you’ll learn how to return adapted images in a specific order.

Getting Adapted Images in a Specific Order

It’s also possible to define the order in which getAdaptiveMediaStream returns adapted images. To do this,
call the orderBymethod with your sort criteria just before calling the done()method. The orderBymethod
takes two arguments: the first specifies the image attribute to sort by (e.g., width/height), while the second
specifies the sort order (e.g., ascending/descending).

For example, this code gets all the adapted images regardless of whether the image resolution is enabled,
and puts them in ascending order by the image width:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinderImpl.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(_fileVersion)

.withConfigurationStatus(AMImageQueryBuilder.ConfigurationStatus.ANY)

.orderBy(AMImageAttribute.AM_IMAGE_ATTRIBUTE_WIDTH, AMImageQueryBuilder.SortOrder.ASC)

.done());

The orderByarguments AMImageAttribute.AM_IMAGE_ATTRIBUTE_WIDTHand AMImageQueryBuilder.SortOrder.ASC
specify the imagewidthandascending sort, respectively. Youcanalternativelyuse AMImageAttribute.AM_IMAGE_ATTRIBUTE_HEIGHT
to sort by image height, and AMImageQueryBuilder.SortOrder.DESC to perform a descending sort.

Next, you’ll learn how to specify approximate attribute values when getting adapted images.

1238

Getting Adapted Images with Fuzzy Attributes

Adaptive Media also lets you get adapted images that match fuzzy attributes (approximate attribute values).
For example, fuzzy attributes let you ask for adapted images whose height is around 200px, or whose size
is around 100kb. The API returns a stream with elements ordered by how close they are to the specified
attribute. For example, imagine that there are four image resolutions that have adapted images with the
heights 150px, 350px, 600px, and 900px. Searching for adapted images whose height is approximately 400px
returns this order in the stream: 350px, 600px, 150px, 900px.

So how close, exactly, is close? It depends on the attribute. In the case of width, height, and length, a
numeric comparison orders the images. In the case of content type, file name, or UUID, the comparison is
more tricky because these attributes are strings and thus delegated to the Java String.compareTomethod.

To specify a fuzzy attribute, call the withmethod with your search criteria just before calling the done()
method. The withmethod takes two arguments: the image attribute, and that attribute’s approximate value.
For example, this code gets adapted images whose height (AMImageAttribute.AM_IMAGE_ATTRIBUTE_HEIGHT) is
approximately 400px:

Stream<AdaptiveMedia<AMImageProcessor>> adaptiveMediaStream =

_amImageFinderImpl.getAdaptiveMediaStream(

amImageQueryBuilder -> amImageQueryBuilder.forFileVersion(_fileVersion)

.with(AMImageAttribute.AM_IMAGE_ATTRIBUTE_HEIGHT, 400).done());

To search for imagewidth instead, use AMImageAttribute.AM_IMAGE_ATTRIBUTE_WIDTH as thefirst argument
to the widthmethod.

Using the Adaptive Media Stream

Once you have the AdaptiveMedia stream, you can get the information you need from it. For example, this
code prints the URI for each adapted image:

adaptiveMediaStream.forEach(

adaptiveMedia -> {

System.out.println(adaptiveMedia.getURI());

}

);

You can also get other values and attributes from the AdaptiveMedia stream. Here are a few examples:

// Get the InputStream

adaptiveMedia.getInputStream()

// Get the content length

adaptiveMedia.getValueOptional(AMAttribute.getContentLengthAMAttribute())

// Get the image height

adaptiveMedia.getValueOptional(AMImageAttribute.AM_IMAGE_ATTRIBUTE_HEIGHT)

Awesome! Now you know how to find and use adapted images.

Related Topics

Displaying Adapted Images in Your App
Changing Adaptive Media’s Image Processing
Adapting Your Media Across Multiple Devices

1239

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-

92.3 Changing Adaptive Media's Image Scaling
As described in the AdaptiveMedia user guide, AdaptiveMedia scales images tomatch the image resolutions
defined by the Liferay DXP administrator. The default scaling is usually suitable, but you can also customize
it to your needs. Before doing so, however, you should understand how this scaling works.

Understanding Image Scaling in Adaptive Media

Adaptive Media contains an extension point that lets you replace the way it scales images. The AMImageScaler
interface defines Adaptive Media’s image scaling logic. Out of the box, Adaptive Media provides two imple-
mentations of this interface:

• AMDefaultImageScaler: The default image scaler. It’s always enabled and uses java.awt for its image
processing and scaling.

• AMGIFImageScaler: A scaler that works only with GIF images. It depends on the installation of the
external tool gifsicle in the Liferay DXP instance. This scaler must be enabled in Control Panel → System
Settings.

You must register image scalers in Liferay DXP’s OSGi container using the AMImageScaler interface.
Each scaler must also set the mime.type property to the MIME type it handles. For example, if you set a
scaler’s MIME type to image/jpeg, then that scaler can only handle image/jpeg images. If you specify the
special MIME type *, the scaler can process any image. Note that the AMDefaultImageScaler is registered
using mime.type=*, while the AMGIFImageScaler is registered using mime.type=image/gif. Both scalers, like all
scalers, implement AMImageScaler.

You can add as many image scalers as you need, even for the sameMIME type. Even so, Adaptive Media
uses only one scaler per image, using this process to determine the best one:

1. Select only the image scalers registered with the sameMIME type as the image.

2. Select the enabled scalers from those selected in the first step (the AMImageScalermethod isEnabled()

returns true for enabled scalers).

3. Of the scalers selected in the second step, select the scaler with the highest service.ranking.

If these steps return no results, they’re repeated, but the first step uses the special MIME type *. Also
note that if an image scaler is registered for specific MIME types and has a higher service.ranking, it’s more
likely to be chosen than if it’s registered for the special MIME type * or has a lower service.ranking.

Creating an Image Scaler

Now that you know how Adaptive Media scales images, you’ll learn how to customize this scaling. As an
example, you’ll see a sample image scaler that customizes the scaling of PNG images.

Follow these steps to create a custom image scaler:

1. Create your scaler class to implement AMImageScaler. Youmust also annotate your scaler class with
@Component, setting mime.type properties for each of the scaler’s MIME types, and registering an
AMImageScaler service. If there’s more than one scaler for the same MIME type, you must also set
the @Component annotation’s service.ranking property. For your scaler to take precedence over other
scalers of the same MIME type, its service ranking property must be higher than that of the other
scalers. If service.ranking isn’t set, it defaults to 0.

1240

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/adaptive-media/adaptive-media-image-api/src/main/java/com/liferay/adaptive/media/image/scaler/AMImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/adaptive-media/adaptive-media-image-api/src/main/java/com/liferay/adaptive/media/image/scaler/AMImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/adaptive-media/adaptive-media-image-impl/src/main/java/com/liferay/adaptive/media/image/internal/scaler/AMDefaultImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/adaptive-media/adaptive-media-image-impl/src/main/java/com/liferay/adaptive/media/image/internal/scaler/AMGIFImageScaler.java
https://www.lcdf.org/gifsicle/
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/adaptive-media/adaptive-media-image-impl/src/main/java/com/liferay/adaptive/media/image/internal/scaler/AMDefaultImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/adaptive-media/adaptive-media-image-impl/src/main/java/com/liferay/adaptive/media/image/internal/scaler/AMGIFImageScaler.java
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/adaptive-media/adaptive-media-image-api/src/main/java/com/liferay/adaptive/media/image/scaler/AMImageScaler.java

Note: The `service.ranking` property isn't set for the image scalers

included with Adaptive Media (`AMDefaultImageScaler` and

`AMGIFImageScaler`). Their service ranking therefore defaults to `0`. To

replace either scaler, you must set your scaler to the same MIME type and

give it a service ranking higher than `0`.

For example, this sample image scaler scales PNG and x-PNG images, and has a

service ranking of `100`:

@Component(

immediate = true,

property = {"mime.type=image/png", "mime.type=image/x-png", "service.ranking:Integer=100"},

service = {AMImageScaler.class}

)

public class SampleAMPNGImageScaler implements AMImageScaler {...

This requires these imports:

import com.liferay.adaptive.media.image.scaler.AMImageScaler;

import org.osgi.service.component.annotations.Component;

2. Implement the isEnabled()method to return truewhen you want to enable the scaler. In many cases,
you always want the scaler enabled, so you can simply return true in this method. This is the case with
the example SampleAMPNGImageScaler:

@Override

public boolean isEnabled() {

return true;

}

Thismethod gets more interesting when the scaler depends on other tools or features. For example,
the isEnabled()method in AMGIFImageScaler determines whether gifsicle is enabled. This scaler must
only be enabled when the tool it depends on, gifsicle, is also enabled:

@Override

public boolean isEnabled() {

return _amImageConfiguration.gifsicleEnabled();

}

3. Implement the scaleImage method. This method contains the scaler’s business logic, and must
return an AMImageScaledImage instance. For example, the example scaleImage implementation in
SampleAMPNGImageScaler uses AMImageConfigurationEntry to get themaximumheight andwidth values
for the scaled image, and FileVersion to get the image to scale. The scaling is done with the help of
a private inner class, assuming that the methods _scalePNG, _getScalePNGHeight, _getScalePNGWidth,
and _getScalePNGSize implement the actual scaling:

@Override

public AMImageScaledImage scaleImage(FileVersion fileVersion,

AMImageConfigurationEntry amImageConfigurationEntry) {

Map<String, String> properties = amImageConfigurationEntry.getProperties();

int maxHeight = GetterUtil.getInteger(properties.get("max-height"));

int maxWidth = GetterUtil.getInteger(properties.get("max-width"));

1241

try {

InputStream inputStream =

_scalePNG(fileVersion.getContentStream(false), maxHeight, maxWidth);

int height = _getScalePNGHeight();

int width = _getScalePNGWidth();

long size = _getScalePNGSize();

return new AMImageScaledImageImpl(inputStream, height, width, size);

}

catch (PortalException pe) {

throw new AMRuntimeException.IOException(pe);

}

}

private class AMImageScaledImageImpl implements AMImageScaledImage {

@Override

public int getHeight() {

return _height;

}

@Override

public InputStream getInputStream() {

return _inputStream;

}

@Override

public long getSize() {

return _size;

}

@Override

public int getWidth() {

return _width;

}

private AMImageScaledImageImpl(InputStream inputStream, int height,

int width, long size) {

_inputStream = inputStream;

_height = height;

_width = width;

_size = size;

}

private final int _height;

private final InputStream _inputStream;

private final long _size;

private final int _width;

}

This requires these imports:

import com.liferay.adaptive.media.exception.AMRuntimeException;

import com.liferay.adaptive.media.image.configuration.AMImageConfigurationEntry;

import com.liferay.adaptive.media.image.scaler.AMImageScaledImage;

import com.liferay.portal.kernel.exception.PortalException;

import com.liferay.portal.kernel.repository.model.FileVersion;

import com.liferay.portal.kernel.util.GetterUtil;

import java.io.InputStream;

import java.util.Map;

Great! Now you know how to write your own image scalers.

1242

Related Topics

Displaying Adapted Images in Your App
Finding Adapted Images
Adapting Your Media Across Multiple Devices

1243

Chapter 93

Liferay Forms

Manymodern websites rely on forms for their functionality. Liferay’s Forms application is maturing rapidly,
offering rich out-of-the-box functionality. Many use cases, from the simplest to the most complex, can be
met using the Forms application as it is. However, why not make the application behave exactly as you’d like
it to? Just because something is good, doesn’t mean it’s perfect for your specific use case. Liferay’s Forms
solution can be adapted to your specific needs. You can even develop forms using its API.

In this section, learn to extend the Forms application’s functionality and leverage its APIs.

• Build your own field types for Liferay’s Forms application.

– Create field types that look just like the built-in field types (both their source code and their UI
appearance).

– Add custom configuration options to your form field types.

• Use annotations to leverage the Dynamic Data Mapping (DDM) API and build reusable forms quickly.

– Create forms using annotations.
– Create fields and reusable fieldsets using annotations.
– Configure form rules using annotations.

1245

Chapter 94

Form Field Types

The Forms application contains many highly configurable field types out-of-the-box. Most use cases will be
met with one of the existing field types.

Figure 94.1: The Forms application has useful out-of-the-box field types, but you can add your own if you need to.

If you’re reading this, however, your use case probablywasn’tmetwith the default field types. For example,
perhaps you need a color picker field. You could create a select field that lists the color options, but some
users don’t know that gamboge is the color of spicy mustard (maybe a little darker), and anyway, seeing colors
is muchmore interesting than listing them. Another example is a dedicated time field. You can use a text
field and add a tip to tell users something like enter the time in the format hour:minute, but some users will still
enter something indecipherable, like 8:88. Instead, add a time field to Liferay DXP’s Forms application. You
can think of other uses where it’s best to break free of the mold of existing field types and create your own
that serve your needs best. Keep reading to find out how.

In these tutorials, learn to

• create a module that adds a Time form field type with a timepicker
• add custom configuration options to your field types

1247

Example project: The source code for the example time project developed in these tutorials can be
downloaded for your convenience. Click here to begin downloading the source code zip file.

Before getting started, learn what Liferay DXP’s field types consist of.

94.1 Anatomy of a Field Type Module

The dynamic-data-mapping-type-*modules in Liferay DXP’s source code (inside the Forms andWorkflow ap-
plication suite) are good templates to follow when developing your own field types. For example, look at
the directory structure of the dynamic-data-mapping-type-paragraphmodule (version 2.0.7) in the Forms and
Workflow application suite:

bnd.bnd

build.gradle

src

└── main

├── java

│ └── com

│ └── liferay

│ └── dynamic

│ └── data

│ └── mapping

│ └── type

│ └── paragraph

│ └── internal

│ ├── ParagraphDDMFormFieldRenderer.java

│ ├── ParagraphDDMFormFieldType.java

│ └── ParagraphDDMFormFieldTypeSettings.java

└── resources

├── content

│ ├── Language.properties

│ └── Language_xx_XX.properties

│ └── ...

└── META-INF

└── resources

├── config.js

├── paragraph_field.js

├── paragraph.soy

└── paragraph.soy.js

Customfield typemodules are nearly identical in structure to those included in LiferayDXP, as presented
above. You won’t need a *TypeSettings class in your initial module (see the tutorial on adding settings to
your form field types to learnmore about *TypeSettings), and the *.soy.js is generated from the *.soy file
at compile time. These are the Java classes and resources you’ll need to create:

• *DDMFormFieldRenderer.java: Controls the rendering of the template. Sets the language, declares the
namespace, and loads the template resources on activation of the Component. Extending the abstract
class that implements the DDMFormFieldRenderermakes your work here easier.

• *DDMFormFieldType.java: Define the formfield type in the backend. If you extend the abstract class that
implements the interface, you automatically include the default form configuration options for your
formfield type. In that case, override the interface’s getNamemethod and you’re done. To see the default
configuration options your form field type will inherit, look at the DefaultDDMFormFieldTypeSettings
class in the dynamic-data-mapping-form-field-typemodule.

• config.js: Autogenerated if you use Blade CLI, config.js defines the dependencies of all declared
JavaScript components.

1248

https://portal.liferay.dev/documents/113763090/114000186/Field+Type+Module+Source.zip

• [name-of-field-type]_field.js: The JavaScript file that models your field.
• [name-of-field-type].soy: The template that defines the appearance of the field.
• Language_xx.properties: Define any terms that need to be translated into different languages.

In addition to the Java classes, Soy templates, and JavaScript files, Liferay DXP applications contain a
bnd.bnd file to manage the module’s metadata, and a build.gradle file to manage its dependencies and build
properties. This example follows those patterns.

94.2 Creating Form Field Types

Liferay’s Forms application does not contain a dedicated time field out-of-the-box. For ease of use and to
ensure proper data is collected, you can develop a time field and learn how Liferay DXP’s field types work at
the same time.

There are several steps involved in creating a form field type:

1. Specify the OSGi metadata
2. Configure your build script and dependencies
3. Create a DDMFormFieldType component
4. Implement a DDMFormFieldType
5. Render the field type

Note: To avoidmanually creating your own project, use BladeCLI. If you have Blade CLI on yourmachine,
there’s a template for creating form fields you can leverage using the following command syntax:

blade create -t form-field [ADDITIONAL OPTIONS] [PROJECT NAME]

See the BladeCLI documentation for more information, such as the answer to yuor question,What are
those additional options?”

Using Blade CLI, you get a project skeleton with much of the boilerplate filled in, and you can focus on
coding without delay.

Start by setting up the project’s metadata.

Specifying OSGi Metadata

First specify the necessary OSGi metadata in a bnd.bnd file (see here for more information). Here’s what it
would look like for a module in a folder called dynamic-data-mapping-type-time:

Bundle-Name: Liferay Dynamic Data Mapping Type Time

Bundle-SymbolicName: com.liferay.dynamic.data.mapping.type.time

Bundle-Version: 1.0.0

Liferay-JS-Config: /META-INF/resources/config.js

Web-ContextPath: /dynamic-data-mapping-type-time

First name the bundle with a reader-friendly Bundle-Name and a unique Bundle-SymbolicName (it’s com-
mon to use the root package of your module’s Java classes), then set the version. Point to the JavaScript
configuration file (config.js) that defines JavaScript modules added by your module (you’ll get to that later),
and set theWeb Context Path so your module’s resources are made available uponmodule activation.

Next add your dependencies to a build.gradle file.

1249

https://bnd.bndtools.org/chapters/800-headers.html

Specifying Dependencies

If you’re using Gradle to manage your dependencies (as Liferay DXP modules do), add this to your
build.gradle file:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins", version: "3.0.23"

}

repositories {

mavenLocal()

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.plugin"

dependencies {

compile group: "com.liferay", name: "com.liferay.dynamic.data.mapping.api", version: "3.2.0"

compile group: "com.liferay", name: "com.liferay.dynamic.data.mapping.form.field.type", version: "2.0.5"

compile group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "org.osgi", name: "org.osgi.compendium", version: "5.0.0"

}

repositories {

mavenLocal()

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

classes {

dependsOn buildSoy

}

transpileJS {

soySrcIncludes = ""

srcIncludes = "⁎⁎/*.es.js"

}

wrapSoyAlloyTemplate {

enabled = true

moduleName = "liferay-ddm-form-field-time-template"

namespace = "ddm"

}

Along with the regular Java dependencies, there’s some JavaScript dependency configuration you need to
include here. It’s all boilerplate and can be copied directly into your module’s build.gradle if you follow the
conventions presented here.

Next craft the OSGi Component that marks your class as an implementation of DDMFormFieldType.

Creating a DDMFormFieldType Component

If you’re creating a Time field type, define the Component at the top of your *DDMFormFieldType class like this:

@Component(

immediate = true,

property = {

1250

"ddm.form.field.type.display.order:Integer=8",

"ddm.form.field.type.icon=star-o",

"ddm.form.field.type.js.class.name=Liferay.DDM.Field.Time",

"ddm.form.field.type.js.module=liferay-ddm-form-field-time",

"ddm.form.field.type.label=time-field-type-label",

"ddm.form.field.type.name=time"

},

service = DDMFormFieldType.class

)

Define the field type’s properties (property=...) and declare that you’re implementing the
DDMFormFieldType service (service=...).

DDMFormFieldType Components can have several properties:

ddm.form.field.type.display.order Integer that defines the field type’s position in the Choose a Field Type
dialog of the form builder.

ddm.form.field.type.icon The icon to be used for the field type. Choosing one of the Lexicon icons makes
your form field blends in with the existing form field types.

ddm.form.field.type.js.class.name Thefield type’s JavaScript classname–the JavaScriptfile isused todefine
the field type’s behavior.

ddm.form.field.type.js.module The name of the JavaScript module–provided to the Form engine so the
module can be loaded when needed.

ddm.form.field.type.label The field type’s label. Its localized value appears in the Choose a Field Type dialog.
ddm.form.field.type.name Thefield type’s namemust be unique. Each Component in a field type module

references the field type name, and it’s used by OSGi service trackers to filter the field’s capabilities
(for example, rendering and validation).

Next code the *DDMFormFieldType class.

Implementing DDMFormFieldType

Implementing the field type in Java is made easier because of BaseDDMFormFieldType, an abstract class you
can leverage in your code.

After extending BaseDDMFormFieldType, override the getNamemethod by specifying the name of your new
field type:

public class TimeDDMFormFieldType extends BaseDDMFormFieldType {

@Override

public String getName() {

return "time";

}

}

That’s all there is to defining the field type. Next determine how your field type is rendered.

Rendering Field Types

Before you get to the frontend coding necessary to render your field type, there’s another Component to
define and a Java class to code.

TheComponent onlyhas oneproperty, ddm.form.field.type.name, and thenyoudeclare that you’re adding
a DDMFormFieldRenderer implementation to the OSGi framework:

1251

https://lexicondesign.io/docs/patterns/icons.html

@Component(

immediate = true,

property = "ddm.form.field.type.name=time",

service = DDMFormFieldRenderer.class

)

There’s another abstract class to leverage, this time BaseDDMFormFieldRenderer. It gives you a default
implementation of the rendermethod, the only requiredmethod for implementing the API.The form engine
calls the render method for every form field type present in a form, and returns the plain HMTL of the
rendered field type. The abstract implementation also includes some utility methods. Here’s what the time
field’s DDMFormFieldRenderer looks like:

public class TimeDDMFormFieldRenderer extends BaseDDMFormFieldRenderer {

@Override

public String getTemplateLanguage() {

return TemplateConstants.LANG_TYPE_SOY;

}

@Override

public String getTemplateNamespace() {

return "ddm.time";

}

@Override

public TemplateResource getTemplateResource() {

return _templateResource;

}

@Activate

protected void activate(Map<String, Object> properties) {

_templateResource = getTemplateResource("/META-INF/resources/time.soy");

}

private TemplateResource _templateResource;

}

Here you’re setting the templating language (Soy closure templates), the template namespace (ddm.time),
and pointing to the location of the templates within your module (/META-INF/resource/time.soy).

Note: Closure templates are a templating system for building UI elements. Liferay DXP developers chose
to build the Forms UI with closure templates because they enable a smooth, responsive repainting of the UI
as a user enters data. With closure templates there’s no need to reload the entire page from the server side
when the UI is updated by the user: only the relevant portion of the page is updated from the server. This
makes for a smooth user experience.

Now it’s time to write the template you referenced in the renderer: time.soy in the case of the time field
type.

Create

src/main/resources/META-INF/resources/time.soy

and populate it with these contents:

{namespace ddm}

/**

* Prints the DDM form time field.

1252

https://developers.google.com/closure/templates/

*

* @param label

* @param name

* @param readOnly

* @param required

* @param showLabel

* @param tip

* @param value

⁎/

{template .time autoescape="deprecated-contextual"}

<div class="form-group liferay-ddm-form-field-time" data-fieldname="{$name}">

{if $showLabel}

<label class="control-label">

{$label}

{if $required}

{/if}

</label>

{if $tip}

<p class="liferay-ddm-form-field-tip">{$tip}</p>

{/if}

{/if}

<input class="field form-control" id="{$name}" name="{$name}" {if $readOnly}readonly{/if} type="text" value="{$value}">

</div>

{/template}

There are three important things to do in the template:

1. Define the template namespace. The template namespace allows you to define multiple templates for
your field type by adding the namespace as a prefix.

{namespace ddm}

2. Describe the template parameters. The template above uses some of the parameters as flags to
display or hide some parts of the HTML (for example, the $required parameter). If you extend
BaseDDMFormFieldRenderer, all the listed parameters are passed by default.

/**

* Prints the DDM form time field.

*

* @param label

* @param name

* @param readOnly

* @param required

* @param showLabel

* @param tip

* @param value

⁎/

3. Write the template logic (everything encapsulated by the {template}...{/template} block). In the
above example the template does these things:

• Checks whether to show the label of the field, and if so, adds it.
• Checks if the field is required, and adds icon-asterisk if it is.
• Checks if a tip is provided, and displays it.
• Provides themarkup for the time field in the <input> tag. In this case a text input field is defined.

1253

Once you have your template defined, write the JavaScript file modeling your field. Call it time_field.js
and give it these contents:

AUI.add('liferay-ddm-form-field-time', function(A) {

var TimeField = A.Component.create({

ATTRS : {

type : {

value : 'time'

}

},

EXTENDS : Liferay.DDM.Renderer.Field,

NAME : 'liferay-ddm-form-field-time',

prototype : {}

});

Liferay.namespace('DDM.Field').Time = TimeField;

}, '', {

requires : ['liferay-ddm-form-renderer-field']

});

TheJavaScript above creates a component called TimeField. Thecomponent extends Liferay.DDM.Renderer.Field,
which gives you automatic injection of the default field parameters.

All that’s left to do is create the config.js file:

;

(function() {

AUI().applyConfig({

groups : {

'field-time' : {

base : MODULE_PATH + '/',

combine : Liferay.AUI.getCombine(),

modules : {

'liferay-ddm-form-field-time' : {

condition : {

trigger : 'liferay-ddm-form-renderer'

},

path : 'time_field.js',

requires : ['liferay-ddm-form-renderer-field']

},

'liferay-ddm-form-field-time-template' : {

condition : {

trigger : 'liferay-ddm-form-renderer'

},

path : 'time.soy.js',

requires : ['soyutils']

}

},

root : MODULE_PATH + '/'

}

}

});

})();

This file is entirely boilerplate, and you’ll never need anything different if you follow the conventions
described above. In fact, if you use Blade CLI to generate a field type module, you won’t need to modify
anything in this file. So what is the config.js file for? It’s a JavaScript file that defines the dependencies of
the declared JavaScript components (requires...), and where the files are located (path...). The config.js is
used by the Alloy loader when it satisfies dependencies for each JavaScript component. Formore information
about the Alloy loader see the tutorial on its usage.

1254

[
If you build and deploy your new field type module, you’ll see that you get exactly what you described in

the time.soy file: a single text input field. Of course, that’s not what you want! You need a time picker.

Adding Behavior to the Field

If youwant to domore than simply provide a text input field, define the behavior in the time_field.js file. To
add an AlloyUI timepicker, first specify that your component requires the aui-timepicker in the requires...
block:

{

requires: ['aui-timepicker','liferay-ddm-form-renderer-field']

}

Since you’re now changing the default rendering of the field, overwrite the base render logic and instan-
tiate the time picker. This occurs in the prototype block:

prototype: {

render: function() {

var instance = this;

TimeField.superclass.render.apply(instance, arguments);

instance._timePicker = new A.TimePicker(

{

trigger: instance.getInputSelector(),

popover: {

zIndex: 1

1255

}

}

);

}

Invoke the original render method–it prints markup required by the Alloy time picker. Then instantiate
the time picker, passing the field type input as a trigger. See the Alloy documentation for more information.

Nowwhen the field is rendered, there’s a real time picker.

Figure 94.2: The Alloy UI Timepicker in action.

Now you know how to create a new field type and define its behavior. Currently, the field type only
contains the default settings it inherits from its superclasses. If that’s not sufficient, create additional
settings for your field type. See the next tutorial (not yet written) to learn how.

94.3 Adding Settings to Form Field Types
Once you develop a Form Field Type, youmight need to add settings to it. For example, your time field might
need to be configured to accept different time formats. Here you’ll learn how to add settings to form field
types by adding amask and a placeholder to the Time field type created in the previous tutorial.

Note: To learn more about using masks with the AUI Timepicker, go here. Themask just sets the format
the timepicker uses to display the time choices. Use the strftime format to pick the mask you want.

To add settings to form field types, you’ll use these steps:

• Write an interface that extends the default field type configuration, DefaultDDMFormFieldTypesettings.
• Update the *FormFieldRenderer so it makes the new configuration options available to the JavaScript
component and/or the Soy template for rendering.

• Update the JavaScript component (defined in time_field.js in our example) to configure the new
settings and their default values.

1256

http://alloyui.com/tutorials/timepicker/
http://alloyui.com/tutorials/timepicker/
http://pubs.opengroup.org/onlinepubs/007908799/xsh/strftime.html

• Update the Soy template to include any settings that need to be rendered in a form (the placeholder, in
our example).

Get started by crafting the interface that controls what settings your field has.

Extending the Default Type Settings

To add type settings, you need a *TypeSettings class that extends DefaultDDMFormFieldTypeSettings. Since
this example works with a Time field type, call it TimeDDMFormFieldTypeSettings.

This class sets up the Add [Field Type] configuration form.

Figure 94.3: Like your custom field types, the text field type’s settings are configured in a Java interface.

Here’s what it looks like:

package com.liferay.docs.ddm.time;

1257

import ...

@DDMForm

@DDMFormLayout(

paginationMode = com.liferay.dynamic.data.mapping.model.DDMFormLayout.TABBED_MODE,

value = {

@DDMFormLayoutPage(

title = "basic",

value = {

@DDMFormLayoutRow(

{

@DDMFormLayoutColumn(

size = 12,

value = {"label", "required", "tip", "mask", "placeholder"}

)

}

)

}

),

@DDMFormLayoutPage(

title = "properties",

value = {

@DDMFormLayoutRow(

{

@DDMFormLayoutColumn(

size = 12,

value = {

"predefinedValue", "visibilityExpression",

"fieldNamespace", "indexType", "localizable",

"readOnly", "dataType", "type", "name",

"showLabel", "repeatable"

}

)

}

)

}

)

}

)

public interface TimeDDMFormFieldTypeSettings

extends DefaultDDMFormFieldTypeSettings {

@DDMFormField(label = "%mask", predefinedValue="%I:%M %p")

public String mask();

@DDMFormField(label = "%placeholder")

public String placeholder();

}

Would you look at that! Most of the work you need to do is in the class’s annotations.
In this class you’re setting up a dynamic formwith all the settings your form field type needs. The form

layout presented here gives your form the look and feel of a native form field type. See the note below for
more information on the DDM annotations used in this form.

One thing to note is that all the default settings must be present in your settings form. Note the list
of settings present for each tab (each @DDMFormLayoutPage) above. If you need to make one of the default
settings unusable in the settings form for your field type, configure a hide rule for the field. Form field rules
are configured using the @DDMFormFieldRule annotation. More information on configuring form rules will be
written soon.

Your interface is extending the DefaultDDMFormfieldTypeSettings class. That’s why the default settings
are available to use in the class annotation, without setting them up in the class, as was necessary for the
mask and placeholder.

1258

DDMAnnotations:The @DDMForm annotation on this class allows the form engine to convert the interface
definition into a dynamic form. This makes it really intuitive to lay out your settings form.

For now, here are brief explanations for the annotations used in the above example:

@DDMForm Instantiates a new DDMForm. Creates a dynamic form from the annotation.
@DDMFormLayout Takes two variables: paginationMode and value. The pagination mode is a String that con-

trols how the layout pages are displayed. The pagionationMode can be TABBED_MODE, SINGLE_PAGE_MODE,
SETTINGS_MODE, or WIZARD_MODE. Under value, specify any @DDMFormLayoutPages that you want to use.

@DDMFormLayoutPage The sections of the type settings form. Takes two variables: title and value, where title
is a String value that names the section of the form and value is one or more @DDMFormLayoutRows.

Note:The title of the layout pages are basic and properties for all of Liferay DXP’s field types: in future
versions of the Forms application, the localized value of the key you specify here will be the heading for the
form section (the layout page is a section of the form). In the current version of Liferay DXP (at the time of
this writing, DE DXP SP1 and CE 7.0 GA3), these are not displayed. To remain consistent with the Forms
application’s default fields, it’s best to follow the standard approach and use basic and properties.

@DDMFormLayoutRow Use this to lay out the number of columns you want in the row. Most settings forms have
just one row and one column.

@DDMFormLayoutColumn Use this to lay out the columns your settings form needs. Most settings forms have
one row and one column. Each column accepts two argument, size and value.

@DDMFormField Use this annotation to add new fields to the settings form. In this example, the mask and
placeholder settings are configured with this annotation.

Once your *TypeSettings class is finished,move on to update the *Renderer class for your form field type.

Updating the Renderer Class

To send the new configuration settings to the Soy template so they can be displayed to the end user, you need
to modify the *DDMFormFieldRenderer.

Add this method to TimeDDMFormFieldRenderer:

@Override

protected void populateOptionalContext(

Template template, DDMFormField ddmFormField,

DDMFormFieldRenderingContext ddmFormFieldRenderingContext) {

template.put(

"placeholder", (String)ddmFormField.getProperty("placeholder"));

template.put(

"mask", (String)ddmFormField.getProperty("mask"));

}

The populateOptionalContextmethod takes three parameters: The template object, the DDMFormField, and
the DDMFormFieldRenderingContext. The DDMFormField represents the definition of the field type instance: you
can use this object to access the configurations set for the field type (the mask and placeholder settings in
our case). The DDMFormFieldRenderingContext object contains extra information about the form such as the
user’s locale, the HTTP request and response objects, the portlet namespace, andmore (all of its included
properties can be found here.

1259

https://docs.liferay.com/ce/apps/forms-and-workflow/latest/javadocs/com/liferay/dynamic/data/mapping/render/DDMFormFieldRenderingContext.html

You’re putting the new settings into the template object, which is just an extension of a Map that takes
a String and an Object (in this case the Object is the property configured in the @DDMFormField in your
*TypeSettings class, retrieved by the name of the field: placeholder and mask, respectively.

Now the JavaScript component and the Soy template can access the new settings. Next, update the
JavaScript Component so it handles these properties and can use them,whether passing them to the template
context (similar to the *Renderer, only this time for client-side rendering), or using them to configure the
behavior of the JavaScript component itself.

Note: Remember that the Soy template can be used for server side or client side rendering. By defining
the settings you’re adding in both the Java Renderer and the JavaScript Renderer, you’re allowing for the best
possible user experience. For example, if a form builder is in the form builder, configuring a form field type,
the configuration they enter can be directly passed to the template, and become visible in the UI, almost
instantly. However, when the user clicks into a form field initially to begin editing, the rendering occurs
from the server side.

Next configure the JavaScript component to include the new settings.

Adding Settings to the JavaScript Component

The JavaScript component needs to know about the new settings. First configure them as attributes of the
component:

ATTRS: {

mask: {

value: '%I:%M %p'

},

placeholder: {

value: ''

},

type: {

value: 'time'

}

},

Themask setting has a default value of %I:%M %p, and the placeholder is blank. Now that the new settings
are declared as attributes of the component, make the JavaScript component pass the placeholder configura-
tion to the Soy template on the client side. Just like in the Java renderer, pass the placeholder configuration
to the template context. In this case, override the getTemplateContext()method to pass in the placeholder
configuration. Add this to the prototype section of the JavaScript component definition:

getTemplateContext: function() {

var instance = this;

return A.merge(

TimeField.superclass.getTemplateContext.apply(instance, arguments),

{

placeholder: instance.get('placeholder')

}

);

},

Then in the component’s render method, add themask as an attribute of the AUI Timepicker using mask:
instance.get('mask').

1260

http://alloyui.com/api/classes/A.TimePicker.html#attr_mask

render: function() {

var instance = this;

TimeField.superclass.render.apply(instance, arguments);

instance._timePicker = new A.TimePicker(

{

trigger: instance.getInputSelector(),

mask: instance.get('mask'),

popover: {

zIndex: 1

}

}

);

}

Now the field type JavaScript component is configured to include the settings. All you have left to do is to
update the Soy template so the placeholder can be rendered in the formwith the time field.

Updating the Soy Template

After all that, adding the placeholder setting to your Soy template’s logic is simple.
The whole template is included below, but the only additions are in the commented section (adds the

placeholder to the list of parameters–the ? indicates that the placeholder is not required), and then in the
<input> tag, where you use the parameter value to configure the placeholder HTML property with the proper
value.

{namespace ddm}

/**

* Prints the DDM form time field.

*

* @param label

* @param name

* @param? placeholder

* @param readOnly

* @param required

* @param showLabel

* @param tip

* @param value

⁎/

{template .time autoescape="deprecated-contextual"}

<div class="form-group liferay-ddm-form-field-time" data-fieldname="{$name}">

{if $showLabel}

<label class="control-label">

{$label}

{if $required}

{/if}

</label>

{if $tip}

<p class="liferay-ddm-form-field-tip">{$tip}</p>

{/if}

{/if}

<input class="field form-control" id="{$name}" name="{$name}" placeholder="{$placeholder}" {if $readOnly}readonly{/if} type="text" value="{$value}">

</div>

{/template}

Why isn’t themask parameter added to the Soy template? Themask is not needed in the template because
it’s only used in the JavaScript for configuring the behavior of the timepicker. You don’t need the dynamic

1261

rendering of the soy template to take the mask setting and configure it in the form. Themaskv set by the
form builder is captured in the rendering of the timepicker itself.

Nowwhen you build the project and deploy your time field, you have a fully developed time form field
type, complete with the proper JavaScript behavior and with additional settings.

1262

Chapter 95

Search

Liferay stores its information in a database. If you need to search for data, why not search the database
directly? Why add the complexity of a search engine? Database table merges are expensive! Documents in a
search index often contain searchable fields frommultiple tables in the database.

Searching with a search engine provides access to features such as relevance and scoring. Database
searches do not support features like fuzzy searching or any type of relevancy. Moreover, when searching
with a search engine, you can apply algorithms such as “More LikeThis” to obtain similar content. Search
engines also support geolocation, faceting of search results, andmulti-lingual searching.

95.1 Basic Search Concepts

Indexing: During indexing, a document is sent to the search engine. This document contains a collection of
fields of various types (string, etc). The search engine processes each field within the document. For each
field, the search engine determines whether it needs to simply store the field or if it needs to undertake
special analysis (index time analysis). Index time analysis can be configured for each field (see Mapping
Definitions).

For fields requiring analysis, the search engine first tokenizes the value to obtain individual words or
tokens. Following tokenization, the search engine passes each token through a series of analyzers. Analyzers
perform different functions. Some remove commonwords or stop words (e.g., “the”, “and”, “or”) while others
perform operations like lowercasing all characters.

Searching: Searching involves sending a search query and obtaining results (a.k.a. hits) from the search
engine. The search query may be comprised of both queries and filters (more on this later). Each query or
filter specifies a field to search within and the value to match against. Upon receiving the search query, the
search engine iterates through each field within the nested queries and filters. During this process, the
enginemay perform special analysis prior to executing the query (search time analysis). Search time analysis
can be configured for each field (see Mapping Definitions).

Mapping Definitions

Most search engines can be semi-intelligent in automatically deciphering how to process documents passed
to them. However, there are many instances where it’s desirable to explicitly configure how a field should be
processed.

1263

Mappings allow users to control how a search engine processes a given field. For instance, for all field
names that end in “es_ES”, we want to process the field values as Spanish, removing any common Spanish
words like “si”.

In Elasticsearch and Solr, the two supported search engines for Liferay Portal, we definemappings using
liferay-type-mappings.json and schema.xml, respectively.

The Elasticsearch mapping JSON file can be seen here: https://github.com/liferay/liferay-portal/blob/7
.0.6-ga7/modules/apps/foundation/portal-search/portal-search-elasticsearch/src/main/resources/META
-INF/mappings/liferay-type-mappings.json

The Solr schema.xml can be seen here: https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules
/apps/portal-search-solr/portal-search-solr/src/main/resources/META-INF/resources/schema.xml

These are default mapping files that are shipped with the product. You can further customize these
mappings to fit your needs. For example, youmight want to use a special analyzer for a custom inventory
number field.

Liferay Search Infrastructure

Search engines already provide native APIs. Why does Liferay provide search infrastructure to wrap search
engines? Liferay’s search infrastructure ensures that documents are indexed with fields Liferay needs:

entryClassName, entryClassPK, assetTagNames, assetCategories, companyId, groupId, staging status, etc.
Liferay’s search infrastructure ensures that the proper set of filters are added to search queries to scope

results. Liferay’s search infrastructure also provides capabilities like permission checking and creating hit
summaries for display.

95.2 Liferay Search API
Liferay Portal’s Search API allows users to build a search query, execute it, and obtain search hits that match
the query.

Queries and Filters

Elasticsearch and Solr do not make API level distinctions between queries and filters. However, Liferay’s API
explicitly provides two sets of APIs, one for queries and one for filters.

A filter asks a yes or no question for every document. A query asks the same yes or no question AND how
well (score) a document matches the specified criteria. For instance, a filter might ask is the status field
equal to staging or live. A query might ask if the document’s content field field contains the words “Liferay”,
“Content”, “Management”, and how relevant the content of the document is to the search terms.

With respect to performance, filters aremuch faster since the documents that match a filter can be easily
cached. Queries not onlymatch documents but also calculate scores. Liferay uses filters and queries together
so that filters can reduce the number of matched documents before the query examines them for scoring.

Liferay’s Search API supports the following types of queries:
Full text queries:

• MatchQuery: Full text matching, scored by relevance.
• MultiMatchQuery: MatchQuery over several fields.
• StringQuery: Uses Lucene query syntax

Term queries:

• TermQuery: Exact matching on keyword fields and indexed terms

1264

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/portal-search/portal-search-elasticsearch/src/main/resources/META-INF/mappings/liferay-type-mappings.json
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/portal-search/portal-search-elasticsearch/src/main/resources/META-INF/mappings/liferay-type-mappings.json
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/portal-search/portal-search-elasticsearch/src/main/resources/META-INF/mappings/liferay-type-mappings.json
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/portal-search-solr/portal-search-solr/src/main/resources/META-INF/resources/schema.xml
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/portal-search-solr/portal-search-solr/src/main/resources/META-INF/resources/schema.xml

• TermRangeQuery: TermQuery with a range
• WildcardQuery: Wildcard (* and ?) matching on keyword fields and indexed terms
• FuzzyQuery: Scrambles characters in input before matching

Compound queries:

• BooleanQuery: Allows a combo of several query types. Individual queries are added as clauses with
SHOULD |MUST |MUST_NOT.

• DisMaxQuery

Other queries:

• MoreLikeThisQuery
• MatchAllQuery: Matches all documents

Liferay’s Search API supports the following types of filters:
Term filters:

• TermFilter
• TermsFilter
• PrefixFilter
• ExistsFilter
• MissingFilter
• RangeTermFilter

Compound filters:

• BooleanFilter

Geo filters: (Geolocation filters help filter documents based on the latitude and longitude fields)

• GeoDistanceFilter
• GeoDistanceRangeFilter
• GeoBoundingBoxFilter
• GeoPolygonFilter

Other filters:

• QueryFilter: Turns any query into a filter. E.g., can a BooleanQuery into a BooleanFilter
• MatchAllFilter: Matches all documents

Aggregations

Aggregations help summarize search results. Individual aggregations can be used to create more complex
aggregations. Facets are a type of aggregation. In addition to facets, Liferay also provides group by and
statistics aggregations.

Facets:

• Date Range Facet
• Modified Date Facet

1265

• MultiValue Facet
• Range Facet
• Scope Facet
• Simple Facet

Statistics:
Stats provides general statistics for a desired field within the returned search results:

• count
• max
• mean
• min
• missing
• standard deviation
• sum
• sum of squares

GroupBy:
GroupBy is a powerful feature that allows you to group search results based on a particular field. For

example, suppose you wish to group the search results based on the asset type (e.g., web content article,
document, blog post, etc.). To do so, you would create a search query that contains a GroupBy aggregation
with the field “entryClassName”.

Other attributes you can specify:

• Themaximum number of results in each group
• Special sorting for the grouped results

Indexers

There is an Indexer for each asset in the portal (e.g., DLFileEntryIndexer). This allows each asset to control
what fields are indexed and what filters are applied to the search query.

Generally, when you create an asset that requires indexing, you would implement a new Indexer by
extending com.liferay.portal.kernel.search.BaseIndexer<T>.

For more information, consult the Javadocs for com.liferay.portal.kernel.search.Indexer<T> and
com.liferay.portal.kernel.search.BaseIndexer<T>: @platform-ref@/7.0-latest/javadocs

IndexerPostProcessor

The IndexerPostProcessor allows developers to customize

• Search queries before they are sent to the search engine
• Documents before they are sent to the search engine
• Summaries for results before they are returned to the end users

This is the preferred way to customize existing Indexers.
Follow these steps to add a new IndexerPostProcessor:

1. Implement the interface com.liferay.portal.kernel.search.IndexerPostProcessor.
2. Publish it to the OSGi registry with the property indexer.class.name

1266

postProcessContextQueryBooleanFilter allows the developer to customize the filters created by the
Indexer.getFacetBooleanFilter. These filters are generally applied to the fields:

• entryClassName
• relatedClassName
• relatedEntryClassNames
• permissions related fields (e.g., roleId, groupId, etc.).

postProcessFullQuery allows the developer to customize the overall search query which includes

• Filters for any default facets, including those for

– asset category ids
– asset tag names
– entry class names
– folderIds
– groupIds
– layoutUUIDs
– userId

• The keyword search queries. By default, this includes searches for the fields

– description
– title
– userName
– keyword
– searchable Expando fields
– localized fields for assetCategoryTitles

HitsProcessor

com.liferay.portal.kernel.search.HitsProcessor allows developers to preprocess the results from the
search engine before they are returned to the user. This allows for features like

• spell checking
• suggesting related queries
• indexing search queries that have returned high quality search results

HitsProcessors are stored in a HitsProcessorRegistry and sorted by their sort.order. Essentially, we have
a chain of responsibility held by the HitsProcessorRegistry.

By default, the HitsProcessor order is:

1. CollatedSpellCheckHitsProcessor

• Performs a spell check if the minimum score for search results is less than a given threshold
• Number of results defined in portal.properties (index.search.collated.spell.check.re-
sult.scores.threshold)

2. AlternateKeywordQueryHitsProcessor

1267

• Automatically issueaqueryusing the suggestedkeywords fromthe CollatedSpellCheckHitsProcessor.

3. QueryIndexingHitsProcessor

• If query indexing is enabled (index.search.query.indexing.enabled in portal.properties),
then index the search query if the number of hits has exceeded a configured quantity
(index.search.query.indexing.threshold in portal.properties).

4. QuerySuggestionHitsProcessor

• If numberof results returnedhasnotmetagiven threshold (index.search.query.suggestion.scores.threshold
in portal.properties), then suggest other potential queries that previous searches have yielded
more results (index.search.query.suggest.max in portal.properties).

Suggestions

Suggestions are a powerful feature where the search engine can suggest “similar” results for a given query.
For instance, suppose you have a blog entry with the title “Liferay Portal Content Management” and you
would like to find other content with similar titles.

com.liferay.portal.kernel.search.IndexSearcher provides methods to access suggestion capabilities.
It implements com.liferay.portal.kernel.search.suggest.QuerySuggester.

The QuerySuggester provides facilities for

• Spell Checking
• Related search queries
• General Suggester requests

Spell Checking

For Elasticsearch, spell checking heavily relies on the suggester API: - Dictionary words are analyzed by their
language specific analyzer and indexed. - TermSuggester is used to provide suggestions for words based on
specific StringDistance algorithms.

Solr’s implementation of Suggester is less flexible and sophisticated. Solr’s spell checking algorithm is
based strictly on NGrams and does not handle Asian languages very well.

Note that using the search engine’s spell checking functionality doesn’t guarantee returned results.
Instead, spell checking seeks to ensure that the query is correct.

Similar Search Queries

Like spell checking, similar search queries has a more robust implementation in Elasticsearch. The Elastic-
search implementation uses phrase suggesters on indexed keyword search queries.

Solr’s similar search queries implementation is again based on tokenized NGrams.

Other Suggesters

You can also send custom Suggester requests and get SuggesterResults back from the search engine by
calling QuerySuggester.suggest(SearchContext, Suggester).

1268

95.3 Search Adapter API

Search adapters convert Liferay Portal’s API to the underlying search engine’s API.This pluggable architecture
allows customers to more easily integrate with other search engines. Liferay ships with two adapters: an
Elasticsearch adapter and a Solr adapter.

The search adapter API has 2 primary interfaces:

• IndexSearcher: invoked for all search operations
• IndexWriter: used when adding, updating, or deleting documents from the search engine.

95.4 Transactional Search

Search engines do not operate within a traditional JTA/JTS transaction. In place of “real” transactions, Liferay
buffers indexing operations (delete, update) until either the surrounding transaction has been committed
or we have exceeded the max buffer size. The buffered indexer requests are abandoned in the event of
transaction rollback. This gives us some semblance of transactional control, except in scenarios where we
have large batches of commits (e.g., exceeds maxBufferSize).

When maxBufferSize has been exceeded, the search infrastructure executes buffered indexer requests to
free up space in the buffer.

Buffered IndexerRequests always execute in FIFO order. There is no collation of IndexerRequests in the
buffer.

Youcanactivate /deactivate andset thebuffer sizeby configuring com.liferay.portal.search.configuration.IndexerRegistryConfiguration.
By default, the buffering is activated and the max buffer size is 200.

For a list of bufferedmethods, see com.liferay.portal.kernel.search.Indexer. All methods annotated
with @Bufferable are subject to potential buffering.

95.5 Customizing Liferay Search

There are several extension points available for users to customize. Themost obvious is the ability to add a
new search engine adapter.

Adding a new Search Engine Adapter

To add a new search engine adapter, developers must create the following components and publish them to
Liferay’s OSGi registry:

1. Implement a new IndexSearcher that should convert the Liferay Search objects to the underlying
search engine’s dialects:

• QueryTranslator: Translates Liferay Queries to the native search engine’s queries.
• FilterTranslator: Translates Liferay filters into native search engine’s filters.
• GroupByTranslator: Translates the GroupBy aggregation to the search engine’s group by top
hits aggregation.

• StatsTranslator: Translates Stats request to the appropriate search engine’s statistics aggrega-
tion.

• SuggesterTranslator: Translates suggestion requests to the appropriate search engine’s sug-
gester API.

1269

2. Implement a new IndexWriter that should

• Convert the Liferay Document to a format understood by the underlying search engine’s Docu-
ment Format.

• Use the search engine’s API to update, add, and delete documents.

3. Implement a new SearchEngineConfigurator that should extend AbstractSearchEngineConfigurator

to perform proper wiring.

4. Implement a new SearchEngine that

• Should extend from BaseSearchEngine to perform any search engine specific initialization.
• Shouldbepublished toLiferay’sOSGi registry alongwith theproperty search.engine.id=[searchEngineId].

Customizing IndexerRequestBufferOverflowHandler

IndexerRequestBufferOverflowHandler controls how the search infrastructure handles situations where
buffered indexer requests has exceeded the configuredmaximum buffer size.

To customize, implement an IndexerRequestBufferOverflowHandler and publish it to Liferay’s OSGi reg-
istry.

Customizing HitsProcessors

com.liferay.portal.kernel.hits.HitsProcessorobjects areheld ina com.liferay.portal.kernel.hits.HitsProcessorRegistry.
To add a new HitsProcessor, simply implement the interface and publish to the OSGi registry with the
property sort.order.

1270

Chapter 96

Application Security

Nothing has received more attention on the web in recent years than security. Liferay has a robust security
model for you to use in your applications, and it supports a wide variety of security features. In this section,
you can learn about these features:

• Resources, Roles, and Permissions
• Custom SSO Providers
• Authentication Pipelines
• Service Access Policies
• Authentication Verifiers

96.1 Adding Permissions to Resources
Public bulletin boards are great. Anyone can inform others of just about anything. On the other hand,
anyone can post just about anything on the bulletin board. Some of this content might not be relevant to the
community. Other content might be inappropriate. Thus, you sometimes need a way to restrict who can
post or access content.

Fortunately, no matter what your portlet does, access to it and to its content can be controlled with
permissions. Read on to learn about Liferay’s permissions system and how to add permissions to your
application.

Liferay's Permission System

Liferay’s permission system uses a flexible mechanism that defines the actions that a given user can perform
within the context of Liferay or a specific application. Liferay developers break down the operations that
can be performed in Liferay or in a certain application into distinct actions. The act of granting the ability to
perform an action to a specific role is the act of granting a permission. In Liferay, permissions are not granted
to directly to users. Instead, permissions are granted to roles. Roles, in turn, can be assigned to specific
users, sites, organizations, or user groups.

Developers need to define the different types of operations that are required to suit the business logic of
their applications. They don’t need to worry about which users will receive which permissions. Once the
actions have been determined and configured, portal administrators can grant permissions to perform those
actions to users, sites, organizations, or user groups by assigning roles. Administrators can use the portal’s
administration tools to grant permissions to roles or they can use the permissions UIs of individual portlets.

1271

In this tutorial, you’ll learn how to use Liferay’s permissions system to provide Liferay administrators
the same level of control over permissions that they have over the out-of-the-box Liferay applications.

Before proceeding,make sure you understand these critical terms:
Action: An operation that can be performed by a Liferay user. For example, actions that be performed

on the Bookmarks application include ADD_TO_PAGE, CONFIGURATION, and VIEW. Actions that can be performed
with respect to Bookmarks entry entity include ADD_ENTRY, DELETE, PERMISSIONS, UPDATE, and VIEW.

Resource: A generic representation of any application or entity in the portal on which an action can be
performed. Resources are used for permission checking. For example, resources within a Liferay instance
could include the RSS application with instance ID hF5f, a globally scopedWiki page, a Bookmarks entry of
the site X, and aMessage Boards post with the ID 5052.

Permission: An action that can be performed on a resource. In Liferay’s database, resources and
actions are saved in pairs. (Each entry in the ResourceAction table contains both the name of a port-
let or entity and the name of an action.) For example, the VIEW action with respect to viewing the Book-
marks application is associatedwith the com_liferay_bookmarks_web_portlet_BookmarksPortlet portlet ID.The
VIEW actions with respect to viewing a Bookmarks Folder or viewing a Bookmarks entry are associated with
the com.liferay.bookmarks.model.BookmarksFolder and com.liferay.bookmarks.model.BookmarksEntry enti-
ties, respectively.

There are two kinds of resources in Liferay: portlet resources and model resources. Portlet resources
represent portlet applications. The names of portlet resources typically correspond to the IDs of
the portlets themselves. For example, the fully qualified name of the Bookmarks portlet class is
com.liferay.bookmarks.web.portlet.BookmarksPortlet. Its ID is defined in the BookmarksPortletKeys class
like this:

public static final String BOOKMARKS =

"com_liferay_bookmarks_web_portlet_BookmarksPortlet";

This BOOKMARKS string is used when declaring portlet resources in default.xml files, as discussed below.
There are two kinds of resources in Liferay: portlet resources andmodel resources. Portlet resources represent

portlets. The names of portlet resources are the portlet IDs from the portlets’ portlet.xml files (or in the case
of core portlets, Liferay’s portlet-custom.xml). Model resources refer to entities within Liferay. The names
of model resources are the fully qualified class names of the entities they represent. In the XML displayed
below, permission implementations are first defined for the portlet resource and then for themodel resources.

Model resources represent entities within Liferay, such as bookmarks folders or bookmarks entries. The
names ofmodel resources are the fully qualified class names of the entities they represent. In the default.xml
files displayed below, permission implementations are first defined for the portlet resource and then for the
model resources.

Note: For each resource, there are four scopes to which the permissions can be applied: company, group,
group-template, or individual. See the Javadoc of ResourcePermissionImpl for more information.

You can add permissions to your custom portlets using four easy steps (also known asDRAC):

1. Define all resources and their permissions.

2. Register all defined resources in the permissions system. This is also known as adding resources.

3. Associate the necessary permissions with resources.

4. Check permission before returning resources.

1272

Define All Resources and Permissions

Here you’ll learn the first step, in which you define your resources and their actions. The Bookmarks applica-
tion is used here to demonstrate how to define portlet resources andmodel resources. Open the default.xml
file in bookmarks-web module of the Bookmarks application: default.xml. There, you’ll see the following
mapping of resources to actions:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action Mapping 7.0.0//EN" "http://www.liferay.com/dtd/liferay-

resource-action-mapping_7_0_0.dtd">

<resource-action-mapping>

<portlet-resource>

<portlet-name>com_liferay_bookmarks_web_portlet_BookmarksAdminPortlet</portlet-name>

<permissions>

<supports>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

</guest-unsupported>

</permissions>

</portlet-resource>

<portlet-resource>

<portlet-name>com_liferay_bookmarks_web_portlet_BookmarksPortlet</portlet-name>

<permissions>

<supports>

<action-key>ADD_TO_PAGE</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>CONFIGURATION</action-key>

</guest-unsupported>

</permissions>

</portlet-resource>

</resource-action-mapping>

This default.xml defines portlet resources. The bookmarks service module also contains a default.xml
file:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action Mapping 7.0.0//EN" "http://www.liferay.com/dtd/liferay-

resource-action-mapping_7_0_0.dtd">

<resource-action-mapping>

<model-resource>

<model-name>com.liferay.bookmarks</model-name>

<portlet-ref>

<portlet-name>com_liferay_bookmarks_web_portlet_BookmarksPortlet</portlet-name>

1273

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/collaboration/bookmarks/bookmarks-web/src/main/resources/resource-actions/default.xml
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/collaboration/bookmarks/bookmarks-service/src/main/resources/META-INF/resource-actions/default.xml

<portlet-name>com_liferay_bookmarks_web_portlet_BookmarksAdminPortlet</portlet-name>

</portlet-ref>

<root>true</root>

<weight>1</weight>

<permissions>

<supports>

<action-key>ADD_ENTRY</action-key>

<action-key>ADD_FOLDER</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>ADD_ENTRY</action-key>

<action-key>SUBSCRIBE</action-key>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ADD_ENTRY</action-key>

<action-key>ADD_FOLDER</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

</guest-unsupported>

</permissions>

</model-resource>

<model-resource>

<model-name>com.liferay.bookmarks.model.BookmarksFolder</model-name>

<portlet-ref>

<portlet-name>com_liferay_bookmarks_web_portlet_BookmarksPortlet</portlet-name>

<portlet-name>com_liferay_bookmarks_web_portlet_BookmarksAdminPortlet</portlet-name>

</portlet-ref>

<weight>2</weight>

<permissions>

<supports>

<action-key>ACCESS</action-key>

<action-key>ADD_ENTRY</action-key>

<action-key>ADD_SUBFOLDER</action-key>

<action-key>DELETE</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

<action-key>UPDATE</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>ADD_ENTRY</action-key>

<action-key>SUBSCRIBE</action-key>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>ADD_ENTRY</action-key>

<action-key>ADD_SUBFOLDER</action-key>

<action-key>UPDATE</action-key>

</guest-unsupported>

</permissions>

</model-resource>

<model-resource>

<model-name>com.liferay.bookmarks.model.BookmarksEntry</model-name>

<portlet-ref>

<portlet-name>com_liferay_bookmarks_web_portlet_BookmarksPortlet</portlet-name>

<portlet-name>com_liferay_bookmarks_web_portlet_BookmarksAdminPortlet</portlet-name>

</portlet-ref>

<weight>3</weight>

1274

<permissions>

<supports>

<action-key>DELETE</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

<action-key>UPDATE</action-key>

<action-key>VIEW</action-key>

</supports>

<site-member-defaults>

<action-key>SUBSCRIBE</action-key>

<action-key>VIEW</action-key>

</site-member-defaults>

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

<guest-unsupported>

<action-key>SUBSCRIBE</action-key>

<action-key>UPDATE</action-key>

</guest-unsupported>

</permissions>

</model-resource>

</resource-action-mapping>

This default.xml file defines model resources.
The <portlet-resource> tag is used to define actions that can be taken with respect to the portlet window.

For the Bookmarks application, such actions include these:

• ADD_TO_PAGE: Add the application to a page
• CONFIGURATION: Access the application’s Configuration window
• VIEW: View the application

All the supported actions are defined in the <supports> tag, a sub-tag of the <permissions> tag (which is
itself a sub-tag of the <portlet-resource> tag:

<supports>

<action-key>ADD_TO_PAGE</action-key>

<action-key>CONFIGURATION</action-key>

<action-key>VIEW</action-key>

</supports>

The default permissions for site members are defined in the <site-member-defaults> tag. In the case of
the Bookmarks application, site members can view any Bookmarks application in the site:

<site-member-defaults>

<action-key>VIEW</action-key>

</site-member-defaults>

Similarly, the default permissions for guests are defined in the <guest-defaults> tag. Guests can also
view any Bookmarks application in the site:

<guest-defaults>

<action-key>VIEW</action-key>

</guest-defaults>

The <guest-unsupported> tag specifies permissions forbidden to guests. By default, guests cannot access
the Bookmarks application in the Control Panel nor can they access the Bookmarks’s configuration window:

<guest-unsupported>

<action-key>ACCESS_IN_CONTROL_PANEL</action-key>

<action-key>CONFIGURATION</action-key>

</guest-unsupported>

1275

With respect to model resources, guests are forbidden from adding bookmarks entries and bookmarks
folders. Guests are also not permitted to edit permissions or subscribe. Remember, these are just default
permissions that can be changed by administrators. See the following entry in the first <model-resource> tag:

<guest-unsupported>

<action-key>ADD_ENTRY</action-key>

<action-key>ADD_FOLDER</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

</guest-unsupported>

The <model-resource> tag is used to define actions that can be performed with respect to models, also
known as entities. There are two kinds of actions in Liferay: top-level actions and resource actions. Top-level
actions are not applied to a particular resource. For example, the action of adding a new entity is not applied
to a particular resource, so it’s considered a top-level action. The first <model-resource> tag defines adding
bookmark entry and bookmark folder resources as top-level actions:

<supports>

<action-key>ADD_ENTRY</action-key>

<action-key>ADD_FOLDER</action-key>

</supports>

The second and third <model-resource> tags define resource actions that can be applied to the
BookmarksFolder and BookmarksEntry entities, respectively. For example, the permissions for the following
actions are defined with respect to the resource associated with the BookmarksEntry entity:

<supports>

<action-key>DELETE</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

<action-key>UPDATE</action-key>

<action-key>VIEW</action-key>

</supports>

Similarly, the permissions for the following actions are defined with respect to the resource associated
with the BookmarksFolder entity:

<supports>

<action-key>ACCESS</action-key>

<action-key>ADD_ENTRY</action-key>

<action-key>ADD_SUBFOLDER</action-key>

<action-key>DELETE</action-key>

<action-key>PERMISSIONS</action-key>

<action-key>SUBSCRIBE</action-key>

<action-key>UPDATE</action-key>

<action-key>VIEW</action-key>

</supports>

In each <model-resource> tag, notice that the model namemust be defined. The <model-name>must be
either the fully-qualified name of a package or of an entity class. For example, com.liferay.bookmarks is the
name of a package and com.liferay.bookmarks.model.BookmarksEntry is the name of an entity class. Using a
package is the recommended convention for permissions that refer to top-level actions:

<model-name>com.liferay.bookmarks</model-name>

The ADD_ENTRY and ADD_FOLDER permissions are defined this way since they’re top-level actions. For
resource actions, the entity class is specified:

1276

<model-name>com.liferay.bookmarks.model.BookmarksEntry</model-name>

The <portlet-ref> element comes next and contains a <portlet-name> sub-tag.

<portlet-ref>

<portlet-name>com_liferay_bookmarks_web_portlet_BookmarksPortlet</portlet-name>

<portlet-name>com_liferay_bookmarks_web_portlet_BookmarksAdminPortlet</portlet-name>

</portlet-ref>

The value of <portlet-name> references the name of the portlet to which the model resource belongs.
It’s possible for a model resource to belong to multiple portlets referenced with multiple <portlet-name>
elements. This is the case here since both the Bookmarks application and the Bookmarks Admin application
can be used to perform actions on bookmark entries.

The <supports>, <site-member-defaults>, <guest-defaults>, and <guest-unsupported> tagswork the same
way in the <model-resource> tag as they do in the <portlet-resource> tag. The <supports> tag lets you specify
a list of supported actions that require permission to perform. The <site-member-defaults> tag and the
<guest-defaults> tags define default permissions for site members and guests, respectively. And the <guest-
unsupported> tag specifies permissions forbidden to guests.

After defining resource permissions for your portlet, you need to point Liferay to the default.xml file
that contains your definitions. In Liferay’s core, there are multiple permissions XML definition files for
various core Liferay portlets in the portal/portal-impl/src/resource-actions directory. The default.xml file
in that folder contains pointers to the definition files of the various applications. This excerpt from Liferay’s
default.xml references the resource permission definition files for all built-in Liferay portlets:

<?xml version="1.0"?>

<!DOCTYPE resource-action-mapping PUBLIC "-//Liferay//DTD Resource Action Mapping 7.0.0//EN" "http://www.liferay.com/dtd/liferay-

resource-action-mapping_7_0_0.dtd">

<resource-action-mapping>

<resource file="resource-actions/portal.xml" />

<resource file="resource-actions/announcements.xml" />

<resource file="resource-actions/asset.xml" />

<resource file="resource-actions/blogs.xml" />

...

</resource-action-mapping>

Your application’s permissions XML file should be named default.xml and should be placed in a
directory in your module’s classpath. src/resource-actions is the standard location. Once your project’s
default.xml file has been created, you should create a properties file named portlet.properties that
contains a reference to your permissions XML file. In your portlet.properties file, create a property
named resource.actions.configs with the relative path to your portlet’s resource-action mapping file
(e.g. default.xml) as its value. Here’s what this property specification might look like:

resource.actions.configs=resource-actions/default.xml

Your permissionsXMLfilemust contain a root resource-action-mapping element. Check out a copy of the
Liferay source code from the Liferay Portal repository to see how resources and permissions are defined for
core Liferay portlets. Start by looking at the definition files found in the portal-impl/src/resource-actions
directory. For a simple example of defining permissions in the context of a portlet plugin, check out the
Liferay Plugins repository and examine the portlet sample-permissions-portlet.

1277

https://github.com/liferay/liferay-portal
https://github.com/liferay/liferay-plugins

Chapter 97

Authentication Pipelines

Theauthentication process in LiferayDXP is a pipeline throughwhich users can be validated by one or several
systems. Liferay DXP’s flexibility and extensibility makes it possible for you to make it authenticate users to
anything you wish, rather than be limited by what it supports out of the box.

Here’s how authentication works under most circumstances:

1. Users provide their credentials to the Login Portlet to begin an authenticated session in a browser.

2. Alternatively, credentials are provided to Liferay DXP’s API endpoints, where they are sent in an HTTP
BASIC Auth header.

3. Alternatively, credentials can be provided by another system. These are managed by AutoLogin compo-
nents.

4. Credentials are checked by default against the database, but they can be delegated to other systems
instead of or in addition to it. This is called an Authentication Pipeline. You can add Authenticators to
the pipeline to support any system.

5. You can also customize Liferay DXP’s Login Portlet to support whatever user interface any of these
systems need. This gives you full flexibility over the entire authentication process.

You can also support an authentication mechanism and/or accept credentials from a system that Liferay
DXP doesn’t yet support. If you don’t like the user interface for signing in, you can replace it with your own.

This set of tutorials guides you through these customizations. You’ll discover three kinds of customiza-
tions:

• Auto Login: the easiest of the three, this lets you authenticate to LiferayDXPusing credentials provided
in the HTTP header from another system.

• Authentication Pipelines: if you need to check credentials against other systems instead of or in
addition to Liferay DXP’s database, you can create a pipeline.

• Custom Login Portlet: if you want to change the user’s sign-in experience completely, you can imple-
ment your own Login portlet.

Read on to discover how to customize your users’ sign-in experience.

1279

97.1 Auto Login

While Liferay DXP supports a wide variety of authentication mechanisms, you may use a home-grown
system or some other product to authenticate users. To do so, you can write an Auto Login component to
support your authentication system.

Auto Login components can check if the request contains something (a cookie, an attribute) that can be
associated with a user in any way. If the component can make that association, it can authenticate that user
to Liferay DXP.

Creating an Auto Login Component

Create aDeclarativeServices component. Thecomponent should implement the com.liferay.portal.kernel.security.auto.login.AutoLogin
interface. Here’s an example template:

import com.liferay.portal.kernel.security.auto.login.AutoLogin;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.osgi.service.component.annotations.Component;

@Component(immediate = true)

public class MyAutoLogin implements Autologin {

public String[] handleException(

HttpServletRequest request, HttpServletResponse response,

Exception e)

throws AutoLoginException {

/* This method is no longer used in the interface and can be

left empty ⁎/

}

public String[] login(

HttpServletRequest request, HttpServletResponse response)

throws AutoLoginException {

/* Your Code Goes Here ⁎/

}

}

As you can see, you have access to the HttpServletRequest and the HttpServletResponse objects. If your
sign-on solution places anything here that identifies a user, such as a cookie, an attribute, or a parameter,
you can retrieve it and take whatever action you need to retrieve the user information and authenticate that
user to Liferay DXP.

For example, say that there’s a request attribute that contains the encrypted value of a user key in Liferay
DXP.This can only be there if the user has authenticated with a third party system that knew the value of
the user key, encrypted it, and added it as a request attribute. You could write code that reads the value,
decrypts it using the same pre-shared key, and uses the value to look up and authenticate the user.

The loginmethod is where this all happens. This methodmust return a String array with three items in
this order:

• The user ID
• The user password

1280

• A boolean flag that’s true if the password is encrypted and false if it’s not (Boolean.TRUE.toString()
or Boolean.FALSE.toString()).

Sending redirects is an optional AutoLogin feature. Since AutoLogins are part of the servlet filter chain,
you have two options. Both are implemented by setting attributes in the request. Here are the attributes:

• AutoLogin.AUTO_LOGIN_REDIRECT: This key causes AutoLoginFilter to stop the filter chain’s execution
and redirect immediately to the location specified in the attribute’s value.

• AutoLogin.AUTO_LOGIN_REDIRECT_AND_CONTINUE: This key causes AutoLoginFilter to set the redirect and
continue executing the remaining filters in the chain.

Auto Login components are useful ways of providing an authentication mechanism to a system that
Liferay DXP doesn’t yet support. You can write them fairly quickly to provide the integration you need.

Related Topics

Password-Based Authentication Pipelines
Writing a Custom Login Portlet

97.2 Password-Based Authentication Pipelines
By default, once a user submits credentials to Liferay DXP, those credentials are checked against Liferay
DXP’s database, though you can also delegate authentication to an LDAP server. To use some other system
in your environment instead of or in addition to checking credentials against Liferay DXP’s database, you
can write an Authenticator and insert it as a step in Liferay DXP’s authentication pipeline.

Because the Authenticator is checked by the Login Portlet, you can’t use this approach if the user must
be redirected to the external system or needs a token to authenticate. In those cases, you should use an Auto
Login or an Auth Verifier.

Authenticators let you do these things:

• Log into Liferay DXP with a username and passwordmaintained in an external system
• Make secondary user authentication checks
• Perform additional processing when user authentication fails

Read on to learn how to create an Authenticator.

Anatomy of an Authenticator

Authenticators are implemented for various steps in the authentication pipeline. Here are the steps:

1. auth.pipeline.pre: Comes before default authentication to the Liferay DXP database. In this step, you
can instruct Liferay DXP to skip credential validation against the Liferay DXP database. Implemented
by Authenticator.

2. Default (optional) authentication to the Liferay DXP database.

3. auth.pipeline.post: Further (secondary, tertiary) authentication checks. Implemented by
Authenticator.

4. auth.failure: Perform additional processing after authentication fails. Implemented by AuthFailure.

1281

To create an Authenticator, create a module and add a component that implements the interface:

@Component(

immediate = true, property = {"key=auth.pipeline.post"},

service = Authenticator.class

)

public class MyCustomAuth implements Authenticator {

public int authenticateByEmailAddress(

long companyId, String emailAddress, String password,

Map<String, String[]> headerMap, Map<String, String[]> parameterMap)

throws AuthException {

return Authenticator.SUCCESS;

}

public int authenticateByScreenName(

long companyId, String screenName, String password,

Map<String, String[]> headerMap, Map<String, String[]> parameterMap)

throws AuthException {

return Authenticator.SUCCESS;

}

public int authenticateByUserId(

long companyId, long userId, String password,

Map<String, String[]> headerMap, Map<String, String[]> parameterMap)

throws AuthException {

return Authenticator.SUCCESS;

}

}

This example has been stripped down so you can see its structure. First, note the @Component annotation’s
contents:

• immediate = true: sets the component to start immediately
• key=auth.pipeline.post: sets the Authenticator to run in the auth.pipeline.post phase. To run the
auth.pipeline.pre phase, substitute auth.pipeline.pre.

• service = Authenticator.class: implements the Authenticator service. All Authenticators must do
this.

The three methods below the annotation run based on how you’ve configured authentication: by email
address (the default), by screen name, or by user ID. All the methods throw an AuthException in case the
Authenticator is unable to perform its task–perhaps if the system it’s authenticating against is unavailable
or if some dependency can’t be found. Themethods in this barebones example return success in all cases.
If you deploy its module, it has no effect. Naturally, you’ll want to provide more functionality. Next is an
example that shows you how to do that.

Creating an Authenticator

This example is an Authenticator that only allows users whose email addresses end with @liferay.com or
@example.com. You can implement this using one module that does everything. If you think other modules
might be able to use the functionality that validates the email addresses, you might create twomodules: one
to implement the Authenticator and one to validate email addresses. This example shows the twomodule
approach.

To create an Authenticator, create a module for your implementation. The most appropriate Blade
template for this is the service template. Once you have themodule, creating the Activator is straightforward:

1282

1. Add the @Component annotation to bind your Activator to the appropriate authentication pipeline
phase.

2. Implement the Authenticator interface and provide the functionality you need.

3. Deploy your module. If you’re using Blade CLI, do this via blade deploy.

For this example, you’ll do this twice: once for the email address validator module and once for the
Authenticator itself. The Authenticator project contains the interface for the validator, and the validator
project contains the implementation. Here’s what the Authenticatormodule structure looks like:

Figure 97.1: The Authenticator module contains the validator’s interface and the authenticator.

Since the Authenticator is the most relevant, examine it first:

package com.liferay.docs.emailaddressauthenticator;

import java.util.Map;

import com.liferay.docs.emailaddressauthenticator.validator.EmailAddressValidator;

import com.liferay.portal.kernel.log.Log;

import com.liferay.portal.kernel.log.LogFactoryUtil;

import com.liferay.portal.kernel.security.auth.AuthException;

import com.liferay.portal.kernel.security.auth.Authenticator;

import com.liferay.portal.kernel.service.UserLocalService;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

1283

import org.osgi.service.component.annotations.ReferenceCardinality;

import org.osgi.service.component.annotations.ReferencePolicy;

@Component(

immediate = true,

property = {"key=auth.pipeline.post"},

service = Authenticator.class

)

public class EmailAddressAuthenticator implements Authenticator {

@Override

public int authenticateByEmailAddress(long companyId, String emailAddress,

String password, Map<String, String[]> headerMap,

Map<String, String[]> parameterMap) throws AuthException {

return validateDomain(emailAddress);

}

@Override

public int authenticateByScreenName(long companyId, String screenName,

String password, Map<String, String[]> headerMap,

Map<String, String[]> parameterMap) throws AuthException {

String emailAddress =

_userLocalService.fetchUserByScreenName(companyId, screenName).getEmailAddress();

return validateDomain(emailAddress);

}

@Override

public int authenticateByUserId(long companyId, long userId,

String password, Map<String, String[]> headerMap,

Map<String, String[]> parameterMap) throws AuthException {

String emailAddress =

_userLocalService.fetchUserById(userId).getEmailAddress();

return validateDomain(emailAddress);

}

private int validateDomain(String emailAddress) throws AuthException {

if (_emailValidator == null) {

String msg = "Email address validator is unavailable, cannot authenticate user";

_log.error(msg);

throw new AuthException(msg);

}

if (_emailValidator.isValidEmailAddress(emailAddress)) {

return Authenticator.SUCCESS;

}

return Authenticator.FAILURE;

}

@Reference

private volatile UserLocalService _userLocalService;

@Reference(

policy = ReferencePolicy.DYNAMIC,

cardinality = ReferenceCardinality.OPTIONAL

)

private volatile EmailAddressValidator _emailValidator;

private static final Log _log = LogFactoryUtil.getLog(EmailAddressAuthenticator.class);

}

1284

This time, rather than stubs, the three authentication methods contain functionality. The
authenticateByEmailAddress method directly checks the email address provided by the Login Port-
let. The other two methods, authenticateByScreenName and authenticateByUserId call Liferay DXP’s
UserLocalService to look up the user’s email address before checking it. This service is injected by the OSGi
container because of the @Reference annotation. Note that the validator is also injected in this samemanner,
though it’s configured not to fail if the implementation can’t be found. This allows this module to start
regardless of its dependency on the validator implementation. In this case, this is safe because the error is
handled by throwing an AuthException and logging the error.

Why would you want to do it this way? To err gracefully. Because this is an auth.pipeline.post

Authenticator, you presumably have other Authenticators checking credentials before this one. If this one
isn’t working, you want to inform administrators with an error message rather than catastrophically failing
and preventing users from logging in.

The only other Java code in this module is the Interface for the validator:

package com.liferay.docs.emailaddressauthenticator.validator;

import aQute.bnd.annotation.ProviderType;

@ProviderType

public interface EmailAddressValidator {

public boolean isValidEmailAddress(String emailAddress);

}

This defines a single method for checking the email address.
Next, you’ll address the validator module.
This module contains only one class. It implements the Validator interface:

package com.liferay.docs.emailaddressvalidator.impl;

import java.util.Arrays;

import java.util.HashSet;

import java.util.Set;

import org.osgi.service.component.annotations.Component;

import com.liferay.docs.emailaddressauthenticator.validator.EmailAddressValidator;

@Component(

immediate = true,

property = {

},

service = EmailAddressValidator.class

)

public class EmailAddressValidatorImpl implements EmailAddressValidator {

@Override

public boolean isValidEmailAddress(String emailAddress) {

if (_validEmailDomains.contains(

emailAddress.substring(emailAddress.indexOf('@')))) {

return true;

}

return false;

}

private Set<String> _validEmailDomains =

new HashSet<String>(Arrays.asList(new String[] {"@liferay.com", "@example.com"}));

}

1285

Figure 97.2: The validator project implements the Validator Interface and depends on the authenticator module.

This code checks to make sure that the email address is from the@liferay.com or@example.com domains.
The only other interesting part of this module is the Gradle build script, because it defines a compile-only
dependency between the two projects. This is divided into two files: a settings.gradle and a build.gradle.

The settings.gradle file defines the location of the project (the Authenticator) the validator depends on:

include ':emailAddressAuthenticator'

project(':emailAddressAuthenticator').projectDir = new File(settingsDir, '../com.liferay.docs.emailAddressAuthenticator')

Since this project contains the interface, it must be on the classpath at compile time, which is when
build.gradle is running:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins", version: "3.0.23"

}

repositories {

mavenLocal()

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

1286

apply plugin: "com.liferay.plugin"

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "org.osgi", name: "org.osgi.compendium", version: "5.0.0"

compileOnly project(":emailAddressAuthenticator")

}

repositories {

mavenLocal()

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Note the line in the dependencies section that refers to the Authenticator project defined in
settings.gradle.

When these projects are deployed, the Authenticator you defined runs, enforcing logins for the two
domains specified in the validator.

If you want to examine these projects further, you can download them in this ZIP file.

Related Topics

Auto Login
Writing a Custom Login Portlet

97.3 Writing a Custom Login Portlet

If you need to customize your users’ authentication experience completely, you can write your own Login
Portlet. Themechanics of this on the macro level are no different fromwriting any other portlet, so if you
need to familiarize yourself with that, please see the portlets section of tutorials.

This tutorial shows only the relevant parts of a Liferay MVC Portlet that authenticates the user. You’ll
learn how to call Liferay DXP’s authentication pipeline and then redirect the user to a location of your choice.

Authenticating to Liferay DXP

You can use the example project in this ZIP file as a starting point for your own.
It has only one view, which is used for logging in or showing the user who is already logged in:

<%@ include file="/init.jsp" %>

<p>

<liferay-ui:message key="myloginportlet_MyLogin.caption"/>

</p>

<c:choose>

<c:when test="<%= themeDisplay.isSignedIn() %>">

<%

String signedInAs = HtmlUtil.escape(user.getFullName());

if (themeDisplay.isShowMyAccountIcon() && (themeDisplay.getURLMyAccount() != null)) {

String myAccountURL = String.valueOf(themeDisplay.getURLMyAccount());

signedInAs = "" + signedInAs + "";

1287

https://portal.liferay.dev/documents/113763090/114000186/auth-pipelines-authenticator.zip
https://portal.liferay.dev/documents/113763090/114000186/MyCustomLoginPortlet.zip

}

%>

<liferay-ui:message arguments="<%= signedInAs %>" key="you-are-signed-in-as-x" translateArguments="<%= false %>" />

</c:when>

<c:otherwise>

<%

String redirect = ParamUtil.getString(request, "redirect");

%>

<portlet:actionURL name="/login/login" var="loginURL">

<portlet:param name="mvcRenderCommandName" value="/login/login" />

</portlet:actionURL>

<aui:form action="<%= loginURL %>" autocomplete='on' cssClass="sign-in-form" method="post" name="loginForm">

<aui:input name="saveLastPath" type="hidden" value="<%= false %>" />

<aui:input name="redirect" type="hidden" value="<%= redirect %>" />

<aui:input autoFocus="true" cssClass="clearable" label="email-address" name="login" showRequiredLabel="<%= false %>" type="text" value="">

<aui:validator name="required" />

</aui:input>

<aui:input name="password" showRequiredLabel="<%= false %>" type="password">

<aui:validator name="required" />

</aui:input>

<aui:button-row>

<aui:button cssClass="btn-lg" type="submit" value="sign-in" />

</aui:button-row>

</aui:form>

</c:otherwise>

</c:choose>

Note that in the form, authentication by email address (Liferay DXP’s default setting) is hard-coded, as
this is an example project. The current page is sent as a hidden field on the form so the portlet can redirect
the user to it, but you can of course set this to any value you want.

The portlet handles all processing of this form using a single Action Command (imports left out for
brevity):

@Component(

property = {

"javax.portlet.name=MyLoginPortlet",

"mvc.command.name=/login/login"

},

service = MVCActionCommand.class

)

public class MyLoginMVCActionCommand extends BaseMVCActionCommand {

@Override

protected void doProcessAction(ActionRequest actionRequest,

ActionResponse actionResponse) throws Exception {

ThemeDisplay themeDisplay = (ThemeDisplay)actionRequest.getAttribute(

WebKeys.THEME_DISPLAY);

HttpServletRequest request = PortalUtil.getOriginalServletRequest(

PortalUtil.getHttpServletRequest(actionRequest));

HttpServletResponse response = PortalUtil.getHttpServletResponse(

actionResponse);

String login = ParamUtil.getString(actionRequest, "login");

String password = actionRequest.getParameter("password");

1288

boolean rememberMe = ParamUtil.getBoolean(actionRequest, "rememberMe");

String authType = CompanyConstants.AUTH_TYPE_EA;

AuthenticatedSessionManagerUtil.login(

request, response, login, password, rememberMe, authType);

actionResponse.sendRedirect(themeDisplay.getPathMain());

}

}

Theonly tricky/unusual codehere is theneed to grab the HttpServletRequest and the HttpServletResponse.
This is necessary to call Liferay DXP’s API for authentication. At the end of the Action Command, the portlet
sends a redirect that sends the user to the same page. You can of course make this any page you want.

Implementing your own login portlet gives you complete control over the authentication process.

Related Topics

Password-Based Authentication Pipelines
Auto Login

97.4 Service Access Policies

Service access policies are a layer of web service security on top of Liferay DXP’s remote services. Together
with the permissions layer, service access policies limit remote service access by remote client applications.
This forms an additional security layer that protects user data from unauthorized access andmodification.

To connect to a Liferay DXP instance, remote clients must authenticate with credentials in that instance.
This grants the remote client the permissions assigned to those credentials in the Liferay DXP installation.
Service access policies are a layer of security on top of this: they further limit the remote client’s access to
the remote services specified in the policy. Without such policies, authenticated remote clients are treated
like users: they can call any remote API and read or modify data on behalf of the authenticated user. Since
remote clients are often intended for a specific use case, granting them access to everything the user has
permissions for poses a security risk.

For example, consider amobile app (client) that displays a user’s appointments from the Liferay Calendar
app. This client app doesn’t need access to the API that updates the user profile, even though the user has
such permissions on the server. The client app doesn’t even need access to the Calendar API methods that
create, update, and delete appointments. It only needs access to the remote service methods for finding and
retrieving appointments. A service access policy on the server can restrict the client’s access to only these
service methods. Otherwise, once authenticated it would have access to all the remote services the user has
permission to access when logged in: services that create, update, and delete calendar appointments, as
well as those that can update user data or other system entities the user can access. Since the client doesn’t
perform these operations, having access to them is a security risk if the mobile device is lost or stolen or the
client app is compromised by an attacker.

How Service Access Policies Work

When a remote client issues a request to aweb service, the request contains the user’s credentials or an autho-
rization token. An authenticationmodule in LiferayDXP recognizes the client based on the credentials/token
and grants the appropriate service access policy to the request. The service access policy authorization layer
then processes all granted policies and lets the request access the remote service(s) permitted by the policy.

1289

Figure 97.3: The authorization module maps the credentials or token to the proper Service Access Policy.

1290

Service Access policies are created in the Control Panel by administrators. If you want to start creating
policies yourself, see this article on service access policies that documents creating them in the UI.

There may be cases, however, when your server-side Liferay app needs to use the service access policies
API. For example, your appmay:

• use custom remote API authentication (tokens) and require certain services to be available for clients
using the tokens.

• require its services be made available to guest users, with no authentication necessary.

• contain a remote service authorization layer that needs to drive access to remote services based on
granted privileges.

API Overview

Liferay provides an Interface and a ThreadLocal if you don’t want to roll your own policies. If you want to get
low level, an API is provided that Liferay itself has used to implement Liferay Sync.

1. TheInterfaceand ThreadLocalareavailable in thepackage com.liferay.portal.kernel.security.service.access.policy.
This package provides classes for basic access to policies. For example, you can use the singleton
ServiceAccessPolicyManagerUtil to obtain Service Access Policies configured in the system. You can
also use the ServiceAccessPolicyThreadLocal class to set and obtain Service Access Policies granted to
the current request thread.

At this level, you can get a list of the configured policies to let your app/client choose a policy for
accessing services. Also, apps like OAuth can offer a list of available policies during the authorization
step in the OAuth workflow and allow the user to choose the policy to assign to the remote application.
Youcanalsogrant apolicy to a current request thread. Whena remote client accesses anAPI,something
must tell the Liferay instance which policies are assigned to this call. This something is in most
cases an AuthVerifier implementation. For example, in the case of the OAuth app, an AuthVerifier

implementation assigns the policy chosen by the user in the authorization step.

2. The API ships with the product as OSGi modules:

• com.liferay.portal.security.service.access.policy.api.jar

• com.liferay.portal.security.service.access.policy.service.jar

• com.liferay.portal.security.service.access.policy.web.jar

These OSGi modules are active in Liferay DXP by default, and you can use them to manage Service Ac-
cess Policies programmatically. You can find their source code [here in GitHub](https://github.com/lif-
eray/liferay-portal/tree/master/modules/apps/foundation/portal-security). Each module publishes a
list of packages and services that can be consumed by other OSGi modules.

You can use both tools to develop a token verificationmodule (amodule that implements custom security
token verification for use in authorizing remote clients) for your app to use. For example, this module may
contain a JSONWebToken implementation for LiferayDXP’s remoteAPI.A custom token verificationmodule
must use the Service Access Policies API during the remote API/web service call to grant the associated policy
during the request. Themodule:

• canuse com.liferay.portal.security.service.access.policy.api.jarand com.liferay.portal.security.service.access.policy.service.jar
to create policies programmatically.

1291

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/security/service/access/policy/package-summary.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/security/service/access/policy/ServiceAccessPolicyManagerUtil.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/security/service/access/policy/ServiceAccessPolicyManagerUtil.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/security/service/access/policy/ServiceAccessPolicyThreadLocal.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/security/auth/verifier/AuthVerifier.html

• should use the method ServiceAccessPolicyThreadLocal.addActiveServiceAccessPolicyName() to
grant the associated policy during a web service request.

• can use ServiceAccessPolicyManagerUtil to display list of supported policies when authorizing the
remote application, to associate the token with an existing policy.

Example

LiferaySync’s sync-securitymodule is anexampleof suchamodule. It uses com.liferay.portal.security.service.access.policy.service
to create the SYNC_DEFAULT and SYNC_TOKEN policies programmatically. For service calls to Sync’s remote
API, these policies grant access to Sync’s com.liferay.sync.service.SyncDLObjectService#getSyncContext
and com.liferay.sync.service.*, respectively. Here’s the code in the sync-securitymodule that defines and
creates these policies:

@Component(immediate = true)

public class SyncSAPEntryActivator {

// Define the policies

public static final Object[][] SAP_ENTRY_OBJECT_ARRAYS = new Object[][] {

{

"SYNC_DEFAULT",

"com.liferay.sync.service.SyncDLObjectService#getSyncContext", true

},

{"SYNC_TOKEN", "com.liferay.sync.service.*", false}

};

...

// Create the policies

protected void addSAPEntry(long companyId) throws PortalException {

for (Object[] sapEntryObjectArray : SAP_ENTRY_OBJECT_ARRAYS) {

String name = String.valueOf(sapEntryObjectArray[0]);

String allowedServiceSignatures = String.valueOf(

sapEntryObjectArray[1]);

boolean defaultSAPEntry = GetterUtil.getBoolean(

sapEntryObjectArray[2]);

SAPEntry sapEntry = _sapEntryLocalService.fetchSAPEntry(

companyId, name);

if (sapEntry != null) {

continue;

}

Map<Locale, String> map = new HashMap<>();

map.put(LocaleUtil.getDefault(), name);

_sapEntryLocalService.addSAPEntry(

_userLocalService.getDefaultUserId(companyId),

allowedServiceSignatures, defaultSAPEntry, true, name, map,

new ServiceContext());

}

}

...

}

Click here to see the entire SyncSAPEntryActivator class. This class creates the policies when the module
starts. Note that this module is included and enabled in Liferay DXP by default. You can access these and
other policies in Control Panel → Configuration → Service Access Policy.

1292

https://www.liferay.com/supporting-products/liferay-sync
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/sync/sync-security/src/main/java/com/liferay/sync/security/service/access/policy/SyncSAPEntryActivator.java

The sync-security module must then grant the appropriate policy when needed. Since every
authenticated call to Liferay Sync’s remote API requires access to com.liferay.sync.service.*, the
module must grant the SYNC_TOKEN policy to such calls. The module does this with the method
ServiceAccessPolicyThreadLocal.addActiveServiceAccessPolicyName, as shown in this code snippet:

if ((permissionChecker != null) && permissionChecker.isSignedIn()) {

ServiceAccessPolicyThreadLocal.addActiveServiceAccessPolicyName(

String.valueOf(

SyncSAPEntryActivator.SAP_ENTRY_OBJECT_ARRAYS[1][0]));

}

Now every authenticated call to Sync’s remote API, regardless of authentication method, has access to
com.liferay.sync.service.*. To see the full code example, click here.

Nice! Now you know how to integrate your apps with the Service Access Policies in Liferay DXP.

97.5 Using JSR Roles in a Portlet

Roles in Liferay DXP are the primary means for granting or restricting access to content. If you’ve decided
not to use Liferay’s permissions system, you can use the basic system offered by the JSR 168, 286, and 362
specifications that map Roles in a portlet to Roles provided by the portal.

JSR Portlet Security

The portlet specification defines a means to specify Roles used by portlets in their docroot/WEB-

INF/portlet.xml descriptors. The Role names themselves, however, are not standardized. When these
portlets run in Liferay DXP, the Role names defined in the portlet must be mapped to Roles that exist in the
Portal.

For example, consider a Guestbook project that contains two portlets: The Guestbook portlet and the
Guestbook Admin portlet. The WAR version of the Guestbook project’s portlet.xml file references the
administrator, guest, power-user, and user Roles:

<?xml version="1.0"?>

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-

app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" version="2.0">

<portlet>

<portlet-name>guestbook</portlet-name>

<display-name>Guestbook</display-name>

<portlet-class>

com.liferay.docs.guestbook.portlet.GuestbookPortlet

</portlet-class>

<init-param>

<name>view-template</name>

<value>/html/guestbook/view.jsp</value>

</init-param>

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>view</portlet-mode>

</supports>

<portlet-info>

<title>Guestbook</title>

<short-title>Guestbook</short-title>

<keywords></keywords>

</portlet-info>

<security-role-ref>

<role-name>administrator</role-name>

</security-role-ref>

1293

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/sync/sync-security/src/main/java/com/liferay/sync/security/servlet/filter/SyncAuthFilter.java

<security-role-ref>

<role-name>guest</role-name>

</security-role-ref>

<security-role-ref>

<role-name>power-user</role-name>

</security-role-ref>

<security-role-ref>

<role-name>user</role-name>

</security-role-ref>

</portlet>

<portlet>

<portlet-name>guestbook-admin</portlet-name>

<display-name>Guestbook Admin</display-name>

<portlet-class>

com.liferay.docs.guestbook.portlet.GuestbookAdminPortlet

</portlet-class>

<init-param>

<name>view-template</name>

<value>/html/guestbookadmin/view.jsp</value>

</init-param>

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>view</portlet-mode>

</supports>

<portlet-info>

<title>Guestbook Admin</title>

<short-title>Guestbook Admin</short-title>

<keywords></keywords>

</portlet-info>

<security-role-ref>

<role-name>administrator</role-name>

</security-role-ref>

<security-role-ref>

<role-name>guest</role-name>

</security-role-ref>

<security-role-ref>

<role-name>power-user</role-name>

</security-role-ref>

<security-role-ref>

<role-name>user</role-name>

</security-role-ref>

</portlet>

An OSGi-based guestbook-webmodule project defines Roles without an XML file, in the portlet class’s
@Component annotation:

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.name=" + GuestbookPortletKeys.Guestbook,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

If you are using an OSGi-based MVC Portlet, you must use Liferay’s permissions system, as the only way
to map JSR-362 Roles to Liferay Roles is to place them in the LiferayWAR file’s portlet.xml.

1294

Your portlet.xml Roles must be mapped to specific Roles that have been created. These mappings
allow Liferay DXP to resolve conflicts between Roles with the same name that are from different portlets
(e.g. portlets from different developers).

Note: Each Role named in a portlet’s <security-role-ref> element is given permission to add the portlet
to a page.

Mapping Portlet Roles to Portal Roles

To map the Roles to Liferay DXP, you must use the docroot/WEB-INF/liferay-portlet.xml Liferay-specific
configuration file. For an example, see the mapping defined in the Guestbook project’s liferay-portlet.xml
file.

<role-mapper>

<role-name>administrator</role-name>

<role-link>Administrator</role-link>

</role-mapper>

<role-mapper>

<role-name>guest</role-name>

<role-link>Guest</role-link>

</role-mapper>

<role-mapper>

<role-name>power-user</role-name>

<role-link>Power User</role-link>

</role-mapper>

<role-mapper>

<role-name>user</role-name>

<role-link>User</role-link>

</role-mapper>

If a portlet definition references the Role power-user, that portlet is mapped to the Liferay Role called
Power User that’s already in Liferay’s database.

As stated above, there is no standardization with portal Role names. If you deploy a portlet with Role
names different from the above default Liferay names, youmust add the names to the system.roles property
in your portal-ext.properties file:

system.roles=my-role,your-role,our-role

This prevents Roles from being created accidentally.
Once Roles are mapped to the portal, you can use methods as defined in the portlet specification:

• getRemoteUser()

• isUserInRole()

• getUserPrincipal()

For example, you can use the following code to check if the current User has the power-user Role:

if (renderRequest.isUserInRole("power-user")) {

// ...

}

By default, Liferay doesn’t use the isUserInRole()method in any built-in portlets. Liferay uses its own
permission system directly to achieve more fine-grained security. If you don’t intend on deploying your
portlets to other portal servers, we recommend using Liferay’s permission system, because it offers a much
more robust way of tailoring your application’s permissions.

1295

Related Topics

Liferay Permissions
Asset Framework
Portlets
Understanding ServiceContext

1296

Chapter 98

Internationalization

Liferay DXP makes it easier than ever to localize content and design apps for different locales. You can
centralize messages (language keys) and have manual and automatic translation, including localizing forms
and setting text directionality from left-to-right or right-to-left. Customizing messages in apps is easy too.
Internationalization is a snap with Liferay DXP!

98.1 Localizing Your Application

If you’re writing a Liferay Application, you’re probably a genius who is also really cool. Whichmeans your
application is going to be used throughout the entire world. At least, it will if the messages that appear to its
users can be translated into their language. Thankfully, Liferay makes it easy to support translation of your
application’s language keys.

Note: Even if you don’t think your application needs to be translated into multiple languages, use the
localization pattern presented here for anymessages displayed in your user interface. It’s much easier to
change the messages by updating a language properties file than by finding every instance of a message and
replacing it in your JSPs and Java classes.

You just need to create a default language properties file (Language.properties) and one for each transla-
tion you’d like to support (for example, Language_fr.properties for your French translation), and put them
in the correct location in your application. Use the two letter locale that corresponds to the language you
want to translate in your file names (for example, Language_es.properties provides a Spanish translation for
each key).

Application localization topics:

• What are Language Keys?
• What Locales are Available By Default?
• Where do I Put Language Files?
• Creating a Language Module
• Using a LanguageModule
• Using Global Language Properties

1297

What are Language Keys?

Each language property file holds key/value pairs. The key is the same in all the language property files, while
the value is translated in each file. You specify the key in your user interface code, and the appropriately
translated message is returned automatically for your users, depending on the locale being used in Liferay.
If you have Liferay running locally, append the URL with a supported locale to see how Liferay’s language
keys are translated (for example, enter localhost:8080/es).

Figure 98.1: Append the locale to your running Liferay’s URL and see Liferay’s translation power in action.

Language keys are just keys you’ll use in place of a hard coded, fully translated String value in your user
interface code. For example, you can use a language key in your JSP via a <liferay-ui:message /> tag.

The tagmight be set up like this if you’re not considering the need to translate your application’smessages:

<liferay-ui:message key="Howdy, Partner!" />

In that case you’ll get a properly capitalized and punctuated message in your application.
Alternatively, you can specify a simple key instead of the final value:

<liferay-ui:message key="howdy-partner" />

Thatwayyoucanprovidea translationof thekey inadefault languagepropertiesfile (Language.properties):

howdy-partner=Howdy, Partner!

You’ll get the same output in your application with either method above, but you have the flexibility to
add additional language properties files that provide translations for your application’s keys if you use the
language properties approach. Use a key in your UI code, then provide the value (or translation) in your
language properties file. You just need to make sure there’s a locale that corresponds to your translation.

The values from your default Language.properties file will appear if no locale is specified. If a locale is
specified, Liferay will try to find a file that corresponds to the locale. For example, if a Spanish translation
is sought, a Language_es.properties file must be present to provide the proper values. If it isn’t, the default
language properties (from the Language.properties file) will be used.

What Locales are Available By Default?

There are a bunch of locales available by default in Liferay. Look in the portal.properties file file to find
them.

locales=ar_SA,eu_ES,bg_BG,ca_AD,ca_ES,zh_CN,zh_TW,hr_HR,cs_CZ,da_DK,nl_NL,

nl_BE,en_US,en_GB,en_AU,et_EE,fi_FI,fr_FR,fr_CA,gl_ES,de_DE,el_GR,

iw_IL,hi_IN,hu_HU,in_ID,it_IT,ja_JP,ko_KR,lo_LA,lt_LT,nb_NO,fa_IR,

pl_PL,pt_BR,pt_PT,ro_RO,ru_RU,sr_RS,sr_RS_latin,sl_SI,sk_SK,es_ES,

sv_SE,tr_TR,uk_UA,vi_VN

To provide a translation for one of these locales, specify the locale in the file name where the translated
keys will be (for example, Langauge_es.properties holds the Spanish translation).

1298

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#Languages%20and%20Time%20Zones

Where do I Put Language Files?

In an application with only one module that holds all your application’s views (for example, all its JSPs)
and portlet components, just create a src/main/resources/content folder in that module, and place your
Language.properties and Language_xx.properties files there.

After that, make sure any portlet components (the @Component annotation in your -Portlet classes) in the
module include this property:

"javax.portlet.resource-bundle=content.Language"

Providing translated language properties files and specifying the javax.portlet.resource-bundle prop-
erty in your portlet component is all you need to do to have your language keys translated. Then, when the
locale is changed in Liferay DXP, your application’s language keys will be automatically translated.

In amore complicated,well-modularized application, youmight have language keys spread overmultiple
modules providing portlet components and JSP files. Moreover, there might be a fair number of duplicated
language keys between the modules. Thankfully you don’t need to maintain language properties files in each
module.

Creating a Language Module

If you’re crazy about modularity (and you should be), youmight have an application with multiple modules
that provide the view layer. These modules are often called webmodules.

my-application/

my-application-web/

my-admin-application-web/

my-application-content-web/

my-application-api/

my-application-service/

Each of these modules can have language keys and translations to maintain, and there will probably
be duplicate keys. You don’t want to end up with different values for the same key, and you don’t want to
maintain language keys in multiple places. In this case, you need to go even crazier with modularity and
create a newmodule, which we’ll call a language module.

In the root project folder (the one that holds your service, API, and webmodules), create a newmodule
to hold your app’s language keys. For example, here’s the folder structure of a language module called
my-application-lang.

my-application-lang/

bnd.bnd

src/

main/

resources/

content/

Language.properties

Language_ar.properties

Language_bg.properties

...

In the language module, create a src/main/resources/content folder. Put your language properties files
here. A Language.properties file might look like this:

application=My Application

add-entity=Add Entity

1299

Create any translations you want, adding the translation locale ID to the language file name. File
Language_es.propertiesmight look like this:

my-app-title=Mi Aplicación

add-entity=Añadir Entity

On building the language module, Liferay DXP’s ResourceBundleLoaderAnalyzerPlugin detects the
content/Language.properties file and adds a resource bundle capability to the module. A capability is a
contract a module declares to Liferay DXP’s OSGi framework. Capabilities let you associate services with
modules that provide them. In this case, Liferay DXP registers a ResourceBundleLoader service for the
resource bundle capability.

Next, you’ll configure a webmodule to use the language module resource bundle.

Using a Language Module

Amodule or traditional Liferay plugin can use a resource bundle from anothermodule and optionally include
its own resource bundle. OSGi manifest headers Require-Capability and Provide-Capability make this
possible, and it’s especially easy in modules generated from Liferay project templates. Instructions for using
a language module are divided into these environments:

• Using a LanguageModule from aModule
• Using a LanguageModule from a Traditional Plugin

If you’re using bnd with Maven or Gradle, you need only specify Liferay’s -liferay-aggregate-resource-
bundle: bnd instruction–at build time, Liferay’s bnd plugin converts the instruction to Require-Capability
and Provide-Capability parameters automatically. Both approaches are demonstrated.

Using a Language Module from a Module

Modules generated from Liferay project templates have a Liferay bnd build time instruction called -liferay-

aggregate-resource-bundles. It lets you use other resource bundles (e.g., including their language keys)
along with your own. Here’s how to do it:

1. Open your module’s bnd.bnd file.

2. Add the -liferay-aggregate-resource-bundles: bnd instruction and assign it the bundle symbolic
names of modules whose resource bundles to aggregate with the current module’s resource bundle.

-liferay-aggregate-resource-bundles: \

[bundle.symbolic.name1],\

[bundle.symbolic.name2]

For example, a module that uses resource bundles frommodules com.liferay.docs.l10n.myapp1.lang
and com.liferay.docs.l10n.myapp2.langwould set this in its bnd.bnd file:

-liferay-aggregate-resource-bundles: \

com.liferay.docs.l10n.myapp1.lang,\

com.liferay.docs.l10n.myapp2.lang

1300

http://blog.osgi.org/2015/12/using-requirements-and-capabilities.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ResourceBundleLoader.html

The current module’s resource bundle is prioritized over those of the listed modules.

The Shared Language Key sample project is a working example that demonstrates aggregating resource
bundles. You can deploy it in Gradle,Maven, and LiferayWorkspace build environments.

At build time, Liferay’s bnd plugin converts the bnd instruction to Require-Capability and Provide-

Capability parameters automatically. In traditional Liferay plugins, you must specify the parameters manu-
ally.

Note: You can always specify the Require-Capability and Provide- CapabilityOSGi manifest headers
manually, as the next section demonstrates.

Using a Language Module from a Traditional Plugin

To use a language module, from a traditional Liferay plugin you must specify the language module
using Require-Capability and Provide-Capability OSGi manifest headers in the plugin’s liferay-plugin-
package.properties file.

Follow these steps to configure your traditional plugin to use a language module:

1. Open the plugin’s liferay-plugin-package.properties file and add a Require-Capability header that
filters on the language module’s resource bundle capability. For example, if the language module’s
symbolic name is myapp.lang, you’d specify the requirement like this:

Require-Capability: liferay.resource.bundle;filter:="(bundle.symbolic.name=myapp.lang)"

2. In the same liferay-plugin-package.properties file, add a Provide-Capability header that adds the
language module’s resource bundle as this plugin’s (the myapp.web plugin) own resource bundle:

Provide-Capability:\

liferay.resource.bundle;resource.bundle.base.name="content.Language",\

liferay.resource.bundle;resource.bundle.aggregate:String="(bundle.symbolic.name=myapp.lang)";bundle.symbolic.name=myapp.web;resource.bundle.base.name="content.Language";service.ranking:Long="4";\

servlet.context.name=myapp-web

In this case, the myapp.web plugin solely uses the languagemodule’s resource bundle—the resource bundle
aggregate only includes language module myapp.lang.

Aggregating resource bundles comes into play when you want to use your a language module’s resource
bundle in addition to your plugin’s resource bundle. These instructions show you how to do this, while
prioritizing your current plugin’s resource bundle over the language module resource bundle. In this way,
the language module’s language keys compliment your plugin’s language keys.

For example, a portlet whose bundle symbolic name is myapp.web uses keys from language module
myapp.lang, in addition to its own. The portlet’s Provide-Capability and Web-ContextPath OSGi headers
accomplish this.

Provide-Capability:\

liferay.resource.bundle;resource.bundle.base.name="content.Language",\

liferay.resource.bundle;resource.bundle.aggregate:String="(bundle.symbolic.name=myapp.web),(bundle.symbolic.name=myapp.lang)";bundle.symbolic.name=myapp.web;resource.bundle.base.name="content.Language";service.ranking:Long="4";\

servlet.context.name=myapp-web

Let’s examine the example Provide-Capability header.

1301

1. liferay.resource.bundle;resource.bundle.base.name="content.Language" declares that the module
provides a resource bundle whose base name is content.language.

2. The liferay.resource.bundle;resource.bundle.aggregate:String=... directive specifies the list of
bundles whose resource bundles are aggregated, the target bundle, the target bundle’s resource
bundle name, and this service’s ranking:

• "(bundle.symbolic.name=myapp.web),(bundle.symbolic.name=myapp.lang)": The service aggre-
gates resource bundles from bundles bundle.symbolic.name=myapp.web (the current module) and
bundle.symbolic.name=myapp.lang. Aggregate as many bundles as desired. Listed bundles are
prioritized in descending order.

• bundle.symbolic.name=myapp.web;resource.bundle.base.name="content.Language": Override
the myapp.web bundle’s resource bundle named content.Language.

• service.ranking:Long="4": The resource bundle’s service ranking is 4. The OSGi framework
applies this service if it outranks all other resource bundle services that target myapp.web’s
content.Language resource bundle.

• servlet.context.name=myapp-web: The target resource bundle is in servlet context myapp-web.

Now the language keys from the aggregated resource bundles compliment your plugin’s language keys.
Did you know that Liferay DXP’s core language keys are also available to your module? They’re up next.

Using Global Language Properties

If you have Liferay DXP’s source code, you can check out Liferay DXP’s core language properties by looking
in the portal-impl/src/main/content folder. Otherwise, you can look in the portal-impl.jar that’s in your
Liferay bundle.

liferay-portal/portal-impl/src/content/Language_xx.properties

[Liferay Home]/tomcat-[version]/webapps/ROOT/WEB-INF/lib/portal-impl.jar

These keys are available at runtime, so when you use any of Liferay DXP’s default keys in your user
interface code, they’re automagically swapped out for the appropriately translated value. Using Liferay
DXP’s keys where possible saves you time and ensures that your application follows Liferay’s UI conventions.

If you want to generate language files for each supported locale automatically, or to configure your
application to generate translations automatically using the Microsoft Translator API, check out the tutorial
Automatically Generating Language Files.

98.2 Automatically Generating Language Files

If you already have a Language.properties file that holds language keys for your user interface messages, or
even a language module that holds these keys, you’re in the right place.

• Instead of manually creating a language properties file for each locale that’s supported by Liferay,
you can get them all automatically generated for you with one command. The same command also
propagates the keys from the default language file to all translation files.

• You can also generate automatic translations usingMicrosoft’s Translator Text API.

1302

Generating Language Files for Supported Locales

If you want to generate files automatically for all locales supported by Liferay, you must make a small
modification to your application’s build file.

1. Make sure your module’s build includes the com.liferay.lang.builder plugin, by putting the plugin in
build script classpath.

2. Make sure you have a default Language.properties file in src/main/resources/content.

3. Run the gradle buildLang task from your project’s root directory to generate default translation files.

The generated files contain automatic copies of all the keys and values in your default
Language.properties files. That way you don’t have to copy your lanugage keys manually into
all of the files. Run the buildLang task each time you change the default language file.

When the task completes, it prints BUILD SUCCESSFULwith this log output:

Translation is disabled because credentials are not specified

See the next section to learn how to turn translation on and provide credentials.

Here’s what a configuration of the com.liferay.lang.builder plugin looks in a build.gradle file:

buildscript {

dependencies {

classpath 'com.liferay:com.liferay.gradle.plugins.lang.builder:latest.release'

}

repositories {

maven {

url "http://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.lang.builder"

repositories {

maven {

url "http://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Now you can start translating your application’s messages. If you want to configure your app to generate
automatic translations using the Microsoft Translator Text API, keep reading.

Translating Language Keys Automatically

If you’ve configured the com.liferay.lang.builder plugin in your app, you’re almost there. Now you have to
configure Microsoft’s Translator Text API so you can generate automatic translations of your language keys.
You cannot, however, use Liferay’s Lang Builder to automatically translate language keys containing HTML
(e.g., , , <code>, etc.). Language keys containing HTML are automatically copied to all supported
language files.

Note:These translations are best used as a starting point. Amachine translation can’tmatch the accuracy
of a real personwho is fluent in the language. Then again, if you only speak English and you need aHungarian
translation, this is better and faster than your attempts at a manual translation.

1303

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#Languages%20and%20Time%20Zones
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-lang-builder
https://azure.microsoft.com/en-us/services/cognitive-services/translator-text-api/

1. Generate a translation subscription key for the Microsoft Translator Text API. Follow the instructions
here.

2. Make sure the buildLang task knows to use your subscription key for translation by setting the
translateSubscriptionKey property:

buildLang {

translateSubscriptionKey = "my-key"

}

For security reasons you probably don’t want to pass them directly in your application’s build script.
Instead, pass the credentials to a property that’s stored in your local build environment, and pass the
property into your application’s build script.

buildLang {

translateSubscriptionKey = langTranslateSubscriptionKey

}

So what would the complete buildLang configuration look like if you followed all the steps above?

buildscript {

dependencies {

classpath 'com.liferay:com.liferay.gradle.plugins.lang.builder:latest.release'

}

repositories {

maven {

url "http://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.lang.builder"

buildLang {

translateSubscriptionKey = langTranslateSubscriptionKey

}

repositories {

maven {

url "http://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Great! You nowknowhow to generate language files and provide automatic translations of your language
keys.

98.3 Using Liferay's Language Settings
For a given locale, you can override Liferay’s core UI messages. Modifying Language key values in Liferay
provides a lot of localization flexibility in itself, butwe’re always looking for newways to give youmore control.
There are language settings in Liferay’s Language_xx.properties files that give you even more localization
options.

• In the add and edit user forms, configure the name fields that are displayed and the field values
available in select fields. For example, leave out the middle name field if you want, or alter the prefix
selections.

1304

http://docs.microsofttranslator.com/text-translate.html
https://docs.gradle.org/current/userguide/build_environment.html

• Control the directionality of content andmessages in Liferay (left to right or right to left).

To see how these settings are configured, open Liferay’s core Language.properties file in one of two ways:

1. From Liferay’s source code, navigate to

liferay-portal/portal-impl/src/content/Language.properties

2. From a Liferay bundle’s portal-impl.jar.

[Liferay Home]/tomcat-[version]/webapps/ROOT/WEB-INF/lib/portal-impl.jar

Just open the content folder in the Jar to find the language files.

The first section in the Language.properties file is labeled Language settings:

##

Language settings

##

lang.dir=ltr

lang.line.begin=left

lang.line.end=right

lang.user.name.field.names=prefix,first-name,middle-name,last-name,suffix

lang.user.name.prefix.values=Dr,Mr,Ms,Mrs

lang.user.name.required.field.names=last-name

lang.user.name.suffix.values=II,III,IV,Jr,Phd,Sr

Note: To use the language settings mentioned here, you need a module, which is like a magic carpet
on which your code and resources ride triumphantly into Liferay’s OSGi runtime. Refer to the tutorial on
overriding language keys to set up a module with the following characteristics:

• Contains an implementation of ResourceBundle that is registered in the OSGi runtime.

• Contains a Language.properties file for the locale whose properties you want to override.

The user name properties are used to customize certain fields of the add and edit user forms based on a
user’s locale.

Localizing User Names

Liferay’s customers come from all over the world, and we recognize that naming conventions are different
between locales. Liferay’s engineers have made several of the user name fields configurable in Liferay where
user name information is entered or edited.

• Remove certain name fields andmake others appear more than once. Some locale’s needmore than
one last name, for example.

lang.user.name.field.names=prefix,first-name,middle-name,last-name,suffix

• Change the prefix and suffix values for a locale.

1305

lang.user.name.prefix.values=Dr,Mr,Ms,Mrs

lang.user.name.suffix.values=II,III,IV,Jr,Phd,Sr

• Specify which fields are required.

lang.user.name.required.field.names=last-name

Note: Auser’s first name ismandatory in Liferay. Because of this, take these twopoints into consideration
when configuring a locale’s user name settings:

1. The first-name field can’t be removed from the field names list.

lang.user.name.field.names=prefix,first-name,middle-name,last-name,suffix

2. Because first name is required, it’s always implicitly included in the required field names property:

lang.user.name.required.field.names=last-name

Therefore, any fields you enter here are in addition to the first name field. Last name is required by
default, but you can disable it by deleting its value from the property:

lang.user.name.required.field.names=

In that case, only first name would be required.

The properties for changing user name settings are those that begin with lang.user.name in the language
settings section of a locale’s language properties file.

For most of the locales enabled by default the user name properties are specifically tailored to that
location.

locales.enabled=ca_ES,zh_CN,nl_NL,en_US,fi_FI,fr_FR,de_DE,iw_IL,hu_HU,ja_JP,pt_BR,es_ES

For example, these are the English (Language_en.properties) properties for setting user name fields:

lang.user.name.field.names=prefix,first-name,middle-name,last-name,suffix

lang.user.name.prefix.values=Dr,Mr,Ms,Mrs

lang.user.name.required.field.names=last-name

lang.user.name.suffix.values=II,III,IV,Jr,Phd,Sr

Compare those to the Spanish (Language_es.properties) settings:

lang.user.name.field.names=prefix,first-name,last-name

lang.user.name.prefix.values=Sr,Sra,Sta,Dr,Dra

lang.user.name.required.field.names=last-name

Thebiggest difference between the English and Spanish formfields in the images above is that themiddle
name and suffix fields are omitted in the Spanish configuration. Other differences include the specific prefix
values.

¡Muy excelente! Localizing the forms for adding and editing users is accomplished using the same
method by which Liferay’s UImessages are localized: by overriding one of Liferay’s Lanuguage_xx.properties
files.

1306

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#Languages%20and%20Time%20Zones

Figure 98.2: The user name settings impact the way user information and forms appear in Liferay.

Right to Left or Left to Right?

The first three properties in the language settings section are used for changing the direction in which the
language’s characters are displayed. Most languages are read from left to right, but other languages are
meant to be read from right to left (Arabic, Hebrew, and Persian, for example). It can also be changed for
languages that have been traditionally displayed left to right (like English) as a funny practical joke. Just don’t
tell anyone that you got the idea here.

Here’s what the relevant language properties look like for a language that should be displayed from right
to left:

lang.dir=rtl

lang.line.begin=right

lang.line.end=left

1307

Figure 98.3: The Spanish user name settings omit the suffix and middle name fields entirely.

With these customizations yo can transform Liferay’s UI into a user-friendly environment nomatter
where your users are from.

1308

Chapter 99

WYSIWYG Editors

WYSIWYG editors are an important part of content creation. Liferay’s platform supports several different
editors, including CKEditor, TinyMCE, and our flagship, AlloyEditor. This section contains tutorials relating
toWYSIWYG editors on the Liferay platform.

99.1 Adding a WYSIWYG Editor to a Portlet

It’s easy to includeWYSIWYG editors in your portlet, thanks to the <liferay-ui:input-editor /> tag. Below
is an example configuration:

<%@ taglib prefix="liferay-ui" uri="http://liferay.com/tld/ui" %>

<div class="alloy-editor-container">

<liferay-ui:input-editor

contents="Default Content"

cssClass="my-alloy-editor"

editorName="alloyeditor"

name="myAlloyEditor"

placeholder="description"

showSource="true" />

</div>

It is also possible to pass JavaScript functions through the onBlurMethod, onChangeMethod, onFocusMethod,
and onInitMethod attributes. Here is an example configuration that uses the onInitMethod attribute to pass a
JavaScript function called OnDescriptionEditorInit:

<%@ taglib prefix="aui" uri="http://liferay.com/tld/aui" %>

<%@ taglib prefix="liferay-ui" uri="http://liferay.com/tld/ui" %>

<div class="alloy-editor-container">

<liferay-ui:input-editor

contents="Default Content"

cssClass="my-alloy-editor"

editorName="alloyeditor"

name="myAlloyEditor"

onInitMethod="OnDescriptionEditorInit"

placeholder="description"

showSource="true" />

</div>

<aui:script>

1309

function <portlet:namespace />OnDescriptionEditorInit() {

<c:if test="<%= !customAbstract %>">

document.getElementById('<portlet:namespace />myAlloyEditor').setAttribute('contenteditable', false);

</c:if>

}

</aui:script>

Below is an overview of the main attributes of the <liferay-ui:input-editor /> tag:

Attribute Type Description

autoCreate java.lang.String Whether to show the HTML edit
view of the editor initially

contents java.lang.String Sets the initial contents of the
editor

contentsLanguageId java.lang.String Sets the language ID for the input
editor’s text

cssClass java.lang.String A CSS class for styling the
component.

data java.util.Map Data that can be used as the
editorConfig

editorName java.lang.String The editor you want to use
(alloyeditor, ckeditor, tinymce,
simple)

name java.lang.String A name for the input editor. The
default value is editor.

onBlurMethod java.lang.String A function to be called when the
input editor loses focus.

onChangeMethod java.lang.String A function to be called on a
change in the input editor.

onFocusMethod java.lang.String A function to be called when the
input editor gets focus.

onInitMethod java.lang.String A function to be called when the
input editor initializes.

placeholder java.lang.String Placeholder text to display in the
input editor.

showSource java.lang.String Whether to enable editing the
HTML source code of the content.
The default value is true.

See the taglibdocs for the complete list of supported attributes.
As you can see, it’s easy to includeWYSIWYG editors in your portlets!

Related Topics

Adding New Behavior to an Editor
Modifying an Editor’s Configuration
Using the Liferay UI Taglib

1310

@platform-ref@/7.0-latest/taglibs/util-taglib/liferay-ui/input-editor.html

99.2 Modifying an Editor's Configuration

Liferay DXP supports many different kinds of WYSIWYG editors that can be used in portlets to edit content.
Depending on the content you’re editing, youmaywant tomodify the editor to provide a better configuration
for your needs. In this tutorial, you’ll learn how to extend your Liferay supportedWYSIWYG editor to add
new or modify existing configurations exactly how you’d like.

Extending the Editor's Configuration

To modify the editor’s configuration, create a module that has a component that implements the
EditorConfigContributor interface. When you implement this interface, your module will provide a service
that modifies the editors you’d like to change. A simple example of this is provided below.

1. Create an OSGi module.

2. Create a unique package name in themodule’s src directory, and create a new Java class in that package.
The class should extend the BaseEditorConfigContributor class.

3. Directly above the class’s declaration, insert a component annotation:

@Component(

property = {

},

service = EditorConfigContributor.class

)

This annotation declares the implementation class of the Component and specifies the Compo-
nent’s properties. You should implement the EditorConfigContributor interface for this scenario.
The property element is blank in the code snippet above. You need to insert properties that distinguish
the editor’s name, editor’s configuration key, and/or the portlet name where the editor resides. These
three properties can be specified independently or in any variation with each other. You can find out
more about the available properties and how they should be used by reading the Javadoc provided in
the EditorConfigContributor interface.

The following code is a sample of what the @Component annotation could look like whenmodifying an
editor’s configuration:

@Component(

property = {

"editor.config.key=contentEditor", "editor.name=alloyeditor",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsPortlet",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsAdminPortlet",

"service.ranking:Integer=100"

},

service = EditorConfigContributor.class

)

This annotation declares that the following service is applied for the AlloyEditor identified by the
contentEditor configuration key.

1311

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/editor/configuration/EditorConfigContributor.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/editor/configuration/BaseEditorConfigContributor.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/editor/configuration/EditorConfigContributor.html

Note: If you're targeting all editors for a portlet, the

`editor.config.key` is not required. For example, if you just want to target

the Web Content portlet's editors, you can provide the configuration below:

@Component(

property = {"editor.name=ckeditor",

"javax.portlet.name=com_liferay_journal_web_portlet_JournalPortlet",

"service.ranking:Integer=100"

}

Two portlet names are specified (Blogs and Blogs Admin), which means the

service applies to all editors in those portlets. Lastly, the service

ranking is listed, which prioritizes this service over others that are

currently deployed in Liferay DXP.

NOTE: If you want to create a global configuration that applies to an

editor everywhere it's used, you must create two separate configurations:

one configuration that targets just the editor and a second configuration

that targets the Blogs and Blogs Admin portlets. For example, the two

separate configurations below apply the updates to AlloyEditor everywhere

it's used:

Configuration one:

```java

@Component(

immediate = true,

property = {

"editor.name=alloyeditor",

"service.ranking:Integer=100"

},

service = EditorConfigContributor.class

)

```

Configuration two:

```java

@Component(

immediate = true,

property = {

"editor.name=alloyeditor",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsPortlet",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsAdminPortlet",

"service.ranking:Integer=100"

},

service = EditorConfigContributor.class

)

```

4. Now that you’ve specified which editor configurations you want to modify, you must specify what
about themmust change. Add the followingmethod to your new class:

@Override

public void populateConfigJSONObject(

JSONObject jsonObject, Map<String, Object> inputEditorTaglibAttributes,

1312

ThemeDisplay themeDisplay,

RequestBackedPortletURLFactory requestBackedPortletURLFactory) {

}

Thismethod updates the original configuration JSON object with a new configuration. It can even
update or delete the original configuration, or any other configuration introduced by another
EditorConfigContributor. The configuration object contains the configuration to be directly used by
the editor. This means that the configuration object used for this editor may differ from other editors
used in Liferay DXP.

Currently, this method does nothing. You need to add some logic, which you’ll do next.

5. In the populateConfigJSONObjectmethod, you need to instantiate a JSONObject that holds the current
configuration of the editor. For instance, you could do something like this:

JSONObject toolbars = jsonObject.getJSONObject("toolbars");

This gets the editor’s toolbar.

Note: This toolbar configuration is only applicable for the AlloyEditor.

If you choose a configuration that is supported by multiple editors, you

could apply it to them all. To do this, you could specify all the editors

(e.g., `"editor.name=alloyeditor"`, `"editor.name=ckeditor"`,

`ckeditor_bbcode` etc.) in the `@Component` annotation of your

`EditorConfigContributor` implementation, as you did in step 3. Use the

site links provided at the bottom of this tutorial to view each editor's

configuration options and requirements.

Now that you've retrieved the toolbar, you can modify it. You'll do this

next.

6. You’ll modify the editor’s toolbar by adding a camera button. To complete this, extract the Add buttons
out of your toolbar configuration object as a JSONArray, and then add the button to that JSONArray.
The following code adds a Camera button to the editor’s toolbar:

if (toolbars != null) {

JSONObject toolbarAdd = toolbars.getJSONObject("add");

if (toolbarAdd != null) {

JSONArray addButtons = toolbarAdd.getJSONArray("buttons");

addButtons.put("camera");

}

}

The configuration JSON object is passed to the editor with the modifications you’ve implemented in
the populateConfigJSONObjectmethod.

Your Java class is complete! The only thing left to do is generate the module’s JAR file and copy it to your
Portal’s deploy folder. Once the module is installed and activated in your Portal’s service registry, your new
editor configuration is available for use.

Liferay DXP supports several different types ofWYSIWYG editors, which include (among others):

1313

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/json/JSONObject.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/json/JSONArray.html

• AlloyEditor
• CKEditor
• TinyMCE

Make sure to visit each editor’s configuration API to learn what each editor offers for configuration
settings.

Related Topics

Adding New Behavior to an Editor
Embedding Portlets inThemes
Developing Portlets

99.3 Adding New Behavior to an Editor

With the support of several kinds of WYSIWYG editors, Liferay gives you many options to support your
users’ editing needs. Sometimes, however, you can’t get what you want with configuration alone. To help
developers in these situations, Liferay provides a way to programmatically access the editor instance to
create the editor experience you want.

This can be done by using the liferay-util:dynamic-include JavaScript extension point. This allows
anyone to inject JavaScript code right after the editor instantiation to configure/change the editor.

Note: By default, the CKEditor strips empty <i> tags, such as those used for Font Awesome icons, from
published content,when switching between the Code View and the Source View of the editor. You can disable
this behavior by using the ckeditor#onEditorCreate or alloyeditor#onEditorCreate extension points to add
the following code to the editor:

CKEDITOR.dtd.$removeEmpty.i = 0

In this tutorial, you’ll learn how to use the JavaScript extension point in your Liferay supportedWYSIWYG
editor.

Injecting JavaScript into a WYSIWYG Editor

The liferay-util:dynamic-include extension point is available in the JSP files of Liferay DXP’s configurable
editors. This extension point serves as the gateway for injecting JavaScript into your editor instance. To take
advantage of this extension point, you should follow these steps:

1. Create a JS file with the JavaScript code you’d like to execute in your editor. Create the JS file in a folder
that makes sense to reference, since you’ll need to register the file in your module. Also remember that
the extension point is configured to inject the JavaScript code into the editor immediately following
editor initialization.

Some examples of JS files that are injected into the CKEditor are creole_dialog_definition.js, creole_di-
alog_show.js, and dialog_definition.js. These JS files are used by Liferay DXP to redefine which fields
show in different dialogs, depending on what the selected language (HTML, BBCode, Creole) supports.
For example, Creole doesn’t support background color in table cells, so the table cells are removed from
the options displayed to the user when running in Creole mode.

1314

https://alloyeditor.com/api/1.4.1/
http://docs.ckeditor.com/#!/api/CKEDITOR.config
http://www.tinymce.com/wiki.php/Configuration
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/extension/creole_dialog_definition.js
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/extension/creole_dialog_show.js
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/extension/creole_dialog_show.js
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/extension/dialog_definition.js

2. Create a module that can register your new JS file and inject it into your editor instance. Themodule
should have a structure similar to this:

• bnd.bnd

• build.gradle

• gradle/

– wrapper/

* gradle-wrapper.jar

* gradle-wrapper.properties

• gradlew

• gradlew.bat

• src/main/

– java/com/liferay/editor/myeditormodule/

* constants/

· MyEditorModulePortletKeys.java

* internal/

· CKEditorOnDialogDefinitionCreateDynamicInclude.java

– resources/

* META-INF/resources/ckeditor/extension/

· ckeditor_dialog_definition.js

* content/

· Language.properties

3. Create a unique package name in the module’s src directory, and create a new Java class in
that package. To follow naming conventions, your class name should begin with the edi-
tor you’re modifying, followed by custom attributes, and ending with DynamicInclude (e.g.,
CKEditorCreoleOnEditorCreateDynamicInclude.java). Your Java class should implement the Dynam-
icInclude interface.

4. Directly above the class’s declaration, insert the following code:

@Component(immediate = true, service = DynamicInclude.class)

This annotation declares the implementation class of the Component, and specifies to immediately
start the module once deployed to Portal.

1315

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-kernel/src/com/liferay/portal/kernel/servlet/taglib/DynamicInclude.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-kernel/src/com/liferay/portal/kernel/servlet/taglib/DynamicInclude.java

5. If you have not yet inherited the abstract methods from DynamicInclude, do that now. You’ll have two
implementedmethods to edit: include(...) and register(...).

6. In the include(...) method, retrieve the bundle where your custom JS file resides. Then retrieve the
JS file as a URL and inject the contents into the editor. You can view some example code below that
does this for the creole_dialog_definition.js file:

Bundle bundle = _bundleContext.getBundle();

URL entryURL = bundle.getEntry(

"/META-INF/resources/html/editors/ckeditor/extension" +

"/creole_dialog_definition.js");

StreamUtil.transfer(entryURL.openStream(), response.getOutputStream());

In the include(...) method, you can also retrieve editor configurations and choose what JS file to
inject based on the configuration selected by the user. For example, this would be applicable for the
use case that was suggested previously dealing with Creole’s deficiency with displaying background
colors in table cells. You can look at how this could be done by looking at the include(...) method in
the CKEditorCreoleOnEditorCreateDynamicInclude class.

7. Make sure you’ve instantiated your bundle’s context so you can successfully retrieve your bundle. As a
best practice, do this by creating an activation method and then setting the BundleContext as a private
field. Here’s an example:

@Activate

protected void activate(BundleContext bundleContext) {

_bundleContext = bundleContext;

}

private BundleContext _bundleContext;

Thismethod uses the @Activate annotation, which specifies that it should be invoked once the service
component has satisfied its requirements. For this default example, the _bundleContextwas used in
the include(...) method.

8. Now register the editor you’re customizing. For example, if you were injecting JS code into the
CKEditor’s JSP file, the code would look like this:

dynamicIncludeRegistry.register(

"com.liferay.frontend.editor.ckeditor.web#ckeditor#onEditorCreate");

This registers the CKEditor into theDynamic Include registry and specifies that JS codewill be injected
into the editor once it’s created.

Just as you can configure individual JSP pages to use a specific implementation of the available WYSI-
WYG editors, you can use those same implementation options for the registration process. Visit the
Editors section of portal.properties for more details. For example, to configure the Creole implemen-
tation of the CKEditor, you could use the following key:

"com.liferay.frontend.editor.ckeditor.web#ckeditor_creole#onEditorCreate"

That’s it! The JS code that you created is now injected into the editor instance you’ve specified. You’re
now able to use JavaScript to add new behavior to your Liferay supportedWYSIWYG editor!

1316

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/java/com/liferay/frontend/editor/ckeditor/web/internal/servlet/taglib/CKEditorCreoleOnEditorCreateDynamicInclude.java
@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#Editors

Related Topics

Modifying an Editor’s Configuration
Embedding Portlets inThemes
Portlets

1317

Chapter 100

AlloyEditor

AlloyEditor is a modern WYSIWYG editor built on top of CKEDITOR, designed to create modern and
gorgeous web content.

As of Liferay DXP, AlloyEditor is the default WYSIWYG editor in Liferay DXP.Writing content is now
enjoyable, and it has never been so easy!

Figure 100.1: AlloyEditor is the new WYSIWYG editor by default, built on top of CKEditor.

100.1 Creating and Contributing new Buttons to AlloyEditor
It is possible to add additional AlloyEditor functionality through OSGi bundles. This tutorial demonstrates
how to add a button to the editor.

Note: To use the syntax covered here, youmust have AlloyEditor 2.11.0 or higher, which is included in
Liferay DXP 7.0 Fix Pack 90 and Service Pack 13.

1319

In this tutorial, you will learn how to

• Create an OSGi bundle for your own button
• Create a custom button for AlloyEditor
• Contribute your button to the list of available buttons
• Use your custom button in a toolbar in AlloyEditor

Go ahead and get started by creating the OSGi bundle next.

Creating the OSGi Bundle

AlloyEditor is built on React.js and uses jsx to render each button in the editor. Below is the folder structure
for a module that adds a new button:

• frontend-editor-my-button-web

– src

* main

· java - com/liferay/frontend/editor/my/button/web/
· editor

· configuration

· AlloyEditorMyButtonConfigContributor.java

* servlet

· taglib

· AlloyEditorMyButtonDynamicInclude.java

* resources

· META-INF

· resources

· js

· my_button.jsx

– .babelrc - needed since JSX is being compiled

– bnd.bnd(example configuration shown below)

Bundle-Name: Liferay Frontend Editor AlloyEditor My Button Web Bundle-SymbolicName:
com.liferay.frontend.editor.alloyeditor.my.button.web Bundle-Version: 1.0.0 Liferay-
Releng-Module-Group-Description: Liferay-Releng-Module-Group-Title: Rich Text Editors
Web-ContextPath: /frontend-editor-alloyeditor-my-button-web

1320

– build.gradle(contents shown below)

configJSModules { enabled = false }

dependencies { provided group: “com.liferay.portal”, name: “com.liferay.portal.kernel”, version:
“2.0.0” provided group: “javax.servlet”, name: “javax.servlet-api”, version: “3.0.1” provided
group: “org.osgi”, name: “org.osgi.service.component.annotations”, version: “1.3.0” }

transpileJS { bundleFileName = “js/buttons.js” globalName = “AlloyEditor.Buttons”modules =
“globals” srcIncludes = “**/*.jsx” }

– package.json(contents shown below)

{ “devDependencies”: { “babel-preset-react”: “^6.11.1”, “metal-cli”: “^2.0.0” }, “name”: “frontend-
editor-alloyeditor-my-button-web”, “version”: “1.0.0” }

The contents of some of the files have been added as well, since the build gradle file requires some
customizing.

Now that your OSGi bundle is configured, you can learn how to create buttons for the AlloyEditor next.

Creating the Button

Below is an example configuration for a JSX file that creates a new button:

/* global React, ReactDOM AlloyEditor ⁎/

(function() {

'use strict';

var React = AlloyEditor.React;

var ButtonMyButton = React.createClass(

{

mixins: [AlloyEditor.Compat.ButtonStateClasses],

displayName: 'ButtonMyButton',

propTypes: {

editor: React.PropTypes.object.isRequired

},

statics: {

key: 'myButton'

},

/**

* Lifecycle. Renders the UI of the button.

*

* @method render

* @return {Object} The content which should be rendered.

⁎/

render: function() {

var cssClass = 'ae-button ' + this.getStateClasses();

return (

<button className={cssClass}

onClick={this._requestExclusive}

tabIndex={this.props.tabIndex}>

<small className="ae-icon small">

Alt

</small>

</button>

);

},

/**

* @protected

* @method _doSomething

* @param {MouseEvent} event

⁎/

_doSomething: function(event) {

console.log('do something!');

}

1321

}

);

AlloyEditor.Buttons[ButtonMyButton.key] = AlloyEditor.ButtonMyButton

= ButtonMyButton;

}());

The configuration above creates a new button called ButtonMyButton. The key aspects to note here are the
lines that reference the global AlloyEditor. You can create your own JavaScript functions to interact with
your button.

Now that you’ve seen how you can use a JSX file to create a new button, you can learn how to use your
button in the editor next.

Contributing the Button

The next step is to add your button to the list of already available buttons. This can be achieved thanks to
some smartly placed <liferay-util:dynamic-include /> tags in the editor’s infrastructure. To make your
button available in the AlloyEditor, you must extend the BaseDynamicInclude class. Below is an example
configuration that extends this class:

package com.liferay.frontend.editor.alloyeditor.my.button.web.servlet.taglib;

import com.liferay.portal.kernel.servlet.taglib.BaseDynamicInclude;

import com.liferay.portal.kernel.servlet.taglib.DynamicInclude;

import com.liferay.portal.kernel.theme.ThemeDisplay;

import com.liferay.portal.kernel.util.PortalUtil;

import com.liferay.portal.kernel.util.StringBundler;

import com.liferay.portal.kernel.util.WebKeys;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletContext;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

@Component(immediate = true, service = DynamicInclude.class)

public class AlloyEditorMyButtonDynamicInclude extends BaseDynamicInclude {

@Override

public void include(

HttpServletRequest request, HttpServletResponse response,

String key)

throws IOException {

ThemeDisplay themeDisplay = (ThemeDisplay)request.getAttribute(

WebKeys.THEME_DISPLAY);

PrintWriter printWriter = response.getWriter();

StringBundler sb = new StringBundler(7);

sb.append("<script src=\"");

sb.append(themeDisplay.getPortalURL());

sb.append(PortalUtil.getPathProxy());

sb.append(_servletContext.getContextPath());

sb.append("/js/buttons.js");

sb.append("\" ");

sb.append("type=\"text/javascript\"></script>");

printWriter.println(sb.toString());

1322

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/BaseDynamicInclude.html

}

@Override

public void register(DynamicIncludeRegistry dynamicIncludeRegistry) {

dynamicIncludeRegistry.register(

"com.liferay.frontend.editor.alloyeditor.web#alloyeditor#" +

"additionalResources");

}

@Reference(

target = "(osgi.web.symbolicname=com.liferay.frontend.editor.alloyeditor.my.button.web)"

)

private ServletContext _servletContext;

}

Now that your button is included, you can learn how to make the button available in the editor’s toolbar
next.

Using the Button in a Toolbar

As explained in the Modifying an Editor’s Configuration tutorial, you can configure which buttons show in
the AlloyEditor toolbars by adding your own EditorConfigContributor. This file allows you to specify where
in the toolbar your button should appear. The example configuration below doesn’t specify a portlet name, so
the button is added to the global AlloyEditor.

package com.liferay.frontend.editor.alloyeditor.my.button.web.editor.configuration;

import com.liferay.portal.kernel.editor.configuration.BaseEditorConfigContributor;

import com.liferay.portal.kernel.editor.configuration.EditorConfigContributor;

import com.liferay.portal.kernel.json.JSONArray;

import com.liferay.portal.kernel.json.JSONFactoryUtil;

import com.liferay.portal.kernel.json.JSONObject;

import com.liferay.portal.kernel.portlet.RequestBackedPortletURLFactory;

import com.liferay.portal.kernel.theme.ThemeDisplay;

import java.util.Map;

import java.util.Objects;

import org.osgi.service.component.annotations.Component;

@Component(

property = {"editor.name=alloyeditor", "service.ranking:Integer=1000"},

service = EditorConfigContributor.class

)

public class AlloyEditorMyButtonConfigContributor

extends BaseEditorConfigContributor {

@Override

public void populateConfigJSONObject(

JSONObject jsonObject, Map<String, Object> inputEditorTaglibAttributes,

ThemeDisplay themeDisplay,

RequestBackedPortletURLFactory requestBackedPortletURLFactory) {

JSONObject toolbarsJSONObject = jsonObject.getJSONObject("toolbars");

if (toolbarsJSONObject == null) {

toolbarsJSONObject = JSONFactoryUtil.createJSONObject();

}

JSONObject stylesJSONObject = toolbarsJSONObject.getJSONObject(

"styles");

if (stylesJSONObject == null) {

stylesJSONObject = JSONFactoryUtil.createJSONObject();

1323

}

JSONArray selectionsJSONArray = stylesJSONObject.getJSONArray(

"selections");

for (int i = 0; i < selectionsJSONArray.length(); i++) {

JSONObject selection = selectionsJSONArray.getJSONObject(i);

if (Objects.equals(selection.get("name"), "text")) {

JSONArray buttons = selection.getJSONArray("buttons");

buttons.put("myButton");

}

}

stylesJSONObject.put("selections", selectionsJSONArray);

toolbarsJSONObject.put("styles", stylesJSONObject);

jsonObject.put("toolbars", toolbarsJSONObject);

}

}

There you have it. Now you know how to create and use custom buttons in the AlloyEditor!

Related Topics

Adding aWYSIWYG Editor to a Portlet
Modifying an Editor’s Configuration

100.2 Using the Default CKEditor Plugins Bundled with AlloyEditor
You can customize an editor’s configuration to include several modifications, such as adding new buttons
and adding new behaviors. You can also use existing CKEditor plugins in AlloyEditor. Several CKEditor
plugins are packaged with Liferay DXP’s AlloyEditor, so you can use them with just a few configuration
adjustments. This tutorial showshowtouse theCKEditorpluginsbundledwithLiferayDXP’sAlloyEditor. The
com.liferay.docs.myblogseditorconfigcontributormodule is used as an example throughout this tutorial.

Follow these steps:

1. Create a module to modify the AlloyEditor’s configuration. The example boilerplate belowmodifies
the AlloyEditor’s configuration for the Blogs and Blogs Admin portlets:

@Component(

immediate = true,

property = {

"editor.config.key=contentEditor",

"editor.name=alloyeditor",

"editor.name=ckeditor",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsPortlet",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsAdminPortlet",

"service.ranking:Integer=100"

},

service = EditorConfigContributor.class

)

public class MyBlogsEditorConfigContributor

extends BaseEditorConfigContributor {

@Override

public void populateConfigJSONObject(

JSONObject jsonObject, Map<String, Object> inputEditorTaglibAttributes,

1324

https://github.com/liferay/liferay-docs/tree/7.0.x/develop/tutorials/code/my-blogs-editor-config-contributor

ThemeDisplay themeDisplay,

RequestBackedPortletURLFactory requestBackedPortletURLFactory) {

}

}

2. Add additional plugins to the AlloyEditor via the extraPlugins JSON object. To add a CKEditor plugin,
extract the current list of extraPlugins from your editor configuration object as a String:

String extraPlugins = jsonObject.getString("extraPlugins");

3. Choose the plugin(s) you want to use from the default CKEditor plugins bundled with Liferay DXP’s
AlloyEditor.

4. Add the CKEditor plugin(s) you want to use to the extraPlugins configuration. Liferay DXP’s AlloyEdi-
tor also comes with several plugins to bridge the gap between the CKEditor’s UI and the AlloyEditor’s
UI.These are prefixed with ae_. We recommend that you include them all to ensure compatibility.
The example below checks for existing extraPlugins and adds the font CKEditor plugin along with its
required Rich Combo plugin dependency and the remaining UI bridge plugins:

if (Validator.isNotNull(extraPlugins)) {

extraPlugins = extraPlugins + ",ae_uibridge,ae_autolink,ae_buttonbridge,ae_menubridge,ae_panelmenubuttonbridge,ae_placeholder,ae_richcombobridge,font";

}

else {

extraPlugins = "ae_uibridge,ae_autolink,ae_buttonbridge,ae_menubridge,ae_panelmenubuttonbridge,ae_placeholder,ae_richcombobridge,font";

}

jsonObject.put("extraPlugins", extraPlugins);

Note: Make sure the `ae_uibridge` plugin appears first, followed by

the remaining UI bridge plugins, and finally the CKEditor plugin(s).

5. If the plugin includes buttons, add them in the appropriate toolbar. The configuration below retrieves
the Text Selection Toolbar’s buttons and adds the font plugin’s Font and FontSize buttons to it:

JSONObject toolbarsJSONObject = jsonObject.getJSONObject("toolbars");

if (toolbarsJSONObject == null) {

toolbarsJSONObject = JSONFactoryUtil.createJSONObject();

}

JSONObject stylesJSONObject = toolbarsJSONObject.getJSONObject(

"styles");

if (stylesJSONObject == null) {

stylesJSONObject = JSONFactoryUtil.createJSONObject();

}

JSONArray selectionsJSONArray = stylesJSONObject.getJSONArray(

"selections");

for (int i = 0; i < selectionsJSONArray.length(); i++) {

JSONObject selection = selectionsJSONArray.getJSONObject(i);

1325

https://ckeditor.com/cke4/addon/font
https://ckeditor.com/cke4/addon/richcombo

if (Objects.equals(selection.get("name"), "text")) {

JSONArray buttons = selection.getJSONArray("buttons");

buttons.put("Font");

buttons.put("FontSize");

}

}

stylesJSONObject.put("selections", selectionsJSONArray);

toolbarsJSONObject.put("styles", stylesJSONObject);

jsonObject.put("toolbars", toolbarsJSONObject);

Note: A plugin’s buttons may not have the same name as the plugin. You can find the button names for
a plugin by searching its plugin.js file for editor.ui.addButton. Note that button names are case sensitive
andmay be aliased in the addButton()method, such as the clipboard plugin’s Cut, Copy, and Paste buttons.

Below is the full example *EditorConfigContributor class that adds the font plugin to the AlloyEditor for
the Blogs and Blogs Admin portlets:

package com.liferay.docs.myblogseditorconfigcontributor;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import java.util.Objects;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import com.liferay.portal.kernel.editor.configuration.BaseEditorConfigContributor;

import com.liferay.portal.kernel.editor.configuration.EditorConfigContributor;

import com.liferay.portal.kernel.json.JSONArray;

import com.liferay.portal.kernel.json.JSONFactoryUtil;

import com.liferay.portal.kernel.json.JSONObject;

import com.liferay.portal.kernel.portlet.RequestBackedPortletURLFactory;

import com.liferay.portal.kernel.theme.ThemeDisplay;

import com.liferay.portal.kernel.util.Portal;

import com.liferay.portal.kernel.util.Validator;

/**

* @author liferay

⁎/

@Component(

immediate = true,

property = {

"editor.config.key=contentEditor",

"editor.name=alloyeditor",

"editor.name=ckeditor",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsPortlet",

"javax.portlet.name=com_liferay_blogs_web_portlet_BlogsAdminPortlet",

"service.ranking:Integer=100"

},

service = EditorConfigContributor.class

)

public class MyBlogsEditorConfigContributor

extends BaseEditorConfigContributor {

@Override

public void populateConfigJSONObject(

1326

https://github.com/ckeditor/ckeditor-dev/blob/release/4.0.x/plugins/clipboard/plugin.js#L341-L350

JSONObject jsonObject, Map<String, Object> inputEditorTaglibAttributes,

ThemeDisplay themeDisplay,

RequestBackedPortletURLFactory requestBackedPortletURLFactory) {

String extraPlugins = jsonObject.getString("extraPlugins");

if (Validator.isNotNull(extraPlugins)) {

extraPlugins = extraPlugins + ",ae_uibridge,ae_autolink,ae_buttonbridge,ae_menubridge,ae_panelmenubuttonbridge,ae_placeholder,ae_richcombobridge,font";

}

else {

extraPlugins = "ae_uibridge,ae_autolink,ae_buttonbridge,ae_menubridge,ae_panelmenubuttonbridge,ae_placeholder,ae_richcombobridge,font";

}

jsonObject.put("extraPlugins", extraPlugins);

JSONObject toolbarsJSONObject = jsonObject.getJSONObject("toolbars");

if (toolbarsJSONObject == null) {

toolbarsJSONObject = JSONFactoryUtil.createJSONObject();

}

JSONObject stylesJSONObject = toolbarsJSONObject.getJSONObject(

"styles");

if (stylesJSONObject == null) {

stylesJSONObject = JSONFactoryUtil.createJSONObject();

}

JSONArray selectionsJSONArray = stylesJSONObject.getJSONArray(

"selections");

for (int i = 0; i < selectionsJSONArray.length(); i++) {

JSONObject selection = selectionsJSONArray.getJSONObject(i);

if (Objects.equals(selection.get("name"), "text")) {

JSONArray buttons = selection.getJSONArray("buttons");

buttons.put("Font");

buttons.put("FontSize");

}

}

stylesJSONObject.put("selections", selectionsJSONArray);

toolbarsJSONObject.put("styles", stylesJSONObject);

jsonObject.put("toolbars", toolbarsJSONObject);

}

}

Now you know how to use Liferay DXP’s bundled CKEditor plugins in its AlloyEditor!

Related Topics

Modifying an Editor’s Configuration
Creating and Contributing New Buttons to AlloyEditor
Adding New Behavior to an Editor

1327

Chapter 101

JavaScript Module Loaders

JavaScriptmodules encapsulate code into useful units that export their functions. Structuring an application
this way makes it easier to work with in these ways:

• Other modules can explicitly require this piece of code.
• Structuring an application this way makes it easier to see the broader scope.
• Modular applications keep related functionality close together.
• Modularized code makes it easier to find what you’re looking for.

This section contains tutorials relating to the different JavaScript Module Loaders included present on
the Liferay platform.

101.1 Configuring Modules for Liferay DXP's Loaders

To load your modules in Liferay DXP, you need to know when they are needed, where they are located at
build time, if you want to bundle them together or load them independently, and youmust assemble them at
runtime. Keeping track of all these tasks can be a hassle. Liferay DXP’s module Loaders (YUI Loader and
AMD Loader) provide a streamlined process that handles loading for you, which saves you time.

ES2015 *.es.js files are automatically transpiled to AMDmodules and configured, so no additional work
is needed for the Loader to recognize them. Other JavaScript modules, however, require more information
to use Liferay DXP’s Loaders.

Manual configuration is required for the following use cases:

• Custom AUI and YUI modules
• External libraries with named AMDmodules
• External libraries with global exports that you want to load asynchronously or from other modules
• Initialization code

This tutorial covers these concepts:

• How to configure JavaScript modules to use Liferay DXP’s Loaders
• How to use your loaded JavaScript modules in a portlet or a JavaScript

1329

See the Preparing your JavaScript Files for ES2015 tutorial to learn how to use ES2015 in your JavaScript
modules.

Get started by configuring your module next.

Configuring your Module

To use the loaders youmust first define yourmodules. Thismetadata, known as themodule definition, provides
details such as dependencies, name and location, when they should be loaded, andmore.

Themodule is defined using a configuration file. Liferay DXP uses config.js as a naming convention,
but you can use whatever name you prefer.

Youmust specify your configuration file’s location in your bundle’s bnd.bnd file, so Liferay DXP knows
where to access it. You’ll learn how to do this next.

Configuring your Bundle's BND File

Follow these steps to configure your BND file:

1. Open your bundle’s bnd.bnd file and add the Liferay-JS-Config header to point to the configuration
file that contains the module’s definition.

For example, the header below points to a config.js file in the module’s bundle:

Liferay-JS-Config: /META-INF/resources/config.js

2. Next, add a web context path to retrieve resources for your module:

Web-ContextPath: /my-bundle-name

Now that Liferay DXP knows how to find the file, you can write it next.

Writing the Configuration File

Follow these steps to define your module:

1. Create a configuration file, for example config.js, in the location you specified above.

For example:

src/main/resources/META-INF/resources

2. Identify the loader your module requires.

The type of module you are configuring determines the loader youmust use in your configuration file.

YUI and AlloyUI modules: Use the YUI.applyConfig mechanism to provide the module informa-
tion. Note that AUI modules use the AUI mechanism built on top of the existing YUI mechanism:
AUI().applyConfig. You can also use this mechanism to override Liferay DXP’s default YUI/AUI mod-
ules.

AMDor global libraries: Use the Liferay.Loader.addModulemechanism to provide the module infor-
mation.

Initializationcode: requiresno loadermechanism. Simply addyour code to themodule’s configuration
file.

1330

Figure 101.1: Custom JavaScript modules must use the Liferay-JS-Config BND header to point to a configuration file with the module definition.

3. Add the module’s definition to the configuration file using the loader mechanism you identified in
step 2.

Below are some example configurations for each use case.

CustomAUImodule config.js example com.liferay.map.commonmodule:

;(function() {

AUI().applyConfig(

{

groups: {

mapbase: {

base: MODULE_PATH + '/js/',

combine: Liferay.AUI.getCombine(),

modules: {

'liferay-map-common': {

path: 'map.js',

requires: [

'aui-base'

]

}

},

root: MODULE_PATH + '/js/'

}

}

}

1331

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/map/map-common/src/main/resources/META-INF/resources/js/config.js

);

})();

Note: You can use the MODULE_PATH variable to reference your module’s location in relative paths. This
mechanism is more robust and reliable than hard coded paths in the event of modified system settings.

The parameters used in the AUI module example are defined below:
groups: A list of group definitions. Each group can contain definitions for base, comboBase, Combine, and

a list of modules.
base:The base directory to fetch the module from.
combine:Whether to use a combo service to reduce the number of HTTP connections required to load

your dependencies. Best practice is to use Liferay.AUI.getCombine() as the value, as Liferay DXP’s own
modules do. If js_fast_load in enabled in your theme, Liferay.AUI.getCombine() returns true, otherwise it
returns false. Hard coding a value can result in odd or unexpected behavior, and is not recommended.

modules: A list of module definitions.
path:The path to the script from base. This parameter is required.
requires: An array of modules required by this component.
See the Loader.addModulemethod for a full list of the supported module metadata.
root:The root path to prepend to module names for the combo service. Ex: 2.5.2/build.
See the Loader class for a full list of available methods and properties.
CustomAMDmodule config.js example com.liferay.frontend.js.polyfill.babel.webmodule:

Liferay.Loader.addModule(

{

dependencies: [],

exports: '_babelPolyfill',

name: 'polyfill-babel',

path: MODULE_PATH + 'browser-polyfill.min.js'

}

);

The parameters used in the custom AMDmodule example are defined below:
dependencies: An array of module dependencies.
exports:The value, as a string, that the module exports to the global namespace. This is used for non-

AMDmodules. For example if your module exposes the global attribute window.MyLibrary, then you can set
exports = 'MyLibrary' to let the loader know when this module is done loading.

name:The name of the module.
path: Sets the path of the module. If omitted, the module name value will be used as the path.
fullpath: Sets the full path to the module. This property should be used instead of the path property

when the module isn’t located in Portal. For example, you can use the fullpath property to load a library
from an external CDN: fullPath: 'https://web/address/external-library.js'.

Library initialization codemodule config.js example com.liferay.frontend.js.metal.webmodule:

window.__METAL_COMPATIBILITY__ = {

renderers: ['soy']

};

Although the example above contains library configuration code, you could add any initialization code
that you require.

Liferay DXP automatically collects all the module definitions in a single request at startup, so you don’t
need to be concerned about the timing and placement of their configuration.

Now that your module is configured, you can learn how to use it in Liferay DXP next.

1332

http://alloyui.com/api/classes/Loader.html#method_addModule
http://alloyui.com/api/classes/Loader.html
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-js/frontend-js-polyfill-babel-web/bnd.bnd
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-js/frontend-js-metal-web/src/main/resources/META-INF/resources/config.js

Using your Module

Once your module is configured, you have a few ways in which you can use it in Liferay DXP.
This example is configured to use a module in the JSP of a portlet, via the aui:script’s require attribute:

<aui:script require="relative/path/to/module/module-name">

// variable `relativePathToModuleModuleName` is available here

</aui:script>

To adhere to JavaScript standards, references to the module within the script tag are named after the
require value, in camel-case and with all invalid characters removed. For more information on using your
module in a portlet, see the Using ES2015 Modules in your Portlet tutorial.

You can also use the module in a generic JavaScript:

<script>

Liferay.Loader.require('module-name', function (moduleName) {

// variable `moduleName` is available here

});

</script>

Note: Using Liferay.Loader.require rather than just require is safer if you plan to hide the Loader by
disabling the exposeGlobal option.

In Liferay DXP 7.1, exposeGlobalwill be disabled by default.

Now you know how to load your custom JavaScript modules and global libraries in Liferay DXP!

Related Topics

Preparing your JavaScript Files for ES2015
Using ES2015 Modules in your Portlet
Overriding Liferay DXP’s Default YUI and AUIModules

101.2 Using External Libraries

You can use external (i.e., anything but Metal.js, jQuery, or Lodash, which are included in Liferay DXP)
JavaScript libraries in your portlets. There are a fewmethods you can use to make external libraries available.
Themethod you should choose depends on the external libraries you plan to use and how you plan to use
them (as modules or as browser globals).

This tutorial covers how to adapt external libraries for Liferay’s JavaScript Loaders.
Go ahead and get started.

Configuring Libraries to Support UMD

If you’re the owner of the library, you should make sure that it supports UMD (Universal Module Definition).
You can configure your code to support UMDwith the template shown below:

// Assuming your "module" will be exported as "mylibrary"

(function (root, factory) {

if (typeof Liferay.Loader.define === 'function' && Liferay.Loader.define.amd) {

// AMD. Register as a "named" module.

Liferay.Loader.define('mylibrary', [], factory);

} else if (typeof module === 'object' && module.exports) {

// Node. Does not work with strict CommonJS, but

1333

https://github.com/umdjs/umd

// only CommonJS-like environments that support module.exports,

// like Node.

module.exports = factory();

} else {

// Browser globals (root is window)

root.mylibrary = factory();

}

}(this, function () {

// Your library code goes here

return {};

}));

Next you can learn how to load external libraries as browser globals.

Loading Libraries as Browser Globals

If you want to use a library that doesn’t export itself as a namedmodule (as is the case for many plugins) or
load the library as a browser global, follow the steps in this section.

Note:These steps only apply to users on Liferay Portal CE 7.0 GA4, Liferay Digital Enterprise 7.0 SP2 (Fix
Pack 8), or lower patch levels. If you’re on a higher patch level, follow the steps in the Using Libraries that
You Host section.

Follow these steps to load your libraries as browser globals:

1. Add a <script> tag with the following content before loading your module:

<script>

Liferay.Loader.define._amd = Liferay.Loader.define.amd;

Liferay.Loader.define.amd = false;

</script>

2. Next, add a <script> tag to load the module itself. Below is an example configuration:

<script type="text/javascript" src="${javascript_folder}/library.js">

</script>

3. Finally, cancel the change made in the previous step, by adding the following <script> tag:

<script>

Liferay.Loader.define.amd = Liferay.Loader.define._amd;

</script>

This approach lets you load your modules as browser globals. Next, you can learn how to load libraries
that you host.

Using Libraries That You Host

If you’re hosting the library (and not loading it from a CDN), youmust hide the Liferay AMD Loader to use
your Library.

If you’re running Liferay Portal CE 7.0 GA4, Liferay Digital Enterprise 7.0 SP2 (Fix Pack 8), or a higher
patch level, you can hide the Liferay AMD Loader through the control panel. Follow these steps:

1334

1. Open the Control Panel, navigate to Configuration → System Settings.

2. Click JavaScript Loader under the Foundation tab.

3. Uncheck the expose global option.

Note: Once this option is unchecked, you can no longer use the Liferay.Loader.define or
Liferay.Loader.require functions in your app. Also, if you’re using third party libraries that are
AMD compatible, they could stop working after unchecking this option because they usually use global
functions like require() or define().

If you’re running a lower patch level than Liferay Portal CE 7.0 GA4 or Liferay Digital Enterprise 7.0 SP2
(Fix Pack 8), follow these steps to hide the Liferay AMD Loader:

1. Name the library in the define function, as covered in the Configuring Libraries to Support UMD
section. Below is an example configuration:

Liferay.Loader.define('mylibrary', [], factory);

2. Remove theUMDwrapper if (typeof Liferay.Loader.define === 'function' && Liferay.Loader.define.amd)

or update the UMDwrapper to match the one below:

if (false && typeof Liferay.Loader.define === 'function' && Liferay.Loader.define.amd)

3. Configure your bundle’s build task to run the configJSModules task over the library.

This task names the library and generates the appropriate loader configuration for you.

Now you know how to adapt external libraries for Liferay’s JavaScript Loaders.

Related Topics

ConfiguringModules for Liferay Portal’s Loaders
Liferay AMDModule Loader
Using ES2015 Modules in Your Portlet

101.3 Liferay AMD Module Loader

The Liferay AMDModule Loader is a JavaScript module loader.

What is a JavaScript module?

A JavaScript module encapsulates a piece of code into a useful unit that exports its capability/value. This
makes it easy for other modules to explicitly require this piece of code. Structuring an application this way
makes it easier to see the broader scope, easier to find what you’re looking for, and keeps related pieces
close together. This way of coding is a specification for the JavaScript language called Asynchronous Module
Definition, or AMD.

1335

https://github.com/liferay/liferay-amd-loader#amd-module-loader

Purpose of Liferay AMD Module Loader

A normal web page usually loads JavaScript files via HTML script tags. That’s fine for small websites, but
when developing large scale web applications, a more robust organization and loader is needed. Amodule
loader allows an application to load dependencies easily by specifying a string that identifies the module
name.

Now that you know the purpose of the Liferay AMDModule Loader, you can learn how to definemodules
next.

Defining a Module

The Liferay AMDModule loader works with JavaScript modules that are in the AMD format. Here is a basic
example of the definition of an AMDmodule:

Liferay.Loader.define('my-dialog', ['my-node', 'my-plugin-base'], function(myNode, myPluginBase) {

return {

log: function(text) {

console.log('module my-dialog: ' + text);

}

};

});

You can specify to load the module when another module is triggered or when a given condition is met:

Liferay.Loader.define('my-dialog', ['my-node', 'my-plugin-base'], function(myNode, myPluginBase) {

return {

log: function(text) {

console.log('module my-dialog: ' + text);

}

};

}, {

condition: {

trigger: 'my-test',

test: function() {

var el = document.createElement('input');

return ('placeholder' in el);

}

},

path: 'my-dialog.js'

});

The configuration above specifies that this module should be loaded automatically, if the developer
requests the my-testmodule under the given condition.

Next you can learn how to load a module.

Loading a Module

Loading amodule is as easy as passing themodule name to the Liferay.Loader.requiremethod. The example
below loads a module called my-dialog:

Liferay.Loader.require('my-dialog', function(myDialog) {

// your code here

}, function(error) {

console.error(error);

});

Next you can learn how to mapmodule names.

1336

Mapping Module Names

You canmapmodule names to specific versions or other naming conventions. The example belowmaps the
liferay and liferay2modules to liferay@1.0.0:

__CONFIG__.maps = {

'liferay': 'liferay@1.0.0',

'liferay2': 'liferay@1.0.0'

};

Mapping a module changes its name to the value specified in the map. Take this require value for
example:

Liferay.Loader.require('liferay/html/js/autocomplete'...)

Under the hood, this is the same as the value shown below:

Liferay.Loader.require('liferay@1.0.0/html/js/autocomplete'...)

Using Liferay AMD Module Loader in Liferay DXP

Tools, like the Liferay AMDModule Config Generator, have been integrated into Liferay DXP to make it easy
for developers to create and loadmodules. Here’s how it works:

1. TheModule Config Generator scans your code and looks for AMDmodule Liferay.Loader.define(...)
statements.

2. It then names the module if it is not named already.

3. It uses that information, along with the listed dependencies, as well as any other configurations
specified, to create a config.json file. Below is an example of a generated config.json file:

{

"frontend-js-web@1.0.0/html/js/parser": {

"dependencies": []

},

"frontend-js-web@1.0.0/html/js/list-display": {

"dependencies": ["exports"]

},

"frontend-js-web@1.0.0/html/js/autocomplete": {

"dependencies": ["exports", "./parser", "./list-display"]

}

}

This configuration object tells the loader which modules are available, where they are, and what depen-
dencies they require.

Now you know all about the Liferay AMDModule Loader!

Related Topics

ConfiguringModules for Liferay Portal’s Loaders

101.4 Loading Modules with AUI Script in Liferay DXP
The aui:script tag is a JSP tag that loads JavaScript in script tags on the page, while ensuring that certain
resources are loaded before executing.

1337

https://github.com/liferay/liferay-module-config-generator

Using aui:script

The aui:script tag supports the following options:

• require: Requires an AMDmodule that will be loaded with the Liferay AMDModule Loader.
• use: Uses an AlloyUI/YUI module that is loaded via the YUI loader.
• position: The position the script tag is put on the page. Possible options are inline or auto.
• sandbox: Whether to wrap the script tag in an anonymous function. If set to true, in addition to the
wrapping, $ and _ are defined for jQuery and underscore.

Next you can learn how to load ES2015 andMetal.js modules.

Loading ES2015 and Metal.js Modules

You can use aui:script to load your ES2015 andMetal.js modules like this:

<aui:script require="metal-clipboard/src/Clipboard">

new metalClipboardSrcClipboard.default();

</aui:script>

This resolves the dependencies of the registered Clipboard.js and loads them in order until all of them
are satisfied and the requested module can be safely executed.

In the browser, the aui:script translates to the full HTML shown below:

<script type="text/javascript">

Liferay.Loader.require("metal-clipboard/src/Clipboard", function(metalClipboardSrcClipboard) {

(function() {

new metalClipboardSrcClipboard.default();

})()

}, function(error) {

console.error(error)

});

</script>

Next you can learn how to load AlloyUI modules.

Loading AlloyUI Modules

You can use the use attribute to load AlloyUI/YUI modules:

<aui:script use="aui-base">

A.one('#someNodeId').on(

'click',

function(event) {

alert('Thank you for clicking.')

}

);

</aui:script>

This loads the aui-base AlloyUI component andmakes it available to the code inside the aui:script.
In the browser, the aui:script translates to the full HTML shown below:

<script type="text/javascript">

AUI().use("aui-base",

function(A){

A.one('#someNodeId').on(

'click',

function(event) {

alert('Thank you for clicking.')

1338

https://github.com/liferay/liferay-amd-loader#amd-module-loader

}

);

}

);

</script>

Next you can learn how to load AlloyUI modules together with ES2015 andMetal.js modules.

Loading AlloyUI Modules and ES2015 and Metal.js Modules Together

Youmay want to load an AUImodule along with an ES2015 module or Metal.js module in an aui:script. The
aui:script tag doesn’t support both the require and use attributes in the same configuration. Not to worry
though. You canuse the aui:script’s require attribute to load theES2015 andMetal.jsmodules,while loading
the AUI module(s) with the AUI().use() function within the script. Below is an example configuration:

<aui:script require="path-to/metal/module">

AUI().use(

'liferay-aui-module',

function(A) {

let var = pathToMetalModule.default;

}

);

</aui:script>

Now you know how to loadmodules with the aui:script tag!

Related Topics

ConfiguringModules for Liferay Portal Loaders

1339

Chapter 102

Liferay JavaScript APIs

The Liferay JavaScript object is populated with some helpful tools. This section contains a comprehensive
list of some of the most useful utilities you can find inside the Liferay object.

102.1 Liferay ThemeDisplay

In Java, developers are used to being able to find lots of context information at runtime. You can learn about
what user is browsing your application, what page it’s on, what site it’s in, and lots more. Wouldn’t it be great
if you could access that same information in JavaScript? You can! You can use Liferay DXP’s ThemeDisplay
JavaScript object!

It’s a part of the Liferay global object that’s automatically available to you in Liferay DXP at runtime.
You can refer to the object as Liferay.ThemeDisplay. The ThemeDisplay object provides information onmany
aspects of a portal. It can identify the portal instance, the current user, the user’s language, and the user’s
navigational context. It can tell you the paths to a portlet’s scripts and images, a theme’s images and files,
and a portal’s main folder. And it lets you know if a user is signed in and if the user is being impersonated.
You can quickly assess your portal surroundings with ThemeDisplay.

This tutorial describes some of the most commonly used ThemeDisplaymethods for getting IDs, paths,
and user sign-in details.

Retrieving IDs

Using the ThemeDisplaymethods below, you can grab IDs of various portal elements:
getCompanyId: Returns the company ID.
getLanguageId: Returns the user’s language ID.
getScopeGroupId: Returns the group ID of the current site.
getUserId: Returns the user’s ID.
getUserName: Returns the user’s name.
Now that you know how to retrieve IDs of some of Liferay’s key elements, you can learn how to get paths

to various deployed entities in the portal.

Retrieving File Paths

The ThemeDisplay object hasmethods for retrieving commonly usedfile paths. Below are a fewof themethods:

1341

getPathImage: Returns the relative path of the portlet’s image directory.
getPathJavaScript: Returns the relative path of the directory containing the portlet’s JavaScript source

files.
getPathMain: Returns the path of the portal instance’s main directory.
getPathThemeImages: Returns the path of the current theme’s image directory.
getPathThemeRoot: Returns the relative path of the current theme’s root directory.
Now that you know how to retrieve paths to Liferay’s deployed entities, you can next learn how to get

information about the current user.

Retrieving Login Information

Here are a couple methods related to the current user.
isImpersonated: Returns true if the current user is being impersonated. Authorized administrative

users can impersonate act as another user to test that user’s account.
isSignedIn: Returns true if the user is logged in to the portal.
Below is JavaScript code that demonstrates using ThemeDisplay’s isSignedInmethod:

if(Liferay.ThemeDisplay.isSignedIn()){

alert('Hello ' + Liferay.ThemeDisplay.getUserName() + '. Welcome Back.')

}

else {

alert('Hello Guest.')

}

The example above alerts a signed in user with a personalized greeting. Otherwise, it defaults to a guest
greeting. Although this is a basic example, it shows how you can easily define unique user experiences with
the ThemeDisplay object.

Liferay ThemeDisplay API

For completeness, you can find every available method inside the Liferay.ThemeDisplay object in the table
below:

Method Type Description

getLayoutId number
getLayoutRelativeURL string
getLayoutURL string
getParentLayoutId number
isControlPanel boolean
isPrivateLayout boolean
isVirtualLayout boolean
getBCP47LanguageId number
getCDNBaseURL string
getCDNDynamicResourcesHost string
getCDNHost string
getCompanyGroupId number
getCompanyId number Returns the company ID
getDefaultLanguageId number
getDoAsUserIdEncoded string

1342

Method Type Description

getLanguageId number Returns the user’s language ID
getParentGroupId number
getPathContext string
getPathImage string Returns the relative path of the

portlet’s image directory
getPathJavaScript string Returns the relative path of the

directory containing the

portlet’s JavaScript source files |

getPathMain | string | Returns the path of the portal instance’s main directory | getPathThemeImages |
string | Returns the path of the current theme’s image directory | getPathThemeRoot | string | Returns the
relative path of the current theme’s root

directory |

getPlid | string | | getPortalURL | string | | getScopeGroupId | number | Returns the group ID of the
current site | getSiteGroupIdOrLiveGroupId | number | Returns the group ID of the live site. This is relevant
for staging. | getSessionId | number | | getSiteGroupId | number | | getURLControlPanel | string | |
getURLHome | string | | getUserId | number | Returns the user’s ID | getUserName | string | Returns the
user’s name | isAddSessionIdToURL | boolean | | isFreeformLayout | boolean | | isImpersonated | boolean |
Returns true if the current user is being impersonated. Authorized administrative users can impersonate
act as another user to test that user’s account | isSignedIn | boolean | Returns true if the user is logged in to
the portal | isStateExclusive | boolean | | isStateMaximized | boolean | | isStatePopUp | boolean | |

Related Topics

Liferay DXP JavaScript Utilities

102.2 Working with URLs in JavaScript
In Java, developers are able to create and work with URLs using their APIs. The Liferay global object offers
some features to help you create and work with URLs.

This tutorial covers some of themost commonly usedmethods inside the Liferay global JavaScript object
to manipulate URLs.

Liferay PortletURL

The Liferay.PortletURL class provides a way to create Liferay PortletURL’s such as the actionURL, renderURL,
and resourceURL through JavaScript. Below is an example configuration:

var portletURL = Liferay.PortletURL.createURL(themeDisplay.getURLControlPanel());

portletURL.setDoAsGroupId('true');

portletURL.setLifecycle(Liferay.PortletURL.ACTION_PHASE);

portletURL.setParameter('cmd', 'add_temp');

portletURL.setParameter('javax.portlet.action', '/document_library/upload_file_entry');

portletURL.setParameter('p_auth', Liferay.authToken);

portletURL.setPortletId(Liferay.PortletKeys.DOCUMENT_LIBRARY);

1343

Liferay AuthToken

Below is an example configuration for the Liferay.authToken:

Liferay.authToken = '<%= AuthTokenUtil.getToken(request) %>';

Liferay CurrentURL

The Liferay.currentURL variable holds the path of the current URL from the server root.
For example, if checked from my.domain.com/es/web/guest/home, the value is /es/web/guest/home, as

shown below:

// Inside my.domain.com/es/web/guest/home

console.log(Liferay.currentURL); // "/es/web/guest/home"

Liferay CurrentURLEncoded

The Liferay.currentURLEncoded variable holds the path of the current URL from the server root encoded in
ASCII for safe transmission over the Internet.

For example, if checked from my.domain.com/es/web/guest/home, the value is %2Fes%2Fweb%2Fguest%2Fhome,
as shown below:

// Inside my.domain.com/es/web/guest/home

console.log(Liferay.currentURLEncoded); // "%2Fes%2Fweb%2Fguest%2Fhome"

Now you know how to manipulate URLs using methods within the Liferay global JavaScript object.

Related Topics

Liferay DXP JavaScript Utilities
LiferayTheme Display

102.3 Liferay DXP JavaScript Utilities
This tutorial explains some of the utility methods and objects inside the Liferay global JavaScript object.

Liferay Browser

The Liferay.Browser object contains methods that expose the current user agent characteristics without the
need of accessing and parsing the global window.navigator object.

The available methods for the Liferay.Browser object are listed in the table below:

Method Type Description

acceptsGzip boolean
getMajorVersion number
getRevision number
getVersion number
isAir boolean
isChrome boolean
isFirefox boolean

1344

Method Type Description

isGecko boolean
isIe boolean
isIphone boolean
isLinux boolean
isMac boolean
isMobile boolean
isMozilla boolean
isOpera boolean
isRtf boolean
isSafari boolean
isSun boolean
isWebKit boolean
isWindows boolean

Related Topics

LiferayTheme Display

102.4 Invoking Liferay Services

Liferay DXP provides many web services out-of-the-box to you. These services include retrieving data and
information about various assets, creating new assets, and even editing existing assets.

To see a comprehensive list of the available web services, start up a bundle and navigate to
http://localhost:8080/api/jsonws. This list includes any customweb services that have been deployed to
the bundle. These services are useful for creating single page applications, and can even be used to create
custom front-ends, both inside and outside of Liferay DXP.

This tutorial explains how to invoke these web services using JavaScript.
Go ahead and get started.

Invoking Web Services via JavaScript

7.0 contains a global JavaScript object called Liferay that has many useful utilities. One method is
Liferay.Service, which is used for invoking JSONweb services.

The Liferay.Servicemethod takes four possible arguments:
service {string|object}: Either the service name, or an object with the keys as the service to call, and the

value as the service configuration object. (Required)
data {object|node|string}:The data to send to the service. If the object passed is the ID of a form or a

form element, the form fields will be serialized and used as the data.
successCallback {function}: A function to execute when the server returns a response. It receives a JSON

object as it’s first parameter.
exceptionCallback {function}: A function to executewhen the response from the server contains a service

exception. It receives an exception message as it’s first parameter.
One of the major benefits of using the Liferay.Servicemethod versus using a standard AJAX request is

that it handles the authentication for you.

1345

Below is an example configuration of the Liferay.Servicemethod:

Liferay.Service(

'/user/get-user-by-email-address',

{

companyId: Liferay.ThemeDisplay.getCompanyId(),

emailAddress: 'test@example.com'

},

function(obj) {

console.log(obj);

}

);

The example above retrieves information about a user by passing in the companyId and emailAddress of
the user in question. The response data resembles the following JSON object:

{

"agreedToTermsOfUse": true,

"comments": "",

"companyId": "20116",

"contactId": "20157",

"createDate": 1471990639779,

"defaultUser": false,

"emailAddress": "test@example.com",

"emailAddressVerified": true,

"facebookId": "0",

"failedLoginAttempts": 0,

"firstName": "Test",

"googleUserId": "",

"graceLoginCount": 0,

"greeting": "Welcome Test Test!",

"jobTitle": "",

"languageId": "en_US",

"lastFailedLoginDate": null,

"lastLoginDate": 1471996720765,

"lastLoginIP": "127.0.0.1",

"lastName": "Test",

"ldapServerId": "-1",

"lockout": false,

"lockoutDate": null,

"loginDate": 1472077523149,

"loginIP": "127.0.0.1",

"middleName": "",

"modifiedDate": 1472077523149,

"mvccVersion": "7",

"openId": "",

"portraitId": "0",

"reminderQueryAnswer": "test",

"reminderQueryQuestion": "what-is-your-father's-middle-name",

"screenName": "test",

"status": 0,

"timeZoneId": "UTC",

"userId": "20156",

"uuid": "c641a7c9-5acb-aa68-b3ea-5575e1845d2f"

}

Now that you know how to send an individual request, you’re ready to run batch requests.

Batching Requests

Another format for invoking the Liferay.Servicemethod is by passing an object with the keys as the service
to call and the value as the service configuration object.

Below is an example configuration for a batch request:

1346

Liferay.Service(

{

'/user/get-user-by-email-address': {

companyId: Liferay.ThemeDisplay.getCompanyId(),

emailAddress: 'test@example.com'

}

},

function(obj) {

console.log(obj);

}

);

You can use this format to invokemultiple services with the same request by passing in an array of service
objects. Here’s an example:

Liferay.Service(

[

{

'/user/get-user-by-email-address': {

companyId: Liferay.ThemeDisplay.getCompanyId(),

emailAddress: 'test@example.com'

}

},

{

'/role/get-user-roles': {

userId: Liferay.ThemeDisplay.getUserId()

}

}

],

function(obj) {

// obj is now an array of response objects

// obj[0] == /user/get-user-by-email-address data

// obj[1] == /role/get-user-roles data

console.log(obj);

}

);

Next you can learn how to nest your requests.

Nesting Requests

Nested service calls allow you to bind information from related objects together in a JSON object. You can
call other services in the same HTTP request and conveniently nest returned objects.

You can use variables to reference objects returned from service calls. Variable names must start with a
dollar sign ($).

The example in this section retrieves user data with /user/get-user-by-id, and uses the contactId re-
turned from that service to then invoke /contact/get-contact in the same request.

Note: Youmust flag parameters that take values from existing variables. To flag a parameter, insert the
@ prefix before the parameter name.

Below is an example configuration that demonstrates the concepts covered in this section:

Liferay.Service(

{

"$user = /user/get-user-by-id": {

"userId": Liferay.ThemeDisplay.getUserId(),

"$contact = /contact/get-contact": {

"@contactId": "$user.contactId"

1347

}

}

},

function(obj) {

console.log(obj);

}

);

Here is what the response data would look like for the request above:

{

"agreedToTermsOfUse": true,

"comments": "",

"companyId": "20116",

"contactId": "20157",

"createDate": 1471990639779,

"defaultUser": false,

"emailAddress": "test@example.com",

"emailAddressVerified": true,

"facebookId": "0",

"failedLoginAttempts": 0,

"firstName": "Test",

"googleUserId": "",

"graceLoginCount": 0,

"greeting": "Welcome Test Test!",

"jobTitle": "",

"languageId": "en_US",

"lastFailedLoginDate": null,

"lastLoginDate": 1472231639378,

"lastLoginIP": "127.0.0.1",

[...]

"screenName": "test",

"status": 0,

"timeZoneId": "UTC",

"userId": "20156",

"uuid": "c641a7c9-5acb-aa68-b3ea-5575e1845d2f",

"contact": {

"accountId": "20118",

"birthday": 0,

[...]

"createDate": 1471990639779,

"emailAddress": "test@example.com",

"employeeNumber": "",

"employeeStatusId": "",

"facebookSn": "",

"firstName": "Test",

"lastName": "Test",

"male": true,

"middleName": "",

"modifiedDate": 1471990639779,

[...]

"userName": ""

}

}

Now that you know how to process requests, you can learn how to filter the results next.

Filtering Results

If you don’t want all the properties returned by a service, you can define a whitelist of properties. This returns
only the specific properties you request in the object.

Below is an example of whitelisting properties:

Liferay.Service(

1348

{

'$user[emailAddress,firstName] = /user/get-user-by-id': {

userId: Liferay.ThemeDisplay.getUserId()

}

},

function(obj) {

console.log(obj);

}

);

To specify whitelist properties, place the properties in square brackets (e.g., [whiteList]) immediately
following the name of your variable. The example above requests only the emailAddress and firstName of the
user.

Below is the filtered response:

{

"firstName": "Test",

"emailAddress": "test@example.com"

}

Next you can learn how to populate the inner parameters of the request.

Inner Parameters

When you pass in an object parameter, you’ll often need to populate its inner parameters (i.e., fields).
Consider a default parameter serviceContext of type ServiceContext. To make an appropriate call to

JSONweb services youmight need to set serviceContext fields such asscopeGroupId, as shown below:

Liferay.Service(

'/example/some-web-service',

{

serviceContext: {

scopeGroupId: 123

}

},

function(obj) {

console.log(obj);

}

);

Now you know how to invoke Liferay services!

Related Topics

Liferay JavaScript APIs

1349

Chapter 103

Front-End Taglibs

Liferay DXP offers a powerful set of taglibs that are fully maintained and integrated. They provide common
implementations for UI components and utilities to ensure that your apps, themes, and web content behave
in a very clean and efficient way.

In this section of tutorials, you’ll learn how to use Liferay DXP’s taglibs to build awesome user interfaces.

103.1 Using the Liferay UI Taglib
You can create a lot of components using the Liferay UI taglibs. Liferay DXP’s taglibs provide the following
benefits to your markup:

• Consistent
• Responsive
• Accessible across your portlets

The full markup generated by the tags can be found in the JSPs of the tag’s folder in the Liferay Github
Repo.

Now that you know the benefits of Liferay DXP’s tags, you can learn how to use them next.

Using Liferay UI Tags

A list of the available Liferay UI taglibs can be found here. To use the Liferay-UI taglib library in your apps,
youmust add the following declaration to your JSP:

<%@ taglib prefix="liferay-ui" uri="http://liferay.com/tld/ui" %>

The Liferay-UI taglib is also available via a macro for your FreeMarker theme and web content templates.
Follow this syntax:

<@liferay_ui["tag-name"] attribute="string value" attribute=10 />

Now you’re good to go!
Each taglib has a list of attributes that can be passed to the tag. Some of these are required and some are

optional. See the taglibdocs to view the requirements for each tag.
The example below uses the <liferay-ui:alert> taglib to create a success alert that the user can close:

1351

https://github.com/liferay/liferay-portal/tree/7.0.x/portal-web/docroot/html/taglib/ui
https://github.com/liferay/liferay-portal/tree/7.0.x/portal-web/docroot/html/taglib/ui
@platform-ref@/7.0-latest/taglibs/util-taglib/liferay-ui/tld-summary.html

<liferay-ui:alert

closeable="true"

icon="exclamation-full"

message="Here is our awesome alert example"

type="success"

/>

Here is an example implementation of a <liferay-ui:user-display> taglib:

<liferay-ui:user-display

markupView="lexicon"

showUserDetails="true"

showUserName="true"

userId="<%= themeDisplay.getRealUserId() %>"

userName="<%= themeDisplay.getRealUser().getFullName() %>"

/>

Now you know how to use Liferay-UI taglibs in your JSPs!

Related Topics

JavaScript Module Loaders
LoadingModules with the AUI Script in Liferay
Using the Liferay Util Taglib

103.2 Using the Liferay Util Taglib

The Liferay Util taglib is used to pull in other resources into a portlet or theme, it can be used to dictate which
resources need to be inserted at the bottom or top of the HTML source.

Using Liferay Util Tags

A list of the available Liferay Util tags can be found here. To use the Liferay Util taglib library in your apps,
youmust add the following declaration to your JSP:

<%@ taglib prefix="liferay-util" uri="http://liferay.com/tld/util" %>

The Liferay Util taglib is also available via amacro for your FreeMarker theme and web content templates.
Follow this syntax:

<@liferay_util["tag-name"] attribute="string value" attribute=10 />

Each taglib has a list of attributes that can be passed to the tag. Some of these are required and some are
optional. See the taglibdocs to view the requirements for each tag.

Since each of the Liferay Util taglibs is unique, each tag is covered briefly in the sections that follow.

Using Liferay Util Body Bottom

The <liferay-util:body-bottom> tag is not a self-closing tag. The content placed between the opening and
closing of this tag is moved to the bottom of the body tag. When something is passed using this taglib, the
body_bottom.jsp is passed markup and outputs in this JSP.The attribute outputKey is the reference key for
this content.

Below is an example configuration for the <liferay-util:body-bottom> tag:

1352

@platform-ref@/7.0-latest/taglibs/util-taglib/liferay-util/tld-summary.html
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-web/docroot/html/common/themes/body_bottom.jsp#L26-L31

<%@ taglib uri="http://liferay.com/tld/portlet" prefix="liferay-portlet" %>

<%@ taglib uri="http://liferay.com/tld/theme" prefix="liferay-theme" %>

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<%@ page import="com.liferay.portal.kernel.util.PortalUtil" %>

<%@ page import="com.liferay.product.navigation.product.menu.web.constants.ProductNavigationProductMenuPortletKeys" %>

<liferay-theme:defineObjects />

<%

String portletNamespace = PortalUtil.getPortletNamespace(ProductNavigationProductMenuPortletKeys.PRODUCT_NAVIGATION_PRODUCT_MENU);

%>

<liferay-util:body-bottom outputKey="productMenu">

<div class="lfr-product-menu-panel sidenav-fixed sidenav-menu-slider"

id="<%= portletNamespace %>sidenavSliderId">

<div class="product-menu sidebar sidenav-menu">

<liferay-portlet:runtime portletName="<%= ProductNavigationProductMenuPortletKeys.PRODUCT_NAVIGATION_PRODUCT_MENU %>" />

</div>

</div>

</liferay-util:body-bottom>

Using Liferay Util Body Top

The <liferay-util:body-top> tag is not a self-closing tag. The content placed between the opening and
closing of this tag is moved to the top of the body tag. When something is passed using this taglib the
body_top.jsp is passedmarkup and outputs in this JSP.The attribute outputKey is the reference key for this
content.

Below is an example configuration for the <liferay-util:body-top> tag:

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<liferay-util:body-top outputKey="topContent">

<div>

<h1>I'm at the top of the page!</h1>

</div>

</liferay-util:body-top>

Using Liferay Util Buffer

<liferay-util:buffer> is not a self-closing tag. The content placed between the opening and closing of this
tag is saved to the value of the var attribute. This allows a developer to build a piece of markup that can be
reused in a JSP.

Below is an example configuration for the <liferay-util:buffer> tag:

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<liferay-util:buffer var="myBuffer">

<small class="text-capitalize text-muted">

This is my buffer content

</small>

</liferay-util:buffer>

<div class="container">

<h1>Welcome!</h1>

<%= myBuffer %>

</div>

<div class="container">

<h1>A Wonderful Title!</h1>

1353

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-web/docroot/html/common/themes/body_top.jsp#L25-L31

<%= myBuffer %>

</div>

Using Liferay Util Dynamic Include

The <liferay-util:dynamic-inlude> tag allows you to register some content with the DynamicIncludeRegistry.
You can readmore about the OSGi Service Registry here. It’s easier for modules using the OSGi registry to
use the content that you include with this tag.

Below is an example configuration for the <liferay-util:dynamic-inlude> tag:

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<liferay-util:dynamic-include key="/path/to/jsp#pre" />

<div>

<p>And here we have our content</p>

</div>

<liferay-util:dynamic-include key="/path/to/jsp#post" />

Using Liferay Util Get URL

The <liferay-util:get-url> tag scrapes the URL provided by the url attribute. If a value is provided for the
var attribute, the content from the screen scrape is scoped to that variable. Otherwise, the scraped content
is displayed where the taglib is used.

Below is a basic example configuration for the <liferay-util:get-url> tag:

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<liferay-util:get-url url="https://www.google.com/" />

Here is an example that uses the var attribute:

<liferay-util:get-url url="https://www.google.com/" var="google" />

<div>

<h2>We stole Google, here it is.</h2>

<div class="google">

<%= google %>

</div>

</div>

Using Liferay Util HTML Bottom

The <liferay-util:html-bottom> tag is not a self-closing tag. The content placed between the opening and
closing of this tag will be moved to the bottom of the html tag. When something is passed using this taglib
the bottom.jsp is passed markup and outputs in this JSP.The attribute outputKey is the reference key for this
content.

Below is an example of using <liferay-util:html-bottom>. Commonly, JavaScript is passed to this tag:

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<liferay-util:html-bottom outputKey="taglib_alert_user">

<aui:script use="liferay-alert">

new Liferay.Alert(

{

closeable: true,

message: 'Just saying hello from the

1354

http://docs.spring.io/osgi/docs/current/reference/html/service-registry.html
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-web/docroot/html/common/themes/bottom.jsp#L53-L59

<liferay-util:html-bottom> taglib!',

type: 'success'

}

).render(#wrapper);

</aui:script>

</liferay-util:html-bottom>

Using Liferay Util HTML Top

The <liferay-util:html-top> tag is not a self-closing tag. The content placed between the opening and
closing of this tag is moved to the head tag. When something is passed using this taglib the top_head.jsp is
passed markup and outputs in this JSP.The attribute outputKey is the reference key for this content.

Below is an example configuration for the <liferay-util:html-top> tag:

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<liferay-util:html-top>

<link data-senna-track="permanent" href="/path/to/style.css" rel="stylesheet" type="text/css" />

</liferay-util:html-top>

Using Liferay Util Include

The <liferay-util:include> tag canbeused to include other JSPfiles in a portlet. This can increase readability
as well as provide separation of concerns for JSP files.

Below is an explanation of some of the available attributes:

• page: This attribute is required. The value of this attribute is the path to the JSP or JSPF to be included.

• servletContext: Refers to the request context that the included JSP should use. Passing <%=

application %> to this attribute allows the included JSP to use the same request object and other
objects that might be set in the prior JSP.

Below is an example configuration for the <liferay-util:include> tag:

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<liferay-util:include page="/path/to/view.jsp" servletContext="<%= application %>" />

Using Liferay Util Param

The <liferay-util:param> tag can be used to add a parameter value to a URL.This tag is best used when
combined with the <liferay-util:include> tag for accessing new parameter values in another JSP.

Below is an example configuration for the <liferay-util:param> tag:

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<liferay-util:include page="/path/to/answer.jsp" servletContext="<%= application %>">

<liferay-util:param name="answer" value="42" />

</liferay-util:include>

The new parameter can then be used in answer.jsp like this:

<%@ page import="com.liferay.portal.kernel.util.ParamUtil" %>

<div>

<p>The answer to life the universe and everything is

<%= ParamUtil.getString(request, "answer") %></p>

</div>

1355

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-web/docroot/html/common/themes/top_head.jsp#L147-L153

Using Liferay Util Whitespace Remover

The <liferay-util:whitespace-remover> tag is used for removing all whitespace fromwhatever is included
between the opening and closing of the tag.

Below is an example configuration for the <liferay-util:whitespace-remover> tag:

<%@ taglib uri="http://liferay.com/tld/util" prefix="liferay-util" %>

<liferay-util:whitespace-remover>

<div class="input-container">

<label for="myInput">

Is the <liferay-util:whitespace-remover> taglib

fantastic!

</label>

<input class="input" id="myInput" name="myInput" type="checkbox">

</div>

</liferay-util:whitespace-remover>

Now you know how to use the Liferay-Util taglib!

Related Topics

LoadingModules with the AUI Script in Liferay
Using the Liferay UI Taglib

1356

Chapter 104

HTML Forms

Forms are a must-have tool in any developer’s UI bag. Rather than write your HTML from scratch, Liferay
provides you with taglibs that offer everything standard HTML elements have, as well as some additional
attributes that are Liferay specific. For a full list of all the available taglibs and attributes, look at Liferay’s
API docs on docs.liferay.com

Using a combination of Liferay’s AUI taglibs and Lexicon classes, you can create forms in your app’s JSPs.
You can learn how to create anMVC portlet project in the using-the-mvc-portlet-template tutorial.

In this section of tutorials, you’ll learn how to use the platform features to create forms with ease.

104.1 Forms and Validation
Creating forms is easy and flexible, thanks to Liferay DXP’s form, input, and validation tags.

The <aui:form> tag sets up the necessary code (HTML, JS), uses Liferay JavaScript APIs, calls the validation
framework, and submits the form data to the back-end.

The input tags (<aui:input>, <liferay-ui:input-*>, etc.) generate the necessary code (HTML, CSS, JS) to
provide you with a consistent UI throughout your form. These tags also initialize the field’s state (e.g. value,
disabled, readonly, etc.).

The <aui:validator> tag lets you create validation rules for your form’s input tags. This ensures that your
users enter the proper data in the format you expect before it gets sent to the back-end for final validation
and processing.

The following tags support validators natively:

• <aui:input>

• <aui:select>

• <liferay-ui:input-date>

• <liferay-ui:input-search>

All other fields can be validated using themethoddescribed in theAddingCustomValidators in JavaScript
section below.

Get started by creating a basic form next.

Creating Your First Form

Below is an example configuration for a simple form in a JSP:

1357

https://liferay.github.io/clay/

<aui:form action="<%= myActionURL %>" method="post" name="myForm">

<aui:input label="My Text Input" name="myTextInput" type="text"

value='<%= "My Text Value" %>' />

<aui:button type="submit" />

</aui:form>

Although this form is simple, it provides all that’s needed to pass the data to the back-end. The full HTML
generated for this example is shown below:

<form action="http://localhost:8080/web/guest/home?p_p_id=my_portlet&p_p_lifecycle=1&p_p_state=normal&p_p_mode=view&p_p_col_id=column-

1&p_p_col_count=3&_my_portlet_javax.portlet.action=%2Fmy%2Faction&_my_portlet_mvcRenderCommandName=%2Fmy%2Faction&p_auth=WAxorpsN" class="form" data-

fm-namespace="_my_portlet_" id="_my_portlet_myForm" method="post" name="_my_portlet_myForm">

<input class="field form-control" id="_my_portlet_formDate"

name="_my_portlet_formDate" type="hidden" value="1472516415545">

<div class="form-group input-text-wrapper">

<label class="control-label"

for="_my_portlet_myTextInput">My Text Input</label>

<input class="field form-control" id="_my_portlet_myTextInput"

name="_my_portlet_myTextInput" type="text"

value="My Text Value">

</div>

<button class="btn btn-primary btn-default" id="_my_portlet_kpyg"

type="submit">

Save

</button>

</form>

As you can see, the tags provide all this to you for very littlework! Next you can learn how to add validation
to your forms.

Adding Validation

What if you want to ensure the user enters the required data? Add validators.
An example configuration is shown below:

<aui:input label="My Text Input" name="myTextInput" type="text"

value='<%= "My Text Value" %>'>

<aui:validator name="required" />

</aui:input>

This forces the user to enter something before the form is submitted.

Figure 104.1: A field with a failed required validator.

1358

What if you wanted to restrict the value to a number between 0 and 10? There’s a validator for that. Each
of the validators shown belowmust pass to submit the form:

<aui:validator name="required" />

<aui:validator name="number" />

<aui:validator name="range">[0,10]</aui:validator>

You can even customize the error message, as shown below:

<aui:validator errorMessage="Please enter how many fingers you have."

name="range">[0,10]</aui:validator>

Figure 104.2: A required validator with a custom error message.

Below is a list of all the available validation rules:
acceptFiles: Specifies that the field can contain only the file types given. Each file extension must be sep-

arated by a comma. For example <aui:validator name="acceptFiles">'jpg,png,tif,gif'</aui:validator>

alpha: Allows only alphabetic characters.
alphanum: Allows only alphanumeric characters.
date: Allows only a date.
digits: Allows only digits.
email: Allows only an email address.
equalTo: Allowsonly contents equal to someotherfield that has the specifiedfield ID.The ID is declared in

the opening and closing validator tags. For example <aui:validator name="equalTo">'#<portlet:namespace

/>password'</aui:validator>

max: Allows only an integer value less than the specified value. For example, a max value of 20 is specified
here <aui:validator name="max">20</aui:validator>

maxLength: Allows a maximum field length of the specified size. The syntax is the same as max.
min: Allows only an integer value greater than the specified value. The syntax is the same as max.
minLength: Allows a field length longer than the specified size. The syntax is the same as max.
number: Allows only numerical values.
range: Allows only a number between the specified range. For example, a range between 1.23 and 10 is

specified here <aui:validator name="range">[1.23,10]</aui:validator>

rangeLength: Allows a field length between the specified range. For example, a range between 3 and 8
characters long is specified here <aui:validator name="rangeLength">[3,8]</aui:validator>

required: Prevents a blank field.
url: Allows only a URL value.
Now that you know how to validate your forms, you can learn how to conditionally require user input

next.

1359

Conditionally Requiring A Field

Sometimes you’ll want to validate a field based on the value of another field. You can do this by checking for
that condition in a JavaScript function within the required validator’s body.

Below is an example configuration:

<aui:input label="My Checkbox" name="myCheckbox" type="checkbox" />

<aui:input label="My Text Input" name="myTextInput" type="text">

<aui:validator name="required">

function() {

return AUI.$('#<portlet:namespace />myCheckbox').prop('checked');

}

</aui:validator>

</aui:input>

Figure 104.3: Fields can required based on other conditions.

Next you can learn how to add custom validators.

Adding Custom Validators

So far, you’ve only seen the default set of AUI validator rules. What if you need something that the default
rules don’t provide?

You can write your own validator and optionally supplement it with built-in validators, as shown below:

<aui:input label="Email" name="email" type="text">

<aui:validator name="email" />

<aui:validator errorMessage="Only emails from @example.com are allowed."

name="custom">

function(val, fieldNode, ruleValue) {

var regex = new RegExp(/@example\.com$/i);

return regex.test(val);

}

</aui:validator>

</aui:input>

This example runs the regular email validator, as well as a custom domain validator.
Next you can learn how to add custom validators in JavaScript.

1360

Figure 104.4: You can write your own custom validations.

Adding Custom Validators in JavaScript

Sometimes you need to add additional validation dynamically after the page has rendered. Perhaps some
additional fields were added to the DOM via an AJAX request.

To do this, youmust access the Liferay.Form object, as demonstrated below:

<aui:script use="liferay-form">

var form = Liferay.Form.get('<portlet:namespace />myForm');

// ...

The Liferay.Form object allows you to get() and set() fieldRules.
fieldRules are the JavaScript equivalent of all the validators attached to the form.
This example below uses a custom validator and the built-in number validator.

<aui:script use="liferay-form">

var form = Liferay.Form.get('<portlet:namespace />myForm');

var oldFieldRules = form.get('fieldRules');

var newFieldRules = [

{

body: function (val, fieldNode, ruleValue) {

return (val !== '2');

},

custom: true,

errorMessage: 'must-not-equal-2',

fieldName: '<portlet:namespace />fooInput',

validatorName: 'custom_fooInput'

},

{

fieldName: '<portlet:namespace />fooInput',

validatorName: 'number'

}

];

var fieldRules = oldFieldRules.concat(newFieldRules);

form.set('fieldRules', fieldRules);

</aui:script>

Notice that newFieldRules are combined with oldFieldRules, using concat(). You could leave this part
out, and you’d have a whole new set of validators for the whole form.

Next you can learn how to validate your formsmanually.

1361

Manual Validation

Youmay need to execute validation on a field, based on some event not typical of user input. For instance,
youmay need to validate a related field at the same time.

To do this, youmust access the formValidator object and call the validateField()method, passing the
field’s name. Below is an example configuration:

<aui:input label="Old Title" name="oldTitle" type="text">

<aui:validator errorMessage="The New Title cannot match the Old Title"

name="custom">

function(val, fieldNode, ruleValue) {

<portlet:namespace />checkOtherTitle('<portlet:namespace />newTitle');

// check if old and new titles are a match

return !match;

}

</aui:validator>

</aui:input>

<aui:input label="New Title" name="newTitle" type="text">

<!-- same custom validator -->

</aui:input>

<aui:script use="liferay-form">

function <portlet:namespace />checkOtherTitle(fieldName) {

var formValidator =

Liferay.Form.get('<portlet:namespace />myForm').formValidator;

formValidator.validateField(fieldName);

}

</aui:script>

Now you know how to create and validate forms!

Related Topics

Front-End Taglibs

104.2 Creating Forms with Liferay's Taglibs

This tutorial demonstrates how to:

• Create a form using 7.0’s taglibs in your application’s JSPs

To begin, take a look at the Portlet Configuration application’s add_configuration_template.jsp form for
example:

<aui:form action="<%= updateArchivedSetupURL %>"

cssClass="container-fluid-1280" method="post" name="fm">

<aui:input name="redirect" type="hidden" value="<%= redirect %>" />

<aui:input name="portletResource" type="hidden"

value="<%= portletResource %>" />

<aui:fieldset-group markupView="lexicon">

<aui:fieldset>

<%

String name = StringPool.BLANK;

boolean useCustomTitle =

1362

https://github.com/liferay/liferay-portal/blob/2960360870ae69360861a720136e082a06c5548f/modules/apps/web-experience/portlet-configuration/portlet-configuration-web/src/main/resources/META-INF/resources/add_configuration_template.jsp

GetterUtil.getBoolean(portletPreferences.getValue

("portletSetupUseCustomTitle", null));

if (useCustomTitle) {

name = PortletConfigurationUtil.getPortletTitle

(portletPreferences, LocaleUtil.toLanguageId

(themeDisplay.getSiteDefaultLocale()));

}

%>

<aui:input name="name" placeholder="name"

required="<%= true %>" type="text" value="<%= name

%>">

<aui:validator name="maxLength">75

</aui:validator>

</aui:input>

</aui:fieldset>

</aui:fieldset-group>

<aui:button-row>

<aui:button type="submit" />

<aui:button href="<%= redirect %>" type="cancel" />

</aui:button-row>

</aui:form>

As you can see, a standard form uses quite a few taglibs. If you take a closer look, you’ll notice that all of
the taglibs are prefixed with aui. aui stands for AlloyUI, a JavaScript framework that uses Bootstrap to allow
you to create UI components, easily and effectively. In order to use these AUI tags, you will need to have the
AUI taglib declaration imported into your JSP. You’ll take care of this next.

Adding the Taglib Declaration

The first thing you’ll need to do is make sure you have the <%@ taglib uri="http://liferay.com/tld/aui"

prefix="aui"%> declaration is in your JSP. This can be added to the main view of your app, view.jsp for
example, or it can be added to a separate JSP file, such as init.jsp, and imported into the JSP in which you
want to show the form. For example, the Portlet Configuration application includes the taglib declarations
in its init.jsp, and then imports the init.jsp into its view.jsp, using the following line:

<%@ include file="/init.jsp"%>

Once the AUI taglib declaration is imported, you canmove onto creating the form next.

Creating the Form

A form’s design is determined by the input needed from the user. To that end, there are multiple design
possibilities. The examples covered in the sections that follow are one possible design, and highlight some of
the available attributes for the tags. The steps are laid out in a natural order, however you can jump to any
section you wish.

For a full list of the available attributes for the form tags covered, checkout the API docs for the AUI Tags.
Go ahead and get started by adding the form tag next.

Adding the Form Wrapper

Start off by adding a <aui:form> tag to your jsp. Make sure to add a closing <aui:form/> tag, towrap your form.
This acts as a wrapper for your form and offers some additional styling and custom portlet namespacing
for you to use. If you are familiar with HTML <form> tags, <aui:form> tags are configured the same way. For
instance, the Bloggs Aggregator app has the following configuration:

1363

http://alloyui.com/
@platform-ref@/7.0-latest/taglibs/util-taglib/aui/tld-summary.html

<aui:form action="<%= configurationActionURL %>" method="post" name="fm">

The action attribute specifies where to send the form data when the form is submitted. The method

attribute defines the method to use to send the form data(in most cases this will be post). Finally, the name
attribute specifies the name for the form, as well as the ID for the component instance for the form. It’s
important to note that, by default, aui:formplaces the portlet namespace in front of the name and id attributes.
This is also the default behavior for the aui:input tag as well.

You can find a full list of the available attributes for the <aui:form> tag in the AUI Form Taglib Docs.
Now that your form element is created, you can add your fieldsets next.

Adding the Fieldset Groups and Fieldsets

The next main element is the <aui:fieldset-group> tag. This tag creates a <div> to group fieldset elements of
the form. Looking at the Portlet Configuration example, you can see the following pattern:

<aui:fieldset-group markupView="lexicon">

It’s important to note the addition of the markupView="lexicon" attribute. This ensures that the lexicon
HTMLmarkup and CSS styles are used to render the element, rather than the standard markup.

Add the <aui:fieldset-group markupView="lexicon"> tag, just below the <aui:form> tag you just added.
Andmake sure to add the closing </aui:fieldset-group> tag just before the closing </aui:form> tag. Your
form should look something like this at this point:

<aui:form action="<%= ActionURL %>" method="post" name="fm">

<aui:fieldset-group markupView="lexicon">

</aui:fieldset-group>

</aui:form>

Now that your fieldset group is added, you can add your fieldset next. The <aui:fieldset> tag creates a
<div> to group related form elements and offers some additional styling attributes as well.

Use the following pattern to add the <aui:fieldset> tag to your form:

<aui:fieldset >

</aui:fieldset>

Alternatively, if you havemultiple fieldsets, you can update your tags to be collapsible, using the following
pattern:

<aui:fieldset collapsed="<%= true %>" collapsible="<%= true %>" >

</aui:fieldset>

You can find a full list of the available attributes for the <aui:fieldset> tag in the AUI Fieldset Taglib
Docs.

Next, you can add your input fields.

1364

@platform-ref@/7.0-latest/taglibs/util-taglib/aui/form.html
@platform-ref@/7.0-latest/taglibs/util-taglib/aui/fieldset.html
@platform-ref@/7.0-latest/taglibs/util-taglib/aui/fieldset.html

Adding the Input Fields

Each fieldset is used to group similar form elements together. In this section, you’ll take a look at the different
kinds of input fields you can use in your form.

AUI input fields use the following pattern:

<aui:input label="label" name="name" type="type" />

The label attribute sets the label for the input field. The name attribute sets the name for the field. Finally,
the type attribute sets the type of input to use for the field.

The type attribute supports the following types:

• file: Adds a file browser.
• text: The default value if no type is specified. Adds a text input field.
• hidden: Adds a hidden text field.
• assetCategories: Adds a liferay-ui:asset-categories-selector component.
• assetTags: Adds a liferay-ui:asset-tags-selector component.
• textarea: Adds a textarea box.
• timeZone: Adds a liferay-ui:input-time-zone component.
• password: Adds a password input field.
• checkbox: Adds a checkbox.
• radio: Adds a radio button.
• color: Adds a HTML color picker.
• editor: Adds a liferay-ui:input-editor component.
• email: Adds an email input field.
• number: Adds a number selector.
• range: Adds a range slider.
• resource: Adds a liferay-ui:input-resource component.
• toggle-card: Adds a Toggle Card
• toggle-switch: Adds a Toggle Switch
• url: Adds a URL input field.

For a full list of all the attributes available for the <aui:input> tag, check out the AUI Input Taglib Docs.
Once you’ve added all of your input fields, you canmove onto the form’s buttons next.

Adding the Button Rows and Buttons

Taking a look at the portlet configuration application example once again, you can see that form buttons
follow the pattern below:

<aui:button-row>

<aui:button type="submit" />

<aui:button href="<%= redirect %>" type="cancel" />

</aui:button-row>

The <aui:button-row> tags acts as a wrapper for the form’s buttons, and offers some additional styling
through the cssClass attribute.

The <aui:button> tag is a standard input button, with some additional attributes. It supports the button,
submit(the default type), cancel, and reset types for the type attribute. Note that you if youwish to emphasize
the button as a primary action, you can add the primary="true" attribute to your button:

1365

https://liferay.github.io/clay/content/toggles/#toggleCard
https://liferay.github.io/clay/content/toggles/#toggle-switch
@platform-ref@/7.0-latest/taglibs/util-taglib/aui/input.html

<aui:button

cssClass="btn-lg"

id="submit"

label="save"

primary="<%= true %>"

type="submit"

/>

For a full list of the attributes available for the <aui:button> tag, check out the AUI Button Taglib Docs.
Your form is complete!

Related Topics

Portlet Decorators
Basic Forms
LiferayTheme Generator

104.3 Form Navigator Extensions

Some data-centric applications require the creation of large data-entry forms. Examples abound in health-
care, transportation, pharmaceutical, or any other heavily regulated industry. For these applications, you
need an easy way to section off your forms into easily navigable groups.

Since 7.0, the FormNavigator framework enables you to add new sections and section categories dynam-
ically to existing form navigation. The framework includes a well-described API and a powerful liferay-ui
tag called form-navigator. It’s easy to use and facilitates organizing large forms into sections of input and
categories.

FormNavigators can be used in twoways: customizing a FormNavigator that already exists in the portal,
and creating your own Form Navigator for your application. This tutorial demonstrates customizing an
existing form. It references source code from an example portlet called the FormNav Extension portlet. On
GitHub, you can find its complete project called form-nav-extension-portlet. You can also download the
FormNav Extension portlet’s bundle form-nav-extension-portlet-1.0.jar. To download it, go to its GitHub
page and click the View Raw link.

Before extending a FormNavigator, you should understand the parts of the FormNavigator Framework
and what they do.

Understanding the Parts of the Form Navigator Framework

FormNavigator implementations contain the following parts:

• A JSP that contains a form: The formmust specify a form-navigator tag. All the form’s input sections
tie into the FormNavigator.

• Sections: A section (or entry) is a JSP that specifies inputs and a Java class that models the section and
ties it into the FormNavigator.

• Categories: A category aggregates one or more sections. A Java class models it and ties it into the
FormNavigator.

• IDs: A FormNavigator and its categories should be publicly identified. That is, they should all have
IDs that can be looked up in a public API (e.g., Javadoc). A developer extending a FormNavigator must
otherwise have access to the FormNavigator’s source code in order to find the IDs.

1366

@platform-ref@/7.0-latest/taglibs/util-taglib/aui/button.html
@platform-ref@/7.0-latest/taglibs/util-taglib/liferay-ui/form-navigator.html
https://github.com/liferay/liferay-docs/tree/master/develop/tutorials/code/osgi/modules/form-nav-extension-portlet
https://github.com/liferay/liferay-docs/blob/master/develop/tutorials/code/osgi/modules/form-nav-extension-portlet-1.0.jar

Figure 104.5: The Form Navigator framework lets you add your app’s configuration forms to existing form navigators, like the one used in Portal Settings.

1367

Liferay’s FormNavigator implementations meet all these requirements. They’re implemented similarly
and their IDs are published in the Javadoc for the class FormNavigatorConstants.

Note: FormNavigator extensions implemented using portal properties and form navigation entry JSPs
are deprecated but still supported in 7.0. All new FormNavigator extensions should be implemented as this
tutorial describes.

Now that you know the parts of a FormNavigator, it’ll be easier for you to extend one.

Extending a Form Navigator

Here’s an overview of the steps to extend a FormNavigator:

• Step 1: Implement a component portlet project to accommodate formnavigation.
• Step 2: Create a JSP for each new section of inputs.
• Step 3: Identify the FormNavigator and category (if any) you’re extending.
• Step 4: Create new categories.
• Step 5: Create new sections.

Let’s set up a component portlet project to support form navigation.

Step 1: Implement a component portlet project to accommodate form navigation

First, your componentportletmustbe implementedas anOSGibundle. Youcandevelop it in anyenvironment
that supports creating a bundle. Please refer to the 7.0 tutorial section Tooling to learn about development
environments. The FormNav Extension portlet was created with BLADE based on the blade.portlet.jsp
template. This is also covered in the tutorial section linked above.

A FormNavigator extension bundle’s metadata must do the following things:

• Specify the bundle’s symbolic name for your servlet context to target
• Include your project’s classes, JSPs, and resource bundles (for localization)
• Include the JspAnalyzerPlugin to generate generate metadata for the JSPs’ dependencies
• Specify a web context path for the FormNavigator classes to associate with the JSPs

You should use a bnd.bnd file to specify this metadata. Your Bnd file should include definitions and
directives similar to those specified in the FormNav Extension portlet’s bnd.bnd file:

Bundle-Name: Form Nav Extension Portlet

Bundle-SymbolicName: com.liferay.docs.formnavextensionportlet

Bundle-Version: 1.0.0

Include-Resource:\

classes,\

META-INF/resources=src/main/resources/META-INF/resources

-jsp: *.jsp,*.jspf

-plugin.jsp: com.liferay.ant.bnd.jsp.JspAnalyzerPlugin

Web-ContextPath: /formnavextensionportlet

The Bundle-Name value is arbitrary, but should be recognizable and unique. The Bundle-SymbolicNamemust
be unique–the project’s package pathmakes for a good symbolic name. For the Include-Resource, make sure
to include your project’s classes and the root path of its JSPs. The directive below includes all the project’s
.jsp and .jspf files:

-jsp: *.jsp,*.jspf

1368

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorConstants.html

And the following directive to specify a plugin to include all the JSP dependencies:

-plugin.jsp: com.liferay.ant.bnd.jsp.JspAnalyzerPlugin

Lastly, the Web-ContextPath specifies the root of the portlet’s web context.
As you progress through this tutorial, you’ll refer to the metadata in your portlet’s classes. Before diving

into the Java classes, howerver, let’s create JSPs for your sections’ inputs.

Step 2: Create a JSP for each new section of inputs

The existing FormNavigator has a form, and each of its sections extend the formwith sets of input. Your
section will add its own inputs. You should create your section’s JSP under the META-INF/resources property
folder you defined in your bnd.bnd file’s Include-Resource directive. The example Bnd file specified the folder
like this:

META-INF/resources=src/main/resources/META-INF/resources

Under the folder, you can add a JSP for each section of inputs you want to add to the FormNavigator.
Feel free to organize these with subfolders.

The Form Nav Extension portlet’s JSP file /portal_settings/my_app.jsp provides a checkbox input to
enable/disable My App’s feature in the portal:

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

<%@ taglib uri="http://liferay.com/tld/aui" prefix="aui" %>

<%@ taglib uri="http://liferay.com/tld/ui" prefix="liferay-ui" %>

<%@ page import="com.liferay.docs.formnavextensionportlet.MyAppWebKeys" %>

<%@ page import="com.liferay.portal.kernel.util.GetterUtil" %>

<%@ page import="com.liferay.portal.kernel.util.ResourceBundleUtil" %>

<%@ page import="java.util.ResourceBundle" %>

<%

boolean companyMyAppFeatureEnabled = GetterUtil.getBoolean(request.getAttribute(MyAppWebKeys.COMPANY_MY_APP_FEATURE_ENABLED));

ResourceBundle resourceBundle = ResourceBundleUtil.getBundle("content.Language", request.getLocale(), getClass());

%>

<h3><liferay-ui:message key='<%= resourceBundle.getString("my-app-features") %>' /><h3>

<aui:input checked="<%= companyMyAppFeatureEnabled %>" label='<%= resourceBundle.getString("enable-my-app-feature") %>' name="settings--

myAppFeatureEnabled--" type="checkbox" value="<%= companyMyAppFeatureEnabled %>" />

The input’s name is settings--myAppFeatureEnabled--. So that the Form Navigator detects the inputs
automatically, make sure to start each of your input’s names with settings-- and end themwith --. Add all
the inputs you need in each of your sets of inputs.

After creating section JSPs, you must find out the IDs of the existing Form Navigator and categories
you’re adding sections to. You refer to these IDs in the category and section classes you’ll create to represent
your FormNavigator extensions.

Step 3: Identify the form navigator and category you're extending

Liferay’s class FormNavigatorConstants specifies constant values for all the portlet Form Navigators and
categories. The identifiers follow the naming conventions below,where you substitue FOO for the navigator’s
or category’s name:

1369

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorConstants.html

• Formnavigator: FORM_NAVIGATOR_ID_FOO
• Category: CATEGORY_KEY_FOO

Note the names of the constants that match the FormNavigator and categories you’re extending–you’ll
refer to them in your Java classes in the next steps.

Step 4: Create new categories

To add a new category, create a class that implements the FormNavigatorCategory interface. The class needs a
@Component annotation to register it as a service in Liferay’s module framework. Here are the things your
category class’s component annotation should do:

• Declare that the component is of service type FormNavigatorCategory.class
• Request immediate loading
• Optionally, specify the category’s entry order relative to the FormNavigator’s other categories. The
higher the category’s order integer relative to the order of the other categories, the higher the category
is listed in the form navigation.

Here’s an example component annotation for a category:

@Component(

immediate = true,

property = {"form.navigator.category.order:Integer=20"},

service = FormNavigatorCategory.class

)

Next, you implement the FormNavigatorCategorymethods:

• getFormNavigatorId: Return theFormNavigator’s constant younotedpreviously from FormNavigatorConstants

• getKey: Return an identifier for your category. You can optionally create a public class like
FormNavigatorConstants, to publish your project’s identifiers.

• getLabel(Locale): Return the localized category label. You can create a Language.properties file in
your project’s src/main/resources/content folder and specify a key/value pair for the category label.
You can then add the localized value of the property in language properties files for other locales.

For example, here’s a FormNavigator category implementation for the Social Portal Setting category:

package com.liferay.portal.settings.web.internal.servlet.taglib.ui;

import com.liferay.portal.kernel.language.LanguageUtil;

import com.liferay.portal.kernel.servlet.taglib.ui.FormNavigatorCategory;

import com.liferay.portal.kernel.servlet.taglib.ui.FormNavigatorConstants;

import java.util.Locale;

import org.osgi.service.component.annotations.Component;

/**

* @author Sergio González

* @author Philip Jones

⁎/

@Component(

immediate = true, property = {"form.navigator.category.order:Integer=20"},

service = FormNavigatorCategory.class

)

public class CompanySettingsSocialFormNavigatorCategory

implements FormNavigatorCategory {

1370

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorCategory.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorCategory.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorConstants.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorConstants.html

@Override

public String getFormNavigatorId() {

return FormNavigatorConstants.FORM_NAVIGATOR_ID_COMPANY_SETTINGS;

}

@Override

public String getKey() {

return FormNavigatorConstants.CATEGORY_KEY_COMPANY_SETTINGS_SOCIAL;

}

@Override

public String getLabel(Locale locale) {

return LanguageUtil.get(locale, "social");

}

}

After you’ve implemented new FormNavigator categories, you can add new FormNavigator sections.

Step 5: Create new sections

To add a new section (entry) that uses a JSP, create a class that extends the abstract base class
BaseJSPFormNavigatorEntryand implements the FormNavigatorEntry interface. The BaseJSPFormNavigatorEntry
base class integrates the section’s JSP with the FormNavigator. In both these parts of your class declaration,
you must specify the Form Navigator’s model bean class as the generic type on which they operate. For
example, if your FormNavigator’s model bean class is User, your decarlation would be like this:

public class MyEntry extends BaseJSPFormNavigatorEntry<User>

implements FormNavigatorEntry<User>

Thereare a coupledifferentways todetermine themodel bean class. If you canaccess theFormNavigator’s
JSP source code, inspect the form-navigator element’s formModelBean attribute value. Themodel bean class is
the class type of the object passed in as the form-navigator’s formModelBean attribute.

You can also deduce the model bean class from the name of the ID’s constant in FormNavigatorConstants.
The word(s) right after FORM_NAVIGATOR_ID_ in the constant’s name hints at the class type. For example,
if the navigator’s ID is FORM_NAVIGATOR_ID_USERS_SETTINGS, then User is the model bean class; if the ID is
FORM_NAVIGATOR_ID_ORGANIZATIONS, then Organization is the class; etc. Note: this is only a hint, and there are
exceptions. For example, if the ID is is FORM_NAVIGATOR_ID_SITES, then Group is the class.

For example, here’s a class declaration of a FormNavigatorEntry, from the FormNav Extension portlet:

@Component(

immediate = true,

property = {

"form.navigator.entry.order:Integer=71"

},

service = FormNavigatorEntry.class

)

public class MyAppCompanySettingsFormNavigatorEntry

extends BaseJSPFormNavigatorEntry<Company>

implements FormNavigatorEntry<Company> {

// ...

}

It implements an entry on the Companymodel bean for the Portal Settings FormNavigator: the navigator
identifed by the constant FormNavigatorConstants.FORM_NAVIGATOR_ID_COMPANY_SETTINGS.

1371

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/BaseJSPFormNavigatorEntry.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorEntry.html
@platform-ref@/7.0-latest/taglibs/util-taglib/liferay-ui/form-navigator.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorConstants.html

The class also includes the @Component annotation, which is the next thing an entry must specify. An
entry’s @Component annotation registers the entry as a service in Liferay’s module framework.

Here’s what a FormNavigation entry’s component annotation should do:

• Declare that the component is of service type FormNavigatorEntry.class
• Request immediate loading
• Optionally, specify a form.navigator.entry.order property for the entry relative to the other
entries in the category. The higher the entry’s order integer relative to the order of the category’s
other entries, the higher the entry is listed in the category. For example, @Component(property =

{"form.navigator.entry.order:Integer=71"}, service = FormNavigatorEntry.class)

Except for your entry’s order (optional), your entry’s @Component annotation should look similar to the
previous example’s annotation. Next, you’ll implement the entry class’s methods.

The FormNavigatorEntry implementation must implement the followingmethods:

• getFormNavigatorId: Return theFormNavigator’s constant younotedpreviously from FormNavigatorConstants

• getCategoryKey: Return the Form Navigator category constant you noted previously from
FormNavigatorConstants

• getKey: Return an identifier for your entry. You can optionally create a public class like
FormNavigatorConstants, to publish your project’s identifiers.

• getLabel(Locale): Return the entry’s localized label. You can create a Language.properties file in your
project’s src/main/resources/content folder and specify a key/value pair for the entry label.

• getJspPath: Return the path to the entry’s JSP, starting from the path you specified previously for your
bnd.bnd file’s META-INF/resources property.

• include(HttpServletRequest, HttpServletResponse): Sets the request and response attributes for dis-
playing the entry’s HTML. You can retrieve the form’s current settings and pass them to the request.
You can optionally use a template (e.g., FreeMarker or Velocity) to render the form page, as long as you
completely override BaseJSPFormNavigatorEntry’s includemethod. The FormNav Extension portlet’s
entry class’s include method passes to the request the current settings that were saved as portlet
preferences. It doesn’t use a template language and instead calls BaseJSPFormNavigatorEntry’s include
method.

@Override

public void include(HttpServletRequest request, HttpServletResponse response)

throws IOException {

ThemeDisplay themeDisplay =

(ThemeDisplay)request.getAttribute(WebKeys.THEME_DISPLAY);

PortletPreferences companyPortletPreferences =

PrefsPropsUtil.getPreferences(themeDisplay.getCompanyId(), true);

boolean companyMyAppFeatureEnabled =

PrefsParamUtil.getBoolean(

companyPortletPreferences, request, "myAppFeatureEnabled",

true);

request.setAttribute(

MyAppWebKeys.COMPANY_MY_APP_FEATURE_ENABLED,

companyMyAppFeatureEnabled);

1372

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorEntry.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorConstants.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorConstants.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorConstants.html

super.include(request, response);

}

• setServletContext(ServletContext): In this method, you set the parent entry class’s servlet context.
Then, using a @Reference annotation, you unbind the servlet context from its current target and target
it to your app’s OSGi bundle. First, add the @Reference annotation. Next, unbind the servlet context by
specifying unbind = "-". Finally, to target the servlet context to your app’s OSGi bundle, specify as the
target value the bundle’s symbolic name–it’s the value you specified for Bundle-SymbolicName in your
bnd.bnd file.

For example, here’s the setServletContext(ServletContext)method from the Form Nav Extension
portlet’s entry class:

@Override

@Reference(

target = "(osgi.web.symbolicname=com.liferay.docs.formnavextensionportlet)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

The above method calls its parent’s setServletContext(ServletContext)method. But look at what its
@Reference annotation does. It unbinds the servlet context from its current binding and instead targets it to
its own bundle–it targets the bundle symbolically named com.liferay.docs.formnavextensionportlet. That
is the exact symbolic name defined by Bundle-SymbolicName: com.liferay.docs.formnavextensionportlet in
the FormNav Extension portlet’s bnd.bnd file.

You’ve learned what’s required to create a section class. You declared your class to extend the
BaseJSPFormNavigatorEntry class and implement the FormNavigatorEntry interface, both with respect to your
Form Navigator’s formmodel bean class. Using annotations, you registered your entry class as an OSGi
service. Then you implemented all the entry methods to relate your entry to a FormNavigator, category, and
JSP, populate your entry’s request object, and target the servlet context to your bundle.

If you’re curious about what a working entry implementation looks like, check out the example entry
class next.

Example Form Navigator Entry Class

Inspecting an example implementation can help you work out details in your implementation. Here’s the
FormNav Extension portlet’s entry class MyAppCompanySettingsFormNavigatorEntry:

package com.liferay.docs.formnavextensionportlet;

import java.io.IOException;

import java.util.Locale;

import java.util.ResourceBundle;

import javax.portlet.PortletPreferences;

import javax.servlet.ServletContext;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import com.liferay.portal.kernel.servlet.taglib.ui.BaseJSPFormNavigatorEntry;

1373

import com.liferay.portal.kernel.servlet.taglib.ui.FormNavigatorConstants;

import com.liferay.portal.kernel.servlet.taglib.ui.FormNavigatorEntry;

import com.liferay.portal.kernel.util.PrefsParamUtil;

import com.liferay.portal.kernel.util.PrefsPropsUtil;

import com.liferay.portal.kernel.util.ResourceBundleUtil;

import com.liferay.portal.kernel.util.WebKeys;

import com.liferay.portal.model.Company;

import com.liferay.portal.theme.ThemeDisplay;

@Component(

immediate = true,

property = {

"form.navigator.entry.order:Integer=71"

},

service = FormNavigatorEntry.class

)

public class MyAppCompanySettingsFormNavigatorEntry

extends BaseJSPFormNavigatorEntry<Company>

implements FormNavigatorEntry<Company> {

@Override

public String getCategoryKey() {

return FormNavigatorConstants.CATEGORY_KEY_COMPANY_SETTINGS_MISCELLANEOUS;

}

@Override

public String getFormNavigatorId() {

return FormNavigatorConstants.FORM_NAVIGATOR_ID_COMPANY_SETTINGS;

}

@Override

protected String getJspPath() {

return "/portal_settings/my_app.jsp";

}

@Override

public String getKey() {

return "my-app";

}

@Override

public String getLabel(Locale locale) {

ResourceBundle resourceBundle = ResourceBundleUtil.getBundle(

"content.Language", locale, getClass());

return resourceBundle.getString("my-app");

}

@Override

public void include(HttpServletRequest request, HttpServletResponse response)

throws IOException {

ThemeDisplay themeDisplay =

(ThemeDisplay)request.getAttribute(WebKeys.THEME_DISPLAY);

PortletPreferences companyPortletPreferences =

PrefsPropsUtil.getPreferences(themeDisplay.getCompanyId(), true);

boolean companyMyAppFeatureEnabled =

PrefsParamUtil.getBoolean(

companyPortletPreferences, request, "myAppFeatureEnabled",

true);

request.setAttribute(

MyAppWebKeys.COMPANY_MY_APP_FEATURE_ENABLED,

companyMyAppFeatureEnabled);

super.include(request, response);

1374

}

@Override

@Reference(

target = "(osgi.web.symbolicname=com.liferay.docs.formnavextensionportlet)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

}

The above class is declared an OSGi component that provides a FormNavigatorEntry.class service. Since
the entry adds a JSP to Portal Settings, the class extends BaseJSPFormNavigatorEntry and implements
FormNavigatorEntry on the Companymodel bean class. The class specifies that the entry belongs to theMiscella-
neousportal settings category,by returningnavigatorkey FormNavigatorConstants.FORM_NAVIGATOR_ID_COMPANY_SETTINGS
frommethod getFormNavigatorIdandcategorykey FormNavigatorConstants.CATEGORY_KEY_COMPANY_SETTINGS_MISCELLANEOUS
from method getCategoryKey. The entry’s method getKey returns my-app as its own key and method
getJspPathmaps the class to the entry’s JSP by returning its JSP file path /portal_settings/my_app.jsp.

The entry’s include method retrieves a boolean portlet preference variable myAppFeatureEnabled that
specifies whetherMy App’s feature is enabled for the portal. It then sets the preference’s value as an attribute
on the request. The FormNav Portlet’s language keys for the entry’s name, input screen title, and input label
are defined in its src/main/content/Language.properties file. Themethod getLabel(Locale) uses language
key my-app to return the entry’s localized label. In summary, the MyAppCompanySettingsFormNavigatorEntry
class meets all of the FormNavigation framework’s section entry requirements.

There you have it! You learned all the parts of the FormNavigator framework and worked through all
the steps to implement new categories and sections. To recap, you prepared your project’s bnd.bnd file to
support form navigator extension, created JSPs for your new form sections, identified the targeted form
navigator and categories, created new categories, and created new entry implementations. You did it all!
You now know what it takes to extend Liferay FormNavigators.

Related Topics

Portlets
Service Builder

104.4 Creating Form Navigator Contexts
Form Navigator System Settings let you specify what categories and sections are visible in your forms.
You can learn how to set Form Navigator System Settings in Configuring Form Navigator Forms. Form
Navigator configurations let you specify an optional context which defines the circumstances for which the
configuration is applied. The following FormNavigator contexts are available by default:

• add: Denotes that the form is viewed when new content is being created. For example, you could use
the add context to specify the visible form sections when someone creates a new site.

• update: Denotes that the form is viewed when content is being edited. For example, you could use the
update context to specify the visible form sections when someone edits a site.

Although the default contexts cover most use cases, you may want to provide additional contexts for
users. For example, youmay want a custom configuration for a formwhen it’s viewed by an administrator.
This tutorial covers how to create additional contexts for FormNavigators.

1375

Your first step is to manage the dependencies.

Adding the Form Navigator Dependency

Open your module’s build.gradle file and add the following dependency:

dependencies {

compileOnly group: "com.liferay.portal", name:

"com.liferay.frontend.taglib.form.navigator", version: "1.0.2"

}

Now that you have the FormNavigator taglib dependency added, you can create the component class.

Implementing the Context Provider Class

Follow these steps to create a FormNavigator Context:

1. Create a component class that implements the FormNavigatorContextProvider service:

@Component(

service = FormNavigatorContextProvider.class

)

2. Set the FormNavigatorContextConstants.FORM_NAVIGATOR_ID property to the form associated with the
context. The example configuration below specifies the Users form, using a constant provided by the
com.liferay.portal.kernel.servlet.taglib.ui.FormNavigatorConstants class:

@Component(

property = FormNavigatorContextConstants.FORM_NAVIGATOR_ID + "=" +

FormNavigatorConstants.FORM_NAVIGATOR_ID_USERS,

service = FormNavigatorContextProvider.class

)

3. Implement the FormNavigatorContextProvider interface, specifying the FormNavigator’s model bean
class as a generic type. The example below sets the Users form’s Usermodel bean class as the generic
type:

public class UsersFormNavigatorContextProvider

implements FormNavigatorContextProvider<User> {

...

}

You can determine themodel bean class from the name of the ID’s constant in FormNavigatorConstants.
The word(s) right after FORM_NAVIGATOR_ID_ in the constant’s name hints at the class type. If you can
access the FormNavigator’s JSP source code, you can find the model bean from the form-navigator
tag’s formModelBean attribute value. You can locate the constant in the Liferay Portal repository using
the following pattern: id="<%= FormNavigatorConstants.[CONSTANT].

For example, if the form navigator’s ID is FORM_NAVIGATOR_ID_USERS, then you would search for
id="<%= FormNavigatorConstants.FORM_NAVIGATOR_ID_USERS; Make sure that the form-navigator tag’s
formModelBean attribute’s value isn’t a reference to another class. For example, the web content form
navigator’s formModelBean attribute value is article, but upon further inspection, it’s clear that article
is a reference variable to the true model bean class: JournalArticle.

1376

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorConstants.html
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-taglib/frontend-taglib-form-navigator/src/main/java/com/liferay/frontend/taglib/form/navigator/context/FormNavigatorContextProvider.java
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/servlet/taglib/ui/FormNavigatorConstants.html
https://github.com/liferay/liferay-portal
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/web-experience/journal/journal-web/src/main/resources/META-INF/resources/edit_article.jsp#L29

4. Override the *ContextProvider’s getContext()method. This method also takes the FormNavigator’s
model bean class as a generic type and defines the logic for the new context. The example configuration
below creates a new context called my.account for the Users form:

@Override

public String getContext(User selectedUser) {

if (PortletKeys.MY_ACCOUNT.equals(_getPortletName())) {

return "my.account";

}

if (selectedUser == null) {

return FormNavigatorContextConstants.CONTEXT_ADD;

}

return FormNavigatorContextConstants.CONTEXT_UPDATE;

}

If you are viewing the Users form from the com_liferay_my_account_web_portlet_MyAccountPortlet

portlet, the my.account context is returned. You also need to specify under what circumstances the add
and update contexts are returned. In the example above, if the user doesn’t exist (i.e. you are creating a
new user), the add context is returned. Otherwise it defaults to the update context (edit view).

The new context is ready to use in your FormNavigator configurations.
A full *ContextProvider example class is provided next.

Context Provider Example class

Below is anexample configuration for the com.liferay.users.admin.web.servlet.taglib.ui.UsersFormNavigatorContextProvider
class:

package com.liferay.users.admin.web.servlet.taglib.ui;

import com.liferay.frontend.taglib.form.navigator.constants.FormNavigatorContextConstants;

import com.liferay.frontend.taglib.form.navigator.context.FormNavigatorContextProvider;

import com.liferay.portal.kernel.model.User;

import com.liferay.portal.kernel.service.ServiceContext;

import com.liferay.portal.kernel.service.ServiceContextThreadLocal;

import com.liferay.portal.kernel.servlet.taglib.ui.FormNavigatorConstants;

import com.liferay.portal.kernel.theme.PortletDisplay;

import com.liferay.portal.kernel.theme.ThemeDisplay;

import com.liferay.portal.kernel.util.PortletKeys;

import org.osgi.service.component.annotations.Component;

/**

* @author Alejandro Tardín

⁎/

@Component(

property = FormNavigatorContextConstants.FORM_NAVIGATOR_ID + "=" + FormNavigatorConstants.FORM_NAVIGATOR_ID_USERS,

service = FormNavigatorContextProvider.class

)

public class UsersFormNavigatorContextProvider

implements FormNavigatorContextProvider<User> {

@Override

public String getContext(User selectedUser) {

if (PortletKeys.MY_ACCOUNT.equals(_getPortletName())) {

return "my.account";

}

if (selectedUser == null) {

1377

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/users-admin/users-admin-web/src/main/java/com/liferay/users/admin/web/servlet/taglib/ui/UsersFormNavigatorContextProvider.java
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/users-admin/users-admin-web/src/main/java/com/liferay/users/admin/web/servlet/taglib/ui/UsersFormNavigatorContextProvider.java

return FormNavigatorContextConstants.CONTEXT_ADD;

}

return FormNavigatorContextConstants.CONTEXT_UPDATE;

}

private String _getPortletName() {

ServiceContext serviceContext =

ServiceContextThreadLocal.getServiceContext();

ThemeDisplay themeDisplay = serviceContext.getThemeDisplay();

PortletDisplay portletDisplay = themeDisplay.getPortletDisplay();

return portletDisplay.getPortletName();

}

}

Now you know how to create a FormNavigator context!

Related Topics

Configuring FormNavigator Forms
FormNavigator Extensions

1378

Chapter 105

Themes and Layout Templates

Do youwant to transform the look and feel of your Liferay DXP? Create your own user interface with a Liferay
Theme! Create a layout template to specify where content can be placed on a page! Define a custom look and
feel for your portlets! All these customizations andmore are possible with Liferay DXP!

In this section of tutorials, you’ll learn how to develop themes and layout templates, customize portlets,
andmore.

1379

Chapter 106

Themes

A LiferayTheme is the overall look and feel for a site. Themes are a combination of CSS, JavaScript, HTML,
and FreeMarker templates. Although the default themes are nice, youmay wish to create your own custom
look and feel for your site. Liferay DXP provides several tools and environments that you can use to create
themes:

• Theme Builder Gradle Plugin
• The LiferayTheme Generator
• @ide@
• Blade CLI’sTheme Template

What if you only wish to make a minor change to the overall look and feel? Let’s say you just want to
change a menu animation. Instead of creating an entire theme for this single modification, you can create a
Themelet. Themelets aremodular, customizable, reusable, shareable pieces of code that extend a theme. They
enable reusable code for themes. Instead of rewriting the code each time, you can use the same themelet in
each theme.

Liferay has its own set of base themes, called styled and unstyled that create the default look and feel you
see at first start. The styled theme inherits from the unstyled theme, and simply adds some additional styling
on top. These same base themes are used to create a custom theme. See the User ProfileTheme, which uses
the styled theme as its base. Using a base theme as your foundation, you can then make your customizations
to the theme files. To modify the theme,mirror the folder structure of the files you wish to change and copy
them into your theme. Place the modified files in the src folder of your theme if using the LiferayTheme
Generator, or copy them into the webapp folder of your theme if using Liferay @ide@. Build the theme to
apply the changes.

Once your theme is developed it is packaged as aWAR (Web application ARchive) file and can be deployed
to the server, either manually or using build tools. Apply your theme to your pages through the Look and
Feel menu. The only limitation is your imagination.

106.1 Liferay Theme Generator

The LiferayTheme Generator is an easy-to-use command-line wizard that streamlines the theme creation
process. It is independent of the Liferay Plugins SDK, and generates themes for Liferay Portal 6.2, 7.0, and

1381

https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/foundation/frontend-theme/frontend-theme-styled
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/foundation/frontend-theme/frontend-theme-unstyled
https://github.com/liferay/liferay-portal/tree/1ec7ef30e409de8b53dc8342e8ba7e7540bceef8/modules/apps/foundation/frontend-theme/frontend-theme-user-profile

up. It is just one of Liferay JSTheme Toolkit. This tutorial focuses on using the LiferayTheme Generator to
create themes. In just a few steps, you’ll have a working Liferay theme.

Note:TheLiferayThemeGenerator is unsupported. The tool is still in development and is not guaranteed
to work on all platforms and environments.

This tutorial demonstrates how to:

• Install the LiferayTheme Generator

• Generate a theme

The first step is to install the LiferayTheme Generator.

Installing the Theme Generator

The LiferayTheme Generator has several dependencies. Follow these steps to install them:

1. Install Node.js, if it’s not already installed. We recommend installing v6.6.0, which is the version
Liferay Portal 7.0 supports.

To test your Node.js installation, execute the following command:

node -v

The resulting output should look similar to this:

v4.2.2

Note: To avoid any potential compatibility issues, we recommend installing the Long Term Support
(LTS) version of Node.js–at the time of this writing, the LTS version is v4.2.2.

Node Package Manager (npm) is installed along with Node.js.

2. Set up your npm environment.

First, create an .npmrcfile in your user’s home directory. This helps you bypass npmpermission-related
issues.

In the .npmrc file, specify a prefix property like this one:

prefix=/Users/[username]/.npm-packages

Set the prefix value based on your user’s home directory. The location you specify is where global npm
packages are to be installed.

Next, set the NPM_PACKAGES system environment variable to the prefix value you just specified:

NPM_PACKAGES=/Users/[username]/.npm-packages (same as prefix value)

As a last npm configuration, since npm installs Yeoman and gulp executables to ${NPM_PACKAGES}/bin
on UNIX and to %NPM_PACKAGES% on Windows, make sure to add the appropriate directory to your
system path. For example, on UNIX you’d set this:

1382

https://github.com/liferay/liferay-themes-sdk/tree/master/packages
https://github.com/liferay/generator-liferay-theme
http://nodejs.org/
https://nodejs.org/download/release/v6.6.0/

PATH=${PATH}:${NPM_PACKAGES}/bin

3. Install Yeoman and gulp globally by executing the following command:

npm install -g yo gulp

You’ve completed installing the LiferayTheme Generator’s dependencies.

4. Install the LiferayTheme Generator. 7.x.x versions of theTheme Generator create themes for 6.2 and
7.0. 8.x.x versions create themes for 7.0 and 7.1. 9.x.x versions create themes for 7.2 and up.

To create themes for 6.2 or 7.0, run the following command:

npm install -g generator-liferay-theme@7.x.x

To create themes for 7.0 or 7.1 versions of Liferay DXP, run this command:

npm install -g generator-liferay-theme@8.x.x

If you are onWindows, youmust do additional setup for generated themes to use Sass.

Installing Sass on Windows

To use Sass on Windows, you must use either Sass from node-sass or Sass from Ruby. By default, the
generator creates theme projects to use node-sass; but you can reconfigure them to use Ruby based Sass and
Compass. Since node-sass indirectly requires Visual Studio, developers who are not already using Visual
Studio may opt to use Ruby based Sass and Compass instead of node-sass.

Note: If your theme was built with an older version of the LiferayTheme Generator and specifies the
"liferay-theme-deps-7.0": "1.0.0" dependency in its package.json, npm installmay fail in LiferayDXPdue
to its dependency on node-sass v3.13.1. To fix this issue, change the dev dependency in your package.json
to "liferay-theme-deps-7.0": "7.0.0" and rebuild your theme. We recommend that you use the latest 7.x.x
version of theTheme Generator and dependencies in your package.json to ensure full compatibility.

This section explains both Sass installations.

Installing Sass fromnode-sass By default, the generator uses Sass from node-sass. node-sass requires
node-gyp, which in turn requires Python and Visual Studio. The node-gyp installation instructions explain
how to set up node-gyp, Python, and Visual Studio. Since Visual Studio is a particularly large dependency, if
you aren’t already using Visual Studio youmight want to consider using Ruby Sass instead of node-sass.

Installing Ruby Sass and Compass As an alternative to using Sass from node-sass, you can use Sass from
Ruby. Liferay themes require using Compass along with Ruby based Sass. In order to install and use Sass
and Compass, youmust install Ruby via the Ruby installer.

Note: Sass version 3.5 has compatibility issues with Compass. We recommend that you install Sass
version 3.4.0 as shown in the command below.

The following commands install the Sass and Compass gems:

1383

http://yeoman.io/
https://www.npmjs.com/package/gulp
https://github.com/nodejs/node-gyp#installation
http://rubyinstaller.org/

gem install sass -v "=3.4.0"

gem install compass

After creating a theme project in the next section, you’ll learn how to configure a project to use Ruby
based Sass and Compass.

Now that you’ve installed the Liferay Theme Generator and theme dependencies, you can generate a
theme.

Running the Liferay Theme Generator

When you installed the LiferayTheme Generator, you also installed three sub-generators with it: a layout
template creator, a themelet creator, and a theme importer. For the purposes of this tutorial, the focus will
be on the default LiferayTheme Generator.

Note: If you run into permissions issues during theme generation,make sure you have read/write access
to all folders on your system.

From a directory in which you want to create a theme, run the following command:

yo liferay-theme

Note: Some theme options are deprecated for 7.0 (such as Velocity theme templates). To view the
deprecated options, run the generator with the --deprecated flag:

yo liferay-theme --deprecated

The LiferayTheme Generator prompts you for the following things:

1. Enter a name for your theme.

2. Enter a theme ID, or press enter to accept the default.

3. Select the version of your Liferay instance (e.g., 7.0).

4. Choose a template language. Note that Freemarker is used by default; you can only select Velocity if
you run the generator with the --deprecated flag.

Based on the inputs up to this point, the default generator starts installing additional required software
and creating your theme project.

5. When prompted, enter your app server’s path. The information you provide is added to the liferay-
theme.json in your theme’s root folder. you can change the path in that file if you change app servers.

6. Finally, enter your Liferay instance’s URL, or press enter to accept the default localhost:8080.

The generator creates a new theme project in your current directory. The theme inherits styles from the
liferay-theme-styled theme. Note that you can switch to using a different base theme by executing the gulp
extend command.

1384

https://www.npmjs.com/package/liferay-theme-styled

Note: The liferay-theme-styled and liferay-theme-unstyled themes are base themes. They’re analogous to
Java APIs. Liferay’s Classic theme and other themes that use liferay-theme-styled or liferay-theme-unstyled
as a base theme are analogous to API implementations–they’re not meant to be extended. Extending
Liferay’s Classic theme is strongly discouraged.

Important: By default, your theme is based off of the styled theme and uses lib-sass/bourbon, instead of
Compass. If, however, you are onWindows and are using the Ruby version of Sass, youmust configure the
theme to support Compass. To do so, follow these steps:

1. Open the package.json file found in the root folder of your theme, and locate the rubySass property
and change it from false to true.

Now that your theme is set to support Compass, youmust install the Ruby Sass middleware and save
it as a dependency for your theme.

2. Run the following command to install the Ruby Sass middleware:

npm i --save gulp-ruby-sass

The --save flag adds Ruby Sass to the list of dependencies in your theme’s package.json file. Your
theme is ready to use.

3. Run the gulp build task to generate the base files for your theme. Open the build folder of your theme
to view the base files.

There you have it! You now have a working theme. At the moment, the theme is a bit bare bones, but you
have everything you need to develop it.

The generated theme’s structure differs slightly from a theme created in the Liferay Plugins SDK. In a
theme generated in the Liferay Plugins SDK, you put changes in a _diffs folder. In a theme generated by the
LiferayTheme Generator, you put changes in the src folder.

To develop your theme, copy the build files into your src folder. For instance to make a change to the
portal_normal.ftl theme template, you would create a templates folder in your src folder, and copy the
portal_normal.ftl file from the build/templates folder into the src/templates folder. This gives you the base
template to build on. It is important that you mirror the folder structure in order for the changes to be
applied.

Another noticeable difference in the generator created theme is that all CSS files have been converted to
Sass SCSS files. Sassy CSS (SCSS) is the newmain syntax which allows you to use the latest CSS3 styles and
leverage Sass syntax advantages, such as nesting and variables.

To deploy your theme to your configured Liferay DXP instance, execute this command:

gulp deploy

You can apply your theme by following the instructions found in the Creating andManaging Pages User
Guide.

Note: By default theme images are cached by the browser. If you need to update images
in the theme, it is best practice to use versioning in the image URL. For example, background-

image:url("../images/image.jpg?v=1") . You can then just update the version each time you update
the image, which will remove the potential for any caching issues.

1385

https://www.npmjs.com/package/liferay-theme-styled
https://www.npmjs.com/package/liferay-theme-unstyled

Now that you’ve created a theme and deployed it, you can use the theme project’s gulp tasks to further
develop and manage your theme. These offer basic functions, such as build and deploy, as well as more
complex interactions, such as auto deploying when a change is made and setting the base theme.

There you have it! You’re ready to design a terrific theme!

Related Topics

Theme Gulp Tasks
Themelets
Importing Resources with aTheme

106.2 Themelets
Themelets are small, extendable, and reusable pieces of code. Whereas themes require multiple components,
a themelet only requires the files you wish to extend. This creates a moremodular approach to theme design,
that lends itself well to collaboration, and reduces the need for duplicated code in your theme.

Themelets let developers easily share code snippets across their themeswith other developers. A themelet
can consist of CSS and JavaScript. Themelets do not support theme templates.

Themelets are very flexible, and therefore they have a number of possible uses. You can make a themelet
to modify the appearance of 7.0 admin tools, or a themelet that uses a custom JavaScript component for
responsive embedded videos. For example, take a look at the Liferay Product Menu AnimationThemelet.
This themelet simply alters the animation for Liferay’s Product Menu.

If there is something you find yourself coding over and over again for themes, it’s a good candidate for a
themelet.

This tutorial demonstrates how to:

• Create a themelet to extend your theme

• Install aThemelet

To create a themelet, you need a theme to extend and the LiferayTheme Generator and dependencies
installed, as explained in the LiferayTheme Generator tutorial.

Creating a Themelet

Follow these steps to create a themelet:

1. Open the Command Line and navigate to the directory you want to create your themelet in.

2. Run yo liferay-theme:themelet and follow the prompts to generate the themelet.

3. The generated themelet contains a package.json file with configuration information and a src/css
folder that contains a _custom.scss file. Just like a theme, add your CSS changes to the src/css folder,
and add your JavaScript changes to the src/js folder.

4. To use your themelet, youmust install it globally first. This makes the themelet visible to the generator.
To install your themelet globally, navigate into its root folder and run npm link. Note, you may need to
run the command using sudo npm link. This creates a globally-installed symbolic link for the themelet
in your npm packages folder. Now your themelet is available to install in your themes.

Now that your themelet is developed, you can install it in your theme.

1386

https://www.npmjs.com/package/lfr-product-menu-animation-themelet

Figure 106.1: Themelets can be used to modify one aspect of the UI, that you can then reuse in your other themes.

Figure 106.2: The Themelet sub-generator automates the themelet creation process, making it quick and easy.

1387

Installing a Themelet

After you’ve developed your themelet, follow the steps below to install it into your theme.

1. Navigate to your theme’s root directory and run the following command:

gulp extend

2. ChooseThemelet as the theme asset to extend.

3. Select Search globally installed npmmodules.

Figure 106.3: You can extend your theme using globally installed npm modules or published npm modules.

4. Highlight your themelet, press spacebar to activate it, and press Enter to install it.

5. Run gulp deploy to build and deploy your theme with the new themelet updates.

Your themelet is installed! As you can see, themelets are a handy tool to add to your theme development
bag o’ tricks.

Related Topics

Importing Resources with YourThemes
LiferayTheme Generator

106.3 Importing Resources with a Theme

A theme without content is like an empty house. If you’re trying to sell an empty house, it may be difficult for
prospective buyers to see its full beauty. However, staging the house with some furniture and decorations
helps prospective buyers imagine what the house might look like with their belongings. Liferay’s resources
importermodule is a tool that allows a theme developer to have files andweb content automatically imported
into Liferay DXP when a theme is deployed. Usually, the resources are imported into a site template but they
can also be imported directly into a site. Liferay Administrators can use the site or site template created by
the resources importer to showcase the theme. This is a great way for theme developers to provide a sample
context that optimizes the design of their theme. In fact, all standalone themes that are uploaded to Liferay
Marketplace must use the resources importer. This ensures a uniform experience for Marketplace users: a
user can download a theme fromMarketplace, install it on Liferay DXP, go to Sites or Site Templates in the
Control Panel and immediately see their new theme in action. In this tutorial, we explain how to include
resources with your theme.

1388

Note: The resources importer has undergone some changes that affect the properties, class names,
and structures that were referred to in versions prior to 7.0. Please read through the steps below to see
the updates. In previous versions of Liferay, you had to deploy the resources importer if you declared it
as a dependency in your theme’s liferay-plugin-package.properties file. In 7.0 and up, this is no longer a
requirement. The resources importer is now an OSGi module, and is deployed to your instance by default.

When you create a new theme using the Liferay Theme Generator, check your theme’s src/WEB-

INF/liferay-plugin-package.properties file for the developer mode entry:

resources-importer-developer-mode-enabled=true

This is a convenience feature for theme developers. With this setting enabled, importing resources to
a site or site template that already exists, recreates the site or site template. Importing resources into a
site template reapplies the site template and its resources to the sites that are based on the site template.
Without resources-importer-developer-mode-enabled=true, you have to manually delete the sites or site
templates built by the resources importer, each time you want to apply changes from your theme’s src/WEB-
INF/src/resources-importer folder.

Warning: the resources-importer-developer-mode-enabled=true setting can be dangerous since it in-
volves deleting (and re-creating) the affected site or site template. It’s only intended to be used during
development. Never use it in production.

If you’d like to import your theme’s resources directly into a site, instead of into a site template, you can
specify the following in your liferay-plugin-package.properties file:

resources-importer-target-class-name=com.liferay.portal.kernel.model.Group

resources-importer-target-value=[site-name]

If you’re using the resources-importer-target-value=[site-name] property, double check the site name
that you’re specifying. If you specify the wrong value, you could end up deleting (and re-creating) the wrong
site!

Warning: It’s safer to import theme resources into a site template than into an actual site. The resources-
importer-target-class-name=com.liferay.portal.kernel.model.Group setting can be handy for development
and testing but should be used cautiously. Don’t use this setting in a theme that will be deployed to
a production Liferay instance or a theme that will be submitted to Liferay Marketplace. To prepare a
theme for deployment to a production Liferay instance, use the default setting so that the resources are
imported into a site template. You can do this explicitly by setting resources-importer-target-class-

name=com.liferay.portal.kernel.model.LayoutSetPrototype or implicitly by commenting out or removing
the resources-importer-target-class-name property.

All of the resources a theme uses with the resources importer go in the [theme-name]/src/WEB-

INF/src/resources-importer folder. The assets to be imported by your theme should be placed in the
following directory structure:

• [theme-name]/src/WEB-INF/src/resources-importer/

– sitemap.json - defines the pages, layout templates, and portlets
– assets.json - (optional) specifies details on the assets

1389

– document_library/

* documents/ - contains documents andmedia files

– journal/

* articles/ - containsweb content (HTML) and folders groupingweb content articles (XML)
by template. Each folder namemust match the file name of the corresponding template.
For example, create folder Template 1/ to hold an article based on template file Template
1.ftl.

* structures/ - contains structures (JSON) and folders of child structures. Each folder name
must match the file name of the corresponding parent structure. For example, create
folder Structure 1/ to hold a child of structure file Structure 1.json.

* templates/ - groups templates (VM or FTL) into folders by structure. Each folder name
must match the file name of the corresponding structure. For example, create folder
Structure 1/ to hold a template for structure file Structure 1.json.

The following is the XML file for a basic web content article:

<?xml version="1.0"?>

<root available-locales="en_US" default-locale="en_US">

<dynamic-element name="content" type="text_area" index-type="keyword" index="0">

<dynamic-content language-id="en_US">

<![CDATA[

<center>

<p></p>

</center>

<p>In the mid-20th century, after two of the

most violent wars in history, mankind turned

its gaze upwards to the stars. Instead of

continuing to strive against one another,

man choose instead to strive against the

limits that we had bound ourselves to. And

so the Great Space Race began.</p>

<p>At first the race was to reach space--get

outside the earth's atmosphere, and when

that had been reached, we shot for the moon.

After sending men to the moon, robots to

Mars, and probes beyond the reaches of our

solar system, it seemed that there was

nowhere left to go.</p>

<p>The Space Program aims to change that.

Beyond national boundaries, beyond what

anyone can imagine that we can do. The sky

is not the limit.</p>

]]>

</dynamic-content>

</dynamic-element>

</root>

You can view an article’s XML by going to its source.
When you create a new theme using the LiferayTheme Generator, a default sitemap.json file is created

and a default liferay-plugin-package.properties file is created in the WEB-INF folder.
You have two options for specifying resources to be imported with your theme. The recommended

approach is to add resource files to the folders outlined above and to specify the contents of the site or site

1390

template in a sitemap.json file (described below). Alternatively, you can use an archive.lar file to package
the resources you’d like your theme to deploy. To create such an archive.lar, just export the contents of a site
fromLiferayPortal using the site scope. Thenplace the archive.larfile in your theme’s [theme-name]/src/WEB-
INF/src/resources-importer folder. If you choose to use an archive file to package all of your resources, you
won’t need a sitemap.json file or any other files in your [theme-name]/src/WEB-INF/src/resources-importer
folder. Note, however, a LAR file is version-specific; it won’t work on any version of Liferay other than the
one fromwhich it was exported. For this reason, using a sitemap.json file to specify resources is the most
flexible approach. If you’re developing themes for Liferay Marketplace, you should use the sitemap.json to
specify resources to be imported with your theme.

The sitemap.json in the [theme-name]/src/WEB-INF/src/resources-importer folder specifies the site pages,
layout templates, web content, assets, and portlet configurations providedwith the theme. This file describes
the contents and hierarchy of the site for Liferay to import as a site or site template.

Note: Site templates only support the importing of either public page sets or private page sets.
If you want to import both public and private page sets, as shown in the example sitemap.json below,

youmust import your resources into a site.

Even if you’re not familiar with JSON, the sitemap.json file is easy to understand. Let’s examine a sample
sitemap.json file:

{

"layoutTemplateId": "2_columns_ii",

"privatePages": [

{

"friendlyURL": "/private-page",

"name": "Private Page",

"title": "Private Page"

}

],

"publicPages": [

{

"columns": [

[

{

"portletId": "com_liferay_login_web_portlet_LoginPortlet"

},

{

"portletId": "com_liferay_site_navigation_menu_web_portlet_SiteNavigationMenuPortlet"

},

{

"portletId": "com_liferay_journal_content_web_portlet_JournalContentPortlet",

"portletPreferences": {

"articleId": "Without Border.html",

"groupId": "${groupId}",

"portletSetupPortletDecoratorId": "borderless"

}

},

{

"portletId": "com_liferay_journal_content_web_portlet_JournalContentPortlet",

"portletPreferences": {

"articleId": "Custom Title.html",

"groupId": "${groupId}",

"portletSetupPortletDecoratorId": "decorate",

"portletSetupTitle_en_US": "Web Content Display with Custom Title",

"portletSetupUseCustomTitle": "true"

}

}

],

[

{

1391

"portletId": "com_liferay_hello_world_web_portlet_HelloWorldPortlet"

},

{

"portletId": "com_liferay_site_navigation_menu_web_portlet_SiteNavigationMenuPortlet_INSTANCE_${groupId}",

"portletPreferences": {

"displayStyle": "[custom]",

"headerType": "root-layout",

"includedLayouts": "all",

"nestedChildren": "1",

"rootLayoutLevel": "3",

"rootLayoutType": "relative"

}

},

"Web Content with Image.html",

{

"portletId": "com_liferay_nested_portlets_web_portlet_NestedPortletsPortlet",

"portletPreferences": {

"columns": [

[

{

"portletId": "com_liferay_journal_content_web_portlet_JournalContentPortlet",

"portletPreferences": {

"articleId": "Child Web Content 1.xml",

"groupId": "${groupId}",

"portletSetupPortletDecoratorId": "decorate",

"portletSetupTitle_en_US": "Web Content Display with Child Structure 1",

"portletSetupUseCustomTitle": "true"

}

}

],

[

{

"portletId": "com_liferay_journal_content_web_portlet_JournalContentPortlet",

"portletPreferences": {

"articleId": "Child Web Content 2.xml",

"groupId": "${groupId}",

"portletSetupPortletDecoratorId": "decorate",

"portletSetupTitle_en_US": "Web Content Display with Child Structure 2",

"portletSetupUseCustomTitle": "true"

}

}

]

],

"layoutTemplateId": "2_columns_i"

}

}

]

],

"friendlyURL": "/home",

"nameMap": {

"en_US": "Welcome",

"fr_FR": "Bienvenue"

},

"title": "Welcome"

},

{

"columns": [

[

{

"portletId": "com_liferay_login_web_portlet_LoginPortlet"

}

],

[

{

"portletId": "com_liferay_hello_world_web_portlet_HelloWorldPortlet"

}

]

],

1392

"friendlyURL": "/layout-prototypes-parent-page", "layouts": [

{

"friendlyURL": "/layout-prototypes-page-1",

"layoutPrototypeLinkEnabled": "true",

"layoutPrototypeUuid": "371647ba-3649-4039-bfe6-ae32cf404737",

"name": "Layout Prototypes Page 1",

"title": "Layout Prototypes Page 1"

},

{

"friendlyURL": "/layout-prototypes-page-2",

"layoutPrototypeUuid": "c98067d0-fc10-9556-7364-238d39693bc4",

"name": "Layout Prototypes Page 2",

"title": "Layout Prototypes Page 2"

}

],

"name": "Layout Prototypes",

"title": "Layout Prototypes"

},

{

"columns": [

[

{

"portletId": "com_liferay_login_web_portlet_LoginPortlet"

}

],

[

{

"portletId": "com_liferay_hello_world_web_portlet_HelloWorldPortlet"

}

]

],

"friendlyURL": "/parent-page",

"layouts": [

{

"friendlyURL": "/child-page-1",

"name": "Child Page 1",

"title": "Child Page 1"

},

{

"friendlyURL": "/child-page-2",

"name": "Child Page 2",

"title": "Child Page 2"

}

],

"name": "Parent Page",

"title": "Parent Page"

},

{

"friendlyURL": "/url-page",

"name": "URL Page",

"title": "URL Page",

"type": "url"

},

{

"friendlyURL": "/link-page",

"name": "Link to another Page",

"title": "Link to another Page",

"type": "link_to_layout",

"typeSettings": "linkToLayoutId=1"

},

{

"friendlyURL": "/hidden-page",

"name": "Hidden Page",

"title": "Hidden Page",

"hidden": "true"

}

]

}

1393

The first thing you should declare in your sitemap.json file is a default layout template ID so the target
site or site template can reference the layout template to use for its pages. You can also specify different
layout templates to use for individual pages. You can find layout templates in your Liferay installation’s
/layouttpl folder. Next, you have to declare the layouts, or pages, that your site template should use. Note
that pages are called layouts in Liferay DXP’s code. You can specify a name, title, and friendly URL for a page,
and you can set a page to be hidden. To declare that web content should be displayed on a page, simply
specify an XML file. You can declare portlets by specifying their portlet IDs, which can be found in the App
Manager of the Control Panel. Select the suite that the App is located in, click the App, click the App web link,
and open the Portlets tab that appears. The portlet ID is displayed below the name of the App. You can find a
full list of the default portlet IDs for Liferay in the Portlet ID quick reference. You can also specify portlet
preferences for each portlet.

The following properties are available in the sitemap.json:
colorSchemeId: Specifies a different color scheme (by ID) than the default color scheme to use for the

layout.
columns: Specifies the column contents for the layout.
friendlyURL: Sets the layout’s friendly URL.
hidden: Sets whether the layout is hidden.
layoutCss: Sets custom CSS for the layout to load after the theme.
layoutPrototypeLinkEnabled: Sets whether the layout inherits changes made to the page template (if

the layout has one).
layoutPrototypeName: Specifies the page template (by name) to use for the layout. If this is defined, the

page template’s UUID is retrieved using the name, and layoutPrototypeUuid is not required.
layoutPrototypeUuid: Specifies the page template (byUUID) to use for the layout. If layoutPrototypeName

is defined, this is not required.
layoutTemplateId:When defined outside the scope of a portlet, sets the default layout template for the

theme’s layouts. When placed inside a layout, sets the layout template for the layout.
layouts: Specifies child pages for a layout set (publicPages || privatePages).
name:The layout’s name.
nameMap: Passes a name object with multiple name key/value pairs. As shown in the example sitemap

above, you can use this to pass language keys for layout names.
portletPreferences: Specifies the portlet’s preferences. See note below for more information.
portletSetupPortletDecoratorId: Specifies the portlet decorator to use for the portlet (borderless ||

barebone || decorate). See the Portlet Decorators tutorial for more info.
portlets: specifies the portlets to display in the layout’s column. To nest portlets, recursively use columns

as shown in theexample sitemap.jsonabove for the com_liferay_nested_portlets_web_portlet_NestedPortletsPortlet
portlet.

privatePages: Specifies private layouts.
publicPages: Specifies public layouts.
themeId: Specifies a different theme (by ID) than the default theme bundled with the sitemap.json to

use for the layout.
title:The layout’s title.
type: Sets the layout type. The default value is portlet (empty page). Possible values are copy (copy of a

page of this site), embedded, full_page_application, link_to_layout, node (page set), panel, portlet, and url

(link to URL).
typeSettings: Specifies settings (using key/value pairs) for the layout type.

Note: Portlet preferences set in sitemap.jsonare saved in thedatabase to the column: portletPreferences.preferences.
To determine the proper key:value pair for a portlet preference, there are a couple approaches you can take.

1394

You canmanually set the portlet preference in Liferay DXP, and then check the values in this column of
the database as a hint for what to configure in your sitemap.json. For example, you can configure the Asset
Publisher to display assets that match the specified asset tags, using the following configuration:

"queryName0": "assetTags",

"queryValues0": "MyAssetTagName"

Alternatively, you can search each app in your Liferay DXP bundle for the keyword preferences--. This
returns some of the app’s JSPs that have the portlet preferences defined for the portlet.

You can use a combination of both of these approaches to determine the key/value pairs for the portlet
preferences.

Note that portlet preferences that require an existing configuration, such as a tag or category, may
require you to create the configuration on the Global site first, so that the Resources Importer finds a match
when deployed with the theme.

Tip: You can specify an application display template (ADT) for a portlet in the sitemap.json file by setting
the displayStyle and displayStyleGroupId portlet preferences. For example:

"portletId": "com_liferay_asset_publisher_web_portlet_AssetPublisherPortlet",

"portletPreferences": {

"displayStyleGroupId": "10197",

"displayStyle": "ddmTemplate_6fe4851b-53bc-4ca7-868a-c836982836f4",

}

To learn more about ADTs, visit the Styling Apps with Application Display Templates chapter.

Optionally, you can create an assets.json file in your [theme-name]/src/WEB-INF/src/resources-importer
folder. While the sitemap.json file defines the pages of the site or site template to be imported, along with
the layout templates, portlets, and portlet preferences of these pages, the assets.json file specifies details
about the assets to be imported. Tags can be applied to any asset. Abstract summaries and small images
can be applied to web content articles. For example, the following assets.json file specifies two tags for the
company_logo.png image, one tag for the Custom Title.xmlweb content article, and an abstract summary and
small image for the Child Web Content 1.json article structure:

{

"assets": [

{

"name": "company_logo.png",

"tags": [

"logo",

"company"

]

},

{

"name": "Custom Title.xml",

"tags": [

"web content"

]

},

{

"abstractSummary": "This is an abstract summary.",

"name": "Child Web Content 1.xml",

"smallImage": "company_logo.png"

}

]

}

1395

Now that you’ve learned about the directory structure for your resources, the sitemap.json file for ref-
erencing your resources, and the assets.json file for describing the assets of your resources, it’s time to
put resources into your theme. You can create resources from scratch and/or bring in resources that you’ve
already created in Liferay. Let’s go over how to leverage your HTML (basic web content), JSON (structures),
or VM or FTL (templates) files from Liferay:

Note: In previous versions of Liferay, basic web content could be added without the need of a structure
or template. In 7.0 and above, all web content articles require a structure and template.

• web content: Edit the article, and copy the content from the Source view. Create a folder for the article
under resources-importer/journal/articles/, copy the contents into an XML file, named as desired,
and place it into the folder for the article. The web content article’s XML fills in the data required by
the structure.

• structure: Edit the structure by clicking the link under Structure and Template, and copy and paste its
contents into a new JSON file for the structure in the resources-importer/journal/structures/ folder.
The structure JSON sets a wireframe, or blueprint, for an article’s data.

• template: Create a folder for the template under resources-importer/journal/templates/. Edit the
template by clicking the link under Structure and Template, and copy and paste its contents into a new
FTL file for the template, and place it into the folder for the template. The template defines how the
data should be displayed.

Here is an outline of steps you can use in developing your theme and its resources:

1. Create your theme.

2. Add your resources under the [theme-name]/src/WEB-INF/src/resources-importer folder and its sub-
folders.

3. Create a sitemap.json file in your resources-importer/ folder. In this file, define the pages of the site
or site template to be imported, along with the layout templates, portlets, and portlet preferences of
these pages.

4. Create an assets.json file in your resources-importer/ folder. In this file, specify details of your
resource assets.

5. Inyour liferay-plugin-package.propertiesfile, set resources-importer-developer-mode-enabled=true:

resources-importer-developer-mode-enabled=true

6. Set the resources-importer-target-value property to the name of the site or site template into which
you are importing, or comment it out to use the theme’s name.

For example, the following configuration sets the target value to the name of an existing site or site
template:

resources-importer-target-value = site/site template name

Alternatively, this configuration uses the theme’s name as the target value:

1396

#resources-importer-target-value

Note: By default resources are imported into a new site template named

after the theme. If you want your resources to be imported into an existing

site or site template, you must specify a value for the

`resources-importer-target-value` property.

7. Comment out the resources-importer-target-class-name property to import into a site template or
set it to com.liferay.portal.kernel.model.Group to import directly into a site.

As mentioned above the example sitemap.json, youmust import your resources into a site, if you
define both public and private page sets in your sitemap.json.

If you don’t specify a value for the resources-importer-target-class-name property, your resourceswill
be imported into a site template.

8. Deploy your theme into your Liferay instance.

9. View your theme, and its resources, from within Liferay. Log in to your portal as an administrator and
check the Sites or Site Templates section of the Control Panel to make sure that your resources were
deployed correctly. From the Control Panel you can easily view your theme and its resources:

• If you imported into a site template, select its Actions → View Pages to see it.
• If you imported directly into a site, select its Actions → Go to Public Pages to see it.

You can go back to any of the beginning steps in this outline to make refinements. It’s just that easy to
develop a theme with resources intact!

Related Topics

LiferayTheme Generator
Styling Apps with Application Display Templates

106.4 Using Developer Mode with Themes
Do you want to develop Liferay DXP themes without having to redeploy to see your modifications? Use
Liferay DXP’s Developer Mode! In Developer Mode, all caches are removed, so any changes youmake are
visible right away. Also, you don’t have to reboot the server as often in Developer Mode.

How does Developer Mode let you see your changes more quickly? By default, Liferay DXP is optimized
for performance. Developer mode optimizes your configuration for development instead. Here is a list
of Developer Mode’s key behavior changes and the Portal Property override settings that trigger them (if
applicable):

• CSS files are loaded individually rather than being combined and loaded as a single CSS file
(theme.css.fast.load=false).

• Layout template caching is disabled (layout.template.cache.enabled=false).
• The server does not launch a browser when starting (browser.launcher.url=).

1397

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html

• FreeMarker Templates for themes andweb content are not cached, so changes are applied immediately
(via the system setting in your Liferay DXP instance).

• Minification of CSS and JavaScript resources is disabled (minifier.enabled=false).

Note:There are two known issues LPS-71350 and LPS-70364 that prevent CSS changes frombeing applied
to the page and the Control Panel and ProductMenu to break when using DeveloperMode. Both these issues
are fixed in Liferay Portal CE 7.0.3 GA4 and Liferay DXP 7.0 Fixpack DE 13.

Individual file loading of your styling and behaviors, combined with disabled caching for layout and
FreeMarker templates, lets you see your changes more quickly.

These developer settings are defined in the portal-developer.properties file. To use these settings, you
can include them in your portal-ext.properties file or copy them over to your portal-ext.properties file
and override specific properties as needed. These configurations are covered in this tutorial.

First, you can explore how it’s done in @ide@.

Setting Developer Mode for Your Server in @ide@

To enable Developer Mode for your server in @ide@, follow these steps:

1. Double-click on your server in the Serverswindow and open the Liferay Launch section.

2. Select Custom Launch Settings and check the Use developer mode option.

3. Save the changes and start your server.

Warning: Only change the Server settings from the runtime environment’s Liferay Launch section.

For Liferay Portal servers below version 6.2 (e.g., Liferay v6.1 CE Server, Liferay v6.0 CE Server), @ide@
enables Developer Mode by default. When starting your Liferay DXP server for the first time, it creates
a portal-ext.properties file in your server’s directory. This properties file contains the property setting
include-and-override=portal-developer.properties, which enables Developer Mode.

Most of the configuration is provided by the portal-developer.properties file, but you still have to con-
figure the FreeMarker template setting. Follow the steps in the Configuring FreeMarker System Settings
section to configure the FreeMarker template cache.

If you’re not using @ide@,manual configuration for Developer Mode is covered next.

Setting Developer Mode for Your Server Using portal-developer.properties

To set DeveloperModemanually, youmust point to portal-developer.properties as shown in the last section.
Add the portal-ext.properties file to the root folder of your app server’s bundle and add the following line:

include-and-override=portal-developer.properties

Developer Mode is enabled upon starting your app server. portal-developer.properties provides the
majority of the settings you’ll need for smooth development. To disable the cache for FreeMarker templates,
youmust update the System Setting covered in the next section.

1398

https://issues.liferay.com/browse/LPS-71350
https://issues.liferay.com/browse/LPS-70364
https://github.com/liferay/liferay-portal/blob/7.0.x/portal-impl/src/portal-developer.properties

Figure 106.4: The Use developer mode option lets you enable Developer Mode for your server in @ide@.

Configuring FreeMarker System Settings

FreeMarker Templates for themes and web content are cached by default. Therefore, any changes youmake
to your FreeMarker theme templates aren’t immediately displayed. You can change this behavior through
System Settings. Follow these steps:

1. Open the Control Panel and go to Configuration → System Settings.

2. Click the Foundation tab and select FreeMarker Engine.

3. By default, the Resource modification check (the time in milliseconds that the template is cached) is set to
60. Set this value to 0 to disable caching.

YourFreeMarker templates are ready fordevelopment. Next youcan learnhowyoucan improve JavaScript
file loading for development.

JavaScript Fast Loading

By default, JavaScript fast loading is enabled in Developer Mode (javascript.fast.load=true).
This loads the packed version of files listed in the Portal Properties javascript.barebone.files or
javascript.everything.files. You can, however, disable JavaScript fast loading for easier debugging for
development. Just set javascript.fast.load to false in your portal.properties, or you can disable fast
loading by setting the URL parameter js_fast_load to 0.

1399

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#JavaScript

Note: JavaScript fast loading is retrieved from one of three places: the request (determined by the cur-
rent URL: http://localhost:8080/web/guest/home?js_fast_load=1(on) or ...?js_fast_load=0(off)), the Ses-
sion, or the Portal Property (javascript.fast.load=true). Liferay DXP gives preference in the order of re-
quest, session, and then Portal Properties. This lets you change js_fast_load’s value from the default in
portal.properties without having to manually re-enter js_fast_load into the URL upon every new page
load.

Great! You’ve set up your Liferay DXP server for Developer Mode. Now, when youmodify your theme’s
file directly in your bundle, you can see your changes applied immediately on redeploying your theme!

Related Topics

Creating Layout Templates Manually
CreatingThemes with @ide@

106.5 Theme Contributors

If you want to package UI resources independent of a specific theme and include them on a Liferay DXP
page,Theme Contributors are your best option. If, instead, you’d like to include separate UI resources on a
Liferay DXP page that are attached to a theme, you should look into themelets.

A Theme Contributor is a module that contains UI resources to use in Liferay DXP. Once a Theme
Contributor is deployed to Liferay DXP, it’s scanned for all valid CSS and JS files, and then its resources are
included on the page. You can, therefore, style these UI components as you like, and the styles are applied
for the current theme.

This tutorial demonstrates how to

• Identify aTheme Contributor module.
• Create aTheme Contributor module.

Next, you’ll learn how to create aTheme Contributor.

Creating Theme Contributors

In Liferay versions prior to 7.0, the standard UI for User menus and navigation (the Dockbar) was included
in the theme template. Starting in Liferay DXP 7.0, these standard UI components are packaged asTheme
Contributors.

For example, the ControlMenu, ProductMenu, and Simulation Panel are packaged asThemeContributor
modules in Liferay, separating them from the theme. Thismeans that these UI components must be handled
outside the theme.

If you want to edit or style these standard UI components, you’ll need to create your ownTheme Contrib-
utor and add your modifications on top. You can also add new UI components to Liferay DXP by creating a
Theme Contributor.

To create aTheme Contributor module, follow these steps:

1. Create a generic OSGi module using your favorite third party tool, or use Blade CLI. You can also use
the Blade Template to create your module, in which case you can skip step 2.

1400

Figure 106.5: The Control Menu, Product Menu, and Simulation Panel are packaged as Theme Contributor modules.

2. To identify your module as aTheme Contributor, add the Liferay-Theme-Contributor-Type and Web-

ContextPath headers to your module’s bnd.bnd file. For example, see the Control MenuTheme Contrib-
utor module’s bnd.bnd:

Bundle-Name: Liferay Product Navigation Control Menu Theme Contributor

Bundle-SymbolicName: com.liferay.product.navigation.control.menu.theme.contributor

Bundle-Version: 1.0.0

Liferay-Releng-Module-Group-Description:

Liferay-Releng-Module-Group-Title: Product Navigation

Liferay-Theme-Contributor-Type: product-navigation-control-menu

Web-ContextPath: /product-navigation-control-menu-theme-contributor

-include: ../../../../../marketplace/web-content-management/bnd.bnd

TheTheme Contributor type helps Liferay DXP better identify your module. For example, if you’re
creating aTheme Contributor to override an existingTheme Contributor, you should try to use the
same type to maximize compatibility with future developments. The Web-ContextPath header sets the
context fromwhich theTheme Contributor’s resources are hosted.

3. Because you’ll often be overriding CSS of anotherTheme Contributor, you should load your CSS after
theirs. You can do this by setting a weight for yourTheme Contributor. In your bnd.bnd file, add the
following header:

Liferay-Theme-Contributor-Weight: [value]

1401

The higher the value, the higher the priority. If yourTheme Contributor has a weight of 100, it will be
loaded after one with a weight of 99, allowing your CSS to override theirs.

4. Create a src/main/resources/META-INF/resources folder in your module and place your resources (CSS
and JS) in that folder.

5. Build and deploy your module to see your modifications applied to Liferay DXP pages and themes.

That’s all you need to do to create aTheme Contributor for your site. Remember, with great power comes
great responsibility, so useTheme Contributors wisely. The UI contributions affect every page and aren’t
affected by theme deployments.

Related Topics

LiferayTheme Generator
Themelets
Importing Resources with YourThemes
Theme Contributor Template

106.6 Context Contributors

JSP templates are the predominant templating framework in Liferay DXP. Themes, application display
templates (ADTs), DDM templates, andmore make use of JSPs as a templating engine. JSPs, however, are
not the only templating language supported by Liferay DXP. Since many developers prefer other templating
frameworks (e.g., FreeMarker and Velocity), Liferay enables you to use other template formats by offering
the Context Contributors framework.

Because JSPs are “native” to Java EE, they have access to all the contextual objects inherent to the platform,
like the request and the session. Through these objects, developers can normally obtain Liferay-specific
context information by accessing container objects like themeDisplay or serviceContext.

Template formats like FreeMarker aren’t native to Java EE, so they don’t have access to these objects. If
your template needs contextual information such as the current user, the page, or anything else, Java EEwon’t
make it available to the template like it does for JSPs: youmust inject it yourself into the template. Liferay,
however, gives you a head start by injecting a contextObjectsmap of common variables (e.g., themeDisplay,
locale, user, etc.) by default into FreeMarker templates (e.g., themes). This map is usually referred to as the
context of a template. If you need to access some other context object that Liferay doesn’t provide by default,
youmust modify or add to a template’s context. To do that, you create a context contributor.

Context contributors modify a template’s context by injecting variables and functionality usable by the
template framework. This lets you use non-JSP templating languages for themes, ADTs, and any other
templates used in Liferay DXP. For example, suppose you want your theme to change color based on the
user’s organization. You could create a context contributor to inject the user’s organization to your theme’s
context, and then determine the theme’s color based on that information.

Context contributors are already used in Liferay DXP by default. Liferay’s Product Menu display is
determined by a variable injected by a context contributor. You’ll learn more about this later.

First, you’ll learn how to create your own context contributor, and then you’ll examine one example of
how Liferay DXP uses context contributors.

1. Create a generic OSGi module using your favorite third party tool, or use Blade CLI.

1402

2. Create a unique package name in themodule’s src directory and create a new Java class in that package.
To follow naming conventions, begin the class name with the entity you want to inject context-specific
variables for, followed by TemplateContextContributor (e.g., ProductMenuTemplateContextContributor).

3. Directly above the class’s declaration, insert the following annotation:

@Component(

immediate = true,

property = {"type=" + TemplateContextContributor.[Type of Contributor]},

service = TemplateContextContributor.class

)

The immediate element instructs themodule to start immediately oncedeployed toLiferayDXP.The type
property should be set to one of the two fields defined in the TemplateContextContributor interface:
TYPE_GLOBAL or TYPE_THEME.The TYPE_THEME field should be set if you only wish to inject context-specific
variables for your theme; otherwise, setting the TYPE_GLOBAL field affects every context execution in
Liferay DXP, like themes, ADTs, DDM templates, etc. Finally, your service element should be set to
TemplateContextContributor.class.

The ProductMenuTemplateContextContributor class’s @Component annotation follows a similar layout:

@Component(

immediate = true,

property = {"type=" + TemplateContextContributor.TYPE_THEME},

service = TemplateContextContributor.class

)

4. Implement theTemplateContextContributor interface in your -TemplateContextContributor class. This
only requires implementing the prepare(Map<String,Object>, HttpServletRequest)method.

Notice that the preparemethod receives the contextObjectsmap as a parameter. This is your template’s
context that was described earlier. This method should be used to edit the context by injecting new or
modified variables into the contextObjectsmap.

For a quick example of how you can implement the TemplateContextContributor interface to inject vari-
ables into a template’s context, you’ll examine the ProductMenuTemplateContextContributor class used by
Liferay DXP by default. This class injects variables into Liferay’s FreeMarker theme and determines whether
the Product Menu is displayed in the current theme.

The ProductMenuTemplateContextContributor class implements the prepare(...) method, which injects a
modified variable (bodyCssClass) and a new variable (liferay_product_menu_state) into the theme context:

@Override

public void prepare(

Map<String, Object> contextObjects, HttpServletRequest request) {

if (!isShowProductMenu(request)) {

return;

}

String cssClass = GetterUtil.getString(

contextObjects.get("bodyCssClass"));

String productMenuState = SessionClicks.get(

request,

ProductNavigationProductMenuWebKeys.

PRODUCT_NAVIGATION_PRODUCT_MENU_STATE,

"closed");

1403

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/template/TemplateContextContributor.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/template/TemplateContextContributor.html

contextObjects.put(

"bodyCssClass", cssClass + StringPool.SPACE + productMenuState);

contextObjects.put("liferay_product_menu_state", productMenuState);

}

Thismethod prepares the context contributor to inject variables into the theme to be used by the Product
Menu. For this example, the cssClass and productMenuState variables are defined and then placed in the
contextObjectsmap. By doing this, these variables have been injected into the theme context, making them
accessible to the theme. Specifically, the cssClass variable provides styling for the Product Menu and the
productMenuState variable determines whether the visible Product Menu should be open or closed.

Note: In previous versions of Liferay, if you needed to inject variables into themes, you were forced to
create those variables in the init.ftl file of every theme. This forced theme developers to keep that logic
updated in every theme version of every theme they developed. With context contributors, you can inject
variables into existing frameworks without forcing theme developers to update their init.ftl files.

The preparemethod above also determines whether to show the Product Menu or not with the following
if statement:

if (!isShowProductMenu(request)) {

return;

}

The isShowProductMenu(...) method injects functionality into the theme’s context by providing an option
to show/hide the ProductMenu. Thismethod is also included in the ProductMenuTemplateContextContributor
class:

protected boolean isShowProductMenu(HttpServletRequest request) {

ThemeDisplay themeDisplay = (ThemeDisplay)request.getAttribute(

WebKeys.THEME_DISPLAY);

if (themeDisplay.isImpersonated()) {

return true;

}

if (!themeDisplay.isSignedIn()) {

return false;

}

User user = themeDisplay.getUser();

if (!user.isSetupComplete()) {

return false;

}

return true;

}

The ProductMenuTemplateContextContributor provides an easy way to inject variables into Liferay DXP’s
theme directly related to the Product Menu. You can do the same with your custom context contributor.
With the power to inject additional variables to any context in Liferay, you’re free to fully harness the power
of your chosen templating language.

1404

Related Topics

Customizing the Product Menu
LiferayTheme Generator
Theme Contributors

106.7 Macros

Macros let you assign theme template fragments to a variable. This keeps your theme templates from
becoming cluttered and makes them easier to read. Liferay DXP defines several FreeMarker macros in
FTL_liferay.ftl template that you can use in your FreeMarker theme templates to include theme resources,
standard portlets, and more. Likewise, Velocity macros are available in VM_liferay.vm template Liferay DXP
also exposes its taglibs as FreeMarker macros. See the corresponding taglib tutorial for more information
on using the taglib in your FreeMarker templates. This tutorial shows how to use Liferay DXP’s macros in
your FreeMarker and Velocity theme templates.

Note that Velocity templates are supported, but deprecated as of Liferay Portal CE 7.0 and Liferay
DXP 7.0. We recommend that you convert your Velocity theme templates to FreeMarker at your earliest
convenience to avoid future issues. This tutorial covers both FreeMarker and Velocity template macros to
help with your conversion process.

The syntax for amacro is straightforward. Amacro directive is defined containing the template fragment.
For example, below is the macro directive for Liferay DXP’s Control Menu:

FreeMarker:

<#macro control_menu>

<#if themeDisplay.isImpersonated() || (is_setup_complete && is_signed_in)>

<@liferay_product_navigation["control-menu"] />

</#if>

</#macro>

Velocity:

#macro (control_menu)

#if ($themeDisplay.isImpersonated() || ($is_setup_complete && $is_signed_in))

$theme.runtime(

"com.liferay.admin.kernel.util.PortalProductNavigationControlMenuApplicationType$ProductNavigationControlMenu",

$portletProviderAction.VIEW

)

#end

#end

Note: Liferay DXP’s default FreeMarker macro calls are namespaced with liferay (for example,
<@liferay.macro_variable_name />). If you create custom macros, they can be called with the explicit
variable name.

To include the template fragment in your theme templates, call the macro using the variable name:
FreeMarker:

<@liferay.control_menu />

Velocity:

#control_menu()

1405

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/portal-template/portal-template-freemarker/src/main/resources/FTL_liferay.ftl
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/portal-template/portal-template-velocity/src/main/resources/VM_liferay.vm

Themacro is replaced with the template fragment when the page is rendered. That’s all there is to a basic
macro.

Macros can also be passed arguments. For example Liferay DXP’s languagemacro has a language key
parameter:

FreeMarker:

<#macro language

key

>

${languageUtil.get(locale, key)}

</#macro>

Velocity:

#macro (language $lang_key)

$languageUtil.get($locale, $lang_key)

#end

You can pass an argument in the macro call like this:
FreeMarker:

<@liferay.language key="powered-by" />

Velocity:

#language ("powered-by")

You can read more about FreeMarker macros and Velocity macros at freemarker.org and veloc-
ity.apache.org.

Liferay DXP provides several macros that you can use in your theme templates. These are covered next.

Liferay DXP Macros

There are several defaultmacros defined in the FTL_Liferay.ftl template that you can use in your FreeMarker
theme templates. Likewise, VM_liferay.vm defines the default macros for Velocity. The table below lists the
available macros and parameters:

Macro Parameters Description

breadcrumbs default preferences Adds the Breadcrumbs portlet
with optional preferences

control_menu N/A Adds the Control Menu portlet
css filename Adds an external stylesheet with

the specified file name location
date format Prints the date in the current

locale with the given format
js filename Adds an external JavaScript file

with the specified file name
source

language key Prints the specified language key
in the current locale

1406

http://freemarker.org/docs/ref_directive_macro.html
http://velocity.apache.org/engine/1.7/user-guide.html#velocimacros
http://velocity.apache.org/engine/1.7/user-guide.html#velocimacros
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/portal-template/portal-template-freemarker/src/main/resources/FTL_liferay.ftl
https://raw.githubusercontent.com/liferay/liferay-portal/7.0.x/modules/apps/foundation/portal-template/portal-template-velocity/src/main/resources/VM_liferay.vm

Macro Parameters Description

language_format argumentskey Formats the given language key
with the specified arguments. For
example, passing go-to-x as the
key and Mars as the arguments
prints Go toMars.

languages default preferences Adds the Languages portlet with
optional preferences

navigation_menu default preferencesinstance ID Adds the Navigation Menu portlet
with optional preferences and
instance ID.
${freeMarkerPortletPreferences}

or
$velocityPortletPreferences.toString()

is a common value for default
preferences.

search default preferences Adds the Search portlet with
optional preferences

user_personal_bar N/A Adds the User Personal Bar
portlet

Now you know how to use Liferay DXP’s macros in your theme templates!

Related Topics

LiferayTheme Generator
Themelets
Theme Reference Guide

106.8 Theme Builder

Liferay’s Theme Builder gives developers who aren’t using Liferay’s Theme Generator (e.g., Gradle or Maven)
a way to compile and build a themeWAR file. To use theTheme Builder, you must apply it to your project. If
you’re unsure how to structure themes for Liferay DXP, see the Introduction toThemes tutorial.

Follow the instructions below to apply theTheme Builder plugin and build your themeWAR.

Step 1: Apply the Theme Builder Plugin to Your Theme Project

Liferay provides twoTheme Builder plugins depending on your build tool:

• com.liferay.portal.tools.theme.builder (Ant,Maven, etc.)
• com.liferay.gradle.plugins.theme.builder (Gradle)

If you want to apply theTheme Builder plugin to an Ant project, examine the build.xml file as an example
below:

1407

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.tools.theme.builder/
https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.gradle.plugins.theme.builder/

<?xml version="1.0"?>

<!DOCTYPE project>

<project>

<path id="theme.builder.classpath">

<fileset dir="[PATH_TO_THEME_BUILDER_JAR]" includes="com.liferay.portal.tools.theme.builder-*.jar" />

</path>

<taskdef classpathref="theme.builder.classpath" resource="com/liferay/portal/tools/theme/builder/ant/taskdefs.properties" />

<target name="build-theme">

<build-theme

diffsDir="diffs"

outputDir="../dist"

parentDir="[PATH_TO_STYLED_THEME]/classes/META-INF/resources/_styled"

parentName="_styled"

unstyledDir="[PATH_TO_UNSTYLED_THEME]/classes/META-INF/resources/_unstyled"

/>

</target>

</project>

You should first supply the path to theTheme Builder JAR.The above code configures the literal path to
the JAR on your local machine. As an alternative, you could configure Ivy to do this for you behind the scenes.
Then create an Ant target (e.g., build-theme) that configures the required parameters to build your theme.

For assistance applying theTheme Builder plugin for a Gradle or Maven project, see theTheme Builder
Gradle Plugin or BuildingThemes in a Maven Project articles, respectively.

Step 2: Build Your Theme

Execute the appropriate command based on your build tool:

• Ant: ant build-theme

• Gradle: gradlew buildTheme

• Maven: mvn verify

TheWAR is generated in the following folder, depending on the build tool you used:

• Ant: /dist
• Gradle: /build
• Maven: /target

That’s it! You’ve successfully configured and leveraged theTheme Builder in your project. You can also
use theTheme Builder to migrate a Plugins SDK theme to LiferayWorkspace. See the Migrating aTheme
from the Plugins SDK toWorkspace tutorial for details.

106.9 Creating a Theme Thumbnail

Theme thumbnails help users quickly identify your theme. It’s especially important to provide thumbnails
when your theme offers color schemes.

Here’s how to create a proper thumbnail image for your theme:

1. Create a thumbnail image. Make sure it’s 150 pixels wide by 120 pixels high. You may want to take
a snapshot of your theme and re-size it to these dimensions. Your thumbnail must be these exact
dimensions or the image won’t display properly.

1408

http://ant.apache.org/ivy/

2. Save the image as a .png file named thumbnail.png and place it in the theme’s images folder (create this
folder if it doesn’t already exist). On redeployment, the thumbnail.png file automatically becomes the
theme’s thumbnail.

Note:TheTheme Builder Gradle plugin doesn’t recognize a thumbnail.png file. If you’re using this plugin
to build your theme instead, you must create a screenshot.png file in your theme’s images folder that is 1080
pixels high by 864 pixels wide. The thumbnail is automatically generated from the screenshot for you when
the theme is built.

Now, when you apply the theme, its thumbnail displays along with the other themes that are available to
your site.

Figure 106.6: Your theme thumbnail is displayed with the rest of the available themes.

Congrats! Now you know how to create a thumbnail image for your theme!

Related Topics

LiferayTheme Generator Specifying Color Schemes in YourTheme

106.10 Specifying Color Schemes in your Theme

You can provide various “flavors” of your theme by creating color schemes. Color schemes let you keep the
styles and overall design for your theme, while giving a new look for your users to enjoy. You specify color

1409

schemes with a CSS class name, which also lets you choose different background images, different border
colors, andmore.

Figure 106.7: You can offer eye-pleasing color schemes for your themes.

Follow these steps to create color schemes for your theme:

1. Create a folder to hold color schemes (color_schemes for example) in the theme’s css folder.

2. Create an .scss file in the color schemes folder for each color scheme your theme supports. If you
don’t specify a .scss file for a color scheme, the theme’s default color scheme is used.

3. Prefix all CSS styles with the name of your color scheme. The color scheme CSS class is placed on the
page’s <body> element, so you can use it to identify your styling. For example, you’d prefix all the styles
with the word day in a color scheme CSS file named _day.scss:

body.day { background-color: #DDF; }

.day a { color: #66A; }

Note: The default color scheme does not require a prefix, as it uses

the theme's `_custom.scss` for styling.

4. Import the color scheme .scss files into the _custom.scss file. The example below imports _day.scss
and _night.scss files:

1410

@import "color_schemes/day";

@import "color_schemes/night";

5. Open the theme’s liferay-look-and-feel.xml file and add the default color scheme for the theme. Pass
the default color scheme’s CSS class name (the name of the CSS file) in the <css-class> element. If the
default color scheme styling is in the theme’s _custom.scss file, use default for the <css-class>:

<theme id="my-theme-id" name="My Theme Name">

<color-scheme id="01" name="My Default Color Scheme Name">

<default-cs>true</default-cs>

<css-class>default</css-class>

<color-scheme-images-path>

${images-path}/my_color_schemes_folder_name/${css-class}

</color-scheme-images-path>

</color-scheme

...

</theme>

A default color scheme lets users return to the theme’s default look and feel. Note that the color
scheme’s name is arbitrary. Only the color scheme’s css-class element must match the name of the
color scheme’s CSS class.

Note that color schemes are sorted alphabetically by name rather than id. For example, a color scheme
named Day and id 02would be selected by default over a color scheme named Cloudswith id 01. The
<default-cs> element overrides the alphabetical sorting and sets the color scheme that is selected by
default, when the theme is chosen. Adding this element to the default color scheme ensures that it is
selected when the theme is chosen.

The <color-scheme-images-path> element specifies theme thumbnail image location. Place this
element in the first color scheme to affect them all. For example you could use the folders
/images/color_schemes/default, /images/color_schemes/day, and /images/color_schemes/night.

6. Add the remaining color schemes to the liferay-look-and-feel.xml using the pattern below:

<color-scheme id="02" name="my-color-scheme-name">

<css-class>my-color-scheme-css-class-name</css-class>

</color-scheme>

The example below defines aDay color scheme and aNight color scheme for a theme named Big Green.
Here’s the code as specified in the liferay-look-and-feel.xml file:

<theme id="big-green" name="Big Green">

<color-scheme id="01" name="Default">

<default-cs>true</default-cs>

<css-class>default</css-class>

<color-scheme-images-path>

${images-path}/color_schemes/${css-class}

</color-scheme-images-path>

</color-scheme>

<color-scheme id="02" name="Day">

<css-class>day</css-class>

</color-scheme>

<color-scheme id="03" name="Night">

<css-class>night</css-class>

</color-scheme>

</theme>

1411

7. Place a thumbnail.png and screenshot.png file in each of the color scheme’s folders. Make sure thumb-
nail images follow the specifications defined in the Creating aThemeThumbnail tutorial.

There you have it. Now you can go color scheme crazy with your themes!

Related Topics

Layout Templates with theTheme Generator
Creating aThemeThumbnail

106.11 Making Themes Configurable with Settings

Theme settings let site administrators control the look and feel of certain aspects of a theme. For example,
you can create a theme setting to control the visibility of theme elements, such as only showing a site banner
when the user is logged in. You can also create a theme setting to configure an element, such as a title or a
background image. The Settings API is built flexibly to meet your needs. The sky’s the limit.

This tutorial covers how to create theme settings for a theme.
Making configurable theme settings involves a multi-step process:

• Add the settings to liferay-look-and-feel.xml
• Assign the settings to variables in init_custom.ftl

• Use the settings variables in your theme templates

Follow these steps to create theme settings:

1. Open liferay-look-and-feel.xml from the theme’s WEB-INF folder. Settings placed here appear in the
Look and Feelmenu of Liferay DXP’s Site Administration. If your project doesn’t have this file, create it in
the WEB-INF folder and add the following XML content (make sure to replace the theme id and name

with your theme’s):

<?xml version="1.0"?>

<!DOCTYPE look-and-feel PUBLIC "-//Liferay//DTD Look and Feel 7.0.0//EN"

"http://www.liferay.com/dtd/liferay-look-and-feel_7_0_0.dtd">

<look-and-feel>

<compatibility>

<version>7.0.0+</version>

</compatibility>

<theme id="your-theme-name" name="Your Theme Name">

<template-extension>ftl</template-extension>

<portlet-decorator id="barebone" name="Barebone">

<portlet-decorator-css-class>portlet-barebone</portlet-decorator-css-class>

</portlet-decorator>

<portlet-decorator id="borderless" name="Borderless">

<portlet-decorator-css-class>portlet-borderless</portlet-decorator-css-class>

</portlet-decorator>

<portlet-decorator id="decorate" name="Decorate">

<default-portlet-decorator>true</default-portlet-decorator>

<portlet-decorator-css-class>portlet-decorate</portlet-decorator-css-class>

</portlet-decorator>

</theme>

</look-and-feel>

2. Add <settings></settings> tags before the opening <portlet-decorator> tag.

1412

3. Add a <setting/> element between the <settings></settings> tags for each setting the theme requires.
Below is an example pattern along with the available attributes:

<setting configurable="true" key="my-setting-language-key"

options="true,false" type="select" value="false" />

The following attributes are available for theme settings:

configurable: whether the setting is configurable or static. key: the language key that identifies the
theme setting. options: sets the options for the select menu if the type is select. type: the type of UI
to render to control the theme setting. Possible values are checkbox, select, text, or textarea. value:
sets the default value for the theme setting.

You can findmore information about setting attributes and all other configurations for the liferay-
look-and-feel.xml in its DTD docs.

4. Open init_custom.ftl and assign the settings to variables using the patterns below.

Use the following pattern for settings that return a Boolean (for example a select box with the options
true and false or a toggle-switch checkbox with values yes and no):

<#assign my_variable_name =

getterUtil.getBoolean(theme_settings["theme-setting-key"])>

Use the following pattern for settings that return a String (for example, a text input or textarea input):

<#assign footer_text =

getterUtil.getString(theme_settings["theme-setting-key"])/>

5. Use the theme setting variable in the theme template. For example, you can use the variable to check a
condition, print a value, or even display a theme template. Examples of each case are shown below.

This configuration is used in portal_normal.ftl to show the navigation breadcrumbs element if the
show_breadcrumbs theme setting is true:

liferay-look-and-feel.xml:

<setting configurable="true" key="show-breadcrumbs" type="checkbox"

value="false" />

init_custom.ftl:

<#assign show_breadcrumbs =

getterUtil.getBoolean(theme_settings["show-breadcrumbs"])>

portal_normal.ftl:

<#if show_breadcrumbs>

<nav id="breadcrumbs">

<@liferay.breadcrumbs />

</nav>

</#if>

This example configuration prints a text input's value in a `<p>` element,

or defaults to *Hello Text* if no value is given:

`liferay-look-and-feel.xml`:

1413

@platform-ref@/7.0-latest/definitions/liferay-look-and-feel_7_0_0.dtd.html#settings

<setting configurable="true" key="custom-text" type="text"

value="Hello Text"/>

`init_custom.ftl`:

<#assign custom_text =

getterUtil.getString(theme_settings["custom-text"])/>

`portal_normal.ftl`:

<p>${custom_text}</p>

This example renders the brief header template or detailed header

template based on the theme setting:

`liferay-look-and-feel.xml`:

<setting configurable="true" key="header-type" type="select"

options="brief,detailed" value="brief"/>

`init_custom.ftl`:

<#assign header_type =

getterUtil.getString(theme_settings["header-type"])/>

`header_brief.ftl`: brief header template

`header_detailed.ftl`: detailed header template

`portal_normal.ftl`:

<#if header_type == "brief">

<#include "${full_templates_path}/header_brief.ftl" />

<#elseif header_type == "detailed">

<#include "${full_templates_path}/header_detailed.ftl" />

</#if>

6. Make sure the theme is installed. Open the ControlMenu → Site Administration →Navigation → Public Pages
and select the Configure option. Configure the theme settings from the Look and Feel section to see your
changes. You can set the theme settings for an individual page by selecting the Configure Page option
from the page’s Actions menu and selecting theDefine a Specific look and feel for this page option under
the Look and Feel section.

Now you know how to make configurable theme settings for your themes!

Related Topics

Macros
Themelets
Theme Contributors

1414

Figure 106.8: Here are examples of configurable settings for the site Admin.

1415

Chapter 107

Layout Templates

Are you craving more than Liferay DXP’s default page layouts? Do you have a special use case that a default
layout template doesn’t meet? Well, look no further. Create your own Layout Template! Layout templates
allow you to set the rows and columns of a page and determine where content can be placed.

In this section of tutorials, you’ll learn how to develop layout templates for Liferay DXP.

107.1 Layout Templates with the Liferay Theme Generator

Layout Templates specify how content is arranged on your site pages in Liferay DXP. For example, take a look
at the 1-2-1 Columns Layout CE layout shown below:

Figure 107.1: The 1-2-1 Columns Layout CE page layout creates a nice flow for your content.

1417

7.0 and DXP provide several layout templates out-of-the-box for you to choose from. You can change the
layout for your page, and view the installed layout templates, by opening the Editmenu for your page, under
the Navigation heading of the Product Menu and scrolling down to the Layouts heading.

Figure 107.2: Liferay provides several layout templates out-of-the-box for you to use.

If you’d like to create your own custom layout templates, you’ve come to the right place.
This tutorial demonstrates how to:

• Create a Layout Template with the Layouts Sub-generator

• Create aThumbnail for a Layout Template

In order to create a layout template with the Layouts Sub-generator, you will need the Node.js build tools
installed. The LiferayTheme Generator tutorial explains how to install these tools and how to create a theme.

Once you have the LiferayTheme Generator installed you can go ahead and get started.

Creating a Layout Template with the Layouts Sub-generator

Follow these steps to create a layout template:

1. Open the Command Line and navigate to the directory you want to create your layout template in.

2. Run yo liferay-theme:layout to start the layouts sub-generator.

Note: If you run the layout sub-generator from the root directory of a theme created with the themes
generator, it will add the layout template as a part of the theme in the src/layouttpl directory.

3. Enter a name and ID for your layout template, or press Enter to accept the default values.

4. Choose your Liferay version and press Enter to continue.

At this point the layout template design process begins. As the generator states, Layout templates
implement Bootstrap’s grid system. Every row consists of 12 sections, so columns range in size from 1
to 12. The sub-generator is user-friendly, allowing you to add and remove rows and columns as you
design.

5. Enter the number of columns you would like for row 1.

Once you’ve entered a value, the generator asks how wide you want your row and column to be, and
presents you with the available width(s).

1418

Figure 107.3: The Layout Template sub-generator automates the layout creation process.

6. Choose from the available option(s) with your arrow keys and press Enter to make your selection.

If you have remaining space, the generator will repeat this step for the remaining columns.

Once you’re done configuring your row, you are presented with a few options:

• Add a row: Adds a row below the last row.

• Insert row: Displays a vi to insert your row. Use your arrow keys to choose where to insert your
row, highlighted in blue, then press Enter to insert the row.

Figure 107.4: Rows can be inserted using the layout vi.

• Remove row: Displays a vi to remove your row. Use your arrow keys to select the row you want
to remove, highlighted in red, then press Enter to remove the row.

Once you are done designing your layout you canmove onto the next step.

1419

Figure 107.5: Rows are removed using the layout vi.

Figure 107.6: Select the Finish layout option to complete your design.

7. Select Finish layout to complete your layout’s design.

Your layout template files are generated for you in the current directory.

8. Enter the path to your app server directory, or press Enter to accept the default.

9. Enter the URL to your server or press Enter to accept the default http://localhost:8080 development
site.

Your layout template is generated, but you still need to include it in your liferay-look-and-feel.xml
file.

Note: Currently the Liferay Theme Generator does not add the layout

template configuration to your `liferay-look-and-feel.xml`. This feature

will be added in a future release. For now you must add this manually next.

10. Add your custom layout template to your liferay-look-and-feel.xml using the <layout-templates> tag.
Below is an example configuration for the Porygon theme‘s’ layout templates:

… /layouttpl/custom/porygon_70_30_width_limited.tpl /layouttpl/custom/porygon_70_30_width_lim-
ited.png /layouttpl/custom/porygon_50_50_width_limited.tpl /layouttpl/custom/porygon_50_50_width_lim-
ited.png

The `<layout-template>` tag's `id` attribute must match the ID you gave in

step 3 (the TPL file name).

When your layout template was generated, a default thumbnail was created. You can learn how to create
a custom thumbnail in the next section.

1420

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/frontend-theme-porygon/frontend-theme-porygon/src/WEB-INF/liferay-look-and-feel.xml#L16-L27

Creating a Custom Thumbnail for Your Layout Template

To create your own thumbnail follow the steps below:

1. Navigate to the docroot directory of the layout template you just created.

Note: if you created the layout template in your existing themes generator theme, the thumbnail is
located in your theme’s src/layouttpl/custom directory.

2. Replace the layout-name.png file with your own custom thumbnail PNG.

3. navigate back to the layout’s root directory and run gulp deploy to re-build and deploy the template to
your app server.

Note: If your layout template was added as part of your themes generator theme, the layout template
will deploy when the theme is deployed.

Note: Currently the Liferay Theme Generator does not add the thumbnail

configuration to your `liferay-look-and-feel.xml`. This feature will be

added in a future release. For now you must add this manually next.

4. Specify the thumbnail’s location in your liferay-look-and-feel.xml using the <thumbnail-path> tag.
Below is an example configuration for the Porygon theme:

<layout-template id="porygon_50_50_width_limited"

name="Porygon 2 Columns (50/50) width limited">

<template-path>

/layoutttpl/custom/porygon_50_50_width_limited.tpl

</template-path>

<thumbnail-path>

/layoutttpl/custom/porygon_50_50_width_limited.png

</thumbnail-path>

</layout-template>

Your layout template is complete! As you can see, the layouts sub-generator makes creating a layout
template a piece of cake.

Edit a page on your site and select your new layout template to use it.

Related Topics

Importing Resources with YourThemes
LiferayTheme Generator

107.2 Creating Layout Templates Manually

You can use the LiferayTheme Generator to generate Layout Templates automatically. This is covered in the
Layout Templates with the LiferayTheme Generator tutorial. Youmay, however, want to create or modify
your layout templates manually.

In this tutorial you’ll learn how to create or modify a Layout Template manually.
You can see the HTMLmarkup for a basic layout template next.

1421

Basic Layout Template

Below is an example of a basic Layout Template .tpl file:

<div class="my-liferay-layout" id="main-content" role="main">

<div class="portlet-layout row">

<div class="col-md-4 portlet-column portlet-column-first"

id="column-1">

$processor.processColumn("column-1",

"portlet-column-content portlet-column-content-first")

</div>

<div class="col-md-8 portlet-column portlet-column-last" id="column-2">

$processor.processColumn("column-2",

"portlet-column-content portlet-column-content-last")

</div>

</div>

<div class="portlet-layout row">

<div class="col-md-12 portlet-column portlet-column-only" id="column-3">

$processor.processColumn("column-3",

"portlet-column-content portlet-column-content-only")

</div>

</div>

<div class="portlet-layout row">

<div class="col-md-4 portlet-column portlet-column-first" id="column-4">

$processor.processColumn("column-4",

"portlet-column-content portlet-column-content-first")

</div>

<div class="col-md-4 portlet-column" id="column-5">

$processor.processColumn("column-5", "portlet-column-content")

</div>

<div class="col-md-4 portlet-column portlet-column-last" id="column-6">

$processor.processColumn("column-6",

"portlet-column-content portlet-column-content-last")

</div>

</div>

</div>

The column elements and classes are described in more detail next.

Column Elements and Classes

To understand how the layout template works, youmust look closely at how the HTML is structured. This
section uses the first column of the example above to demonstrate the key elements and classes of a layout
template:

<div class="col-md-4 portlet-column portlet-column-first" id="column-1">

$processor.processColumn("column-1", "portlet-column-content

portlet-column-content-first")

</div>

You can learn more about the column container next.

Column Container

Below is a description of each of the column container classes:
column-1: A unique identifier for the column that matches the ID passed to $processor.processColumn.
col-md-4: This class comes from Bootstrap’s grid system and determines two things: the percentage

based width of the element, and the media query breakpoint for when this element expands to 100% width.
12 is the maximum amount, so col-md-4 indicates 4/12width, or 33.33%.

1422

portlet-column portlet-column-first: All column containers must use the portlet-column class. For
rows with more than one column, the first columnmust have portlet-column-first and the last must have
portlet-column-last. For rows with only one column, use the portlet-column-only class.

Next you can learn more about the $processor.processColumn.

Processor ProcessColumn

$processor.processColumn takes these arguments:
column-1: A unique identifier. This should match the ID of the parent div.
portlet-column-content portlet-column-content-first: Additional classes added to the content element.

These classes must match the parent div’s classes with -content appended.
Next you can learn how to modify template breakpoints.

Modifying Template Breakpoints

When looking at the example template, you’ll notice this Bootstrap grid class is used on every column:

col-md-{size}

The different sizes available are xs, sm, md, and lg. Themedium size is used by default, but the others can
be used in layout templates as well.

For example, setting the column classes to col-lg-{size}means the columns would expand to 100%
width at a larger screen width than col-md-{size}.

These classes can also be mixed to achieve more advanced layouts, as shown below:

<div class="portlet-layout row">

<div class="col-md-4 col-sm-6 portlet-column portlet-column-first"

id="column-1">

$processor.processColumn("column-1",

"portlet-column-content portlet-column-content-first")

</div>

<div class="col-md-8 col-sm-6 portlet-column portlet-column-last"

id="column-2">

$processor.processColumn("column-2",

"portlet-column-content portlet-column-content-last")

</div>

</div>

In the example row above, on medium sized view, ports column-1 are 33.33% width and column-2 are
66.66% width, but on small sized view ports both column-1 and column-2 are 50% width.

Place the completed layout in your theme’s src/layouttpl folder if you created your theme withTheme’s
Generator, or place it in your theme’s docroot/layouttpl/custom folder if using the Plugins SDK.

Next you can learn how to include layout templates in a theme.

Including Layout Templates with a Theme

You can deploy a layout template with a theme by specifying it in the theme’s liferay-look-and-feel.xml file.
Add your custom layout template to your liferay-look-and-feel.xml using the <layout-templates> tag.

Below is an example configuration using the basic layout template example shown above:

<theme id="my-theme-name" name="My Theme Name">

...

<layout-templates>

<custom>

<layout-template id="my_liferay_layout_template"

1423

name="My Liferay Layout Template">

<template-path>

/layoutttpl/custom/my_liferay_layout_template.tpl

</template-path>

<thumbnail-path>

/layoutttpl/custom/my_liferay_layout_template.png

</thumbnail-path>

</layout-template>

</custom>

</layout-templates>

...

</theme>

The <layout-template> tag’s id attribute must match the layout template’s filename. The template and
thumbnail paths shown above are for files in the layouttpl/custom folder. If you created your layout template
with the LiferayTheme Generator, your file paths may differ.

There you have it. Now you know how to create andmodify layout templatesmanually and how to include
themwith a theme!

Related Topics

Layout Templates with the LiferayTheme Generator
LiferayTheme Generator

1424

Chapter 108

Portlets and Themes

Liferay DXP gives you complete control over the look and feel of your portlets. You can provide custom styles
for portlets, create style configuration options via portlet decorators, and embed portlets in themes and
layout templates.

All these topics are covered in this section of tutorials.

1425

Chapter 109

Portlet Decorators

In previous versions of Liferay DXP, administrators could display or hide the application borders through
the ShowBorders option of the look and feel configurationmenu. In 7.0 this option has been replaced with
Portlet Decorators, a more powerful mechanism to customize the style of the application wrapper.

If you inspect the markup of your Liferay application when it’s on a page you’ll observe that it is wrapped
by two layers. Among other things, these layers provide some common basic features like the drag and drop
and the application border style. In order to protect these features, you can’t modify the markup of these
layers directly with a theme.

Portlet Decorators provide a mechanism to add a CSS class to one of these wrapping layers via a user’s
setting. By defining styles for this class in your theme, you can change the look and feel of the application
instances where the Portlet Decorator is applied, including its wrapper.

The figure below shows themarkup of the layers wrapping a Liferay application when theDecorate Portlet
Decorator is applied:

Figure 109.1: Portlet Decorators add the decorator’s CSS class to the application’s wrapper

Once your Portlet Decorator is complete, apply it to your applications through the Look and Feel Config-

1427

uration menu.

Figure 109.2: Portlet Decorators can be applied through the Look and Feel Configuration menu

Your portlet’s decor is now in your hands.

109.1 Adding Portlet Decorators to a Theme
Portlet Decorators are associated with a particular theme. If your theme does not define any portlet decora-
tors, none are available. It is recommended that you provide a few decorators for your portlets, to cover the
basic use cases.

For example, the Liferay Portal CE 7.0 Classic theme includes three Portlet Decorators:

• Decorate: this is the default ApplicationDecorator when using the Classic theme. When this decorator
is applied, the portlet is wrapped in a white box with a border and the portlet title is displayed at the
top.

• Borderless: when this decorator is applied, the portlet is no longer wrapped in a white box, but the
portlet title is displayed at the top.

• Barebone: when this decorator is applied, neither the wrapping box nor the custom portlet title are
shown. This option is recommended when you only want to display the bare portlet content.

Note: Upgrading to Liferay DXP will assign the borderless decorator automatically to those portlets that
had the Show Borders option set to false in previous versions of Liferay.

As mentioned, you should consider updating your Liferay DXPThemes to provide at least one for the
decorate, borderless and barebone use cases.

This tutorial demonstrates how to

1428

https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/foundation/frontend-theme/frontend-theme-classic

Figure 109.3: The Classic theme’s Decorate Application Decorator wraps the portlet in a white box.

• Add Portlet Decorators to your theme

• Affect thememarkup with Portlet Decorators

Now that you know why you should have Portlet Decorators in your theme, you can learn how to add
them to your theme.

Adding Portlet Decorators to a Theme

Adding Portlet Decorators to your theme is similar to adding Color Schemes. You just have to follow these
steps:

1. Configure your theme’s liferay-look-and-feel.xml
2. Define the Application Decorator CSS styles
3. Optional: Add conditions to your theme’s markup

1429

Figure 109.4: The Classic theme’s Borderless Application Decorator displays the application’s custom title.

Configuring liferay-look-and-feel.xml

The first thing youmust do is declare the Portlet Decorators in your theme’s liferay-look-and-feel.xml.
TheDocument Type Definition for the liferay-look-and-feel.xml in Liferay DXP contains the information

and rules to add Portlet Decorators (in the code referred as portlet-decorators) to your theme.
Here is how the classic theme defines Portlet Decorators in its liferay-look-and-feel.xml:

<?xml version="1.0"?>

<!DOCTYPE look-and-feel PUBLIC "-//Liferay//DTD Look and Feel 7.0.0//EN" "http://www.liferay.com/dtd/liferay-look-and-feel_7_0_0.dtd">

<look-and-feel>

<compatibility>

<version>7.0.0+</version>

</compatibility>

...

<theme id="classic" name="Classic">

...

<portlet-decorator id="barebone" name="Barebone">

1430

@platform-ref@/7.0-latest/definitions/liferay-look-and-feel_7_0_0.dtd.html#portlet-decorator

Figure 109.5: The Classic theme’s Barebone Application Decorator displays only the application’s content.

<portlet-decorator-css-class>portlet-barebone</portlet-decorator-css-class>

</portlet-decorator>

<portlet-decorator id="borderless" name="Borderless">

<portlet-decorator-css-class>portlet-borderless</portlet-decorator-css-class>

</portlet-decorator>

<portlet-decorator id="decorate" name="Decorate">

<default-portlet-decorator>true</default-portlet-decorator>

<portlet-decorator-css-class>portlet-decorate</portlet-decorator-css-class>

</portlet-decorator>

</theme>

</look-and-feel>

The portlet-decorator element contains all the information about the Application Decorator:

• id: this required attribute contains a unique string that identifies this specific Application Decorator.
This is the value that is stored when applying an Application Decorator, and it can be used to refer to
this decorator in your theme templates.

• name: this required attribute is a user friendly identifier for the Application Decorator to be displayed
in the Look and Feel UI.

• portlet-decorator-css-class: this required element contains the name of the CSS class that is added to
the application wrapping layer when this Application Decorator is applied.

• default-portlet-decorator: use this optional element to identify the default Application Decorator for
your theme.

1431

You can define as many Portlet Decorators as you want, but it’s recommended to include at least one for
the decorate, borderless and barebone use cases.

Define the Styles for Your Application Decorator CSS Class

Once you’ve declared your Portlet Decorators, it’s time to define their effect in the application look and feel.
While the previous step was straightforward, this depends on your creativity.

As an example, look at the _portlet_decorator.scss of the Classic theme:

.portlet-decorate .portlet-content {

background: #FFF;

border: 1px solid #DEEEEE;

}

.portlet-barebone .portlet-content {

padding: 0;

}

Once your CSS styles are written,make sure to import the CSS file into your _custom.scss:

@import "portlet_decorator"

That’s all that is required to add Portlet Decorators to your theme. If youwant tomodify your application’s
markup with your Portlet Decorators, read the next section.

Changing Your Application Markup with Portlet Decorators

So far you’ve seen how to use Portlet Decorators to change the look and feel of an application with styles.
It’s possible to go a step further and alter themarkup of your application based on the ApplicationDecora-

tor applied. For this, youmust edit the portlet.ftl template for your theme, retrieve the portletDecoratorId
of the current Application Decorator from the portlet_display object, and make some decisions based on it.

For example, this is how the Classic theme shows the application title when the barebone Application
Decorator is not applied:

<#if portlet_display.getPortletDecoratorId() != "barebone">

<h2 class="portlet-title-text">${portlet_title}</h2>

</#if>

There you have it! Now you know how to add Portlet Decorators to your theme. Let your creativity be
your guide.

Related Topics

Themelets
Making Your Applications Configurable

109.2 Applying Portlet Decorators to Embedded Portlets

Once you have installed a theme that contains Portlet Decorators, site administrators can apply them to a
portlet instance by selecting the Application Decorator in the Look and Feel Configuration dialog.

If your theme contains embedded portlets, it’s also possible to apply an Application Decorator other than
the default one by setting its preferences.

This tutorial demonstrates how to apply Portlet Decorators to Embedded Portlets in your theme.

1432

Setting Application Decorator Preferences

TodefineadefaultApplicationDecorator for your theme’s embeddedportlets, youmust set adefault decorator
in the portlet preferences.

For example, the Classic theme declares an Application Decorator with Id barebone and applies it to the
embedded NavigationMenu portlet and Search portlet in its navigation.ftl:

<#assign VOID =

freeMarkerPortletPreferences.setValue("portletSetupPortletDecoratorId",

"barebone")>

<div aria-expanded="false" class="collapse navbar-collapse"

id="navigationCollapse">

<#if has_navigation && is_setup_complete>

<nav class="${nav_css_class} site-navigation"

id="navigation" role="navigation">

<div class="navbar-form navbar-right" role="search">

<@liferay.search default_preferences=

"${freeMarkerPortletPreferences}" />

</div>

<div class="navbar-right">

<@liferay.navigation_menu default_preferences=

"${freeMarkerPortletPreferences}" />

</div>

</nav>

</#if>

</div>

<#assign VOID = freeMarkerPortletPreferences.reset()>

To set the default decorator for your embedded portlets, follow these steps:

1. Set the value for the portletSetupPortletDecoratorId to the Id of the Application Decorator you want
to use:

<#assign VOID =

freeMarkerPortletPreferences.setValue("portletSetupPortletDecoratorId",

"barebone")>

2. Next, set the default_preferences attribute of the portlet’s tag to the freeMarkerPortletPreferences
variable you just defined:

<@liferay.search default_preferences= "${freeMarkerPortletPreferences}" />

Your embedded portlets now have a custom default Application Decorator!

Related Topics

Embedding Portlets inThemes
Providing Portlets to Manage Requests

109.3 Theming Portlets
Liferay DXP themes can provide additional styles to a portlet. You can change the markup for the portlet
containers by modifying the portlet.ftl file.

This tutorial demonstrates how to style portlets with your themes.

1433

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-theme/frontend-theme-classic/src/templates/navigation.ftl

Portlet FTL

Here is a quick look at the default portlet.ftl that’s included in the default theme of 7.0:

<#assign

portlet_display = portletDisplay

portlet_back_url = htmlUtil.escapeHREF(portlet_display.getURLBack())

portlet_content_css_class = "portlet-content"

portlet_display_name = htmlUtil.escape(portlet_display.getPortletDisplayName())

portlet_display_root_portlet_id = htmlUtil.escapeAttribute(portlet_display.getRootPortletId())

portlet_id = htmlUtil.escapeAttribute(portlet_display.getId())

portlet_title = htmlUtil.escape(portlet_display.getTitle())

/>

An explanation of each variable used in portlet.ftl is shown below:

• portletDisplay: is fetched from the themeDisplay object and contains information about the portlet.
• portlet_back_url: URL to return to the previous page with portlet WindowState is maximized.
• portlet_display_name: The “friendly” name of the portlet as displayed in the GUI.
• portlet_display_root_portlet_id: Sets the
• portlet_id: The ID of the portlet (not the same as the portlet namespace)
• portlet_title: The portlet name set in the portlet Java class (usually from a Keys.java class).

The following condition checks if the portlet header should be displayed. If the portlet has a portlet
toolbar (Configuration, Permissions, Look and Feel), the condition is true:

<#if portlet_display.isPortletDecorate() && !portlet_display.isStateMax()

&& portlet_display.getPortletConfigurationIconMenu()??

&& portlet_display.getPortletToolbar()??>

Portlet title menus are used in portlets that allow you to add resources (Web Content Display, Media
Gallery, Documents andMedia). This is used to build a menu of items for adding resources:

portlet_title_menus = portlet_toolbar.getPortletTitleMenus(portlet_display_root_portlet_id, renderRequest, renderResponse)

The configuration below contains the information for the configurationmenu (Configuration, Permis-
sions, Look and Feel):

portlet_configuration_icons = portlet_configuration_icon_menu.getPortletConfigurationIcons(portlet_display_root_portlet_id, renderRequest, renderResponse)

The rest of the file contains theHTMLmarkup for the portlet topper and the portlet content. It is possible
to add CSS classes, changemarkup, or add custom information to the portlet.ftl. To provide a default style
for all portlets, use the CSS classes found in this file, in conjunction with the portlet decorators to achieve
the desired look and feel.

Portlet Decorators are explained in more detail next.

Portlet Decorators

In previous versions of Liferay DXP, administrators could display or hide the application borders through
the Show Borders option of the look and feel configuration menu. In 7.0 this option has been replaced with
Portlet Decorators, a more powerful mechanism to customize the style of the application wrapper.

The default portlet decorators are covered next.

1434

https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-theme/frontend-theme-classic/src/templates/portlet.ftl

Default Portlet Decorators

Themes come bundled with three default portlet decorators in their liferay-look-and-feel.xml. These are
listed below:

• Barebone: when this decorator is applied, neither the wrapping box nor the custom application title
are shown. This option is recommended when you only want to display the bare application content.

• Borderless: when this decorator is applied, the application is no longer wrapped in a white box, but
the application custom title is displayed at the top.

• Decorate: this is the default Portlet Decorator when using the Classic theme. When this decorator is
applied, the application is wrapped in a white box with a border and the application custom title is
displayed at the top.

You can learn how to create and apply your own portlet decorators in the section dedicated to Portlet
Decorators.

Now you know how to make your portlets stylish!

Related Topics

Portlet Decorators
Themes and Layout Templates

109.4 Embedding Portlets in Themes

One thing developers often want to do is embed a portlet in a theme. This makes the portlet visible on all
pages where the theme is used. In the past, this was only possible by hard-coding a specific portlet into
place, which has many drawbacks. Liferay DXP provides the Portlet Providers framework that requires you
only specify the entity type and action to be displayed. Based on the given entity type and action, Liferay
DXP determines which deployed portlet to use. This increases the flexibility andmodularity of embedding
portlets in Liferay DXP.

In this tutorial, you’ll learn how to declare an entity type and action in a custom theme, and you’ll create a
module that finds the correct portlet to use based on those given parameters. You’ll first learn how to embed
portlets into a theme.

Adding a Portlet to a Custom Theme

The first thing you should do is open the template file for which you want to declare an embedded portlet.
For example, the portal_normal.ftl template file is a popular place to declare embedded portlets. There are
two ways two embed a portlet in a theme: by class name or by portlet name. Bothmethods are covered in
this section.

Embedding a Portlet by Class Name

To embed a portlet by class name, insert the following declaration wherever you want to embed the portlet:

<@liferay_portlet["runtime"]

portletProviderAction=ACTION

portletProviderClassName="CLASS_NAME"

/>

1435

This declaration expects two parameters: the type of action and the class name of the entity type the
portlet should handle. Here’s an example of an embedded portlet declaration that uses the class name:

<@liferay_portlet["runtime"]

portletProviderAction=portletProviderAction.VIEW

portletProviderClassName="com.liferay.portal.kernel.servlet.taglib.ui.LanguageEntry"

/>

This declares that the theme is requesting to view language entries. Liferay DXP determines which
deployed portlet to use in this case by providing the portlet with the highest service ranking.

Note: In some cases, a default portlet is already provided to fulfill certain requests. You can override the
default portlet with your custom portlet by specifying a higher service rank. To do this, set the following
property in your class’ @Component declaration:

property= {"service.ranking:Integer=20"}

Make sure you set the service ranking higher than the default portlet being used.

There are five different kinds of actions supported by the Portlet Providers framework: ADD, BROWSE, EDIT,
PREVIEW, and VIEW. Specify the entity type and action in your theme’s runtime declaration.

Great! Your theme declaration is complete. However, the Portal is not yet configured to handle this
request. Youmust create a module that can find the portlet that fits the theme’s request.

1. Create an OSGi module.

2. Create a unique package name in themodule’s src directory, and create a new Java class in that package.
To follow naming conventions, name the class based on the entity type and action type, followed by
PortletProvider (e.g., SiteNavigationLanguageEntryViewPortletProvider). The class should extend the
BasePortletProvider class and implement the appropriate portlet provider interface based on the
action you chose in your theme (e.g., ViewPortletProvider, BrowsePortletProvider, etc.).

3. Directly above the class’s declaration, insert the following annotation:

@Component(

immediate = true,

property = {"model.class.name=CLASS_NAME"},

service = INTERFACE.class

)

The property element should match the entity type you specified in your theme declaration (e.g.,
com.liferay.portal.kernel.servlet.taglib.ui.LanguageEntry). Also, your service element should
match the interface you’re implementing (e.g., ViewPortletProvider.class). You can view an example
of a similar @Component annotation in the RolesSelectorEditPortletProvider class.

4. Specify the methods you want to implement. Make sure to retrieve the portlet ID and page ID that
should be provided when this service is called by your theme.

A common use case is to implement the getPortletId() and getPlid(ThemeDisplay)methods. You can
view the SiteNavigationLanguageViewPortletProvider for an example of how these methods can be
implemented to provide a portlet for embedding in a theme. This example module returns the portlet
ID of the Language portlet specified in SiteNavigationLanguagePortletKeys. Furthermore, it returns
the PLID, which is the ID that uniquely identifies a page used by your theme. By retrieving these, your
theme will know which portlet to use, and which page to use it on.

1436

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-kernel/src/com/liferay/portal/kernel/portlet/BasePortletProvider.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-kernel/src/com/liferay/portal/kernel/portlet/ViewPortletProvider.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/portal-kernel/src/com/liferay/portal/kernel/portlet/BrowsePortletProvider.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/foundation/roles/roles-selector-web/src/main/java/com/liferay/roles/selector/web/internal/portlet/RolesSelectorEditPortletProvider.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/web-experience/site-navigation/site-navigation-language-web/src/main/java/com/liferay/site/navigation/language/web/internal/portlet/SiteNavigationLanguageViewPortletProvider.java
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/web-experience/site-navigation/site-navigation-language-api/src/main/java/com/liferay/site/navigation/language/constants/SiteNavigationLanguagePortletKeys.java

Theonly thing left to do is generate themodule’s JARfile and copy it to your Portal’s osgi/modulesdirectory.
Once themodule is installed and activated in your Portal’s service registry, your embedded portlet is available
for use wherever your theme is used.

You successfully requested a portlet based on the entity and action types required, and created and
deployed a module that retrieves the portlet and embeds it in your theme.

Embedding a Portlet by Portlet Name

If you’d like to embed a specific portlet in the theme, you can hard code it by providing its instance ID and
name:

<@liferay_portlet["runtime"]

instanceId="INSTANCE_ID"

portletName="PORTLET_NAME"

/>

Note: If your portlet is instanceable, an instance IDmust be provided; otherwise, you can remove this line.
To set your portlet to non-instanceable, set the property com.liferay.portlet.instanceable in the component
annotation of your portlet to false.

The portlet namemust be the same as javax.portlet.name’s value.
Here’s an example of an embedded portlet declaration that uses the portlet name to embed a web content

portlet:

<@liferay_portlet["runtime"]

portletName="com_liferay_journal_content_web_portlet_JournalContentPortlet"

/>

You can also set default preferences for an application. This process is covered next.

Setting Default Preferences for an Embedded Portlet

Follow these steps to set default portlet preferences for an embedded portlet:

1. Temporarily assign the VOID variable to set portlet preferences using the freeMarkerPortletPreferences
object as shown in the example below:

<#assign VOID = freeMarkerPortletPreferences.setValue(

"portletSetupPortletDecoratorId", "barebone") />

2. Set the defaultPreferences attribute to use the freeMarkerPortletPreferences object you just config-
ured:

<@liferay_portlet["runtime"]

defaultPreferences="${freeMarkerPortletPreferences}"

portletName="com_liferay_login_web_portlet_LoginPortlet"

/>

3. Once the preferences are set and passed to your portlet, reset the freeMarkerPortletPreferences object
so it can be fresh for the next portlet:

<#assign VOID = freeMarkerPortletPreferences.reset() />

Now you know how to set default preferences for embedded portlets! Next you can see the additional
attributes you can use for your embedded portlets.

1437

Additional Attributes for Portlets

Below are some additional attributes you can define for embedded portlets:
defaultPreferences: A string of Portlet Preferences for the application. This includes look and feel

configurations.
instanceId: The instance ID for the app, if the application is instanceable.
persistSettings: Whether to have an application use its default settings, which will persist across layouts.

The default value is true.
settingsScope: Specifies which settings use for the application. The default value is portletInstance, but

can be set to group or company.
Now you know how to embed a portlet in your theme by class name and by portlet name and how to

configure your embedded portlet!

Related Topics

Providing Portlets to Manage Requests
Portlets
Service Builder

1438

Chapter 110

Lexicon CSS and Themes

Lexicon CSS is an extension of Bootstrap’s CSS Framework. Bootstrap is by far the most popular CSS
framework on the web. Also, it’s open source, so anyone can use it. Built with Sass, Lexicon CSS fills the
front-end gaps between Bootstrap and the specific needs of Liferay DXP.

These tutorials look briefly at Lexicon CSS and show you how to use it in your Liferay DXP themes.

110.1 Importing Lexicon CSS into a Theme

Asmentioned before, Lexicon CSS fills the gaps between Bootstrap and the specific needs of Liferay DXP.
Bootstrap features have been extended to covermore use cases. Here are some of the new components added
by Lexicon CSS:

• Aspect Ratio
• Cards
• DropdownWide and Dropdown Full
• Figures
• Nameplates
• Sidebar / Sidenav
• Stickers
• SVG Icons
• Timelines
• Toggles

Several reusable CSS patterns have also been added to help accomplish time consuming tasks such as
these:

• truncating text
• content filling the remaining container width
• truncating text inside table cells
• table cells filling remaining container width and table cells only being as wide as their content
• open and close icons inside collapsible panels
• nested vertical navigations
• slide out panels

1439

• notification icons/messages
• vertical alignment of content

Next you can learn more about Lexicon’s structure.

Lexicon CSS Structure

LexiconCSS is bundledwith two sub-themes: LexiconBase andAtlas. LexiconBase is LiferayDXP’sBootstrap
API extension. It is also the theme that is used in Liferay DXP’s StyledTheme. It adds all the features and
components you need and inherits Bootstrap’s styles. As a result, Lexicon Base is fully compatible with third
party themes that leverage Bootstrap’s Sass variable API. As a best practice, you should use the Lexicon Base
as your base theme to integrate third party themes into Liferay DXP.

Atlas is Liferay DXP’s custom Bootstrap theme that is used in the Classic Theme. Its purpose is to
overwrite andmanipulate Bootstrap and Lexicon Base to create Liferay DXP’s classic look and feel. Atlas is
equivalent to installing a Bootstrap third party theme.

Note: It is not recommended to integrate third party themes with Atlas, as it adds variables and styles
that are outside the scope of Bootstrap’s API.

You can learn how to customize the Atlas theme next.

Customizing Atlas in Liferay DXP

If you want to include all the ClassicTheme’s files, you can skip these steps andmove on to the next section.
Follow these steps to customize the Atlas theme:

1. In your theme’s /src/cssdirectory (for legacyant themes,place in /_diff/css) addafilenamed aui.scss
with the code below and save:

@import "aui/lexicon/atlas";

2. Add a file named _imports.scsswith the code below and save:

@import "bourbon";

@import "mixins";

@import "aui/lexicon/atlas-variables";

@import "aui/lexicon/bootstrap/mixins";

@import "aui/lexicon/lexicon-base/mixins";

@import "aui/lexicon/atlas-theme/mixins";

3. Add a file named _aui_variables.scsswith the code below and save:

// Icon paths

$FontAwesomePath: "aui/lexicon/fonts/alloy-font-awesome/font";

$font-awesome-path: "aui/lexicon/fonts/alloy-font-awesome/font";

$icon-font-path: "aui/lexicon/fonts/";

All your Atlas, Bootstrap, and Lexicon Base variable modifications must be placed in this file.

4. Add a file named _custom.scsswith the code below and save:

1440

/* Use these inject tags to dynamically create imports for

themelet styles. You can place them where ever you like in this file. ⁎/

/* inject:imports ⁎/

/* endinject ⁎/

/* This file allows you to override default styles in one central

location for easier upgrade and maintenance. ⁎/

Place your custom CSS in this file. Next you can learn how to extend Atlas with the Classic theme.

Extending Atlas with the Classic Theme

To extend the Atlas theme with the Classic theme, copy all the files located in these directories into your
theme:

frontend-theme-classic/src/css

frontend-theme-classic/src/images

frontend-theme-classic/src/js

frontend-theme-classic/src/templates

You can also automatically copy these files into your theme using the LiferayTheme Tasks module gulp
kickstart command and following the prompts.

Next you can learn how to customize the Lexicon Base.

Customizing Lexicon Base

You can customize Lexicon Base with just a few imports.
In your custom theme’s /src/css directory (for legacy ant themes, place in /_diff/css) add a file named

_aui_variables.scsswith the code below and save:

// Icon paths

$FontAwesomePath: "aui/lexicon/fonts/alloy-font-awesome/font";

$font-awesome-path: "aui/lexicon/fonts/alloy-font-awesome/font";

$icon-font-path: "aui/lexicon/fonts/";

All your Atlas, Bootstrap, and Lexicon Base variable modifications must be placed in this file.
As mentioned earlier, any custom CSS should be placed in _custom.scss.
You can learn how to add third party themes in Liferay DXP next.

Adding a Third Party Theme

Third party themes must be built with Sass to be compatible with Liferay DXP.Make sure the Sass files are
included beforemaking any theme purchase.

Follow these steps to add a third party theme:

1. Follow the steps above in the Customizing Lexicon Base section.

2. Create a folder inside /src/css (for legacy ant themes, /_diff/css) that contains your third party theme
(e.g. /src/css/awesome-theme or /_diff/css/awesome-theme)

3. Copy the contents of the theme to the folder you just created.

4. In _aui_variables.scss, import the file containing the theme variables. For example, @import

"awesome-theme/variables.scss";

1441

https://github.com/liferay/liferay-theme-tasks
https://github.com/liferay/liferay-theme-tasks#kickstart
https://github.com/liferay/liferay-theme-tasks#kickstart

Note: You may omit the leading underscore when importing Sass files.

5. In _custom.scss, import thefile containing theCSS.For example, @import "awesome-theme/main.scss";

6. Deploy your theme with gulp deploy (for legacy ant themes, use ant deploy)

Now you know how to use Lexicon CSS in your theme!

Related Topics

Applying Lexicon Styles to Your App

1442

Chapter 111

Product Navigation

Liferay’s product navigation consists of the main menus you use to customize, configure, and navigate your
Liferay instance. Whether you edit a page, switch to a different site scope, access a user’s credentials, etc.,
you’re constantly using the default navigationmenus. Liferay’s product navigation is designed to be intuitive
and extensive, but often times, providing a customization to a default menu is necessary to give your Liferay
instance that unique touch you’re searching for. Liferay allows developers to extend and customize the
default product navigation to fit their needs.

There are four main sections of Liferay’s product navigation that you can extend: Product Menu, Control
Menu, SimulationMenu, and User Personal Bar.

Figure 111.1: The main product navigation menus include the Product Menu, Control Menu, Simulation Menu, and User Personal Bar.

As you can see from the figure above, the Product Menu is the menu to the left that displays your’s
instance’s Control Panel, user account settings, and Site Administration functionality. The Control Menu is
the top menu offering navigation to the Product Menu, SimulationMenu (the right menu), and Add button.

1443

When certain settings are enabled (e.g., Staging, Page Customization, etc.) more tools are offered. The
SimulationMenu offers options to simulate your site’s look for different scenarios (devices, user segments,
etc.). Lastly, the User Personal Bar is used to hold selectable items that aid with a user’s own account settings.

In this section of tutorials, you’ll learn about the various ways you can extend and customize Liferay’s
product navigation to fit your needs.

111.1 Customizing the Product Menu

Liferay’s Product Menu comes with three major sections to choose from, by default: the Control Panel,
User Settings, and Site Administration. These options are called panel categories, which is the term used
to differentiate between sections of the menu. For instance, the Control Panel is a single panel category,
and when clicking on it, you’re presented with four other child panel categories: Users, Sites, Apps, and
Configuration. It you click on one of these child panel categories, you’re presented with panel apps.

Note:The Product Menu cannot be changed by applying a new theme. To change the layout/style of the
Product Menu, youmust create and deploy a theme contributor. See theTheme Contributors tutorial for
more details.

This construction of the Product Menu was designed to be intuitive and easy to use. For your instance of
Liferay, however, you may want to add other panel categories with custom panel apps. Also, youmay desire
to change the order of your panel categories and/or apps. In this tutorial, you’ll learn how to provide your
own custom or modify existing panel categories and panel apps for the Product Menu.

Adding Custom Panel Categories

Liferay provides an easy way to extend the Product Menu and customize it to display what is most helpful in
your particular situation. First, you’ll learn how to add a panel category.

1. Create a generic OSGi module using your favorite third party tool, or use Blade CLI. Blade CLI offers a
Panel App template, which you can use to generate a basic panel category and panel app.

2. Create a unique package name in the module’s src directory and create a new Java class in that
package. To follow naming conventions, give your class a unique name followed by PanelCategory (e.g.,
ControlPanelCategory).

3. Directly above the class’s declaration, insert the following annotation:

@Component(

immediate = true,

property = {

"panel.category.key=" + [Panel Category Key],

"panel.category.order:Integer=[int]"

},

service = PanelCategory.class

)

The property element designates two properties that should be assigned for your category. The
panel.category.key specifies the parent category for your custom category. You can find popular
parent categories to assign in the PanelCategoryKeys class. For instance, if you wanted to create a
child category in the Control Panel, you could assign PanelCategoryKeys.CONTROL_PANEL. Likewise, if

1444

@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/constants/PanelCategoryKeys.html

you wanted to create a root category, like the Control Panel or Site Administration, you could assign
PanelCategoryKeys.ROOT.

The panel.category.order:Integer property specifies the order in which your category is displayed.
The higher the number (integer), the lower your category is listed among other sibling categories
assigned to a parent.

Lastly, your service element should specify the PanelCategory.class service. You can view an example
of a similar @Component annotation for the UserPanelCategory class below.

@Component(

immediate = true,

property = {

"panel.category.key=" + PanelCategoryKeys.ROOT,

"panel.category.order:Integer=200"

},

service = PanelCategory.class

)

4. Implement the PanelCategory interface. A popular way to do this is by extending the BasePanel-
Category or BaseJSPPanelCategory abstract classes. Typically, the BasePanelCategory is extended
for basic categories (e.g., the Control Panel category) that only display the category name or other
simple functionality. If you’d like to provide a custom UI for your panel, you can do so using any
frontend technology, you only need to implement the methods include() or includeHeader() from the
PanelCategory interface. The includeHeadermethod is used to render the header of the section and
the includemethod is used to render the body. Implementing a custom UI gives you the flexibility
to add more complex functionality. If you are going to use JSPs as the frontend technology, a base
class called BaseJSPPanelCategory can be extended that already implements the methods include()
and includeHeader() for you. This will be elaborated onmore extensively later.

Note: In this tutorial, JSPs are used to describe how to provide

functionality to panel categories and apps. JSPs, however, are not the only

way to provide frontend functionality to your categories/apps. You can

create your own class implementing `PanelCategory` to use other

technologies, such as FreeMarker.

5. Since you’re implementing the PanelCategory interface, you’ll need to implement its methods if you’re
not extending a base class:

• getNotificationCount: returns the number of notifications to be shown in the panel category.
• include: renders the body of the panel category.
• includeHeader: renders the panel category header.
• isActive: whether the panel is selected.
• isPersistState: whether to persist the panel category’s state to the database. This is used to
save the state of the panel category when navigating away from the menu.

6. Add any other methods that are necessary to create your custom panel category. As you learned
earlier, you can extend the BasePanelCategory and BaseJSPPanelCategory abstract classes to implement
PanelCategory.

1445

@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/BasePanelCategory.html
@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/BasePanelCategory.html
@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/BaseJSPPanelCategory.html
@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/PanelCategory.html

If you’d like to provide something simple for your panel category like a name, extending
BasePanelCategory is probably sufficient. For example, the ControlPanelCategory extends
BasePanelCategory and specifies a getLabelmethod to set and display the panel category name.

@Override

public String getLabel(Locale locale) {

return LanguageUtil.get(locale, "control-panel");

}

If you’d like to provide functionality that is more complex, you can use JSPs or any other similar
technology to render the panel category. You can easily do this by extending BaseJSPPanelCategory.
For example, the SiteAdministrationPanelCategory specifies the getHeaderJspPath and getJspPath

methods. You could create a JSP with the UI you’d like to render and specify its path in methods like
these:

@Override

public String getHeaderJspPath() {

return "/sites/site_administration_header.jsp";

}

@Override

public String getJspPath() {

return "/sites/site_administration_body.jsp";

}

One JSP is responsible for rendering the panel category’s header (displayed when panel is collapsed)
and the other for its body (displayed when panel is expanded).

You will also need to specify the servlet context from where you are loading the JSP files. If this is
inside an OSGi module,make sure your bnd.bnd file has defined a web context path:

Bundle-SymbolicName: com.sample.my.module.web

Web-ContextPath: /my-module-web

And then reference the Servlet context using the symbolic name of your module like this:

@Override

@Reference(

target = "(osgi.web.symbolicname=com.sample.my.module.web)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

Excellent! You’ve successfully created a custom panel category to display in the Product Menu. In many
cases, a panel category holds panel apps for users to access. You’ll learn about how to add a panel app to a
panel category next.

1446

https://github.com/liferay/liferay-portal/blob/7.0.3-ga4/modules/apps/web-experience/product-navigation/product-navigation-control-panel/src/main/java/com/liferay/product/navigation/control/panel/internal/application/list/ControlPanelCategory.java
https://github.com/liferay/liferay-portal/blob/7.0.3-ga4/modules/apps/web-experience/product-navigation/product-navigation-site-administration/src/main/java/com/liferay/product/navigation/site/administration/internal/application/list/SiteAdministrationPanelCategory.java

Adding Custom Panel Apps

Just as adding panel categories is straight-forward and dynamic, so too is the process for adding panel apps.
Panel apps are, by default, links provided in a panel category that allow you to access an application. For
instance, if you navigate to the Site Administration → Content panel category, you can select theWebContent
option, which is a panel app that allows you to access web content. Panel apps can also have a custom UI in
the same way Panel categories could have a more complex UI.

Follow the steps below to add a panel app to your Liferay instance’s Product Menu.

1. Create a generic OSGi module using your favorite third party tool, or use Blade CLI. Blade CLI offers a
Panel App template, which you can use to generate a basic panel category and panel app.

2. Create a unique package name in the module’s src directory and create a new Java class in that
package. To follow naming conventions, give your class a unique name followed by PanelApp (e.g.,
JournalPanelApp).

3. Directly above the class’s declaration, insert the following annotation:

@Component(

immediate = true,

property = {

"panel.app.order:Integer=INTEGER"

"panel.category.key=" + PANEL_CATEGORY_KEY,

},

service = PanelApp.class

)

These properties and attributes are very similar to the ones discussed for panel categories. The
panel.app.order:Integer property specifies the order your panel app is listed among other panel apps
in the same category. The panel.category.key specifies the panel category your panel app will reside
in. For example, if you want to add a panel app to Site Administration → Content, you would add the
following property:

"panel.category.key=" + PanelCategoryKeys.SITE_ADMINISTRATION_CONTENT

Visit the PanelCategoryKeys class for keys you can use to specify default panel categories in Liferay.

Lastly, be sure to set the service attribute to PanelApp.class. You can view an example of a similar
@Component annotation for the JournalPanelApp class below.

@Component(

immediate = true,

property = {

"panel.app.order:Integer=100",

"panel.category.key=" + PanelCategoryKeys.SITE_ADMINISTRATION_CONTENT

},

service = PanelApp.class

)

4. Implement the PanelApp interface. A popular way to do this is by extending the BasePanelApp abstract
class. Just as you learned in the previous sub-section on panel categories, if you need to create a more
complex UI to render in the panel, you can do so. If you want to use JSPs to render that UI, you can
extend an additional abstract class which extends BasePanelApp called BaseJSPPanelApp. This provides

1447

@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/constants/PanelCategoryKeys.html
@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/BasePanelApp.html
@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/BaseJSPPanelApp.html

additional methods you can use to incorporate JSP functionality into your app’s listing in the Product
Menu.

JSPs are not the only way to provide frontend functionality to your panel apps. You can create your
own class implementing PanelCategory to use other technologies, such as FreeMarker.

5. Since you’re implementing the PanelApp interface, you must implement its methods if you’re not
extending a base class. The BlogsPanelApp is a simple example of how to specify your portlet as a panel
app. This class extends the BasePanelApp, overriding the getPortletId and setPortletmethods. These
methods specify and set the Blogs portlet as a panel app.

Each panel appmust belong to a portlet and each portlet can have at most one panel app. If more than
one panel app is needed, another custom portlet must be created. By default, the panel app will only
be shown if the user has permission to view the associated portlet.

This is how those methods look for the Blogs portlet:

@Override

public String getPortletId() {

return BlogsPortletKeys.BLOGS_ADMIN;

}

@Override

@Reference(

target = "(javax.portlet.name=" + BlogsPortletKeys.BLOGS_ADMIN + ")",

unbind = "-"

)

public void setPortlet(Portlet portlet) {

super.setPortlet(portlet);

}

Liferay DXP also lets you customize your panel app’s appearance in the Product Menu. As you learned
before, the BaseJSPPanelApp abstract class can be extended to provide further functionality with
JSPs. For instance, the Navigation category in Site Administration offers a dynamic Pages panel
app that provides much more than a simple link to access a portlet. This is accomplished by extending
BaseJSPPanelApp in the GroupPagesPanelApp class, which provides this functionality in the Product
Menu.

In GroupPagesPanelApp, notice that theportlet ID is still returned similarly to theprevious BlogsPanelApp
example, but a getJspPathmethod is also called, which gives the panel appmuchmore functionality
provided by the layouts_tree JSP file:

@Override

public String getJspPath() {

return "/panel/app/layouts_tree.jsp";

}

Since you’re including custom JSPs in your module, you’ll also need to set the right ServletContext.

@Override

@Reference(

target = "(osgi.web.symbolicname=com.liferay.layout.admin.web)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

1448

@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/PanelApp.html
https://github.com/liferay/liferay-portal/blob/7.0.4-ga5/modules/apps/web-experience/layout/layout-admin-web/src/main/java/com/liferay/layout/admin/web/internal/application/list/GroupPagesPanelApp.java

Now you know how to add or modify a panel app in the Product Menu. Not only does Liferay provide a
simple solution to add new panel categories and apps, it also gives you the flexibility to add a more complex
UI to the Product Menu using any technology.

111.2 Customizing the Control Menu
TheControl Menu is the most visible and accessible menu in Liferay. It is visible to the user in most places,
always displaying helpful text or options at the top of the page. For example, on your home page, the Control
Menu offers default options for accessing the Product Menu, Simulation Menu, and AddMenu. You can
think of this menu as the gateway to configuring options in Liferay.

Figure 111.2: The Control Menu has three configurable areas: left, right, and middle.

If you navigate away from the home page, the ControlMenu adapts and provides helpful functionality for
what ever option you’re using. For example, if you navigated to Site Administration → Content →WebContent,
you’d be displayed a Control Menu with different functionality tailored for that option.

Figure 111.3: When switching your context to web content, the Control Menu adapts to provide helpful options for that area.

Thedefault ControlMenu ismadeupof three categories that represent the left,middle, and right portions
of the menu. You can create navigation entries for each category, which can provide options or further
navigation for the particular screen you’re on.

Note: You can add the Control Menu to a custom theme by adding the following snippet into your
portal_normal.ftl:

<@liferay.control_menu />

The other product navigation menus (e.g., Product Menu, Simulation Menu) are included in this tag, so
specifying the above snippet will embed all three menus into your theme. Embedding the User Personal Bar
is slightly different. Visit the Providing the User Personal Bar tutorial for more information.

You can reference a sample Control Menu Entry by visiting the Control Menu Entry article.
In this tutorial, you’ll learn how to create your own entries to customize the Control Menu. Make sure to

read the Adding Custom Panel Categories before beginning this tutorial. This tutorial assumes you have
knowledge on creating a panel category. You’ll begin by creating an entry for the Control Menu.

1. Create a generic OSGi module using your favorite third party tool, or use Blade CLI. Your module
must contain a Java class, bnd.bnd file, and build file (e.g., build.gradle or pom.xml). You’ll create your
Java class next if your project does not already define one.

2. Create a unique package name in themodule’s src directory and create a new Java class in that package.
To follow naming conventions, give your class a unique name followed by ProductNavigationControl-
MenuEntry (e.g., StagingProductNavigationControlMenuEntry).

1449

3. Directly above the class’s declaration, insert the following annotation:

@Component(

immediate = true,

property = {

"product.navigation.control.menu.category.key=" + [Control Menu Category],

"product.navigation.control.menu.category.order:Integer=[int]"

},

service = ProductNavigationControlMenuEntry.class

)

The product.navigation.control.menu.category.key property specifies the category your entry should
reside in. As mentioned previously, the default Control Menu provides three categories: Sites (left
portion), Tools (middle portion), and User (right portion).

Figure 111.4: This image shows where your entry will reside depending on the category you select.

To specify the category, reference the appropriate key in the ProductNavigationControlMenuCatego-
ryKeys class. For example, the following property would place your entry in the middle portion of the
Control Menu:

"product.navigation.control.menu.category.key=" + ProductNavigationControlMenuCategoryKeys.TOOLS

Similar to panel categories, you’ll also need to specify an integer for the order in which your entry will
be displayed in the category. Entries are ordered from left to right. For example, an entry with order 1
will be listed to the left of an entry with order 2. If the order is not specified, it’s chosen at random
based on which service was registered first in the OSGi container. Lastly, your service element should
specify the ProductNavigationControlMenuEntry.class service.

4. Implement the ProductNavigationControlMenuEntry interface. You can also extend the Base-
ProductNavigationControlMenuEntry or BaseJSPProductNavigationControlMenuEntry abstract
classes. Typically, the BaseProductNavigationControlMenuEntry is extended for basic entries (e.g.,
IndexingProductNavigationControlMenuEntry) that only display a link with text or a simple icon. If
you’d like to provide a more complex UI, like buttons or a sub-menu, you can do so by overriding
the include() and includeBody()methods. If you are going to use JSPs for generating the UI, you
can extend BaseJSPProductNavigationControlMenuEntry to save time. This will be elaborated onmore
extensively in the next step.

5. Define your Control Menu entry. You’ll explore two examples to discover some options you
have available for defining your entry. First, let’s take a look at a simple example for pro-
viding text and an icon. The IndexingProductNavigationControlMenuEntry extends the
BaseProductNavigationControlMenuEntry class and is used when Liferay is indexing. For this
process, the indexing entry is displayed in the Tools (middle) area of the Control Menu with a Refresh
icon and text statingThePortal is currently indexing. The icon is defined by calling the following method:

@Override

public String getIcon(HttpServletRequest request) {

return "reload";

}

1450

@app-ref@/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/constants/ProductNavigationControlMenuCategoryKeys.html
@app-ref@/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/constants/ProductNavigationControlMenuCategoryKeys.html
@app-ref@/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/ProductNavigationControlMenuEntry.html
@app-ref@/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/BaseProductNavigationControlMenuEntry.html
@app-ref@/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/BaseProductNavigationControlMenuEntry.html
@app-ref@/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/BaseJSPProductNavigationControlMenuEntry.html
https://github.com/liferay/liferay-portal/blob/7.0.3-ga4/modules/apps/foundation/portal-search/portal-search-web/src/main/java/com/liferay/portal/search/web/internal/product/navigation/control/menu/IndexingProductNavigationControlMenuEntry.java

Bydefault, Lexicon iconsare expected tobe returned. This is because the BaseProductNavigationControlMenuEntry.getMarkupView
method returns lexicon. To view all the Lexicon icons available, see https://liferay.github.io/clay
/content/icons-lexicon/. You can also return FontAwesome icons, but you must implement the
ProductNavigationControlMenuEntry.getMarkupView(…)method in your class and have it return null.
Then you can return FontAwesome icons for the getIcon(...) method. To view all the FontAwesome
icons available, see the FontAwesome 4.6.1 docs.

You can also provide a label for the Control Menu entry that displays when hovering over it with your
pointer. This label is stored in the module’s resource bundle, which you can learnmore about in the
Internationalization tutorials.

@Override

public String getLabel(Locale locale) {

ResourceBundle resourceBundle = ResourceBundleUtil.getBundle(

"content.Language", locale, getClass());

return LanguageUtil.get(

resourceBundle, "the-portal-is-currently-reindexing");

}

To do this, you’ll need to create a Language.properties for your module.

You also have the option to provide a Lexicon or CSS icon in your *ControlMenuEntry. To use a Lexi-
con icon, you should override the methods in ProductMenuProductNavigationControlMenuEntry like the
following:

public String getIconCssClass(HttpServletRequest request) {

return "";

}

public String getIcon(HttpServletRequest request) {

return "lexicon-icon";

}

public String getMarkupView(HttpServletRequest request) {

return "lexicon";

}

Likewise, you can use a CSS icon by overriding the ProductMenuProductNavigationControlMenuEntry
methods like the following:

public String getIconCssClass(HttpServletRequest request) {

return "icon-css";

}

public String getIcon(HttpServletRequest request) {

return "";

}

public String getMarkupView(HttpServletRequest request) {

return "";

}

The icons used in the two examples for Lexicon and CSS icons can be found in the icons-lexicon and
icons-font-awesome components, respectively.

The ProductMenuProductNavigationControlMenuEntry is a more advanced example. This entry
displays in the Sites (left) area of the Control Menu, but unlike the previous example, it extends the

1451

@app-ref@/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/BaseProductNavigationControlMenuEntry.html#getMarkupView-javax.servlet.http.HttpServletRequest-
@app-ref@/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/BaseProductNavigationControlMenuEntry.html#getMarkupView-javax.servlet.http.HttpServletRequest-
https://liferay.github.io/clay/content/icons-lexicon/
https://liferay.github.io/clay/content/icons-lexicon/
@app-ref@/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/ProductNavigationControlMenuEntry.html#getMarkupView-javax.servlet.http.HttpServletRequest-
https://fortawesome.github.io/Font-Awesome/icons/
https://liferay.github.io/clay/content/icons-lexicon/
https://liferay.github.io/clay/content/icons-font-awesome/
https://github.com/liferay/liferay-portal/blob/7.0.3-ga4/modules/apps/web-experience/product-navigation/product-navigation-product-menu-web/src/main/java/com/liferay/product/navigation/product/menu/web/internal/product/navigation/control/menu/ProductMenuProductNavigationControlMenuEntry.java

BaseJSPProductNavigationControlMenuEntry class. This provides several more methods that lets you
use JSPs to define your entry’s UI.There are twomethods to pay special attention to:

@Override

public String getBodyJspPath() {

return "/portlet/control_menu/product_menu_control_menu_entry_body.jsp";

}

@Override

public String getIconJspPath() {

return "/portlet/control_menu/product_menu_control_menu_entry_icon.jsp";

}

The getIconJspPath()method provides the Product Menu icon (→) and the getBodyJspPath()
method adds the UI body for the entry outside of the Control Menu. The latter methodmust be used
when providing a UI outside the Control Menu. You can easily test this when you open and close the
Product Menu on the home page.

Lastly, if you’re planning on providing functionality that will stay exclusively inside the Control Menu,
the StagingProductNavigationControlMenuEntry class calls its JSP like this:

@Override

public String getIconJspPath() {

return "/control_menu/entry.jsp";

}

In particular, the entry.jsp is returned, which embeds the Staging Bar portlet into the Control Menu.

You will also need to specify the servlet context from where you are loading the JSP files. If this is
inside an OSGi module,make sure your bnd.bnd file has defined a web context path:

Bundle-SymbolicName: com.sample.my.module.web

Web-ContextPath: /my-module-web

And then reference the Servlet context using the symbolic name of your module like this:

@Override

@Reference(

target = "(osgi.web.symbolicname=com.sample.my.module.web)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

6. Define when to display your new entry in the Control Menu. As you’ve learned already, the Control
Panel displays different entries depending on the page you’ve navigated to. You can specify when your
entry should display using the isShow(HttpServletRequest)method.

For example, the IndexingProductNavigationControlMenuEntry class queries the number of indexing
jobs when calling isShow. If the query count is 0, then the indexing entry is not displayed in the Control
Menu:

1452

@Override

public boolean isShow(HttpServletRequest request) throws PortalException {

int count = _indexWriterHelper.getReindexTaskCount(

CompanyConstants.SYSTEM, false);

if (count == 0) {

return false;

}

return super.isShow(request);

}

The StagingProductNavigationControlMenuEntry class is selective over which pages to display for. The
staging entry is configured to never display if the page is an administration page (e.g., Site Administra-
tion,MyAccount, etc.):

@Override

public boolean isShow(HttpServletRequest request) throws PortalException {

ThemeDisplay themeDisplay = (ThemeDisplay)request.getAttribute(

WebKeys.THEME_DISPLAY);

Layout layout = themeDisplay.getLayout();

// This controls if the page is an Administration Page

if (layout.isTypeControlPanel()) {

return false;

}

// This controls if Staging is enabled

if (!themeDisplay.isShowStagingIcon()) {

return false;

}

return true;

}

7. Define the dependencies for your Control Menu Entry. This should be completed in your build file
(e.g., build.grade or pom.xml). For example, some popular dependencies (in Gradle format) are defined
below:

dependencies {

compileOnly group: "com.liferay", name: "com.liferay.product.navigation.control.menu.api", version: "[VERSION]"

compile group: "com.liferay", name: "com.liferay.product.navigation.taglib", version: "[VERSION]"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "[VERSION]"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "[VERSION]"

compile group: "javax.servlet.jsp", name: "javax.servlet.jsp-api", version: "[VERSION]"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "[VERSION]"

}

Your project may require more dependencies, depending on your module’s functionality.

Excellent! You’ve created your entry in one of the three default panel categories in the Control Menu.
You learned a basic way and an advanced way of providing that entry, and learned how to apply both.

1453

111.3 Extending the Simulation Menu
When testing how Liferay pages and apps will appear for users, it’s critical to simulate their views on as
many useful ways as possible. By default, Liferay provides the SimulationMenu on the right-side of themain
page. What if, however, you’d like to simulate something in Liferay that is not provided by the Simulation
Menu? You’ll need to extend the SimulationMenu, of course! Luckily, Liferay offers a simple way to extend
and customize the SimulationMenu so you can test what you need. In this tutorial, you’ll learn how to add
additional functionality to the menu so you can domore simulating and less wondering.

The first thing you’ll need to do is get accustomed to using panel categories/apps. This is covered in detail
in the CustomizingThe Product Menu tutorial. Once you know the difference between panel categories and
panel apps, and know how to create them, continue on in this tutorial.

There are few differences between the Simulation Menu and Product Menu,mostly because they extend
the same base classes. The SimulationMenu, by default, is made up of only one panel category and one panel
app. Liferay provides the SimulationPanelCategory class, which is a hidden category needed to hold the
DevicePreviewPanelApp. This is the app and functionality you see in the SimulationMenu by default.

Figure 111.5: The Simulation Menu offers a device preview application.

To provide your own functionality in the Simulation Menu, you’ll need to create a panel app in the
SimulationPanelCategory. If you’re looking to add extensive functionality, you can even create additional
panel categories in themenu to divide up your panel apps. This tutorial will cover the simpler case of creating
a panel app for the already present hidden category.

1. Follow the steps documented in the Adding Custom Panel Apps section for creating custom panel
apps. Once you’ve created the foundation of your panel app, move on to learn how to tweak it so it
customizes the SimulationMenu.

You can easily generate a Simulation Panel App by using Blade CLI’s Simulation Panel Entry template.
You can also refer to the Simulation Panel App sample for a working example.

2. Since this tutorial assumes you’re providingmore functionality to the existing simulation category,
set the simulation category in the panel.category.key of the @Component annotation:

"panel.category.key=" + SimulationPanelCategory.SIMULATION

In order to use this constant, you need to add a dependency on com.liferay.product.navigation.simu-
lation. Be sure to also specify the order you’d like to display your new panel app, which was explained
in the Adding Custom Panel Apps section.

1454

https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/web-experience/product-navigation/product-navigation-simulation-web/src/main/java/com/liferay/product/navigation/simulation/web/internal/application/list/SimulationPanelCategory.java
https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.product.navigation.simulation/
https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.product.navigation.simulation/

3. This tutorial assumes you’re using JSPs for creating a complex UI.Therefore, you should extend the
BaseJSPPanelApp abstract class. This class implements the PanelApp interface and also provides
additional methods necessary for specifying JSPs to render your panel app’s UI. Remember that you
can also implement your own include()method to use any frontend technology you want, if you’d like
to use a technology other than JSP (e.g., FreeMarker).

4. Define your simulation view. For instance, in DevicePreviewPanelApp, the getJspPathmethod points
to the simulation-device.jsp file in the resources/META-INF/resources folder, where the device simu-
lation interface is defined. Optionally, you can also add your own language keys, CSS, or JS resources
in your simulation module.

The right servlet context is also provided implementing this method:

@Override

@Reference(

target = "(osgi.web.symbolicname=com.liferay.product.navigation.simulation.device)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

As explained in CustomizingThe Product Menu, a panel app should be associated with a portlet. This
makes the panel app visible only when the user has permission to view the portlet. This panel app is
associated to the Simulation Device portlet using these methods:

@Override

public String getPortletId() {

return ProductNavigationSimulationPortletKeys.

PRODUCT_NAVIGATION_SIMULATION;

}

@Override

@Reference(

target = "(javax.portlet.name=" + ProductNavigationSimulationPortletKeys.PRODUCT_NAVIGATION_SIMULATION + ")",

unbind = "-"

)

public void setPortlet(Portlet portlet) {

super.setPortlet(portlet);

}

Audience Targeting also provides a good example of how to extend the SimulationMenu. When the
Audience Targeting app is deployed, the Simulation Menu is extended to offer more functionality,
in particular, for Audience Targeting User Segments and Campaigns. You can simulate particular
scenarios for campaigns and users directly from the Simulation Menu. Its panel app class is very
similar to DevicePreviewPanelApp, except it points to a different portlet and JSP.

5. You can combine your simulation options with the device simulation options by interacting with the
device preview iFrame. To retrieve the device preview frame in an aui:script block of your custom
simulation view’s JavaScript, you can use the following:

var iframe = A.one('#simulationDeviceIframe');

Then you canmodify the device preview frame URL like this:

1455

@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/BaseJSPPanelApp.html
@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/PanelApp.html

Figure 111.6: The Audience Targeting app extends the Simulation Menu to help simulate different users and campaign views.

iframe.setAttribute('src', newUrlWithCustomParameters);

Now that you knowhow to extend the necessary panel categories andpanel apps tomodify the Simulation
Menu, go ahead and create a module of your own and customize the SimulationMenu so it’s most helpful
for your needs.

111.4 Providing the User Personal Bar
Liferay offers a touch of personability with the User Personal Bar. This navigationmenu is used to display
options that are unique to the current logged in user. By default, Liferay displays this menu as a simple
avatar button that expands the User Settings sub-menu in the Product Menu.

Although Liferay’s default usage of the User Personal Bar is bare-bones, you can addmore functionality
to the user bar to fit your needs. Unlike other product navigation menus (e.g., Product Menu), the User
Personal Bar does not require the extension/creation of panel categories and panel apps. It uses another
common Liferay framework for providing functionality: Portlet Providers. Be sure to visit the linked tutorial
to learn about how the Portlet Providers framework works in Liferay.

The User Personal Bar can be seen as a placeholder in every Liferay theme. By default, Liferay provides
one sample User Personal Bar portlet that fills that placeholder, but the portlet Liferay provides can be easily
replaced by other portlets.

Note: You can add the User Personal Bar to a custom theme by adding the following snippet into your
portal_normal.ftl:

<@liferay.user_personal_bar />

In this tutorial, you’ll learn how to customize the User Personal Bar. You’ll create a single Java class where
you’ll specify a portlet to replace the existing default portlet.

1456

Figure 111.7: By default, the User Personal Bar contains the signed-in user’s avatar, which navigates to the Product Menu when selected.

1. Create an OSGi module.

2. Create a unique package name in themodule’s src directory and create a new Java class in that package.

3. Directly above the class’s declaration, insert the following annotation:

@Component(

immediate = true,

property = {

"model.class.name=" + PortalUserPersonalBarApplicationType.UserPersonalBar.CLASS_NAME,

"service.ranking:Integer=10"

},

service = ViewPortletProvider.class

)

The model.class.name property must be set to the class name of the entity type you want the portlet to
handle. In this case, youwant your portlet to be provided based onwhether or not it can be displayed in
the User Personal Bar. Youmay recall from the Portlet Providers tutorial that you can request portlets
in several different ways (e.g., Edit, Browse, etc.).

You should also specify the service rank for your new portlet so it overrides the default one provided by
Liferay DXP.Make sure to set the service.ranking:Integer property to a number that is ranked higher
than the portlet being used by default.

Since you’re only wanting the User Personal Bar to display your portlet, you’ll always have the service
element be ViewPortletProvider.class.

4. Update the class’s declaration to extend the BasePortletProvider abstract class and implement
ViewPortletProvider:

public class ExampleViewPortletProvider extends BasePortletProvider implements ViewPortletProvider {

1457

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BasePortletProvider.html

5. Specify the portlet you’d like to provide in the User Personal Bar by declaring the following method in
your class:

@Override

public String getPortletName() {

return PORTLET_NAME;

}

You should replace the PORTLET_NAME text with the portlet you want to provide Liferay when it requests
one tobeviewed in theUserPersonalBar. For example,Liferaydeclares com_liferay_product_navigation_user_personal_bar_web_portlet_ProductNavigationPersonalBarPortlet
for its default User Personal Bar portlet.

You’ve successfully provided a portlet to be displayed in the User Personal Bar. If you’d like to inspect the
entire module used for Liferay’s default User Personal Bar, see product-navigation-user-personal-bar-web.
Besides the *ViewPortletProvider class, this module contains two classes defining constants and a portlet
class defining the default portlet to provide. Although these additional classes are not required, your module
should have access to the portlet you want to provide.

1458

https://github.com/liferay/liferay-portal/tree/7.0.2-ga3/modules/apps/web-experience/product-navigation/product-navigation-user-personal-bar-web

Chapter 112

Testing

Assuring top quality is paramount in producing awesome software. Test driven development plays a key
role in this process. Liferay’s tooling and integration with standard test frameworks support test driven
development and help you reach quality milestones. Here are the ways Liferay facilitates testing:

• Unit testing: Using JUnit to unit test Liferay DXPmodules in Gradle andMaven build environments
and in IDEs that have JUnit plugins is seamless.

• Integration testing: TheArquillian Extension for Liferay lets you spin up a LiferayDXP instance, deploy
modules whose components provide and consume services, and exercise their APIs. Liferay’s @Inject
annotation allows you to inject service instances into tests.

• Functional testing: Selenium and the Arquillian Extension for Liferay support functional UI testing.
• Code Coverage: JaCoCo analyzes and reports test code coverage.
• Slim Runtime: Liferay Slim Runtime facilitates testing modules (including Service Builder modules)
in a fast, lightweight environment.

Unit testing is the first step in test driven development.

112.1 Unit Testing with JUnit
Test driven development is a best practice for any developer. Unit tests verify and validate functionality of
classes andmethods in isolation by “mocking” external dependencies. One of the most widely-used tools for
test driven development on the Java platform is JUnit. You can use the JUnit framework to write unit tests
for Liferay DXP applications.

JUnit integrates with build environments such as Maven and Gradle. JUnit plugins are available in IDEs
such as Eclipse, IntelliJ, and NetBeans. And of course, LiferayWorkspace supports running JUnit tests.

This tutorial covers the following topics:

• Writing good tests

• JUnit annotations

• Creating JUnit test classes

• Running JUnit tests

You’ll start by learning best practices for writing unit tests.

1459

http://junit.org

Writing Good Tests

To write good tests, developers must understand assertions and follow best practices.
Assertion: an executable specification of the expected behavior of the software under test (SUT) given a

scenario. The tests define the behavior in the scenario using several methods: a test setupmethod, a class
setupmethod, and a test method. It’s executable because it programmatically checks behavior and tracks
requirements.

Best Practices for Unit Tests:

Rule Description

A test should have only one reason to fail. Resolving failures
from a single root
cause is easiest.

A test should check just one thing. Tests that verify or
validate one thing are
easier to understand
andmaintain.
Focusing onmultiple
things can lead to
multiple failure points,
thus breaking the one
reason to fail rule.

Avoid conditional logic in tests. Conditional test logic
that uses loops or
if/else clauses
increases the
probability of test
bugs.

A test that asserts nothing or cannot fail is worthless. Tests that can’t fail
create a false sense of
security.Here’s
example test code that
can’t fail:File f = new

File

("foo");Assert.assertTrue(f

!= null);

A test that inaccurately advertises what it asserts is untrustworthy A test’s name should
accurately express
what it tests. A name
that’s inaccurate or
that promises more
than what the test
does creates confusion.
@Testpublic void

testAddUser() { // do

something not related

to user creation }

1460

Next, you’ll learn JUnit’s annotations for test methods.

Understanding JUnit Annotations

The following table describes the JUnit method annotations.

Method signature Description

@BeforeClasspublic static void method() Themethod is invoked once, before
the class’s entire suite of tests is
executed. It should prepare the
general test environment.

@Beforepublic void method() Themethod is invoked before each
test. It should prepare the
environment for each test.

@Testpublic void method() Marks the method as a test.
@Test (expected = SomeException.class)public void method() The test fails if the method doesn’t

throw the exception.
@Afterpublic void method() Themethod is invoked after each

test. It should clean up the
environment.

@AfterClasspublic static void method() Themethod is invoked once, after
the class’s entire suite of tests is
executed. It should cleanup the
general test environment.

@Ignore or @Ignore("Why disabled")public void method() Themethod is skipped. Adding the
@Ignore annotation is an easy way
to skip a test. Themessage
(optional) can explain why the test
is being ignored.

JUnit follows the algorithm below to execute the test class’s methods.

Figure 112.1: JUnit executes the annotated methods following this algorithm.

Let’s create a JUnit test class.

Creating a JUnit Test Class

Here you’ll create a JUnit test class and fill it with methods that both set up/clean up the test environment
and assert the software’s expected behavior.

1461

To help illustrate creating unit tests, here’s an example class to test:

public class MySampleNameClass {

public MySampleNameClass(String firstName, String middleName, String lastName) {

_firstName = firstName;

_middleName = middleName;

_lastName = lastName;

}

public int fullNameLength() {

return _firstName.length() + _middleName.length() + _lastName.length();

}

public String getMiddleInitial() {

return _middleName.charAt(0) + ".";

}

@Override

public String toString() {

return _firstName + " " + getMiddleInitial() + " " + _lastName;

}

private String _firstName;

private String _middleName;

private String _lastName;

}

In the sections that follow, you’ll see setup, cleanup, and test methods that relate to this example class.
Create a test class:

1. Open the module of the class you’re testing.

2. Add a src/test/java/ folder to the module.

3. In that folder, create a package path (ending in test) that mirrors the package path of the class you’re
testing.

For example, if the class is in package com.sample, add a test package com.sample.test.

4. In that package, create a test class that ends in Test (e.g., SomeTest.java).

Your new test class is ready for test methods.

Figure 112.2: In this example module, the JUnit test class is in the same module of the class it tests. The test class resides in a source folder and package following
standard test structure conventions.

Now create methods in the order of test flow execution.

1462

@BeforeClass

Identify resources or computationally expensive tasks that must be completed prior to running all the tests.
Create a method that initializes these resources and invokes these tasks. Apply the @BeforeClass annotation
to the method.

@Before

Consider what needs to be done before running each individual test. Create a method that makes small
preparations before each test case. Add the @Before annotation to the method.

For example, each of the tests for the class MySampleNameClass operate on a populated MySampleNameClass

object. Implementing a method that instantiates such an object beforehand is appropriate. Adding the
@Before annotation to the method ensures it’s executed before each individual test.

Here’s what the MySampleNameClassTest class might look like with such a method:

public class MySampleNameClassTest {

@Before

public void setUp() {

_mySampleNameClass = new MySampleNameClass("Brian", "Edward", "Greenwald");

}

private MySampleNameClass _mySampleNameClass;

}

Note: Since this example class is immutable, it might makemore sense to instantiate the object once in
the @BeforeClassmethod and forgo the @Beforemethod. It’s probably more typical, however, that you’ll be
testing methods that change an object’s state; so pretend this example object must be instantiated anew
before each @Testmethod.

Now that you’ve instantiated objects each test needs, you can add @Testmethods to assert expected
output from the object’s methods.

@Test

JUnit’s Assert utility class contains static methods for comparing actual test results with expected results.
When an assertion fails, an AssertionException is thrown and the test fails. If a test method completes
execution without throwing an exception, the test succeeds.

For tests that contain a large amount of logic it’s typically a best practice to usemultiple assertions within
the test to better identify the earliest point of failure. But since the example class is fairly simple, it’s better
to create a test for each of its methods:

@Test

public void testFullNameLength() {

int length = _mySampleNameClass.fullNameLength();

Assert.assertEquals(20, length);

}

@Test

public void testGetMiddleInitial() {

String middleInitial = _mySampleNameClass.getMiddleInitial();

Assert.assertEquals("E.", middleInitial);

}

@Test

1463

http://junit.org/junit4/javadoc/latest/org/junit/Assert.html

public void testToString() {

String fullName = _mySampleNameClass.toString();

Assert.assertEquals("Brian E. Greenwald", fullName);

}

Since you know the test input (e.g., the parameters passed into the MySampleNameClass constructor), you
can easily determine expected output. You can compare the computed value eachmethod invocation returns
with the expected value.

To test that a method throws a particular exception when given certain invalid inputs, add an expected

attribute to the @Test annotation and assign the attribute the expected exception’s class name. Important:
refrain frommaking any assertions in the test method.

@Test(expected = MySampleException.class)

public void testToString() {

String fullName = _mySampleNamenClass.toString();

}

Warning: Each test method should be independent. Since JUnit doesn’t guarantee test order, you can’t
rely on a test being run before or after other tests.

@After

On finishing each individual test, you should clean up anything that was created or modified. Implement
the cleanup instructions in a method and add the @After annotation to it.

@AfterClass

Onfinishing theentire set of tests, youshould cleanupany remaining test environment resources. Implement
the final cleanup instructions in a method and add the @AfterClass annotation to it.

It’s time to compile and run your JUnit tests.

Running JUnit Tests

Unit testing involves these things:

• Resolving test dependencies

• Executing the tests

• Analyzing test results

Add JUnit as a dependency. Here’s a dependency on JUnit in Gradle:

testCompile group: "junit", name: "junit", version: "4.12"

If your tests require accessing classes outside the module, declare them as testCompile dependencies in
the module’s build.gradle file. Here’s an example testCompile dependency.

testCompile group: "com.sample", name: "com.sample.external", version: "1.0.0"

1464

Because unit tests run independent of any running Liferay DXP instance, you can use external modules
in tests but can’t access their services.

Gradle andMaven commands execute module unit tests:
Gradle: ./gradlew test

Maven: mvn test

Themodule’s classes and tests compile and its tests run. The following figure shows command output
for a successful test execution.

Figure 112.3: Command output of successful test execution looks like this.

Reports are generated to module subfolders based on the build environment and/or reporting mecha-
nism.

Gradle:

• HTML report build/reports/tests/index.html
• XML report file in build/test-results/

Maven:

• SureFire plugin generates XML and text report files in targets/surefire-reports/

Gradle’s HTML report, for example, shows overall test metrics and organizes test results by package.
Clicking on a package name lists test class results. Clicking on a test class name lists test method results.

While it’s certainly helpful to see successful test results, it’s evenmore helpful to see results of failing
tests.

As an experiment, change the expected values of a test’s assertions to force the test to fail and rerun the
tests to yield the respective failures.

The command output shows the class and method name of each failed test, the JUnit assertion type, and
the assertion’s line number.

The generated HTML report shows each failing test’s stack trace.
Stack traces show exactly why the test failed. They’re essential for determining whether the failure is the

result of faulty business logic or an incorrect expected value in the assertion. Using this information the
developer can resolve the issue.

Congratulations on creating and executing unit tests with JUnit!

1465

http://maven.apache.org/surefire/maven-surefire-plugin/

Figure 112.4: In Gradle environments, JUnit produces an HTML file named index.html that reports test result details.

Related Topics

Integration Testing with the Arquillian Extension
LiferayWorkspace
Liferay @ide@

1466

Figure 112.5: Command output of failing tests looks like this.

Figure 112.6: Here’s a failed test’s stack trace.

1467

Chapter 113

Arquillian Extension for Liferay Example

Arquillian is an extensible Java testing platform that’s designed to make integration testing easy. Arquillian
manages the lifecycle of setting up, starting, or connecting to a container (e.g., Tomcat), packaging your
test cases and any dependent classes or resources, deploying them to the container, running the tests in
the container, and capturing and reporting the results. The Arquillian Extension for Liferay is a set of tools
designed to help developers test their Liferay plugins.

The Arquillian Blade Example project demonstrates performing integration and functional tests using
the Arquillian Liferay Extension. Additionally it measures code coverage using JaCoCo. In this tutorial,
you’ll learn how the Arquillian Liferay Extension and JaCoCo work. You can download the Arquillian Blade
Example project here or access its latest code on GitHub.

Here are the tutorial sections:

• Arquillian Sample Portlet
• Arquillian Integration Test Example
• Arquillian Functional Test Example
• JaCoCo Code Coverage Example
• Running the Arquillian Example

113.1 Arquillian Example Sample Portlet

The sample portlet calculates the sum of two numbers.

Figure 113.1: The Arquillian Sample Portlet calculates the sum of two numbers.

1469

http://arquillian.org
https://github.com/arquillian/arquillian-extension-liferay
https://github.com/liferay-labs/arquillian-blade-example
https://github.com/liferay-labs/arquillian-liferay
http://eclemma.org/jacoco/
https://portal.liferay.dev/documents/113763090/114000186/arquillian-blade-example.zip
https://github.com/liferay-labs/arquillian-blade-example

The portlet project comprises a portlet class, service classes, and JSPs. It follows the standard OSGi
module folder structure with Java files in src/main/java/, resource files in src/main/resources/META-

INF/resources, and build files in the project root.
Here are the primary files:

• SampleService.java: Provides an interface that defines method public long add(final int

addend1, final int addend2) for returning the sum of two numbers.

• SampleServiceImpl.java: Uses OSGi Declarative Services to implement the SampleService interface.

• SamplePortlet.java: Extends Liferay MVCPortlet and processes portlet action commands and renders
the result of executing the add service.

• bnd.bnd: Specifies the module’s name, symbolic name, and version.

• init.jsp: Imports classes and tag libraries for the view layer.

• view.jsp: Provides a form for calculating the sum of two numbers.

You’ll examine the tests next.

113.2 Arquillian Integration Test Example

Integration tests exercise module interaction. The following integration test validates the sample portlet
using its API. Although the example’s BasicPortletIntegrationTest class demonstrates invoking the sample
module’s SampleService.addmethod only, an Arquillian integration test could just as easily invoke many
methods to test behavior across manymodules. The test classes are in the src/testIntegration/java folder
and test resources are in the src/testIntegration/resources folder.

Here’s the BasicPortletIntegrationTest class:

package com.liferay.arquillian.test;

import com.google.common.io.Files;

import com.liferay.arquillian.containter.remote.enricher.Inject;

import com.liferay.arquillian.sample.service.SampleService;

import com.liferay.portal.kernel.exception.PortalException;

import java.io.File;

import java.io.IOException;

import org.jboss.arquillian.container.test.api.Deployment;

import org.jboss.arquillian.junit.Arquillian;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.spec.JavaArchive;

import org.junit.Assert;

import org.junit.Test;

import org.junit.runner.RunWith;

@RunWith(Arquillian.class)

public class BasicPortletIntegrationTest {

@Deployment

public static JavaArchive create() throws Exception {

final File tempDir = Files.createTempDir();

String gradlew = "./gradlew";

1470

https://github.com/liferay-labs/arquillian-blade-example/blob/master/src/main/java/com/liferay/arquillian/sample/service/SampleService.java
https://github.com/liferay-labs/arquillian-blade-example/blob/master/src/main/java/com/liferay/arquillian/sample/service/SampleServiceImpl.java
https://github.com/liferay-labs/arquillian-blade-example/blob/master/src/main/java/com/liferay/arquillian/sample/portlet/SamplePortlet.java
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCPortlet.html
https://github.com/liferay-labs/arquillian-blade-example/blob/master/bnd.bnd
https://github.com/liferay-labs/arquillian-blade-example/blob/master/src/main/resources/META-INF/resources/init.jsp
https://github.com/liferay-labs/arquillian-blade-example/blob/master/src/main/resources/META-INF/resources/view.jsp

String osName = System.getProperty("os.name", "");

if (osName.toLowerCase().contains("windows")) {

gradlew = "./gradlew.bat";

}

final ProcessBuilder processBuilder = new ProcessBuilder(

gradlew, "jar", "-Pdir=" + tempDir.getAbsolutePath());

final Process process = processBuilder.start();

process.waitFor();

final File jarFile = new File(

tempDir.getAbsolutePath() +

"/com.liferay.arquillian.sample-1.0.0.jar");

return ShrinkWrap.createFromZipFile(JavaArchive.class, jarFile);

}

@Test

public void testAdd() throws IOException, PortalException {

final long result = _sampleService.add(1, 3);

Assert.assertEquals(4, result);

}

@Inject

private SampleService _sampleService;

}

JUnit annotation @RunWith(Arquillian.class)marks the class for Arquillian to execute.
The createmethod packages the test class and resources in a Java archive (JAR). Invoking the project’s

jarGradle task creates the test JAR Arquillian executes.

@Deployment

public static JavaArchive create() throws Exception {

final File tempDir = Files.createTempDir();

final ProcessBuilder processBuilder = new ProcessBuilder(

"./gradlew", "jar", "-Pdir=" + tempDir.getAbsolutePath());

final Process process = processBuilder.start();

process.waitFor();

final File jarFile = new File(

tempDir.getAbsolutePath() +

"/com.liferay.arquillian.sample-1.0.0.jar");

return ShrinkWrap.createFromZipFile(JavaArchive.class, jarFile);

}

JUnit annotation @Test designates the testAddmethod as a test. Themethod invokes the SampleService
object’s addmethod and asserts its result.

@Test

public void testAdd() throws IOException, PortalException {

final long result = _sampleService.add(1, 3);

Assert.assertEquals(4, result);

}

1471

The Liferay Arquillian Extension injects the _sampleService field with a SampleService implementation
(i.e., a SampleServiceImpl instance).

@Inject

private SampleService _sampleService;

The integration test has some dependencies, of course.

Dependencies

The project’s build.gradle file specifies this test’s dependencies on Liferay’s Arquillian container, JUnit, and
an Arquillian JUnit test container:

testIntegrationCompile group: "com.liferay.arquillian", name: "com.liferay.arquillian.arquillian-container-liferay", version: "1.0.6"

testIntegrationCompile group: "junit", name: "junit", version: "4.12"

testIntegrationCompile group: "org.jboss.arquillian.junit", name: "arquillian-junit-container", version: "1.1.11.Final"

Arquillian tests are configurable too.

Arquillian Configuration

Arquillian configurationfile src/testIntegration/resources/arquillian.xmlusesproperty deploymentExportPath
(optional) to write a test archive (e.g., JAR file) to a folder before deploying the tests. You can inspect all the
test files from this archive. To highlight the deploymentExportPath property, here’s an abbreviated view of the
arquillian.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<arquillian xmlns="http://jboss.org/schema/arquillian"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://jboss.org/schema/arquillian http://jboss.org/schema/arquillian/arquillian_1_0.xsd">

<!-- More content here -->

<engine>

<property name="deploymentExportPath">build/deployments</property>

</engine>

</arquillian>

The project uses Java Management Extensions (JMX) to deploy OSGi modules to Liferay DXP. Enabling
JMX for the application server is next.

JMX Settings

Apache Aries JMX exposes the JMX API that Arquillian uses to install/deploy/start the modules. Since DXP
Digital Enterprise 7.0 Fix Pack 16 and Liferay CE 7.0 GA4, LiferayWorkspace’s startTestableTomcatGradle
task installs the Apache Aries JMXmodules automatically. In case you’re using an earlier Liferay DXP version
or haven’t already installed the Aries modules, here’s their group ID, artifact ID, and version information.
You can install them using Apache Felix GoGo Shell:

"org.apache.aries.jmx:org.apache.aries.jmx:1.1.5"

"org.apache.aries:org.apache.aries.util:1.1.3"

JMX is enabled on the application server via Java runtime options. The following Apache Tomcat envi-
ronment script excerpts demonstrate enabling JMX (without authentication) on port 8099.

1472

https://github.com/liferay-labs/arquillian-blade-example/blob/master/src/testIntegration/resources/arquillian.xml

setenv.sh JMX Settings

JMX_OPTS="-Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.port=8099 -

Dcom.sun.management.jmxremote.ssl=false"

CATALINA_OPTS="${CATALINA_OPTS} ${JMX_OPTS}"

setenv.bat JMX Settings

set "JMX_OPTS=-Dcom.sun.management.jmxremote -Dcom.sun.management.jmxremote.authenticate=false -Dcom.sun.management.jmxremote.port=8099 -

Dcom.sun.management.jmxremote.ssl=false"

set "CATALINA_OPTS=%CATALINA_OPTS% %JMX_OPTS%"

Apache Tomcat’s guide Enabling JMXRemote has more JMX configuration details.
You’ve seen how setting up the example integration test class is straightforward. Next, you’ll discover

how fun it is to develop functional browser-based tests using Arquillian.

113.3 Arquillian Functional Test Example

Where the integration test invokes the SampleService’s addmethod directly, the functional test invokes the
addmethod indirectly using a web browser. The Arquillian Blade Example’s functional tests interact with the
portlet UI to verify content and validate behavior. The test classes are in the src/testIntegration/java folder
and test resources are in the src/testIntegration/resources folder.

The example functional tests operate on the following view parameters:

• firstParameter: First number to add
• secondParameter: Second number to add
• result: Sum of the two numbers

The JSP file view.jsp and portlet class BasicPortletFunctionalTest use these parameters. Here’s the
view.jsp code:

<%@ include file="/init.jsp" %>

<%@ page import="com.liferay.portal.kernel.util.ParamUtil" %>

<%

int firstParameter = ParamUtil.getInteger(request, "firstParameter", 1);

int secondParameter = ParamUtil.getInteger(request, "secondParameter", 1);

int result = ParamUtil.getInteger(request, "result");

%>

<portlet:actionURL name="add" var="portletURL" />

<p>

Sample Portlet is working!

</p>

<aui:form action="<%= portletURL %>" method="post" name="fm">

<aui:input inlineField="<%= true %>" label="" name="firstParameter" size="4" type="int" value="<%= firstParameter %>" />

 +

<aui:input inlineField="<%= true %>" label="" name="secondParameter" size="4" type="int" value="<%= secondParameter %>" />

 =

<%= result %>

<aui:button type="submit" value="add" />

</aui:form>

1473

https://tomcat.apache.org/tomcat-7.0-doc/monitoring.html#Enabling_JMX_Remote

Users enter numbers in the firstParameter and secondParameter input fields and click on the add button
to show the sum to the result field.

Functional test class BasicPortletFunctionalTest uses Selenium to interact with the portlet’s UI. Here’s
the BasicPortletFunctionalTest class:

package com.liferay.arquillian.test;

import com.google.common.io.Files;

import com.liferay.arquillian.portal.annotation.PortalURL;

import com.liferay.portal.kernel.exception.PortalException;

import java.io.File;

import java.io.IOException;

import java.net.URL;

import org.jboss.arquillian.container.test.api.Deployment;

import org.jboss.arquillian.container.test.api.RunAsClient;

import org.jboss.arquillian.drone.api.annotation.Drone;

import org.jboss.arquillian.junit.Arquillian;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.spec.JavaArchive;

import org.junit.Assert;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.openqa.selenium.OutputType;

import org.openqa.selenium.TakesScreenshot;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openqa.selenium.support.FindBy;

@RunAsClient

@RunWith(Arquillian.class)

public class BasicPortletFunctionalTest {

@Deployment

public static JavaArchive create() throws Exception {

final File tempDir = Files.createTempDir();

String gradlew = "./gradlew";

String osName = System.getProperty("os.name", "");

if (osName.toLowerCase().contains("windows")) {

gradlew = "./gradlew.bat";

}

final ProcessBuilder processBuilder = new ProcessBuilder(

gradlew, "jar", "-Pdir=" + tempDir.getAbsolutePath());

final Process process = processBuilder.start();

process.waitFor();

final File jarFile = new File(

tempDir.getAbsolutePath() +

"/com.liferay.arquillian.sample-1.0.0.jar");

return ShrinkWrap.createFromZipFile(JavaArchive.class, jarFile);

}

@Test

public void testAdd()

throws InterruptedException, IOException, PortalException {

1474

_browser.get(_portlerURL.toExternalForm());

_firstParamter.clear();

_firstParamter.sendKeys("2");

_secondParameter.clear();

_secondParameter.sendKeys("3");

_add.click();

Thread.sleep(5000);

Assert.assertEquals("5", _result.getText());

}

@Test

public void testInstallPortlet() throws IOException, PortalException {

_browser.get(_portlerURL.toExternalForm());

final String bodyText = _browser.getPageSource();

Assert.assertTrue(

"The portlet is not well deployed",

bodyText.contains("Sample Portlet is working!"));

}

@FindBy(css = "button[type=submit]")

private WebElement _add;

@Drone

private WebDriver _browser;

@FindBy(css = "input[id$='firstParameter']")

private WebElement _firstParamter;

@PortalURL("arquillian_sample_portlet")

private URL _portlerURL;

@FindBy(css = "span[class='result']")

private WebElement _result;

@FindBy(css = "input[id$='secondParameter']")

private WebElement _secondParameter;

}

Arquillian annotation @RunAsClient and JUnit annotation @RunWithmark the class as a web client that
runs on Arquillian.

Similar to the integration test class, this class’s createmethod packages the test as a JARfile for Arquillian
to execute.

Method testInstallPortlet verifies portlet content.

@Test

public void testInstallPortlet() throws IOException, PortalException {

_browser.get(_portlerURL.toExternalForm());

final String bodyText = _browser.getPageSource();

Assert.assertTrue(

"The portlet is not well deployed",

bodyText.contains("Sample Portlet is working!"));

}

This test class uses the following fields:

1475

• _browser: Arquillian annotation @Drone sets this field as a Selenium WebDriver (browser).

@Drone

private WebDriver _browser;

• _portlerURL: Liferay Arquillian annotation @PortalURL assigns the portlet’s URL to this field.

@PortalURL("arquillian_sample_portlet")

private URL _portlerURL;

• _firstParamter and _secondParameter: JavaScript selectors and Selenium annotation @FindBy map
these fields to the form’s inputs.

@FindBy(css = "input[id$='firstParameter']")

private WebElement _firstParamter;

@FindBy(css = "input[id$='secondParameter']")

private WebElement _secondParameter;

• _add: The form’s submit button.

@FindBy(css = "button[type=submit]")

private WebElement _add;

• _result: Sum of the two numbers.

@FindBy(css = "span[class='result']")

private WebElement _result;

Using the *Parameter fields, the testAddmethod injects numbers 2 and 3 into the form, submits the form,
and asserts 5 as the result.

@Test

public void testAdd()

throws InterruptedException, IOException, PortalException {

_browser.get(_portlerURL.toExternalForm());

_firstParameter.clear();

_firstParameter.sendKeys("2");

_secondParameter.clear();

_secondParameter.sendKeys("3");

_add.click();

Thread.sleep(5000);

Assert.assertEquals("5", _result.getText());

}

Testing portlets via a web client is that simple!
Functional tests typically require more setup than integration tests.

1476

Dependencies

In addition to the Liferay Arquillian container, JUnit, and an Arquillian JUnit test container artifacts that the
integration test required, the BasicPortletFunctionalTest class requires Arquillian’s Graphine extension to
use the web client. Here’s the dependency from the Gradle file build.gradle:

testIntegrationCompile group: "org.jboss.arquillian.graphene", name: "graphene-webdriver", version: "2.1.0.Final"

Note: To learn more about functional testing using Graphine, see this guide.

The test requires additional Arquillian configuration elements too.

Arquillian Configuration

In addition to the deploymentExportPath property introduced with the integration test, this functional test
specifies the browser type using phantomjs and the portal’s URL. Here’s the project’s arquillian.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<arquillian xmlns="http://jboss.org/schema/arquillian"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://jboss.org/schema/arquillian http://jboss.org/schema/arquillian/arquillian_1_0.xsd">

<extension qualifier="webdriver">

<property name="browser">phantomjs</property>

</extension>

<extension qualifier="graphene">

<property name="url">http://localhost:8080</property>

</extension>

<engine>

<property name="deploymentExportPath">build/deployments</property>

</engine>

</arquillian>

Note: The Arquillian Liferay Extension provides these options for injecting the URL of the container (e.g.,
Apache Tomcat):

1. In a test class deployment method or field, use the annotation @ArquillianResource to designate the
URL.

2. Configure Arquillian using the graphene URL property (via arquillian.xml, arquillian.properties,
or System Properties).

You should use Portal properties to prevent Liferay DXP from launching a browser and the SetupWizard.

Portal Properties

TheArquillianBladeExample specifies the followingPortal properties infile src/testIntegration/resources/portal-
ext.properties:

browser.launcher.url=

setup.wizard.enabled=false

1477

http://arquillian.org/guides/functional_testing_using_graphene/

Browsers other than the ones the functional tests launch can interfere with tests. Setting
browser.launcher.url to an empty value prevents Liferay DXP from launching a browser on its own.
You don’t need Liferay DXP’s setup wizard either. Setting setup.wizard.enabled=false bypasses launching
the SetupWizard.

The example project’s Gradle task copyPortalExt, copies the Portal properties file into the Liferay DXP
installation.

As you develop tests, you might want to track the parts of the product your tests cover. The example
project uses JaCoCo to measure code coverage. JaCoCo is explained next.

If you’d rather launch the Arquillian Blade Example before investigating JaCoCo, skip to Running the
Arquillian Example. Otherwise, jump into JaCoCo!

113.4 JaCoCo Code Coverage Example

JaCoComeasures Java code coverage. The Arquillian Blade Example uses JaCoCo to report parts and percent-
ages of the product code the tests execute.

Figure 113.2: JaCoCo reports lines of code tests execute in methods and classes.

Enabling JaCoCo

JaCoCo requires attaching an agent to the JVM. To attach the JaCoCo agent, append the following JaCoCo
options to the Tomcat environment script’s CATALINA_OPTS variable.

setenv.sh JaCoCo Settings

JACOCO_OPTS="-javaagent:PATH_TO_JACOCO_AGENT_JAR/jacocoagent.jar=destfile=JACOCO_EXEC_FILE,output=file,append=true,jmx=true"

CATALINA_OPTS="${CATALINA_OPTS} ${JACOCO_OPTS}"

setenv.bat JaCoCo Settings

set "JACOCO_OPTS=-javaagent:PATH_TO_JACOCO_AGENT_JAR/jacocoagent.jar=destfile=JACOCO_EXEC_FILE,output=file,append=true,jmx=true"

set "CATALINA_OPTS=%CATALINA_OPTS% %JACOCO_OPTS%"

Replace PATH_TO_JACOCO_AGENT_JARwith the path to the jacocoagent.jar file and JACOCO_EXEC_FILEwith
the path to the JaCoCo result dump file.

1478

http://eclemma.org/jacoco/

JaCoCo Build Instructions

TheGradle build file build.gradle specifies several JaCoCo-related instructions:

1. Apply the plugin to the build:

apply plugin: 'jacoco'

jacoco {

toolVersion = '0.7.9'

}

2. Copy the JaCoCo agent into the project build.

task copyJacocoAgent(type: Copy) {

println configurations.jacocoAgent

configurations.jacocoAgent.asFileTree.each {

from(zipTree(it))

}

into "${rootDir}/build/jacoco"

}

3. Dump the code coverage data:

task dumpJacoco {

doLast {

def serverUrl = 'service:jmx:rmi:///jndi/rmi://localhost:8099/jmxrmi'

String beanName = "org.jacoco:type=Runtime"

def server = JmxFactory.connect(new JmxUrl(serverUrl)).MBeanServerConnection

def gmxb = new GroovyMBean(server, beanName)

println "Connected to:\n$gmxb\n"

println "Executing dump()"

gmxb.dump(true)

}

}

4. Generate JaCoCo reports:

jacocoTestReport {

dependsOn dumpJacoco

group = "Reporting"

reports {

xml.enabled true

csv.enabled false

html.destination "${buildDir}/reports/coverage"

}

executionData = files("${rootDir}/build/jacoco/testIntegration.exec")

}

JaCoCo code coverage reporting runs as part of the project’s testIntegrationGradle task. You’ll run the
tests and JaCoCo next.

1479

113.5 Running the Arquillian Example

You’re ready to run the Arquillian Blade Example tests. Open a terminal to the project root and execute the
following command:

gradlew testIntegration

The command does these things:

1. Downloads and installs 7.0 bundled with Apache Tomcat
2. Starts a 7.0 server
3. Runs the tests, including the functional browser-based tests
4. Shuts down the server
5. Reports test and code coverage results

For testIntegration task details, examine the build.gradle file in the project root.
The command can take several minutes to execute because of all it does.
Test results are found in these locations:

• Tests: build\reports\tests\testIntegration\index.html
• Code Coverage: build\reports\coverage\index.html

Figure 113.3: Open the test reports to analyze the results.

Note: before rerunning the tests, youmust delete the build/reports/ and build/test-results/ folders.

Now that you’ve examined Arquillian functional and integration tests and JaCoCo code coverage capabili-
ties, you can create similar tests and improve test code coverage in your projects.

1480

Related Topics
Liferay’s Slim Runtime
Unit Testing with JUnit

113.6 Liferay Slim Runtime
The Liferay Slim Runtime provides the bare necessities for running Service Builder modules. It’s useful for
testing applications quickly in a Liferay runtime environment free of Liferay add-ons.

The Liferay Slim Runtime provides

• Caching infrastructure
• Database infrastructure
• HTTP support
• JAX-RS support
• Limited set of Liferay utility classes
• OSGi framework for runningmodules
• Service Builder runtime for Service Builder modules
• Spring infrastructure
• Transaction infrastructure

It does not provide

• Authentication/Authorization layers
• Layout templates
• Permissions
• Portlet support (no portlet container)
• Sites
• Themes
• etc.

Building and launching a Liferay Slim Runtime is much quicker than a typical Liferay DXP bundle.
Because of decreased build and startup times, the Slim Runtime provides a great environment for testing.
You’ll learn how to build one next.

Build

To build the Slim Runtime, you must have the liferay-portal Github repository forked and cloned to your
local machine. Navigate to the repository’s root folder and execute the following Ant command:

ant all -Dbuild.profile=slim

It’s built in the server directory specified by the app.server.properties file’s app.server.parent.dir prop-
erty. Note that the Slim Runtime only supports Apache Tomcat 8+. This limitation simplifies packaging and
configuration.

Launch

To launch the Slim Runtime, run the Tomcat start scripts found in the runtime’s <tomcat>/bin directory:

./startup.[sh|bat]

1481

https://github.com/liferay/liferay-portal
https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/cloning-a-repository/

Deploying Modules

You can deploy modules from any of the default directories the portal.properties file defines (see properties
below) or from a custom auto-deploy directory you add to the module.framework.auto.deploy.dirs property.

module.framework.base.dir=${liferay.home}/osgi

module.framework.configs.dir=${module.framework.base.dir}/configs

module.framework.marketplace.dir=${module.framework.base.dir}/marketplace

module.framework.modules.dir=${module.framework.base.dir}/modules

module.framework.war.dir=${module.framework.base.dir}/war

module.framework.auto.deploy.dirs=\

${module.framework.configs.dir},\

${module.framework.marketplace.dir},\

${module.framework.modules.dir},\

${module.framework.war.dir}

By default, a pristine Slim Runtime has no UI or apps. Requests to it result in 404 errors.
Themodules you add provide all the functionality.

Adding Functionality

A web endpoint is the simplest type of function.
Thefollowingsnippetdemonstrates a simple servlet that responds toall requests to http://localhost:8080[/*]:

package web.sample;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.Servlet;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.http.whiteboard.HttpWhiteboardConstants;

@Component(

immediate = true,

property = {

HttpWhiteboardConstants.HTTP_WHITEBOARD_SERVLET_PATTERN + "=/*"

},

service = Servlet.class

)

public class SampleServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

@Override

protected void service(

HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter writer = response.getWriter();

writer.println("<h2>Hello You!</h2>");

}

}

1482

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html

The Database

The Slim Runtime creates the database schema automatically the first time it runs.

MariaDB [lportal]> show tables;

+------------------+

Tables_in_lportal|

+——————+

ClassName_ |

Configuration_ |

Counter |

Release_ |

ServiceComponent |

+——————+ 5 rows in set (0.00 sec)
Only the following core services are available:

• ClassNameLocalService

• CounterLocalService

• ReleaseLocalService

• ServiceComponentLocalService

The Slim Runtime provides no other services! To test your services, therefore, you must deploy modules
that provide the capabilities they depend on.

Service Builder

The Service Builder runtime bootstraps all deployed Service Builder services (API and service modules).
For example, deploying the com.liferay.contacts.api and com.liferay.contacts.servicemodules adds

the Contacts_Entry table to the database:

MariaDB [lportal]> show tables;

+------------------+

Tables_in_lportal|

+——————+

ClassName_ |

Configuration_ |

Contacts_Entry |

Counter |

Release_ |

ServiceComponent |

+——————+ 6 rows in set (0.00 sec)

1483

A Basic Service Builder Web App

The servlet in the following snippet implements a simple web app that uses the contacts service.

package web.sample;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.List;

import javax.servlet.Servlet;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import org.osgi.service.http.whiteboard.HttpWhiteboardConstants;

import com.liferay.contacts.model.Entry;

import com.liferay.contacts.service.EntryLocalService;

import com.liferay.counter.kernel.service.CounterLocalService;

import com.liferay.portal.kernel.dao.orm.DynamicQuery;

import com.liferay.portal.kernel.dao.orm.QueryUtil;

import com.liferay.portal.kernel.dao.orm.RestrictionsFactoryUtil;

import com.liferay.portal.kernel.util.ParamUtil;

import com.liferay.portal.kernel.util.Validator;

@Component(

immediate = true,

property = {

HttpWhiteboardConstants.HTTP_WHITEBOARD_SERVLET_PATTERN + "=/*"

},

service = Servlet.class

)

public class SampleServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

@Override

protected void service(

HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter writer = response.getWriter();

String fullNameParameter = ParamUtil.getString(request, "fullName");

if (Validator.isNull(fullNameParameter)) {

writer.println("<h2>Hello You!</h2>");

writer.println("Do you want to sign up for this thing?
");

writer.println("<form action='/join' method='post'>");

writer.println("<input type='text' name='fullName' placeholder='Full Name'>
");

writer.println("<input type='text' name='emailAddress' placeholder='Email Address'>
");

writer.println("<input type='submit' value='Sign Up'>
");

writer.println("</form>");

List<Entry> entries = _entryLocalService.getEntries(QueryUtil.ALL_POS, QueryUtil.ALL_POS);

if (entries.isEmpty()) {

writer.println("I'm so lonely! :(
");

}

else {

writer.println("Here's a list of others who've already signed up:
");

1484

for (Entry entry : _entryLocalService.getEntries(QueryUtil.ALL_POS, QueryUtil.ALL_POS)) {

writer.println(String.format("%s <%s>
", entry.getFullName(), entry.getEmailAddress()));

}

}

return;

}

String emailAddressParameter = ParamUtil.getString(request, "emailAddress");

if (Validator.isNull(emailAddressParameter)) {

writer.println(String.format("Ooops! %s, you forgot your emailAddress :(
", fullNameParameter));

writer.println("Retry?");

return;

}

DynamicQuery dynamicQuery = _entryLocalService.dynamicQuery();

dynamicQuery.add(RestrictionsFactoryUtil.eq("emailAddress", emailAddressParameter));

long count = _entryLocalService.dynamicQueryCount(dynamicQuery);

if (count > 0) {

writer.println(String.format("Ooops! Someone already registered with the email address <%s> :(
", emailAddressParameter));

writer.println("Retry?");

return;

}

long entryId = _counterLocalService.increment();

Entry entry = _entryLocalService.createEntry(entryId);

entry.setFullName(fullNameParameter);

entry.setEmailAddress(emailAddressParameter);

_entryLocalService.updateEntry(entry);

writer.println(String.format("Great! Thanks for signing up %s :D
", fullNameParameter));

writer.println("Go Back!");

}

@Reference

private CounterLocalService _counterLocalService;

@Reference

private EntryLocalService _entryLocalService;

}

Notehow it usesOSGiDeclarativeServices to reference an instanceofPortalKernel’s CounterLocalService
and Contacts API’s EntryLocalService.

Related Topics

Arquillian Extension for Liferay Example
Unit Testing with JUnit

113.7 Injecting Service Components into Tests
You can use Liferay DXP’s @Inject annotation to inject service components into a test, like you use the
@Reference annotation to inject service components into a module component.

1485

@Inject uses reflection to inject a field with a service component object matching the field’s interface.
Test rule LiferayIntegrationTestRule provides this annotation. The annotation accepts filter and type

parameters, which you can use separately or together.

DXP Digital Enterprise 7.0 Fix Pack 30 and Liferay CE Portal 7.0 GA5 introduced the @Inject annotation.

To fill a field with a particular implementation or sub-class object, set the typewith it.

@Inject(type = SubClass.class)

Replace SubClasswith the name of the service interface to inject.
Here’s an example test class that injects a DDLServiceUpgrade object into an UpgradeStepRegistrator in-

terface field:

public class Test {

@ClassRule

@Rule

public static final AggregateTestRule aggregateTestRule =

new LiferayIntegrationTestRule();

@Test

public void testSomething() {

// your test code here

}

@Inject(

filter = "(&(objectClass=com.liferay.dynamic.data.lists.internal.upgrade.DDLServiceUpgrade))"

)

private static UpgradeStepRegistrator _upgradeStepRegistrator;

}

Here’s how to inject a service component into a test class:

1. In your test class, add a rule field of type com.liferay.portal.test.rule.LiferayIntegrationTestRule.
For example,

@ClassRule

@Rule

public static final AggregateTestRule aggregateTestRule =

new LiferayIntegrationTestRule();

2. Add a field to hold a service component. Making the field static improves efficiency, because the
container injects static fields once before test runs and nulls them after all tests run. Non-static fields
are injected before each test run but stay in memory till all tests finish.

3. Annotate the field with an @Inject annotation. By default, the container injects the field with a service
component object matching the field’s type.

4. Optionally add a filter string or type parameter to further specify the service component object to
inject.

1486

https://docs.liferay.com/ce/portal/7.0-latest/javadocs/portal-test-integration/com/liferay/portal/test/rule/LiferayIntegrationTestRule.html
https://docs.liferay.com/ce/portal/7.0-latest/javadocs/portal-test-integration/com/liferay/portal/test/rule/LiferayIntegrationTestRule.html

At runtime, the @Inject annotation blocks the test until a matching service component is available. The
block has a timeout andmessages are logged regarding the test’s unavailable dependencies.

Important: If you’re publishing the service component you are injecting, the test might never run. If you
must publish the service component from the test class, use Service Trackers to access service components.

Great! Now you can inject service components into your tests.

Related Articles

Service Trackers
Finding and Invoking Liferay Services
Unit Testing with JUnit

1487

Chapter 114

Modularity and OSGi

Things we use every day are made of carefully designed, created, and tested subsystems. For example, a
car has an engine, suspension, and air conditioner. Teams of engineers, machinists, and technicians make
these subsystems the best they can be separately before combining them to create a high quality car. This is
modularity in action–creating things from smaller well-designed, well-tested parts.

Liferay DXP is modular too. It comprises codemodules created and tested independently and in parallel.
It’s a platform on which modules and modular applications are installed, started, used, stopped, and
uninstalled. Liferay DXP’s components use the OSGi modularity standard.

These tutorials demonstrate developing OSGi services and components to customize Liferay DXP and
create applications on it. As Liferay’s developers usedmodules to create LiferayDXP and its applications, you
and your teammates can enjoy developing your ownmodules, applications, and customizations in parallel
on Liferay DXP.

114.1 The Benefits of Modularity

Dictionary.com defines modularity as the use of individually distinct functional units, as in assembling an electronic
or mechanical system.The distinct functional units are calledmodules.

NASA’s Apollo spacecraft, for example, comprised three modules, each with a distinct function:

• LunarModule: Carried astronauts from the Apollo spacecraft to the moon’s surface and back.
• ServiceModule: Provided fuel for propulsion, air conditioning, and water.
• CommandModule: Housed the astronauts and communication and navigation controls.

The spacecraft and its modules exemplified these modularity characteristics:

• Distinct functionality: Each module provides a distinct function (purpose); modules can be combined
to provide an entirely new collective function.

The Apollo spacecraft’s modules were grouped together for a distinct collective function: take astro-
nauts from the Earth’s atmospheric rim, to the moon’s surface, and back to Earth. The previous list
identifies each module’s distinct function.

• Dependencies: Modules can require capabilities other modules satisfy.

The Apollo modules had these dependencies:

1489

http://www.dictionary.com/browse/modularity

Figure 114.1: The Apollo spacecraft’s modules collectively took astronauts to the moon’s surface and back to Earth.

– Lunar Module depended on the Service Module to get near the moon.

– CommandModule depended on the Service Module for power and oxygen.

– Service Module depended on the CommandModule for instruction.

• Encapsulation: Modules hide their implementation details but publicly define their capabilities and
interfaces.

Each Apollo module was commissioned with a contract defining its capabilities and interface, while
each module’s details were encapsulated (hidden) from other modules. NASA integrated the modules
based on their interfaces.

• Reusability: A module can be applied to different scenarios.

The Command Module’s structure and design were reusable. NASA used different versions of the
CommandModule, for example, throughout the Apollo program, and in the Gemini Program, which
focused on Earth orbit.

NASA used modularity to successfully complete over a dozen missions to the moon. Can modularity
benefit software too? Yes! The following sections show you how:

• Modularity benefits for software
• Example: How to design a modular application

Modularity Benefits for Software

Java applications have predominantly been monolithic: they’re developed in large code bases. In a monolith,
it’s difficult to avoid tight coupling of classes. Modular application design, conversely, facilitates loose
coupling,making the code easier to maintain. It’s much easier andmore fun to develop small amounts of
cohesive code in modules. Here are some key benefits of developing modular software.

Distinct Functionality

It’s natural to focus on developing one piece of software at a time. In a module, you work on a small set of
classes to define and implement the module’s function. Keeping scope small facilitates writing high quality,
elegant code. The more cohesive the code, the easier it is to test, debug, and maintain. Modules can be
combined to provide a new function, distinguishable from eachmodule’s function.

1490

Encapsulation

Amodule encapsulates a function (capability). Module implementations are hidden from consumers, so
you can create andmodify them as you like. Throughout a module’s lifetime, you can fix and improve the
implementation or swap in an entirely new one. Youmake the changes behind the scenes, transparent to
consumers. A module’s contract defines its capability and interface,making the module easy to understand
and use.

Dependencies

Modules have requirements and capabilities. The interaction betweenmodules is a function of the capability
of one satisfying the requirement of another and so on. Modules are published to artifact repositories, such
as Maven Central. Module versioning schemes let you specify dependencies on particular module versions
or version ranges.

Reusability

Modules that do their job well are hot commodities. They’re reusable across projects, for different purposes.
As you discover helpful reliable modules, you’ll use them again and again.

It’s time to design a modular application.

Example: Designing a Modular Application

Applicationdesignoften starts out simplebut getsmore complex as youdetermine capabilities the application
requires. If a third party library already provides the capability, you can deploy it with your app. You can
otherwise implement the capability yourself.

As you design various aspects of your app to support its function, youmust decide how those aspects
fit into the code base. Putting them in a single monolithic code base often leads to tight coupling, while
designating separate modules for each aspect fosters loose coupling. Adopting a modular approach to
application design lets you reap the modularity benefits.

For example, you can apply modular design to a speech recognition app. Here are the app’s function and
required capabilities:

Function: interface with users to translate their speech into text for the computer to understand.
Required capabilities: - Translates user words to text - Uses a selected computer voice to speak to users.

- Interacts with users based on a script of instructions that include questions, commands, requests, and
confirmations.

You could create modules to provide the required capabilities:

• Speech to text: Translates spoken words to text the computer understands.
• Voice UI: Interacts with users based on stored questions, commands, and confirmations.
• Instructionmanager: Stores and provides the application’s questions, commands, and confirmations.
• Computer voice: Stores and provides computer voices for users to choose from.

The following diagram contrasts a monolithic design for the speech recognition application with a
modular design.

Designing the app as a monolith lumps everything together. There are no initial boundaries between the
application aspects, whereas the modular design distinguishes the aspects.

Developers can create the modules in parallel, each one with its own particular capability. Designing
applications that comprise modules fosters writing cohesive pieces of code that represent capabilities. Each
module’s capability can potentially be reused in other scenarios too.

1491

Figure 114.2: The speech recognition application can be implemented in a single monolithic code base or in modules, each focused on a particular function.

For example, the Instructionmanager and Computer voicemodules can be reused by a navigation app.

Figure 114.3: The Instruction manager and Computer voice modules designed for the speech recognition app can be used (or reused) by a navigation app.

Here are the benefits of designing the speech recognition app as modules:

• Eachmodule represents a capability that contributes to the app’s overall function.
• The app depends onmodules, that are easy to develop, test, andmaintain.
• Themodules can be reused in different applications.

In conclusion,modularity has literally taken us to the moon and back. It benefits software development
too. The example speech recognition application demonstrated how to design an app that comprisesmodules.

Next you’ll learn how OSGi facilitates creating modules that provide and consume services.

114.2 OSGi and Modularity

Modularity makes writing software, especially as a team, fun! Here are some benefits to modular develop-
ment on DXP:

• Liferay DXP’s runtime framework is lightweight, fast, and secure.
• The framework uses the OSGi standard. If you have experience using OSGi with other projects, you
can apply your existing knowledge to developing on DXP.

• Modules publish services to and consume services from a service registry. Service contracts are loosely
coupled from service providers and consumers, and the registry manages the contracts automatically.

• Modules’ dependencies are managed automatically by the container, dynamically (no restart required).

1492

• The container manages module life cycles dynamically. Modules can be installed, started, updated,
stopped, and uninstalled while Liferay DXP is running,making deployment a snap.

• Only amodule’s classes whose packages are explicitly exported are publicly visible; OSGi hides all other
classes by default.

• Modules and packages are semantically versioned and declare dependencies on specific versions of
other packages. This allows two applications that depend on different versions of the same packages
to each depend on their own versions of the packages.

• Teammembers can develop, test, and improve modules in parallel.
• You can use your existing developer tools and environment to develop modules.

There aremany benefits tomodular software developmentwithOSGi, andwe can only scratch the surface
here. Once you start developing modules, youmight find it hard to go back to developing any other way.

Modules

It’s time to see what module projects look like and see Liferay DXP’s modular development features in action.
To keep things simple, only project code and structure are shown: you can create modules like these anytime.

These modules collectively provide a command that takes a String and uses it in a greeting. Consider it
“HelloWorld” for modules.

API

The API module is first. It defines the contract that a provider implements and a consumer uses. Here is its
structure:

• greeting-api

– src

* main

· java

· com/liferay/docs/greeting/api

· Greeting.java

– bnd.bnd

– build.gradle

Very simple, right? Beyond the Java source file, there are only two other files: a Gradle build script (though
you can use any build system you want), and a configuration file called bnd.bnd. The bnd.bnd file describes
and configures the module:

Bundle-Name: Greeting API

Bundle-SymbolicName: com.liferay.docs.greeting.api

Bundle-Version: 1.0.0

Export-Package: com.liferay.docs.greeting.api

The module’s name is Greeting API. Its symbolic name–a name that ensures uniqueness–is
com.liferay.docs.greeting.api. Its semantic version is declared next, and its package is exported,
which means it’s made available to other modules. This module’s package is just an API other modules can
implement.

Finally, there’s the Java class, which in this case is an interface:

1493

package com.liferay.docs.greeting.api;

import aQute.bnd.annotation.ProviderType;

@ProviderType

public interface Greeting {

public void greet(String name);

}

The interface’s @ProviderType annotation tells the service registry that anything implementing the inter-
face is a provider. The interface’s one method asks for a String and doesn’t return anything.

That’s it! As you can see, creating modules is not very different from creating other Java projects.

Provider

An interface only defines an API; to do something, it must be implemented. This is what the providermodule
is for. Here’s what a provider module for the Greeting API looks like:

• greeting-impl

– src

* main

· java

· com/liferay/docs/greeting/impl

· GreetingImpl.java

– bnd.bnd

– build.gradle

It has the same structure as the API module: a build script, a bnd.bnd configuration file, and an imple-
mentation class. The only differences are the file contents. The bnd.bnd file is a little different:

Bundle-Name: Greeting Impl

Bundle-SymbolicName: com.liferay.docs.greeting.impl

Bundle-Version: 1.0.0

The bundle name, symbolic name, and version are all set similarly to the API.
Finally, there’s no Export-Package declaration. A client (which is the thirdmodule you’ll create) just wants

to use the API: it doesn’t care how its implementation works as long as the API returns what it’s supposed
to return. The client, then, only needs to declare a dependency on the API; the service registry injects the
appropriate implementation at runtime.

Pretty cool, eh?
All that’s left, then, is the class that provides the implementation:

package com.liferay.docs.greeting.impl;

import com.liferay.docs.greeting.api.Greeting;

import org.osgi.service.component.annotations.Component;

@Component(

immediate = true,

1494

property = {

},

service = Greeting.class

)

public class GreetingImpl implements Greeting {

@Override

public void greet(String name) {

System.out.println("Hello " + name + "!");

}

}

The implementation is simple. It uses the String as a name and prints a hello message. A better im-
plementationmight be to use Liferay DXP’s API to collect all the names of all the users in the system and
send each user a greeting notification, but the point here is to keep things simple. You should understand,
though, that there’s nothing stopping you from replacing this implementation by deploying another module
whose Greeting implementation’s @Component annotation specifies a higher service ranking property (e.g.,
"service.ranking:Integer=100").

This @Component annotation defines three options: immediate = true, an empty property list, and the ser-
vice class that it implements. The immediate = true settingmeans that thismodule should not be lazy-loaded;
the service registry loads it as soon as it’s deployed, instead of when it’s first used. Using the @Component
annotation declares the class as a Declarative Services component, which is the most straightforward way to
create components for OSGi modules. A component is a POJO that the runtime creates automatically when
the module starts.

To compile this module, the API it’s implementing must be on the classpath. If you’re using Gradle,
you’d add the greetings-api project to your dependencies { ... } block. In a LiferayWorkspace module, the
dependency looks like this:

compileOnly project (':modules:greeting-api')

That’s all there is to a provider module.

Consumer

The consumer or client uses the API that the API module defines and the provider module implements. DXP
has many different kinds of consumer modules. Portlets are the most common consumer module type, but
since they are a topic all by themselves, this example stays simple by creating an command for the Apache
Felix Gogo shell. Note that consumers can, of course, consumemany different APIs to provide functionality.

A consumer module has the same structure as the other module types:

• greeting-command

– src

* main

· java

· com/liferay/docs/greeting/command

· GreetingCommand.java

– bnd.bnd

– build.gradle

1495

Again, you have a build script, a bnd.bnd file, and a Java class. This module’s bnd.bnd file is almost the
same as the provider’s:

Bundle-Name: Greeting Command

Bundle-SymbolicName: com.liferay.docs.greeting.command

Bundle-Version: 1.0.0

There’s nothing new here: you declare the same things you declared for the provider.
Your Java class has a little bit more going on:

package com.liferay.docs.greeting.command;

import org.osgi.service.component.annotations.Component;

import org.osgi.service.component.annotations.Reference;

import com.liferay.docs.greeting.api.Greeting;

@Component(

immediate = true,

property = {

"osgi.command.scope=greet",

"osgi.command.function=greet"

},

service = Object.class

)

public class GreetingCommand {

public void greet(String name) {

Greeting greeting = _greeting;

greeting.greet(name);

}

@Reference

private Greeting _greeting;

}

The @Component annotation declares the same attributes, but specifies different properties and a different
service. As in Java, where every class is a subclass of java.lang.Object (even though you don’t need to specify
it by default), in Declarative Services, the runtime needs to know the type of class to register. Because you’re
not implementing any particular type, your parent class is java.lang.Object, so youmust specify that class
as the service. While Java doesn’t require you to specify Object as the parent when you’re creating a class that
doesn’t inherit anything, Declarative Services does.

The two properties define a command scope and a command function. All commands have a scope to
define their context, as it’s common formultiple APIs to have similar functions, such as copy or delete. These
properties specify you’re creating a command called greet in a scope called greet. While you get no points
for imagination, this sufficiently defines the command.

Since you specified osgi.command.function=greet in the @Component annotation, your class must have a
method named greet, and you do. But how does this greetmethod work? It obtains an instance of the
GreetingOSGi service and invokes its greetmethod, passing in the name parameter. How is an instance of the
GreetingOSGi service obtained? The GreetingCommand class declares a private service bean, _greeting of type
Greeting. This is the OSGi service type that the provider module registers. The @Reference annotation tells
the OSGi runtime to instantiate the service bean with a service from the service registry. The runtime binds
the Greeting object of type GreetingImpl to the private field _greeting. The greetmethod uses the _greeting
field value.

1496

Just like the provider, the consumer needs to have the API on its classpath in order to compile, but
at runtime, since you’ve declared all the dependencies appropriately, the container knows about these
dependencies, and provides them automatically.

If you were to deploy these modules to a DXP instance, you’d be able to attach to the Gogo Shell and
execute a command like this:

greet:greet "Captain\ Kirk"

The shell would then return your greeting:

Hello Captain Kirk!

Thismost basic of examples shouldmake it clear that module-based development is easy and straightfor-
ward. The API-Provider-Consumer contract fosters loose coupling,making your software easy to manage,
enhance, and support.

A Typical Liferay Application

If you look at a typical application from Liferay DXP’s source, you’ll generally find at least four modules:

• An API module
• A Service (provider) module
• A Test module
• AWeb (consumer) module

This is exactly what you’ll find for some smaller applications, like the Mentions application that lets users
mention other users with the @username nomenclature in comments, blogs, or other applications. Larger
applications like the Documents andMedia library have more modules. In the case of the Documents and
Media library, there are separate modules for different document storage back-ends. In the case of theWiki,
there are separate modules for differentWiki engines.

Encapsulating capability variations as modules facilitates extensibility. If you have a document storage
back-end that Liferay DXP doesn’t yet support, you can implement Liferay’s document storage API for your
solution by developing a module for it and thus extend Liferay’s Documents andMedia library. If there’s a
Wiki dialect that you like better than what Liferay’s wiki provides, you can write a module for it and extend
Liferay’s wiki.

Are you excited yet? Are you ready to start developing? Here are some resources for you to learn more.

Related Topics

Liferay IDE
LiferayWorkspace
Blade CLI
Maven
Developing aWeb Application
Planning a Plugin Upgrade to Liferay 7

1497

Chapter 115

OSGi Basics for Liferay Development

Liferay leverages the OSGi framework to provide a development environment for modular applications.
There are many OSGi best practices that Liferay DXP follows to provide an easy-to-develop-for platform.
Here, you’re introduced to some OSGi basics and common Liferay best practices for your bundle’s (module)
development.

115.1 Liferay Portal Classloader Hierarchy

All LiferayDXPapplications live in itsOSGi container. Portal is aweb applicationdeployedon your application
server. Portal’s Module Framework bundles (modules) live in the OSGi container and have class loaders. All
the classloaders from Java’s Bootstrap classloader to classloaders for bundle classes and JSPs are part of a
hierarchy.

This tutorial explains Liferay DXP’s classloader hierarchy and describes how it works in the following
contexts:

• Web application, such as Liferay Portal, deployed on the app server
• OSGi bundle deployed in the Module Framework

The following diagram shows Liferay DXP’s classloader hierarchy.
Here are the classloader descriptions:

• Bootstrap: The JRE’s classes (frompackages java.*) and Javaextensionclasses (from $JAVA_HOME/lib/ext).
Nomatter the context, loading all java.* classes is delegated to the Bootstrap classloader.

• System: Classes configured on the CLASSPATH and or passed in via the application server’s Java classpath
(-cp or -classpath) parameter.

• Common: Classes accessible globally to web applications on the application server.

• WebApplication: Classes in the application’s WEB-INF/classes folder and WEB-INF/lib/*.jar.

• Module Framework: Liferay DXP’s OSGi module framework classloader which is used to provide
controlled isolation for the module framework bundles.

• bundle: Classes from a bundle’s packages or from packages other bundles export.

1499

Figure 115.1: 0: Here is Liferay DXP’s classloader hierarchy.

1500

• JSP: A classloader that aggregates the following bundle and classloaders:

– Bundle that contains the JSPs’ classloader
– JSP servlet bundle’s classloader
– Javax Expression Language (EL) implementation bundle’s classloader
– Javax JSTL implementation bundle’s classloader

• Service Builder: Service Builder classes

The classloader used depends on context. Classloading rules vary between application servers. Class-
loading in web applications and OSGi bundles differs too. In all contexts, however, the Bootstrap classloader
loads classes from java.* packages.

Classloading from a web application perspective is up next.

Web Application Classloading Perspective

Application servers dictate where and in what order web applications, such as Liferay DXP, search for classes
and resources. Application servers such as Apache Tomcat enforce the following default search order:

1. Bootstrap classes
2. Web app’s WEB-INF/classes
3. web app’s WEB-INF/lib/*.jar
4. System classloader
5. Common classloader

First, the web application searches Bootstrap. If the class/resource isn’t there, the web application
searches its own classes and JARs. If the class/resource still isn’t found, it checks the System classloader and
then Common classloader. Except for the web application checking its own classes and JARs, it searches the
hierarchy in parent-first order.

Application servers such as OracleWebLogic and IBMWebSphere have additional classloaders. Theymay
also have a different classloader hierarchy and search order. Consult your application server’s documentation
for classloading details.

Other Classloading Perspectives

The Bundle Classloading Flow tutorial explains classloading from an OSGi bundle perspective.
Classloading for JSPs and Service Builder classes is similar to that of web applications and OSGi bundle

classes.
You now know Liferay DXP’s classloading hierarchy, understand it in context of web applications, and

have references to information on other classloading perspectives.

Related Topics

Bundle Classloading Flow

1501

https://tomcat.apache.org/tomcat-7.0-doc/class-loader-howto.html
https://docs.oracle.com/cd/E19501-01/819-3659/beadf/index.html

Figure 115.2: 0: This flow chart illustrates classloading in a bundle.

115.2 Bundle Classloading Flow

TheOSGi container searches several places for imported classes. It’s important to knowwhere it looks and
in what order. Liferay DXP’s classloading flow for OSGi bundles follows the OSGi Core specification. It’s
straightforward, but complex. The figure below illustrates the flow and this tutorial walks you through it.

Here is the algorithm for classloading in a bundle:

1. If the class is in a java.* package, delegate loading to the parent classloader. Otherwise, continue.

2. If the class is in the OSGi Framework’s boot delegation list, delegate loading to the parent classloader.
Otherwise, continue.

3. If the class is in one of the packages the bundle imports from a wired exporter, the exporting bundle’s
classloader loads it. A wired exporter is another bundle’s classloader that previously loaded the package.
If the class isn’t found, continue.

4. If the class is imported by one of the bundle’s required bundles, the required bundle’s classloader loads
it.

1502

5. If the class is in the bundle’s classpath (manifest header Bundle-ClassPath), the bundle’s classloader
loads it. Otherwise, continue.

6. If the class is in the bundle’s fragments classpath, the bundle’s classloader loads it.

7. If the class is in a package that’s dynamically imported using DynamicImport-Package and a wire is
established with the exporting bundle, the exporting bundle’s classloader loads it. Otherwise, the class
isn’t found.

Congratulations! Now you know how Liferay DXP finds and loads classes OSGi bundles use.

115.3 Resolving Third Party Library Package Dependencies

TheOSGi framework lets you build applications composed of multiple modules. Themodules must resolve
their Java package dependencies for the framework to assemble the modules into a working system. In a
perfect world, every Java library would be an OSGi bundle (module), but many libraries aren’t. So how do you
resolve the packages your OSGi module needs from non-OSGi third party libraries?

Here is the main workflow for resolving third party Java library packages:
Step 1 - Find an OSGimodule of the library: Projects, such as Eclipse Orbit and ServiceMix Bundles,

convert hundreds of traditional Java libraries to OSGimodules. Their artifacts are available at these locations:

• Eclipse Orbit
• ServiceMix Bundles

Deploying the module to Liferay’s OSGi framework lets you share it on the system. If you find amodule
for the library you need, deploy it. Then add a compileOnly (Gradle) or <scope>provided</scope> (Maven)
dependency for it in yourmodule. When you deploy yourmodule, the OSGi frameworkwires the dependency
module to your module. If there’s no OSGi module based on the Java library, go to Step 2.

Tip: Refrain from embedding library JARs that provide the same packages that Liferay DXP or existing
modules provide already.

Note: If you’re developing aWAR that requires a different version of a third-party package that Liferay
DXP or another module exports, specify that package in your Import-Package: list. If the package provider is
anOSGimodule, publish its exported packages by deploying thatmodule. Otherwise, rename the third-party
library (not an OSGi module) differently from the JAR that theWAB generator excludes and embed the JAR
in your project.

Step 2 -Resolve the Java packages privately in yourmodule: You can copy required library packages into
your OSGi module or embed themwholesale, if youmust. The rest of the tutorial shows you how to do this.

Note: Liferay’s Gradle plugin com.liferay.plugin automates several third party library configuration
steps. The plugin is applied to LiferayWorkspace Gradle module projects created in Liferay @ide@ or using
Liferay Blade CLI automatically.

To leverage the com.liferay.plugin plugin outside of LiferayWorkspace, add code like the listing below
to your Gradle project:

1503

https://www.eclipse.org/orbit/
https://servicemix.apache.org/developers/source/bundles-source.html
https://download.eclipse.org/tools/orbit/downloads/drops/R20170919201930/
https://mvnrepository.com/artifact/org.apache.servicemix.bundles

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins", version: "3.2.29"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.plugin"

If you use Gradle without the com.liferay.plugin plugin, you’ll have to embed the third party libraries
wholesale.

The recommended package resolution workflow is next.

Library Package Resolution Workflow

When you depend on a library JAR,much of the time you only need parts of it. Explicitly specifying only the
Java packages you need makes your bundle more modular. This also insulates modules that depend on your
module from unneeded packages.

Here’s a configuration workflow that minimizes dependencies and Java package imports:

1. Add the library as a compile-only dependency (e.g., compileOnly in Gradle).

2. Copy only the library packages you need by specifying them in a conditional package instruction
(Conditional-Package) in your bnd.bnd file. Here are some examples:

Conditional-Package: foo.common* adds packages your module uses such as foo.common, foo.common-
messages, foo.common-web to your module’s class path.

Conditional-Package: foo.bar.* adds packages your module uses such as foo.bar and all its sub-
packages (e.g., foo.bar.baz, foo.bar.biz, etc.) to your module’s class path.

Deploy your module. If a class your module needs or class its dependencies need isn’t found, go back
to main workflow Step 1 - Find anOSGimodule version of the library to resolve it.

Important: Resolving packages by using compile-only dependencies and conditional package instruc-
tions assures you use only the packages you need and avoids unnecessary transitive dependencies. It’s
recommended to use the steps up to this point, as much as possible, to resolve required packages.

3. If a library package you depend on requires non-class files (e.g., DLLs, descriptors) from the library,
then youmight need to embed the library wholesale in your module. This adds the entire library to
your module’s classpath.

Next you’ll learn how to embed libraries in your module.

Embedding Libraries in a Module

You can use Gradle, Maven, or Ivy to embed libraries in your module. Below are examples for adding Apache
Shiro using all three build utilities.

1504

https://shiro.apache.org
https://shiro.apache.org

Embedding a Library Using Gradle

Open your module’s build.gradle file and add the library as a dependency in the compileInclude configura-
tion:

dependencies {

compileInclude group: 'org.apache.shiro', name: 'shiro-core', version: '1.1.0'

}

The com.liferay.plugin plugin’s compileInclude configuration is transitive. The compileInclude config-
uration embeds the artifact and all its dependencies in a lib folder in the module’s JAR. Also, it adds the
artifact JARs to the module’s Bundle-ClassPathmanifest header.

Note: The compileInclude configuration does not download transitive optional dependencies. If your
module requires such artifacts, add them as you would another third party library.

Note: If the library you’ve added as a dependency in your build.gradle file has transitive dependencies,
you can reference them in an -includeresource: instruction by name without having to add them explicitly
to the list of dependencies. See how it’s used in the Maven section next.

Embedding a Library Using Maven or Ivy

Follow these steps:

1. Open your module’s build file and add the library as a dependency in the provided scope:

Maven:

<dependency>

<groupId>org.apache.shiro</groupId>

<artifactId>shiro-core</artifactId>

<version>1.1.0</version>

<scope>provided</scope>

</dependency>

Ant/Ivy:

<dependency conf="provided" name="shiro-core" org="org.apache.shiro" rev="1.1.0" />

2. Open your module’s bnd.bnd file and add the library to an -includeresource instruction:

-includeresource: META-INF/lib/shiro-core.jar=shiro-core-[0-9]*.jar;lib:=true

This instruction adds the shiro-core-[version].jar file as an included resource in the module’s META-
INF/lib folder. The META-INF/lib/shiro-core.jar is your module’s embedded library. The expression
[0-9]* helps the build tool match the library version to make available on the module’s classpath.
The lib:=true directive adds the embedded JAR to the module’s classpath via the Bundle-Classpath
manifest header.

Lastly, if after embedding a library you get unresolved imports when trying to deploy to Liferay, you may
need to blacklist some imports:

1505

https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html

Import-Package:\

!foo.bar.baz,\

*

The * character represents all packages that the module refers to explicitly. Bnd detects the referenced
packages.

Congratulations! Resolving all of your module’s package dependencies, especially those from traditional
Java libraries, is a quite an accomplishment.

Related Topics

Importing Packages
Exporting Packages
Creating Modules with Blade CLI

115.4 Overriding Reluctant Service References

When there’s an existing service that you want to customize or implement differently, you can override the
existing one. To do this, you create and deploy a new, higher-ranked service implementation. But howdo you
replace a component’s service that’s bound by a static and reluctant reference? Reactivating the component
would bind it to the new service but would render the component temporarily inactive. To replace the service
and keep the component active, you can change the component’s service reference to target your new service.

Here are the steps for overriding a component’s service reference:

1. Find the component and service details.
2. Create a custom service.
3. Configure the component to use the custom service.

Throughout the tutorial, example modules override-my-service-reference and overriding-service-

reference are used. You can download them and build them using Gradle (bundled with each module)
or you can apply the tutorial steps to configure your own customization. Executing gradlew jar in each
example module root generates the module JAR to the build/libs folder.

• override-my-service-reference (download): Thismodule’s portlet component OverrideMyServiceReferencePortlet’s
field _someService references a service of type SomeService. The reference’s policy is static and reluctant.
By default, it binds to an implementation called SomeServiceImpl.

• overriding-service-reference (download): Provides a custom SomeService implementation called
CustomServiceImpl. The module’s configuration file overrides OverrideMyServiceReferencePortlet’s
SomeService reference so that it binds to CustomServiceImpl.

The first step to overriding a service reference is finding the name of the component, service reference,
and service interface. If you already have them, you can skip the next section.

Find the Component and Service Reference

Youmust have the following information to create a custom service and configure the component to use it.

• Component name: Name of the component whose service to replace.
• Reference name: Name of the component field that references the service.

1506

https://portal.liferay.dev/documents/113763090/114000186/override-my-service-reference.zip
https://portal.liferay.dev/documents/113763090/114000186/overriding-service-reference.zip

Figure 115.3: Prior to overriding the service reference in example portlet module override-my-service-reference, the portlet’s message indicates it’s calling the default
service implementation override.my.service.reference.service.impl.SomeServiceImpl

• Service interface: Fully qualified name of the referenced service interface.

You can find the component using Liferay DXP’s Application Manager and find the service reference
information using Felix Gogo Shell.

Gogo Shell’s Service Component Runtime (SCR) commands help you inspect components. The Gogo
Shell command scr:info [componentName] lists the component’s attributes, including the services it uses.
Execute the command using Liferay Blade CLI or in Gogo Shell via telnet.

Here’s an example of executing the scr:info command in a Gogo Shell telnet session:

scr:info override.my.service.reference.OverrideMyServiceReference

The resulting SCR information includes the component’s service references.
For example, the following information describes the component’s reference to service SomeService:

...

Component Description:

Name: override.my.service.reference.portlet.OverrideMyServiceReferencePortlet

...

Reference: _someService

Interface Name: override.my.service.reference.service.api.SomeService

Cardinality: 1..1

Policy: static

Policy option: reluctant

Reference Scope: bundle

...

Copy the following values from the command results. You’ll use them in the custom service and service
reference configuration you create later.

• Component: The component name you passed to the scr:info command.
• Reference: The Reference value.
• Interface: The Interface Name in the Reference section.

Note that the example result confirm’s that the reference’s policy and policy option are static and
reluctant, respectively.

Here are the values for the example:

• Component name: override.my.service.reference.portlet.OverrideMyServiceReferencePortlet
• Reference name: _someService
• Service interface: override.my.service.reference.service.api.SomeService

The scr:info result’s component configuration describes the service component implementation bound
to the reference.

1507

...

Component Configuration:

ComponentId: 2399

State: active

SatisfiedReference: _someService

Target: null

Bound to: 6840

Properties:

component.id = 2400

component.name = override.my.service.reference.service.impl.SomeServiceImpl

objectClass = [override.my.service.reference.service.api.SomeService]

service.bundleid = 524

service.id = 6840

service.scope = bundle

...

Theexample’s reference is bound toa componentnamed override.my.service.reference.service.impl.SomeServiceImpl.
By the end of this tutorial, the reference will be reconfigured to bind to a custom service implementation.

Note: OSGi Configuration Adminmakes all Declarative Services components configurable, even if they
don’t explicitly declare anything about configuration. Each @Reference annotation in the source code has a
name property, either explicitly set in the annotation or implicitly derived from the name of the member on
which the annotation is used.

• If no reference name property is used and the @Reference is on a field, then the reference name is the
field name.

• If the @Reference is on amethod, then heuristics derive the reference name. Method name prefixes
such as set, add, and put are ignored. If @Reference is on amethod calledsetSearchEngine(SearchEngine
se), for example, then the reference name is SearchEngine.

Once you’ve found the referenced service component implementation, you can implement a replacement
for it. If you’ve already created one, you can skip this section.

Create Your Service

It’s time to create your own service implementation. Refer to the appropriate app, app suite, and Liferay
DXPmodule Javadoc for service interface details.

Create a module and implement your service in it. Use the @Component annotation to make the service a
Declarative Services component.

The example custom implementation for service SomeService looks like this:

@Component(

immediate = true,

service = SomeService.class

)

public class CustomServiceImpl implements SomeService {

@Override

public String doSomething() {

StringBuilder sb = new StringBuilder();

sb.append(this.getClass().getName());

sb.append(", which delegates to ");

sb.append(_defaultService.doSomething());

return sb.toString();

}

1508

@Reference (

unbind = "-",

target = "(component.name=override.my.service.reference.service.impl.SomeServiceImpl)"

)

private SomeService _defaultService;

}

The service component above refers to the default service so that it can delegate work to it
in its doSomething method. The reference targets the default service by its component name
override.my.service.reference.service.impl.SomeServiceImpl.

To register your service with the Liferay DXP’s OSGi runtime framework, deploy its module. To bind the
component reference to your custom service, youmust create and deploy instructions that configure the
component reference to target your custom service.

Configure the Component to Use Your Service

You’re ready to change the component’s service reference to target your service. Liferay DXP’s Configuration
Admin lets you use configuration files to swap in service references on the fly.

1. Create a configuration file named after the referencing component. Here’s the example component’s
configuration file name:

override.my.service.reference.portlet.OverrideMyServiceReferencePortlet.config

Note: Liferay DXP DE 7.0 Fix Pack 8 and later, and Liferay CE Portal 7.0

GA4 and later support the Apache Felix ConfigAdmin implementation of OSGi

Configuration Admin files. Felix ConfigAdmin uses the file suffix `.config`

and supports additional types, such as arrays and vectors. The syntax for

`.config` and `.cfg` files can be found

[here](https://sling.apache.org/documentation/bundles/configuration-installer-factory.html).

2. In the configuration file, add a reference target entry that filters on your custom service. Follow this
format for the entry:

[reference].target=[filter]

Replace [reference]with the name of the reference you’re overriding. Replace [filter]with service
properties that filter on your custom service.

Tip: You can use a `component.name` or `objectClass` reference to filter

on your custom implementation.

1509

A `.config` file reference target entry for the example looks like this:

_someService.target="(component.name\=overriding.service.reference.service.CustomServiceImpl)"

[The `.config` file syntax](https://sling.apache.org/documentation/bundles/configuration-installer-factory.html#configuration-files-

config)

requires surrounding the value in double quotes and escaping the value's

equals sign.

A `.cfg` file entry for the example looks like this:

_someService.target=(component.name=overriding.service.reference.service.CustomServiceImpl)

3. Optionally, you can add a cardinality.minimum entry to specify the number of services the reference
can use. Here’s the format:

[reference].cardinality.minimum=[int]

Here’s an example cardinality minimum:

_someService.cardinality.minimum=1

4. Deploy the configuration by copying the configurationfile into the folder [Liferay_Home]/osgi/configs.

Executing scr:info on your component shows that the custom service implementation is now bound to
the reference.

For example, executing scr:info override.my.service.reference.portlet.OverrideMyServiceReferencePortlet

reports the following information:

...

Component Description:

Name: override.my.service.reference.portlet.OverrideMyServiceReferencePortlet

...

Reference: _someService

Interface Name: override.my.service.reference.service.api.SomeService

Cardinality: 1..1

Policy: static

Policy option: reluctant

Reference Scope: bundle

...

Component Configuration:

ComponentId: 2399

State: active

SatisfiedReference: _someService

Target: (component.name=overriding.service.reference.CustomServiceImpl)

Bound to: 6841

Properties:

_defaultService.target = (component.name=overriding.service.reference.service.CustomServiceImpl)

component.id = 2398

component.name = overriding.service.reference.service.CustomServiceImpl

objectClass = [override.my.service.reference.service.api.SomeService]

service.bundleid = 525

service.id = 6841

service.scope = bundle

Component Configuration Properties:

_someService.target = (component.name=overriding.service.reference.service.CustomServiceImpl)

...

Theexample component’s _someService reference targets customservice component overriding.service.reference.service.CustomServiceImpl.
CustomServiceImpl references default service SomeServiceImpl to delegates work to it.

Liferay DXP processed the configuration file and injected the service reference, which in turn bound the
custom service to the referencing component!

1510

Figure 115.4: Because the example component’s service reference is overridden by the configuration file deployment, the portlet indicates it’s calling the custom service.

Related Topics

• Finding Extension Points

• Using Felix Gogo Shell

115.5 Using the WAB Generator

Developers creating applications for 7.0 can choose to create them as Java EE-style Web Application ARchive
(WAR) artifacts or as Java ARchive (JAR) OSGi bundle artifacts. Some plugin developers, however, don’t
have that flexibility. Portlets like Spring MVC and JSF must be packaged as WAR artifacts because their
frameworks are designed for Java EE.Therefore, they expect aWAR layout and require Java EE resources
such as the WEB-INF/web.xml descriptor.

Liferay provides a way for theseWAR-styled plugins to be deployed and treated like OSGi modules by
Liferay’s OSGi runtime. They can be converted toWABs.

7.0 supports the OSGiWeb Application Bundle (WAB) standard for deployment of Java EE styleWARs.
Simply put, a WAB is an archive that has a WAR layout and contains a META-INF/MANIFEST.MF file with the
Bundle-SymbolicName OSGi directive. A WAB is an OSGi bundle. Although the source of the project has a
WAR layout, the artifact filenamemay end with either the .jar or .war extension.

Liferay only supports the use ofWABs that have been auto-generated by theWAB Generator. TheWAB
Generator transforms a generalWAR-style plugin into aWAB during its deployment process. Sowhat exactly
does theWAB Generator do to aWAR file to transform it into aWAB?

TheWAB Generator detects packages referenced in a pluginWAR’s JSPs, descriptor files, and classes (in
WEB-INF/classes and embedded JARs). The descriptor files include web.xml, liferay-web.xml, portlet.xml,
liferay-portlet.xml, and liferay-hook.xml. TheWAB Generator verifies whether the detected packages are
in the plugin’s WEB-INF/classes folder or in an embedded JAR in the WEB-INF/lib folder. Packages that aren’t
found in either location are added to an Import-Package header in theWAB’s META-INF/MANIFEST.MF file.

To import a package that is only referenced in the following types of locations, you must add an Import-

PackageOSGi header to the plugin’s WEB-INF/liferay-plugin-package.properties file and add the package to
the header’s list of values. - Unrecognized descriptor file - Custom or unrecognized descriptor element or
attribute - Reflection code - Class loader code

Note: A known issue is preventing packages referenced in web.xml file listener-class elements from be-
ing detected and added toWAB META-INF/MANIFEST.MF file Import-Package headers. To import such packages,
add them to an Import-Package header in the plugin’s WEB-INF/liferay-plugin-package.properties file.

TheWAB folder structure andWAR folder structure differ. Consider the following folder structure of a
WAR-style portlet:

• my-war-portlet

– src

1511

https://issues.liferay.com/browse/LPS-76229

* main

· java
· webapp
· WEB-INF
· classes
· lib
· resources
· views
· faces-config.xml
· liferay-display.xml
· liferay-plugin-package.properties
· liferay-portlet.xml
· portlet.xml
· web.xml

When aWAR-style portlet is deployed to Liferay DXP and processed by theWAB Generator, the portlet’s
folder structure is transformed to something like this

• my-war-portlet-that-is-now-a-wab

– META-INF

* MANIFEST.MF

– WEB-INF

* classes

* lib

* resources

* views

* faces-config.xml

* liferay-display.xml

* liferay-plugin-package.properties

* liferay-portlet.xml

* portlet.xml

* web.xml

Themajor difference is the addition of the META-INF/MANIFEST.MF file. TheWAB Generator automatically
generates an OSGi-ready MANIFEST.MF file. If you want to affect the content of the manifest file, you can
place BND directives and OSGi headers directly into the liferay-plugin-package.properties file. A bnd.bnd

and/or a build-time plugin (e.g., bnd-maven-plugin) should not be provided for yourWAR plugin, because
the generatedWAB cannot make use of them.

Do you want to try this out for yourself? Follow the steps below to see theWAB Generator in action.

1. Create aWAR-style plugin that follows a similar structure to the one outlined above. You can download
an exampleWAR-style portlet here, for demonstration.

2. Open your Liferay DXP instance in a file explorer and add a portal-ext.properties file with the follow-
ing properties:

1512

https://portal.liferay.dev/documents/113763090/114000186/com.liferay.hello.user.jsf.portlet-1.0-SNAPSHOT.war

module.framework.web.generator.generated.wabs.store=true

module.framework.web.generator.generated.wabs.store.dir=${module.framework.base.dir}/wabs

These properties store your generatedWAB into your Liferay DXP instance’s osgi/wabs folder. You
can learn more about these properties in the Module FrameworkWeb Application Bundles properties
section. Restart Liferay DXP for these changes to be recognized.

3. Copy yourWAR plugin in your Liferay DXP instance’s deploy folder.

4. Navigate to your Liferay DXP instance’s osgi/wabs folder and inspect the generatedWAB.

Awesome! You’ve seen theWAB Generator in action!

Related Topics

Generating a JSF Application
Customizing the Product Menu
Configuration

115.6 Importing Packages

Your modules will often need to use Java classes from packages exported by other modules. When a module
is set up to import, the OSGi framework finds other registeredmodules that export the needed packages
and wires them to the importing module. At run time, the importing module gets the class from the wired
module that exports the class’s package.

For this to happen, a module must specify the Import-Package OSGi manifest header with a comma-
separated list of the Java packages it needs. For example, if a module needs classes from the javax.portlet
and com.liferay.portal.kernel.util packages, it must specify them like so:

Import-Package: javax.portlet,com.liferay.portal.kernel.util,*

The * character represents all packages that the module refers to explicitly. Bnd detects the referenced
packages.

Import packages must sometimes be specified manually, but not always. Conveniently, Liferay DXP
project templates and tools automatically detect the packages a module uses and add them to the package
imports in themodule JAR’s manifest. Let’s explore how package imports are specified in different scenarios.

Gradle and Maven module projects created using Blade CLI, Liferay’s Maven archetypes, or Liferay
@ide@ use bnd. On building such a project’s module JAR, bnd detects the packages the module uses and
generates a META-INF/MANIFEST.MF file whose Import-Package header specifies the packages.

Note: Liferay’s Maven module archetypes use the bnd-maven-plugin. Liferay’s Gradle module project
templates use a third-party Gradle plugin to invoke bnd.

For example, suppose you’re developing a Liferay module using Maven or Gradle. In most cases, you
specify your module’s dependencies in your pom.xml or build.gradle file. At build time, the Maven or Gradle
bundle plugin reads your pom.xml or build.gradle file and bnd adds the required Import-Package headers to
your module JAR’s META-INF/MANIFEST.MF.

Here’s an example dependencies section from amodule’s build.gradle file:

1513

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#Module%20Framework%20Web%20Application%20Bundles
https://bnd.bndtools.org/heads/import_package.html
http://bnd.bndtools.org/
https://github.com/TomDmitriev/gradle-bundle-plugin

dependencies {

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

And here’s the Import-Package header that’s generated in the module JAR’s META-INF/MANIFEST.MF file:

Import-Package: com.liferay.portal.kernel.portlet.bridges.mvc;version=

"[1.0,2)",com.liferay.portal.kernel.util;version="[7.0,8)",javax.nami

ng,javax.portlet;version="[2.0,3)",javax.servlet,javax.servlet.http,j

avax.sql

Note that your build file need only specify JAR file dependencies. bnd examines your module’s class path
to determine which packages from those JAR files contain classes your application uses and imports the
packages. The examination includes all classes found in the class path–even those from embedded third
party library JARs.

Regarding classes used by a traditional Liferay pluginWAR, Liferay’s WAB Generator detects their use in
theWAR’s JSPs, descriptor files, and classes (in WEB-INF/classes and embedded JARs). TheWAB Generator
searches the web.xml, liferay-web.xml, portlet.xml, liferay-portlet.xml, and liferay-hook.xml descriptor
files. It adds package imports for classes that are neither found in the plugin’s WEB-INF/classes folder nor in
embedded JARs.

TheWAB Generator and bnd don’t add package imports for classes referenced in these places:

• Unrecognized descriptor file
• Custom or unrecognized descriptor element or attribute
• Reflection code
• Class loader code

In such cases, you must manually determine these packages and specify an Import-PackageOSGi header
that includes these packages and the packages that Bnd detects automatically. The Import-Package header
belongs in the location appropriate to your project type:

Project type Import-Package header location

Module (uses bnd) [project]/bnd.bnd

Module (doesn’t use bnd) [module JAR]/META-INF/MANIFEST.MF

Traditional Liferay plugin
WAR

WEB-INF/liferay-plugin-package.properties

Here’s an example of adding a package called com.liferay.docs.foo to the list of referenced packages
that Bnd detects automatically:

Import-Package:\

com.liferay.docs.foo,\

*

Note:TheWABGenerator refrains from addingWAR project embedded third-party JARs to aWAB if
Liferay DXP already exports the JAR’s packages.

If yourWAR requires a different version of a third-party package that Liferay DXP exports, specify that
package in your Import-Package: list. Then if the package provider is an OSGi module, publish its exported

1514

packages by deploying the module. If the package provider is not an OSGi module, follow
the instructions for adding third-party libraries.

Please see the Import-Package header documentation for more information.
Congratulations! Now you can import all kinds of packages for your modules and plugins to use.

Related Topics

Configuring Dependencies
Resolving a Plugin’s Dependencies
Using theWAB Generator
Tooling

115.7 Exporting Packages

An OSGi module’s Java packages are private by default. To expose a package, you must explicitly export
it. This way you share only the classes you want to share. Exporting a package in your OSGi module JAR’s
manifest makes all the package’s classes available for other modules to import.

To export a package, add it to your module’s or plugin’s Export-PackageOSGi header. A header exporting
com.liferay.petra.io and com.liferay.petra.io.unsyncwould look like this:

Export-Package:\

com.liferay.petra.io,\

com.liferay.petra.io.unsync

The correct location for the header depends on your project’s type:

Project Type Export-Package header location

Module (uses bnd) [project]/bnd.bnd

Module (doesn’t use bnd) [module JAR]/META-INF/MANIFEST.MF

Traditional Liferay plugin
WAR

WEB-INF/liferay-plugin-package.properties

Module projects created using Blade CLI, Liferay’s Maven archetypes, or Liferay @ide@ use bnd. On
building such a project’s module JAR, bnd propagates the OSGi headers from the project’s bnd.bnd file to the
JAR’s META-INF/MANIFEST.MF.

In module projects that don’t use bnd, you must manually add package exports to an Export-Package

header in the module JAR’s META-INF/MANIFEST.MF.
In traditional Liferay pluginWAR projects, youmust add package exports to an Export-Package header

in the project’s liferay-plugin-package.properties. On copying the WAR into the [Liferay Home]/deploy

folder, theWABGenerator propagates theOSGi headers from theWAR’s liferay-plugin-package.properties
file to the META-INF/MANIFEST.MF file in the generatedWeb Application Bundle (WAB).

Note: bnd makes a module’s exported packages substitutable. That is, the OSGi framework can substitute
your module’s exported package with a compatible package of the same name, but potentially different
version, that’s exported from a different module. bnd enables this for your module by automatically making
your module import every package it exports. In this way, your module can work on its own, but can also
work in conjunction with modules that provide a different (compatible) version, or even the same version,

1515

https://bnd.bndtools.org/heads/import_package.html
http://bnd.bndtools.org/

of the package. A package from another module might provide better “wiring” opportunities with other
modules. Peter Kriens’ blog post provides more details on how substitutable exports works.

Important: Don’t export the same package from different JARs. Multiple exports of the same package
leads to “split package” issues, whose side affects differ from case to case.

Now you can share yourmodule’s or plugin’s terrific [EDITOR: or terrible!] packages with othermodules!

Related Topics

Using theWAB Generator
Tooling

115.8 Semantic Versioning

Semantic Versioning is a three tiered versioning system that increments version numbers based on the
type of API change introduced to a releasable software component. It’s a standard way of communicating
programmatic compatibility of a package or module for dependent consumers and API implementations. If
a package is programmatically (i.e., semantically) incompatible with a project, Bnd (used when building
modules) fails that project’s build immediately.

The semantic version format looks like this:

MAJOR.MINOR.MICRO

Certain events force each tier to be incremented:

• MAJOR: an incompatible, API-breaking change is made
• MINOR: a change that affects only providers of the API, or new backwards- compatible functionality is
added

• MICRO: a backwards-compatible bug fix is made

For more details on semantic versioning, see the official Semantic Versioning site and OSGi Alliance’s
Semantic Versioning technical whitepaper.

All of Liferay DXP’s modules use Semantic Versioning.
Following Semantic Versioning is especially important because Liferay DXP is a modular platform con-

taining hundreds of independent OSGi modules. With many independent modules containing a slew of
dependencies, releasing new package versions can quickly become terrifying. With this complex intertwined
system of dependencies, youmust meticulously manage your own project’s API versions to ensure compati-
bility for those who leverage it. With Semantic Versioning’s straightforward system and the help of Liferay
tooling,managing your project’s versions is easy.

Baselining Your Project

Following Semantic Versioning manually seems deceptively easy. There’s a sad history of good-intentioned
developers updating their projects’ semantic versions manually, only to find out later they made a mistake.
The truth is, it’s hard to anticipate the ramifications of a simple update. To avoid this, you can baseline your
project after it has been updated. Baselining verifies that the Semantic Versioning rules are obeyed by your
project. This can catch many obvious API changes that are not so obvious to humans. Care must always be

1516

http://blog.osgi.org/2007/04/importance-of-exporting-nd-importing.html
https://semver.org
http://bnd.bndtools.org
https://semver.org/
http://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf
http://www.osgi.org/wp-content/uploads/SemanticVersioning1.pdf

taken, however, when making any kind of code change because this tool is not smart enough to identify
compatibility changes not represented in the signatures of Java classes or interfaces, or in API use changes
(e.g., assumptions about method call order, or changes to input and/or output encoding). Baseline, as the
name implies, does give you a certain measure of baseline comfort that a large class of compatibility issues
won’t sneak past you.

You can use Liferay’s Baseline Gradle plugin to provide baselining capabilities. Add it to your Gradle
build configuration and execute the following command:

./gradlew baseline

See the Baseline Gradle Plugin article for configuration details. This plugin is not provided in Liferay
Workspace by default.

When you run the baseline command, the plugin baselines your newmodule against the latest released
non-snapshot module (i.e., the baseline). That is, it compares the public exported API of your newmodule
with the baseline. If there are any changes, it uses the OSGi Semantic Versioning rules to calculate the
minimum new version. If your newmodule has a lower version, errors are thrown.

With baselining, your project’s Semantic Versioning is as accurate as its API expresses.

Managing Artifact and Dependency Versions

There are two ways to track your project’s artifact and dependency versions with Semantic Versioning:

• Range of versions
• Exact version (one-to-one)

You should track a range of versions if you intend to build your project for multiple versions of Liferay
DXP andmaintain maximum compatibility. In other words, if several versions of a package work for an app,
you can configure the app to use any of them. What’s more, Bnd automatically determines the semantically
compatible range of each package a module depends on and records the range to the module’s manifest.

For help with version range syntax, see the OSGi Specifications.
A version range for imported packages in an OSGi bundle’s bnd.bnd looks like this:

Import-Package: com.liferay.docs.test; version="[1.0.0,2.0.0)"

Popular build tools also follow this syntax. In Gradle, a version range for a dependency looks like this:

compile group: "com.liferay.portal", name: "com.liferay.portal.test", version: "[1.0.0,2.0.0)"

In Maven, it looks like this:

<groupId>com.liferay.portal</groupId>

<artifactId>com.liferay.portal.test</artifactId>

<version>[1.0.0,2.0.0)</version>

Specifying the latest release version can also be considered a range of versions with no upper limit.
For example, in Gradle, it’s specified as version: "latest.release". This can be done in Maven 2.x with the
usage of the version marker RELEASE.This is not possible if you’re using Maven 3.x. See Gradle andMaven’s
respective docs for more information.

Tracking a range of versions comes with a price. It’s hard to reproduce old builds when you’re debugging
an issue. It also comes with the risk of differing behaviors depending on the version used. Also, relying on
the latest release could break compatibility with your project if a major change is introduced. You should

1517

https://osgi.org/specification/osgi.core/7.0.0/framework.module.html#i3189032
https://gradle.org/docs
http://maven.apache.org/guides/

proceed with caution when specifying a range of versions and ensure your project is tested on all included
versions.

Tracking a dependency’s exact version is much safer, but is less flexible. This might limit you to a specific
version of Liferay DXP. You would also be locked in to APIs that only exist for that specific version. This
means your module is much easier to test and has less chance for unexpected failures.

Note:When specifying package versions in your bnd.bnd file, exact versions are typically specified like
this: version="1.1.2". However, this syntax is technically a range; it is interpreted as [1.1.2, ∞). Therefore, if a
higher version of the package is available, it’s used instead of the version you specified. For these cases, it
may be better to specify a version range for compatible versions that have been tested. If you want to specify
a true exact match, the syntax is like this: [1.1.2]. See the Version Range section in the OSGi specifications
for more info.

Gradle andMaven use exact versions when only one version is specified.

You now know the pros and cons for tracking dependencies as a range and as an exact match.

115.9 Service Trackers
Now that Liferay is promoting more modular plugins deployed into an OSGi runtime, you have to consider
how your own code, living in its ownmodule, can rely on services in other modules for functionality. You
must account for the possibility of service implementations being swapped out or removed entirely if your
module is to survive and thrive in an OSGi environment. It’s easy for 7.0 developers who need to call services
from their @Component classes. They just use another Declarative Services (DS) annotation, @Reference, to get
a service reference. The component activates when the referenced service is available.

If you’re able to use DS and leverage the @Component and @Reference annotations, you should. DS handles
much of the complexity of handling service dynamism for you transparently.

If you can’t use DS to create a Component, keep reading to learn how to implement a Service Tracker to
look up services in the service registry.

Note: When using Service Trackers in your WAR-style project, you must configure the required
org.osgi.core dependency carefully in your build file (e.g., build.gradle, pom.xml, etc.) to avoid errors.
Since it’s included in Liferay DXP by default, it must be configured as provided. See theThird Party Packages
Portal Exports tutorial for more information.

What scenarios might require using a service tracker? Keep in mind we’re focusing on scenarios where
DS can’t be used. This typically involves a non-native (to OSGi) Dependency Injection framework.

• Calling OSGi services from a SpringMVC portlet
• Calling OSGi services from a JSF portlet
• Calling OSGi services from aWAR-packaged portlet that’s been upgraded to run on 7.0, but not fully
modularized andmade into an OSGi module

Note: The static utility classes (e.g., UserLocalServiceUtil) that were useful in Liferay Portal 6.2 (and
earlier) exist for compatibility but should not be called, if possible. Static utility classes cannot account for
the OSGi runtime’s dynamic environment. Using a static class, for example, youmight attempt calling a
service that has stopped or hasn’t been deployed or started–this could cause unrecoverable runtime errors.
Service Tracker, however, helps youmake OSGi-friendly service calls.

1518

https://osgi.org/specification/osgi.core/7.0.0/framework.module.html#i3189032
https://osgi.org/specification/osgi.cmpn/7.0.0/service.component.html

Figure 115.5: Service implementations that are registered in the OSGi service registry can be accessed using Service Trackers.

Using a Service Tracker, your non-OSGi application can access any service registered in theOSGi runtime,
including your own Service Builder services and the services published by Liferay’s modules (like the popular
UserLocalService).

Implementing a Service Tracker

Although you don’t have the luxury of using DS to manage your service dependencies, you can call services
from the service registry with a little bit of code.

To implement a service tracker you can do this:

import org.osgi.framework.Bundle;

import org.osgi.framework.FrameworkUtil;

import org.osgi.util.tracker.ServiceTracker;

Bundle bundle = FrameworkUtil.getBundle(this.getClass());

BundleContext bundleContext = bundle.getBundleContext();

ServiceTracker<SomeService, SomeService> serviceTracker =

new ServiceTracker(bundleContext, SomeService.class, null);

serviceTracker.open();

SomeService someService = serviceTracker.waitForService(500);

To simplify your code, you can create a class that extends org.osgi.util.tracker.ServiceTracker.

public class SomeServiceTracker

extends ServiceTracker<SomeService, SomeService> {

public SomeServiceTracker(Object host) {

super(

FrameworkUtil.getBundle(host.getClass()).getBundleContext(),

SomeService.class, null);

}

}

1519

From the initialization part of your logic that uses the service, call your service tracker constructor. The
Object host parameter is used to obtain your own bundle context and in order to give accurate results must
be an object from your own bundle.

ServiceTracker<SomeService, SomeService> someServiceTracker =

new SomeServiceTracker(this);

Remember to open the service tracker before using it, typically as early as you can.

someServiceTracker.open();

Themost basic usage of a Service Tracker is to interrogate the service’s state. In your program logic, for
example, check whether the service is null before using it:

SomeService someService = someServiceTracker.getService();

if (someService == null) {

_log.warn("The required service 'SomeService' is not available.");

}

else {

someService.doSomethingCool();

}

Service Trackers have several other utility functions for introspecting tracked services.
Later when your application is being destroyed or undeployed, close the service tracker.

someServiceTracker.close();

Implementing a Callback Handler for Services

If there’s a strong possibility the service might not be available, or if you need to track multiple services, the
Service Tracker API provides a callback mechanismwhich operates on service events. To use this, override
ServiceTracker’s addingService and removedServicemethods. Their ServiceReference parameter references
an active service object.

Here’s an example ServiceTracker implementation from the OSGi Alliance’s OSGi Core Release 7 specifi-
cation:

new ServiceTracker<HttpService, MyServlet>(context, HttpService.class, null) {

public MyServlet addingService(ServiceReference<HttpService> reference) {

HttpService httpService = context.getService(reference);

MyServlet myServlet = new MyServlet(httpService);

return myServlet;

}

public void removedService(

ServiceReference<HttpService> reference, MyServlet myServlet) {

myServlet.close();

context.ungetService(reference);

}

}

When the HttpService is added to the OSGi registry, this ServiceTracker creates a new wrapper class,
MyServlet, which uses the newly added service. When the service is removed from the registry, the
removedServicemethod cleans up related resources.

Asanalternative todirectly overloading ServiceTrackermethods, create a org.osgi.util.tracker.ServiceTrackerCustomizer:

1520

https://osgi.org/specification/osgi.core/7.0.0/util.tracker.html#d0e51991
https://osgi.org/specification/osgi.core/7.0.0/util.tracker.html#d0e51991

class MyServiceTrackerCustomizer

implements ServiceTrackerCustomizer<SomeService, MyWrapper> {

private final BundleContext bundleContext;

MyServiceTrackerCustomizer(BundleContext bundleContext) {

this.bundleContext = bundleContext;

}

@Override

public MyWrapper addedService(

ServiceReference<SomeService> serviceReference) {

// Determine if the service is one that's interesting to you.

// The return type of this method is the `tracked` type. Its type

// is what is returned from `getService*` methods; useful for wrapping

// the service with your own type (e.g., MyWrapper).

if (isInteresting(serviceReference)) {

MyWrapper myWrapper = new MyWrapper(

serviceReference, bundleContext.getService());

// trigger the logic that requires the available service(s)

triggerServiceAddedLogic(myWrapper);

return myWrapper;

}

// If the return is null, the tracker is effectively ignoring any further

// events for the service reference

return null;

}

@Override

public void modifiedService(

ServiceReference<SomeService> serviceReference, MyWrapper myWrapper) {

// handle the modified service

}

@Override

public void removedService(

ServiceReference<SomeService> serviceReference, MyWrapper myWrapper) {

// finally, trigger logic when the service is going away

triggerServiceRemovedLogic(myWrapper);

}

}

Register the ServiceTrackerCustomizer by passing it as the ServiceTracker constructor’s third parameter.

ServiceTrackerCustomizer<SomeService, MyWrapper> serviceTrackerCustomizer =

new MyServiceTrackerCustomizer();

ServiceTracker<SomeService, MyWrapper> serviceTracker =

new ServiceTracker<>(

bundleContext, SomeService.class, serviceTrackerCustomizer);

There’s a little boilerplate code you need to produce, but now you can look up services in the service
registry, even if your plugins can’t take advantage of the Declarative Services component model.

115.10 Waiting on Lifecycle Events
Liferay registers lifecycle events like portal and database initialization into the OSGi service registry. Your
OSGi Component or non-component class can listen for these events by way of their service registrations.

1521

The ModuleServiceLifecycle interface defines these names for the lifecycle event services:

• DATABASE_INITIALIZED
• PORTAL_INITIALIZED
• SPRING_INITIALIZED

Here you’ll learn how to wait on lifecycle event services to act on them from within a component or
non-component class.

Taking action from a component

Declarative Services (DS) facilitates waiting for OSGi services and acting on them once they’re available.
Here’s a componentwhose doSomethingmethod is invokedonce the ModuleServiceLifecycle.PORTAL_INITIALIZED

lifecycle event service and other services are available.

@Component

public class MyXyz implements XyzApi {

// Plain old OSGi service

@Reference

private SomeOsgiService _someOsgiService;

// Service Builder generated service

@Reference

private DDMStructureLocalService _ddmStructureLocalService;

// Liferay lifecycle service

@Reference(target = ModuleServiceLifecycle.PORTAL_INITIALIZED)

private ModuleServiceLifecycle _portalInitialized;

@Activate

public void doSomething() {

// `@Activate` method is only executed once all of

// `_someOsgiService`,

// `_ddmStructureLocalService` and

// `_portalInitialized`

// are set.

}

}

Here’s how to act on services in your component:

1. For each lifecycle event service and OSGi service your component uses, add a field of that service type
and add an @Reference annotation to that field. The OSGi framework binds the services to your fields.
This field, for example, binds to a standard OSGi service.

@Reference

SomeOsgiService _someOsgiService;

2. To bind to a particular lifecycle event service, target its name as the ModuleServiceLifecycle interface
defines. This field, for example, targets database initialization.

@Reference(target = ModuleServiceLifecycle.DATABASE_INITIALIZED)

ModuleServiceLifecycle _dataInitialized;

3. Create a method that’s triggered on the event(s) and add the @Activate annotation to that method. It’s
invoked when all the service objects are bound to the component’s fields.

Your componentfires (via its @Activatemethod) after all its service dependencies resolve. DS components
are the easiest way to act on lifecycle event services.

1522

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/module/framework/ModuleServiceLifecycle.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/constant-values.html#com.liferay.portal.kernel.module.framework.ModuleServiceLifecycle.DATABASE_INITIALIZED
@platform-ref@/7.0-latest/javadocs/portal-kernel/constant-values.html#com.liferay.portal.kernel.module.framework.ModuleServiceLifecycle.PORTAL_INITIALIZED
@platform-ref@/7.0-latest/javadocs/portal-kernel/constant-values.html#com.liferay.portal.kernel.module.framework.ModuleServiceLifecycle.SPRING_INITIALIZED
https://osgi.org/specification/osgi.cmpn/7.0.0/service.component.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/module/framework/ModuleServiceLifecycle.html

Taking action from a non-component class

Classes that aren’tDScomponents canusea org.osgi.util.tracker.ServiceTrackeror org.osgi.util.tracker.ServiceTrackerCustomizer
as a service callback handler for the lifecycle event. If you depend on multiple services, add logic to your
ServiceTracker or ServiceTrackerCustomizer to coordinate taking action when all the services are available.

To target a lifecycle event service, create a service tracker that filters on that service. Use
org.osgi.framework.FrameworkUtil to create an org.osgi.framework.Filter that specifies the service.
Then pass that filter as a parameter to the service tracker constructor. For example, this service tracker
filters on the lifecycle service ModuleServiceLifecycle.PORTAL_INITIALIZED.

import org.osgi.framework.Filter;

import org.osgi.framework.FrameworkUtil;

Filter filter = FrameworkUtil.createFilter(

String.format(

"(&(objectClass=%s)%s)",

ModuleServiceLifecycle.class.getName(),

ModuleServiceLifecycle.PORTAL_INITIALIZED));

new ServiceTracker<>(bundleContext, filter, null);

Acting on lifecycle event services in this way requires service callback handling and some boilerplate
code. Using DS components is easier andmore elegant, but at least service trackers provide a way to work
with lifecycle events outside of DS components.

Related Topics

Service Trackers

1523

Chapter 116

Troubleshooting FAQ

When coding on any platform, you can sometimes run into issues that have no clear resolution. This can be
particularly frustrating. If you have issues building, deploying, or running modules, you want to resolve
them fast. These frequently asked questions and answers help you troubleshoot problems that arise based
on the underlying OSGi platform, and then correct them.

Here are the troubleshooting sections:

• Modules
• Services and Components

Click a question to view the answer.

116.1 Modules

How can I configure dependencies on Liferay Portal artifacts?

<p>See Configuring Dependencies. </p>

What are optional package imports and how can I specify them?

<p>When developing Liferay Portal modules, you can declare optional package imports. An optional package import is one your module can use if it's available, but can still function without it. <a href="/docs/7-

0/tutorials/-/knowledge_base/t/declaring-optional-import-package-requirements">Specifying optional package imports is straightforward. </p>

How can I connect to a JNDI data source frommymodule?

<p>Connecting to an application server's JNDI data sources from Liferay Portal's OSGi environment is almost the same as connecting to them from the Java EE environment. In an OSGi environment, the only difference is that you must <a href="/docs/7-

0/tutorials/-/knowledge_base/t/connecting-to-data-sources-using-jndi">use Liferay Portal's class loader to load the application server's JNDI classes. </p>

How can I make sure mymodule works?

<p>The Testing tutorials demonstrate several ways to test Liferay Portal modules:</p>

 Unit testing Integration testing Functional testing

Mymodule has an unresolved requirement. What can I do?

1525

<p>If one of your bundles imports a package that no other bundle in the Liferay OSGi runtime exports, Liferay Portal reports an unresolved requirement:</p>

<pre><code>! could not resolve the bundles: ...

Unresolved requirement: Import-Package: ...

...

Unresolved requirement: Require-Capability ...

</code></pre>

<p>To satisfy the requirement, find a module that provides the capability, add it to your build file's dependencies, and deploy it. </p>

An IllegalContextNameException reports that my bundle’s context name does not follow Bundle-
SymbolicName syntax. How can I fix the context name?

<p>Adjust the <code>Bundle-SymbolicName</code> to adhere to the syntax. </p>

Why aren’t mymodule’s JavaScript and CSS changes showing?

<p>Incorrect component properties or stale browser cache can prevent JavaScript and CSS changes from showing. </p>

Why aren’t my fragment’s JSP overrides showing?

<p>Make sure your <code>Fragment-

Host</code>'s bundle version is compatible with the host's bundle version. </p>

The application server and database started, but Liferay DXP failed to connect to the database. What
happened and how can I fix this?

<p>Liferay Portal initialization can fail while attempting to connect to a database server that isn't ready. <a href="/docs/7-

0/tutorials/-/knowledge_base/t/portal-failed-to-initialize-because-the-database-wasnt-ready">Configuring Liferay Portal startup to retry JDBC connections facilitates connecting Liferay Portal to databases. </p>

How can I adjust mymodule’s logging?

<p>See Adjusting Module Logging. </p>

How can I implement logging in mymodule or plugin?

<p>Use Simple Logging Facade for Java (SLF4J) to log messages.</p>

Why did the entity sort order change when I migrated to a new database type?

<p>Your new database uses a different default query result order--

you should be able to configure a different order.</p>

116.2 Services and Components
How can I detect unresolved OSGi components?

<p>Liferay Portal module components that use Service Builder use Dependency Manager (DM) and most other Liferay Portal module components use Declarative Services (DS). <a href="/docs/7-

0/tutorials/-/knowledge_base/t/detecting-unresolved-osgi-components">Gogo shell commands and tools help you find and inspect unsatisfied component references for DM and DS components. </p>

What is the safest way to call non-OSGi code that uses OSGi services?

<p>See Calling Non-OSGi Code that Uses OSGi Services. </p>

How can I use files to configure components?

<p>See Using Files to Configure Module Components. </p>

How can I use OSGi services from Ext Plugins?

<p>The registry API lets Ext Plugins use OSGi services . </p>

1526

116.3 Resolving Bundle Requirements
If one of your bundles imports a package that no other bundle in the Liferay OSGi runtime exports, you get a
bundle exception. Here’s an example exception:

! could not resolve the bundles: [com.liferay.messaging.client.command-1.0.0.201707261701 org.osgi.framework.BundleException: Could not resolve module: com.liferay.messaging.client.command [1]

Unresolved requirement: Import-Package: com.liferay.messaging.client.api; version="[1.0.0,2.0.0)"

-> Export-Package: com.liferay.messaging.client.api; bundle-symbolic-name="com.liferay.messaging.client.provider"; bundle-version="1.0.0.201707261701"; version="1.0.0"; uses:="org.osgi.framework"

com.liferay.messaging.client.provider [2]

Unresolved requirement: Import-Package: com.liferay.messaging; version="[1.0.0,2.0.0)"

-> Export-Package: com.liferay.messaging; bundle-symbolic-name="com.liferay.messaging.api"; bundle-version="1.0.0"; version="1.0.0"; uses:="com.liferay.petra.concurrent"

com.liferay.messaging.api [12]

Unresolved requirement: Import-Package: com.liferay.petra.io; version="[1.0.0,2.0.0)"

-> Export-Package: com.liferay.petra.io; bundle-symbolic-name="com.liferay.petra.io"; bundle-version="1.0.0"; version="1.0.0"

com.liferay.petra.io [16]

Unresolved requirement: Require-Capability osgi.extender; filter:="(osgi.extender=osgi.serviceloader.processor)"

The first part of the message states could not resolve the bundles. The rest of the message shows a string of
unresolved requirements. Liferay’s OSGi Runtime could not resolve one of the bundle’s transitive require-
ments.

The bundle exception message follows this general pattern:

• Module A has an unresolved requirement (package or capability) aaa.bbb.
• Module B provides aaa.bbb but has an unresolved requirement ccc.ddd.
• Module C provides ccc.ddd but has an unresolved requirement eee.fff.
• etc.
• Module Z provides www.xxx but has an unresolved requirement yyy.zzz.

The pattern stops at the final requirement no module provides. The last module’s dependencies are key
to resolving the bundle exception. There are two possible causes:

1. A dependency that satisfies the final requirement might be missing from the build file.

2. A dependency that satisfies the final requirement might not be deployed.

Both cases require deploying a bundle that provides the missing requirement.
The example bundle exception concludes that module com.liferay.petra.io requires capability

osgi.extender; filter:="(osgi.extender=osgi.serviceloader.processor)". To resolve the requirement,
make sure all of com.liferay.petra.io’s dependencies are deployed.

First, note the module’s dependencies. Here is the dependencies section of the com.liferay.petra.io
module’s build.gradle file.

dependencies {

provided group: "com.liferay", name: "com.liferay.petra.concurrent", version: "1.0.0"

provided group: "com.liferay", name: "com.liferay.petra.memory", version: "1.0.0"

provided group: "org.apache.aries.spifly", name: "org.apache.aries.spifly.dynamic.bundle", version: "1.0.8"

provided group: "org.slf4j", name: "slf4j-api", version: "1.7.2"

testCompile group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "default"

}

Then use Felix Gogo Shell’s lb command to verify the dependencies in Liferay’s OSGi Runtime:

lb

START LEVEL 1

ID|State |Level|Name

0|Active | 0|OSGi System Bundle (3.10.100.v20150529-1857)|3.10.100.v20150529-1857

1|Active | 1|com.liferay.messaging.client.command (1.0.0.201707261923)|1.0.0.201707261923

1527

2|Active | 1|com.liferay.messaging.client.provider (1.0.0.201707261927)|1.0.0.201707261927

3|Active | 1|Apache Felix Configuration Admin Service (1.8.8)|1.8.8

4|Active | 1|Apache Felix Log Service (1.0.1)|1.0.1

5|Active | 1|Apache Felix Declarative Services (2.0.2)|2.0.2

6|Active | 1|Meta Type (1.4.100.v20150408-1437)|1.4.100.v20150408-1437

7|Active | 1|org.osgi:org.osgi.service.metatype (1.3.0.201505202024)|1.3.0.201505202024

8|Active | 1|Apache Felix Gogo Command (0.16.0)|0.16.0

9|Active | 1|Apache Felix Gogo Runtime (0.16.2)|0.16.2

10|Active | 1|Apache Felix Gogo Runtime (1.0.0)|1.0.0

...

Notice the dependency module org.apache.aries.spifly.dynamic.bundle is missing from the runtime
bundle list. Examining the module’s MANIFEST.MF file shows it provides the requirement capability
osgi.extender; filter:="(osgi.extender=osgi.serviceloader.processor)".

Provide-Capability: osgi.extender;osgi.extender="osgi.serviceloader.regi

strar";version:Version="1.0",osgi.extender;osgi.extender="osgi.servicel

oader.processor";version:Version="1.0"

Deploying this missing bundle org.apache.aries.spifly.dynamic.bundle resolves the example’s bundle
exception.

You can follow these similar steps to resolve your bundle exceptions.

Note: Bndtools’s Resolve button can resolve bundle dependencies automatically. You specify the bun-
dles your application requires and Bndtools adds transitive dependencies from your configured artifact
repository.

Related Topics

Configuring Dependencies
AddingThird Party Libraries to a Module
Felix Gogo Shell
Resolving a Plugins’s Dependencies

116.4 Resolving Bundle-SymbolicName Syntax Issues
An OSGi bundle’s Bundle-SymbolicName and Bundle-Versionmanifest headers uniquely identify it. You can
specify a bundle’s Bundle-SymbolicName in these ways:

1. Bundle-SymbolicName header in a bundle’s (module’s) bnd.bnd file.

2. Bundle-SymbolicName header in a pluginWAR’s liferay-plugin-package.properties file.

3. PluginWAR file name, if theWAR’s liferay-plugin-package.properties has no Bundle-SymbolicName
header.

For pluginWARs, specifying the Bundle-SymbolicName in the liferay-plugin-package.properties file is
preferred.

Important: Bundle-SymbolicName values must not contain spaces. On bundle deployment, Liferay’s OSGi
Runtime framework throws an IllegalContextNameException if its Bundle-SymbolicName has a space.

For example, if you deploy a pluginWAR that has no Bundle-SymbolicName header in its liferay-plugin-
package.properties, the WAB Generator uses the WAR’s name as the WAB’s Bundle-SymbolicName. If the

1528

WAR’s name has a space in it (e.g., space-program-theme v1.war) an IllegalContextNameException occurs on
deployment.

org.apache.catalina.core.ApplicationContext.log The context name 'space-program-theme v1' does not follow Bundle-SymbolicName syntax.

org.eclipse.equinox.http.servlet.internal.error.IllegalContextNameException: The context name 'space-program-theme v1' does not follow Bundle-

SymbolicName syntax.

To avoid using spaces and to follow naming best practices, you can use a reverse-domain name in your
Bundle-SymbolicName.

Here’s an example domain name and reverse domain name:
Module domain: troubleshooting.liferay.com
Module reverse-domain: com.liferay.troubleshooting
However you set your a Bundle-SymbolicName, refrain from using spaces.

Related Topics

Using theWAB Generator

116.5 Resolving ClassNotFoundException and NoClassDefFoundEr-
ror in OSGi Bundles

Understanding a ClassNotFoundException or NoClassDefFoundError in non-OSGi environments is straight-
forward.

• ClassNotFoundException: thrown when looking up a class that isn’t on the classpath or using an invalid
name to look up a class that isn’t on the runtime classpath.

• NoClassDefFoundError: occurs when a compiled class references another class that isn’t on the runtime
classpath.

In OSGi environments, however, there are additional cases where a ClassNotFoundException or
NoClassDefFoundError can occur. Here are four:

1. Themissing class belongs to a module dependency that’s an OSGi module.
2. Themissing class belongs to a module dependency that’s not an OSGi module.
3. Themissing class belongs to a global library, either at the Liferay DXP webapp scope or the application
server scope.

4. Themissing class belongs to a Java runtime package.

This tutorial explains how to handle each case.

Case 1: The Missing Class Belongs to an OSGi Module

In this case, there are two possible causes:

1. Themodule doesn’t import the class’s package: For a module (orWAB) to consume another module’s
exported class, the consumingmodulemust import the exported package that contains the class. To do
this, you add an Import-Package header in the consumingmodule’s bnd.bnd file. If the consumingmod-
ule tries to access the class without importing it, a ClassNotFoundException or NoClassDefFoundError
occurs.

1529

In the consumingmodule,make sure you import the correct package. First check the package name.
If the package import is correct but you still get the exception or error, the class might no longer exist
in the package.

2. The class no longer exists in the imported package: In OSGi runtime environments, modules can
change and come and go. If you reference another module’s class that its developer removed, a
NoClassDefFoundError or ClassNotFoundException occurs. Semantic Versioning guards against this
scenario: removing a class from an exported package constitutes a newmajor version for that package.
Neglecting to increment the package’s major version breaks dependent modules.

For example, say a module that consumes the class com.foo.Bar specifies the package import
com.foo;version=[1.0.0, 2.0.0). The module uses com.foo versions from 1.0.0 up to (but not
including) 2.0.0. The first part of the version number (the 1 in 1.0.0) represents themajor version.
The consumingmodule doesn’t expect anymajor breaking changes, like a class removal. Removing
com.foo.Bar from com.foo without incrementing the package to a new major version (e.g., 2.0.0)
causes a ClassNotFoundException or NoClassDefFoundErrorwhen other modules look up or reference
that class.

You have these options since the class no longer exists in the package:

• Adapt to the newAPI. To learn how to do this, read the package’s/module’s Javadoc, release notes,
and or formal documentation. You can also ask the author, or search forums.

• Revert to the module version you used previously. Deployed module versions reside in
[Liferay_Home]/osgi/. For details, see Backing up Liferay Installations.

Do what you think is best to get your module working properly.

Nowyouknowhowto resolve commonsituations involving ClassNotFoundExceptionor NoClassDefFoundError.
For additional information on NoClassDefFoundError, see OSGi Enroute’s article What is NoClassDef-
FoundError?.

Case 2: The Missing Class Doesn't Belong to an OSGi Module

In this case, you have two options:

1. Convert the dependency into an OSGi module so it can export the missing class. Converting a non-
OSGi JAR file dependency into an OSGi module that you can deploy alongside your application is the
ideal solution, so it should be your first choice.

2. Embed the dependency in your module by embedding the dependency JAR file’s packages as private
packages in yourmodule. If youwant to embed a non-OSGi JAR file in your application, see the tutorial
AddingThird Party Libraries to a Module.

Case 3: The Missing Class Belongs to a Global Library

In this case, you can configure Liferay DXP so the OSGi systemmodule exports the missing class’s package.
Then your module can import it. You shouldNOT, however, undertake this lightly. If Liferay intended to
make a global library available for use by developers, the systemmodule would already export this library!
Still, if youmust access a global library that’s not currently exported and can’t think of any other solution,
you can consider adding the required package for export by the systemmodule. There are two ways to do
this:

1530

http://semver.org
http://enroute.osgi.org/faq/class-not-found-exception.html
http://enroute.osgi.org/faq/class-not-found-exception.html

1. In your portal-ext.properties file, use the property module.framework.system.packages.extra to spec-
ify the packages to export.

2. If the package you need is from a Liferay DXP JAR, you might be able to add the module to
the list of exported packages in [LIFERAY_HOME]/osgi/core/com.liferay.portal.bootstrap.jar’s
META-INF/system.packages.extra.bnd file. Try this option only if the first option doesn’t work.

If the package you need is from a Liferay DXPmodule, (i.e., it’sNOT from a global library), you can add
the package to that module’s bnd.bnd exports. You shouldNOT, however, undertake this lightly. The package
would already be be exported if Liferay intended for it to be available.

Case 4: The Missing Class Belongs to a Java Runtime Package

rt.jar (the JRE library) has non-public packages. If your module imports one of them, configure Liferay
DXP’s system bundle to export the package to the module framework.

1. Add the current module.framework.system.packages.extraproperty setting toa [LIFERAY_HOME]/portal-
ext.properties file. Your server’s current setting is in the Liferay DXP web application’s /WEB-

INF/lib/portal-impl.jar/portal.properties file.

2. In your portal-ext.properties file, append the required Java runtime package to the end of the
module.framework.system.packages.extra property’s package list.

3. Restart your server.

The package requirement resolves.

Related Topics

Backing up Liferay Installations
AddingThird Party Libraries to a Module
Bundle Classloading Flow

116.6 Identifying Liferay Artifact Versions for Dependencies

When you’re developing a Liferay DXP application, it’s often necessary to use various Liferay DXP APIs or
tools. For example, you might want to create a Service Builder application or use Liferay DXP’s message bus
or asset framework. How can you determine which versions of Liferay DXP artifacts (modules, apps, etc.)
your application’s modules need to specify as dependencies? To learn how to find and configure Liferay DXP
dependencies, please refer to the following tutorial:

• Configuring Dependencies

Related Topics

Finding Extension Points

1531

@platform-ref@/7.0-latest/propertiesdoc/portal.properties.html#Module%20Framework

116.7 Connecting to JNDI Data Sources

Connecting to an application server’s JNDI data sources from Liferay DXP’s OSGi environment is almost the
same as connecting to them from the Java EE environment. In an OSGi environment, the only difference is
that you must use Liferay DXP’s class loader to load the application server’s JNDI classes. The following code
demonstrates this.

Thread thread = Thread.currentThread();

// Get the thread's class loader. You'll reinstate it after using

// the data source you look up using JNDI

ClassLoader origLoader = thread.getContextClassLoader();

// Set Liferay's class loader on the thread

thread.setContextClassLoader(PortalClassLoaderUtil.getClassLoader());

try {

// Look up the data source and connect to it

InitialContext ctx = new InitialContext();

DataSource datasource = (DataSource)

ctx.lookup("java:comp/env/jdbc/TestDB");

Connection connection = datasource.getConnection();

Statement statement = connection.createStatement();

// Execute SQL statements here ...

connection.close();

}

catch (NamingException ne) {

ne.printStackTrace();

}

catch (SQLException sqle) {

sqle.printStackTrace();

}

finally {

// Switch back to the original context class loader

thread.setContextClassLoader(origLoader);

}

The example code sets Liferay DXP’s classloader on the thread to access the JNDI API. After working with
the data source, the code reinstates the thread’s original classloader.

Here are the class imports for the code above:

import java.sql.Connection;

import java.sql.SQLException;

import java.sql.Statement;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.sql.DataSource;

import com.liferay.portal.kernel.util.PortalClassLoaderUtil;

Your applications can use similar code to access a data source. Make sure to substitute jdbc/TestDBwith
your data source name.

1532

Note: AnOSGi bundle’s attempt to connect to a JNDI data source without using Liferay DXP’s classloader
results in a java.lang.ClassNotFoundException. For example, here’s an exception from attempting to use
Apache Tomcat’s JNDI API without using Liferay DXP’s classloader:

javax.naming.NoInitialContextException: Cannot instantiate class:

org.apache.naming.java.javaURLContextFactory [Root exception is

java.lang.ClassNotFoundException:

org.apache.naming.java.javaURLContextFactory]

An easier way to work with databases is to connect to them using Service Builder.

Related Topics

Connecting Service Builder to External Data Sources

116.8 Adjusting Module Logging

Liferay DXP uses Log4j logging services. Here are the ways to configure logging for module classes and class
hierarchies.

• Liferay DXP’s UI
• Configure Log4j for multiple modules in a [anyModule]/src/main/resources/META-INF/module-

log4j.xml file.
• Configure Log4j for a specificmodule in a [Liferay Home]/osgi/log4j/[symbolicNameOfBundle]-log4j-

ext.xml file.
• Configure Log4j for an OSGi fragment host module in a /META-INF/module-log4j-ext.xml file

Here’s an example Log4j XML configuration:

<?xml version="1.0"?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<category name="org.foo">

<priority value="DEBUG" />

</category>

</log4j:configuration>

Use category elements to specify each class or class hierarchy to log messages for. Set the name attribute
to that class name or root package. The example category sets logging for the class hierarchy starting at
package org.foo. Logmessages at or above the DEBUG log level are printed for classes in org.foo and classes
in packages starting with org.foo.

Set each category’s priority element to the log level (priority) you want.

• ALL
• DEBUG
• ERROR
• FATAL
• INFO
• OFF
• TRACE
• WARN

1533

http://logging.apache.org/log4j/1.2/
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Level.html

The logmessages are printed to Liferay log files in [Liferay_Home]/logs.
You can see examples of module logging in several Liferay sample projects. For example, the action-

command-portlet, document-action, and service-builder/jdbc samples (among others) leverage module
logging.

Note: If the log level configuration isn’t appearing (e.g., you set the log level to ERROR but you’re still
getting WARNmessages), make sure the log configuration file name prefix matches the module’s symbolic
name. If you have Bnd installed, output from command bnd print [path-to-bundle] includes the module’s
symbolic name (Here are instructions for installing Bnd for the command line).

Note: A Log4j configuration’s appenders control log file location, naming, and rotation. To override
advanced Log4j options such as Liferay DXP’s log appenders, use an Ext plugin.

That’s it for module log configuration. You’re all set to print the information you want.

116.9 Implementing Logging
7.0 uses the Log4j logging framework, but a different one may eventually replace it. It’s a best practice to use
Simple Logging Facade for Java (SLF4J) to log messages in your modules and traditional plugins. SLF4J is
already integrated into Liferay DXP, so you can focus on logging messages.

Here’s how to use SLF4J to log messages in a class:

1. Add a private static SLF4J Logger field.

private static Logger _logger;

2. Instantiate the logger.

_logger = LoggerFactory.getLogger(this.getClass().getName());

3. Throughout your class, log messages where noteworthy things happen.

For example,

_logger.debug("...");

_logger.warn("...");

_logger.error("...");

...

Use Loggermethods appropriate for each message:

• debug: Event and application information helpful for debugging.
• error: Normal errors. This is the least verbose message level.
• info: High level events.
• trace: Provides more information than debug. This is the most verbose message level.
• warn: Information that might, but does not necessarily, indicate a problem.

Log verbosity should correlate with the log level set for the class or package. Make sure you provide
additional information at log levels expected to be more verbose, such as info and debug.

You’re all set to add logging to your modules and traditional plugins.

1534

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/action-command-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/action-command-portlet
https://github.com/bndtools/bnd/wiki/Install-bnd-on-the-command-line
https://www.slf4j.org/
https://www.slf4j.org/apidocs/org/slf4j/Logger.html

116.10 Declaring Optional Import Package Requirements
When developing Liferay DXPmodules, you can declare optional dependencies. An optional dependency is
one your module can use if it’s available, but can still function without it.

Important: Try to avoid optional dependencies. The bestmodule designs rely on normal dependencies. If
an optional dependency seems desirable, yourmodulemay be trying to provide distinct types of functionality.
In such a situation, it’s best to split it into multiple modules that provide smaller,more focused functionality.

If you decide that your module requires an optional dependency, follow these steps to add it:

1. Declare the package that your module optionally requires as an optional dependency in your module’s
bnd.bnd file:

Import-Package: com.liferay.demo.foo;resolution:="optional"

Note that you can use either an optional or dynamic import. The differences are explained in this blog
post.

2. Create a component to use the optional package:

import com.liferay.demo.foo.Foo; // A class from the optional package

@Component(

enabled = false // instruct declarative services to ignore this component by default

)

public class OptionalPackageConsumer implements Foo {...}

3. Create a second component to act as a controller of the first component. The second component checks
the classloader for the optional class on the classpath. It handles both cases appropriately. If it’s not
there, this means youmust catch any ClassNotFoundException. For example:

@Component

public class OptionalPackageConsumerStarter {

@Activate

void activate(ComponentContext componentContext) {

try {

Class.forName(com.liferay.demo.foo.Foo.class.getName());

componentContext.enableComponent(OptionalPackageConsumer.class.getName());

}

catch (Throwable t) {

_log.warn("Could not find {}", t.getMessage()); // Could use _log.info instead

}

}

}

If the classloader check in the controller component is successful, the client component is enabled. This
check is automatically performed whenever there are any wiring changes to the module containing these
components (Declarative Services components are always restarted when there are wiring changes).

As above, if you install the module when the optional dependency is missing from Liferay DXP’s OSGi
runtime, your controller component catches a ClassNotFoundException and logs a warning or info message
(or takes whatever other action you implement to handle this case). If you install the optional dependency,
refreshing your module triggers the OSGi bundle lifecycle events that trigger your controller’s activate

1535

http://web.ist.utl.pt/ist162500/?p=65
http://web.ist.utl.pt/ist162500/?p=65

method and the check for the optional dependency. Since the dependency exists, your client component
uses it.

Note that you can refresh a bundle from Liferay DXP’s Gogo shell with this command:

equinox:refresh [bundle ID]

For more information about optional dependencies, see OSGi Enroute’s documentation.

Related Topics

Configuring Dependencies

116.11 Why Aren't my Module's JavaScript and CSS Changes Show-
ing?

Todeterminewhy JavaScript andCSSupdates to yourmodule aren’t having an effect in your browser, perform
these checks:

1. If you’re developing a portlet module, check that your portlet class has the correct properties specified
in its @Component annotation:

• Make sure the resources referred toby theproperties of yourportlet class’s @Componentannotation
exist in the correct location in your module project.

• Make sure that you’re using a portlet CSS wrapper class to prevent potential CSS ID and class
name conflicts with other applications on the page.

For example, consider this sample portlet class:

@Component(

immediate = true,

property = {

"com.liferay.portlet.css-class-wrapper=example-portlet",

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"com.liferay.portlet.header-portlet-css=/css/main.css",

"com.liferay.portlet.header-portlet-javascript=/css/main.js",

"javax.portlet.display-name=Example Portlet",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.name=" + ExamplePortletKeys.TicTacToe,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

public class ExamplePortlet extends MVCPortlet {

}

Asdescribed in thefirst itemabove, theportlet’sCSSfile is specifiedby theproperty com.liferay.portlet.header-
portlet-css. Paths specifiedas valuesof thisproperty are relative to themodule’s src/main/resources/META-
INF/resources folder. So if you specify a value of css/main.css, the actual path to the CSS file in the
module is src/main/resources/META-INF/resources/css/main.css. The path to your portlet’s JavaScript

1536

http://enroute.osgi.org/tutorial_wrap/220-optional-dependencies

file is specified by the property com.liferay.portlet.header-portlet-javascript. Values for this
property work the same as the values for the CSS property.

Also note that the property com.liferay.portlet.css-class-wrapper specifies the CSS class wrapper
example-portlet. Thus, you should use subclasses of example-portlet in your portlet’s actual CSS file.
For example, in main.css you’d do this to change the background to green:

.example-portlet {

.greenBackground {

background-color: green;

}

... (further properties)

}

In other words, to avoid CSS class and ID name conflicts, all the CSS properties you specify must
be subclasses of the class specified via the com.liferay.portlet.css-class-wrapper property. Liferay
DXPwraps your portlet’s HTML content with a <div>. The class specified by com.liferay.portlet.css-
class-wrapper (example-portlet, in this example) has been applied to this <div>.

2. Check that caching isn’t preventing JS and CSS updates to your module from appearing in your
browser:

• Clear your browser’s cache.
• During development, enable developer mode to turn off Liferay DXP’s resource caching. Click
here to learn how to enable Liferay DXP’s developer mode.

Related Topics

Using Developer Mode withThemes

116.12 Why Aren't JSP overrides I Made Using Fragments Showing?
The fragment module must specify the exact version of the host module. A Liferay DXP upgrade might have
changed some JSPs in the host module, prompting a version update. If this occurs, check that your JSP
customizations are compatible with the updated host JSPs and then update your fragmentmodule’s targeted
version to match the host module.

For example, this bnd.bnd file from a fragment module uses Fragment-Host to specify the host module
and host module version:

Bundle-Name: custom-login-jsp

Bundle-SymbolicName: custom.login.jsp

Bundle-Version: 1.0.0

Fragment-Host: com.liferay.login.web;bundle-version="1.1.18"

For information on finding the versions of your deployedmodules, click here.
For more information on overriding JSPs, click here.

Related Topics

Overriding JSPs
Configuring Dependencies

1537

116.13 Detecting Unresolved OSGi Components

Liferay DXP includes Gogo shell commands that come in handy when trying to diagnose a problem due
to an unresolved OSGi component. The specific tools to use depend on the component framework of the
unresolved component. Most Liferay DXP components are developed using Declarative Services (DS), also
known as SCR (Service Component Runtime). An exception to this is Liferay DXP’s Service Builder services,
which are provided as Dependency Manager (DM) components. Both Declarative Services and Dependency
Manager are Apache Felix projects.

The troubleshooting instructions are divided into these sections:

• Declarative Services Components

– Declarative Services Unsatisfied Component Scanner
– ds:unsatisfied Command

• Service Builder Components

– Unavailable Component Scanner
– ServiceProxyFactory

Declarative Services Components

Start with DS, since most Liferay DXP components, apart from Service Builder components, are DS compo-
nents. Suppose one of your bundle’s components has an unsatisfied service reference. How can you detect
this? Two ways:

• You can enable a Declarative Services Unsatisfied Component Scanner to report unsatisfied references
automatically or

• You can use the Gogo shell command ds:unsatisfied to check for themmanually.

Declarative Services Unsatisfied Component Scanner

Note: The Declarative Services Unsatisfied Component Scanner appears in DXP Digital Enterprise Fix
7.0 Pack 31 and Liferay CE Portal 7.0 GA5.

Here are the steps for enabling the unsatisfied component scanner:

1. Create afile com.liferay.portal.osgi.debug.declarative.service.internal.configuration.UnsatisfiedComponentScannerConfiguration.cfg.

2. Add the following file content:

unsatisfiedComponentScanningInterval=5

3. Copy the file into [LIFERAY_HOME]/osgi/configs.

The scanner detects and logs unsatisfied service component references. The logmessage includes the
class that contains the reference, the bundle’s ID, and the referenced component type.

Here’s an example scanner message:

1538

http://felix.apache.org/documentation/subprojects/apache-felix-service-component-runtime.html
http://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager.html
http://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager.html

11:18:28,881 WARN [Declarative Service Unsatisfied Component Scanner][UnsatisfiedComponentScanner:91]

Bundle {id: 631, name: com.liferay.blogs.web, version: 2.0.0}

Declarative Service {id: 3333, name: com.liferay.blogs.web.internal.portlet.action.EditEntryMVCRenderCommand, unsatisfied references:

{name: ItemSelectorHelper, target: null}

}

Themessageabovewarns that service component com.liferay.blogs.web.internal.portlet.action.EditEntryMVCRenderCommand
has an unsatisfied reference to a component of type ItemSelectorHelper. The referencing component’s ID
(SCR ID) is 3333 and the component belongs to bundle 631.

ds:unsatisfied Command

Anotherway to detect unsatisfied component references is to invoke theGogo shell command ds:unsatisfied.

• ds:unsatisfied shows all unsatisfied services
• ds:unsatisfied [BUNDLE_ID] shows the bundle’s unsatisfied services

Note: The Gogo shell command ds:unsatisfied appears in DXP Digital Enterprise Fix 7.0 Pack 31 and
Liferay CE Portal 7.0 GA5.

To viewmoredetailed information about the componentwith theunsatisfied reference,use the command
scr:info [component ID]. For example, the following command does this for the component ID 1701:

g! scr:info 1701

*** Bundle: org.foo.bar.command (507)

Component Description:

Name: org.foo.bar.command

Implementation Class: org.foo.bar.command.FooBarCommand

Default State: enabled

Activation: delayed

Configuration Policy: optional

Activate Method: activate

Deactivate Method: deactivate

Modified Method: -

Configuration Pid: [org.foo.bar.command]

Services:

org.foo.bar.command.DuckQuackCommand

Service Scope: singleton

Reference: Duck

Interface Name: org.foo.bar.api.Foo

Cardinality: 1..1

Policy: static

Policy option: reluctant

Reference Scope: bundle

Component Description Properties:

osgi.command.function = foo

osgi.command.scope = bar

Component Configuration:

ComponentId: 1701

State: unsatisfied reference

UnsatisfiedReference: Foo

Target: null

(no target services)

Component Configuration Properties:

component.id = 1701

component.name = org.foo.bar.command

osgi.command.function = foo

osgi.command.scope = bar

1539

In the Component Configuration section, UnsatisfiedReference lists the unsatisfied reference’s type. This
bundle’s component isn’t working because it’s missing a Foo service. Now you can focus on why Foo is
unavailable. The solution may be as simple as starting or deploying a bundle that provides the Foo service.

Service Builder Components

Liferay DXP’s Service Builder modules are implemented using Spring. Liferay DXP uses the Apache Felix
Dependency Manager to manage Service Builder modules’ OSGi components via the Portal Spring Extender
module.

When developing a Liferay Service Builder application, you might encounter a situation where your
application has an unresolved Spring-related OSGi component. This could occur, for example, if you update
your application’s database schema but forget to trigger an upgrade (for information on creating database
upgrade processes for your Liferay DXP applications, see the tutorial Creating an Upgrade Process for Your
App).

These features detect unresolved Service Builder related components.

• Unavailable Component Scanner
• ServiceProxyFactory

Unavailable Component Scanner

The Liferay Foundation application suite’s Unavailable Component Scanner reports missing components in
modules that use Service Builder. Here are the steps for enabling the scanner:

1. Create configurationfile com.liferay.portal.osgi.debug.spring.extender.internal.configuration.UnavailableComponentScannerConfiguration.cfg.

2. In the configuration file, set the time interval (in seconds) between scans:

unavailableComponentScanningInterval=5

3. Copy the file into folder [LIFERAY_HOME]/osgi/configs.

The scanner reports Spring extender dependency manager component status on the set interval. If all
components are registered, the scanner sends a confirmationmessage.

11:10:53,817 INFO [Spring Extender Unavailable Component Scanner][UnavailableComponentScanner:166] All Spring extender dependency manager components are registered

If a component is unavailable, it reports an error like this one:

11:13:08,851 WARN [Spring Extender Unavailable Component Scanner][UnavailableComponentScanner:173] Found unavailable component in bundle com.liferay.screens.service_1.0.28 [516].

Component ComponentImpl[null com.liferay.portal.spring.extender.internal.context.ModuleApplicationContextRegistrator@1541eee] is unavailable due to missing required dependencies: ServiceDependency[interface com.liferay.blogs.service.BlogsEntryService null].

Component unavailability, such as what’s reported above, can occur when declarative services compo-
nents and Service Builder components are published and used in the samemodule. We recommend you
publish DS components and Service Builder components in separate modules.

Note: The Spring Extender Unavailable Component Scanner appears in DXP Digital Enterprise Fix 7.0
Pack 24 and Liferay CE Portal 7.0 GA5.

1540

http://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager.html
http://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager.html
https://github.com/liferay/com-liferay-portal/tree/master/portal-spring-extender

ServiceProxyFactory

Liferay DXP’s logs report unresolved Service Builder components too. For example, Liferay DXP logs an
error when a Service Proxy Factory can’t create a new instance of a Service Builder based entity because a
service is unresolved.

Note: The Service Proxy Factory timeout logs appear inDXPDigital Enterprise Fix 7.0 Pack 32 and Liferay
CE Portal 7.0 GA5.

The following code demonstrates using a ServiceProxyFactory class to create a new entity instance:

private static volatile MessageBus _messageBus =

ServiceProxyFactory.newServiceTrackedInstance(

MessageBus.class, MessageBusUtil.class, "_messageBus", true);

Thismessage alerts you to the unavailable service:

11:07:35,139 ERROR [localhost-startStop-1][ServiceProxyFactory:265] Service "com.liferay.portal.kernel.messaging.sender.SingleDestinationMessageSenderFactory" is unavailable in 60000 milliseconds while setting field "_singleDestinationMessageSenderFactory" for class "com.liferay.portal.kernel.messaging.sender.SingleDestinationMessageSenderFactoryUtil", will retry...

Basedon themessageabove, there’snobundleproviding the service com.liferay.portal.kernel.messaging.sender.SingleDestinationMessageSenderFactory.
To check your Service Builder modules for unresolved Spring components, you can use the Dependency

Manager’s dmGogo shell command, which is explained here:

• Dependency Manager - Leveraging the shell

For example, togetdiagnostic informationaboutServiceBuilder components,use the dependencymanager:dm
command. This command lists all Service Builder components, their required services, and whether each
required service is available.

Related Topics

Calling Non-OSGi Code that Uses OSGi Services
Felix Gogo Shell
OSGi Basics For Liferay Development

116.14 Using Files to Configure Module Components

Liferay DXP uses Felix File Install to monitor file system folders for new/updated configuration files, and
the Felix OSGi implementation of Configuration Admin to let you use files to configure module service
components.

To learn how to work with configuration files, first review Understanding System Configuration Files.

Configuration File Formats

There are two different configuration file formats:

• .cfg: An older, simple format that only supports string values as properties.
• .config: A format that supports strings, type information, and other non-string values in its properties.

1541

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/ServiceProxyFactory.html
http://felix.apache.org/documentation/subprojects/apache-felix-dependency-manager/tutorials/leveraging-the-shell.html
http://felix.apache.org/documentation/subprojects/apache-felix-file-install.html
http://felix.apache.org/
http://felix.apache.org/documentation/subprojects/apache-felix-config-admin.html

Although Liferay DXP supports both formats, we recommend .config files for their flexibility. Since .cfg
file lacks type information, if you want to store anything but a String, you’ll need a properties utility class
that casts the Strings to their proper types (and youmust carefully document properties that aren’t Strings).
Since .config files can include type information, using them eliminates this need. The articles below provide
a detailed explanation of these file formats, including their syntax:

• Understanding System Configuration Files
• Configuration file (.config) syntax
• Properties file(.cfg) syntax

Naming Configuration Files

Before you create a configurationfile, you shoulddeterminewhethermultiple instances of the component can
be created, or if the component is intended to be a singleton. Follow these steps to make that determination:

1. Deploy the component’s module if you haven’t done so already.

2. In Liferay DXP’s UI, go to Control Panel → Configuration → System Settings.

3. Find the component’s settings by searching or browsing for the component.

4. If the component’s settings page has a section called Configuration Entries, you can create multiple
instances of the component configured however you like. Otherwise, you should treat the component
as a singleton.

Figure 116.1: You can create multiple instances of components whose System Settings page has a Configuration Entries section.

All configuration file names must start with the component’s PID (PID stands for persistent identity) and
end with .config or .cfg.

For example, this class uses Declarative Services to define a component:

package com;

@Component

class Foo {}

1542

https://sling.apache.org/documentation/bundles/configuration-installer-factory.html#configuration-files-config
https://sling.apache.org/documentation/bundles/configuration-installer-factory.html#property-files-cfg

The component’s PID is com.Foo. All the component’s configuration files must start with the PID com.Foo.
For each non-singleton component instance you want to create or update with a configuration, youmust

use a uniquely named configuration file that starts with the component’s PID and ends with .config or .cfg.
Creating configurations for multiple component instances requires that the configuration files use different
subnames. A subname is the part of a configuration file name after the PID and before the suffix .config or
.cfg. Here’s the configuration file name pattern for non-singleton components:

• [PID]-[subname1].config

• [PID]-[subname2].config

• etc.

For example, you could configure twodifferent instances of the component com.Foobyusing configuration
files with these names:

• com.Foo-one.config

• com.Foo-two.config

Each configuration file creates and/or updates an instance of the component that matches the PID.
The subname is arbitrary–it doesn’t have to match a specific component instance. This means you can use
whatever subname you like. For example, these configuration files are just as valid as the two above:

• com.Foo-puppies.config

• com.Foo-kitties.config

Using the subname default, however, is Liferay DXP’s convention for configuring a component’s first
instance. The file name pattern is therefore:

[PID]-default.config

A singleton component’s configuration file must also start with [PID] and end with .config or .cfg.
Here’s the common pattern used for singleton component configuration file names:

[PID].config

When you’re done creating a configuration file, you can deploy it.

Resolving Configuration File Deployment Failures

The following IOException hints that the configuration file has a syntax issue:

Failed to install artifact: [path to .config or .cfg file]

java.io.IOException: Unexpected token 78; expected: 61 (line=0, pos=107)

To resolve this, fix the configuration file’s syntax.
Great! Now you know how to configure module components using configuration files.

Related Articles

Understanding System Configuration Files

1543

116.15 Calling Non-OSGi Code that Uses OSGi Services

Liferay DXP’s static utility functions (e.g., UserServiceUtil, CompanyServiceUtil, GroupServiceUtil, etc.) are
examples of non-OSGi code that use OSGi services.

Note that it’s safer to track and use Liferay DXP’s OSGi services directly with Liferay DXP’s Registry API
than to invoke Liferay DXP’s similar static utility functions. For example, you can’t call an OSGi service unless
all its dependencies are satisfied: the container won’t enable the service. If you invoke Liferay DXP’s static
utility functions, youmight invoke them prematurely (e.g., before OSGi bundle activation and application
startup events). You could work around this by identifying all of the implied OSGi service dependencies and
making sure they are satisfied before invocation, but then you’re not only duplicating the container’s more
robust functionality for this, you’re also creating a bigger surface for bugs. Avoid this mess by using Liferay
DXP’s Registry API to track the services you want. This way, you let OSGi make sure a service’s dependencies
are satisfied before invoking that service. For example, use Liferay DXP’s OSGi service UserService instead
of UserServiceUtil, which in turn uses the OSGi service UserService. Click here to see an example of this.

Remember that you can check the state of Liferay DXP’s services in the Gogo shell. If you’re running
Liferay DXP locally, use the command telnet localhost 11311 to connect to the Gogo shell. Once connected,
the scr:list command shows all Declarative Services components, including inactive ones from unsatisfied
dependencies. To find unsatisfied dependencies for Service Builder services, use the Dependency Manager’s
dependencymanager:dm wtf command. Note that these commands only show components that haven’t been
activated because of unsatisfied dependencies–they don’t show pure service trackers that are waiting for a
service because of unsatisfied dependencies.

Related Topics

Using OSGi Services from EXT Plugins
Detecting Unresolved OSGi Components
Felix Gogo Shell
OSGi Basics For Liferay Development

116.16 Patching DXP Source Code

Auto mechanics, enthusiasts, and prospective owners ask about cars, “What’s under the hood?” Here are
common reasons for asking that question:

• Concern about an issue
• Curiosity about the car’s capability and inner-workings
• Desire to improve or customize the car

Youmight have similar reasons for asking “What’s under theDXP’s hood?” And since you get access to
DXP Digital Enterprise (DXP)’s source code, you can attach a debugger see it in action! Setting up the code
locally is your ticket to exploring DXP, investigating issues, andmaking improvements and customizations.

Here’s how:

1. Download DXP, the DXP source code, and patches

2. Prepare DXP

3. Patch the DXP source code

1544

Step 1: Download DXP, the DXP source code, and patches

1. Download a DXP bundle (or DXP JARs) and the DXP source code for the version you’re using from the
customer portal.

2. Download fix packs and their source code from here. Fix pack ZIP files that end in -src.zip contain a
fix pack and source code.

Next you’ll install and configure DXP. DXP’s patching tool lets you install fix packs and fix pack source
code. If you have a patched DXP installation already and want to use it, skip to the section Patching the DXP
Source Code.

Step 2: Prepare DXP

Preparing DXP locally involves installing, configuring, and patching DXP.

Install and Configure DXP

Here’s how to install and configure DXP:

1. Install and Deploy DXP locally.

2. Start DXP.

3. Configure DXP to use your database.

4. Stop DXP.

It’s time apply the DXP patches you want.

Patch DXP

Here’s how to patch DXP:

1. Copy all the patch ZIP files you want to [LIFERAY_HOME]/patching-tool/patches. The -src.zip fix pack
files are best to use because they contain both the fix pack binaries and source code.

2. Open a terminal window to [LIFERAY_HOME]/patching-tool.

3. Run the command patching-tool.sh auto-discovery to generate the default patching profile called
default.properties. Make sure the profile’s properties refer to your DXP installation. See the patching
tool documentation for more details.

Here’s an example profile:

patching.mode=binary

war.path=../tomcat-8.0.32/webapps/ROOT/

global.lib.path=../tomcat-8.0.32/lib/ext/

liferay.home=../

4. To list all the patch files available in [LIFERAY_HOME]/patching-tool/patches, execute the following
command:

patching-tool.sh info

1545

https://web.liferay.com/group/customer/dxp
https://web.liferay.com/group/customer/dxp/downloads/digital-enterprise/fix-packs

5. Execute this command to install the patches:

patching-tool.sh install

The patching tool documentation describes additional steps that might apply to your situation, such
as creating database indexes.

It’s time to prepare the DXP source code and patch source code.

Step 3: Patch the DXP Source Code

Unzip the DXP source code to where you want to work with it.
Next you’ll create a patching tool profile for your DXP source code.

Create a Patching Tool Profile for the Source Code

Here’s how to create a profile that refers to your source code.

1. Execute the following command to create a profile. Replace [profile]with a name for your profile.

patching-tool.sh auto-discovery [profile]

2. In the profile properties file generated in the previous step, set the patching.mode property to source
and set the source.path property to your source code path:

patching.mode=source

source.path=[DXP source code path]

It’s time to apply the DXP patches you downloaded earlier.

Patch the Source Code

DXP’s patching tool is safe and easy to use. Beyond installing patches, it has these functions:

• List a patch’s code changes
• List the issues (LPS/LPE tickets) a patch fixes
• Revert a patch

See the following patching tool documentation for more details:

• Comparing Patch Levels
• Removing or Reverting Patches

In addition to using the patching tool to manage DXP source code, you can optionally manage it in a
version control system such as Git.

Here are commands for setting up the DXP source code in Git:

cd [path to source code root folder]

git init

git add .

git commit -a

1546

https://git-scm.com/

Here’s are the command descriptions:

• init creates a Git repository for the current folder (i.e., the root folder) and all its contents.
• add stages the root folder and its contents.
• commit checks in the staged files.

You can commit any code changes (e.g., DXP patches) to your Git repository.

The patching tool installs all patches and patch source code from the ZIP files it finds in
[LIFERAY_HOME]/patching-tool/patches. All your patches must be in the patches folder for the patch-
ing tool to apply them.

1. Copy all the patch source ZIP files to [LIFERAY_HOME]/patching-tool/patches if you haven’t already
copied them there.

2. Execute the info command tomake sure it lists your patches. If a patch isn’t listed, copy its ZIP file
into the patches folder. Replace [profile]with your DXP source code profile name:

patching-tool.sh [profile] info

3. Apply the patches by executing the install command on your profile:

patching-tool.sh [profile] install

Your DXP installation and source code is patched and ready to debug!
Attach your favorite debugger to your DXP instance and start the server. See your debugger’s documen-

tation for configuration details.
Congratulations! You’re free to explore DXP inside and out!

Related Topics (id=related-topics)

Troubleshooting
Liferay @ide@

116.17 Liferay DXP Failed to Initialize Because the Database Wasn't
Ready

If you start your database server and application server at the same time, Liferay DXPmight try connecting
to the data source before the database is ready. By default, Liferay DXP doesn’t retry connecting to the
database; it just fails. Now Liferay DXP provides a way to avoid this situation: database connection retries.

1. Create a portal-ext.properties file.

2. Set the property retry.jdbc.on.startup.max.retries equal to the number of times to retry connecting
to the data source.

3. Set property retry.jdbc.on.startup.delay equal to the number of seconds to wait before retrying
connection.

If at first the connection doesn’t succeed, Liferay DXP uses the retry settings to try again.

1547

Related Topics

Connecting to JNDI Data Sources

116.18 Using OSGi Services from EXT Plugins
Using OSGi services from an Ext plugin is done the same way that Liferay DXP’s core uses OSGi services: via
the com.liferay.registry API provided by the registry-api bundle. All usages of this API in Liferay DXP’s
core can serve as examples. Here’s a very simple example:

Registry registry = RegistryUtil.getRegistry();

UserService userService = registry.getService(UserService.class);

If (userService != null) {

User user = userService.getCurrentUser();

System.out.println("Current user is " + user.getFirstName() + StringPool.BLANK +

user.getLastName());

}

Remember that OSGi services can come and go at any time. Liferay DXP services, including UserService,
aren’t an exception to this rule. Although it’s unlikely that UserService becomes unavailable, youmust still
account for that possibility. Liferay DXP’s registry API provides ServiceReference and ServiceTracker, which
you can use to simplify dealing with OSGi services. If you’re familiar with OSGi development, you’ve heard
of these classes because the OSGi framework provides them. Liferay DXP’s versions of these classes wrap
the OSGi ones, so you can use them the same way.

Here’s a smarter version of the above example. Using service trackers takes awaymuch of the pain of
having to deal with services that can appear and disappear dynamically:

Registry registry = RegistryUtil.getRegistry();

ServiceTracker<UserService, UserService> tracker = registry.trackServices(UserService.class);

tracker.open();

UserService userService = tracker.getService();

if (userService != null) {

User user = userService.getCurrentUser();

System.out.println("Current user is " + user.getFirstName() + StringPool.SPACE +

user.getLastName());

}

tracker.close();

Remember to open your service trackers before use and close them after use. If you must use Liferay
DXP’s OSGi services in a servlet, for example, it’s a good idea to open your service trackers in Servlet.init()

and close them in Servlet.destroy().

Related Topics

Calling Non-OSGi Code that Uses OSGi Services
OSGi Basics For Liferay Development

116.19 Sort Order Changed with a Different Database
If you’ve been using Liferay DXP, but are switching it to use a different database type, consult your database
vendor documentation to understand your old and new database’s default query result order. The default
order is either case-sensitive or case-insensitive. This affects entity sort order in Liferay DXP.

Here are some examples of ascending alphabetical sort order.
Case-sensitive:

1548

111

222

AAA

BBB

aaa

bbb

Case-insensitive:

111

222

AAA

aaa

BBB

bbb

Your new database’s default query result order might differ from your current database’s order.
Consult your vendor’s documentation to configure the order the way you want.

1549

Chapter 117

Data Upgrades

Your module goes through various stages of development, because you’re constantly trying to improve it.
You add new features, remove features, enhance features, reorganize the code, and do whatever you can to
respond to what your users want andmake your module the best it can be. To transition users to new and
improved versions of your module, you need to take them through the process of upgrading.

Liferay provides a robust data upgrade framework for you to use. Here you’ll learn how to create a data
upgrade process.

117.1 Creating Data Upgrade Processes for Modules
Some changes youmake to a module involve modifying the database. These changes bring with them the
need for an upgrade process to move your module’s database from one version to the next. Liferay has an
upgrade framework you can use tomake this easier to do. It’s a feature-rich framework thatmakes upgrades
safe: the system records the current state of the schema so that if the upgrade fails, the process can revert
the module back to its previous version.

Note: Upgrade processes for traditional Liferay plugins (WAR files) work the same way they did for
Liferay Portal 6.x.

Liferay DXP’s upgrade framework executes your module’s upgrades automatically when the new version
starts for the first time. You implement concrete data schema changes in upgrade step classes and then
register themwith the upgrade framework using an upgrade step registrator. In this tutorial, you’ll learn
how to do all these things to create an upgrade process for your module.

Here’s what’s involved:

• Specifying the schema version

• Declaring dependencies

• Writing upgrade steps

• Writing the registrator

• Waiting for upgrade completion

It’s time to get started.

1551

Specifying the Schema Version

In your module’s bnd.bnd file, specify a Liferay-Require-SchemaVersion header with the new schema version
value. Here’s an example schema version header for a module whose new schema is version 1.1.0:

Liferay-Require-SchemaVersion: 1.1.0

Important: If no Liferay-Require-SchemaVersion header is specified, Liferay DXP considers the Bundle-
Version header value to be the database schema version.

Next, you’ll specify your upgrade’s dependencies.

Declaring Dependencies

In yourmodule’s dependencymanagement file (e.g.,Maven POM,Gradle build file, or Ivy ivy.xml file), add a
dependency on the com.liferay.portal.upgrademodule.

In a build.gradle file, the dependency would look like this:

compile group: "com.liferay", name: "com.liferay.portal.upgrade", version: "2.0.0"

If there are other modules your upgrade process requires, specify them as dependencies.
You’ve configured your module project for the upgrade. It’s time to create upgrade steps to update the

database from the current schema version to the new one.

Writing Upgrade Steps

An upgrade step is a class that adapts module data to the module’s target database schema. It can execute
SQL commands and DDL files to upgrade the data. As a developer, you can encapsulate upgrade logic in
multiple upgrade step classes per schema version.

The upgrade class extends the UpgradeProcess base class, which implements the UpgradeStep interface.
Each upgrade step must override the UpgradeProcess class’s method doUpgradewith instructions for modify-
ing the database.

Since UpgradeProcess extends the BaseDBProcess class, you can use its runSQL and runSQLTemplate*meth-
ods to execute your SQL commands and SQL DDL, respectively.

If you want to create,modify, or drop tables or indexes by executing DDL sentences from an SQL file,
make sure to use ANSI SQL only. Doing this assures the commands work on different databases.

If youneed to use non-ANSI SQL, it’s best towrite it in the UpgradeProcess class’s runSQL or altermethods,
along with tokens that allow porting the sentences to different databases.

For example, consider the journal-service module’s UpgradeSchema upgrade step class:

package com.liferay.journal.internal.upgrade.v0_0_4;

import com.liferay.journal.internal.upgrade.v0_0_4.util.JournalArticleTable;

import com.liferay.journal.internal.upgrade.v0_0_4.util.JournalFeedTable;

import com.liferay.portal.kernel.upgrade.UpgradeMVCCVersion;

import com.liferay.portal.kernel.upgrade.UpgradeProcess;

import com.liferay.portal.kernel.util.StringUtil;

/**

* @author Eduardo Garcia

⁎/

public class UpgradeSchema extends UpgradeProcess {

1552

https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/com/liferay/com.liferay.portal.upgrade/
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upgrade/UpgradeProcess.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upgrade/UpgradeStep.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/dao/db/BaseDBProcess.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upgrade/UpgradeProcess.html
https://github.com/liferay/liferay-portal/blob/7.0.6-ga7/modules/apps/web-experience/journal/journal-service/src/main/java/com/liferay/journal/internal/upgrade/v0_0_4/UpgradeSchema.java

@Override

protected void doUpgrade() throws Exception {

String template = StringUtil.read(

UpgradeSchema.class.getResourceAsStream("dependencies/update.sql"));

runSQLTemplateString(template, false, false);

upgrade(UpgradeMVCCVersion.class);

alter(

JournalArticleTable.class,

new AlterColumnName(

"structureId", "DDMStructureKey VARCHAR(75) null"),

new AlterColumnName(

"templateId", "DDMTemplateKey VARCHAR(75) null"),

new AlterColumnType("description", "TEXT null"));

alter(

JournalFeedTable.class,

new AlterColumnName("structureId", "DDMStructureKey TEXT null"),

new AlterColumnName("templateId", "DDMTemplateKey TEXT null"),

new AlterColumnName(

"rendererTemplateId", "DDMRendererTemplateKey TEXT null"),

new AlterColumnType("targetPortletId", "VARCHAR(200) null"));

}

}

The above example class UpgradeSchema uses the runSQLTemplateStringmethod to execute ANSI SQLDDL
from an SQL file. Tomodify column names and column types, it uses the altermethod and UpgradeProcess’s
UpgradeProcess.AlterColumnName and UpgradeProcess.AlterColumnType inner classes as token classes.

Here’s a simpler example upgrade step from the com.liferay.calendar.servicemodule. It uses the alter
method to modify a column type in the calendar booking table:

public class UpgradeCalendarBooking extends UpgradeProcess {

@Override

protected void doUpgrade() throws Exception {

alter(

CalendarBookingTable.class,

new AlterColumnType("description", "TEXT null"));

}

}

You can implement upgrade steps just like these for your module schemas.
How you name and organize upgrade steps is up to you. Liferay’s upgrade classes are organized using a

package structure similar to this one:

• some.package.structure

– upgrade

* v1_1_0

· UpgradeFoo.java ← Upgrade Step

* v2_0_0

· UpgradeFoo.java ← Upgrade Step

1553

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/upgrade/UpgradeProcess.html

· UpgradeBar.java ← Upgrade Step

* MyCustomModuleUpgrade.java ← Registrator

The example upgrade structure shown above is for a module that has two database schema versions:
1.1.0 and 2.0.0. They’re represented by packages v1_1_0 and v2_0_0. Each version package contains upgrade
step classes that update the database. The example upgrade steps focus on fictitious data elements Foo
and Bar. The registrator class (MyCustomModuleUpgrade, in this example) is responsible for registering the
applicable upgrade steps for each schema version.

Here are some organizational tips:

• Put all upgrade classes in a sub-package called upgrade.

• Group together similar database updates (ones that operate on a data element or related data elements)
in the same upgrade step class.

• Create upgrade steps in sub-packages named after each data schema version.

Before continuing with upgrade step registrators, if your application was modularized from a former
traditional Liferay plugin application (applicationWAR) and it uses Service Builder, it requires a Bundle
Activator to register itself in Liferay DXP’s Release_ table. If this is the case for your application, create and
register a Bundle Activator and then return here to write your upgrade step registrator.

Writing the Upgrade Step Registrator

Amodule’s upgrade step registrator notifies Liferay’s upgrade framework of all the upgrade steps to update
the module data for each schema version. It specifies the module’s entire upgrade process. The upgrade
framework executes the upgrade steps to update the current module data to the latest schema.

For example, the upgrade step registrator class MyCustomModuleUpgrade (below) registers upgrade steps
incrementally for each schema version (past and present):

package com.liferay.mycustommodule.upgrade;

import com.liferay.portal.upgrade.registry.UpgradeStepRegistrator;

import org.osgi.service.component.annotations.Component;

@Component(immediate = true, service = UpgradeStepRegistrator.class)

public class MyCustomModuleUpgrade implements UpgradeStepRegistrator {

@Override

public void register(Registry registry) {

registry.register(

"com.liferay.mycustommodule", "0.0.0", "2.0.0",

new DummyUpgradeStep());

registry.register(

"com.liferay.mycustommodule", "1.0.0", "1.1.0",

new com.liferay.mycustommodule.upgrade.v1_1_0.UpgradeFoo());

registry.register(

"com.liferay.mycustommodule", "1.1.0", "2.0.0",

new com.liferay.mycustommodule.upgrade.v2_0_0.UpgradeFoo(),

new com.liferay.mycustommodule.upgrade.v2_0_0.UpgradeBar());

}

}

1554

Theregistrator’s registermethod informs theupgrade frameworkabout eachnewschemaandassociated
upgrade steps to adapt data to it. Each schema upgrade is represented by a registration. A registration is an
abstraction for all the changes you need to apply to the database from one schema version to the next one.

The following diagram illustrates the relationship between the registrator and the upgrade steps.

Figure 117.1: In a registrator class, the developer specifies a registration for each schema version upgrade. The upgrade steps handle the database updates.

The previous example MyCustomModuleUpgrade registrator class listing shows how this works.
Theregistrator classdeclares itself tobeanOSGiComponentof service type UpgradeStepRegistrator.class.

The @Component annotation registers the class to theOSGi framework as themodule’s upgrade step registrator.
The attribute immediate = true tells the OSGi framework to activate this module immediately after it’s
installed.

Theregistrator implements the UpgradeStepRegistrator interface,which is in the com.liferay.portal.upgrade
module. The interface declares a registermethod that the registrator must override. In that method, the
registrator implements all the module’s upgrade registrations.

Upgrade registrations are defined by the following values:

• Module’s bundle symbolic name
• Schema version to upgrade from (as a String)
• Schema version to upgrade to (as a String)

1555

@app-ref@/foundation/latest/javadocs/com/liferay/portal/upgrade/registry/UpgradeStepRegistrator.html
@app-ref@/foundation/latest/javadocs/com/liferay/portal/upgrade/registry/UpgradeStepRegistrator.html#register-com.liferay.portal.upgrade.registry.UpgradeStepRegistrator.Registry-

• List of upgrade steps

The example registrator MyCustomModuleUpgrade registers three upgrades:

• 0.0.0 to 2.0.0
• 1.0.0 to 1.1.0
• 1.1.0 to 2.0.0

The MyCustomModuleUpgrade registrator’s first registration is applied by the upgrade framework if the
module has not been installed previously. Its list of upgrade steps contains only one: new DummyUpgradeStep().

registry.register(

"com.liferay.document.library.web", "0.0.0", "2.0.0",

new DummyUpgradeStep());

The DummyUpgradeStep class provides an empty upgrade step. The MyCustomModuleUpgrade registrator
defines this registration so that the upgrade framework records the module’s latest schema version (i.e.,
2.0.0) in Liferay DXP’s Release_ table.

Important: Modules that use Service Builder should not define a registration for their initial database
schema version, as Service Builder already records their schema versions to Liferay DXP’s Release_ table.
Modules that don’t use Service Builder, however, should define a registration for their initial schema.

The MyCustomUpgrade registrator’s next registration (from schema version 1.0.0 to 1.1.0) includes one
upgrade step.

registry.register(

"com.liferay.mycustommodule", "1.0.0", "1.1.0",

new com.liferay.mycustommodule.upgrade.v1_1_0.UpgradeFoo());

Theupgrade step’s fully qualified class name is required because classes named UpgradeFoo are in package
com.liferay.mycustommodule.upgrade.v1_1_0and com.liferay.mycustommodule.upgrade.v2_0_0.

The registrator’s final registration (from schema version 1.1.0 to 2.0.0) contains two upgrade steps.

registry.register(

"com.liferay.mycustommodule", "1.1.0", "2.0.0",

new com.liferay.mycustommodule.upgrade.v2_0_0.UpgradeFoo(),

new UpgradeBar());

Bothupgrade steps, UpgradeFooand UpgradeBar, reside in themodule’s com.liferay.mycustommodule.upgrade.v2_0_0
package. The fully qualified class name com.liferay.mycustommodule.upgrade.v2_0_0.UpgradeFoo is used for
the UpgradeFoo class, while the simple class name UpgradeBar is fine for the second upgrade step.

A registration’s upgrade step list can consist of as many upgrade steps as needed.
Important: If your upgrade step uses an OSGi service, your upgrademust wait for that service’s availabil-

ity. To specify that your upgrade is to be executed only after that service is available, add an OSGi reference
to that service.

For example, the WikiServiceUpgrade registrator class references the SettingsFactory class. The upgrade
step class UpgradePortletSettings upgrade step uses it. Here’s the WikiServiceUpgrade class:

@Component(immediate = true, service = UpgradeStepRegistrator.class)

public class WikiServiceUpgrade implements UpgradeStepRegistrator {

@Override

public void register(Registry registry) {

registry.register(

"com.liferay.wiki.service", "0.0.1", "0.0.2", new UpgradeSchema());

1556

https://github.com/liferay/liferay-portal/blob/7.0.1-ga2/portal-kernel/src/com/liferay/portal/kernel/upgrade/DummyUpgradeStep.java
https://github.com/liferay/liferay-portal/blob/7.0.1-ga2/modules/apps/collaboration/wiki/wiki-service/src/main/java/com/liferay/wiki/upgrade/WikiServiceUpgrade.java
https://github.com/liferay/liferay-portal/blob/7.0.1-ga2/modules/apps/collaboration/wiki/wiki-service/src/main/java/com/liferay/wiki/upgrade/v1_0_0/UpgradePortletSettings.java

registry.register(

"com.liferay.wiki.service", "0.0.2", "0.0.3",

new UpgradeKernelPackage(), new UpgradePortletId());

registry.register(

"com.liferay.wiki.service", "0.0.3", "1.0.0",

new UpgradeCompanyId(), new UpgradeLastPublishDate(),

new UpgradePortletPreferences(),

new UpgradePortletSettings(_settingsFactory),

new UpgradeWikiPageResource());

}

@Reference(unbind = "-")

protected void setSettingsFactory(SettingsFactory settingsFactory) {

_settingsFactory = settingsFactory;

}

private SettingsFactory _settingsFactory;

}

In the third registration in the listing above, the UpgradePortletSettings upgrade step uses the
SettingsFactory service. The setSettingsFactory method’s @Reference annotation declares that the
registrator class depends on andmust wait for the SettingsFactory service to be available in the run time
environment. The annotation’s attribute setting unbind = "-" indicates that the registrator class has no
method for unbinding the service.

Next, youmust make sure the module’s upgrade is executed before making its services available.

Waiting for Upgrade Completion

Before module services that access the database are used, the database should be upgraded to the latest
database schema.

As a convenience, configuring the Bnd header Liferay-Require-SchemaVersion to the latest schema ver-
sion is all that’s required to assure the database is upgraded for Service Builder services.

For all other services, the developer can assure database upgrade by specifying an @Reference annotation
that targets the containing module and its latest schema version.

Here are the target’s required attributes:

• release.bundle.symbolic.name: module’s bundle symbolic name
• release.schema.version: module’s current schema version

For example, the com.liferay.comment.page.comments.web module’s PageCommentsPortlet class assures
upgrading to schema version 1.0.0 by defining the following reference:

@Reference(

target = "(&(release.bundle.symbolic.name=com.liferay.comment.page.comments.web)(release.schema.version=1.0.0))",

unbind = "-"

)

protected void setRelease(Release release) {

}

DependenciesbetweenOSGi services can reduce thenumberof service classes inwhichupgrade reference
annotations are needed. For example, there’s no need to add an upgrade reference in a dependent service, if
the dependency already refers to the upgrade.

1557

https://github.com/liferay/liferay-portal/blob/7.0.2-ga3/modules/apps/collaboration/comment/comment-page-comments-web/src/main/java/com/liferay/comment/page/comments/web/internal/portlet/PageCommentsPortlet.java

Note: Data verifications using the class VerifyProcess are deprecated. Verifications should be tied
schema versions. Upgrade processes are associated with schema versions but VerifyProcess instances are
not.

Nowyou knowhow to create data upgrades for all yourmodules. You specify the newdata schema version
in the bnd.bnd file, add a reference to your module and to the schema version to assure upgrade execution if
the module doesn’t use Service Builder, and add a dependency on the com.liferay.portal.upgrademodule.
For the second part of the process, you create upgrade step classes to update the database schema and
register the upgrade steps in a registrator class. That’s all there is to it!

Related Topics

Upgrade Processes for Former Service Builder Plugins
Upgrading Plugins to Liferay 7
Configuration
Migrating Data Upgrade Processes to the New Framework for Modules

117.2 Upgrade Processes for Former Service Builder Plugins
If youmodularized a traditional Liferay plugin application that implements Service Builder services, your
newmodular applicationmust register itself in the Release_ table. This is required regardless of whether
release records already exist for previous versions of the app. A Bundle Activator is the recommended way to
add a release record for the first modular version of your converted application. Here you’ll see an example
Bundle Activator and learn how to create and activate a Bundle Activator for your application.

Important: This tutorial only applies to modular applications that use Service Builder and were modu-
larized from traditional Liferay plugin applications. It does not apply to you if your application does not use
Service Builder or has never been a traditional Liferay plugin application (aWAR application).

Bundle Activator class code is dense but straightforward. Referring to an example Bundle Activator can
be helpful. Here’s the Liferay Knowledge Base application’s Bundle Activator:

public class KnowledgeBaseServiceBundleActivator implements BundleActivator {

@Override

public void start(BundleContext bundleContext) throws Exception {

Filter filter = bundleContext.createFilter(

StringBundler.concat(

"(&(objectClass=", ModuleServiceLifecycle.class.getName(), ")",

ModuleServiceLifecycle.DATABASE_INITIALIZED, ")"));

_serviceTracker = new ServiceTracker<Object, Object>(

bundleContext, filter, null) {

@Override

public Object addingService(

ServiceReference<Object> serviceReference) {

try {

BaseUpgradeServiceModuleRelease

upgradeServiceModuleRelease =

new BaseUpgradeServiceModuleRelease() {

@Override

protected String getNamespace() {

return "KB";

}

1558

@Override

protected String getNewBundleSymbolicName() {

return "com.liferay.knowledge.base.service";

}

@Override

protected String getOldBundleSymbolicName() {

return "knowledge-base-portlet";

}

};

upgradeServiceModuleRelease.upgrade();

return null;

}

catch (UpgradeException ue) {

throw new RuntimeException(ue);

}

}

};

_serviceTracker.open();

}

@Override

public void stop(BundleContext bundleContext) throws Exception {

_serviceTracker.close();

}

private ServiceTracker<Object, Object> _serviceTracker;

}

The following steps explain how to create a Bundle Activator, like the example above.

1. Create a class that implements the interface org.osgi.framework.BundleActivator.

2. Add a service tracker field:

private ServiceTracker<Object, Object> _serviceTracker;

3. Override BundleActivator’s stopmethod to close the service tracker:

@Override

public void stop(BundleContext bundleContext) throws Exception {

_serviceTracker.close();

}

4. Override BundleActivator’s startmethod to instantiate a service tracker that creates a filter to listens
for the app’s database initialization event and initializes the service tracker to use that filter. You’ll
add the service tracker initialization code in the next steps. At the end of the startmethod, open the
service tracker.

@Override

public void start(BundleContext bundleContext) throws Exception {

Filter filter = bundleContext.createFilter(

StringBundler.concat(

"(&(objectClass=", ModuleServiceLifecycle.class.getName(), ")",

ModuleServiceLifecycle.DATABASE_INITIALIZED, ")"));

1559

_serviceTracker = new ServiceTracker<Object, Object>(

bundleContext, filter, null) {

// See the next step for this code ...

};

_serviceTracker.open();

}

5. In the service tracker initialization block { // See the next step for this code ... } from the
previous step, add an addingServicemethod that instantiates a BaseUpgradeServiceModuleRelease for
describing your app. The example BaseUpgradeServiceModuleRelease instance below describes Liferay’s
Knowledge Base app:

@Override

public Object addingService(

ServiceReference<Object> serviceReference) {

try {

BaseUpgradeServiceModuleRelease

upgradeServiceModuleRelease =

new BaseUpgradeServiceModuleRelease() {

@Override

protected String getNamespace() {

return "KB";

}

@Override

protected String getNewBundleSymbolicName() {

return "com.liferay.knowledge.base.service";

}

@Override

protected String getOldBundleSymbolicName() {

return "knowledge-base-portlet";

}

};

upgradeServiceModuleRelease.upgrade();

return null;

}

catch (UpgradeException ue) {

throw new RuntimeException(ue);

}

}

The BaseUpgradeServiceModuleRelease implements the followingmethods:

• getNamespace: Returns the namespace value as specified in the former plugin’s service.xml file.
This value is also in the buildNamespace field in the plugin’s ServiceComponent table record.

• getOldBundleSymbolicName: Returns the former plugin’s name.
• getNewBundleSymbolicName: Returns the module’s symbolic name. In the module’s bnd.bnd file,
it’s the Bundle-SymbolicName value.

• upgrade: Invokes the app’s upgrade processes.

6. In the module’s bnd.bnd file, reference the Bundle Activator class you created. Here’s the example’s
Bundle Activator reference:

Bundle-Activator: com.liferay.knowledge.base.internal.activator.KnowledgeBaseServiceBundleActivator

1560

The Bundle Activator uses one of the following values to initialize the schemaVersion field in the applica-
tion’s Release_ table record:

• Current buildNumber: if there is an existing Release_ table record for the previous plugin.
• 0.0.1: if there is no existing Release_ table record.

You’ve set your service module’s data upgrade process.

Related Topics

Creating Data Upgrade Processes for Modules
Upgrading Plugins to Liferay 7

117.3 Upgrading Data Schemas in Development
As you developmodules, youmight need to iterate through several database schema changes. Before you
release newmodule versions with your finalized schema changes, youmust create a formal data upgrade
process. Until then, you can use the Build Auto Upgrade feature to test schema changes on the fly.

Note: InLiferayPortal 6.xServiceBuilderportlets, the build.auto.upgradeproperty in service.properties
applies Liferay Service schema changes upon rebuilding services and redeploying the portlets. As of 7.0, this
property is deprecated.

Liferay Digital Enterprise 7.0 Fix Pack 28, and Liferay CE Portal 7.0.4 GA5 reintroduce Build Auto
Upgrade in a new global property schema.module.build.auto.upgrade in the file [Liferay_Home]/portal-

developer.properties.

Setting the global property schema.module.build.auto.upgrade to true applies module schema changes
for redeployedmodules whose service build numbers have incremented. The build.number property in the
module’s service.properties file indicates the service build number. Build Auto Upgrade executes schema
changes without massaging existing data. It leaves data empty for created columns, drops data from deleted
and renamed columns, and orphans data from deleted and renamed tables.

Although Build Auto Upgrade updates databases quickly and automatically, it doesn’t guarantee a proper
data upgrade–you implement that via data upgrade processes. Build Auto Upgrade is for development
purposes only.

WARNING: DO NOT USE the Build Auto Upgrade feature in production. Liferay DXP DOES NOT
support Build Auto Upgrade in production. Build Auto Upgrade is for development purposes only. Enabling
it in production can result in data loss and improper data upgrade. In production environments, leave the
property schema.module.build.auto.upgrade in portal-developer.properties set to false.

By default, schema.module.build.auto.upgrade is set to false. On any module’s first deployment, the
module’s tables are generated regardless of the schema.module.build.auto.upgrade value.

The following table summarizes Build Auto Upgrade’s handling of schema changes:

Schema Change Result

Add column Create a new empty column.

1561

Schema Change Result

Rename column Drop the existing column and delete all its data.
Create a new empty column.

Delete column Drop the existing column and delete all its data.
Create or rename a table in Liferay DXP’s built-in data
source.

Orphan the existing table and all its data. Create
the new table.

Great! Now you know how to use the Build Auto Upgrade developer feature.

Related Topics

Creating Data Upgrade Process for Modules

1562

Chapter 118

Back-end Frameworks

What are back-end frameworks? Are they important? If so, why aren’t they up-front and center in the docs?
Good questions.

Back-end frameworks are analogous to supporting actors and actresses in show business. They fill out
the stories in films we know and love. As actors bring richness and life to their films, Liferay’s powerful
back-end frameworks bring essential services and deliver terrific performances of their own. Here are some
of the frameworks:

• Device Recognition
• Message Bus

These frameworks andmore deliver smashing performances and are stars in their own right.

118.1 Device Recognition API
As you know, Internet traffic has risen exponentially over the past decade, and this trend shows no sign of
stopping. In addition, the bulk of Internet traffic now comes frommobile devices. Themobile boompresents
new obstacles and challenges for content management. Howwill content adapt to different devices with
different capabilities? How can your grandma’s gnarly tablet and your cousin’s awesome new smart phone
request the same information from your portal?

TheDeviceAPIdetects the capabilities of anydevicemaking a request to your portal. It can also determine
what mobile device or operating systemwas used to make a request, and then follows rules to make Liferay
DXP render pages based on the device. Touse these features, youmust first install a device detection database
that can detect which mobile devices are accessing the portal. Liferay DXP provides such a database in the
Liferay Mobile Device Detection (LMDD) app from the Liferay Marketplace. Click here for instructions on
using Liferay Marketplace to find and install apps.

Important: OnWindows, Liferay Mobile Device Detection Enterprise must be run on a 64-bit JVM. On
all operating systems, Liferay Mobile Device Detection Enterprise requires a JVMminimummemory setting
of at least 2 gb.

You can create your own plugin that makes use of the device database. This tutorial shows you some of
the methods in the Device API that you can use to retrieve device attributes and capabilities. Now go ahead
and get started!

1563

Getting Started with the Device API

One important thing that you’ll want to get using the Device API is the Device object. You can obtain it from
the themeDisplay object like this:

Device device = themeDisplay.getDevice();

You can view the Device API. Using some of the methods from the Javadocs, here’s an example that
obtains a device’s dimensions:

Dimensions dimensions = device.getScreenSize();

float height = dimensions.getHeight();

float width = dimensions.getWidth();

Now your code can get the Device object and the dimensions of a device. Of course, this is just a simple
example. You can acquire many other device attributes that help you take care of the pesky problems that
arise when sending content to different devices. Refer to the Device Javadocsmentioned above for assistance.
Next, you’ll learn about retrieving some other device capabilities.

Getting Device Properties

With the Device API, you can detect the properties of a device making a request to your portal and then render
content accordingly. Properties refer to things that the requesting device can do. For example, you can
determine the device’s operating system, browser, form factor, and muchmore. Properties can be retrieved
with the getCapability and getCapabilitiesmethods of the Device API.

Most of the properties of the requesting device can be detected, depending on the device detection
implementation you’re using. For example, you can obtain the brand name of the device with this code:

String brand = device.getCapability("OEM");

You can grab many other device properties, including HardwareModel, HardwareName, ReleaseYear, and
ReleaseMonth. You can also get boolean values like IsMobile, IsTablet, andmanymore.

Keep inmind the Device API is an API.The underlying implementation of the Device API may change.
You can also implement your own. Thus, the device property names are specific and proprietary to the
underlying Device API implementation.

Now that you know about the Device API, you can use it to make sure that your grandma’s gnarly tablet
and your cousin’s awesome new smart phone canmake requests to your portal and receive identical content.
This will make everyone happy!

Related Topics

Using the Mobile SDK
Service Builder and Services

1564

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/mobile/device/Device.html

Chapter 119

Message Bus

If you ever need to do some data processing outside the scope of the web’s request/response, look no further
than the Message Bus. It’s conceptually similar to Java Messaging Service (JMS) Topics, but sacrifices
transactional, reliable delivery capabilities, making it much lighter-weight. Liferay DXP uses Message Bus
all over the place:

• Auditing
• Search engine integration
• Email subscriptions
• Monitoring
• Document Library processing
• Background tasks
• Cluster-wide request execution
• Clustered cache replication

You can use it too! Here are some of Message Bus’s most important features:

• publish/subscribe messaging
• request queuing and throttling
• flow control
• multi-threadmessage processing

There are also tools, such as the Java SE’s JConsole, that canmonitor Message Bus activities.
TheMessage Bus topics are covered in these tutorials:

• Messaging Destinations
• Message Listeners
• SendingMessages

Since all messages are sent to and received at destinations,messaging destinations is worth exploring
first.

1565

Figure 119.1: JConsole shows statistics on Message Bus messages sent, messages pending, and more.

119.1 Messaging Destinations

In Message Bus, you sendmessages to destinations. A destination is a named logical (not physical) location.
Sender classes sendmessages to destinations, while listener classes wait to receive messages at the destina-
tions. In this way, the sender and recipient don’t need to know each other–they’re loosely coupled. Here are
the messaging destination topics this tutorial covers:

• Destination configuration
• Creating a destination
• Messaging event listeners

It’s time to configure a destination.

Destination Configuration

Each destination has a name and type and can have several other attributes. The destination type determines
whether there’s a message queue, the kinds of threads involved with a destination, and the message delivery
behavior to expect at the destination.

Here are the primary destination types:

1566

• Parallel Destination

– Messages sent here are queued.

– Multipleworker threads froma threadpool deliver eachmessage to a registeredmessage listener.
There’s one worker thread per message per message listener.

• Serial Destination

– Messages sent here are queued.

– Worker threads from a thread pool deliver the messages to each registered message listener,
one worker thread per message.

• SynchronousDestination

– Messages sent here are directly delivered to message listeners.

– The thread sending the message here delivers the message to all message listeners also.

Liferay has preconfigured destinations for various purposes. The DestinationNames class defines String
constants for each of them. For example, DestinationNames.HOT_DEPLOY (value is "liferay/hot_deploy") is for
deployment event messages. Since destinations are tuned for specific purposes, don’t modify them.

Destinations are based on DestinationConfiguration instances. The configuration specifies the destina-
tion type, name, and these destination- related attributes:

MaximumQueue Size: limits the number of queuedmessages for the destination.
Rejected Execution Handler: A com.liferay.portal.kernel.concurrent.RejectedExecutionHandler in-

stance can take action (e.g., log warnings) regarding rejected messages when the destination queue is
full.

Workers Core Size: initial number of worker threads for processing messages.
WorkersMax Size: limits the number of worker threads for processing messages.
The DestinationConfiguration class provides these static methods for creating the various types of con-

figurations.

• createParallelDestinationConfiguration(String destinationName)

• createSerialDestinationConfiguration(String destinationName)

• createSynchronousDestinationConfiguration(String destinationName)

You can also use the DestinationConfiguration constructor to create a configuration for any destination
type, even your own.

1567

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationNames.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationConfiguration.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/concurrent/RejectedExecutionHandler.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/concurrent/RejectedExecutionHandler.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationConfiguration.html#DestinationConfiguration-java.lang.String-java.lang.String-

Creating a Destination

Message Bus destinations are based on destination configurations and registered as OSGi services. Message
Bus detects the destination services andmanages their associated destinations.

Here are the general steps for creating a destination. The example configurator class that follows demon-
strates these steps.

1. Create a destination configuration using one of DestinationConfiguration’s static create*methods or
its constructor. Set any attributes that apply to the destinations you’ll create with it.

2. Create adestinationby invoking the DestinationFactorymethod createDestination(DestinationConfiguration),
passing in the destination configuration you created in the previous step.

3. Register the destination as an OSGi service by invoking the BundleContextmethod registerService,
passing in the following parameters.

• Destination class Destination.class
• Your Destination object
• A Dictionary of properties defining the destination, including the destination.name

4. Manage the destination object and service registration resources using a collection, such as a
Map<String, ServiceRegistration<Destination>>. Keeping references to these resources is helpful
for when you’re ready to unregister and destroy them. The deactivate method in example below
demonstrates this.

Here’s an example messaging configurator component that creates and registers a parallel destination
andmanages its resources:

@Component (

immediate = true,

service = MyMessagingConfigurator .class

)

public class MyMessagingConfigurator {

@Activate

protected void activate(BundleContext bundleContext) {

_bundleContext = bundleContext;

// Create a DestinationConfiguration for parallel destinations.

DestinationConfiguration destinationConfiguration =

new DestinationConfiguration(

DestinationConfiguration.DESTINATION_TYPE_PARALLEL,

"myDestinationName");

// Set the DestinationConfiguration's max queue size and

// rejected execution handler.

destinationConfiguration.setMaximumQueueSize(_MAXIMUM_QUEUE_SIZE);

RejectedExecutionHandler rejectedExecutionHandler =

new CallerRunsPolicy() {

@Override

public void rejectedExecution(

Runnable runnable, ThreadPoolExecutor threadPoolExecutor) {

1568

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationFactory.html
https://osgi.org/javadoc/r4v43/core/org/osgi/framework/BundleContext.html

if (_log.isWarnEnabled()) {

_log.warn(

"The current thread will handle the request " +

"because the graph walker's task queue is at " +

"its maximum capacity");

}

super.rejectedExecution(runnable, threadPoolExecutor);

}

};

destinationConfiguration.setRejectedExecutionHandler(

rejectedExecutionHandler);

// Create the destination

Destination destination = _destinationFactory.createDestination(

kaleoGraphWalkerDestinationConfiguration);

// Add the destination to the OSGi service registry

Dictionary<String, Object> properties = new HashMapDictionary<>();

properties.put("destination.name", destination.getName());

ServiceRegistration<Destination> serviceRegistration =

_bundleContext.registerService(

Destination.class, destination, properties);

// Track references to the destination service registrations

_serviceRegistrations.put(destination.getName(),

serviceRegistration);

}

@Deactivate

protected void deactivate() {

// Unregister and destroy destinations this component unregistered

for (ServiceRegistration<Destination> serviceRegistration :

_serviceRegistrations.values()) {

Destination destination = _bundleContext.getService(

serviceRegistration.getReference());

serviceRegistration.unregister();

destination.destroy();

}

_serviceRegistrations.clear();

}

@Reference

private DestinationFactory _destinationFactory;

private final Map<String, ServiceRegistration<Destination>>

_serviceRegistrations = new HashMap<>();

}

On activation, the example configurator above does these things:

1. Creates a DestinationConfiguration for parallel destinations.

1569

2. Sets the DestinationConfiguration’s max queue size and a rejected execution handler.

3. Uses the DestinationFactory (the one bound to the _destinationFactoryfield) to create the destination.

4. Adds the destination to the OSGi service registry

5. Adds the destination service registration to a map for managing them.

Once the destination is registered,Message Bus detects its service andmanages the destination. On
the example configurator’s deactivation, its deactivatemethod unregisters the destination services and
destroys the destinations.

As an added bonus to creating destinations, you can create classes that listen for new destinations and
newmessage listeners. You might want to create such listeners to keep up to log the deployment of new
message bus endpoints.

Messaging Event Listeners

There are Message Bus framework interfaces that let you listen for new destinations andmessage listeners.

Listening for new Destinations

The Message Bus notifies Message Bus Event Listeners when destinations are added and removed. To
register these listeners, publish a MessageBusEventListener instance to the OSGi service registry (e.g., via an
@Component annotation).

@Component(

immediate = true,

service = MessageBusEventListener.class

)

public class MyMessageBusEventListener implements MessageBusEventListener {

void destinationAdded(Destination destination) {

...

}

void destinationDestroyed(Destination destination) {

...

}

}

Listening for newmessage listeners is easy too.

Listening for new Message Listeners

TheMessage Bus notifies DestinationEventListener instances whenmessage listeners are either registered
or unregistered to destinations. To register a listener to a destination, publish a DestinationEventListener
service to the OSGi service registry, making sure to specify the destination’s destination.name property.

@Component(

immediate = true,

property = {"destination.name=myCustom/Destination"},

service = DestinationEventListener.class

)

public class MyDestinationEventListener implements DestinationEventListener {

void messageListenerRegistered(String destinationName,

MessageListener messageListener) {

...

1570

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/MessageBusEventListener.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationEventListener.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationEventListener.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationEventListener.html

}

void messageListenerUnregistered(String destinationName,

MessageListener messageListener) {

...

}

}

And that’s how you listen for new destinations andmessage listeners.
Now you understand the different destination types, how to create and register destinations, and how

tomanage destination resources. Once you deploy your destination, registeredmessage listeners receive
messages sent to it.

Related Topics

Message Listeners
SendingMessages

119.2 Message Listeners

If you’re interested in messages sent to a destination, you need to “listen” for them. That is, you must create
and register a message listener for the destination.

To create a message listener, implement the MessageListener interface and override its receive(Message)
method to process messages your way.

public void receive(Message message) {

// Process messages your way

}

Here are the ways to register your listener with Message Bus:

• Automatic Registration as a Component: Publish the listener to the OSGi registry as a Declarative
Services Component that specifies a destination. Message Bus automatically wires the listener to the
destination.

• Registering viaMessageBus: Obtain a reference to the Message Bus and use it directly to register the
listener to a destination.

• Registering directly to aDestination: Obtain a reference to a specific destination and use it directly to
register the listener with that destination.

Note: The DestinationNames class defines String constants for Liferay’s preconfigured destinations.

The Declarative Services component module provides the easiest way to register a message listener.

Automatic Registration as a Component

You can specify a message listener in the Declarative Services (DS) @Component annotation:

1571

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/MessageListener.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/DestinationNames.html

@Component (

immediate = true,

property = {"destination.name=myCustom/Destination"},

service = MessageListener.class

)

public class MyMessageListener implements MessageListener {

...

public void receive(Message message) {

// Handle the message

}

}

TheMessageBus listens for MessageListener service components like this one to publish themselves to the
OSGi service registry. The attribute immediate = true tells the OSGi framework to activate the component
as soon as its dependencies resolve. Message Bus wires each registered listener to the destination its
destination.name property specifies. If the destination is not yet registered,Message Bus queues the listener
until the destination registers.

Registration as a component is the preferred way to register message listeners to destinations.

Registering via MessageBus

You can use the MessageBus instance directly to register message listeners to destinations. Youmight want to
do this if, for example, youwant to create some special proxywrappers. Here’s a registrator that demonstrates
registering a listener this way:

@Component (

immediate = true,

service = MyMessageListenerRegistrator.class

)

public class MyMessageListenerRegistrator {

...

@Activate

protected void activate() {

_messageListener = new MessageListener() {

public void receive(Message message) {

// Handle the message

}

};

_messageBus.registerMessageListener("myDestinationName",

_messageListener);

}

@Deactivate

protected void deactivate() {

_messageBus.unregisterMessageListener("myDestinationName",

_messageListener);

}

@Reference

private MessageBus _messageBus;

private MessageListener _messageListener;

}

The _messageBus field’s @Reference annotation binds it to the MessageBus instance. The activatemethod
creates the listener and uses theMessage Bus to register the listener to a destination named "myDestination".
When this registrator component is destroyed, the deactivatemethod unregisters the listener.

1572

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/MessageBus.html

Registering directly to the Destination

You can use a Destination instance to register a listener to that destination. Youmight want to do this if, for
example, you want to create some special proxy wrappers. Here’s a registrator that demonstrates registering
a listener this way:

@Component (

immediate = true,

service = MyMessageListenerRegistrator.class

)

public class MyMessageListenerRegistrator {

...

@Activate

protected void activate() {

_messageListener = new MessageListener() {

public void receive(Message message) {

// Handle the message

}

};

_destination.register(_messageListener);

}

@Deactivate

protected void deactivate() {

_destination.unregister(_messageListener);

}

@Reference(target = "(destination.name=someDestination)")

private Destination _destination;

private MessageListener _messageListener;

}

The _destination field’s @Reference annotation binds it to a destination named "someDestination". The
activatemethod creates the listener and registers it to the destination. When this registrator component is
destroyed, the deactivatemethod unregisters the listener.

Now you know how to create and register message listeners for receiving messages sent to the destina-
tions.

Related Topics

Messaging Destinations
SendingMessages

119.3 Sending Messages

Message Bus lets you sendmessages to destinations that have any number of listening classes. As a message
sender you don’t need to know the message recipients. Instead, you focus on creating message content
(payload) and sending messages to destinations.

You can also sendmessages in a synchronous or asynchronous manner. The synchronous option waits
for a response that the message was received or that it timed out. The asynchronous option gives you the
“fire and forget” behavior; send the message and continue processing without waiting for a response.

Here are the message sending topics:

1573

• Creating a message
• Sending a message (the way you want)
• Sending messages across a cluster

Start by creating a message.

Creating a Message

Here’s how to create a message:

1. Call the Message constructor.

Message message = new Message();

2. Populate the message with a String or Object payload

• String payload: message.setPayload("Message Bus is great!")

• Object payload: message.put("firstName", "Joe")

3. To receive responses at a particular location, set both of these attributes

• Response destination name: setResponseDestinationName(String)

• Response ID: setResponseId(String)

Your newmessage is ready to send.

Sending a Message

Here are the ways to send amessage:

• Directly using the MessageBus
• Asynchronously using a SingleDestinationMessageSender
• Using a SynchronousMessageSender

First, let’s consider usingMessage Bus directly.

Directly Using the Message Bus

Thismethod involves obtaining a MessageBus instance and invoking it to sendmessages. Here’s an example
of directly usingMessage Bus to send amessage.

@Component(

immediate = true,

service = SomeServiceImpl.class

)

public class SomeServiceImpl {

...

public void sendSomeMessage() {

Message message = new Message();

message.put("myId", 12345);

1574

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/Message.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/MessageBus.html

message.put("someAttribute", "abcdef");

_messageBus.sendMessage("myDestinationName", message);

}

@Reference

private MessageBus _messageBus;

}

To sendmessages asynchronously, consider using SingleDestinationMessageSender.

Using SingleDestinationMessageSender

The SingleDestinationMessageSender class wraps theMessage Bus to sendmessages asynchronously. This
class demonstrates using a SingleDestinationMessageSender:

@Component(

immediate = true,

service = SomeServiceImpl.class

)

public class SomeServiceImpl {

...

public void sendSomeMessage() {

Message message = new Message();

message.put("myId", 12345);

message.put("someValue", "abcdef");

SingleDestinationMessageSender messageSender =

_messageSenderFactory.createSingleDestinationMessageSender("myDestinationName");

messageSender.send(message);

}

@Reference

private SingleDestinationMessageSenderFactory _messageSenderFactory;

}

The _messageSenderFactory field’s @Reference wires it to a SingleDestinationMessageSenderFactory

instance. The method sendSomeMessage creates a message, uses the _messageSenderFactory to create a
SingleDestinationMessageSender for the specified destination, and sends the message through the sender.

Using a SynchronousMessageSender

A SynchronousMessageSender instance sends a message to the Message Bus and blocks until receiving a re-
sponse or the response times out. A SynchronousMessageSender has these operating modes:

• DEFAULT: Delivers the message in a separate thread and also provides timeouts, in case the message is
not delivered properly.

• DIRECT: Delivers the message in the same thread of execution and blocks until it receives a response.

Here’s an example of using SynchronousMessageSender in DEFAULTmode.

@Component(

immediate = true,

service = SomeServiceImpl.class

)

public class SomeServiceImpl {

...

1575

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/sender/SingleDestinationMessageSender.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/sender/SynchronousMessageSender.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/messaging/sender/SynchronousMessageSender.Mode.html

public void sendSomeMessage() {

Message message = new Message();

message.put("myId", 12345);

message.put("someAttribute", "abcdef");

SingleDestinationSynchronousMessageSender messageSender =

_messageSenderFactory.createSingleDestinationSynchronousMessageSender(

"myDestinationName", SynchronousMessageSender.Mode.DEFAULT);

messageSender.send(message);

}

@Reference

private SingleDestinationMessageSenderFactory _messageSenderFactory;

}

And those are the ways to send messages. Next, if you’re in a cluster and want messages sent to a
destination across all nodes, youmust register a bridge message listener to that destination.

Sending Messages Across the Cluster

To ensure a message sent to a destination is received by all cluster nodes, you must register a
ClusterBridgeMessageListener at that destination. This bridges the local destination to the cluster.

Here’s amessage listener registrator that bridges a destination for distributingmessages to all the cluster
nodes.

@Component(

immediate = true,

service = MyMessageListenerRegistrator.class

)

public class MyMessageListenerRegistrator {

...

@Activate

protected void activate() {

_clusterBridgeMessageListener = new ClusterBridgeMessageListener();

_clusterBridgeMessageListener.setPriority(Priority.LEVEL_5)

_destination.register(_clusterBridgeMessageListener);

}

@Deactivate

protected void deactivate() {

_destination.unregister(_clusterBridgeMessageListener);

}

@Reference(target = "(destination.name=liferay/live_users)")

private Destination _destination;

private MessageListener _clusterBridgeMessageListener;

}

The destination named "liferay/live_users" is bound to the _destination field. The activatemethod
creates a ClusterBridgeMessageListener, sets its priority queue, and registers it to the destination. Messages
sent to the destination are distributed across the cluster’s JVMs.

The com.liferay.portal.kernel.cluster.Priority class has ten levels (Level_1 through Level_10, with
Level 10 being the most important). Each level is a priority queue for sending messages through the

1576

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/cluster/messaging/ClusterBridgeMessageListener.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/cluster/Priority.html

cluster. This is similar in concept to thread priorities: Thread.MIN_PRIORITY, Thread.MAX_PRIORITY, and
Thread.NORM_PRIORITY.

That concludes the tour on sendingmessages. You’ve learned how to create messages, sendmessages
synchronously and asynchronously, and sendmessages to a destination in a clustered environment.

Related Topics

Messaging Destinations
Message Listeners

1577

Chapter 120

Audience Targeting

Liferay’s Audience Targeting application lets you monitor your users. You can organize them into user
segments, target specific content to those user segments, and create campaigns to expose user segments to a
certain set of assets. Visit the Targeting Content to your Audience section for more information on Audience
Targeting and how to use it.

Although the Audience Targeting app can be configured to monitor your audience out of the box, it is
also designed as a framework to be extended by developers.

There are a set of extensions that can be easily hooked by creating other hot-deployable plugins.
These extension points include

• Rule Types
• Report Types
• Report Metrics

Audience Targeting extensions are created using OSGi modules. There are convenient Blade CLI tem-
plates for creating these projects, but you can create the modules any way you want. To use the templates,
see the Blade CLI tutorials.

In this section’s tutorials, you’ll learn how to create these extension points for your Audience Targeting
application.

120.1 Accessing the Content Targeting API

The Audience Targeting application can be used to show relevant content to users based on profiles. You
mightwant to take the next step anduse theContent TargetingAPI. For instance, you could list user segments
in your own application or update a campaign when someone creates a calendar event. Using the Content
Targeting API, you can unleash the power of Audience Targeting to the realms outside of Liferay’s default
applications.

In this tutorial, you’ll learn how to give your application access to the Content Targeting API.Then you
can view some examples of how to use the Java and JSON APIs that are available.

1579

https://www.liferay.com/marketplace/-/mp/application/43707761

Exposing the Content Targeting API

Configuring your app to have access to the Content Targeting API requires only one line of code. This line of
code is a dependency that should be added to your Gradle project. Follow the instructions below to add the
Content Targeting API dependency.

1. Open the build.gradle file in your app’s project folder.

2. Find the dependencies declaration and add the following line within that declaration:

provided group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.api", version: "4.0.0"

The complete declaration should look like this:

dependencies {

...

provided group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.api", version: "4.0.0"

}

Your app now has access to the Content Targeting API and can take advantage of everything Audience
Targeting has to offer. In the next section, you’ll learn how to use the Content Targeting API by studying a
few examples.

Using the Content Targeting Java API

There are two ways to call the Content Targeting API: through the Java API or through the JSON API.
Suppose you’d like to display a list of existing user segments in your portlet. First you need to obtain an

implementation of the UserSegmentLocalService provided by Audience Targeting. You can do this by adding
the following code to your Portlet class (e.g., the class that extends the MVCPortlet class):

@Reference(unbind = "-")

protected void setUserSegmentLocalService(

UserSegmentLocalService userSegmentLocalService) {

_userSegmentLocalService = userSegmentLocalService;

}

private UserSegmentLocalService _userSegmentLocalService;

When an implementation of the UserSegmentLocalService is available (i.e., the Audience Targeting app
has been installed) the _userSegmentLocalService field is populated. Otherwise, the portlet won’t be available
till this dependency is resolved.

It’s a good practice to access Audience Targeting services this way instead of using util classes (e.g.,
UserSegmentLocalServiceUtil.java). You can take advantage of dependencymanagement, and you alsowon’t
be tied to a specific implementation of the service.

The next step is to use the service to obtain a list of existing user segments andmake it available to your
view layer as a request attribute. To do this, add logic to your portlet class that obtains user segments and
exposes them as a request attribute, like this:

ThemeDisplay themeDisplay = (ThemeDisplay)renderRequest.getAttribute(

WebKeys.THEME_DISPLAY);

List<UserSegment> userSegments = null;

try {

1580

userSegments = _userSegmentLocalService.getUserSegments(

themeDisplay.getScopeGroupId());

}

catch (Exception e) {

_log.error(e, e);

}

renderRequest.setAttribute("userSegments", userSegments);

private static final Log _log = LogFactoryUtil.getLog(MyPortlet.class)

Notice that the userSegments list is populated by calling UserSegmentLocalService’s getUserSegments

method. This service is part of the Content Targeting API.
To finish off this example, some logic needs to be added to your portlet’s view.jsp:

<h2>User Segments</h2>

<%

List<UserSegment> userSegments = (List<UserSegment>)request.getAttribute("userSegments");

for (UserSegment userSegment : userSegments) {

%>

<%= userSegment.getName(locale) %>

<%

}

%>

This logic uses the UserSegment object to list the existing user segments. That’s it! By importing the
UserSegment and UserSegmentLocalService classes into your files, you have direct access to your portal’s user
segments through the Content Targeting Java API.

Using the Content Targeting JSON API

Suppose you’d like to show a list of existing campaigns in your portlet using the JSON API. You could do this
by opening your portlet’s view.jsp file and using the following code:

<h2>Campaigns</h2>

<ul id="<portlet:namespace/>campaigns">

<aui:script use="aui-base">

var campaignsList = A.one('#<portlet:namespace/>campaigns');

Liferay.Service(

'/ct.campaign/get-campaigns',

{

groupId: '<%= scopeGroupId %>'

},

function(response) {

if (response.length) {

A.Array.each(response, function(item) {

campaignsList.append('' + item.name + '');

});

}

}

);

</aui:script>

1581

Notice that the Content Targeting API is called to retrieve the existing campaigns:

...

Liferay.Service(

'/ct.campaign/get-campaigns',

{

...

Then, each campaign is listed in the campaignsList and displayed in your portlet for users to see.
If you’d like to view all the available methods (with examples) exposed in the JSON API by Audience

Targeting, you can visit the /api/jsonws URL (e.g., localhost:8080/api/jsonws). As you can see, accessing
the Content Targeting JSON API is just as easy as accessing the related Java API.

You’ve learned how easy it is to expose the Content Targeting API and use it in your application to unleash
its power!

Related Topics

Creating New Audience Rule Types
Targeting Content to Your Audience
Running Service Builder and Understanding the Generated Code

120.2 Creating New Audience Targeting Rule Types

In the Audience Targeting application, a User Segment is defined as a group of users thatmatch a set of rules.
Out of the box, Liferay provides several types of rules that are based on characteristics such as age range,
gender, location, and so on. You combine these rules to create User Segments. For example, if you want to
target probable buyers of a shoe that has a particular style, youmight create a User Segment composed of
Females over 40 who live in urban areas.

The Audience Targeting app ships with many rules you can use make up User Segments, but it’s also
extensible. This means that if there isn’t a rule that already fits your case, you can create it yourself!

Creating a rule type involves targeting what youwant to evaluate. Suppose you own anOutdoor Sporting
Goods store. On your website, you’d like to promote goods that are appropriate for the current weather. If
a user is from Los Angeles and it’s raining the day he or she visits your website, you could show that user
new umbrellas. If it’s sunny, however, you could show the user sunglasses instead. For this example, your
evaluation entity would be weather based on the user’s location. Tomake this work, you’ll need to do two
things:

1. Retrieve the user’s location so you can obtain that location’s weather.

2. Let administrators set the value that should be compared with the user’s current weather, using a UI
component like a selection list of weather options.

With this design, an administrator can set rainy as the value for the rule, and the rule could be added to a
user segment targeted for rain-related goods. When users visit your site, their user segment assignments
come frommatching the weather in their current locations with the rule’s preset weather value (rainy). On a
match, you show rain-related content; otherwise, the user is part of a different User Segment and sees that
segment’s content, like a promotion for sunglasses.

Now that you have an idea of how to plan your custom rule’s development, you’ll begin creating one
yourself!

1582

Figure 120.1: This diagram breaks down the evaluation process for the weather rule.

1583

Creating a Custom Rule Type

Adding a new type of rule to the Audience Targeting application is easy. First, you must create a module and
ensure it has the necessary Content Targeting API dependencies.

1. Create a module project for deploying a rule. A Blade CLI content-targeting-rule template is available
to help you get started quickly. It sets the default configuration for you, and it contains boilerplate
code so you can skip the file creation steps and get started right away.

2. Make sure your module specifies the dependencies necessary for an Audience Targeting rule. For
example, you should specify the Content Targeting API and necessary Liferay packages. For example,
this is the example build.gradle file used from a Gradle based rule:

dependencies {

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.analytics.api", version: "3.0.0"

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.anonymous.users.api", version: "2.0.2"

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.api", version: "4.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.3.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

You can learn more about exposing the Content Targeting API in the Accessing the Content Targeting
API tutorial. Once you’ve created your module and specified its dependencies, you’ll need to define
your rule’s behavior. How your rule behaves is controlled by a Java class file that you create.

3. Create a unique package name in the module’s src directory, and create a new Java class in
that package. To follow naming conventions, your class name should begin with the rule name
you’re creating, and end with Rule (e.g., WeatherRule.java). Your Java class should implement the
com.liferay.content.targeting.api.model.Rule interface.

It is required to implement the Rule interface, but there are Rule extension classes that provide helpful
utilities that you can extend. For example, your rule can extend the BaseJSPRule class to support
generating your rule’s UI using JSPs. This tutorial demonstrates implementing the UI using a JSP, and
assumes the Rule interface is implemented by extending the BaseJSPRule class. For more information
on choosing a UI for your rule, see the Selecting a UI Technology section.

4. Directly above the class’s declaration, insert the following code:

@Component(immediate = true, service = Rule.class)

This annotation declares the implementation class of the Component and specifies to immediately
start the module once deployed to Liferay DXP.

Now that your Java class is set up, you’ll need to define how your rule works by implementing the Rule
interface’s methods. You’ll begin implementing these methods next.

Note: If you’re planning on developing a social rule type that classifies users based on their social network
profile, it’s important to remember that the specific social network’s SSO (Single Sign On) must be enabled
and configured properly. Visit the Social Rules section for more details.

The first thing you’ll define in your weather rule is the view/save lifecycle.

1584

@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/Rule.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/Rule.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseJSPRule.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/Rule.html

Defining a Rule's View/Save Lifecycle

This section covers how to define a rule’s view/save lifecycle. This is when a user applies a rule to a user
segment using the User Segment Editor.

In this section, you’ll begin defining the weather rule’s Java class. This assumes that you followed the
instructions above, creating the WeatherRule class and extending BaseJSPRule. If you used the content-
targeting-rule Blade CLI template, your project is already extending BaseJSPRule and has a default view.jsp
file already created.

1. Add the activation and deactivation methods to your class.

@Activate

@Override

public void activate() {

super.activate();

}

@Deactivate

@Override

public void deActivate() {

super.deActivate();

}

Thesemethods call the super class BaseRule to implement necessary logging and processing for when
your rule starts and stops. Make sure to include the @Activate and@Deactivate annotations, which
are required.

2. Define the category for the Rule when displayed in the User Segment Editor.

@Override

public String getRuleCategoryKey() {

return SessionAttributesRuleCategory.KEY;

}

This code puts theweather rule in the Session Attributes category. To put your rule into the appropriate
category, use the getRuleCategoryKeymethod to return the category class’s key. Available category
classes include BehaviourRuleCategory, SessionAttributesRuleCategory, SocialRuleCategory, and
UserAttributesRoleCategory.

3. Add the followingmethod:

@Override

protected void populateContext(

RuleInstance ruleInstance, Map<String, Object> context,

Map<String, String> values) {

String weather = "";

if (!values.isEmpty()) {

weather = GetterUtil.getString(values.get("weather"));

}

else if (ruleInstance != null) {

weather = ruleInstance.getTypeSettings();

}

context.put("weather", weather);

}

1585

@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseJSPRule.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseRule.html
https://osgi.org/javadoc/r6/cmpn/org/osgi/service/component/annotations/Activate.html
https://osgi.org/javadoc/r6/cmpn/org/osgi/service/component/annotations/Deactivate.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/rule/categories/BehaviorRuleCategory.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/rule/categories/SessionAttributesRuleCategory.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/rule/categories/SocialRuleCategory.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/rule/categories/UserAttributesRuleCategory.html

Figure 120.2: This example Weather rule was modified to reside in the Session Attributes category.

To understandwhat this method accomplishes, you’ll need to examine the rule’s configuration lifecycle.

When the user opens the User Segment Editor, the render phase begins for the rule. The
getFormHTML(...) method retrieves the HTML to display. You don’t have to worry about implementing
this method because it’s already implemented in the BaseJSPRule class you’re extending. The
getFormHTMLmethod calls the populateContext(...) method.

You’ll notice the populateContextmethod is not available in the Rule interface. This is because it’s not
needed in all cases. It’s available by extending the BaseJSPRule class, and you’ll need to add more logic
to it for the weather rule.

The goal of the populateContextmethod is to generate a map with all the parameters your JSP view
needs to render the rule’s HTML.This map is stored in the context variable, which is pre-populated
with basic values in the Portlet logic, and then each rule contributes its specific parameters to it. The
populateContextmethod above populates a weather context variable with the weather values from the
valuesmap parameter, which is then passed to the JSP.

1586

@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseJSPRule.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/Rule.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseJSPRule.html

Figure 120.3: An Audience Targeting rule must be configured by the user and processed before it can become part of a User Segment.

For the weather rule, the populateContextmethod accounts for three use cases:

a. The rule was added but has no set values yet. In this case, the default values defined by the
developer are injected (e.g., weather="").

b. The rule was added and a value is set, but the request failed to complete (e.g., due to an error).
In this case, the values parameter of the populateContextmethod contains the values that were
intended to be saved, and they are injected so that they are displayed in the rule’s view together
with the error message.

c. The rule was added and a value was successfully set. In this case, the values parameter is empty,
and you have to obtain the values from storage that the form should display and inject them in
the context so they’re displayed in the rule’s HTML.The weather rule uses the typeSettings field
of the rule instance, but complex rules could use services to store values.

You can think of the populateContextmethod as the intermediary between your JSP and your backend
code. You can see how to create the weather rule’s UI using a JSP by seeing the Defining the Rule’s UI
section. Once the HTML is successfully retrieved and the user has set the weather value and clicked
Save, the action phase begins.

1587

4. Add the followingmethod:

@Override

public String processRule(

PortletRequest portletRequest, PortletResponse portletResponse,

String id, Map<String, String> values) {

return values.get("weather");

}

The processRule(...) method is invoked when the action phase is initiated. The values parameter
only contains the value(s) the user added in the form. The logic you could add to a processRulemethod
is outlined below.

a. Obtain the value(s) from the values parameter.

b. (Optional) Validate the data consistency and possible errors. If anything is wrong, throw an
InvalidRuleException and prohibit the values from being stored. In the weather rule scenario,
when the rule is reloaded after an exception is thrown in the form, case 3b from the previous
step occurs.

c. Return the value to be stored in the rule instance’s typeSettings field. The typeSettings field
is managed by the framework in the Rule Instance table. If your rule has its own storage
mechanism, then you should call your services in the processRulemethod.

Once the rule processing ends, the form is reloaded and the lifecycle restarts again. The value(s)
selected in the rule are stored and are ready to be accessed once user segment evaluation begins.
There are a couple more methods you’ll need to add to the WeatherRule class before defining the rule’s
evaluation.

5. Define a way to retrieve the rule’s localized summary. Inmany instances, you can do this by combining
keys in the rule’s resource bundle with the information stored for the rule. For the weather rule, you
can return the rule’s type settings, which contains the selected weather condition.

@Override

public String getSummary(RuleInstance ruleInstance, Locale locale) {

return ruleInstance.getTypeSettings();

}

6. Set the servlet context for your rule.

@Override

@Reference(

target = "(osgi.web.symbolicname=weather)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

This is only required for rules extending the BaseJSPRule class. The servlet context must be set for
the rule to render its own JSP files. The setServletContextmethod is invoked automatically when the
rule module is installed and resolved in Liferay. Make sure the osgi.web.symbolicname in the target
property of the @Reference annotation is set to the same value as the Bundle-SymbolicName defined in
the bnd.bnd file of the module.

Next, you’ll learn how to evaluate a rule that is configured and saved to a user segment.

1588

@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/exception/InvalidRuleException.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseJSPRule.html

Evaluating a Rule

Imagine an administrator has successfully configured and saved your custom rule to his or her user segment.
Now what? Your rule needs to fulfill its purpose, which is to evaluate the preset weather value compared to a
user’s weather value visiting the site. If the user’s value matches the preset value (along with the segment’s
other rules), that user is added to the user segment.

1. Youmust implement the evaluate(...) rule to begin the evaluation process. Thismethod is part of the
user segmentation lifecycle. When a page is loaded, Liferay invokes the evaluatemethod of the rule to
determine if the current user belongs to the user segment. For the weather rule, add this evaluate
method:

@Override

public boolean evaluate(

HttpServletRequest request, RuleInstance ruleInstance,

AnonymousUser anonymousUser)

throws Exception {

String userWeather = getUserWeather(anonymousUser);

String weather = ruleInstance.getTypeSettings();

if (Validator.equals(userWeather, weather)) {

return true;

}

return false;

}

You acquire the user’s weather by calling the getUserWeathermethod, which you’ll define later. Then
you get the preset weather value by accessing the rule instance’s typeSettings parameter. Finally, you
compare the two values. If they match, return true; otherwise return false. Remember that users are
only added to User Segments when all the Rules in the User Segment return true.

2. Next, you need to retrieve the user’s weather. As you learned earlier, youmust access the user’s location
first. Add the logic below to do this.

protected String getCityFromUserProfile(long contactId, long companyId)

throws PortalException, SystemException {

List<Address> addresses = AddressLocalServiceUtil.getAddresses(companyId, Contact.class.getName(), contactId);

if (addresses.isEmpty()) {

return null;

}

Address address = addresses.get(0);

return address.getCity() + StringPool.COMMA + address.getCountry().getA2();

}

This method retrieves the location by accessing the user’s profile information. You could also have
used a geo-location service to find this by the user’s IP address. Once you have the user’s location, you
can find the current weather for that location.

3. Add the followingmethod to retrieve a user’s weather forecast.

1589

protected String getUserWeather(AnonymousUser anonymousUser)

throws PortalException, SystemException {

User user = anonymousUser.getUser();

String city = getCityFromUserProfile(user.getContactId(), user.getCompanyId());

Http.Options options = new Http.Options();

String location = HttpUtil.addParameter(API_URL, "q", city);

location = HttpUtil.addParameter(location, "format", "json");

options.setLocation(location);

int weatherCode = 0;

try {

String text = HttpUtil.URLtoString(options);

JSONObject jsonObject = JSONFactoryUtil.createJSONObject(text);

weatherCode = jsonObject.getJSONArray("weather").getJSONObject(0).getInt("id");

}

catch (Exception e) {

_log.error(e);

}

return getWeatherFromCode(weatherCode);

}

private static Log _log = LogFactoryUtil.getLog(WeatherRule.class);

Thismethod calls the getCityFromUserProfilemethod to acquire the user’s location. Then it retrieves
the weather code for that location from a weather service.

4. Set the API_URL field to the OpenWeather Map’s API URL:

private static final String API_URL = "http://api.openweathermap.org/data/2.5/weather";

For the weather rule, you can access OpenWeather Map’s APIs to retrieve the weather code.

5. The last thing is to convert the weather code to a string you can evaluate (e.g., sunny). Add the following
method to convert OpenWeather Map’s weather codes:

protected String getWeatherFromCode(int code) {

if (code == 800 || code == 801) {

return "sunny";

}

else if (code > 801 && code < 805) {

return "clouds";

}

else if (code >= 600 && code < 622) {

return "snow";

}

else if (code >= 500 && code < 532) {

return "rain";

}

return null;

}

All possible weather codes are here.

1590

http://openweathermap.org/weather-conditions

Excellent! You’ve implemented the evaluatemethod and added the necessary logic in your -Rule class to
acquire a user’s local weather. The weather rule’s behavior is defined and complete. The last thing you need
to do is create a JSP template.

Defining the Rule's UI

The Java code you’ve added to this point has assumed that a preset weather value is available for com-
paring during the evaluation process. To let administrators set that value, you must define a UI so your
rule can be configured during the view/save lifecycle. Create a view.jsp file in your rule’s module (e.g.,
/src/main/resources/META-INF/resources/view.jsp) and add the following logic:

<%

Map<String, Object> context = (Map<String, Object>)request.getAttribute("context");

String weather = (String)context.get("weather");

%>

<aui:fieldset>

<aui:select name="weather" value="<%= weather %>">

<aui:option label="sunny" value="sunny" />

<aui:option label="clouds" value="clouds" />

<aui:option label="snow" value="snow" />

<aui:option label="rain" value="rain" />

</aui:select>

</aui:fieldset>

The weather variable in the contextmap should be set for the weather rule. When the user selects an
option, it’s passed from the view template to the populateContextmethod.

Figure 120.4: The weather rule uses a select drop-down box to set the weather value.

Theweather rule uses JSP templates to display the rule’s view. Audience Targeting, however, is compatible
with any UI technology. Visit the Selecting a UI Technology section for details on how to use other UI
technologies like FreeMarker.

Congratulations! You’ve created the weather rule and can now target users based on their weather
conditions. You can view the finished version of the weather rule by downloading its ZIP file.

Now you’ve created and examined a fully functional rule and have the knowledge to create your own.

1591

https://customer.liferay.com/documents/10738/200086/weather.zip

Related Topics

Best Practices for Rules
Creating Modules with Blade CLI
Internationalization
Service Builder Persistence

120.3 Tracking User Actions with Audience Targeting

In the Audience Targeting (AT) application, a campaign defines a set of content targeted to specific user
segments during a time period. Campaign custom reports allow campaign administrators to learn how
users behave in the context of a campaign by monitoring their interaction over different elements of the site.
Out of the box, Liferay provides several metrics that are based on entity types that you can track, such as
content, forms, links, pages, etc. You can use these metrics to create custom reports. For example, if you
want track howmany users watch a YouTube video that is published on your site, you might create a custom
report with the YouTube Videos metric.

The AT app ships with manymetrics you can apply to custom reports, but it’s also extensible. This means
that if the default metrics available do not fulfill your needs, you can create one yourself!

A metric’s development strategy comes down to four choices:

• Entity to Track
• TrackingMechanism
• Tracking Events
• DifferentiationMethod

Creating ametric involves targetingwhat youwant to track in a custom report. Suppose you’re the owner
of a hardware store and you’d like to send emails to your customers notifying them of the store’s weekly
newsletter. You send the email every week, but you’re in the dark about howmany customers actually open
and read the newsletter. For this example, your entity to track is a newsletter.

To track how many customers view the newsletter, you’ll need to create a tracking mechanism. You
can provide a custom tracking mechanism (e.g., a servlet) or you can use the ones provided by Audience
Targeting. For a newsletter, you could use a transparent image as the trackingmechanism,whichwould have
the View tracking event capability. Whenever the image is viewed, the Audience Targeting app computes
and stores the information.

In many cases, a metric can have multiple tracking event options. For example, the YouTube Videos
metric provides tracking event options like Buffering, Playing, Paused, Ended, etc. This lets you track
different kinds of actions on an entity, providing a more accurate report on user interactions.

Finally, you must assign the metric to an entity. For a newsletter, you could provide a Newsletter ID field
that the user could fill in to differentiate newsletters, if there’s more than one.

To learn more about how metrics are used in the Audience Targeting application, visit the Defining
Metrics section.

For this tutorial, you’ll create a newsletter that can track who views it. This process involves defining the
view/save lifecycle, which is when a user applies a metric to a report using the Report Editor. Then you’ll
define its tracking mechanism, tracking event(s), and differentiation method, similar to what was described
above.

Now that you have an idea of how to plan your newmetric, you’ll begin creating one next!

1592

Figure 120.5: The sample Newsletter metric requires the newsletter name, ID, and event type.

Creating a Metric

Adding a new metric to the Audience Targeting application is easy. First, you must create a module and
ensure it has the necessary Content Targeting API dependencies.

1. Create a module project for deploying a metric. A Blade CLI content-targeting-tracking-action tem-
plate is available to help you get started quickly. It sets the default configuration for you, and it contains
boilerplate code so you can skip the file creation steps and get started right away.

2. Make sure your module specifies the dependencies necessary for an Audience Targeting metric. For
example, you should specify the Content Targeting API and necessary Liferay packages. For example,
this is the example build.gradle file used from a Gradle basedmetric:

dependencies {

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.analytics.api", version: "3.0.0"

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.anonymous.users.api", version: "2.0.2"

compileOnly group: "com.liferay.content-targeting", name: "com.liferay.content.targeting.api", version: "4.0.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.portal.kernel", version: "2.3.0"

compileOnly group: "com.liferay.portal", name: "com.liferay.util.taglib", version: "2.0.0"

compileOnly group: "javax.portlet", name: "portlet-api", version: "2.0"

compileOnly group: "javax.servlet", name: "javax.servlet-api", version: "3.0.1"

compileOnly group: "org.osgi", name: "org.osgi.service.component.annotations", version: "1.3.0"

}

You can learn more about exposing the Content Targeting API in the Accessing the Content Targeting
API tutorial. Once you’ve created your module and specified its dependencies, you’ll need to define
your metric’s behavior. How your metric behaves is controlled by a Java class file that you create.

3. Create a unique package name in themodule’s src directory, and create a new Java class in that package.
To follow naming conventions, your class name should begin with the metric’s name you’re creating
and end with TrackingAction (e.g., NewsletterTrackingAction.java). Your Java class should implement
the com.liferay.content.targeting.api.model.TrackingAction‘ interface.

You must implement the TrackingAction interface, but there are TrackingAction extension classes
that provide helpful utilities that you can extend. For example, your metric can extend the BaseJSP-
TrackingAction class to support generating your metric’s UI using JSPs. This tutorial demonstrates

1593

@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/TrackingAction.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/TrackingAction.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseJSPTrackingAction.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseJSPTrackingAction.html

implementing the UI using a JSP and assumes the TrackingAction interface is implemented by ex-
tending the BaseJSPTrackingAction class. For more information on choosing a UI for your metric, see
the Selecting a UI Technology section.

4. Directly above the class’s declaration, insert the following annotation:

@Component(immediate = true, service = TrackingAction.class)

This declares the Component’s implementation class and configures it to start immediately once
deployed to Liferay DXP.

Now that your Java class is set up, you’ll need to define how your metric works by implementing the
TrackingAction interface’s methods. You’ll begin implementing these methods next.

The first thing you’ll define in your newsletter metric is the view/save lifecycle.

Defining a Metric's View/Save Lifecycle

This section covers how to define a metric’s view/save lifecycle. This is when a user applies a metric to a
report using the Report Editor.

In this section, you’ll begin defining the newsletter metric’s Java class. This assumes that you followed
the instructions above, creating the NewsletterTrackingAction class and extending BaseJSPTrackingAction.
If you used the content-targeting-tracking-action Blade CLI template, your project is already extending
BaseJSPTrackingAction and a default view.jsp file is already created.

1. Add the activation and deactivation methods to your class.

@Activate

@Override

public void activate() {

super.activate();

}

@Deactivate

@Override

public void deActivate() {

super.deActivate();

}

Thesemethods call the super class BaseTrackingAction to implement necessary logging and process-
ing for when your metric starts and stops. Make sure to include the @Activate and @Deactivate
annotations, which are required.

2. Add the followingmethod:

@Override

protected void populateContext(

TrackingActionInstance trackingActionInstance,

Map<String, Object> context, Map<String, String> values) {

String alias = StringPool.BLANK;

String elementId = StringPool.BLANK;

String eventType = StringPool.BLANK;

if (!values.isEmpty()) {

alias = values.get("alias");

elementId = values.get("elementId");

1594

@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/TrackingAction.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/TrackingAction.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseJSPTrackingAction.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseTrackingAction.html
https://osgi.org/javadoc/r6/cmpn/org/osgi/service/component/annotations/Activate.html
https://osgi.org/javadoc/r6/cmpn/org/osgi/service/component/annotations/Deactivate.html

eventType = values.get("eventType");

}

else if (trackingActionInstance != null) {

alias = trackingActionInstance.getAlias();

elementId = trackingActionInstance.getElementId();

eventType = trackingActionInstance.getEventType();

}

context.put("alias", alias);

context.put("elementId", elementId);

context.put("eventType", eventType);

context.put("eventTypes", getEventTypes());

}

To understand what this method accomplishes, you should understand the metric’s configuration
lifecycle.

Figure 120.6: An Audience Targeting metric must be configured by the user and processed before it can become part of a Report.

When the user opens the Report Editor, the render phase begins for the metric. The getFormHTML(...)
method retrieves the HTML to display. You don’t have to worry about implementing this method be-
cause it’s already implemented in the BaseJSPTrackingAction class you’re extending. The getFormHTML
method calls the populateContext(...) method.

1595

@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseJSPTrackingAction.html

You’ll notice the populateContext method is not available in the TrackingAction interface. This is
because it’s not needed in all cases. It’s available by extending the BaseJSPTrackingAction class, and
you’ll need to addmore logic to it for the newsletter metric.

The goal of the populateContextmethod is to generate a map with all the parameters your JSP view
needs to render the metric’s HTML.This map is stored in the context variable, which is pre-populated
with basic values in the Portlet logic, and then eachmetric contributes its specific parameters to it.
The populateContextmethod above populates the alias, elementId, eventType, and eventTypes context
variables with the adjacent values from the valuesmap parameter, which is then passed to the JSP.

For the newsletter metric, the populateContextmethod accounts for three use cases:

a. Themetric was added but has no set values yet. In this case, the default values defined by the
developer are injected (e.g., alias="").

b. The metric was added and a value is set, but the request failed to complete (e.g., due to an
error). In this case, the values parameter of the populateContextmethod contains the values
that were intended to be saved, and they are injected so that they are displayed in the metric’s
view together with the error message.

c. The metric was added and a value was successfully set. In this case, the values parameter is
empty, and you have to obtain the values from storage that the form should display and inject
them in the context so they’re displayed in the metric’s HTML.The newsletter metric stores
values in the metric’s instance, but complex metrics could use services to store values.

You can think of the populateContextmethod as the intermediary between your JSP and your backend
code. You can see how to create the newsletter metric’s UI using a JSP by skipping to the Defining
the Metric’s UI section. Once the HTML is successfully retrieved and the user has set the newsletter’s
values and clicked Save, the action phase begins.

3. Once theactionphasebegins,ATprocesses the trackingaction (metric). The processTrackingAction(...)
method takes the values from the metric’s UI form and stores them in the corresponding fields of the
trackingActionInstance. Since the BaseTrackingAction class provides a default implementation of
this method that returns null, the NewsletterTrackingAction class does not need to implement it.

If you need to process any custom fields in your metric, you should override this method. If you want
your custom values to be stored in the typeSettings field of the trackingActionInstance, return their
value instead of null.

Note: For more complex cases, you can create your own services to store

your metric's information to a database. You should invoke your services'

update logic within the `processTrackingAction` method. For more information

on creating services, see the

[Service Builder](/docs/7-0/tutorials/-/knowledge_base/t/service-builder)

tutorials.

Once the metric processing ends, the form is reloaded and the lifecycle

restarts again. The value(s) specified in the metric are stored and are

ready to be accessed once the report generation begins. Next, you must set

the event types that the newsletter metric should evaluate.

1596

@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/TrackingAction.html
@app-ref@/content-targeting/2.0.0/javadocs/com/liferay/content/targeting/api/model/BaseTrackingAction.html

4. Add the followingmethod and private field:

@Override

public List<String> getEventTypes() {

return ListUtil.fromArray(_EVENT_TYPES);

}

private static final String[] _EVENT_TYPES = {"view"};

This specifies that your newsletter metric only tracks who views the newsletter.

5. Define a way to retrieve the metric’s localized summary. In many instances, you can do this by
combining keys in the metric’s resource bundle with the information stored for the metric. For the
newsletter metric, you can provide information about the ID of the newsletter being tracked, which is
stored in the alias field of the trackingActionInstance object.

@Override

public String getSummary(

String summary = LanguageUtil.format(

locale, "tracking-newsletter-x",

new Object[] {trackingActionInstance.getAlias()});

return summary;

}

6. Set the servlet context for your metric.

@Override

@Reference(

target = "(osgi.web.symbolicname=newsletter)",

unbind = "-"

)

public void setServletContext(ServletContext servletContext) {

super.setServletContext(servletContext);

}

This is only required for metrics extending the BaseJSPTrackingAction class. The servlet context must
be set for themetric to render its own JSPfiles. The setServletContextmethod is invoked automatically
when the metric module is installed and resolved in Liferay. Make sure the osgi.web.symbolicname in
the target property of the @Reference annotation is set to the same value as the Bundle-SymbolicName
defined in the bnd.bnd file of the module.

Next, you’ll define a tracking mechanism for your metric to use.

Using a Tracking Mechanism

Imagine an administrator has successfully configured and saved your custommetric to his or her report.
Now what? Your metric needs to fulfill its purpose, which is to track the view event type for the defined
newsletter. To do this, you must define a tracking mechanism. For your newsletter, you’ll use a transparent
image as the trackingmechanism,which would have the View tracking event capability. Whenever the image
is viewed, the newsletter metric computes and stores the information.

For the newsletter metric, you’ll use a tracking mechanism provided by the Audience Targeting app.

1. You must set the analytics processor that the Content Targeting API provides for tracking events. Add
the followingmethod and private field:

1597

@Reference

protected void setAnalyticsProcessor(AnalyticsProcessor analyticsProcessor) {

_analyticsProcessor = analyticsProcessor;

}

private AnalyticsProcessor _analyticsProcessor;

The analytics processor is a module of the Audience Targeting Analytics system. It contains a servlet to
track analytics from Liferay pages (views, clicks, etc.) and an API to leverage this tracking mechanism.
In the setAnalyticsProcesoor(...) method, you’re obtaining a reference of the current analytics
processor to build the URL used to generate a transparent image. All you have to do is insert the
generatedURL into yournewsletter’sHTML,and the transparent image trackswhoreads it. Everything
is processed by the default Audience Targeting Analytics system automatically.

Now that you’ve obtained a reference of the analytics processor, you need to add logic for generating
the appropriate tracking URL.

2. Replace the populateContextmethod with the updated method:

@Override

protected void populateContext(

TrackingActionInstance trackingActionInstance,

Map<String, Object> context, Map<String, String> values) {

String alias = StringPool.BLANK;

String elementId = StringPool.BLANK;

String eventType = StringPool.BLANK;

String trackImageHTML = StringPool.BLANK;

if (!values.isEmpty()) {

alias = values.get("alias");

elementId = values.get("elementId");

eventType = values.get("eventType");

}

else if (trackingActionInstance != null) {

alias = trackingActionInstance.getAlias();

elementId = trackingActionInstance.getElementId();

eventType = trackingActionInstance.getEventType();

String trackImageURL = _analyticsProcessor.getTrackingURL(

trackingActionInstance.getCompanyId(), 0, 0, "", 0,

Campaign.class.getName(),

new long[] {trackingActionInstance.getCampaignId()},

trackingActionInstance.getElementId(), "view", "");

trackImageHTML = "";

}

context.put("alias", alias);

context.put("elementId", elementId);

context.put("eventType", eventType);

context.put("eventTypes", getEventTypes());

context.put("trackImageHTML", trackImageHTML);

}

This updatedmethod creates a new variable named trackImageHTML, retrieves a tracking URL using
the analytics processor, and then populates the trackImageHTML context variable. When creating a new
metric, the transparent image’s URL field is not present in the metric’s form. When the metric is
initially saved, however, the URL is generated using the analytics processor and is available for copying.

1598

Excellent! You’ve obtained the analytics processor and can create the transparent image tracking mecha-
nism. The newsletter metric’s behavior is defined and complete. The last thing you need to do is create a JSP
template.

Defining the Metric's UI

The Java code you’ve added to this point has assumed that there are three configurable fields for your
newsletter metric:

• Name: used in reports that count the number of times a metric has been triggered. This is also known
as the newsletter’s alias.

• Newsletter ID: used to differentiate between newsletters.
• Event Type: used to differentiate several actions on the same newsletter, such as opening the newsletter
or clicking on a link.

To let administrators set these values, youmust define a UI so your metric can be configured during the
view/save lifecycle. Remember that you must also define a field to display the generated transparent image’s
URL.Create a view.jspfile in yourmetric’smodule (e.g., /src/main/resources/META-INF/resources/view.jsp)
and add the following logic:

<%

Map<String, Object> context = (Map<String, Object>)request.getAttribute("context");

String alias = (String)context.get("alias");

String elementId = (String)context.get("elementId");

String eventType = (String)context.get("eventType");

List<String> eventTypes = (List<String>)context.get("eventTypes");

String trackImageHTML = (String)context.get("trackImageHTML");

%>

<aui:input helpMessage="name-help" label="name" name='<%= ContentTargetingUtil.GUID_REPLACEMENT + "alias" %>' type="text" value="<%= alias %>">

<aui:validator name="required" />

</aui:input>

<aui:input helpMessage="enter-the-id-of-the-newsletter-to-be-tracked" label="newsletter-id" name='<%= ContentTargetingUtil.GUID_REPLACEMENT + "elementId" %>' type="text" value="<%= elementId %>">

<aui:validator name="required" />

</aui:input>

<c:if test="<%= ListUtil.isNotEmpty(eventTypes) %>">

<aui:select label="event-type" name='<%= ContentTargetingUtil.GUID_REPLACEMENT + "eventType" %>'>

<%

for (String curEventType : eventTypes) {

%>

<aui:option label="<%= curEventType %>" selected="<%= curEventType.equals(eventType) %>" value="<%= curEventType %>" />

<%

}

%>

</aui:select>

</c:if>

<c:if test="<%= !Validator.isBlank(trackImageHTML) %>">

<liferay-ui:message key="paste-this-code-at-the-beginning-of-your-newsletter" />

<label for='<%= renderResponse.getNamespace() + ContentTargetingUtil.GUID_REPLACEMENT + "trackImageHTML" %>' key="paste-this-code-

at-the-beginning-of-your-newsletter" /></label>

1599

<liferay-ui:input-resource id='<%= renderResponse.getNamespace() + ContentTargetingUtil.GUID_REPLACEMENT + "trackImageHTML" %>' url="<%= trackImageHTML %>" />

</c:if>

First you instantiate the context variable and its attributes you configured in your Java class’s
populateContextmethod. Then you specify the appropriate fields Name, Newsletter ID, and Event Type.
Finally, you present the generated transparent image URL.

Notice that the input field names in the JSP are prefixed with ContentTargetingUtil.GUID_REPLACEMENT.
This prefix is required formulti-instantiablemetrics,which aremetrics that return true in the isInstantiable
method of their -TrackingAction class and can be addedmore than once to the Metrics form.

Figure 120.7: Once you’ve saved the metric, you can copy the generated transparent image URL into your newsletter’s HTML to track who views it.

Congratulations! You’ve created the newslettermetric and can now trackwhether users viewed a newslet-
ter. You can test if themetric is working by copying the generated tracking imageHTML into an email HTML
editor, sending it, and opening it as if it were an actual newsletter. Then open the custom report containing
the newsletter metric and select Update Report. A chart and table with the newsletter’s view count is shown.

You can view the finished version of the newsletter metric by downloading its ZIP file.
Now you’ve created and examined a fully functional metric and have the knowledge to create your own.

Related Topics

Creating Modules with Blade CLI
DefiningMetrics
Audience Targeting Metrics

120.4 Best Practices for Metrics

In this tutorial, you’ll learn about best practices to keep in mind when creating Audience Targeting Metrics.
Before going through some best practices, you should understand the four components you can specify for a
metric:

1600

https://customer.liferay.com/documents/10738/200086/newsletter.zip/589ea9a1-9473-4409-acc6-c41c6d20728a

• Metric Behavior
• TrackingMechanism
• UI for Configuration (optional)
• Language Keys (optional)

You discuss metric behavior and its UI configuration in great detail in the Tracking User Actions with
Audience Targeting tutorial. To learn more about language keys and how to create, use, and generate them,
visit the Internationalization tutorials.

Audience Targeting gives you the option to choose whatever frontend technology you like. In the next
section, you’ll learn how to use your preferred technology for displaying content in Audience Targeting
metrics.

Selecting a UI Technology

Since 7.0, JSP is the preferred technology for Audience Targeting extension views. FreeMarker views,
however, are still supported through their respective base classes (e.g., BaseFreemarkerTrackingAction). If
you’re interested in using a technology besides JSP or FreeMarker to implement your UI, you can add a
method getFormHTML to your -TrackingAction class. Here’s an example of implementing the getFormHTML

method:

@Override

public String getFormHTML(

TrackingActionInstance trackingActionInstance,

Map<String, Object> context, Map<String, String> values) {

String content = "";

try {

populateContext(trackingActionInstance, context, values);

content = ContentTargetingContextUtil.includeJSP(

_servletContext, getFormTemplatePath(), context);

}

catch (Exception e) {

_log.error(

"Error while processing form template " +

getFormTemplatePath(),

e);

}

return content;

}

The getFormHTML is used to retrieve the HTML created by the technology you choose, and to return it as
a string that is viewable from your metric’s form. If you plan, therefore, on using an alternative to JSP or
FreeMarker, youmust override this method by creating andmodifying it in your -TrackingAction class.

Related Topics

Tracking User Actions with Audience Targeting
Internationalization
Service Builder Persistence

1601

120.5 Best Practices for Rules

In this tutorial, you’ll learn about best practices to keep inmind when creating Audience Targeting Rules.
Before going through some best practices, you should understand the three components you can specify for
a rule:

• Rule Behavior
• UI for Configuration (optional)
• Language Keys (optional)

You discuss rule behavior and its UI configuration in great detail in the CreatingNewAudience Targeting
Rule Types tutorial. To learn more about language keys and how to create, use, and generate them, visit the
Internationalization tutorials.

Audience Targeting gives you the option to choose whatever frontend technology you like. In the next
section, you’ll learn how to use your preferred technology for displaying content in Audience Targeting rules.

Selecting a UI Technology

Since 7.0, JSP is thepreferred technology forAudienceTargeting extension views. FreeMarker views,however,
are still supported through their respective base classes (e.g., BaseFreemarkerRule). If you’re interested in
using a technology besides JSP or FreeMarker to implement your UI, you can add amethod getFormHTML to
your -Rule class. Here’s an example of implementing the getFormHTMLmethod:

@Override

public String getFormHTML(

RuleInstance ruleInstance, Map<String, Object> context,

Map<String, String> values) {

String content = "";

try {

populateContext(ruleInstance, context, values);

content = ContentTargetingContextUtil.parseTemplate(

getClass(), getFormTemplatePath(), context);

}

catch (Exception e) {

_log.error(

"Error while processing template " + getFormTemplatePath(), e);

}

return content;

}

The getFormHTML is used to retrieve the HTML created by the technology you choose, and to return it
as a string that is viewable from your rule’s form. If you plan, therefore, on using an alternative to JSP or
FreeMarker, youmust override this method by creating andmodifying it in your -Rule class.

Other Best Practices

Here are some things to consider as you implement and deploy Audience Targeting rules:

• As an alternative to storing complex information in the typeSettings field, which is managed by the
framework in the Rule Instance table, you may want to consider persisting to a database by using
Service Builder, which is supported for Rule plugins.

1602

• If you deploy your rule into a production environment, youmay want to consider adding your values
to the cache (e.g., weather in different locations), since obtaining the same value on every request is
very inefficient and could result in slowing down your portal. For example, when the evaluatemethod
is called, you could obtain the current user ID, current user’s weather forecast, and the time at which
the user first visited the page. Then you could evaluate the rule only when the cached time is over three
hours old. This would prevent the rule from evaluating every time the user visited the page. This is
best done using services.

• You can override the BaseJSPRule.deleteDatamethod in your -Rule, so that it deletes any data associ-
ated with the rule that is currently being deleted.

• If your rule handles data or references to data that can be staged (e.g., a reference to a page or web
content article), youmay need to override the BaseRule.exportData and BaseRule.importDatamethods,
to manage the content properly.

Related Topics

Creating New Audience Targeting Rule Types
Internationalization
Service Builder Persistence

1603

Chapter 121

Customizable Web Applications

One of the great strengths of Liferay DXP is the sheer number of out of the box applications. This gives it
great flexibility in what it can do, which is why Liferay DXP is used to runmany different kinds of websites
around the world. For example, if you want users to add Blog posts, you can configure the Blogs portlet to
handle those requests.

But really, that’s technology from the last decade. What if you could define a particular function that
users might want to perform and let Liferay DXP choose an available installed app to perform that function?
That way, if users want to Blog, and you’ve installed your own custom-developed app for blogging instead of
Liferay’s, the Liferay DXP instance can just use yours instead?

With Liferay DXP 7, you can do just that. You can request an app based on an entity and action type.
Processing the entity type and action, Liferay uses an available portlet that can handle the request. This
increases the flexibility andmodularity of using portlets in Liferay DXP.

121.1 Providing Portlets to Manage Requests

In this tutorial, you’ll learn how to declare an entity type and action for a desired function, and you’ll create a
module that finds the correct application (portlet) to use based on those given parameters.

Specifying a Desired Portlet Behavior

To find the portlet you need for your particular request, you’ll use the Portlet Providers framework. The first
thing you’ll need to do is call the PortletProviderUtil class and request the framework find a portlet suitable
for the current task. You can request the portlet ID or portlet URL, depending on what you prefer. Here’s an
example declaration:

String portletId = PortletProviderUtil.getPortletId(

"com.liferay.portlet.trash.model.TrashEntry", PortletProvider.Action.VIEW);

This declaration expects two parameters: the class name of the entity type you want the portlet to handle
and the type of action. The above code requests a portlet ID for a portlet that can view Recycle Bin entries.

There are five different kinds of actions supported by the Portlet Providers framework: ADD, BROWSE, EDIT,
PREVIEW, and VIEW. Find the portlet ID or portlet URL (depending on your needs), and specify the entity type
and action you want the portlet to handle.

1605

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/PortletProviderUtil.html

Note:The getPortletURLmethods require an additional HttpServletRequest or PortletRequest param-
eter, depending on which you use. Make sure to account for this additional parameter when using the
getPortletURLmethod.

You’ve successfully requested the portlet ID/portlet URL of a portlet that matches your entity and action
type. The portal, however, is not yet configured to handle this request. You’ll need to create a module that
can find the correct portlet to handle the request.

1. Create an OSGi module.

2. Create a unique package name in the module’s src directory and create a new Java class in that
package. To follow naming conventions, name the class based on the element type and action type,
followed by PortletProvider (e.g., LanguageEntryViewPortletProvider). The class should extend the
BasePortletProvider class and implement the appropriate portlet provider interface based on the
action type you chose your portlet to handle (e.g., ViewPortletProvider, BrowsePortletProvider, etc.).

3. Directly above the class’s declaration, insert the following annotation:

@Component(

immediate = true,

property = {"model.class.name=CLASS_NAME"},

service = INTERFACE.class

)

The property element shouldmatch the element type you specified in your getPortletID/getPortletURL
declaration (e.g., com.liferay.portal.kernel.servlet.taglib.ui.LanguageEntry). Also, your service
element should match the interface you’re implementing (e.g., ViewPortletProvider.class). You can
view an example of a similar @Component annotation in the RolesSelectorEditPortletProvider class:

@Component(

immediate = true,

property = {"model.class.name=com.liferay.portal.kernel.model.UserGroupRole"},

service = EditPortletProvider.class

)

4. In some cases, a default portlet is already in place to handle the entity and action type requested. To
override the default portlet with a custom portlet, you can assign your portlet a higher service ranking.
You can do this by setting the following property in your @Component declaration:

property= {"service.ranking:Integer=10"}

Make sure to replace the integer with a number that is ranked higher than the portlet being used by
default.

5. Specify the methods you’d like to implement. Make sure to retrieve the portlet ID/portlet URL that
should be provided when this service is called.

Lastly, generate the module’s JAR file and deploy it to your portal instance. Now a portlet that can handle
the entity and action type you specified is used when requesting a portlet ID/URL. You can now specify
portlet usage without hardcoding a specific portlet!

1606

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BasePortletProvider.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/ViewPortletProvider.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/BrowsePortletProvider.html
https://github.com/liferay/liferay-portal/blob/7.0.4-ga5/modules/apps/foundation/roles/roles-selector-web/src/main/java/com/liferay/roles/selector/web/internal/portlet/RolesSelectorEditPortletProvider.java

Related Topics

Portlets
Embedding Portlets inThemes
Customizing Liferay Services

1607

Part II

Developer Reference

Chapter 122

Development Reference

Here you’ll find reference documentation for Liferay DXP, Liferay Screens, Liferay Faces, and technologies
related to you as a third-party developer.

The different types of reference docs you’ll find in this section of the Liferay Developer Network are as
follows:

• Descriptions of Java and JavaScript APIs, CSS, tags and tag libraries, and XML DTDs
• Write ups on the latest Screenlets for Liferay Screens
• Breaking changes
• Cheat sheets and tips on

– Plugin anatomy
– Design patterns
– Tools
– Adapting to new APIs

Liferay’s reference docs are at your fingertips.

122.1 Java APIs
Here you’ll find Javadoc for Liferay DXP and Liferay DXP apps.

7.0 Java APIs

This table links you to the 7.0 API modules. Their root location is
here. (Opens NewWindow) The reference doc JAR is available
here. (Opens NewWindow)

Core:
com.liferay.portal.kernel (portal-kernel): (Opens NewWindow) for developing applications on Liferay

DXP
com.liferay.util.bridges (util-bridges): (Opens NewWindow) for using various non-proprietary comput-

ing languages, frameworks, and utilities on Liferay DXP
com.liferay.util.java (util-java): (Opens NewWindow) for using various Java-related frameworks and

utilities on Liferay DXP

1611

com.liferay.util.slf4j (util-slf4j): (Opens NewWindow) for using the Simple Logging Facade for Java
(SLF4J)

com.liferay.portal.impl (portal-impl): (Opens NewWindow) refer to this only if you are an advanced
Liferay developer that needs a deeper understanding of 7.0’s implementation in order to contribute to it

Liferay DXP App Java APIs

This table links you to Liferay DXP application APIs. Their root location is here. (Opens NewWindow)
Collaboration (Opens NewWindow) (JAR) (Opens NewWindow)
com.liferay.blogs.api
com.liferay.blogs.item.selector.api
com.liferay.bookmarks.api
com.liferay.comment.api
com.liferay.document.library.api
com.liferay.document.library.repository.cmis.api
com.liferay.flags.api
com.liferay.invitation.invite.members.api
com.liferay.item.selector.api
com.liferay.item.selector.criteria.api
com.liferay.mentions.api
com.liferay.message.boards.api
com.liferay.microblogs.api
com.liferay.ratings.api
com.liferay.social.activity.api
com.liferay.social.privatemessaging.api
com.liferay.wiki.api
Forms &Workflow (Opens NewWindow) (JAR) (Opens NewWindow)
com.liferay.calendar.api
com.liferay.dynamic.data.lists.api
com.liferay.dynamic.data.mapping.api
com.liferay.polls.api
com.liferay.portal.reports.engine.api
com.liferay.portal.rules.engine.api
com.liferay.portal.workflow.kaleo.api
com.liferay.portal.workflow.kaleo.definition.api
com.liferay.portal.workflow.kaleo.runtime.api
Foundation (Opens NewWindow) (JAR) (Opens NewWindow)
com.liferay.contacts.api
com.liferay.frontend.image.editor.api
com.liferay.map.api
com.liferay.mobile.device.rules.api
com.liferay.password.policies.admin.api
com.liferay.portal.background.task.api

com.liferay.portal.lock.api
com.liferay.portal.scripting.api
com.liferay.portal.security.audit.api
com.liferay.portal.security.exportimport.api

1612

com.liferay.portal.security.service.access.policy.api
com.liferay.portal.settings.api
com.liferay.roles.admin.api
com.liferay.user.groups.admin.api
com.liferay.users.admin.api
com.liferay.users.admin.demo.data.creator.api
com.liferay.xstream.configurator.api
Web Experience (Opens NewWindow) (JAR) (Opens NewWindow)
com.liferay.application.list.api
com.liferay.exportimport.api
com.liferay.journal.api
com.liferay.journal.item.selector.api
com.liferay.layout.item.selector.api
com.liferay.layout.prototype.api
com.liferay.layout.set.prototype.api
com.liferay.portlet.configuration.icon.locator.api
com.liferay.portlet.configuration.toolbar.contributor.locator.api
com.liferay.product.navigation.control.menu.api
com.liferay.site.api
com.liferay.site.item.selector.api
com.liferay.staging.api
For help finding API modules for specific common classes, see 7.0 API Modules.
For help findingmodule attributes and configuring dependencies, see Configuring Dependencies.

122.2 Taglibs

Here you’ll find tag library documentation for the Liferay DXP, Liferay DXP apps, and Liferay Faces.

7.0 Taglibs

Util Taglibs (Opens NewWindow)
aui
liferay-portlet
portlet
liferay-security
liferay-theme
liferay-ui
liferay-util

Liferay DXP App Taglibs

Application List:
liferay-application-list (Opens NewWindow)
Assets:
liferay-asset (Opens NewWindow)
liferay-trash (Opens NewWindow)
Import, Export, & Staging:
liferay-staging (Opens NewWindow)

1613

Item Selector:
liferay-item-selector (Opens NewWindow)
Product Navigation:
liferay-product-navigation (Opens NewWindow)
Sites:
liferay-layout (Opens NewWindow)
liferay-site-navigation (Opens NewWindow)
Social:
liferay-flags (Opens NewWindow)
For help findingmodule attributes and configuring dependencies, see Configuring Dependencies.

Faces Taglibs

Faces 3.2 Taglibs: the latest version of Liferay Faces JSF tag docs in View Declaration Language (VDL) format.
VDL docs for all versions of Liferay Faces are available here.

JavaScript and CSS

Lexicon: Theweb implementation of Liferay’s Lexicon Experience Language. Lexicon is a system for building
applications in and outside of Liferay DXP, designed to be fluid and extensible, as well as provide a consistent
and documented API.

Bootstrap: The base CSS library onto which Lexicon is built. Liferay DXP uses Bootstrap natively and all
of its CSS classes and JavaScript features are available within portlets, templates, and themes.

AlloyUI: Liferay includes AlloyUI and all of its JavaScript APIs are available within portlets, templates
and themes.

Descriptor Definitions

DTDs: Describes the XML files used in configuring Liferay DXP apps, 7.0 plugins, and@product-ver@.

1614

https://docs.liferay.com/faces/3.2/vdldoc/
http://docs.liferay.com/faces/
https://liferay.github.io/clay/
https://lexicondesign.io/
http://getbootstrap.com/
http://alloyui.com

Chapter 123

Liferay API Modules

The following table maps commonly used Liferay DXP components to their API modules and key classes.
You configure dependencies on the component API modules to use them.

123.1 API Modules Table

Component Classes Module Symbolic Name (Artifact ID)

Application List PanelApp com.liferay.application.list.api

PanelCategory

PanelEntry

Background
Tasks

BackgroundTask[Local]ServiceUtilcom.liferay.portal.background.task.api

Blogs BlogsEntry[Local]ServiceUtilcom.liferay.blogs.api

Bookmarks BookmarksEntry[Local]ServiceUtilcom.liferay.bookmarks.api

BookmarksFolder[Local]ServiceUtil

Calendar Calendar[Local]ServiceUtilcom.liferay.calendar.api

CalendarBooking[Local]ServiceUtil

CalendarImporter

CalendarNotificationTemplate[Local]ServiceUtil

CalendarResource[Local]ServiceUtil

Comment Comment com.liferay.comment.api

DiscussionComment

Contacts Entry com.liferay.contacts.api

Document
Library

DLFileEntry[Local]ServiceUtilcom.liferay.document.library.api

DLContent[Local]ServiceUtil

DLFileEntryType[Local]ServiceUtil

DLFileVersion[Local]ServiceUtil

DLFolder[Local]ServiceUtil

DLSyncEvent[Local]ServiceUtil

1615

Component Classes Module Symbolic Name (Artifact ID)

Dynamic Data
Lists

DDLRecord[Local]ServiceUtilcom.liferay.dynamic.data.lists.api

DDLRecordSet[Local]ServiceUtil

DDLRecordVersion[Local]ServiceUtil

Dynamic Data
Mapping

DDMContent[Local]ServiceUtilcom.liferay.dynamic.data.mapping.api

DDMStructure[Local]ServiceUtil

DDMStorageLink[Local]ServiceUtil

DDMStructureLayout[Local]ServiceUtil

DDMStructureLink[Local]ServiceUtil

DDMStructureVersion[Local]ServiceUtil

DDMTemplate[Local]ServiceUtil

DDMTemplateLink[Local]ServiceUtil

DDMTemplateVersion[Local]ServiceUtil

Export / Import ExportImportConfigurationcom.liferay.exportimport.api

StagingServiceUtil[Local]ServiceUtil

Flags FlagsEntryServiceUtilcom.liferay.flags.api

Invitation MemberRequest[Local]ServiceUtilcom.liferay.invitation.invite.members.api

Item Selector ItemSelector com.liferay.item.selector.api

Item Selector
Criteria

FileEntryItemSelectorReturnTypecom.liferay.item.selector.criteria.api

UploadableFileReturnType

URLItemSelectorReturnType

UUIDItemSelectorReturnType

Lock Lock com.liferay.portal.lock.api

Map MapProvider com.liferay.map.api

Marketplace App com.liferay.marketplace.api

Module

Mentions MentionsNotifiercom.liferay.mentions.api

MentionsUserFinder

MentionsUtil

Message Boards MBMessage[Local]ServiceUtilcom.liferay.message.boards.api

MBCategory[Local]ServiceUtil

MBThread[Local]ServiceUtil

MBDiscussion[Local]ServiceUtil

Microblogs MicroblogsEntry[Local]ServiceUtilcom.liferay.microblogs.api

Mobile Device
Rules

MDRAction[Local]ServiceUtilcom.liferay.mobile.device.rules.api

MDRRule[Local]ServiceUtil

MDRRuleGroup[Local]ServiceUtil

MDRRuleGroupInstance[Local]ServiceUtil

Polls PollsChoice[Local]ServiceUtilcom.liferay.polls.api

PollsQuestion[Local]ServiceUtil

PollsVote[Local]ServiceUtil

Portal Access
Policy

SAPEntry[Local]ServiceUtilcom.liferay.portal.security.service.access.policy.api

1616

Component Classes Module Symbolic Name (Artifact ID)

Portal Settings PortalSettings com.liferay.portal.settings.api

Portlet
Configuration

PortletConfigurationIconcom.liferay.portlet.configuration.icon.locator.api

PortletToolbar com.liferay.portlet.configuration.toolbar.contributor.locator.api

Private
Messaging

UserThread[Local]ServiceUtilcom.liferay.social.privatemessaging.api

Product
Navigation

ProductNavigationControlMenuCategorycom.liferay.product.navigation.control.menu.api

ProductNavigationControlMenuEntry

Ratings RatingsEntry[Local]ServiceUtilcom.liferay.ratings.api

Reports Engine RulesEngine reports.engine.api

RulesLanguage

Fact

Query

Screens ScreensAssetEntryServiceUtilcom.liferay.screens.api

ScreensDDLRecordServiceUtil

ScreensJournalArticleServiceUtil

Security Audit AuditEvent com.liferay.portal.security.audit.api

AuditEventManager

AuditConfiguration

Security Import /
Export

UserExporter com.liferay.portal.security.exportimport.api

UserImporter

UserOperation

Shopping Cart ShoppingCart[Local]ServiceUtilcom.liferay.shopping.api

ShoppingCategory[Local]ServiceUtil

ShoppingCoupon[Local]ServiceUtil

ShoppingItem[Local]ServiceUtil

ShoppingItemPrice[Local]ServiceUtil

ShoppingOrder[Local]ServiceUtil

ShoppingOrderItem[Local]ServiceUtil

Site GroupSearchProvidercom.liferay.site.api

Social
Networking

MeetupsEntry[Local]ServiceUtilcom.liferay.social.networking.api

MeetupsRegistration[Local]ServiceUtil

WallEntry[Local]ServiceUtil

Staging Staging[Local]ServiceUtilcom.liferay.staging.api

Web Content JournalArticle[Local]ServiceUtilcom.liferay.journal.api

JournalFolder[Local]ServiceUtil

JournalArticleImage[Local]ServiceUtil

JournalFeed[Local]ServiceUtil

Wiki WikiNode[Local]ServiceUtilcom.liferay.wiki.api

WikiPage[Local]ServiceUtil

XStream
Configurator

XStreamConfiguratorcom.liferay.xstream.configurator.api

1617

For reference documentation on these APIs and others, see the the app reference docs at Liferay DXP
and the Liferay DXP core reference docs at @platform-ref@/7.0-latest.

Related Articles

Configuring Dependencies
Development Reference
Liferay Upgrade Planner

1618

@platform-ref@/7.0-latest

Chapter 124

Portlet Descriptor to OSGi Service Property
Map

This section describes the mapping of portlet XML descriptor values to OSGi service properties that can be
used when publishing OSGi Portlets.

OSGi services can contain properties in their definitions. Using OSGi service properties makes dealing
with configuration concerns simple and cohesive. These properties are typically represented as key-value
pairs or, more generally, as a Map-like object.

Portlet spec property keys are prefixed by:

javax.portlet.

Liferay property keys are prefixed by:

com.liferay.portlet.

Themappings essentially flatten what is found in the XML descriptor, sticking relatively closely to the
original naming in order to have a memorable relationship with those definitions.

JSR-168 & JSR-286 Descriptor Mappings

Note: XPath notation derived from the Portlet XSD 4 is used in this document for simplicity.

portlet.xmlXPath |OSGiPortlet ServiceProperty| /portlet-app/portlet/description|javax.portlet.description=<String>|
/portlet-app/portlet/portlet-name 6|javax.portlet.name=<String> 6| /portlet-app/portlet/display-

name|javax.portlet.display-name=<String>| /portlet-app/portlet/portlet-class|1| /portlet-app/portlet/init-
param/name|javax.portlet.init-param.<name>=<value>| /portlet-app/portlet/expiration-cache|javax.portlet.expiration-
cache=<int>| /portlet-app/portlet/cache-scope|not supported| /portlet-app/portlet/supports/mime-

type|javax.portlet.mime-type=<mime-type>| /portlet-app/portlet/supports/portlet-mode|javax.portlet.portlet-
mode=<mime-type>;<portlet-mode>[,<portlet-mode>]*| /portlet-app/portlet/supports/window-state|javax.portlet.window-
state=<mime-type>;<window-state>[,<window-state>]*| /portlet-app/portlet/supported-locale|not
supported| /portlet-app/portlet/resource-bundle|javax.portlet.resource-bundle=<String>| /portlet-

app/portlet/portlet-info/title|javax.portlet.info.title=<String>| /portlet-app/portlet/portlet-

info/short-title|javax.portlet.info.short-title=<String>| /portlet-app/portlet/portlet-info/keywords|javax.portlet.info.keywords=<String>|
/portlet-app/portlet/portlet-preferences|javax.portlet.preferences=<String>ORjavax.portlet.preferences=classpath:<path_to_file_in_jar>|

1619

/portlet-app/portlet/security-role-ref|javax.portlet.security-role-ref=<String>[,<String>]2|
/portlet-app/portlet/supported-processing-event/name|javax.portlet.supported-processing-event=<String>ORjavax.portlet.supported-
processing-event=<String>;<QName>2| /portlet-app/portlet/supported-publishing-event|javax.portlet.supported-
publishing-event=<String>ORjavax.portlet.supported-publishing-event=<String>;<QName>2| /portlet-

app/portlet/supported-public-render-parameter|javax.portlet.supported-public-render-parameter=<String>2|
/portlet-app/portlet/container-runtime-option|not supported| /portlet-app/custom-portlet-mode|not
supported| /portlet-app/custom-window-state|not supported| /portlet-app/user-attribute|not sup-
ported| /portlet-app/security-constraint|not supported| /portlet-app/resource-bundle|not supported|
/portlet-app/filter/portlet-app/filter-mapping|3| /portlet-app/default-namespace|not supported|
/portlet-app/event-definition|not supported| /portlet-app/filter/init-param/name|javax.portlet.init-
param.<name>=<value>| /portlet-app/public-render-parameter|not supported| /portlet-app/listener|not
supported?javax.portlet.PortletURLGenerationListener?| /portlet-app/container-runtime-option|not
supported|

Liferay Descriptor Mappings

Liferay Display

liferay-display.xmlXPath |OSGiPortlet ServiceProperty| /display/category\[@name\]|com.liferay.portlet.display-
category=<value>|

Liferay Portlet

Note: XPath notation derived from Liferay Portlet 5 is used in this document for simplicity.

liferay-portlet.xmlXPath |OSGiLiferayPortlet ServiceProperty| /liferay-portlet-app/portlet/portlet-
name|not supported| /liferay-portlet-app/portlet/icon|com.liferay.portlet.icon=<String>| /liferay-

portlet-app/portlet/virtual-path|com.liferay.portlet.virtual-path=<String>| /liferay-portlet-

app/portlet/struts-path|com.liferay.portlet.struts-path=<String>| /liferay-portlet-app/portlet/parent-
struts-path|com.liferay.portlet.parent-struts-path=<String>| /liferay-portlet-app/portlet/configuration-
path|com.liferay.portlet.configuration-path=<String>| /liferay-portlet-app/portlet/configuration-

action-class|3| /liferay-portlet-app/portlet/indexer-class|3| /liferay-portlet-app/portlet/open-

search-class|3| /liferay-portlet-app/portlet/scheduler-entry|3| /liferay-portlet-app/portlet/portlet-
url-class|3| /liferay-portlet-app/portlet/friendly-url-mapper-class|3| /liferay-portlet-app/portlet/friendly-
url-mapping|com.liferay.portlet.friendly-url-mapping=<String>| /liferay-portlet-app/portlet/friendly-
url-routes|com.liferay.portlet.friendly-url-routes=<String>| /liferay-portlet-app/portlet/url-

encoder-class|3| /liferay-portlet-app/portlet/portlet-data-handler-class|3| /liferay-portlet-

app/portlet/staged-model-data-handler-class|3| /liferay-portlet-app/portlet/template-handler|3|
/liferay-portlet-app/portlet/portlet-layout-listener-class|3| /liferay-portlet-app/portlet/poller-

processor-class|3| /liferay-portlet-app/portlet/pop-message-listener-class|3| /liferay-portlet-

app/portlet/social-activity-interpreter-class|3| /liferay-portlet-app/portlet/social-request-

interpreter-class|3| /liferay-portlet-app/portlet/social-interactions-configuration|3| /liferay-

portlet-app/portlet/user-notification-definitions|not supported| /liferay-portlet-app/portlet/user-
notification-handler-class|3| /liferay-portlet-app/portlet/webdav-storage-token|not supported|
/liferay-portlet-app/portlet/webdav-storage-class|3| /liferay-portlet-app/portlet/xml-rpc-method-

class|3| /liferay-portlet-app/portlet/control-panel-entry-category|com.liferay.portlet.control-

1620

panel-entry-category=<String>| /liferay-portlet-app/portlet/control-panel-entry-weight|com.liferay.portlet.control-
panel-entry-weight=<double>| /liferay-portlet-app/portlet/control-panel-entry-class|3| /liferay-

portlet-app/portlet/asset-renderer-factory|3| /liferay-portlet-app/portlet/atom-collection-

adapter|3| /liferay-portlet-app/portlet/custom-attributes-display|3| /liferay-portlet-app/portlet/ddm-
display|3| /liferay-portlet-app/portlet/permission-propagator|3| /liferay-portlet-app/portlet/trash-
handler|3| /liferay-portlet-app/portlet/workflow-handler|3| /liferay-portlet-app/portlet/preferences-
company-wide|com.liferay.portlet.preferences-company-wide=<boolean>| /liferay-portlet-app/portlet/preferences-
unique-per-layout|com.liferay.portlet.preferences-unique-per-layout=<boolean>| /liferay-portlet-

app/portlet/preferences-owned-by-group|com.liferay.portlet.preferences-owned-by-group=<boolean>|
/liferay-portlet-app/portlet/use-default-template|com.liferay.portlet.use-default-template=<boolean>|
/liferay-portlet-app/portlet/show-portlet-access-denied|com.liferay.portlet.show-portlet-access-
denied=<boolean>| /liferay-portlet-app/portlet/show-portlet-inactive|com.liferay.portlet.show-
portlet-inactive=<boolean>| /liferay-portlet-app/portlet/action-url-redirect|com.liferay.portlet.action-
url-redirect=<boolean>| /liferay-portlet-app/portlet/restore-current-view|com.liferay.portlet.restore-
current-view=<boolean>| /liferay-portlet-app/portlet/maximize-edit|com.liferay.portlet.maximize-
edit=<boolean>| /liferay-portlet-app/portlet/maximize-help|com.liferay.portlet.maximize-help=<boolean>|
/liferay-portlet-app/portlet/pop-up-print|com.liferay.portlet.pop-up-print=<boolean>| /liferay-

portlet-app/portlet/layout-cacheable|com.liferay.portlet.layout-cacheable=<boolean>| /liferay-

portlet-app/portlet/instanceable|com.liferay.portlet.instanceable=<boolean>| /liferay-portlet-

app/portlet/remoteable|com.liferay.portlet.remoteable=<boolean>| /liferay-portlet-app/portlet/scopeable|com.liferay.portlet.scopeable=<boolean>|
/liferay-portlet-app/portlet/single-page-application|com.liferay.portlet.single-page-application=<boolean>|
/liferay-portlet-app/portlet/user-principal-strategy|com.liferay.portlet.user-principal-strategy=<String>|
/liferay-portlet-app/portlet/private-request-attributes|com.liferay.portlet.private-request-
attributes=<boolean>| /liferay-portlet-app/portlet/private-session-attributes|com.liferay.portlet.private-
session-attributes=<boolean>| /liferay-portlet-app/portlet/autopropagated-parameters|com.liferay.portlet.autopropagated-
parameters=<String>2| /liferay-portlet-app/portlet/requires-namespaced-parameters|com.liferay.portlet.requires-
namespaced-parameters=<boolean>| /liferay-portlet-app/portlet/action-timeout|com.liferay.portlet.action-
timeout=<int>| /liferay-portlet-app/portlet/render-timeout|com.liferay.portlet.render-timeout=<int>|
/liferay-portlet-app/portlet/render-weight|com.liferay.portlet.render-weight=<int>| /liferay-

portlet-app/portlet/ajaxable|com.liferay.portlet.ajaxable=<boolean>| /liferay-portlet-app/portlet/header-
portal-css|com.liferay.portlet.header-portal-css=<String>2| /liferay-portlet-app/portlet/header-

portlet-css|com.liferay.portlet.header-portlet-css=<String>2| /liferay-portlet-app/portlet/header-

portal-javascript|com.liferay.portlet.header-portal-javascript=<String>2| /liferay-portlet-

app/portlet/header-portlet-javascript|com.liferay.portlet.header-portlet-javascript=<String>2|
/liferay-portlet-app/portlet/footer-portal-css|com.liferay.portlet.footer-portal-css=<String>2|
/liferay-portlet-app/portlet/footer-portlet-css|com.liferay.portlet.footer-portlet-css=<String>2|
/liferay-portlet-app/portlet/footer-portal-javascript|com.liferay.portlet.footer-portal-javascript=<String>2|
/liferay-portlet-app/portlet/footer-portlet-javascript|com.liferay.portlet.footer-portlet-javascript=<String>2|
/liferay-portlet-app/portlet/css-class-wrapper|com.liferay.portlet.css-class-wrapper=<String>|
/liferay-portlet-app/portlet/facebook-integration|com.liferay.portlet.facebook-integration=<String>|
/liferay-portlet-app/portlet/add-default-resource|com.liferay.portlet.add-default-resource=<boolean>|
/liferay-portlet-app/portlet/system|com.liferay.portlet.system=<boolean>| /liferay-portlet-

app/portlet/active|com.liferay.portlet.active=<boolean>| /liferay-portlet-app/portlet/include|not
supported|

• [1] Portlets are registered as concrete objects.

1621

• [2] Multiples of these properties may be used. This results in an array of values.

• [3]This type is registered as an OSGi service.

• [4] http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd

• [5] http://www.liferay.com/dtd/liferay-portlet-app_7_0_0.dtd

• [6] Liferay DXP creates each portlet’s ID based on the portlet’s name (i.e., the portlet-name descriptor
in liferay-portlet.xml or the javax.portlet.nameOSGi service property). Dashes, periods, and spaces
are allowed in the portlet name, but they and all other JavaScript unsafe characters are stripped from
the name value that’s used for the portlet ID.Therefore, make your portlet name unique in light of the
characters that are removed. Otherwise, if you try to deploy a portlet whose ID is the same as a portlet
that’s already deployed, your portlet deployment fails and Liferay DXP logs a message like this:

Portlet id [portletId] is already in use

1622

Chapter 125

Classes Moved from portal-service.jar

To leverage the benefits of modularization in 7.0,many classes from former Liferay Portal 6 JAR file portal-
service.jar have beenmoved into application and framework API modules. The table below provides details
about these classes and the modules they’ve moved to. Package changes and eachmodule’s symbolic name
(artifact ID) are listed, to facilitate configuring dependencies.

Classes Moved from portal-service to modules
This information was generated based on comparing classes in liferay-portal-src-6.2-ce-ga6 to classes in

liferay-portal-src-7.0-ce-ga1.
Class
Package
Module Symbolic Name (Artifact ID)
ActionHandler
Old: com.liferay.portal.kernel.mobile.device.rulegroup.action New: com.liferay.mobile.device.rules.ac-

tion
com.liferay.mobile.device.rules.api
ActionHandlerManager
Old: com.liferay.portal.kernel.mobile.device.rulegroup New: com.liferay.mobile.device.rules.action
com.liferay.mobile.device.rules.api
ActionHandlerManagerUtil
Old: com.liferay.portal.kernel.mobile.device.rulegroup New: com.liferay.mobile.device.rules.action
com.liferay.mobile.device.rules.api
ActionTypeException
Old: com.liferay.portlet.mobiledevicerules New: com.liferay.mobile.device.rules.exception
com.liferay.mobile.device.rules.api
AlternateKeywordQueryHitsProcessor
Old: com.liferay.portal.kernel.search New: com.liferay.portal.search.internal.hits
com.liferay.portal.search
ArticleContentException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleContentSizeException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api

1623

ArticleCreateDateComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleDisplayDateComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleDisplayDateException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleExpirationDateException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleIDComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleIdException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleModifiedDateComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleReviewDateComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleReviewDateException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleSmallImageNameException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleSmallImageSizeException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleTitleComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleTitleException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
ArticleVersionComparator
Old: com.liferay.portlet.journal.util.comparator New: com.liferay.journal.util.comparator
com.liferay.journal.api
ArticleVersionException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
AssetPublisherUtil
Old: com.liferay.portlet.assetpublisher.util New: com.liferay.asset.publisher.web.util
com.liferay.asset.publisher.web

1624

AuditMessageProcessor
Old: com.liferay.portal.kernel.audit New: com.liferay.portal.security.audit
com.liferay.portal.security.audit.api
AverageStatistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.internal.statis-

tics
com.liferay.portal.monitoring
BackgroundTaskLocalService
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskLocalServiceUtil
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskLocalServiceWrapper
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskModel
Old: com.liferay.portal.model New: com.liferay.portal.background.task.model
com.liferay.portal.background.task.api
BackgroundTaskPersistence
Old: com.liferay.portal.service.persistence New: com.liferay.portal.background.task.service.persistence
com.liferay.portal.background.task.api
BackgroundTaskService
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskServiceUtil
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskServiceWrapper
Old: com.liferay.portal.service New: com.liferay.portal.background.task.service
com.liferay.portal.background.task.api
BackgroundTaskSoap
Old: com.liferay.portal.model New: com.liferay.portal.background.task.model
com.liferay.portal.background.task.api
BackgroundTaskUtil
Old: com.liferay.portal.service.persistence New: com.liferay.portal.background.task.service.persistence
com.liferay.portal.background.task.api
BackgroundTaskWrapper
Old: com.liferay.portal.model New: com.liferay.portal.background.task.model
com.liferay.portal.background.task.api
BaseCmisRepository
Old: com.liferay.portal.kernel.repository.cmis New: com.liferay.document.library.repository.cmis
com.liferay.document.library.repository.cmis
BaseCmisSearchQueryBuilder
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
BaseDDLExporter

1625

Old: com.liferay.portlet.dynamicdatalists.util New: com.liferay.dynamic.data.lists.exporter.impl
com.liferay.dynamic.data.lists.service
BaseDDMDisplay
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.mapping.util
com.liferay.dynamic.data.mapping.api
BaseFieldRenderer
Old: com.liferay.portlet.dynamicdatamapping.storageNew: com.liferay.dynamic.data.mapping.storage
com.liferay.dynamic.data.mapping.api
BaseScriptingExecutor
Old: com.liferay.portal.kernel.scripting New: com.liferay.portal.scripting
com.liferay.portal.scripting
BaseStatistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.internal.statis-

tics
com.liferay.portal.monitoring
BaseStorageAdapter
Old: com.liferay.portlet.dynamicdatamapping.storageNew: com.liferay.dynamic.data.mapping.storage
com.liferay.dynamic.data.mapping.api
BillingCityException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
BillingCountryException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
BillingEmailAddressException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
BillingFirstNameException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
BillingLastNameException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
BillingPhoneException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
BillingStateException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
BillingStreetException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
BillingZipException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
BlockingPortalCache
Old: com.liferay.portal.kernel.cache New: com.liferay.portal.cache
com.liferay.portal.cache

1626

BookmarksEntry
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksEntryFinder
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.service.persistence
com.liferay.bookmarks.api
BookmarksEntryLocalService
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntryLocalServiceUtil
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntryLocalServiceWrapper
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntryModel
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksEntryPersistence
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.service.persistence
com.liferay.bookmarks.api
BookmarksEntryService
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntryServiceUtil
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntryServiceWrapper
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksEntrySoap
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksEntryUtil
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.service.persistence
com.liferay.bookmarks.api
BookmarksEntryWrapper
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksFolder
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksFolderConstants
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksFolderFinder
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.service.persistence
com.liferay.bookmarks.api

1627

BookmarksFolderLocalService
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderLocalServiceUtil
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderLocalServiceWrapper
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderModel
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksFolderPersistence
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.service.persistence
com.liferay.bookmarks.api
BookmarksFolderService
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderServiceUtil
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderServiceWrapper
Old: com.liferay.portlet.bookmarks.service New: com.liferay.bookmarks.service
com.liferay.bookmarks.api
BookmarksFolderSoap
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
BookmarksFolderUtil
Old: com.liferay.portlet.bookmarks.service.persistence New: com.liferay.bookmarks.service.persistence
com.liferay.bookmarks.api
BookmarksFolderWrapper
Old: com.liferay.portlet.bookmarks.model New: com.liferay.bookmarks.model
com.liferay.bookmarks.api
ByteArrayReportResultContainer
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
CCExpirationException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CCNameException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CCNumberException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CCTypeException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api

1628

CMISBetweenExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISConjunction
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISContainsExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISContainsNotExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISContainsValueExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISCriterion
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISDisjunction
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISFullTextConjunction
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISInFolderExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISInTreeExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISJunction
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISNotExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis

1629

CMISParameterValueUtil
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISRepositoryHandler
Old: com.liferay.portal.kernel.repository.cmis New: com.liferay.document.library.repository.cmis
com.liferay.document.library.repository.cmis
CMISRepositoryUtil
Old: com.liferay.portal.kernel.repository.cmis New: com.liferay.document.library.repository.cmis.inter-

nal
com.liferay.document.library.repository.cmis.impl
CMISSearchQueryBuilder
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISSimpleExpression
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CMISSimpleExpressionOperator
Old: com.liferay.portal.kernel.repository.cmis.search New: com.liferay.document.library.reposi-

tory.cmis.search
com.liferay.document.library.repository.cmis
CartMinOrderException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CartMinQuantityException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CollatedSpellCheckHitsProcessor
Old: com.liferay.portal.kernel.search New: com.liferay.portal.search.internal.hits
com.liferay.portal.search
CompoundSessionIdServletRequest
Old: com.liferay.portal.kernel.servlet.filters.compoundsessionid New: com.liferay.portal.com-

pound.session.id
com.liferay.portal.compound.session.id
Condition
Old: com.liferay.portlet.dynamicdatamapping.storage.query New: com.liferay.portal.workflow.ka-

leo.definition
com.liferay.portal.workflow.kaleo.definition.api
ContactConverterKeys
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap
com.liferay.portal.security.ldap
ContentException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
ContentNameException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception

1630

com.liferay.dynamic.data.mapping.api
ContextClassloaderReportDesignRetriever
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
CountStatistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.internal.statis-

tics
com.liferay.portal.monitoring
CouponActiveException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CouponCodeException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CouponDateException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CouponDescriptionException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CouponDiscountException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CouponEndDateException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CouponLimitCategoriesException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CouponLimitSKUsException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CouponMinimumOrderException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CouponNameException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
CouponStartDateException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
DDL
Old: com.liferay.portlet.dynamicdatalists.util New: com.liferay.dynamic.data.lists.util
com.liferay.dynamic.data.lists.api
DDLExporter
Old: com.liferay.portlet.dynamicdatalists.util New: com.liferay.dynamic.data.lists.exporter
com.liferay.dynamic.data.lists.api
DDLExporterFactory

1631

Old: com.liferay.portlet.dynamicdatalists.util New: com.liferay.dynamic.data.lists.exporter
com.liferay.dynamic.data.lists.api
DDLRecord
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordConstants
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordFinder
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dynamic.data.lists.ser-

vice.persistence
com.liferay.dynamic.data.lists.api
DDLRecordLocalService
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordLocalServiceUtil
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordModel
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordPersistence
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dynamic.data.lists.ser-

vice.persistence
com.liferay.dynamic.data.lists.api
DDLRecordService
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordServiceUtil
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordServiceWrapper
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSet
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordSetConstants
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordSetFinder
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dynamic.data.lists.ser-

vice.persistence
com.liferay.dynamic.data.lists.api
DDLRecordSetLocalService

1632

Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetLocalServiceUtil
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetModel
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordSetPersistence
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dynamic.data.lists.ser-

vice.persistence
com.liferay.dynamic.data.lists.api
DDLRecordSetService
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetServiceUtil
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetServiceWrapper
Old: com.liferay.portlet.dynamicdatalists.service New: com.liferay.dynamic.data.lists.service
com.liferay.dynamic.data.lists.api
DDLRecordSetSoap
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordSetUtil
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dynamic.data.lists.ser-

vice.persistence
com.liferay.dynamic.data.lists.api
DDLRecordSetWrapper
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordSoap
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordUtil
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dynamic.data.lists.ser-

vice.persistence
com.liferay.dynamic.data.lists.api
DDLRecordVersion
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordVersionModel
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordVersionPersistence

1633

Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dynamic.data.lists.ser-
vice.persistence

com.liferay.dynamic.data.lists.api
DDLRecordVersionSoap
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordVersionUtil
Old: com.liferay.portlet.dynamicdatalists.service.persistence New: com.liferay.dynamic.data.lists.ser-

vice.persistence
com.liferay.dynamic.data.lists.api
DDLRecordVersionVersionComparator
Old: com.liferay.portlet.dynamicdatalists.util.comparator New: com.liferay.dynamic.data.lists.util.com-

parator
com.liferay.dynamic.data.lists.api
DDLRecordVersionWrapper
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDLRecordWrapper
Old: com.liferay.portlet.dynamicdatalists.model New: com.liferay.dynamic.data.lists.model
com.liferay.dynamic.data.lists.api
DDM
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.mapping.util
com.liferay.dynamic.data.mapping.api
DDMContent
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMContentLocalService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMContentLocalServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMContentLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMContentModel
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMContentPersistence
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMContentSoap
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMContentUtil
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence

1634

com.liferay.dynamic.data.mapping.api
DDMContentWrapper
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMDisplay
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.mapping.util
com.liferay.dynamic.data.mapping.api
DDMDisplayRegistry
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.mapping.util
com.liferay.dynamic.data.mapping.api
DDMIndexer
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.mapping.util
com.liferay.dynamic.data.mapping.api
DDMStorageLink
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMStorageLinkLocalService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStorageLinkLocalServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStorageLinkLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStorageLinkModel
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMStorageLinkPersistence
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStorageLinkSoap
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMStorageLinkUtil
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStorageLinkWrapper
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMStructureConstants
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMStructureFinder
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence

1635

com.liferay.dynamic.data.mapping.api
DDMStructureLinkLocalService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStructureLinkLocalServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStructureLinkLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStructureLinkModel
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMStructureLinkPersistence
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStructureLinkSoap
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMStructureLinkUtil
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStructureLinkWrapper
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMStructureLocalService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStructureLocalServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStructureLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStructureModel
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMStructurePersistence
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStructureService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStructureServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service

1636

com.liferay.dynamic.data.mapping.api
DDMStructureServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMStructureSoap
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMStructureUtil
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMStructureWrapper
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMTemplateConstants
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMTemplateFinder
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMTemplateHelper
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.mapping.util
com.liferay.dynamic.data.mapping.api
DDMTemplateLocalService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateLocalServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateLocalServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateModel
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMTemplatePersistence
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMTemplateService
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateServiceUtil
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service
com.liferay.dynamic.data.mapping.api
DDMTemplateServiceWrapper
Old: com.liferay.portlet.dynamicdatamapping.service New: com.liferay.dynamic.data.mapping.service

1637

com.liferay.dynamic.data.mapping.api
DDMTemplateSoap
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMTemplateUtil
Old: com.liferay.portlet.dynamicdatamapping.service.persistence New: com.liferay.dynamic.data.map-

ping.service.persistence
com.liferay.dynamic.data.mapping.api
DDMTemplateWrapper
Old: com.liferay.portlet.dynamicdatamapping.model New: com.liferay.dynamic.data.mapping.model
com.liferay.dynamic.data.mapping.api
DDMUtil
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.mapping.util
com.liferay.dynamic.data.mapping.api
DDMXML
Old: com.liferay.portlet.dynamicdatamapping.util New: com.liferay.dynamic.data.mapping.util
com.liferay.dynamic.data.mapping.api
DefaultAttributesTransformer
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.internal
com.liferay.portal.security.ldap
DefaultMessageBus
Old: com.liferay.portal.kernel.messaging New: com.liferay.portal.messaging.internal
com.liferay.portal.messaging
DefaultSingleDestinationMessageSender
Old: com.liferay.portal.kernel.messaging.sender New: com.liferay.portal.messaging.internal.sender
com.liferay.portal.messaging
DefaultSingleDestinationSynchronousMessageSender
Old: com.liferay.portal.kernel.messaging.sender New: com.liferay.portal.messaging.internal.sender
com.liferay.portal.messaging
DefaultSynchronousMessageSender
Old: com.liferay.portal.kernel.messaging.sender New: com.liferay.portal.messaging.internal.sender
com.liferay.portal.messaging
DestinationStatisticsManager
Old: com.liferay.portal.kernel.messaging.jmx New: com.liferay.portal.messaging.internal.jmx
com.liferay.portal.messaging
DestinationStatisticsManagerMBean
Old: com.liferay.portal.kernel.messaging.jmx New: com.liferay.portal.messaging.internal.jmx
com.liferay.portal.messaging
DirectSynchronousMessageSender
Old: com.liferay.portal.kernel.messaging.sender New: com.liferay.portal.messaging.internal.sender
com.liferay.portal.messaging
DummyContext
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap.dummy
com.liferay.portal.security.ldap
DummyDirContext
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap.dummy
com.liferay.portal.security.ldap
DuplicateArticleIdException

1638

Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
DuplicateArticleImageIdException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
DuplicateCouponCodeException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
DuplicateFeedIdException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
DuplicateItemSKUException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
DuplicateLDAPServerNameException
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap
com.liferay.portal.security.ldap
DuplicateNodeNameException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
DuplicatePageException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
DuplicateRuleGroupInstanceException
Old: com.liferay.portlet.mobiledevicerules New: com.liferay.mobile.device.rules.exception
com.liferay.mobile.device.rules.api
DuplicateVoteException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
EntryNameComparator
Old: com.liferay.portlet.bookmarks.util.comparator New: com.liferay.bookmarks.util.comparator
com.liferay.bookmarks.api
EntryPriorityComparator
Old: com.liferay.portlet.bookmarks.util.comparator New: com.liferay.bookmarks.util.comparator
com.liferay.bookmarks.api
EntryURLComparator
Old: com.liferay.portlet.bookmarks.util.comparator New: com.liferay.bookmarks.util.comparator
com.liferay.bookmarks.api
EntryVisitsComparator
Old: com.liferay.portlet.bookmarks.util.comparator New: com.liferay.bookmarks.util.comparator
com.liferay.bookmarks.api
Fact
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
FeedContentFieldException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
FeedIdException

1639

Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
FeedNameException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
FeedTargetLayoutFriendlyUrlException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
FeedTargetPortletIdException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
FieldConstants
Old: com.liferay.portlet.dynamicdatamapping.storageNew: com.liferay.dynamic.data.mapping.storage
com.liferay.dynamic.data.mapping.api
FieldRenderer
Old: com.liferay.portlet.dynamicdatamapping.storageNew: com.liferay.dynamic.data.mapping.storage
com.liferay.dynamic.data.mapping.api
FieldRendererFactory
Old: com.liferay.portlet.dynamicdatamapping.storageNew: com.liferay.dynamic.data.mapping.storage
com.liferay.dynamic.data.mapping.api
Fields
Old: com.liferay.portlet.dynamicdatamapping.storageNew: com.liferay.dynamic.data.mapping.storage
com.liferay.dynamic.data.mapping.api
FlagsEntryService
Old: com.liferay.portlet.flags.service New: com.liferay.flags.service
com.liferay.flags.api
FlagsEntryServiceUtil
Old: com.liferay.portlet.flags.service New: com.liferay.flags.service
com.liferay.flags.api
FlagsEntryServiceWrapper
Old: com.liferay.portlet.flags.service New: com.liferay.flags.service
com.liferay.flags.api
FlagsRequest
Old: com.liferay.portlet.flags.messaging New: com.liferay.flags.messaging
com.liferay.flags.service
GroupConverterKeys
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap
com.liferay.portal.security.ldap
ImportFilesException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
ItemLargeImageNameException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ItemLargeImageSizeException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ItemMediumImageNameException

1640

Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ItemMediumImageSizeException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ItemMinQuantityComparator
Old: com.liferay.portlet.shopping.util.comparator New: com.liferay.shopping.util.comparator
com.liferay.shopping.api
ItemNameComparator
Old: com.liferay.portlet.shopping.util.comparator New: com.liferay.shopping.util.comparator
com.liferay.shopping.api
ItemNameException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ItemPriceComparator
Old: com.liferay.portlet.shopping.util.comparator New: com.liferay.shopping.util.comparator
com.liferay.shopping.api
ItemSKUComparator
Old: com.liferay.portlet.shopping.util.comparator New: com.liferay.shopping.util.comparator
com.liferay.shopping.api
ItemSKUException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ItemSmallImageNameException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ItemSmallImageSizeException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
JobStateSerializeUtil
Old: com.liferay.portal.kernel.scheduler New: com.liferay.portal.scheduler
com.liferay.portal.scheduler
JournalArticle
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleConstants
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleDisplay
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleFinder
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalArticleImage
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleImageLocalService

1641

Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleImageLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleImageLocalServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleImageModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleImagePersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalArticleImageSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleImageUtil
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalArticleImageWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleLocalService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleLocalServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticlePersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalArticleResource
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleResourceLocalService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleResourceLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleResourceLocalServiceWrapper

1642

Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleResourceModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleResourcePersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalArticleResourceSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleResourceUtil
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalArticleResourceWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalArticleSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalArticleUtil
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalArticleWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalContent
Old: com.liferay.portlet.journalcontent.util New: com.liferay.journal.util
com.liferay.journal.api
JournalContentSearch
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalContentSearchLocalService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalContentSearchLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalContentSearchLocalServiceWrapper

1643

Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalContentSearchModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalContentSearchPersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalContentSearchSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalContentSearchUtil
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalContentSearchWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalConverter
Old: com.liferay.portlet.journal.util New: com.liferay.journal.util
com.liferay.journal.api
JournalFeed
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFeedConstants
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFeedFinder
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalFeedLocalService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedLocalServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFeedPersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalFeedService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedServiceUtil

1644

Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFeedSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFeedUtil
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalFeedWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFolder
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFolderFinder
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalFolderLocalService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderLocalServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderLocalServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderModel
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFolderPersistence
Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalFolderService
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderServiceUtil
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderServiceWrapper
Old: com.liferay.portlet.journal.service New: com.liferay.journal.service
com.liferay.journal.api
JournalFolderSoap
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalFolderUtil

1645

Old: com.liferay.portlet.journal.service.persistence New: com.liferay.journal.service.persistence
com.liferay.journal.api
JournalFolderWrapper
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalSearchConstants
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
JournalStructureConstants
Old: com.liferay.portlet.journal.model New: com.liferay.journal.model
com.liferay.journal.api
LDAPFilterException
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap.validator
com.liferay.portal.security.ldap
LDAPGroup
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.exportimport
com.liferay.portal.security.ldap
LDAPServerNameException
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap
com.liferay.portal.security.ldap
LDAPToPortalConverter
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.exportimport
com.liferay.portal.security.ldap
LDAPUser
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.exportimport
com.liferay.portal.security.ldap
LDAPUtil
Old: com.liferay.portal.kernel.ldap New: com.liferay.portal.security.ldap.util
com.liferay.portal.security.ldap
LockLocalService
Old: com.liferay.portal.service New: com.liferay.portal.lock.service
com.liferay.portal.lock.api
LockLocalServiceUtil
Old: com.liferay.portal.service New: com.liferay.portal.lock.service
com.liferay.portal.lock.api
LockLocalServiceWrapper
Old: com.liferay.portal.service New: com.liferay.portal.lock.service
com.liferay.portal.lock.api
LockModel
Old: com.liferay.portal.model New: com.liferay.portal.lock.model
com.liferay.portal.lock.api
LockPersistence
Old: com.liferay.portal.service.persistence New: com.liferay.portal.lock.service.persistence
com.liferay.portal.lock.api
LockSoap
Old: com.liferay.portal.model New: com.liferay.portal.lock.model
com.liferay.portal.lock.api
LockUtil

1646

Old: com.liferay.portal.service.persistence New: com.liferay.portal.lock.service.persistence
com.liferay.portal.lock.api
LockWrapper
Old: com.liferay.portal.model New: com.liferay.portal.lock.model
com.liferay.portal.lock.api
MBeanRegistry
Old: com.liferay.portal.kernel.jmx New: com.liferay.portal.jmx
com.liferay.portal.jmx
MDRAction
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRActionLocalService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRActionLocalServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRActionLocalServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRActionModel
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRActionPersistence
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.device.rules.ser-

vice.persistence
com.liferay.mobile.device.rules.api
MDRActionService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRActionServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRActionServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRActionSoap
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRActionUtil
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.device.rules.ser-

vice.persistence
com.liferay.mobile.device.rules.api
MDRActionWrapper
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRPermission

1647

Old: com.liferay.portlet.mobiledevicerules.service.permission New: com.liferay.mobile.device.rules.ser-
vice.permission

com.liferay.mobile.device.rules.service
MDRRule
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroup
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupFinder
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.device.rules.ser-

vice.persistence
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceLocalService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceLocalServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceLocalServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceModel
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupInstancePermission
Old: com.liferay.portlet.mobiledevicerules.service.permission New: com.liferay.mobile.device.rules.ser-

vice.permission
com.liferay.mobile.device.rules.service
MDRRuleGroupInstancePersistence
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.device.rules.ser-

vice.persistence
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceSoap
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceUtil
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.device.rules.ser-

vice.persistence

1648

com.liferay.mobile.device.rules.api
MDRRuleGroupInstanceWrapper
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupLocalService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupLocalServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupLocalServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupModel
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupPermission
Old: com.liferay.portlet.mobiledevicerules.service.permission New: com.liferay.mobile.device.rules.ser-

vice.permission
com.liferay.mobile.device.rules.service
MDRRuleGroupPersistence
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.device.rules.ser-

vice.persistence
com.liferay.mobile.device.rules.api
MDRRuleGroupService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleGroupSoap
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleGroupUtil
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.device.rules.ser-

vice.persistence
com.liferay.mobile.device.rules.api
MDRRuleGroupWrapper
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleLocalService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleLocalServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service

1649

com.liferay.mobile.device.rules.api
MDRRuleLocalServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleModel
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRulePersistence
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.device.rules.ser-

vice.persistence
com.liferay.mobile.device.rules.api
MDRRuleService
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleServiceUtil
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleServiceWrapper
Old: com.liferay.portlet.mobiledevicerules.service New: com.liferay.mobile.device.rules.service
com.liferay.mobile.device.rules.api
MDRRuleSoap
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MDRRuleUtil
Old: com.liferay.portlet.mobiledevicerules.service.persistence New: com.liferay.mobile.device.rules.ser-

vice.persistence
com.liferay.mobile.device.rules.api
MDRRuleWrapper
Old: com.liferay.portlet.mobiledevicerules.model New: com.liferay.mobile.device.rules.model
com.liferay.mobile.device.rules.api
MemoryReportDesignRetriever
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
MessageBusManager
Old: com.liferay.portal.kernel.messaging.jmx New: com.liferay.portal.messaging.internal.jmx
com.liferay.portal.messaging
MessageBusManagerMBean
Old: com.liferay.portal.kernel.messaging.jmx New: com.liferay.portal.messaging.internal.jmx
com.liferay.portal.messaging
Modifications
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.exportimport
com.liferay.portal.security.ldap
NoSuchArticleException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
NoSuchArticleImageException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api

1650

NoSuchArticleResourceException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
NoSuchCartException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
NoSuchChoiceException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
NoSuchContentSearchException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
NoSuchCouponException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
NoSuchFeedException
Old: com.liferay.portlet.journal New: com.liferay.journal.exception
com.liferay.journal.api
NoSuchItemException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
NoSuchItemFieldException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
NoSuchItemPriceException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
NoSuchNodeException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
NoSuchOrderException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
NoSuchOrderItemException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
NoSuchPageException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
NoSuchPageResourceException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
NoSuchQuestionException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
NoSuchRecordException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api

1651

NoSuchRecordSetException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
NoSuchRecordVersionException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
NoSuchRuleException
Old: com.liferay.portlet.mobiledevicerules New: com.liferay.mobile.device.rules.exception
com.liferay.mobile.device.rules.api
NoSuchRuleGroupException
Old: com.liferay.portlet.mobiledevicerules New: com.liferay.mobile.device.rules.exception
com.liferay.mobile.device.rules.api
NoSuchRuleGroupInstanceException
Old: com.liferay.portlet.mobiledevicerules New: com.liferay.mobile.device.rules.exception
com.liferay.mobile.device.rules.api
NoSuchStorageLinkException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
NoSuchStructureLinkException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
NoSuchTemplateException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
NoSuchTemplateException
Old: com.liferay.portlet.journal New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
NoSuchVoteException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
NodeNameException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
OrderDateComparator
Old: com.liferay.portlet.shopping.util.comparator New: com.liferay.shopping.util.comparator
com.liferay.shopping.api
PageContentException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
PageCreateDateComparator
Old: com.liferay.portlet.wiki.util.comparator New: com.liferay.wiki.util.comparator
com.liferay.wiki.service
PageTitleComparator
Old: com.liferay.portlet.wiki.util.comparator New: com.liferay.wiki.util.comparator
com.liferay.wiki.service
PageTitleException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api

1652

PageVersionComparator
Old: com.liferay.portlet.wiki.util.comparator New: com.liferay.wiki.util.comparator
com.liferay.wiki.service
PageVersionException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
PollsChoice
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsChoiceLocalService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceLocalServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceLocalServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceModel
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsChoicePersistence
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsChoiceService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsChoiceSoap
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsChoiceUtil
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsChoiceWrapper
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsQuestion
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsQuestionLocalService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api

1653

PollsQuestionLocalServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionLocalServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionModel
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsQuestionPersistence
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsQuestionService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsQuestionSoap
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsQuestionUtil
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsQuestionWrapper
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsVote
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsVoteLocalService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteLocalServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteLocalServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteModel
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsVotePersistence
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api

1654

PollsVoteService
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteServiceUtil
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteServiceWrapper
Old: com.liferay.portlet.polls.service New: com.liferay.polls.service
com.liferay.polls.api
PollsVoteSoap
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PollsVoteUtil
Old: com.liferay.portlet.polls.service.persistence New: com.liferay.polls.service.persistence
com.liferay.polls.api
PollsVoteWrapper
Old: com.liferay.portlet.polls.model New: com.liferay.polls.model
com.liferay.polls.api
PortalExecutorFactory
Old: com.liferay.portal.kernel.executor New: com.liferay.portal.executor.internal
com.liferay.portal.executor
PortalToLDAPConverter
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap.exportimport
com.liferay.portal.security.ldap
PortletDisplayTemplate
Old: com.liferay.portlet.portletdisplaytemplate.util New: com.liferay.portlet.display.template
com.liferay.portlet.display.template
PortletDisplayTemplateConstants
Old: com.liferay.portlet.portletdisplaytemplate.util New: com.liferay.portlet.display.template
com.liferay.portlet.display.template
PortletDisplayTemplateUtil
Old: com.liferay.portlet.portletdisplaytemplate.util New: com.liferay.portlet.display.template
com.liferay.portlet.display.template
QueryIndexingHitsProcessor
Old: com.liferay.portal.kernel.search New: com.liferay.portal.search.internal.hits
com.liferay.portal.search
QuerySuggestionHitsProcessor
Old: com.liferay.portal.kernel.search New: com.liferay.portal.search.internal.hits
com.liferay.portal.search
QueryType
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
QuestionChoiceException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
QuestionDescriptionException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api

1655

QuestionExpirationDateException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
QuestionExpiredException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
QuestionTitleException
Old: com.liferay.portlet.polls New: com.liferay.polls.exception
com.liferay.polls.api
RecordSetDDMStructureIdException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
RecordSetDuplicateRecordSetKeyException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
RecordSetNameException
Old: com.liferay.portlet.dynamicdatalists New: com.liferay.dynamic.data.lists.exception
com.liferay.dynamic.data.lists.api
RegistryAwareMBeanServer
Old: com.liferay.portal.kernel.jmx New: com.liferay.portal.jmx.internal
com.liferay.portal.jmx
ReportCompilerRequestMessageListener
Old: com.liferay.portal.kernel.bi.reporting.messaging New: com.liferay.portal.reports.engine.messag-

ing
com.liferay.portal.reports.engine.api
ReportDataSourceType
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportDesignRetriever
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportEngine
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportExportException
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportFormat
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportFormatExporter
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportFormatExporterRegistry
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportGenerationException
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine

1656

com.liferay.portal.reports.engine.api
ReportRequest
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportRequestContext
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
ReportRequestMessageListener
Old: com.liferay.portal.kernel.bi.reporting.messaging New: com.liferay.portal.reports.engine.messag-

ing
com.liferay.portal.reports.engine.api
ReportResultContainer
Old: com.liferay.portal.kernel.bi.reporting New: com.liferay.portal.reports.engine
com.liferay.portal.reports.engine.api
RequestStatistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.internal.statis-

tics
com.liferay.portal.monitoring
RequiredCouponException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
RequiredNodeException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
RequiredTemplateException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
RequiredTemplateException
Old: com.liferay.portlet.journal New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
RuleGroupInstancePriorityComparator
Old: com.liferay.portlet.mobiledevicerules.util New: com.liferay.mobile.device.rules.util.comparator
com.liferay.mobile.device.rules.api
RuleGroupProcessor
Old: com.liferay.portal.kernel.mobile.device.rulegroup New: com.liferay.mobile.device.rules.rule
com.liferay.mobile.device.rules.api
RuleGroupProcessorUtil
Old: com.liferay.portal.kernel.mobile.device.rulegroup New: com.liferay.mobile.device.rules.rule
com.liferay.mobile.device.rules.api
RuleHandler
Old: com.liferay.portal.kernel.mobile.device.rulegroup.rule New: com.liferay.mobile.device.rules.rule
com.liferay.mobile.device.rules.api
RulesEngine
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
RulesEngineException
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api

1657

RulesEngineUtil
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
RulesLanguage
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
RulesResourceRetriever
Old: com.liferay.portal.kernel.bi.rules New: com.liferay.portal.rules.engine
com.liferay.portal.rules.engine.api
ServletContextReportDesignRetriever
Old: com.liferay.portal.kernel.bi.reporting.servlet New: com.liferay.portal.reports.engine.servlet
com.liferay.portal.reports.engine.api
ShippingCityException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ShippingCountryException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ShippingEmailAddressException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ShippingFirstNameException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ShippingLastNameException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ShippingPhoneException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ShippingStateException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ShippingStreetException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ShippingZipException
Old: com.liferay.portlet.shopping New: com.liferay.shopping.exception
com.liferay.shopping.api
ShoppingCart
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCartItem
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCartLocalService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api

1658

ShoppingCartLocalServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCartLocalServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCartModel
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCartPersistence
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingCartSoap
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCartUtil
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingCartWrapper
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCategory
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCategoryConstants
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCategoryLocalService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCategoryLocalServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCategoryLocalServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCategoryModel
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCategoryPersistence
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingCategoryService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCategoryServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api

1659

ShoppingCategoryServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCategorySoap
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCategoryUtil
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingCategoryWrapper
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCoupon
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCouponConstants
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCouponFinder
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingCouponLocalService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCouponLocalServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCouponLocalServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCouponModel
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingCouponPersistence
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingCouponService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCouponServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCouponServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingCouponSoap
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api

1660

ShoppingCouponUtil
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingCouponWrapper
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItem
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemField
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemFieldLocalService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemFieldLocalServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemFieldLocalServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemFieldModel
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemFieldPersistence
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingItemFieldSoap
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemFieldUtil
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingItemFieldWrapper
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemFinder
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingItemLocalService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemLocalServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemLocalServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api

1661

ShoppingItemModel
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemPersistence
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingItemPrice
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemPriceConstants
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemPriceLocalService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemPriceLocalServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemPriceLocalServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemPriceModel
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemPricePersistence
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingItemPriceSoap
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemPriceUtil
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingItemPriceWrapper
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingItemService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingItemSoap
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api

1662

ShoppingItemUtil
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingItemWrapper
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingOrder
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingOrderConstants
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingOrderFinder
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingOrderItem
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingOrderItemLocalService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingOrderItemLocalServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingOrderItemLocalServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingOrderItemModel
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingOrderItemPersistence
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingOrderItemSoap
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingOrderItemUtil
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingOrderItemWrapper
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingOrderLocalService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingOrderLocalServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api

1663

ShoppingOrderLocalServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingOrderModel
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingOrderPersistence
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingOrderService
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingOrderServiceUtil
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingOrderServiceWrapper
Old: com.liferay.portlet.shopping.service New: com.liferay.shopping.service
com.liferay.shopping.api
ShoppingOrderSoap
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
ShoppingOrderUtil
Old: com.liferay.portlet.shopping.service.persistence New: com.liferay.shopping.service.persistence
com.liferay.shopping.api
ShoppingOrderWrapper
Old: com.liferay.portlet.shopping.model New: com.liferay.shopping.model
com.liferay.shopping.api
SortFactoryImpl
Old: com.liferay.portal.kernel.search New: com.liferay.portal.search.internal
com.liferay.portal.search
Statistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.statistics
com.liferay.portal.monitoring
StorageAdapter
Old: com.liferay.portlet.dynamicdatamapping.storageNew: com.liferay.dynamic.data.mapping.storage
com.liferay.dynamic.data.mapping.api
StorageEngine
Old: com.liferay.portlet.dynamicdatamapping.storageNew: com.liferay.dynamic.data.mapping.storage
com.liferay.dynamic.data.mapping.api
StorageException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
StorageFieldNameException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
StructureDuplicateStructureKeyException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api

1664

StructureFieldException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
StructureIdComparator
Old: com.liferay.portlet.dynamicdatamapping.util.comparator New: com.liferay.dynamic.data.map-

ping.util.comparator
com.liferay.dynamic.data.mapping.api
StructureModifiedDateComparator
Old: com.liferay.portlet.dynamicdatamapping.util.comparator New: com.liferay.dynamic.data.map-

ping.util.comparator
com.liferay.dynamic.data.mapping.api
StructureStructureKeyComparator
Old: com.liferay.portlet.dynamicdatamapping.util.comparator New: com.liferay.dynamic.data.map-

ping.util.comparator
com.liferay.dynamic.data.mapping.api
SummaryStatistics
Old: com.liferay.portal.kernel.monitoring.statistics New: com.liferay.portal.monitoring.statistics
com.liferay.portal.monitoring
SynchronousMessageListener
Old: com.liferay.portal.kernel.messaging.sender New: com.liferay.portal.messaging.internal.sender
com.liferay.portal.messaging
TemplateDuplicateTemplateKeyException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
TemplateIdComparator
Old: com.liferay.portlet.dynamicdatamapping.util.comparator New: com.liferay.dynamic.data.map-

ping.util.comparator
com.liferay.dynamic.data.mapping.api
TemplateModifiedDateComparator
Old: com.liferay.portlet.dynamicdatamapping.util.comparator New: com.liferay.dynamic.data.map-

ping.util.comparator
com.liferay.dynamic.data.mapping.api
TemplateNameException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
TemplateNameException
Old: com.liferay.portlet.journal New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
TemplateScriptException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
TemplateSmallImageNameException
Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
TemplateSmallImageNameException
Old: com.liferay.portlet.journal New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
TemplateSmallImageSizeException

1665

Old: com.liferay.portlet.dynamicdatamapping New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
TemplateSmallImageSizeException
Old: com.liferay.portlet.journal New: com.liferay.dynamic.data.mapping.exception
com.liferay.dynamic.data.mapping.api
UnknownRuleHandlerException
Old: com.liferay.portal.kernel.mobile.device.rulegroup.rule New: com.liferay.mobile.device.rules.rule
com.liferay.mobile.device.rules.api
UserConverterKeys
Old: com.liferay.portal.security.ldap New: com.liferay.portal.security.ldap
com.liferay.portal.security.ldap
WikiFormatException
Old: com.liferay.portlet.wiki New: com.liferay.wiki.exception
com.liferay.wiki.api
WikiNode
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiNodeLocalService
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeLocalServiceUtil
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeLocalServiceWrapper
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeModel
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiNodePersistence
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiNodeService
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeServiceUtil
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeServiceWrapper
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiNodeSoap
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiNodeUtil
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiNodeWrapper

1666

Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPage
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageConstants
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageDisplay
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageFinder
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiPageLocalService
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageLocalServiceUtil
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageLocalServiceWrapper
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageModel
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPagePersistence
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiPageResource
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageResourceLocalService
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageResourceLocalServiceUtil
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageResourceLocalServiceWrapper
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageResourceModel
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageResourcePersistence
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiPageResourceSoap

1667

Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageResourceUtil
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiPageResourceWrapper
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageService
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageServiceUtil
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageServiceWrapper
Old: com.liferay.portlet.wiki.service New: com.liferay.wiki.service
com.liferay.wiki.api
WikiPageSoap
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
WikiPageUtil
Old: com.liferay.portlet.wiki.service.persistence New: com.liferay.wiki.service.persistence
com.liferay.wiki.api
WikiPageWrapper
Old: com.liferay.portlet.wiki.model New: com.liferay.wiki.model
com.liferay.wiki.api
Related Topics
Liferay Upgrade Planner
Development Reference

1668

Chapter 126

Theme Gulp Tasks

Theme projects that use the liferay JSTheme Toolkit, such as those created with the LiferayTheme Generator
have access to several gulp tasks that you can execute to manage and deploy your theme.

Note: Gulp is included as a local dependency in generated themes, so you are not required to install it. It
can be accessed by running node_modules\.bin\gulp followed by the Gulp task from a generated theme’s root
folder.

Here are the gulp tasks you can execute:

• build: generates the base theme files, compiles Sass into CSS, and zips all theme files into aWAR file
that you can deploy to a Liferay server.

• deploy: runs the build task and deploys theWAR file to the configured local app server.

Note: If you're running the [Felix Gogo shell](/docs/7-0/reference/-/knowledge_base/r/using-the-felix-gogo-shell),

you can also deploy your theme using the `gulp deploy:gogo` command. **This

task will NOT work for 6.2 themes.**

• extend: allows you to specify a base theme or themelet to extend. By default, themes created with the
LiferayTheme Generator are based off of the styled theme.

You first are prompted if you want to extend a Base theme or Themelet, then you’re prompted for
where you would like to search for modules. Selecting Globally installed npmmodules searches globally
accessible npmmodules on your computer. Selecting npm registry searches for published modules on
npm. If you have v8.x.x of the Liferay JSTheme Toolkit installed, you can also Specify a package URL to
locate a themelet.

Note: You can retrieve the URL for a package by running

`npm show package-name dist.tarball`.

1669

https://github.com/liferay/liferay-themes-sdk/tree/master/packages
https://www.npmjs.com/package/gulp
https://github.com/liferay/generator-liferay-theme
https://www.npmjs.com/package/liferay-theme-styled
https://github.com/liferay/liferay-themes-sdk/tree/master/packages

After you've selected modules from the options it provides, the modules are

added to your `package.json` file as dependencies. Run `npm install` to

install them.

Note: The Classic theme is an implementation of an existing base theme

and is therefore not meant to be extended. Extending Liferay's Classic

theme is strongly discouraged.

• kickstart: allows you to copy the CSS, images, JS, and templates from another theme into the src
directory of your own. While this is similar to the extend task, kickstarting from another theme is a
one time inheritance, whereas extending from another theme is a dynamic inheritance that applies
your src files on top of the base theme on every build.

• init: prompts you for local and remote app server information to use in theme deployment.

• status: displays the name of the base theme/themelets your theme extends.

• watch: allows you to preview the changes youmake to your theme without requiring a full redeploy.
After invoking the watch task, every time you save any changes to a file in your theme, applicable
changes are compiled and they’re copied directly to a proxy port (e.g. 9080) for you to preview live.
Note: youmust have Developer Mode enabled to use the watch task. Once you’re happy with the live
preview, deploy your theme to apply the changes.

Related Topics
LiferayTheme Generator

1670

Chapter 127

Theme Reference Guide

A theme is made up of several files. Althoughmost of the files are named after their matching components,
their function may be unclear.

This document explains each file’s usage to make clear which files to modify and which files to leave
untouched.

Theme Anatomy

There are twomain approaches to theme development for 7.0: themes built using the Node.js build tools
with the theme generator and themes built using @ide@.

Themes developedwith the theme generator have the anatomy shown below. Although themes developed
with @ide@ have a slightly different anatomy built with the theme project template, the core theme files are
the same. Note that the build folder is shown for reference, and is generated when the theme is compiled.

• theme-name/

– build/(generated when the theme is compiled)

* css/

· _application.scss

· _aui_custom.scss

· _aui_variables.scss

· _base.scss

· _custom.scss

· _extras.scss

· _imports.scss

· _layout.scss

· _liferay_custom.scss

· _liferay_variables_custom.scss

· _liferay_variables.scss

· _navigation.scss

· _portal.scss

· _portlet.scss

1671

· _taglib.scss

· application/

· aui/

· aui.scss

· base/

· font-awesome.scss

· layout/

· main.scss

· navigation/

· portal/

· portlet/

· taglib/

* templates/

· init_custom.ftl

· init.ftl

· navigation.ftl

· portal_normal.ftl

· portal_pop_up.ftl

· portlet.ftl

· (other directories that have been copied from src)

– dist/ (generated when the theme is compiled. This is where the theme’s war file is placed after a
build/deploy.)

– gulpfile.js

– liferay-theme.json

– node_modules/ (generated when an npm install command is run from the root of the theme, and
can be deleted at anytime and re-generated by running npm install.)

* (many directories)

– package.json

– src/

* css/

· (modified CSS files)

* images/

· (many directories)

* js/

· main.js

* templates/

· (Modified theme templates)

1672

* WEB-INF/ - lib/

· liferay-look-and-feel.xml

· liferay-plugin-package.properties

· src/

· resources-importer/

· (Many directories)

Regarding CSS files, it is recommended that you only modify _custom.scss, _aui_custom.scss,
_aui_variables.scss, and _liferay_variables_custom.scss.

You can of course overwrite any CSS file that you wish, but if youmodify any other files, you will most
likely be removing styling that 7.0 needs to work properly.

127.1 Theme Files

_application.scss

Contains imports for application styles. Generally these files style components that aren’t Liferay specific,
i.e. Alloy or Bootstrap components.

_aui_custom.scss

Used for AUI custom styles, i.e. styles for a third party Bootstrap theme. Anything written in this file is
compiled in the same scope as Bootstrap/Lexicon, so you can use their variables, mixins, etc. You can also
implement any of the variables you define in _aui_variables.scss.

_aui_variables.scss

Used to store custom Sass variables. This file get’s injected into the Bootstrap/Lexicon build, so you can
overwrite variables and change how those libraries are compiled.

_base.scss

Contains imports for the base styles for Liferay.

_custom.scss

Used for custom CSS styles. It is recommended that you place all of your custom CSSmodfications in this
file.

_extras.scss

Contains styling that is considered non-essential and potentially dated in the near future i.e. box-shadows,
rounded corners, etc. This allows for easy maintenance.

_imports.scss

Contains imports for third-party libraries required for the theme e.g. Bourbon, Liferay Mixins, Lexicon Base
Variables, and BootstrapMixins.

1673

_layout.scss

Contains imports for layout styles and variables.

_liferay_custom.scss

Contains Liferay DXP styles that are compiled in the same scope as Bootstrap/Lexicon.
It’s recommended that youNOT overwrite this file.

_liferay_variables_custom.scss

Used for overwriting variables defined in _liferay_variables.scsswithout wiping out the whole file.

_liferay_variables.scss

Contains variables that are used in _liferay_custom.scss.
It’s recommended that youNOT overwrite this file.

_navigation.scss

Contains imports for navigation styles.

_portal.scss

Contains imports for Portal components.

_portlet.scss

Contains imports for portlet components.

_taglib.scss

Contains imports for taglib styles.

aui.scss

Contains the Lexicon base CSS import. If you want to just use Bootstrap, or use Atlas, you can do so by
adding one of the following imports:

@import "aui/lexicon/bootstrap";

or

@import "aui/lexicon/atlas";

font-awesome.scss

Contains the Font Awesome icon imports for Liferay.

main.scss

Contains imports for the core CSS files.

1674

init_custom.ftl

Used for custom FreeMarker variables i.e. theme setting variables.

init.ftl

Contains commonFreeMarker variables that are available touse in your theme templates. Useful for reference
if you need access to theme objects.

It’s recommended that youNOT overwrite this file.

navigation.ftl

The theme template for the theme’s navigation.

portal_normal.ftl

Similar to the index.html of a website, this file acts as a hub for all of the theme templates.

portal_pop_up.ftl

The theme template for pop up dialogs for the theme’s portlets.

portlet.ftl

The theme template for the theme’s portlets. If your theme uses Application Decorators, you canmodify this
file to create application decorator specific theme settings. See the Portlet Decorators tutorial for more info.

gulpfile.js

Defines the required gulp tasks for Node.js tool developed themes.
It’s recommended that youNOT overwrite this file.

liferay-theme.json

Contains the configuration settings for your app server, in Node.js tool based themes. You can change this
file manually at any time to update your server settings. The file can also be updated via the gulp init task.

package.json

contains theme setting information such as the theme template langauge, version, and base theme, for
Node.js tool developed themes. This file can be updated manually. The gulp extend task can also be used to
change the base theme.

main.js

Used for custom JavaScript.

liferay-look-and-feel.xml

Contains basic information for the theme. If your theme has theme settings , they are defined in this file.
For a full explanation of this file please see the Definitions docs.

1675

@platform-ref@/7.0-latest/definitions/liferay-look-and-feel_7_0_0.dtd.html

liferay-plugin-package.properties

Containsgeneral properties for the theme. [Resources Importer]{/docs/7-0/tutorials/-/knowledge_base/t/importing-
resources-with-a-theme} configuration settings are also placed in this file. For a full explanation of the
properties available for this file please see the 7.0 Propertiesdoc.

1676

@platform-ref@/7.0-latest/propertiesdoc/liferay-plugin-package_7_0_0.properties.html

Chapter 128

Screenlets in Liferay Screens for Android

Liferay Screens for Android contains several Screenlets that you can use in your Android apps. This section
contains the reference documentation for each. If you’re looking for instructions on using Screens, see
the Screens tutorials. The Screens tutorials contain instructions on using Screenlets and using views in
Screenlets. Each Screenlet reference document here lists the Screenlet’s features, compatibility, its module
(if any), available Views, attributes, listener methods, and more. The available Screenlets are listed here with
links to their reference documents:

• Login Screenlet: Signs users in to a Liferay DXP instance.

• SignUp Screenlet: Registers new users in a Liferay DXP instance.

• Forgot Password Screenlet: Sends emails containing a new password or password reset link to users.

• User Portrait Screenlet: Show the user’s portrait picture.

• DDL Form Screenlet: Presents dynamic forms to be filled out by users and submitted back to the
server.

• DDL List Screenlet: Shows a list of records based on a pre-existing DDL in a Liferay instance.

• Asset List Screenlet: Shows a list of assets managed by Liferay’s Asset Framework. This includes web
content, blog entries, documents, users, andmore.

• WebContent Display Screenlet: Shows the web content’s HTML or structured content. This Screenlet
uses the features available inWeb Content Management.

• WebContent List Screenlet: Shows a list of web contents from a folder, usually based on a pre-existing
DDMStructure.

• ImageGallery Screenlet: Shows a list of images from a folder. This Screenlet also lets users upload
and delete images.

• Rating Screenlet: Shows the rating for an asset. This Screenlet also lets the user update or delete the
rating.

• Comment List Screenlet: Shows a list of comments for an asset.

1677

• Comment Display Screenlet: Shows a single comment for an asset.

• Comment Add Screenlet: Lets the user comment on an asset.

• Asset Display Screenlet: Displays an asset. Currently, this Screenlet can display Documents and
Media Library files (DLFileEntry entities), blog articles (BlogsEntry entities), and web content articles
(WebContent entities). You can also use it to display custom assets.

• Blogs Entry Display Screenlet: Shows a single blog entry.

• Image Display Screenlet: Shows a single image file from a Liferay DXP instance’s Documents and
Media Library.

• VideoDisplayScreenlet: Shows a single video file from a LiferayDXP instance’s Documents andMedia
Library.

• Audio Display Screenlet: Shows a single audio file from a Liferay DXP instance’s Documents and
Media Library.

• PDFDisplay Screenlet: Shows a single PDF file from a Liferay DXP instance’s Documents andMedia
Library.

• WebScreenlet: Displays any web page. You can also customize the web page through injection of local
and remote JavaScript and CSS files.

128.1 Login Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Login Screenlet lets you authenticate portal users in your Android app. The following types of authentication
are supported:

• Basic: uses user login and password according to HTTP Basic Access Authentication specification.
Depending on the authenticationmethod used by your Liferay instance, you need to provide the user’s
email address, screen name, or user ID. You also need to provide the user’s password.

• OAuth: implements the OAuth 1.0a specification.

1678

http://tools.ietf.org/html/rfc2617
http://oauth.net/core/1.0a/

• Cookie: uses a cookie to log in. This lets you access documents and images in the portal’s document
library without the guest view permission in the portal. The other authentication types require this
permission to access such files.

Note: Cookie authentication with Login Screenlet is broken in fix packs 14 through 18 of Liferay Digital
Enterprise 7.0. This issue is fixed in newer fix packs for Liferay Digital Enterprise 7.0.

For instructions on configuring the Screenlet to use these authentication types, see the below Portal
Configuration and Screenlet Attributes sections.

When a user successfully authenticates, their user attributes are retrieved for use in the app. You can
use the SessionContext class to get the current user’s attributes.

Note that user credentials and attributes can be stored in an app’s data store (see the saveCredentials at-
tribute). Android’s SharedPreferences is currently the only data store implemented. However, new andmore
secure data stores will be added in the future. Stored user credentials can be used to automatically log the
user in to subsequent sessions. To do this, you can use themethod SessionContext.loadStoredCredentials().

JSON Services Used

Screenlets in Liferay Screens call the portal’s JSONweb services. This Screenlet calls the following services
andmethods.

Service Method Notes

UserService getUserByEmailAddress Basic login
UserService getUserByScreenName Basic login
UserService getUserById Basic login
UserService getCurrentUser Cookie and OAuth login

Module

• Auth

Views

• Default
• Material

For instructions on using these Views, see the layoutId attribute in the Attributes section below.

Portal Configuration

Basic Authentication

Before using Login Screenlet, you should make sure your portal is configured with the authentication option
you want to use. You can choose email address, screen name, or user ID. You can set this in the Control Panel
by selecting Configuration → Instance Settings, and then selecting the Authentication section. The authentication
options are in theHow do users authenticate? selector menu.

1679

Figure 128.1: The Login Screenlet using the Default (left) and Material (right) Viewsets.

1680

Figure 128.2: Setting the authentication method in your Liferay instance.

For more details, see the Setting up a Liferay Instance section of the User Guide.

OAuth Authentication

Note: OAuth authentication is only available in Liferay DXP instances.

To use OAuth authentication, first install the OAuth provider app from the Liferay Marketplace. Click
here to get this app. Once it’s installed, go to Control Panel → Users → OAuth Admin, and add a new application
to be used from Liferay Screens. Once the application exists, copy the Consumer Key and Consumer Secret
values for later use in Login Screenlet.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity. If you need to log in users
automatically, even when there’s no network connection, you can use the credentialsStorage attribute
together with the SessionContext.loadStoredCredentialsmethod.

Required Attributes

• None

Attributes

1681

https://web.liferay.com/marketplace/-/mp/application/45261909
https://web.liferay.com/marketplace/-/mp/application/45261909

Attribute | Data type | Explanation | layoutId | @layout |The ID of the View’s layout. You can set this
attribute to @layout/login_default (Default View) or @layout/login_material (Material View). To use the
Material View, youmust first install theMaterial View Set. Click here for instructions on installing and using
Views and View Sets, including the Material View Set. | companyId | number |The ID of the portal instance
to authenticate to. If you don’t set this attribute or set it to 0, the Screenlet uses the companyId setting in
LiferayServerContext. | loginMode | enum | The Screenlet’s authentication type. You can set this attribute
to basic, oauth, or cookie. If you don’t set this attribute, the Screenlet defaults to basic authentication. |
basicAuthMethod | string | Specifies the authentication option to use with basic or cookie authentication.
You can set this attribute to email, screenName or userId. This must match the server’s authentication option.
If you don’t set this attribute, and don’t set the loginMode attribute to oauth, the Screenlet defaults to basic
authenticationwith the email option. | OAuthConsumerKey | string | Specifies theConsumerKey to use inOAuth
authentication. | OAuthConsumerSecret | string | Specifies theConsumer Secret to use in OAuth authentication.
| credentialsStorage | enum | Sets the mode for storing user credentials. The possible values are none, auto,
and shared_preferences. If set to shared_preferences, the user credentials and attributes are stored using
Android’s SharedPreferences class. If set to none, user credentials and attributes aren’t saved at all. If set to
auto, the best of the available storage modes is used. Currently, this is equivalent to shared_preferences. The
default value is none. | shouldHandleCookieExpiration | bool |Whether to refresh the cookie automatically
when using cookie login. When set to true (the default value), the cookie refreshes as it’s about to expire.
| cookieExpirationTime | int | How long the cookie lasts, in seconds. This value depends on your portal
instance’s configuration. The default value is 900. | authenticator | Authenticator | An instance of a class
that implements the Authenticator interface. The Challenge-Response Authentication section below discusses
this further. |

Listener

The Login Screenlet delegates some events to an object that implements the LoginListener interface. This
interface let you implement the followingmethods:

• onLoginSuccess(User user): Called when login successfully completes. The user parameter contains a
set of the logged in user’s attributes. The supported keys are the same as those in the portal’s User
entity.

• onLoginFailure(Exception e): Called when an error occurs in the process.

Challenge-Response Authentication

To support challenge-response authentication when using a cookie to log in to the portal, Login Screenlet
has an authenticator attribute. As mentioned in the above Attributes table, this attribute’s value is a class that
implements the Authenticator interface.

Here’s an example of such a class. It sends a basic authorization in response to an authentication
challenge:

public class BasicAuthAutenticator extends BasicAuthentication implements Authenticator {

public BasicAuthAutenticator(String username, String password) {

super(username, password);

}

@Override

public Request authenticate(Proxy proxy, Response response) throws IOException {

String credential = Credentials.basic(username, password);

1682

https://github.com/liferay/liferay-portal/blob/master/portal-impl/src/com/liferay/portal/service.xml#L2575-L2737
https://github.com/liferay/liferay-portal/blob/master/portal-impl/src/com/liferay/portal/service.xml#L2575-L2737
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication
https://square.github.io/okhttp/3.x/okhttp/okhttp3/Authenticator.html

return response.request().newBuilder().header(Headers.AUTHORIZATION, credential).build();

}

@Override

public Request authenticateProxy(Proxy proxy, Response response) throws IOException {

return null;

}

}

128.2 Sign Up Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Sign Up Screenlet creates a new user in your Liferay instance: a new user of your app can become a
new user in your portal. You can also use this Screenlet to save new users’ credentials on their devices. This
enables auto login for future sessions. The Screenlet also supports navigation of form fields from the device’s
keyboard.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

UserService addUser

Module

• Auth

Views

• Default
• Material

1683

Figure 128.3: The Sign Up Screenlet with the Default (left) and Material (right) Viewsets.

1684

Portal Configuration

Sign Up Screenlet’s corresponding configuration in the Liferay instance can be set in the Control Panel by
selecting Configuration → Instance Settings, and then selecting the Authentication section.

Figure 128.4: The Liferay instance’s authentication settings.

For more details, refer to the Setting up a Liferay Instance section of the User Guide.

Anonymous Requests

Anonymous requests are unauthenticated requests. Authentication is still required, however, to call the
API. To allow this operation, the portal administrator should create a user with minimal permissions. To
use Sign Up Screenlet, you need to use that user in your layout. You should add that user’s credentials to
server_context.xml.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity.

Required Attributes

• anonymousApiUserName

• anonymousApiPassword

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout used to show the View.|
anonymousApiUserName | string |The user’s name, email address, or ID to use for authenticating the request.
The portal’s authentication method defines which of these is used. | anoymousApiPassword | string | The
password used to authenticate the request. | companyId | number | When set, a user in the specified company
is authenticated. If not set, the company specified in LiferayServerContext is used. | autoLogin | boolean |
Sets whether the user is logged in automatically after a successful sign up. | credentialsStorage | enum | Sets
the mode for storing user credentials. The possible values are none, auto, and shared_preferences. If set
to shared_preferences, the user credentials and attributes are stored using Android’s SharedPreferences
class. If set to none, user credentials and attributes aren’t saved at all. If set to auto, the best of the available
storage modes is used. Currently, this is equivalent to shared_preferences. The default value is none. |

1685

basicAuthMethod|enum| Specifies the authentication method to use after a successful sign up. This must
match the authenticationmethod configured on the server. You can set this attribute to email, screenName or
userId. The default value is email. |

Listener

The Sign Up Screenlet delegates some events to an object that implements the SignUpListener interface. This
interface lets you implement the followingmethods:

• onSignUpSuccess(User user): Calledwhen signup successfully completes. The userparameter contains
a set of the created user’s attributes. The supported keys are the same as those in the portal’s User
entity.

• onSignUpFailure(Exception e): Called when an error occurs in the process.

128.3 Forgot Password Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Forgot Password Screenlet sends an email to registered users with their new passwords or password
reset links, depending on the server configuration. The available authentication methods are

• Email address
• Screen name
• User id

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

1686

https://github.com/liferay/liferay-portal/blob/7.0.x/portal-impl/src/com/liferay/portal/service.xml#L2686
https://github.com/liferay/liferay-portal/blob/7.0.x/portal-impl/src/com/liferay/portal/service.xml#L2686
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Service Method Notes

UserService sendPasswordByEmailAddress

UserService sendPasswordByUserId

UserService sendPasswordByScreenName

Module

• Auth

Views

• Default
• Material

Portal Configuration

To use Forgot Password Screenlet, the portal must be configured to allow users to request new passwords.
The below sections show you how to do this. Also, Liferay Screens’ Compatibility Plugin must be installed.

Authentication Method

The authentication method configured in the portal can be different from the one used by this Screenlet.
For example, it’s perfectly fine to use screenName for sign in authentication, but allow users to recover their
password using the email authentication method.

Password Reset

You can set the Liferay instance’s corresponding password reset options in the Control Panel by selecting
Configuration → Instance Settings, and then selecting the Authentication section. The Screenlet’s password
functionality depends on the authentication settings in the portal:

If these options are both unchecked, password recovery is disabled. If both options are checked, an
email containing a password reset link is sent when a user requests it. If only the first option is checked, an
email containing a new password is sent when a user requests it.

For more details on authentication in Liferay Portal, please refer to the Setting up a Liferay Instance
section of the User Guide.

Anonymous Request

An anonymous request can be made without the user being logged in. However, authentication is needed to
call the API. To allow this operation, the portal administrator should create a specific user with minimal
permissions.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity.

1687

https://github.com/liferay/liferay-screens/tree/master/portal

Figure 128.5: The Forgot Password Screenlet with the Default (left) and Material (right) Viewsets.

Figure 128.6: Checkboxes for the password recovery features in your Liferay instance.

1688

Required Attributes

• anonymousApiUserName

• anonymousApiPassword

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout used to show the View. |
anonymousApiUserName | string | The user name, email address, or userId to use for authenticating the
request. This depends on the portal’s authentication settings. | anonymousApiPassword | string | The
password to use to authenticate the request. | companyId | number | When set, a user within the specified
company is authenticated. If the value is set to 0, the company specified in LiferayServerContext is used. |
basicAuthMethod | string |The authenticationmethod presented to the user. This can be email, screenName,
or userId. The default value is email. |

Listener

TheForgotPasswordScreenletdelegates someevents to anobject that implements the ForgotPasswordListener
interface. This interface lets you implement the followingmethods:

• onForgotPasswordRequestSuccess(boolean passwordSent): Called when a password reset email is suc-
cessfully sent. The boolean parameter determines whether the email contains the new password or a
password reset link.

• onForgotPasswordRequestFailure(Exception e): Called when an error occurs in the process.

128.4 User Portrait Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Picasso library

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The User Portrait Screenlet shows the users’ profile pictures. If a user doesn’t have a profile picture, a
placeholder image is shown. The Screenlet allows the profile picture to be edited via the editable property.

1689

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

UserService getUserById

Module

• None

Views

• Default
• Material

Portal Configuration

No additional steps required.

Activity Configuration

TheUser Portrait Screenlet needs the following user permissions:

<uses-permission android:name="android.permission.CAMERA"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture.

When loading the portrait, the Screenlet supports the following offline mode policies:

Policy |What happens |When to use | REMOTE_ONLY |The Screenlet loads the user portrait from the portal.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet loads the portrait, it stores the received image in the local cache for later use. | Use this policy when
you always need to show updated portraits, and show the default placeholder when there’s no connection. |
CACHE_ONLY |The Screenlet loads the user portrait from the local cache. If the portrait isn’t there, the Screenlet
uses the listener to notify the developer about the error. | Use this policy to show local portraits, without
retrieving remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the user portrait
from the portal. The Screenlet displays the portrait to the user and stores it in the local cache for later use. If
a connection issue occurs, the Screenlet retrieves the portrait from the local cache. If the portrait doesn’t
exist there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent portrait when connected, but show a potentially outdated version when there’s no connection.
| CACHE_FIRST | If the portrait exists in the local cache, the Screenlet loads it from there. If it doesn’t exist

1690

Figure 128.7: The User Portrait Screenlet using the Default (left) and Material (right) Views.

1691

there, the Screenlet requests the portrait from the portal and uses the listener to notify the developer about
any connection errors. | Use this policy to save bandwidth and loading time in the event a local (but probably
outdated) portrait exists. |

When editing the portrait, the Screenlet supports the following offline mode policies:

Policy |What happens |When to use | REMOTE_ONLY |The Screenlet sends the user portrait to the portal.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error, but it also
discards the new portrait. | Use this policy when you need to make sure portal always has the most recent
version of the portrait. | CACHE_ONLY |The Screenlet stores the user portrait in the local cache. | Use this policy
when you need to save the portrait locally, but don’t want to change the portrait in the portal. | REMOTE_FIRST
|The Screenlet sends the user portrait to the portal. If this succeeds, the Screenlet also stores the portrait
in the local cache for later usage. If a connection issue occurs, the Screenlet stores the portrait in the local
cache with the dirty flag enabled. This causes the portrait to be sent to the portal when the synchronization
process runs. | Use this policy when you need to make sure the Screenlet sends the new portrait to the portal
as soon as the connection is restored. | CACHE_FIRST |The Screenlet stores the user portrait in the local cache
and then sends it to the portal. If a connection issue occurs, the Screenlet stores the portrait in the local
cache with the dirty flag enabled. This causes the portrait to be sent to the portal when the synchronization
process runs. | Use this policy when you need to make sure the Screenlet sends the new portrait to the portal
as soon as the connection is restored. Compared to REMOTE_FIRST, this policy always stores the portrait in the
cache. The REMOTE_FIRST policy only stores the new image in the cache in the event of a network error or a
successful upload. |

Required Attributes

• None

Note that if you don’t set any attributes, the Screenlet loads the logged-in user’s portrait.

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout used to show the View. | autoLoad |
boolean | Whether the portrait should load when the Screenlet is attached to the window. | userId | number |
The ID of the user whose portrait is being requested. If this attribute is set, the male, portraitId, and uuid

attributes are ignored. | male | boolean |Whether the default portrait placeholder shows amale or female
outline. This attribute is used if userId isn’t specified. | portraitId | number |The ID of the portrait to load.
This attribute is used if userId isn’t specified. | uuid | string |The uuid of the user whose portrait is being
requested. This attribute is used if userId isn’t specified. | editable | boolean | Lets the user change the
portrait image by taking a photo or selecting a gallery picture. | offlinePolicy | enum | Configure the loading
and saving behavior in case of connectivity issues. For more details, read the “Offline” section below. |

Methods

Method | Return | Explanation | load() | void | Starts the request to load the user specified in the userId
property, or the portrait specified in the portraitIdand uuid properties. | upload(int requestCode,Intent

1692

onActivityResultData) | void | Starts the request to upload a profile picture from the source specified in the
requestCode property (gallery or camera), and with the path stored in the onActivityResultData variable. |

Listener

TheUser Portrait Screenlet delegates some events to an object that implements the UserPortraitListener
interface. This interface lets you implement the followingmethods:

• onUserPortraitLoadReceived(Bitmap bitmap): Called when an image is received from the server. You
can then apply image filters (grayscale, for example) and return the new image. You can return null or
the original image supplied as the argument if you don’t want to modify it.

• onUserPortraitUploaded(): Called when the user portrait upload service finishes.

• error(Exception e, String userAction): Called when an error occurs in the process. For example, an
error can occur when receiving or uploading a user portrait. The userAction argument distinguishes
the specific action in which the error occurred.

128.5 DDL Form Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

DDL Form Screenlet shows a set of fields that can be filled in by the user. Initial or existing values can be
shown in the fields. Fields of the following data types are supported:

• Boolean: A two state value typically represented by a checkbox.
• Date: A formatted date value. The format depends on the device’s current locale.
• Decimal, Integer, andNumber: A numeric value.
• Documents &Media: A file stored on the device. It can be uploaded to a specific portal repository.
• Radio: A set of options to choose from. A single option must be chosen.
• Select: A selection box of options to choose from. A single option must be chosen.
• Text: A single line of text.
• Text Area: Multiple lines of text.

1693

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

TheDDL Form Screenlet also supports the following features:

• Stored records can support a specific workflow.
• A Submit button can be shown at the end of the form.
• Required values and validation for fields can be used.
• Users can traverse the form fields from the keyboard.
• Supports i18n in record values and labels.

There are also a few limitations that you should be aware of when using DDL Form Screenlet. They are
listed here:

• Nested fields in the data definition aren’t supported.
• Selection of multiple items in the Radio and Select data types isn’t supported.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensddlrecordService (Screens
compatibility plugin)

getDDMStructureVersion Load form

ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecord Load record

DLAppService addFileEntry Upload document
DDLRecordService addRecord Submit form
DDLRecordService updateRecord Update form

Module

• DDL

Views

• Default
• Material

The Default View uses a standard vertical ScrollView to show a scrollable list of fields. Other Views may
use different components, such as ViewPager or others, to show the fields. You can find a sample of this
implementation in the DDLFormScreenletPagerView class.

1694

Figure 128.8: DDL Form Screenlet’s Default (left) and Material (right) Views.

1695

Editor Types

Each field defines an editor type. Youmust define each editor type’s layout by using the following attributes:

• checkboxFieldLayoutId: The layout to use for Boolean fields.
• dateFieldLayoutId: The layout to use for Date fields.
• numberFieldLayoutId: The layout to use for Number, Decimal, or Integer fields.
• radioFieldLayoutId: The layout to use for Radio fields.
• selectFieldLayoutId: The layout to use for Select fields.
• textFieldLayoutId: The layout to use for Text fields.
• textAreaFieldLayoutId: The layout to use for Text Box fields.
• textDocumentFieldLayoutId: The layout to use for Documents &Media fields.

If you don’t define the editor type’s layout in DDL Form Screenlet’s attributes, the default layout
ddlfield_xxx_default is used, where xxx is the name of the editor type. It’s important to note that you can
change the layout used with any editor type at any point.

Custom Editors

If you want to have a unique appearance for one specific field, you can customize your field’s editor View
by calling the Screenlet’s setCustomFieldLayoutId(fieldName, layoutId) method, where the first param-
eter is the name of the field to customize and the second parameter is the layout to use. You can also
create custom editor Views. For examples of this, see the files ddlfield_custom_rating_number.xml and
CustomRatingNumberView.java.

Activity Configuration

DDL Form Screenlet needs the following user permissions:

<uses-permission android:name="android.permission.CAMERA"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

Both are used by the Documents and Media fields to take a picture/video and store it locally before
uploading it to the portal. The Documents and Media fields also need to override the onActivityResult

method to receive the picture/video information. Here’s an example implementation:

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

super.onActivityResult(requestCode, resultCode, data);

screenlet.startUploadByPosition(requestCode);

}

Portal Configuration

Before using DDL Form Screenlet, you should make sure that Dynamic Data Lists and Data Types are
configured properly in the portal. Refer to the Creating Data Definitions and Creating Data Lists sections of
the User Guide formore details. IfWorkflow is required, it must also be configured. See the UsingWorkflow
section of the User Guide for details.

1696

Permissions

To use DDL Form Screenlet to add new records, youmust grant the Add Record permission in the Dynamic
Data List in the portal. If you want to use DDL Form Screenlet to view or edit record values, youmust also
grant the View and Update permissions, respectively. The Add Record, View, and Update permissions are
highlighted by the red boxes in the following screenshot:

Figure 128.9: The permissions for adding, viewing, and editing DDL records.

Also, if your form includes at least one Documents andMedia field, youmust grant permissions in the
target repository and folder. For more details, see the repositoryId and folderId attributes below.

For more details, see the User Guide sections Creating Data Definitions, Creating Data Lists, and Using
Workflow.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture.

When loading the form or record, the Screenlet supports the following offline mode policies:

1697

Figure 128.10: The permission for adding a document to a Documents and Media folder.

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the form or record from the
portal. If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error.
If the Screenlet loads the form or record, it stores the received data (record structure and data) in the local
cache for later use. | Use this policy when you always need to show updated data, and show nothing when
there’s no connection. | CACHE_ONLY |The Screenlet loads the form or record from the local cache. If the form
or record isn’t there, the Screenlet uses the listener to notify the developer about the error. | Use this policy
when you always need to show local data, without retrieving remote information under any circumstance. |
REMOTE_FIRST |The Screenlet requests the form or record from the portal. The Screenlet shows the record
or form to the user and stores it in the local cache for later use. If a connection issue occurs, the Screenlet
retrieves the form or record from the local cache. If the form or record doesn’t exist there, the Screenlet uses
the listener to notify the developer about the error. | Use this policy to show the most recent version of the
data when connected, but show an outdated version when there’s no connection. | CACHE_FIRST | If the form
or record exists in the local cache, the Screenlet loads it from there. If it doesn’t exist there, the Screenlet
requests it from the portal and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

1698

When editing the record, the Screenlet supports the following offline mode policies:

Policy | What happens |When to use | REMOTE_ONLY |The Screenlet sends the record to the portal. If a
connection issue occurs, the Screenlet uses the listener to notify the developer about the error, but it also
discards the record. | Use this policy tomake sure the portal always has themost recent version of the record.
| CACHE_ONLY | The Screenlet stores the record in the local cache. | Use this policy when you need to save
the data locally, but don’t want to update the data in the portal (update or add record). | REMOTE_FIRST |The
Screenlet sends the record to the portal. If this succeeds, it also stores the record in the local cache for later
usage. If a connection issue occurs, then Screenlet stores the record in the local cache with the dirty flag
enabled. This causes the synchronization process to send the record to the portal when it runs. | Use this
policy when you need to make sure the Screenlet sends the record to the portal as soon as the connection is
restored. | CACHE_FIRST |The Screenlet stores the record in the local cache and then sends it to the remote
portal. If a connection issue occurs, then Screenlet stores the record in the local cache with the dirty flag
enabled. This causes the the synchronization process to send the record to the portal when it runs. | Use this
policy when you need to make sure the Screenlet sends the record to the portal as soon as the connection
is restored. Compared to REMOTE_FIRST, this policy always stores the record in the cache. The REMOTE_FIRST
policy only stores the record in the event of a network error. |

Required Attributes

• structureId

• recordSetId

Attributes

Attribute | Data Type | Explanation | layoutId | @layout | The layout to use to show the View. |
checkboxFieldLayoutId | @layout |The layout to use to show the view for Boolean fields. | dateFieldLayoutId
| @layout | The layout to use to show the view for Date fields. | numberFieldLayoutId | @layout | The layout
to use to show the view for Number, Decimal, and Integer fields. | radioFieldLayoutId | @layout | The
layout to use to show the view for Radio fields. | selectFieldLayoutId | @layout | The layout to use to
show the view for Select fields. | textFieldLayoutId | @layout | The layout to use to show the view for
Text fields. | textAreaFieldLayoutId | @layout | The layout to use to show the view for Text Box fields. |
documentFieldLayoutId | @layout | The layout to use to show the view for Documents & Media fields. |
structureId | number |The ID of a data definition in your Liferay site. To find the IDs for your data definitions,
click Admin → Content from the Dockbar. Then clickDynamic Data Lists on the left and click theManage Data
Definitions button. The ID of each data definition is in the ID column of the table. | groupId | number |The ID
of the site (group) where the record is stored. If this value is 0, the groupId specified in LiferayServerContext

is used. | recordSetId | number | A dynamic data list’s ID. To find your dynamic data lists’ IDs, click Admin →
Content from the Dockbar. Then click Dynamic Data Lists on the left. Each dynamic data list’s ID is in the
ID column of the table. | recordId | number |The ID of the record you want to show. You can also allow the
record’s values to be edited. This ID can be obtained from othermethods or listeners. | repositoryId | number
|The ID of the Documents andMedia repository to upload to. If this value is 0, the default repository for the
site specified by groupId is used. | folderId | number |The ID of the folder where Documents andMedia files
are uploaded. If this value is 0, the root is used. | filePrefix | string |The prefix to attach to the names of
files uploaded to a Documents andMedia repository. The upload date followed by the original file name is

1699

appended following the prefix. | autoLoad | boolean | Sets whether the form loads when the Screenlet is
shown. If recordId is set, the record value is loaded together with the form definition. The default value is
false. | autoScrollOnValidation | boolean | Sets whether the form automatically scrolls to the first failed
field when validation is used. The default value is true. | showSubmitButton | boolean | Sets whether the form
shows a submit button at the bottom. If this is set to false, you should call the submitForm()method. The
default value is true. | cachePolicy | string |The offline mode setting. See the Offline section for details. |

Methods

Method | Return Type | Explanation | loadForm() | void | Starts the request to load the form definition.
The form fields are shown when the response is received. | loadRecord() | void | Starts the request to load
the record specified by recordId. If needed, the form definition also loads. When the response is received,
the form fields are shown filled with record values. | load() | void | Starts the request to load the record if
recordId is specified. Otherwise, the form definition is loaded. | submitForm() | void | Starts the request
to submit form values to the dynamic data list specified by recordSetId. If the record is new, a new record
is added. If loadRecord is used to retrieve the record, or the record already exists, its values are updated.
Fields are validated prior to the request. If validation fails, the validation errors are shown and the request is
terminated. |

Listener

DDL Form Screenlet delegates some events to an object that implements to the DDLFormListener interface.
This interface lets you implement the followingmethods:

• onDDLFormLoaded(Record record): Called when the form definition successfully loads.

• onDDLFormRecordLoaded(Record record, Map<String, Object> valuesAndAttributes): Called when the
form record data successfully loads.

• onDDLFormRecordAdded(Record record): Called when the form record is successfully added.

• onDDLFormRecordUpdated(Record record): Called when the form record data successfully updates.

• error(Exception e, String userAction): Called when an error occurs in the process. For example,
this method is called when an error occurs while loading a form definition or record, or adding or
updating a record. The userAction variable distinguishes these events.

• onDDLFormDocumentUploaded(DocumentField field): Called when a specified document field’s upload
completes.

• onDDLFormDocumentUploadFailed(DocumentField field, Exception e): Called when a specified docu-
ment field’s upload fails.

128.6 DDL List Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above

1700

• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

TheDDL List Screenlet has the following features:

• Shows a scrollable collection of Dynamic Data List (DDL) records.
• Implements fluent pagination with configurable page size.
• Allows record filtering by creator.
• Supports i18n in record values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecords With ddlRecordSetId, or
ddlRecordSetId and userId

ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecordsCount

Module

• DDL

Views

• Default
• Material

TheDefault Viewuses a standard RecyclerView to show the scrollable list. Other Viewsmay use a different
component, such as ViewPager or others, to show the items.

1701

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Figure 128.11: The DDL List Screenlet using the Default and Material Views.

1702

Portal Configuration

DDLs and Data Types should be configured in the portal before using DDL List Screenlet. For more details,
see the Liferay User Guide sections Creating Data Definitions and Creating Data Lists .

Also, to allow remote calls without the userId, the Liferay Screens Compatibility app must be installed in
your Liferay instance. You can find this app on Liferay Marketplace.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture.

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the list from the portal. If
a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the list from the portal.
If this succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use. If a
connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t exist there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the most
recent version of the data when connected, but show an outdated version when there’s no connection. |
CACHE_FIRST |The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet requests it
from the portal and notifies the developer about any errors that occur (including connectivity errors). | Use
this policy to save bandwidth and loading time in case you have local (but probably outdated) data. |

Required Attributes

• recordSetId

• labelFields

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout to use to show the View. | autoLoad
| boolean | Defines whether the list should be loaded when it’s presented on the screen. The default value
is true. | recordSetId | number | The ID of the DDL being called. To find your DDLs’ IDs, click Admin →
Content from the Dockbar. Then clickDynamic Data Lists on the left. Each DDL’s ID is in the ID column of
the table. | userId | number |The ID of the user to filter records on. Records aren’t filtered if the userId is 0.
The default value is 0. | cachePolicy | string |The offline mode setting. See the Offline section for details. |
firstPageSize | number |The number of items to retrieve from the server for display on the first page. The
default value is 50. | pageSize | number |The number of items to retrieve from the server for display on the
second and subsequent pages. The default value is 25. | labelFields | string |The comma-separated names
of the DDL fields to show. Refer to the list’s data definition to find the field names. For more information
on this, see Creating Data Definitions. Note that the appearance of these values in your app depends on
the layoutId set. | obcClassName | string |The name of the OrderByComparator class to use to sort the results.
Omit this property if you don’t want to sort the results. Click here to see some comparator classes. Note,

1703

https://web.liferay.com/marketplace
https://github.com/liferay/liferay-portal/tree/master/modules/apps/forms-and-workflow/dynamic-data-lists/dynamic-data-lists-api/src/main/java/com/liferay/dynamic/data/lists/util/comparator

however, that not all of these classes can be used with obcClassName. You can only use comparator classes
that extend OrderByComparator<DDLRecord>. You can also create your own comparator classes that extend
OrderByComparator<DDLRecord>. |

Methods

Method | Return | Explanation | loadPage(pageNumber) | void | Starts the request to load the specified
page of records. The page is shown when the response is received. |

Listener

DDL List Screenlet delegates some events to an object or a class that implements the BaseListListener

interface. This interface lets you implement the followingmethods:

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page of items
fails. This method’s arguments include the Exception generated when the server call fails.

• onListPageReceived(int startRow, int endRow, List<Record> records, int rowCount): Called when
the server call to retrieve a page of items succeeds. Note that this methodmay be called more than
once; once for each page received. Because startRow and endRow change for each page, a startRow of 0
corresponds to the first item on the first page.

• onListItemSelected(Record records, View view): Called when an item is selected in the list. This
method’s arguments include the selected list item (Record).

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.7 Asset List Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1704

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

The Asset List Screenlet can be used to show asset lists from a Liferay instance. For example, you can use the
Screenlet to show a scrollable list of assets. It also implements fluent pagination with configurable page size.
The Asset List Screenlet can show assets belonging to the following classes:

• BlogsEntry

• BookmarksEntry

• BookmarksFolder

• CalendarEvent

• DLFileEntry

• DDLRecord

• DDLRecordSet

• Group

• JournalArticle (Web Content)
• JournalFolder

• Layout

• LayoutRevision

• MBThread

• MBCategory

• MBDiscussion

• MBMailingList

• Organization

• User

• WikiPage

• WikiPageResource

• WikiNode

The Asset List Screenlet also supports i18n in asset values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensddlrecordService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensddlrecordService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

AssetEntryService getEntriesCount

Module

• None

1705

http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Views

• Default
• Material

TheDefault Views use a standard RecyclerView to show the scrollable list. Other Viewsmay use a different
component, such as ViewPager or others, to show the items.

Figure 128.12: Asset List Screenlet using the Default (left) and Material (right) Views.

Portal Configuration

Dynamic Data Lists (DDL) and Data Types should be configured properly in the portal. Refer to the Creating
Data Definitions
and Creating Data Lists sections of the User Guide for more details.

1706

Also, to allow remote calls without the userId, the Liferay Screens Compatibility app must be installed in
your Liferay instance. You can find this app on Liferay Marketplace.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture.

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the list from the portal. If
a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the list from the portal.
If this succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use. If a
connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t exist there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the most
recent version of the data when connected, but show an outdated version when there’s no connection. |
CACHE_FIRST |The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet requests it
from the portal and notifies the developer about any errors that occur (including connectivity errors). | Use
this policy to save bandwidth and loading time in case you have local (but probably outdated) data. |

Required Attributes

• classNameId

If you don’t set classNameId, you must set this attribute instead:

• portletItemName

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout to use to show the View.| autoLoad |
boolean |Whether the list should be loaded when it’s presented on the screen. The default value is true. |
groupId | number |The asset’s group (site) ID. If this value is 0, the groupId specified in LiferayServerContext

is used. The default value is 0. | cachePolicy | string |The offline mode setting. See the Offline section for
details. | portletItemName | string |The name of the configuration template you used in the Asset Publisher.
To use this feature, add an Asset Publisher to one of your site’s pages (it may be a hidden page), configure
the Asset Publisher’s filter (in Configuration → Setup → Asset Selection), and then use the Asset Publisher’s
Configuration Templates option to save this configuration with a name. Use this name in this attribute. |
classNameId | number | The asset class name’s ID. Use values from the portal’s classname_ database table. |
firstPageSize | number |The number of items to retrieve from the server for display on the list’s first page.
The default value is 50. | pageSize | number |The number of items to retrieve from the server for display on the
second and subsequent pages. The default value is 25. | labelFields | string |The comma-separated names
of the DDL fields to show. Refer to the list’s data definition to find the field names. For more information on
this, see Creating Data Definitions. Note that the appearance of these values in your app depends on the

1707

https://web.liferay.com/marketplace

layoutId set. | customEntryQuery | HashMap |The set of keys (string) and values (string or number) to be used
in the AssetEntryQuery object. These values filter the assets returned by the Liferay instance. |

Methods

Method | Return | Explanation | loadPage(pageNumber) | void | Starts the request to load the specified
page of assets. The page is shown when the response is received. |

Listener

Asset List Screenlet delegates some events to an object or a class that implements the BaseListListener

interface. This interface lets you implement the followingmethods:

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page of items
fails. This method’s arguments include the Exception generated when the server call fails.

• onListPageReceived(int startRow, int endRow, List<Model> entries, int rowCount): Called when
the server call to retrieve a page of items succeeds. Note that this methodmay be called more than
once; once for each page received. Because startRow and endRow change for each page, a startRow of 0
corresponds to the first item on the first page.

• onListItemSelected(Model entries, View view): Called when an item is selected in the list. This
method’s arguments include the selected list item (Model).

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.8 Web Content Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1708

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/asset/kernel/service/persistence/AssetEntryQuery.html
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

TheWeb Content Display Screenlet shows web content elements in your app, rendering the web content’s
inner HTML.The Screenlet also supports i18n, rendering contents differently depending on the device’s
locale.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

DDMStructureService getStructure

JournalArticleService getArticle

JournalArticleService getArticleContent

ScreensddlrecordService (Screens
compatibility plugin)

getJournalArticleContent With entryQuery

Module

• None

Views

• Default

The Default View uses a standard WebView to render the HTML.

Portal Configuration

For the Web Content Display Screenlet to function properly, there should be web content in the Liferay
instance your app connects to. For more details on web content, see the CreatingWeb Content section of the
Liferay User Guide.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy | What happens | When to use | REMOTE_ONLY | The Screenlet loads the content from the portal.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the content, it stores the data in the local cache for later use. | Use this policy
when you always need to show updated content, and show nothing when there’s no connection. | CACHE_ONLY
|The Screenlet loads the content from the local cache. If the content isn’t there, the Screenlet uses the listener
to notify the developer about the error. | Use this policy when you always need to show local content, without

1709

Figure 128.13: Web Content Display Screenlet using the Default View.

1710

retrieving remote content under any circumstance. | REMOTE_FIRST |The Screenlet loads the content from
the portal. If this succeeds, the Screenlet shows the content to the user and stores it in the local cache for
later use. If a connection issue occurs, the Screenlet retrieves the content from the local cache. If the content
doesn’t exist there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to
show themost recent version of the content when connected, but show a possibly outdated version when
there’s no connection. | CACHE_FIRST |The Screenlet loads the content from the local cache. If the content
isn’t there, the Screenlet requests it from the portal and notifies the developer about any errors that occur
(including connectivity errors). | Use this policy to save bandwidth and loading time in case you have local
(but probably outdated) content. |

Required Attributes

• articleId

Note that if your web content uses structures and templates, you can use templateId or structureId in
conjunction with articleId.

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout used to show the View. | groupId
| number | The site (group) identifier where the asset is stored. If this value is 0, the groupId specified in
LiferayServerContext is used. | articleId | string | The identifier of the web content to display. You can
find the identifier by clicking Edit on the web content in the portal. | classPK | number |The corresponding
asset’s class primary key. If the web content is an asset (from Asset List Screenlet, for example), this is the
asset’s identifier. This attribute is used only if articleId is empty. | templateId | number |The identifier of the
template used to render the web content. This only applies to structured web content. | structureId | number
|The identifier of the DDMStructure used to model the web content. This parameter lets the Screenlet retrieve
and parse the structure. | labelFields | string | A comma-delimited list of DDMStructure fields to display in
the Screenlet. | autoLoad | boolean | Whether the content should be retrieved from the portal as soon as the
screenlet appears. Default value is true. | javascriptEnabled | boolean | Enables support for JavaScript. This
is disabled by default. | cachePolicy | string |The offline mode setting. See the Offline section for details. |

Methods

Method | Return | Explanation | load() | void | Starts the request to load the web content. The HTML is
rendered when the response is received. | getLocalized(String name) | String | Returns the value, according
to the device locale, of a field of the DDMStructure used to render the web content.

Listener

TheWebContentDisplayScreenletdelegates someevents to anobject that implements the WebContentDisplayListener
interface. This interface lets you implement the followingmethods:

1711

• onWebContentReceived(WebContent webContent): Called when the web content’s HTML or DDMStructure
is received. The HTML is available by calling the getHtmlmethod. To make some adaptations, the
listener may return a modified version of the HTML.The original HTML is rendered if the listener
returns null.

• onUrlClicked(String url): Called when a URL is clicked. Return true to replace the default behavior,
or false to load the url.

• onWebContentTouched(View view, MotionEvent event): Called when something is touched in the web
content. Return true to replace the default behavior, or false to keep processing the event.

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.9 Web Content List Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Web Content List Screenlet has the following features:

• Shows a scrollable collection of web content articles.
• Implements fluent pagination with configurable page size.
• Supports i18n in web content values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

JournalArticleService getJournalArticles

JournalArticleService getJournalArticlesCount

1712

http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Module

• None

Views

• Default

TheDefault Viewuses a standard RecyclerView to show the scrollable list. Other Viewsmay use a different
component, such as ViewPager or others, to show the items.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY |The Screenlet loads the list from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the list from the Liferay
instance. If this succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t exist there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the most
recent version of the data when connected, but show a possibly outdated version when there’s no connection.
| CACHE_FIRST |The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but possibly outdated)
data. |

Required Attributes

• folderId

• labelFields

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The ID of the layout to use to show the View.
| autoLoad | boolean | Whether the list loads automatically when the Screenlet appears in the app’s UI.The
default value is true. | folderId | number | The ID of the web content folder to retrieve content from. |
groupId | number | The ID of the site (group) where the asset is stored. If set to 0, the groupId specified in
LiferayServerContext is used. The default value is 0. | cachePolicy | string |The offline mode setting. See
the Offline section for details. | firstPageSize | number | The number of items to retrieve from the server
for display on the first page. The default value is 50. | pageSize | number | The number of items to retrieve
from the server for display on the second and subsequent pages. The default value is 25. | labelFields |

1713

Figure 128.14: The Web Content List Screenlet using the Default View.

1714

string |The comma-separated names of the DDMfields to show. Refer to the list’s data definition to find
the field names. For more information on this, see the article on structured web content. Note that the
appearance of data from a structure’s fields depends on the layoutId. | obcClassName | string |The name of
the OrderByComparator class to use to sort the results. Omit this property if you don’t want to sort the results.
Click here to see some comparator classes. Note, however, that not all of these classes can be used with
obcClassName. You can only use comparator classes that extend OrderByComparator<JournalArticle>. You can
also create your own comparator classes that extend OrderByComparator<JournalArticle>. |

Methods

Method | Return | Explanation | loadPage(pageNumber) | void | Starts the request to load the specified
page of records. The page is shown when the response is received. |

Listener

WebContent List Screenlet delegates someevents to anobject or a class that implements the BaseListListener
interface. This interface lets you implement the followingmethods:

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page of items
fails. This method’s arguments include the Exception generated when the server call fails.

• onListPageReceived(int startRow, int endRow, List<Record> records, int rowCount): Called when
the server call to retrieve a page of items succeeds. Note that this methodmay be called more than
once; once for each page received. Because startRow and endRow change for each page, a startRow of 0
corresponds to the first item on the first page.

• onListItemSelected(Record records, View view): Called when an item is selected in the list. This
method’s arguments include the selected list item (Record).

128.10 Image Gallery Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1715

https://github.com/liferay/liferay-portal/tree/master/modules/apps/web-experience/journal/journal-api/src/main/java/com/liferay/journal/util/comparator
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

Image Gallery Screenlet shows a list of images from a Documents andMedia folder in a Liferay instance.
You can also use Image Gallery Screenlet to upload images to and delete images from the same folder. The
Screenlet implements fluent pagination with configurable page size, and supports i18n in asset values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

DLAppService getFileEntries Load
DLAppService getFileEntriesCount

DLAppService addFileEntry Upload
DLAppService deleteFileEntry Delete

Module

• None

Views

The included Views use a standard Android RecyclerView to show the scrollable list. Other custom Views
may use a different component, such as ViewPager or others, to show the items.

This Screenlet has three different Views:

1. Grid (default)
2. Slideshow
3. List

Offline

This Screenlet supports offline mode so it can function without a network connection when loading or
uploading images (deleting images while offline is unsupported). Formore information on how offlinemode
works, see the tutorial on its architecture. This Screenlet supports the REMOTE_ONLY, CACHE_ONLY, REMOTE_FIRST,
and CACHE_FIRST offline mode policies.

These policies take the following actions when loading images from a Liferay instance:

Policy |What happens |When to use | REMOTE_ONLY |The Screenlet loads the list from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving

1716

Figure 128.15: Image Gallery Screenlet using the Grid, Slideshow, and List Views.

remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the list from the Liferay
instance. If this succeeds, the Screenlet shows the list to the user and stores it in the local cache for later
use. If a connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection.
| CACHE_FIRST |The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

These policies take the following actions when uploading an image to a Liferay instance:

Policy |What happens |When to use | REMOTE_ONLY |The Screenlet sends the image to the Liferay instance.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error, but
it also discards the image. | Use this policy to make sure the Liferay instance always has the most recent
version of the image. | CACHE_ONLY |The Screenlet stores the image in the local cache. | Use this policy when
you need to save the image locally, but don’t want to update the image in the Liferay instance (delete or add
image). | REMOTE_FIRST |The Screenlet sends the image to the Liferay instance. If this succeeds, it also stores
the image in the local cache for later use. If a connection issue occurs, the Screenlet stores the image in the
local cache and sends it to the Liferay instance when the connection is re-established. | Use this policy when
you need to make sure the Screenlet sends the image to the Liferay instance as soon as the connection is
restored. | CACHE_FIRST |The Screenlet stores the image in the local cache and then attempts to send it to the
Liferay instance. If a connection issue occurs, the Screenlet sends the image to the Liferay instance when the

1717

connection is re-established. | Use this policy when you need to make sure the Screenlet sends the image
to the Liferay instance as soon as the connection is restored. Compared to REMOTE_FIRST, this policy always
stores the image in the cache. The REMOTE_FIRST policy only stores the image in the event of a network error. |

Required Attributes

• folderId

• repositoryId

Attributes

Attribute | Data type | Explanation | repositoryId | number |The ID of the Liferay instance’s Documents
andMedia repository that contains the image gallery. If you’re using a site’s default Documents andMedia
repository, then the repositoryIdmatches the site ID (groupId). | folderId | number |The IDof theDocuments
andMedia repository folder that contains the image gallery. When accessing the folder in your browser, the
folderId is at the end of the URL. | cachePolicy | string |The offline mode setting. See the Offline section
for details. | firstPageSize | number |The number of items to display on the first page. The default value is 50.
| pageSize | number |The number of items to display on second and subsequent pages. The default value is
25. | mimeTypes | string |The comma-separated list of MIME types for the Screenlet to support. | autoLoad |
boolean | Whether the list automatically loads when the Screenlet appears in the app’s UI.The default value
is true. | layoutId | @layout |The layout to use to show the View. | obcClassName | string |The name of the
OrderByComparator class to use to sort the results. Omit this property if you don’t want to sort the results. Note
that you can only use comparator classes that extend OrderByComparator<DLFileEntry>. Liferay contains no
such comparator classes. Youmust therefore create your own by extending OrderByComparator<DLFileEntry>.
To see examples of some comparator classes that extend other Document Library classes, click here. |

Methods

Method | Return | Explanation | loadPage(pageNumber) | void | Starts the request to load the specified
page of images. The page is shown when the response is received. |

Listener

ImageGallery Screenlet delegates some events to an object or class that implements its ImageGalleryListener
interface. This interface extends the BaseListListener interface. Therefore, ImageGallery Screenlet’s listener
methods are as follows:

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page of items
fails. This method’s arguments include the Exception generated when the server call fails.

• onListPageReceived(int startRow, int endRow, List<Record> records, int rowCount): Called when
the server call to retrieve a page of items succeeds. Note that this methodmay be called more than
once; once for each page received. Because startRow and endRow change for each page, a startRow of 0
corresponds to the first item on the first page.

1718

https://github.com/liferay/liferay-portal/tree/master/portal-impl/src/com/liferay/portlet/documentlibrary/util/comparator
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/imagegallery/ImageGalleryListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/imagegallery/ImageGalleryListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/list/BaseListListener.java

• onListItemSelected(Record records, View view): Called when an item is selected in the list. This
method’s arguments include the selected list item (Record).

• onImageEntryDeleted(long imageEntryId): Called when an item in the list is deleted.

• onImageUploadStarted(String picturePath, String title, String description, String changelog):
Called when an item is prepared for upload.

• onImageUploadProgress(int totalBytes, int totalBytesSent): Called when an item is uploading.

• onImageUploadEnd(ImageEntry entry): Called when an item finishes uploading.

• showUploadImageView(String actionName, String picturePath, int screenletId): Called when the
View for uploading an image is instantiated. The default behavior is to show the default View
in a dialog. To retain this behavior, all this method needs to do is return false. To change the
default behavior, use the initializeUploadView method to initialize a custom View that extends
BaseDetailUploadView. Then return true to prevent the Screenlet from executing the default behavior.
For example, the following sample implementation uses initializeUploadView to initialize the custom
View instance uploadDetailView. It then performs a custom UI action (uploadImageCard.goRight())
and returns true:

@Override

public boolean showUploadImageView(String actionName, String picturePath, int screenletId) {

uploadDetailView.initializeUploadView(actionName, picturePath, screenletId);

uploadImageCard.goRight();

return true;

}

• provideImageUploadDetailView(): Calledwhen theScreenlet provides the imageuploadView. To inflate
the default View, return 0 in this method. Alternatively, display this View with a custom layout by
returning its layout ID. Such a layout must have DefaultUploadDetailView as its root class.

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.11 Rating Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1719

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

Rating Screenlet shows an asset’s rating. It also lets users update or delete the rating. This Screenlet comes
with different Views that display ratings as thumbs, stars, and emojis.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensratingsentryService (Screens
compatibility plugin)

getRatingsEntries With entryId

ScreensratingsentryService (Screens
compatibility plugin)

getRatingsEntries With classPK and className

ScreensratingsentryService (Screens
compatibility plugin)

updateRatingsEntry

ScreensratingsentryService (Screens
compatibility plugin)

deleteRatingsEntry

Module

• None

Views

The default View uses an Android RatingBar to show an asset’s rating. Other custom Viewsmay show the
rating with a different Android component such as Button, ImageButton, or others.

This Screenlet has five different Views:

1. Like
2. Thumbs (default)
3. Stars
4. Reactions
5. Emojis

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when

1720

https://developer.android.com/reference/android/widget/RatingBar.html

Figure 128.16: Rating Screenlet’s different Views.

1721

you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
CACHE_FIRST |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• entryId

If you don’t use entryId, you must use both of the following attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The ID of the layout to use to show the View.
| autoLoad | boolean | Whether the rating loads automatically when the Screenlet appears in the app’s UI.
The default value is true. | editable | boolean | Whether the user can change the rating. | entryId | number |
The primary key of the asset with the rating to display. | className | string |The asset’s fully qualified class
name. For example, a blog entry’s className is com.liferay.blogs.kernel.model.BlogsEntry. The className
attribute is required when using it with classPK to instantiate the Screenlet. | classPK | number |The asset’s
unique identifier. Only use this attribute when also using className to instantiate the Screenlet. | groupId |
number |The ID of the site (group) containing the asset. | cachePolicy | string |The offline mode setting. See
the Offline section for details. |

Methods

Method | Return | Explanation | load() | void | Starts the request to load the asset’s ratings. |

Listener

Rating Screenlet delegates some events to an object or class that implements its RatingListener interface.
Therefore, Rating Screenlet’s listener methods are as follows:

• onRatingOperationSuccess(AssetRating assetRating): Called when the operation finishes successfully
and the rating is loaded.

1722

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/blogs/kernel/model/BlogsEntry.html
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/rating/RatingListener.java

128.12 Comment List Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Comment List Screenlet can list all the comments of an asset in a Liferay instance. It also lets the user update
or delete comments.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

getComments

ScreenscommentService (Screens
compatibility plugin)

getCommentsCount

Module

• None

Views

• Default

The Default View uses an Android RecyclerView to show an asset’s comments. Other Views may use a
different component, such as TableView or others, to show the items.

1723

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726
https://developer.android.com/training/material/lists-cards.html

Figure 128.17: Comment List Screenlet using the Default View.

1724

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy | What happens |When to use | REMOTE_ONLY |The Screenlet loads the comments from the Liferay
instance. If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error.
If the Screenlet successfully loads the comments, it stores the data in the local cache for later use. | Use
this policy when you always need to show updated data, and show nothing when there’s no connection. |
CACHE_ONLY | The Screenlet loads the comments from the local cache. If the data isn’t there, the Screenlet
uses the listener to notify the developer about the error. | Use this policy when you always need to show
local data, without retrieving remote information under any circumstance. | REMOTE_FIRST |The Screenlet
loads the comments from the Liferay instance. If this succeeds, the Screenlet shows the data to the user and
stores it in the local cache for later use. If a connection issue occurs, the Screenlet retrieves the data from the
local cache. If the data doesn’t exist there, the Screenlet uses the listener to notify the developer about the
error. | Use this policy to show the most recent version of the data when connected, but show an outdated
version when there’s no connection. | CACHE_FIRST |The Screenlet loads the comments from the local cache.
If the data isn’t there, the Screenlet requests it from the Liferay instance and notifies the developer about any
errors that occur (including connectivity errors). | Use this policy to save bandwidth and loading time in
case you have local (but probably outdated) data. |

Required Attributes

• className

• classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout to use to show the View. | autoLoad
| boolean | Whether the list should automatically load when the Screenlet appears in the app’s UI. The
default value is true. | cachePolicy | string | The offline mode setting. See the Offline section for de-
tails. | className | string | The asset’s fully qualified class name. For example, a blog entry’s className is
com.liferay.blogs.kernel.model.BlogsEntry. The className and classPK attributes are required to instan-
tiate the Screenlet. | classPK | number |The asset’s unique identifier. The className and classPK attributes
are required to instantiate the Screenlet. | firstPageSize | number | The number of items to retrieve from
the server for display on the first page. The default value is 50. | pageSize | number |The number of items to
retrieve from the server for display on the second and subsequent pages. Thedefault value is 25. | labelFields
| string |The comma-separated names of the DDL fields to show. Refer to the list’s data definition to find
the field names. For more information on this, see the article on structured web content. Note that the
appearance of data from a structure’s fields depends on the layoutId. | editable | boolean | Whether the
user can edit the comment. |

Methods

1725

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/blogs/kernel/model/BlogsEntry.html

Method | Return | Explanation | loadPage(pageNumber) | void | Starts the request to load the specified
page of records. The page is shown when the response is received. |

Listener

Comment List Screenlet delegates someevents to a class that implements CommentListListener. This interface
lets you implement the followingmethods:

• onDeleteCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully deletes
the comment.

• onUpdateCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully updates
the comment.

• onListPageFailed(int startRow, Exception e): Called when the server call to retrieve a page of items
fails. This method’s arguments include the Exception generated when the server call fails.

• onListPageReceived(int startRow, int endRow, List<CommentEntry> entries, int rowCount): Called
when the server call to retrieve a page of items succeeds. Note that this methodmay be called more
than once; once for each page received. Because startRow and endRow change for each page, a startRow
of 0 corresponds to the first item on the first page.

• onListItemSelected(CommentEntry element, View view): Called when an item is selected in the list.
This method’s arguments include the selected list item (CommentEntry).

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.13 Comment Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Comment Display Screenlet can show one comment of an asset in a Liferay instance. It also lets the user
update or delete the comment.

1726

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

getComment

ScreenscommentService (Screens
compatibility plugin)

updateComment

CommentmanagerjsonwsService deleteComment

Module

• None

Views

• Default

The Default View uses User Portrait Screenlet, and TextView and ImageButton elements to show an asset’s
comment. Other Views may different components to show the comment.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
CACHE_FIRST |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

1727

Figure 128.18: Comment Display Screenlet using the Default View.

1728

Required Attributes

• commentId

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout to use to show the View.| autoLoad |
boolean | Whether the list should automatically load when the Screenlet appears in the app’s UI.The default
value is true. | cachePolicy | string |The offlinemode setting. See the Offline section for details. | commentId
| number |The primary key of the comment to display. | editable | boolean |Whether the user can edit the
comment. |

Methods

Method | Return | Explanation | load() | void | Starts the request to load the comment. |

Listener

Comment Display Screenlet delegates some events to a class that implements CommentDisplayListener. This
interface lets you implement the followingmethods:

• onLoadCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully loads the
comment.

• onDeleteCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully deletes
the comment.

• onUpdateCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully updates
the comment.

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.14 Comment Add Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

1729

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Comment Add Screenlet can add a comment to an asset in a Liferay instance.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

addComment

Module

• None

Views

• Default

The Default View uses Android’s EditText and Button elements to show an add comment dialog. Other
Views may use different components to show this dialog.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy | What happens |When to use | REMOTE_ONLY |The Screenlet sends the data to the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully sends the data, it also stores it in the local cache. | Use this policy when you always
need to send updated data, and send nothing when there’s no connection. | CACHE_ONLY |The Screenlet sends
the data to the local cache. If an error occurs, the Screenlet uses the listener to notify the developer. | Use this
policy when you always need to store local data without sending remote information under any circumstance.
| REMOTE_FIRST | The Screenlet sends the data to the Liferay instance. If this succeeds, the Screenlet also
stores the data in the local cache. If a connection issue occurs, the Screenlet stores the data to the local cache
and sends it to the Liferay instance when the connection is restored. If an error occurs, the Screenlet uses the
listener to notify the developer. | Use this policy to send the most recent version of the data when connected,
and store the data for later synchronization when there’s no connection. | CACHE_FIRST |The Screenlet sends

1730

Figure 128.19: Comment Add Screenlet using the Default View.

1731

the data to the local cache, then sends it to the Liferay instance. If sending the data to the Liferay instance
fails, the Screenlet still stores the data locally and then notifies the developer about any errors that occur
(including connectivity errors). | Use this policy to save bandwidth and store local (but possibly outdated)
data. |

Required Attributes

• className

• classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout | The layout to use to show the View.|
className | string | The asset’s fully qualified class name. For example, a blog entry’s className is
com.liferay.blogs.kernel.model.BlogsEntry. The className and classPK attributes are required to instanti-
ate the Screenlet. | classPK | number | The asset’s unique identifier. The className and classPK attributes
are required to instantiate the Screenlet. | cachePolicy | string |The offline mode setting. See the Offline
section for details. |

Listener

Comment Add Screenlet delegates some events to a class that implements CommentAddListener. This interface
lets you implement the followingmethods:

• onAddCommentSuccess(CommentEntry commentEntry): Called when the Screenlet successfully adds a com-
ment to the asset.

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.15 Asset Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1732

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/blogs/kernel/model/BlogsEntry.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

Asset Display Screenlet can display an asset from a Liferay instance. The Screenlet can currently display
Documents andMedia files (DLFileEntry images, videos, audio files, and PDFs), blogs entries (BlogsEntry)
and web content articles (WebContent).

AssetDisplayScreenlet canalsodisplay your customasset types. See theListener sectionof this document
for details.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Views

• Default

The Default View uses different UI elements to show each asset type. For example, it displays images
with ImageView and blogs with TextView. Note that other Views may use different UI elements.

This Screenlet can also render other Screenlets as inner Screenlets:

• Images: Image Display Screenlet
• Videos: Video Display Screenlet
• Audio: Audio Display Screenlet
• PDFs: PDF Display Screenlet
• Blog entries: Blogs Entry Display Screenlet
• Web content: Web Content Display Screenlet

These Screenlets can also be used alone without Asset Display Screenlet.

1733

Figure 128.20: Asset Display Screenlet using the Default View.

1734

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
CACHE_FIRST |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• entryId

Instead of entryId, you can use both of the following attributes:

• className

• classPK

If you don’t use entryId, className, or classPK, you must use this attribute:

• portletItemName

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout to use to show the View. | autoLoad |
boolean |Whether the asset automatically loads when the Screenlet appears in the app’s UI.The default value
is true. | entryId | number |The primary key of the asset. | className | string |The asset’s fully qualified class
name. For example, a blog entry’s className is com.liferay.blogs.kernel.model.BlogsEntry. The className
and classPK attributes are required to instantiate the Screenlet. | classPK | number | The asset’s unique
identifier. The className and classPK attributes are required to instantiate the Screenlet. | portletItemName
| string |The name of the configuration template you used in the Asset Publisher. To use this feature, add
an Asset Publisher to one of your site’s pages (it may be a hidden page), configure the Asset Publisher’s
filter (in Configuration → Setup → Asset Selection), and then use the Asset Publisher’s Configuration Templates
option to save this configuration with a name. Use this name in this attribute. If there is more than one
asset in the configuration, the Screenlet displays only the first one. | cachePolicy | string |The offline mode

1735

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/blogs/kernel/model/BlogsEntry.html

setting. See the Offline section for details. | imageLayoutId | @layout |The layout to use to show an image
(DLFileEntry). | videoLayoutId | @layout |The layout to use to show a video (DLFileEntry). | audioLayoutId |
@layout |The layout to use to show an audio file (DLFileEntry). | pdfLayoutId | @layout |The layout to use to
show a PDF (DLFileEntry). | blogsLayoutId | @layout |The layout to use to show a blog entry (BlogsEntry). |
webDisplayLayoutId | @layout |The layout to use to show a web content article (WebContent). |

Methods

Method | Return | Explanation | load(AssetEntry assetEntry) | void | Loads the given AssetEntry in the
Screenlet. If no inner Screenlet is instantiated, themethod tries to load the asset with a custom asset listener
method. If this returns null, a new Intent is called to display the asset. | loadAsset() | void | Searches for
the AssetEntry defined by the required attributes and loads it in the Screenlet. |

Listener

AssetDisplay Screenlet delegates someevents to a class that implements AssetDisplayListener. This interface
contains the followingmethods:

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads the
asset.

A second listener, AssetDisplayInnerScreenletListener, also exists for configuring a child Screenlet (the
Screenlet rendered inside Asset Display Screenlet) or rendering a custom asset.

• onConfigureChildScreenlet(AssetDisplayScreenlet screenlet, BaseScreenlet innerScreenlet,

AssetEntry assetEntry): Called when the child Screenlet has been successfully initialized. Use this
method to configure or customize the child Screenlet. The example implementation here sets the
child Screenlet’s background color to light gray if the asset is a blog entry entity (BlogsEntry):

@Override

public void onConfigureChildScreenlet(AssetDisplayScreenlet screenlet,

BaseScreenlet innerScreenlet, AssetEntry assetEntry) {

if ("blogsEntry".equals(assetEntry.getObjectType())) {

innerScreenlet.setBackgroundColor(ContextCompat.getColor(this,

R.color.light_gray));

}

}

• onRenderCustomAsset(AssetEntry assetEntry): Called to render a custom asset. The following example
implementation inflates and returns the customViewnecessary to render auser fromaLiferay instance
(User):

@Override

public View onRenderCustomAsset(AssetEntry assetEntry) {

if (assetEntry instanceof User) {

View view = getLayoutInflater().inflate(R.layout.user_display, null);

User user = (User) assetEntry;

TextView username = (TextView) view.findViewById(R.id.liferay_username);

username(user.getUsername());

1736

return view;

}

return null;

}

128.16 Blogs Entry Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Blogs Entry Display Screenlet displays a single blog entry. Image Display Screenlet renders any header image
the blogs entry may have.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

1737

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Views

• Default

The Default View uses different components to show a blogs entry (BlogsEntry). For example, it uses an
Android TextView to show the blog’s text, and User Portrait Screenlet to show the profile picture of the Liferay
user who posted it. Note that other custom Viewsmay use different components.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote data under any circumstance. | REMOTE_FIRST |The Screenlet loads the data from the Liferay instance.
If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use. If a
connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the most
recent version of the data when connected, but show an outdated version when there’s no connection. |
CACHE_FIRST |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• entryId

If you don’t use entryId, you must use both of the following attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout to use to show the View.| autoLoad |
boolean | Whether the blog entry automatically loads when the Screenlet appears in the app’s UI.The default
value is true. | entryId | number |The primary key of the blog entry (BlogsEntry). | className | string |The
BlogsEntry object’s fully qualified class name. This is com.liferay.blogs.kernel.model.BlogsEntry. If you
don’t use entryId, the className and classPK attributes are required to instantiate the Screenlet. | classPK
| number | The BlogsEntry object’s unique identifier. If you don’t use entryId, the className and classPK

1738

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/blogs/kernel/model/BlogsEntry.html

Figure 128.21: Blogs Entry Display Screenlet using the Default View.

1739

attributes are required to instantiate the Screenlet. | cachePolicy | string |The offline mode setting. See the
Offline section for details. |

Listener

Because a blog entry is an asset, Blogs Entry Display Screenlet delegates its events to a class that implements
AssetDisplayListener. This interface lets you implement the followingmethod:

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads the
blog entry.

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.17 Image Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Image Display Screenlet displays an image file from a Liferay instance’s Documents andMedia Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

1740

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Views

• Default

The Default View uses an Android ImageView to display the image.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
CACHE_FIRST |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• entryId or classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout to use to show the View. | autoLoad |
boolean |Whether the image automatically loadswhen the Screenlet appears in the app’sUI.Thedefault value
is true. | entryId | number |The primary key of the image. | classPK | number |The image’s unique identifier. |

1741

Figure 128.22: Image Display Screenlet using the Default View.

1742

cachePolicy | string |The offline mode setting. See the Offline section for details. | imageScaleType | number
| Lets you set a scale image type like CENTER, CENTER_CROP, CENTER_INSIDE, FIT_CENTER, FIT_END, FIT_START,
FIT_XY, MATRIX. | placeHolder | @resource | Image to load until the final image loads. | placeHolderScaleType |
number | Lets you set a scale image type for theplaceholder like CENTER, CENTER_CROP, CENTER_INSIDE, FIT_CENTER,
FIT_END, FIT_START, FIT_XY, MATRIX. |

Note that the values for imageScaleType and placeHolderScaleTypematch those described in Android’s
ImageView.ScaleType.

Listener

Because images are assets, Image Display Screenlet delegates its events to a class that implements
AssetDisplayListener. This interface lets you implement the followingmethods:

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads the
image.

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.18 Video Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Video Display Screenlet displays a video file from a Liferay instance’s Documents andMedia Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

1743

https://developer.android.com/reference/android/widget/ImageView.ScaleType.html
https://developer.android.com/reference/android/widget/ImageView.ScaleType.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Views

• Default

The Default View uses an Android VideoView to display the video.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
CACHE_FIRST |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• entryId or classPK

1744

Figure 128.23: Video Display Screenlet using the Default View.

1745

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout to use to show the View. | autoLoad
| boolean |Whether the video automatically loads when the Screenlet appears in the app’s UI.The default
value is true. | entryId | number |The primary key of the video file. | classPK | number |The video file’s unique
identifier. | cachePolicy | string |The offline mode setting. See the Offline section for details. |

Listener

Video Display Screenlet delegates its events to a class that implements VideoDisplayListener. This interface
lets you implement these methods:

• onVideoPrepared(): Called when the video is ready for display.

• onVideoCompleted(): Called when the video is completed.

• onVideoError(Exception e): Called when an error occurs displaying the video.

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads the
video.

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.19 Audio Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Audio Display Screenlet displays an audio file from a Liferay instance’s Documents andMedia Library.

1746

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Views

• Default

The Default View uses an Android VideoView to display the audio file.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
CACHE_FIRST |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

1747

Figure 128.24: Audio Display Screenlet using the Default View.

1748

Required Attributes

• entryId or classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout to use to show the View. | autoLoad |
boolean | Whether the audio file automatically loads when the Screenlet appears in the app’s UI.The default
value is true. | entryId | number |The primary key of the audio file. | classPK | number |The audio file’s unique
identifier. | cachePolicy | string |The offline mode setting. See the Offline section for details. |

Listener

Because audio files are assets, Audio Display Screenlet delegates its events to a class that implements
AssetDisplayListener. This interface lets you implement the followingmethods:

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads the
audio file.

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.20 PDF Display Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

PDF Display Screenlet displays a PDF file from a Liferay Instance’s Documents andMedia Library.

1749

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Views

• Default

The Default View uses Android’s PdfRenderer to display the PDF. Note that PdfRenderer requires an
Android API level of 21 or higher.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | REMOTE_ONLY |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | CACHE_ONLY |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | REMOTE_FIRST |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
CACHE_FIRST |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity

1750

Figure 128.25: PDF Display Screenlet using the Default View.

1751

errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• entryId or classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The layout to use to show the View. | autoLoad
| boolean | Whether the PDF automatically loads when the Screenlet appears in the app’s UI.The default
value is true. | entryId | number |The primary key of the PDF file. | classPK | number |The PDF file’s unique
identifier. | cachePolicy | string |The offline mode setting. See the Offline section for details. |

Listener

Because PDF files are assets, PDF Display Screenlet delegates its events to a class that implements
AssetDisplayListener. This interface lets you implement the followingmethods:

• onRetrieveAssetSuccess(AssetEntry assetEntry): Called when the Screenlet successfully loads the
PDF file.

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.21 Web Screenlet for Android

Requirements

• Android SDK 4.1 (API Level 16) or above
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• Android SDK 4.1 (API Level 16) or above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Web Screenlet lets you display any web page. It also lets you customize the web page through injection of
local and remote JavaScript and CSS files. If you’re using Liferay DXP as backend, you can use Application
Display Templates in your page to customize its content from the server side.

1752

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Module

• None

Views

• Default

Configuration

To learn how to useWeb Screenlet, follow the steps in the tutorial RenderingWeb Pages in Your Android
App. That tutorial gives detailed instructions for using the configuration items described here.

Web Screenlet has WebScreenletConfiguration and WebScreenletConfiguration.Builder classes that you
canuse together to supply theparameters that theScreenletneeds towork. WebScreenletConfiguration.Builder
has the followingmethods, which let you supply the described configuration parameters:

Method | Return | Explanation | addLocalJs(fileName) | WebScreenletConfiguration.Builder | Adds
a local JavaScript file with the supplied filename. The JavaScript files must be in the first level of your
app’s assets folder. Create this folder at the same level of the res folder. | addLocalCss(fileName)

| WebScreenletConfiguration.Builder | Adds a local CSS file with the supplied filename. The CSS
files must be in the first level of your app’s assets folder. Create this folder at the same level of
the res folder. | addRawJs(rawJs, name) | WebScreenletConfiguration.Builder | Adds a JavaScript
file from your app’s res/raw folder. Create this folder if it doesn’t exist. Reference the file using
R.raw.yourfilename. This method also takes a second parameter called name, which is only for debugging
purposes. If there’s an error, the console displays it with this name value. | addRawCss(rawCss, name)

| WebScreenletConfiguration.Builder | Adds a CSS file from your app’s res/raw folder. Create this
folder if it doesn’t exist. Reference the file using R.raw.yourfilename. This method also takes a second
parameter called name, which is only for debugging purposes. If there’s an error, the console displays
it with this name value. | addRemoteJs(url) | WebScreenletConfiguration.Builder | Adds a JavaScript
file from the supplied URL. | addRemoteCss(url) | WebScreenletConfiguration.Builder | Adds a CSS file
from the supplied URL. | setWebType(webType) | WebScreenletConfiguration.Builder | Sets the WebType. |
enableCordova(observer) | WebScreenletConfiguration.Builder | Enables Cordova inside theWeb Screenlet.
| load() | WebScreenletConfiguration | Returns the WebScreenletConfiguration object that you can set to the
Screenlet instance. |

Note: If you want to add comments in the scripts, use the /**/ notation.

WebType

• WebType.LIFERAY_AUTHENTICATED (default): Displays a Liferay DXP page that requires authen-
tication. The user must therefore be logged in with Screens via Login Screenlet or a SessionContext
method. For this WebType, the URL youmust pass to the WebScreenletConfiguration.Builder construc-
tor is a relative URL. For example, if the full URL is http://screens.liferay.org.es/web/guest/blog,
then the URL youmust supply to the constructor is /web/guest/blog.

1753

Figure 128.26: The Web Screenlet with the Default View Set.

1754

• WebType.OTHER: Displays any other page. For this WebType, the URL you must pass to the
WebScreenletConfiguration.Builder constructor is a full URL. For example, if the full URL is
http://screens.liferay.org.es/web/guest/blog, then youmust supply that URL to the constructor.

Attributes

Attribute | Data type | Explanation | autoLoad | boolean | Whether to load the page automatically when
the Screenlet appears in the app’s UI.The default value is true. | layoutId | @layout |The layout to use to show
the View. | isLoggingEnabled | boolean | Whether logging is enabled. | isScrollEnabled | boolean | Whether
to enable scrolling on the page inside the Screenlet. |

Methods

Method | Return | Explanation | load() | void | Checks if the page’s URL is valid, and then loads
it. The operation fails if the URL is invalid. | clearCache() | void | Clears the Web Screenlet’s cache. |
injectScript(script) | void | Injects a script when the page is already loaded. |

Listener

Web Screenlet delegates some events to an object or class that implements its WebListener interface. This
interface extends the BaseCacheListener interface. Therefore,Web Screenlet’s listenermethods are as follows:

• onPageLoaded(String url): Called when the Screenlet loads the page correctly.

• onScriptMessageHandler(String namespace, String body): Called when the WebView in the Screenlet
sends a message. The namespace parameter is the source namespace key, and body is the source names-
pace body.

• error(Exception e, String userAction): Called when an error occurs in the process. The userAction
argument distinguishes the specific action in which the error occurred.

128.22 Android Breaking Changes
This document presents a list of changes in Liferay Screens for Android 2.0 that break preceding functionality.
We try our best to minimize these disruptions, but sometimes they are unavoidable.

Breaking Changes List

Interactors Now Run in a Background Process

What changed? Interactors now run in a background process, so you don’t need to create or set callback
classes manually. This means you can write what appear to be synchronous server calls, and Liferay Screens
handles the background threading for you. The Interactor’s executemethodmakes the server call. Invoking
the startmethod in your Screenlet class causes execute to run in a background thread.

Note that you no longer have to handle the exception whenmaking the server call. The Screenlet frame-
work does this for you and propagates any error via the listeners. Also note that the screenletId is no longer
required. The Screenlet framework automatically decorates the event with a screenletId that it generates.

1755

https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/web/WebListener.java
https://github.com/liferay/liferay-screens/blob/master/android/library/src/main/java/com/liferay/mobile/screens/base/interactor/listener/BaseCacheListener.java

Who is affected? This affects all Screenlet Interactors.

How should I update my code? You must rewrite your Interactors. See the tutorial Creating Android
Screenlets for the most recent instructions on creating an Interactor.

Whywas this changemade? Asynchronous calls can be difficult to develop and work with. By handling
them for you, Liferay Screens removes this potential source of error and frees you to focus on other parts of
your Screenlet.

Changes to View Set Inheritance

What changed? To use a View Set, your app or activity’s thememust also inherit that View Set’s styles. For
example, to use the Default View Set, your app or activity’s thememust inherit default_theme.

Who is affected? This affects any apps or activities that use a View Set without inheriting that View
Set’s styles. For example, if you use the Default View for a Screenlet by setting the Screenlet XML’s layoutId
attribute, your appor activity’s thememust now inherit default_theme aswell. Likewise, your appor activity’s
thememust inherit westeros_theme or material_theme to use theWesteros or Material View Set, respectively.

How should I updatemy code? Change your app or activity’s theme to inherit the styles of the View Set
you want to use.

Example
This code snippet from an app’s res/values/styles.xml tells AppTheme.NoActionBar to inherit the Default

View Set’s styles:

<resources>

<style name="AppTheme.NoActionBar" parent="default_theme">

<item name="colorPrimary">@color/colorPrimary</item>

<item name="colorPrimaryDark">@color/colorPrimaryDark</item>

<item name="colorAccent">@color/colorAccent</item>

<item name="windowActionBar">false</item>

<item name="windowNoTitle">true</item>

</style>

...

</resources>

Whywas this changemade? This lets you change anAndroid theme’s colors and styles according to Android
conventions. Before, the Android themes were hardcoded inside the Screenlets.

The Screenlet Attribute offlinePolicy is now cachePolicy

What changed? The Screenlet attribute offlinePolicy is now cachePolicy.

Who is affected? This affects any Screenlets that used the offlinePolicy attribute to set that Screenlet’s
offline mode policy.

1756

How should I updatemy code? In the app layouts that contain the Screenlet, change the offlinePolicy
attribute to cachePolicy.

Example
Old way:

<com.liferay.mobile.screens.assetlist.AssetListScreenlet

android:id="@+id/asset_list_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

liferay:autoLoad="false"

liferay:offlinePolicy="REMOTE_FIRST" />

Newway:

<com.liferay.mobile.screens.asset.list.AssetListScreenlet

android:id="@+id/asset_list_screenlet"

android:layout_width="match_parent"

android:layout_height="match_parent"

liferay:autoLoad="false"

liferay:cachePolicy="REMOTE_FIRST"

/>

Why was this change made? This change was made for consistency throughout Liferay Screens. The
method and class names in the offline mode APIs contain cache, as do the offline policies CACHE_ONLY and
CACHE_FIRST.

Some Listener Methods in DDL Form Screenlet Have Changed

What changed? The following error listener methods in DDL Form Screenlet’s DDLFormListener have been
removed:

• void onDDLFormLoadFailed(Exception e): Called when an error occurs in the load form definition
request.

• void onDDLFormRecordLoadFailed(Exception e): Called when an error occurs in the load form record
request.

• void onDDLFormRecordAddFailed(Exception e): Calledwhen an error occurs in the request to add a new
record.

• void onDDLFormUpdateRecordFailed(Exception e): Calledwhen an error occurs in the request to update
an existing record.

Also in DDLFormListener, the method onDDLFormRecordLoaded now takes an additional parameter for the
attribute map received from the server.

Who is affected? This affects any classes that implement DDLFormListener.

How should I updatemy code? In place of the removed error listeners, use BaseCacheListener’s generic
error listener:

void error(Exception e, String userAction)

You must also change any onDDLFormRecordLoaded implementations to account for the method’s new
signature:

public void onDDLFormRecordLoaded(Record record, Map<String, Object> valuesAndAttributes)

1757

Whywas this changemade? The old error listener methods were usually implemented the same way: by
logging the exception. Multiple error listener methods aren’t needed for this. You can use the new error
listener method to log the exception and take any other action that depends on the user action.

Cache Listener Methods Moved into Their Own Listener

What changed? The cache listener methods loadingFromCache, retrievingOnline, and storingToCache have
beenmoved to their own listener, CacheListener. Note, this change was introduced in Liferay Screens 1.4.0.

Who is affected? All activity classes that implement a listener.

How should I updatemy code? If you don’t have special behavior in your old cache listener method im-
plementations, you can remove them. Otherwise, you must implement the new CacheListener. When
implementing CacheListener (in an activity or fragment, for example), you should also register a Screenlet
instance as the cache listener:

screenlet.setCacheListener(this);

Example
In the Liferay Screens test app, the activity UserPortraitActivity implements CacheListener:

public class UserPortraitActivity extends ThemeActivity implements UserPortraitListener,

CacheListener {

private UserPortraitScreenlet screenlet;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.user_portrait);

screenlet = (UserPortraitScreenlet) findViewById(R.id.user_portrait_screenlet);

screenlet.setListener(this);

screenlet.setCacheListener(this);

}

…

@Override

public void loadingFromCache(boolean success) {

View content = findViewById(android.R.id.content);

Snackbar.make(content, "Trying to load from cache: " + success,

Snackbar.LENGTH_SHORT).show();

}

@Override

public void retrievingOnline(boolean triedInCache, Exception e) {

}

@Override

public void storingToCache(Object object) {

View content = findViewById(android.R.id.content);

Snackbar.make(content, "Storing to cache...", Snackbar.LENGTH_SHORT).show();

}

…

}

1758

https://github.com/liferay/liferay-screens/blob/2.0.1/android/samples/test-app/src/main/java/com/liferay/mobile/screens/testapp/UserPortraitActivity.java

Whywas this changemade? Reacting to cache errors via the cache listener methods is a niche use case.
Because the old cache listenermethodswere part of the normal listener, developerswere forced to implement
themwhether they needed them or not. Putting them in their own listener makes their implementation
optional.

Changed BaseListListener Methods

What changed? The BaseListListenermethods onListPageFailed and onListPageReceived no longer have
the BaseListScreenlet argument source. These methods also now account for a page’s start and end row
instead of the page number.

Who is affected? This affects any classes or interfaces that extend or implement BaseListListener.

How should I updatemy code? Remove the BaseListScreenlet argument from your onListPageFailed and
onListPageReceived implementations. You must also replace the int page argument in onListPageFailed

with an int argument representing the page’s start row. Likewise, replace the int page argument in
onListPageReceivedwith two int arguments that represent the page’s start row and end row, respectively.

Example
Old signatures:

void onListPageFailed(BaseListScreenlet source, int page, Exception e)

void onListPageReceived(BaseListScreenlet source, int page, List<E> entries, int rowCount)

New signatures:

void onListPageFailed(int startRow, Exception e)

void onListPageReceived(int startRow, int endRow, List<E> entries, int rowCount)

Whywas this changemade? The BaseListScreenlet argument served to disambiguate two instances of
the same Screenlet in a single activity. This is a very rare use case. Therefore, forcing the argument on
all BaseListListener implementations was unnecessary. If you still need this use case, create a Screenlet
instance and listener for each Screenlet instead of relying on the BaseListScreenlet argument in a single
listener. The start row and end row change was made for consistency with other listeners that also use start
row and end row arguments.

Changed Asset List Screenlet Package

What changed? Asset List Screenlet’s package is now com.liferay.mobile.screens.asset.list instead of
com.liferay.mobile.screens.assetlist.

Who is affected? This affects any activities or fragments that use Asset List Screenlet.

How should I update my code? Change your com.liferay.mobile.screens.assetlist imports to
com.liferay.mobile.screens.asset.list.

Why was this change made? This allows for other Screenlets that work with assets, like Asset Display
Screenlet. For example, the package com.liferay.mobile.screens.asset now contains Asset List Screenlet,
Asset Display Screenlet, and classes common to both.

1759

Changed Return Type for a DDL Record Method

What changed? The getModelValues()method for DDL records now returns a Map instead of a HashMap.

Who is affected? This affects any code that expects getModelValues() to return a HashMap.

How should I updatemy code? Change any code that uses getModelValues() to expect a Map instead of a
HashMap.

Whywas this changemade? This follows general Java conventions.

Changed Code Conventions for Private and Protected Fields

What changed? Private and protected fields in Screenlets are no longer prefixed by _.

Who is affected? This affects any code that directly accesses protected fields.

How should I updatemy code? Change your code to use the new variable name. For example, if your code
directly accesses a protected Screenlet variable named _fields, change it to use fields instead.

Whywas this changemade? This follows general Java naming conventions.

Changes to Using a Screenlet without a View

What changed? If you’re using a Screenlet without View (like you might be if you need to log a user in
programmatically), you no longer have to call LiferayScreensContext.init(this) to initialise the library. This
is now called automatically.

Who is affected? This affects any apps that use a Screenlet without a View.

How should I updatemy code? Remove your manual call to LiferayScreensContext.init(this).

Whywasthischangemade? Thisremoves thepossibility of anerror if you forget to call LiferayScreensContext.init(this)
when using a Screenlet without a View.

1760

https://github.com/liferay/liferay-screens/blob/2.0.1/android/library/src/main/java/com/liferay/mobile/screens/ddl/model/Record.java

Chapter 129

Screenlets in Liferay Screens for iOS

Liferay Screens for iOS contains several Screenlets that you can use in your iOS apps. This section contains
the reference documentation for each. If you’re looking for instructions on using Screens, see the Screens
tutorials. The Screens tutorials contain instructions on using Screenlets and usingThemes in Screenlets.
Each Screenlet reference document here lists the Screenlet’s features, compatibility, its module (if any),
availableThemes, attributes, delegate methods, and more. The available Screenlets are listed here with links
to their reference documents:

• Login Screenlet: Signs users in to a Liferay DXP instance.

• SignUp Screenlet: Registers new users in a Liferay DXP instance.

• Forgot Password Screenlet: Sends emails containing a new password or password reset link to users.

• User Portrait Screenlet: Shows the user’s portrait picture.

• DDL Form Screenlet: Presents dynamic forms to be filled out by users and submitted back to the
server.

• DDL List Screenlet: Shows a list of records based on a pre-existing DDL in a Liferay DXP instance.

• Asset List Screenlet: Shows a list of assets managed by Liferay DXP’s Asset Framework. This includes
web content, blog entries, documents, andmore.

• WebContent Display Screenlet: Shows the web content’s HTML or structured content. This Screenlet
uses the features available inWeb Content Management.

• WebContent List Screenlet: Shows a list of web contents from a folder, usually based on a pre-existing
DDMStructure.

• ImageGallery Screenlet: Shows a list of images from a folder. This Screenlet also lets users upload
and delete images.

• Rating Screenlet: Shows the rating for an asset. This Screenlet also lets the user update or delete the
rating.

• Comment List Screenlet: Shows a list of comments for an asset.

1761

• Comment Display Screenlet: Shows a single comment for an asset.

• Comment Add Screenlet: Lets the user comment on an asset.

• Asset Display Screenlet: Displays an asset. Currently, this Screenlet can display Documents and
Media Library files (DLFileEntry entities), blog articles (BlogsEntry entities), and web content articles
(WebContent entities). You can also use it to display custom assets.

• Blogs Entry Display Screenlet: Shows a single blogs entry.

• Image Display Screenlet: Shows a single image file from a Liferay DXP instance’s Documents and
Media Library.

• VideoDisplayScreenlet: Shows a single video file from a LiferayDXP instance’s Documents andMedia
Library.

• Audio Display Screenlet: Shows a single audio file from a Liferay DXP instance’s Documents and
Media Library.

• PDFDisplay Screenlet: Shows a single PDF file from a Liferay DXP instance’s Documents andMedia
Library.

• FileDisplay Screenlet: Shows a single file from a Liferay DXP instance’s Documents andMedia Library.
Use this Screenlet to display file types not covered by the other display Screenlets (e.g., DOC, PPT,
XLS).

• WebScreenlet: Displays any web page. You can also customize the web page through injection of local
and remote JavaScript and CSS files.

129.1 Login Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Login Screenlet authenticates portal users in your iOS app. The following authenticationmethods are
supported:

1762

• Basic: uses user login and password according to HTTP Basic Access Authentication specification.
Depending on the authenticationmethod used by your Liferay instance, you need to provide the user’s
email address, screen name, or user ID. You also need to provide the user’s password.

• OAuth: implements the OAuth 1.0a specification.

• Cookie: uses a cookie to log in. This lets you access documents and images in the portal’s document
library without the guest view permission in the portal. The other authentication types require this
permission to access such files.

Note: Cookie authentication with Login Screenlet is broken in fix packs 14 through 18 of Liferay Digital
Enterprise 7.0. This issue is fixed in newer fix packs for Liferay Digital Enterprise 7.0.

For instructions on configuring the Screenlet to use these authentication types, see the below Portal
Configuration and Screenlet Attributes sections.

When a user successfully authenticates, their attributes are retrieved for use in the app. You can use the
SessionContext class to get the current user’s attributes.

Note that user credentials and attributes can be stored securely in the keychain (see the saveCredentials
attribute). Stored user credentials can be used to automatically log the user in to subsequent sessions. To do
this, you can use the method SessionContext.loadStoredCredentials()method.

JSON Services Used

Screenlets in Liferay Screens call the portal’s JSONweb services. This Screenlet calls the following services
andmethods.

Service Method Notes

UserService getUserByEmailAddress Basic login
UserService getUserByScreenName Basic login
UserService getUserById Basic login
UserService getCurrentUser Cookie and OAuth login

Module

• Auth

Themes

• Default (default)
• Flat7 (flat7)

For instructions on usingThemes, click here.

1763

http://tools.ietf.org/html/rfc2617
http://oauth.net/core/1.0a/

Figure 129.1: The Login Screenlet using the Default and Flat7 Themes.

1764

Portal Configuration

Basic Authentication

Before using Login Screenlet, you should make sure your portal is configured with the authentication option
you want to use. You can choose email address, screen name, or user ID. You can set this in the Control Panel
by selecting Configuration → Instance Settings, and then selecting the Authentication section. The authentication
options are in theHow do users authenticate? selector menu.

Figure 129.2: Setting the authentication method in your Liferay instance.

For more details, please refer to the Setting up a Liferay Instance section of the User Guide.

OAuth

Note: OAuth authentication is only available in Liferay DXP instances.

To use OAuth authentication, first install the OAuth provider app from the Liferay Marketplace. Click
here to get this app. Once it’s installed, go to Control Panel → Users → OAuth Admin, and add a new application
to be used from Liferay Screens. Once the application exists, copy the Consumer Key and Consumer Secret
values for later use in Login Screenlet.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity. If you need to log in users
automatically, even when there’s no network connection, you can use the saveCredentials attribute together
with the SessionContext.loadStoredCredentials()method.

1765

https://web.liferay.com/marketplace/-/mp/application/45261909
https://web.liferay.com/marketplace/-/mp/application/45261909

Attributes

Attribute | Data type | Explanation | companyId | number |The ID of the portal instance to authenticate to.
If you don’t set this attribute or set it to 0, the Screenlet uses the companyId setting in LiferayServerContext. |
loginMode | string |TheScreenlet’s authentication type. You can set this attribute to basic, oauth, or cookie. If
you don’t set this attribute, the Screenlet defaults to basic authentication. | basicAuthMethod | string | Speci-
fies the basic authentication option to use. You can set this attribute to email, screenName or userId. Thismust
match the server’s authentication option. If you don’t set this attribute, and don’t set the loginMode attribute
to oauth or cookie, the Screenlet defaults to basic authentication with the email option. | OAuthConsumerKey |
string | Specifies theConsumerKey to use inOAuth authentication. | OAuthConsumerSecret | string | Specifies
the Consumer Secret to use in OAuth authentication. | saveCredentials | boolean | When set, the user creden-
tials and attributes are stored securely in the keychain. This information can then be loaded in subsequent
sessions by calling the SessionContext.loadStoredCredentials()method. | shouldHandleCookieExpiration |
bool |Whether to refresh the cookie automatically when using cookie login. When set to true (the default
value), the cookie refreshes as it’s about to expire. | cookieExpirationTime | int | How long the cookie lasts,
in seconds. This value depends on your portal instance’s configuration. The default value is 900. |

Delegate

TheLogin Screenlet delegates some events to an object that conforms to the LoginScreenletDelegate protocol.
This protocol lets you implement the followingmethods:

• - screenlet:onLoginResponseUserAttributes:: Called when login successfully completes. The user
attributes are passed as a dictionary of keys (String or NSStrings) and values (AnyObject or NSObject).
The supported keys are the same as the portal’s User entity.

• - screenlet:onLoginError:: Called when an error occurs during login. The NSError object describes
the error.

• - screenlet:onCredentialsSavedUserAttributes:: Called when the user credentials are stored after a
successful login.

• - screenlet:onCredentialsLoadedUserAttributes:: Called when the user credentials are retrieved.
Note that this only occurs when the Screenlet is used and stored credentials are available.

Challenge-Response Authentication

To support challenge-response authentication when using a cookie to log in to the portal, the SessionContext
class has a challengeResolver attribute. For more information about how iOS handles challenge-response
authentication, see the article Authentication Challenges and TLS Chain Validation.

The challenge resolver type is a closure or block that receives two parameters:

1. URLAuthenticationChallenge

2. Another closure or block. You must call this to resolve the challenge (e.g., by passing credentials,
canceling the challenge, etc.). You can do this by passing a URLSession.AuthChallengeDisposition.

Here’s an example that sends a basic authorization in response to an authentication challenge:

1766

https://github.com/liferay/liferay-portal/blob/master/portal-impl/src/com/liferay/portal/service.xml#L2575-L2737
https://en.wikipedia.org/wiki/Challenge%E2%80%93response_authentication
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/URLLoadingSystem/Articles/AuthenticationChallenges.html

SessionContext.challengeResolver = resolver

func resolver(challenge: URLAuthenticationChallenge,

decisionCallback: (URLSession.AuthChallengeDisposition, URLCredential) -> Void) {

// Use the challenge variable to get information about the challenge itself

if challenge.previousFailureCount == 0 {

// To solve the challenge, call the decision callback with your decision

// Pass the credentials to the server

decisionCallback(.useCredential, URLCredential(user: "user", password: "password",

persistence: .forSession))

}

else {

// Something went wrong, so let the system handle the challenge

decisionCallback(.performDefaultHandling, URLCredential(user: "these credentials",

password: "are ignored", persistence: .none))

}

}

129.2 Sign Up Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Sign Up Screenlet creates a new user in your Liferay instance: a new user of your app can become a new
user in your portal. You can also use this Screenlet to save the credentials of the new user in their keychain.
This enables auto login for future sessions. The Screenlet also supports navigation of form fields from the
keyboard of the user’s device.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

UserService addUser

1767

Module

• Auth

Themes

• Default (default)
• Flat7 (flat7)

Figure 129.3: The Sign Up Screenlet with the Default and Flat7 Themes.

1768

Portal Configuration

Sign Up Screenlet’s corresponding configuration in the Liferay instance can be set in the Control Panel by
selecting Configuration → Instance Settings, and then selecting the Authentication section.

Figure 129.4: The Liferay instance’s authentication settings.

For more details, please refer to the Setting up a Liferay Instance section of the User Guide.

Anonymous Request

Anonymous requests are unauthenticated requests. Authentication is needed, however, to call the API. To
allow this operation, the portal administrator should create a specific user with minimal permissions.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity.

Attributes

Attribute | Data type | Explanation | anonymousApiUserName | string | The user name, email address,
or user ID (depending on the portal’s authentication method) to use for authenticating the request. |
anoymousApiPassword | string | The password for use in authenticating the request. | companyId | number |
When set, authentication is done for a user in the specified company. If the value is 0, the company specified
in LiferayServerContext is used. | autoLogin | boolean | Whether the user is logged in automatically after a
successful sign up. | saveCredentials | boolean | Sets whether or not the user’s credentials and attributes are
stored in the keychain after a successful log in. This attribute is ignored if autologin is disabled. |

Delegate

The Sign Up Screenlet delegates some events to an object that conforms to the SignUpScreenletDelegate

protocol. If the autologin attribute is enabled, login events are delegated to an object conforming to the
LoginScreenletDelegate protocol. Refer to the LoginScreenlet documentation for more details.

The SignUpScreenletDelegate protocol lets you implement the followingmethods:

1769

LoginScreenlet.md

• - screenlet:onSignUpResponseUserAttributes:: Called when sign up successfully completes. The user
attributes are passed as a dictionary of keys (String or NSStrings) and values (AnyObject or NSObject).
The supported keys are the same as Liferay Portal’s User entity.

• - screenlet:onSignUpError:: Called when an error occurs in the process. The NSError object describes
the error.

129.3 Forgot Password Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Forgot Password Screenlet sends emails to registered users with their new passwords or password reset
links, depending on the server configuration. The available authentication methods are:

• Email address
• Screen name
• User id

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

UserService sendPasswordByEmailAddress

UserService sendPasswordByUserId

UserService sendPasswordByScreenName

1770

https://github.com/liferay/liferay-portal/blob/7.0.x/portal-impl/src/com/liferay/portal/service.xml#L2686
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Module

• Auth

Themes

• Default (default)
• Flat7 (flat7)

Figure 129.5: The Forgot Password Screenlet with the Default and Flat7 Themes.

1771

Portal Configuration

To use the Forgot Password Screenlet, youmust allow users to request new passwords in the portal. The next
sections show you how to do this.

Authentication Method

Note that the authentication method configured in the portal can be different from the one used by this
Screenlet. For example, it’s perfectly fine to use screenName for sign in authentication, but allow users to recover
their password using the email authentication method.

Password Reset

You can set the Liferay instance’s corresponding password reset options in the Control Panel by selecting
Configuration → Instance Settings, and then selecting the Authentication section. The Screenlet’s password
functionality depends on the authentication settings in the portal:

Figure 129.6: Checkboxes for the password recovery features in Liferay Portal.

If both of these options are unchecked, password recovery is disabled. If both options are checked, an
email containing a password reset link is sent when a user requests it. If only the first option is checked, an
email containing a new password is sent when a user requests it.

For more details on authentication in Liferay Portal, please refer to the Setting up a Liferay Instance
section of the User Guide.

Anonymous Request

An anonymous request can be made without the user being logged in. However, authentication is needed to
call the API. To allow this operation, the portal administrator should create a specific user with minimal
permissions.

Offline

This Screenlet doesn’t support offline mode. It requires network connectivity.

Attributes

Attribute | Data type | Explanation | anonymousApiUserName | string | The user name, email address,
or userId (depending on the portal’s authentication method) to use for authenticating the request. |
anonymousApiPassword | string | The password to use to authenticate the request. | companyId | number |
When set, the authentication is done for a user within the specified company. If the value is 0, the company

1772

specified in LiferayServerContext is used. | basicAuthMethod | string | The authentication method that is
presented to the user. This can be email, screenName, or userId. |

Delegate

TheForgotPasswordScreenletdelegates someevents to anobject that conforms to the ForgotPasswordScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onForgotPasswordSent:: Called when a password reset email is successfully sent. The
Boolean parameter indicates whether the email contains the new password or a password reset link.

• - screenlet:onForgotPasswordError:: Called when an error occurs in the process. The NSError object
describes the error.

129.4 User Portrait Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

TheUser Portrait Screenlet shows the user’s portrait from Liferay Portal. If the user doesn’t have a portrait
configured, a placeholder image is shown.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

UserService getUserById

UserService getUserByEmailAddress

UserService getUserByScreenName

1773

Module

• None

Themes

• Default (default)
• Flat7 (flat7)

Figure 129.7: The User Portrait Screenlet using the Default and Flat7 Themes.

1774

Portal Configuration

None

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture.

When loading the portrait, the Screenlet supports the following offline mode policies:

Policy |What happens |When to use | remote-only |The Screenlet loads the user portrait from the portal.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error. If the
Screenlet loads the portrait, it stores the received image in the local cache for later use. | Use this policy when
you always need to show updated portraits, and show the default placeholder when there’s no connection. |
cache-only |The Screenlet loads the user portrait from the local cache. If the portrait isn’t there, the Screenlet
uses the delegate to notify the developer about the error. | Use this policy to show local portraits, without
retrieving remote information under any circumstance. | remote-first |The Screenlet loads the user portrait
from the portal. The Screenlet displays the portrait to the user and stores it in the local cache for later use. If a
connection issue occurs, the Screenlet retrieves the portrait from the local cache. If the portrait doesn’t exist
there, the Screenlet uses the delegate to notify the developer about the error. | Use this policy to show the
most recent portrait when connected, but show a potentially outdated version when there’s no connection.
| cache-first | If the portrait exists in the local cache, the Screenlet loads it from there. If it doesn’t exist
there, the Screenlet requests the portrait from the portal and uses the delegate to notify the developer about
any connection errors. | Use this policy to save bandwidth and loading time in the event a local (but probably
outdated) portrait exists. |

When editing the portrait, the Screenlet supports the following offline mode policies:

Policy |What happens |When to use | remote-only |The Screenlet sends the user portrait to the portal.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error, but it also
discards the new portrait. | Use this policy when you need to make sure portal always has the most recent
version of the portrait. | cache-only |The Screenlet stores the user portrait in the local cache. | Use this policy
when you need to save the portrait locally, but don’t want to change the portrait in the portal. | remote-first
|The Screenlet sends the user portrait to the portal. If this succeeds, the Screenlet also stores the portrait
in the local cache for later usage. If a connection issue occurs, the Screenlet stores the portrait in the local
cache with the dirty flag enabled. This causes the portrait to be sent to the portal when the synchronization
process runs. | Use this policy when you need to make sure the Screenlet sends the new portrait to the portal
as soon as the connection is restored. | cache-first |The Screenlet stores the user portrait in the local cache
and then sends it to the portal. If a connection issue occurs, the Screenlet stores the portrait in the local
cache with the dirty flag enabled. This causes the portrait to be sent to the portal when the synchronization
process runs. | Use this policy when you need to make sure the Screenlet sends the new portrait to the portal
as soon as the connection is restored. Compared to remote-first, this policy always stores the portrait in the
cache. The remote-first policy only stores the new image in the event of a network error. |

Attributes

1775

Attribute | Data type | Explanation | borderWidth | number | The size in pixels for the portrait’s border.
The default value is 1. Set this to 0 if you want to hide the border.| borderColor | UIColor |The border’s color.
Use the system’s transparent color to hide the border. | editable | boolean | Lets the user change the portrait
image by taking a photo or selecting a gallery picture. The default value is false. Portraits loaded with the
load(portraitId, uuid, male)method aren’t editable. | offlinePolicy | string | Configure the loading and
saving behavior in case of connectivity issues. For more details, read the “Offline” section below. |

Methods

Method | Return | Explanation | loadLoggedUserPortrait() | boolean | Starts the request to load the
currently logged in user’s portrait image (see the SessionContext class). | load(userId) | boolean | Starts
the request to load the specified user’s portrait image. | load(portraitId, uuid, male) | boolean | Starts
the request to load the portrait image using the specified user’s data. The parameters portraitId and uuid

can be retrieved by using the SessionContext.userAttributes()method. | load(companyId, emailAddress)

| boolean | Starts the request to load the portrait image using the user’s email address. | load(companyId,
screenName) | boolean | Starts the request to load the portrait image using the user’s screen name. |

Delegate

TheUserPortrait Screenletdelegates someevents toanobject that conforms to the UserPortraitScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onUserPortraitResponseImage:: Called when an image is received from the server. You
can then apply image filters (grayscale, for example) and return the new image. You can return the
original image supplied as the argument if you don’t want to modify it.

• - screenlet:onUserPortraitError:: Called when an error occurs in the process. The NSError object
describes the error.

• - screenlet:onUserPortraitUploaded:: Called when a new portrait is uploaded to the server. You
receive the user attributes as a parameter.

• - screenlet:onUserPortraitUploadError:: Called when an error occurs in the upload process. The
NSError object describes the error.

129.5 DDL Form Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

1776

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

DDL Form Screenlet can be used to show a collection of fields so that a user can fill in their values. Initial or
existing values may be shown in the fields. Fields of the following data types are supported:

• Boolean: A two state value typically shown using a checkbox.
• Date: A formatted date value. The format depends on the device’s locale.
• Decimal, Integer, andNumber: A numeric value.
• DocumentandMedia: Afile storedon the current device. It canbeuploaded to a specific portal repository.
• Radio: A set of options to choose from. A single option must be chosen.
• Select: A selection box of options to choose from. A single option must be chosen.
• Text: A single line of text.
• Text Box: Supports multiple lines of text.

DDL Form Screenlet also supports the following features:

• Stored records can support a specific workflow.
• A Submit button can be shown at the end of the form.
• Required values and validation for fields can be used.
• Users can traverse the form fields from the keyboard.
• Supports i18n in record values and labels.

There are also a few limitations you should be aware of when using DDL Form Screenlet. They are listed
here:

• Nested fields in the data definition aren’t supported.
• Selection of multiple items in the Radio and Select data types isn’t supported yet.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

DDMStructureService getStructureWithStructureId Load form
ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecord Load record

DLAppService addFileEntry Upload document
DDLRecordService addRecord Submit form

1777

Service Method Notes

DDLRecordService updateRecord Update form

Module

• DDL

Themes

• Default

The DefaultTheme uses a standard UITableView to show a scrollable list of fields. OtherThemes may use
a different component, such as UICollectionView or others, to show the fields.

Custom Cells

AThemeneeds todefineacell view for eachfield type. For instance, the xibfile DDLFieldDateTableCell_default
is used to render Date fields in the DefaultTheme.

If you want a specific field to have a unique appearance, you can customize your field’s display by using
the following filename pattern, where XXX is your field’s name: DDLCustomFieldXXXTableCell_default. For
example, the “Are you a subscriber?” field in screenshot above shows how text fields appear in the Default
Theme. If youwant to customize this, you don’t need to create an entireTheme. You just need to create an xib

file for the field subscriberName. The filename is therefore DDLCustomFieldSubscriberNameTableCell_default.
Be careful to keep the same components and IBOutlet defined in the custom file.

Portal Configuration

Before using DDL Form Screenlet, you should make sure that Dynamic Data Lists and Data Types are
configured properly in the portal. Refer to the Creating Data Definitions and Creating Data Lists sections of
the User Guide formore details. IfWorkflow is required, it must also be configured. See the UsingWorkflow
section of the User Guide for details.

Permissions

To use DDL Form Screenlet to add new records, youmust grant the Add Record permission in the Dynamic
Data List in the portal. If you want to use DDL Form Screenlet to view or edit record values, youmust also
grant the View and Update permissions, respectively. The Add Record, View, and Update permissions are
highlighted by the red boxes in the following screenshot:

Also, if your form includes at least one Documents andMedia field, youmust grant permissions in the
target repository and folder. For more details, see the repositoryId and folderId attributes below.

For more details, please see the User Guide sections Creating Data Definitions, Creating Data Lists, and
UsingWorkflow.

1778

Figure 129.8: DDL Form Screenlet using the Default (default) Theme.

1779

Figure 129.9: The permissions for adding, viewing, and editing DDL records.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture.

When loading the form or record, the Screenlet supports the following offline mode policies:

Policy | What happens | When to use | remote-only | The Screenlet loads the form or record from the
portal. If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error.
If the Screenlet loads the form or record, it stores the received data (record structure and data) in the local
cache for later use. | Use this policy when you always need to show updated data, and show nothing when
there’s no connection.| cache-only |The Screenlet loads the form or record from the local cache. If the form
or record isn’t there, the Screenlet uses the delegate to notify the developer about the error. | Use this policy
when you always need to show local data, without retrieving remote information under any circumstance.|
remote-first |The Screenlet requests the form or record from the portal. The Screenlet shows the record
or form to the user and stores it in the local cache for later use. If a connection issue occurs, the Screenlet
retrieves the form or record from the local cache. If the form or record doesn’t exist there, the Screenlet uses
the delegate to notify the developer about the error. | Use this policy to show the most recent version of the

1780

Figure 129.10: The permission for adding a document to a Documents and Media folder.

data when connected, but show an outdated version when there’s no connection. | cache-first | If the form
or record exists in the local cache, the Screenlet loads it from there. If it doesn’t exist there, the Screenlet
requests it from the portal and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

When editing the record, the Screenlet supports the following offline mode policies:

Policy | What happens |When to use | remote-only |The Screenlet sends the record to the portal. If a
connection issue occurs, the Screenlet uses the delegate to notify the developer about the error, but it also
discards the record. | Use this policy tomake sure the portal always has themost recent version of the record.
| cache-only | The Screenlet stores the record in the local cache. | Use this policy when you need to save
the data locally, but don’t want to update the data in the portal (update or add record). | remote-first |The
Screenlet sends the record to the portal. If this succeeds, it also stores the record in the local cache for later
usage. If a connection issue occurs, then Screenlet stores the record in the local cache with the dirty flag
enabled. This causes the synchronization process to send the record to the portal when it runs. | Use this

1781

policy when you need to make sure the Screenlet sends the record to the portal as soon as the connection is
restored. | cache-first |The Screenlet stores the record in the local cache and then sends it to the remote
portal. If a connection issue occurs, then Screenlet stores the record in the local cache with the dirty flag
enabled. This causes the the synchronization process to send the record to the portal when it runs. | Use this
policy when you need to make sure the Screenlet sends the record to the portal as soon as the connection
is restored. Compared to remote-first, this policy always stores the record in the cache. The remote-first
policy only stores the record in the event of a network error. |

Required Attributes

• structureId

• recordSetId

Attributes

Attribute | Data Type | Explanation | structureId | number |This is the identifier of a data definition for
your site in Liferay. To find the identifiers for your data definitions, click Admin from the Dockbar and select
Content. Then clickDynamicData Lists and click theManageDataDefinitions button. The identifier of each data
definition is in the ID column of the table that appears. | groupId | number |The site (group) identifier where
the record is stored. If this value is 0, the groupId specified in LiferayServerContext is used. | recordSetId |
number |The identifier of a dynamic data list. To find the identifiers for your dynamic data lists, click Admin
from the Dockbar and select Content. Then click Dynamic Data Lists. The identifier of each dynamic data
list is in the ID column of the table that appears. | recordId | number |The identifier of the record you want
to show. Setting the editable attribute to true allows editing of the record’s values. The recordId can be
obtained from other methods or delegates. | repositoryId | number |The identifier of the Documents and
Media repository to upload to. If this value is 0, the default repository for the site specified in groupId is used.
| folderId | number |The identifier of the folder where Documents andMedia files are uploaded. If this value
is 0, the root folder is used. | filePrefix | string |The prefix to attach to the names of files uploaded to a
Documents and Media repository. A random GUID string is appended following the prefix. | autoLoad |
boolean | Sets whether or not the form is loaded when the Screenlet is shown. If recordId is set, the record
value is loaded together with the form definition. | autoscrollOnValidation | boolean | Sets whether or not
the form automatically scrolls to the first failed field when validation is used. | showSubmitButton | boolean |
Sets whether or not the form shows a submit button at the bottom. If this is set to false, you should call the
submitForm()method. | editable | boolean | Sets whether the values can be changed by the user. The default
is true. |

Methods

Method | Return Type | Explanation | loadForm() | boolean | Starts the request to load the formdefinition.
The form fields are shown when the response is received. This method returns true if the request is sent.
| loadRecord() | boolean | Starts the request to load the record specified in recordId. If needed, the form
definition is also loaded. The form fields are shown filled with record values when the response is received.
This method returns true if the request is sent. | submitForm() | boolean | Starts the request to submit
form values to the dynamic data list specified in recordSetId. All fields are validated prior to submission.
Validation errors stop the submit process. |

1782

Delegate

DDL Form Screenlet delegates some events to an object that conforms with the DDLFormScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onFormLoaded:: Called when the form is loaded. The second parameter (record) contains
only field definitions.

• - screenlet:onFormLoadError:: Calledwhen an error occurswhile loading the form. The NSError object
describes the error.

• - screenlet:onRecordLoaded:: Called when a formwith values loads. The second parameter (record)
contains field definitions and values. Themethod onFormLoadResult is called before onRecordLoaded.

• - screenlet:onRecordLoadError:: Called when an error occurs while loading a record. The NSError
object describes the error.

• - screenlet:onFormSubmitted:: Called when the form values are successfully submitted to the server.

• - screenlet:onFormSubmitError:: Called when an error occurs while submitting the form. The NSError
object describes the error.

• - screenlet:onDocumentFieldUploadStarted:: Called when the upload of a Documents andMedia field
begins.

• - screenlet:onDocumentField:uploadedBytes:totalBytes:: Called when a block of bytes in a Docu-
ments andMedia field is uploaded. This method is intended to track progress of the uploads.

• - screenlet:onDocumentField:uploadResult:: Called when a Documents and Media field upload is
completed.

• - screenlet:onDocumentField:uploadError:: Calledwhen an error occurs in theDocuments andMedia
upload process. The NSError object describes the error.

129.6 DDL List Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

1783

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

TheDDL List Screenlet enables the following features:

• Shows a scrollable collection of DDL records.
• Implements fluent pagination with configurable page size.
• Allows filtering of records by creator.
• Supports i18n in record values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecords With ddlRecordSetId, or
ddlRecordSetId and userId

ScreensddlrecordService (Screens
compatibility plugin)

getDdlRecordsCount

Module

• DDL

Themes

• The DefaultTheme uses a standard UITableView to show the scrollable list. OtherThemesmay use a
different component, such as UICollectionView or others, to show the items.

Portal Configuration

Dynamic Data Lists (DDL) and Data Types should be configured in the portal. For more details, please refer
to the Liferay User Guide sections Creating Data Definitions and Creating Data Lists.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

1784

http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Figure 129.11: The DDL List Screenlet using the Default (default) Theme.

1785

Policy | What happens | When to use | remote-only | The Screenlet loads the list from the portal. If
a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error. If the
Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet uses the delegate to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the list from the portal.
If this succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use. If a
connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t exist there,
the Screenlet uses the delegate to notify the developer about the error. | Use this policy to show themost
recent version of the data when connected, but show an outdated version when there’s no connection. |
cache-first |The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet requests it
from the portal and notifies the developer about any errors that occur (including connectivity errors). | Use
this policy to save bandwidth and loading time in case you have local (but probably outdated) data. |

Required Attributes

• recordSetId

• labelFields

Attributes

Attribute | Data type | Explanation | recordSetId | number |The ID of the DDL being called. To find the
IDs for your DDLs, first open the Product Menu and select the site that contains your DDLs. Then click
Content →Dynamic Data Lists. Each DDL’s ID is in the table’s ID column. | userId | number |The ID of the user
to filter records on. Records aren’t filtered if the userId is 0. The default value is 0. | labelFields | string |
The comma-separated names of the DDL fields to show. Refer to the list’s data definition to find the field
names. To do so, first open the Product Menu and select the site that contains your DDLs. Then click Content
→Dynamic Data Lists, and find the find the icon () for the Dynamic Data List configurationmenu at the
upper right. Click this icon and selectManage Data Definitions. You can view the fields by clicking on any of
the data definitions in the table that appears. Note that the appearance of these values in your app depends
on theTheme selected by the user. | offlinePolicy | string |The offline mode setting. The default value is
remote-first. See the Offline section for details. | autoLoad | boolean | Whether the list loads automatically
when the Screenlet appears in the app’s UI.The default value is true. | refreshControl | boolean |Whether
a standard iOS UIRefreshControl appears when the user performs the pull to refresh gesture. The default
value is true. | firstPageSize | number | The number of items retrieved from the server for display on the
first page. The default value is 50. | pageSize | number | The number of items retrieved from the server for
display on the second and subsequent pages. The default value is 25. | obcClassName | string |The name of
the OrderByComparator class to use to sort the results. Omit this property if you don’t want to sort the results.
Click here to see some comparator classes. Note, however, that not all of these classes can be used with
obcClassName. You can only use comparator classes that extend OrderByComparator<DDLRecord>. You can also
create your own comparator classes that extend OrderByComparator<DDLRecord>. |

Methods

1786

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIRefreshControl_class/
https://github.com/liferay/liferay-portal/tree/master/modules/apps/forms-and-workflow/dynamic-data-lists/dynamic-data-lists-api/src/main/java/com/liferay/dynamic/data/lists/util/comparator

Method | Return | Explanation | loadList() | boolean | Starts the request to load the list of records. The
list is shown when the response is received. This method returns true if the request is sent. |

Delegate

TheDDL List Screenlet delegates some events in an object that conforms to the DDLListScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onDDLListResponseRecords:: Called when a page of contents is received. Note that this
methodmay be called more than once; once for each retrieved page.

• - screenlet:onDDLListError:: Calledwhen an error occurs in the process. The NSError object describes
the error.

• - screenlet:onDDLSelectedRecord:: Called when an item in the list is selected.

129.7 Asset List Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

The Asset List Screenlet can be used to show lists of assets from a Liferay instance. For example, you can use
the Screenlet to show a scrollable collection of assets. It also implements fluent pagination with configurable
page size. The Asset List Screenlet can show assets of the following classes:

• BlogsEntry

• BookmarksEntry

• BookmarksFolder

• CalendarEvent

• DLFileEntry

• DDLRecord

• DDLRecordSet

• Group

1787

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

• JournalArticle (Web Content)
• JournalFolder

• Layout

• LayoutRevision

• MBThread

• MBCategory

• MBDiscussion

• MBMailingList

• Organization

• User

• WikiPage

• WikiPageResource

• WikiNode

The Asset List Screenlet also supports i18n in asset values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensddlrecordService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensddlrecordService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

AssetEntryService getEntriesCount

Module

• None

Themes

• Default

The Default Theme uses a standard UITableView to show the scrollable list. Other Themes may use a
different component, such as UICollectionView or others, to show the items.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

1788

Figure 129.12: Asset List Screenlet using the Default (default) Theme.

1789

Policy | What happens | When to use | remote-only | The Screenlet loads the list from the portal. If
a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error. If the
Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet uses the delegate to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the list from the portal.
If this succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use. If a
connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t exist there,
the Screenlet uses the delegate to notify the developer about the error. | Use this policy to show themost
recent version of the data when connected, but show an outdated version when there’s no connection. |
cache-first |The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet requests it
from the portal and notifies the developer about any errors that occur (including connectivity errors). | Use
this policy to save bandwidth and loading time in case you have local (but probably outdated) data. |

Required Attributes

• classNameId

If you don’t use classNameId, you must use this attribute:

• portletItemName

Attributes

Attribute | Data type | Explanation | groupId | number | The ID of the site (group) where the asset is
stored. If set to 0, the groupId specified in LiferayServerContext is used. The default value is 0. | classNameId
| number |The IDof the asset’s class name. Use values from the AssetClassNameId class or the Liferay Instance’s
classname_ database table. | portletItemName | string | The name of the configuration template you used
in the Asset Publisher. To use this feature, add an Asset Publisher to one of your site’s pages (it may be a
hidden page), configure the Asset Publisher’s filter (in Configuration → Setup → Asset Selection), and then use the
Asset Publisher’s Configuration Templates option to save this configuration with a name. Use this name as
this attribute’s value. | offlinePolicy | string |The offline mode setting. The default value is remote-first.
See the Offline section for details. | autoLoad | boolean | Whether the list loads automatically when the
Screenlet appears in the app’s UI.The default value is true. | refreshControl | boolean | Defines whether a
standard ios UIRefreshControl appears when the user does the pull to refresh gesture. The default value is
true. | firstPageSize | number |The number of items retrieved from the server for display on the first page.
The default value is 50. | pageSize | number | The number of items retrieved from the server for display on
the second and subsequent pages. The default value is 25. | customEntryQuery | Dictionary |The set of keys
(string) and values (string or number) to be used in the AssetEntryQuery object. These values filter the assets
returned by the Liferay instance. |

Methods

1790

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIRefreshControl_class/
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/asset/kernel/service/persistence/AssetEntryQuery.html

Method | Return | Explanation | loadList() | boolean | Starts the request to load the list of assets. This
list is shown when the response is received. Returns true if the request is sent. |

Delegate

The Asset List Screenlet delegates some events to an object that conforms to the AssetListScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onAssetListResponse:: Called when a page of assets is received. Note that this method
may be called more than once; one call for each page received.

• - screenlet:onAssetListError:: Called when an error occurs in the process. The NSError object de-
scribes the error.

• - screenlet:onAssetSelected:: Called when an item in the list is selected.

129.8 Web Content Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

TheWeb Content Display Screenlet shows web content elements in your app, rendering the inner HTML of
the web content. The Screenlet also supports i18n, rendering contents differently depending on the device’s
current locale.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

1791

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Service Method Notes

DDMStructureService getStructureWithStructureId

JournalArticleService getArticleWithGroupId

JournalArticleService getArticleContent

ScreensddlrecordService (Screens
compatibility plugin)

getJournalArticleContent With entryQuery

Module

• WebContent

Themes

• Default

The DefaultTheme uses a standard UIWebView to render the HTML. OtherThemesmay use a different
component, such as iOS 8’s.

Portal Configuration

For the Web Content Display Screenlet to function properly, there should be web content in the Liferay
instance your app connects to. For more details on web content, please refer to the CreatingWeb Content
section of the Liferay User Guide.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy | What happens | When to use | remote-only | The Screenlet loads the content from the portal.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error. If the
Screenlet successfully loads the content, it stores the data in the local cache for later use. | Use this policy
when you always need to showupdated content, and shownothingwhen there’s no connection. | cache-only |
The Screenlet loads the content from the local cache. If the content isn’t there, the Screenlet uses the delegate
to notify the developer about the error. | Use this policy when you always need to show local content, without
retrieving remote content under any circumstance. | remote-first |The Screenlet loads the content from
the portal. If this succeeds, the Screenlet shows the content to the user and stores it in the local cache for
later use. If a connection issue occurs, the Screenlet retrieves the content from the local cache. If the content
doesn’t exist there, the Screenlet uses the delegate to notify the developer about the error. | Use this policy to
show themost recent version of the content when connected, but show a possibly outdated version when
there’s no connection. | cache-first |The Screenlet loads the content from the local cache. If the content
isn’t there, the Screenlet requests it from the portal and notifies the developer about any errors that occur
(including connectivity errors). | Use this policy to save bandwidth and loading time in case you have local
(but probably outdated) content. |

1792

Figure 129.13: The Web Content Display Screenlet using the Default (default) Theme

1793

Required Attributes

• articleId

If you have structured web content, you can alternatively use templateId or structureIdwith articleId.

Attributes

Attribute | Data type | Explanation | groupId | number | The site (group) identifier where the asset is
stored. If this value is 0, the groupId specified in LiferayServerContext is used. | articleId | string | The
identifier of the web content to display. You can find the identifier by clicking Edit on the web content in the
portal. | templateId | number |The identifier of the template used to render theweb content. This is applicable
only with structured web content. | structureId | number |The identifier of the DDMStructure used to model
the web content. This parameter lets the Screenlet retrieve and parse the structure. | autoLoad | boolean |
Whether the content should be retrieved from the portal as soon as the Screenlet appears. The default value
is true. |

Methods

Method | Return | Explanation | loadWebContent() | boolean | Starts the request to load the web content.
The HTML is rendered when the response is received. Returns true if the request is sent. |

Delegate

The Web Content Display Screenlet delegates some events to an object that conforms to the
WebContentDisplayScreenletDelegate protocol. This protocol lets you implement the following meth-
ods:

• - screenlet:onWebContentResponse:: Called when the web content’s HTML is received.

• - screenlet:onWebContentError:: Called when an error occurs in the process. The NSError object de-
scribes the error.

• - screenlet:onRecordContentResponse:: Called when a web content record is received.

• - screenlet:onUrlClicked:: Called when a URL is clicked in the web content. Return true to handle
the navigation, or false to cancel it.

129.9 Web Content List Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

1794

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Web Content List Screenlet can show lists of web content from a Liferay instance. It can show both basic and
structured web content. The Screenlet also implements fluent pagination with configurable page size, and
supports i18n in asset values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

JournalArticleService getArticlesWithGroupId

JournalArticleService getArticlesCount

Module

• WebContent

Themes

• Default

The Default Theme uses a standard UITableView to show the scrollable list. Other Themes may use a
different component, such as UICollectionView or others, to show the contents.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | remote-only |The Screenlet loads the list from the Liferay instance.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error. If the
Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet uses the delegate to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving

1795

http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Figure 129.14: Web Content List Screenlet using the Default (default) Theme.

1796

remote information under any circumstance. | remote-first |The Screenlet loads the list from the Liferay
instance. If this succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t exist there,
the Screenlet uses the delegate to notify the developer about the error. | Use this policy to show themost
recent version of the data when connected, but show a possibly outdated version when there’s no connection.
| cache-first |The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but possibly outdated)
data. |

Required Attributes

• folderId

Attributes

Attribute | Data type | Explanation | groupId | number |The ID of the site (group) where the web content
exists. If set to 0, the groupId specified in LiferayServerContext is used. The default value is 0. | folderId
| number | The ID of the web content folder. If set to 0, the root folder is used. The default value is 0. |
offlinePolicy | string |The offline mode setting. The default value is remote-first. See the Offline section
for details. | autoLoad | boolean | Whether the list loads automatically when the Screenlet appears in the
app’s UI.The default value is true. | refreshControl | boolean | Whether a standard iOS UIRefreshControl

appears when the user does the pull to refresh gesture. The default value is true. | firstPageSize | number |
The number of items to display on the first page. The default value is 50. | pageSize | number |The number of
items to display on the second and subsequent pages. The default value is 25. | obcClassName | string |The
name of the OrderByComparator class to use to sort the results. Omit this property if you don’t want to sort the
results. Click here to see some comparator classes. Note, however, that not all of these classes can be used
with obcClassName. You can only use comparator classes that extend OrderByComparator<JournalArticle>.
You can also create your own comparator classes that extend OrderByComparator<JournalArticle>. |

Methods

Method | Return | Explanation | loadList() | boolean | Starts the request to load the web content list.
This list is shown when the response is received. Returns true if the request is sent successfully. |

Delegate

WebContentList Screenletdelegates someevents to anobject that conforms to the WebContentListScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onWebContentListResponse:: Called when a page of contents is received. Note that this
methodmay be called more than once: one call for each page received.

• - screenlet:onWebContentListError:: Called when an error occurs in the process. The NSError object
describes the error.

1797

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIRefreshControl_class/
https://github.com/liferay/liferay-portal/tree/master/modules/apps/web-experience/journal/journal-api/src/main/java/com/liferay/journal/util/comparator

• - screenlet:onWebContentSelected:: Called when an item in the list is selected.

129.10 Image Gallery Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Image Gallery Screenlet shows a list of images from a Documents andMedia folder in a Liferay instance.
You can also use Image Gallery Screenlet to upload images to and delete images from the same folder. The
Screenlet implements fluent pagination with configurable page size, and supports i18n in asset values.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

DLAppService getFileEntries Load
DLAppService getFileEntriesCount

DLAppService addFileEntry Upload
DLAppService deleteFileEntry Delete

Module

• None

1798

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726
http://www.iosnomad.com/blog/2014/4/21/fluent-pagination

Themes

The defaultTheme uses a standard iOS UICollectionView to show the scrollable list as a grid. OtherThemes
may use a different component, such as UITableView or others, to show the contents.

This screenlet has three differentThemes:

1. Grid (default)
2. Slideshow
3. List

Figure 129.15: Image Gallery Screenlet using the Grid, Slideshow, and List Themes.

Offline

This Screenlet supports offline mode so it can function without a network connection when loading or
uploading images (deleting images while offline is unsupported). Formore information on how offlinemode
works, see the tutorial on its architecture. This Screenlet supports the remote-only, cache-only, remote-first,
and cache-first offline mode policies.

These policies take the following actions when loading images from a Liferay instance:

Policy |What happens |When to use | remote-only |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when

1799

you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the delegate to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later
use. If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t
exist there, the Screenlet uses the delegate to notify the developer about the error. | Use this policy to show
the most recent version of the data when connected, but show a possibly outdated version when there’s
no connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that occur
(including connectivity errors). | Use this policy to save bandwidth and loading time in case you have local
(but possibly outdated) data. |

These policies take the following actions when uploading an image to a Liferay instance:

Policy |What happens |When to use | remote-only |The Screenlet sends the image to the Liferay instance.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error, but it also
discards the image. | Use this policy to make sure the Liferay instance always has the most recent version of
the image. | cache-only |The Screenlet stores the image in the local cache. | Use this policy when you need
to save the image locally, but don’t want to update it in the Liferay instance. | remote-first |The Screenlet
sends the image to the Liferay instance. If this succeeds, it also stores the image in the local cache for later
use. If a connection issue occurs, the Screenlet stores the image in the local cache and sends it to the Liferay
instance when the connection is re-established. | Use this policy when you need to make sure the Screenlet
sends the image to the Liferay instance as soon as the connection is restored. | cache-first |The Screenlet
stores the image in the local cache and then attempts to send it to the Liferay instance. If a connection issue
occurs, the Screenlet sends the image to the Liferay instance when the connection is re-established. | Use
this policy when you need to make sure the Screenlet sends the image to the Liferay instance as soon as the
connection is restored. Compared to remote-first, this policy always stores the image in the cache. The
remote-first policy only stores the image in the event of a network error. |

Required Attributes

• repositoryId

• folderId

Attributes

Attribute | Data type | Explanation | repositoryId | number |The ID of the Liferay instance’s Documents
andMedia repository that contains the image gallery. If you’re using a site’s default Documents andMedia
repository, then the repositoryIdmatches the site ID (groupId). | folderId | number |The IDof theDocuments
andMedia repository folder that contains the image gallery. When accessing the folder in your browser, the
folderId is at the end of the URL. | mimeTypes | string | The comma-separated list of MIME types for the
Screenlet to support. | filePrefix | string |The prefix to use on uploaded image file names. | offlinePolicy
| string |The offline mode setting. The default value is remote-first. See the Offline section for details. |
autoLoad | boolean | Whether the list automatically loads when the Screenlet appears in the app’s UI.The
default value is true. | refreshControl | boolean |Whether a standard iOS UIRefreshControl appears when

1800

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIRefreshControl_class/

the user does the pull to refresh gesture. The default value is true. | firstPageSize | number | The number
of items to display on the first page. The default value is 50. | pageSize | number | The number of items to
display on the second and subsequent pages. The default value is 25. | obcClassName | string |The name of the
OrderByComparator class to use to sort the results. Omit this property if you don’t want to sort the results. Note
that you can only use comparator classes that extend OrderByComparator<DLFileEntry>. Liferay contains no
such comparator classes. Youmust therefore create your own by extending OrderByComparator<DLFileEntry>.
To see examples of some comparator classes that extend other Document Library classes, click here. |

Methods

Method | Return | Explanation | loadList() | boolean | Starts the request to load the list of images. This
list is shown when the response is received. Returns true if the request is sent successfully. |

Delegate

ImageGalleryScreenletdelegates someevents to anobject that conforms to the ImageGalleryScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onImageEntriesResponse:: Called when a page of contents is received. Note that this
methodmay be called more than once: one call for each page received.

• - screenlet:onImageEntriesError:: Called when an error occurs in the process. The NSError object
describes the error.

• - screenlet:onImageEntrySelected:: Called when an item in the list is selected.

• - screenlet:onImageEntryDeleted:: Called when an image in the list is deleted.

• - screenlet:onImageEntryDeleteError:: Called when an error occurs during image file deletion. The
NSError object describes the error.

• - screenlet:onImageUploadStart:: Called when an image is prepared for upload.

• - screenlet:onImageUploadProgress:: Called when the image upload progress changes.

• - screenlet:onImageUploadError:: Called when an error occurs in the image upload process. The
NSError object describes the error.

• - screenlet:onImageUploaded:: Called when the image upload finishes.

• - screenlet:onImageUploadDetailViewCreated:: Called when the image upload View is instantiated.
By default, the Screenlet uses amodal view controller to present this View. You only need to implement
this method if you want to override this behavior. This method should present the View, passed
as parameter, and then return true. For example, the following example implementation presents
ImageUploadDetailViewBase as a parameter, and then uses it to customize the View’s appearance:

func screenlet(screenlet: ImageGalleryScreenlet,

onImageUploadDetailViewCreated uploadView: ImageUploadDetailViewBase) -> Bool {

self.cardDeck?.cards[safe: 0]?.addPage(uploadView)

self.cardDeck?.cards[safe: 0]?.moveRight()

return true

}

1801

https://github.com/liferay/liferay-portal/tree/master/portal-impl/src/com/liferay/portlet/documentlibrary/util/comparator

129.11 Rating Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Rating Screenlet shows an asset’s rating. It also lets users update or delete the rating. This Screenlet comes
with differentThemes that display ratings as thumbs, stars, and emojis.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensratingsentryService (Screens
compatibility plugin)

getRatingsEntries With entryId

ScreensratingsentryService (Screens
compatibility plugin)

getRatingsEntries With classPK and className

ScreensratingsentryService (Screens
compatibility plugin)

updateRatingsEntry

ScreensratingsentryService (Screens
compatibility plugin)

deleteRatingsEntry

Module

• None

1802

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Themes

The defaultTheme uses the CosmosView library to show an asset’s rating. Other customThemesmay use a
different component, such as UIButton or others, to show the items.

This screenlet has four differentThemes:

1. Like
2. Thumbs (default)
3. Stars
4. Emojis

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | remote-only |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the delegate to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later
use. If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t
exist there, the Screenlet uses the delegate to notify the developer about the error. | Use this policy to show
the most recent version of the data when connected, but show a possibly outdated version when there’s
no connection. | cache-first | The Screenlet loads the data from the local cache. If the data isn’t there,
the Screenlet requests it from the Liferay instance and notifies the developer about any errors that occur
(including connectivity errors). | Use this policy to save bandwidth and loading time in case you have local
(but possibly outdated) data. |

Required Attributes

• entryId

If you don’t use entryId, you must use these attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | layoutId | @layout |The ID of the layout to use to show theTheme.
| autoLoad | boolean | Whether the rating loads automatically when the Screenlet appears in the app’s UI.
The default value is true. | editable | boolean | Whether the user can change the rating. | entryId | number |

1803

https://github.com/marketplacer/Cosmos

Figure 129.16: Rating Screenlet’s different Themes.

1804

The primary key of the asset with the rating to display. | className | string |The asset’s fully qualified class
name. For example, a blog entry’s className is com.liferay.blogs.kernel.model.BlogsEntry. The className
attribute is required when using it with classPK to instantiate the Screenlet.. | classPK | number |The asset’s
unique identifier. Only use this attribute when also using className to instantiate the Screenlet. | groupId |
number |The ID of the site (group) containing the asset. | offlinePolicy | string |The offline mode setting.
See the Offline section for details. |

Methods

Method | Return | Explanation | loadRatings() | boolean | Starts the request to load the asset’s ratings. |

Delegate

Rating Screenlet delegates some events to an object that conforms to the RatingScreenletDelegate protocol.
This protocol lets you implement the followingmethods:

• - screenlet:onRatingRetrieve:: Called when the ratings are received.

• - screenlet:onRatingDeleted:: Called when a rating is deleted.

• - screenlet:onRatingUpdated:: Called when a rating is updated.

• - screenlet:onRatingError:: Called when an error occurs in the process. The NSError object describes
the error.

129.12 Comment List Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Comment List Screenlet can list all the comments of an asset in a Liferay instance. It also lets the user update
or delete comments.

1805

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/blogs/kernel/model/BlogsEntry.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

getCommentsWithClassName

ScreenscommentService (Screens
compatibility plugin)

getCommentsCount

Module

• None

Themes

• Default

The Default Theme uses an iOS UITableView to show an asset’s comments. Other Themes may use a
different component, such as iOS’s UICollectionView or others, to show the items.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | remote-only |The Screenlet loads the list from the Liferay instance.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error. If the
Screenlet successfully loads the list, it stores the data in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet uses the delegate to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the list from the Liferay
instance. If this succeeds, the Screenlet shows the list to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the list from the local cache. If the list doesn’t exist there,
the Screenlet uses the delegate to notify the developer about the error. | Use this policy to show themost
recent version of the data when connected, but show a possibly outdated version when there’s no connection.
| cache-first |The Screenlet loads the list from the local cache. If the list isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but possibly outdated)
data. |

1806

https://developer.apple.com/reference/uikit/uitableview
https://developer.apple.com/reference/uikit/uicollectionview

Figure 129.17: Comment List Screenlet using the Default Theme.

1807

Required Attributes

• className

• classPK

Attributes

Attribute | Data type | Explanation | className | string | The asset’s fully qualified class name. For
example, a blog entry’s className is com.liferay.blogs.kernel.model.BlogsEntry. The className and classPK

attributes are required to instantiate the Screenlet. | classPK | number | The asset’s unique identifier. The
className and classPK attributes are required to instantiate the Screenlet. | offlinePolicy | string | The
offline mode setting. The default is remote-first. See the Offline section for details. | editable | boolean |
Whether the user can edit the comment. | autoLoad | boolean |Whether the list should automatically load
when the Screenlet appears in the app’s UI.The default value is true. | refreshControl | boolean | Defines
whether a standard iOS UIRefreshControl is shown when the user does the pull to refresh gesture. The
default value is true. | firstPageSize | number |The number of items retrieved from the server for display
on the first page. The default value is 50. | pageSize | number | The number of items retrieved from the
server for display on the second and subsequent pages. The default value is 25. | obcClassName | string |
The name of the OrderByComparator class to use to sort the results. You can only use classes that extend
OrderByComparator<MBMessage>. If you don’t want to sort the results, you can omit this property. |

Methods

Method | Return | Explanation | loadList() | boolean | Starts the request to load the list. This list is
shown when the response is received. Returns true if the request is sent. |

Delegate

CommentList Screenlet delegates someevents to anobject that conforms to the ComentListScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onListResponseComments:: Called when the Screenlet receives the comments.

• - screenlet:onCommentListError:: Called when an error occurs in the process. The NSError object
describes the error.

• - screenlet:onSelectedComment:: Called when a comment is selected.

• - screenlet:onDeletedComment:: Called when a comment is deleted.

• - screenlet:onCommentDelete:: Called when the Screenlet prepares a comment for deletion.

• - screenlet:onUpdatedComment:: Called when a comment is updated.

• - screenlet:onCommentUpdate:: Called when the Screenlet prepares a comment for update.

1808

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/blogs/kernel/model/BlogsEntry.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIRefreshControl_class/
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/util/OrderByComparator.html

129.13 Comment Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Comment Display Screenlet can show one comment of an asset in a Liferay instance. It also lets the user
update or delete the comment.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

getCommentWithCommentId

ScreenscommentService (Screens
compatibility plugin)

updateComment

CommentmanagerjsonwsService deleteComment

Module

• None

Themes

• Default

The DefaultTheme uses User Portrait Screenlet and iOS UILabel elements to show an asset’s comment.
OtherThemesmay use different components to show the comment.

1809

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Figure 129.18: Comment Display Screenlet using the Default Theme.

1810

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. This Screenlet supports the remote-only,
cache-only, remote-first, and cache-first offline mode policies.

These policies take the following actions when loading a comment from a Liferay instance:

Policy |What happens |When to use | remote-only |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
cache-first |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

These policies take the following actions when updating or deleting a comment in a Liferay instance:

Policy | What happens |When to use | remote-only |The Screenlet sends the data to the Liferay instance.
If a connection issue occurs, the Screenlet uses the delegate to notify the developer about the error, but it
also discards the data. | Use this policy to make sure the Liferay instance always has the most recent version
of the data. | cache-only |The Screenlet stores the data in the local cache. | Use this policy when you need to
save the data locally, but don’t want to update it in the Liferay instance. | remote-first |The Screenlet sends
the data to the Liferay instance. If this succeeds, it also stores the data in the local cache for later use. If a
connection issue occurs, the Screenlet stores the data in the local cache and sends it to the Liferay instance
when the connection is re-established. | Use this policy when you need to make sure the Screenlet sends
the data to the Liferay instance as soon as the connection is restored. | cache-first |The Screenlet stores
the data in the local cache and then attempts to send it to the Liferay instance. If a connection issue occurs,
the Screenlet sends the data to the Liferay instance when the connection is re-established. | Use this policy
when you need to make sure the Screenlet sends the data to the Liferay instance as soon as the connection is
restored. Compared to remote-first, this policy always stores the data in the cache. The remote-first policy
only stores the data in the event of a network error. |

Required Attributes

• commentId

Attributes

1811

Attribute | Data type | Explanation | commentId | number |The primary key of the comment to display. |
autoLoad | boolean |Whether the list should automatically load when the Screenlet appears in the app’s UI.
The default value is true. | editable | boolean | Whether the user can edit the comment. | offlinePolicy |
string |The offline mode setting. The default is remote-first. See the Offline section for details. |

Methods

Method | Return | Explanation | load() | none | Starts the request to load the comment. |

Delegate

CommentDisplayScreenletdelegates someevents to anobject that conforms to the CommentDisplayScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onCommentLoaded:: Called when the Screenlet loads the comment.

• - screenlet:onLoadCommentError:: Called when an error occurs in the process. The NSError object
describes the error.

• - screenlet:onSelectedComment:: Called when a comment is selected.

• - screenlet:onDeletedComment:: Called when a comment is deleted.

• - screenlet:onCommentDelete:: Called when the Screenlet prepares the comment for deletion.

• - screenlet:onUpdatedComment:: Called when a comment is updated.

• - screenlet:onCommentUpdate:: Called when the Screenlet prepares the comment for update.

129.14 Comment Add Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1812

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

Comment Add Screenlet can add a comment to an asset in a Liferay instance.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreenscommentService (Screens
compatibility plugin)

addComment

Module

• None

Themes

• Default

The DefaultTheme uses the iOS elements UITextField and UIButton to add a comment to an asset. Other
Themesmay use other components to show the comment.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy | What happens |When to use | remote-only |The Screenlet sends the data to the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully sends the data, it also stores it in the local cache. | Use this policy when you always
need to send updated data, and send nothing when there’s no connection. | cache-only |The Screenlet sends
the data to the local cache. If an error occurs, the Screenlet uses the listener to notify the developer. | Use this
policy when you always need to store local data without sending remote information under any circumstance.
| remote-first | The Screenlet sends the data to the Liferay instance. If this succeeds, the Screenlet also
stores the data in the local cache. If a connection issue occurs, the Screenlet stores the data to the local cache
and sends it to the Liferay instance when the connection is restored. If an error occurs, the Screenlet uses the
listener to notify the developer. | Use this policy to send the most recent version of the data when connected,
and store the data for later synchronization when there’s no connection. | cache-first |The Screenlet sends
the data to the local cache, then sends it to the Liferay instance. If sending the data to the Liferay instance
fails, the Screenlet still stores the data locally and then notifies the developer about any errors that occur
(including connectivity errors). | Use this policy to save bandwidth and store local (but possibly outdated)
data. |

1813

Figure 129.19: Comment Add Screenlet using the Default Theme.

1814

Required Attributes

• className

• classPK

Attributes

Attribute | Data type | Explanation | className | string | The asset’s fully qualified class name. For
example, a blog entry’s className is com.liferay.blogs.kernel.model.BlogsEntry. The className and classPK

attributes are required to instantiate the Screenlet. | classPK | number | The asset’s unique identifier. The
className and classPK attributes are required to instantiate the Screenlet. | offlinePolicy | string | The
offline mode setting. The default value is remote-first. See the Offline section for details. |

Delegate

CommentAddScreenletdelegates someevents toanobject that conforms to the CommentAddScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onCommentAdded:: Called when the Screenlet adds a comment.

• - screenlet:onAddCommentError:: Called when an error occurs while adding a comment. The NSError
object describes the error.

• - screenlet:onCommentUpdated:: Called when the Screenlet prepares a comment for update.

• - screenlet:onUpdateCommentError:: Called when an error occurs while updating a comment. The
NSError object describes the error.

129.15 Asset Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

1815

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/blogs/kernel/model/BlogsEntry.html
http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Features

Asset Display Screenlet can display an asset from a Liferay instance. The Screenlet can currently display
Documents andMedia files (DLFileEntry images, videos, audio files, and PDFs), blogs entries (BlogsEntry)
and web content articles (WebContent).

AssetDisplayScreenlet canalsodisplay your customasset types. See thedelegate sectionof this document
for details.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The DefaultTheme uses different UI elements to show each asset type. For example, it displays images
with UIImageView, and blogs with UILabel.

This Screenlet can also render other Screenlets:

• Images: Image Display Screenlet
• Videos: Video Display Screenlet
• Audio: Audio Display Screenlet
• PDFs: PDF Display Screenlet
• Blog entries: Blogs Entry Display Screenlet
• Web content: Web Content Display Screenlet

These Screenlets can also be used alone without Asset Display Screenlet.

1816

Figure 129.20: Asset Display Screenlet using the Default Theme.

1817

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | remote-only |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
cache-first |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• assetEntryId

Instead of assetEntryId, you can use both of these attributes:

• className

• classPK

If you don’t use the above attributes, youmust use this attribute:

• portletItemName

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the asset. |
className | string | The asset’s fully qualified class name. For example, a blog entry’s className is
com.liferay.blogs.kernel.model.BlogsEntry. The className and classPK attributes are required to instanti-
ate the Screenlet. | classPK | number |The asset’s unique identifier. The className and classPK attributes are
required to instantiate the Screenlet. | portletItemName | string |The name of the configuration template
you used in the Asset Publisher. To use this feature, add an Asset Publisher to one of your site’s pages (it may
be a hidden page), configure the Asset Publisher’s filter (in Configuration → Setup → Asset Selection), and then
use the Asset Publisher’s Configuration Templates option to save this configuration with a name. Use this
name as this attribute’s value. If there is more than one asset in the configuration, the Screenlet displays
only the first one. | assetEntry | Asset |The Asset object to display, selected from a list of assets. Note that if
you use this attribute, the Screenlet doesn’t need to call the server. | autoLoad | boolean | Whether the asset

1818

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/blogs/kernel/model/BlogsEntry.html

automatically loads when the Screenlet appears in the app’s UI.The default value is true. | offlinePolicy |
string |The offline mode setting. The default value is remote-first. See the Offline section for details. |

Delegate

AssetDisplayScreenletdelegates someevents to anobject that conforms to the AssetDisplayScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onAssetResponse:: Called when the Screenlet receives the asset.

• - screenlet:onAssetError:: Called when an error occurs in the process. The NSError object describes
the error.

• - screenlet:onConfigureScreenlet:: Called when the child Screenlet (the Screenlet rendered inside
Asset Display Screenlet) has been successfully initialized. Use this method to configure or customize
it. The example implementation here sets the child Blogs Entry Display Screenlet’s background color
to gray:

func screenlet(screenlet: AssetDisplayScreenlet, onConfigureScreenlet,

childScreenlet: BaseScreenlet?, onAsset asset: Asset) {

if childScreenlet is BlogsEntryDisplayScreenlet {

childScreenlet?.screenletView?.backgroundColor = UIColor.grayColor()

}

}

• - screenlet:onAsset:: Called to render a customasset. The followingexample implementation renders
a portal user (User). If the asset is a user, this method instantiates a custom UserProfileView to render
that user:

public func screenlet(screenlet: AssetDisplayScreenlet, onAsset asset: Asset) -> UIView? {

if let type = asset.attributes["object"]?.allKeys.first as? String {

if type == "user" {

let view = NSBundle.mainBundle().loadNibNamed("UserProfileView", owner: self,

options: nil)![0] as? UserProfileView

view?.user = User(attributes: asset.attributes)

return view

}

}

return nil

}

129.16 Blogs Entry Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

1819

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Blogs Entry Display Screenlet displays a single blog entry. Image Display Screenlet renders any header image
the blogs entry may have.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The DefaultTheme can use different components to show a blogs entry (BlogsEntry). For example, it uses
UILabel to show a blog’s text, and User Portrait Screenlet to show the profile picture of the Liferay user who
posted it. Note that otherThemesmay use different components.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

1820

Figure 129.21: Blogs Entry Display Screenlet using the Default Theme.

1821

Policy |What happens |When to use | remote-only |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote data under any circumstance. | remote-first |The Screenlet loads the data from the Liferay instance.
If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use. If a
connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist there,
the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the most
recent version of the data when connected, but show an outdated version when there’s no connection. |
cache-first |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• assetEntryId or classPK

Attributes

Attribute |Data type |Explanation | assetEntryId | number |Theprimary key of the blog entry (BlogsEntry).
| classPK | number |The BlogsEntry object’s unique identifier. | autoLoad | boolean |Whether the blog entry
automatically loads when the Screenlet appears in the app’s UI.The default value is true. | offlinePolicy |
string |The offline mode setting. The default value is remote-first. See the Offline section for details. |

Delegate

BlogsEntryDisplayScreenletdelegates someevents to anobject that conforms to the BlogsEntryDisplayScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onBlogEntryResponse:: Called when the Screenlet receives the BlogsEntry object.

• - screenlet:onBlogEntryError:: Called when an error occurs in the process. The NSError object de-
scribes the error.

129.17 Image Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

1822

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Image Display Screenlet displays an image file from a Liferay instance’s Documents andMedia Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The DefaultTheme uses an iOS UIImageView for displaying the image.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | remote-only |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when

1823

Figure 129.22: Image Display Screenlet using the Default Theme.

1824

you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
cache-first |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• assetEntryId

If you don’t use assetEntryId, you must use these attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | assetEntryId | number |The primary key of the image. | className |
string |The image’s fully qualified class name. Since files in a Documents andMedia Library are DLFileEntry
objects, their className is com.liferay.document.library.kernel.model.DLFileEntry. The className and
classPK attributes are required to instantiate the Screenlet. | classPK | number |The image’s unique identifier.
The className and classPK attributes are required to instantiate the Screenlet. | autoLoad | boolean |Whether
the image automatically loads when the Screenlet appears in the app’s UI. The default value is true. |
offlinePolicy | string |The offline mode setting. The default value is remote-first. See the Offline section
for details. |

Delegate

Because images are files, Image Display Screenlet delegates its events to an object that conforms to the
FileDisplayScreenletDelegate protocol. This protocol lets you implement the followingmethods:

• - screenlet:onFileAssetResponse:: Called when the Screenlet receives the image file.

• - screenlet:onFileAssetError:: Called when an error occurs in the process. The NSError object de-
scribes the error.

1825

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFileEntry.html

129.18 Video Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Video Display Screenlet displays a video file from a Liferay instance’s Documents andMedia Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The DefaultTheme uses an iOS AVPlayerViewController to display the video.

1826

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Figure 129.23: Video Display Screenlet using the Default Theme.

1827

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | remote-only |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
cache-first |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• assetEntryId

If you don’t use assetEntryId, you must use these attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the video file. |
className | string |The video file’s fully qualified class name. Since files in a Documents andMedia Library
are DLFileEntry objects, the className is com.liferay.document.library.kernel.model.DLFileEntry. The
className and classPK attributes are required to instantiate the Screenlet. | classPK | number |The video file’s
unique identifier. The className and classPK attributes are required to instantiate the Screenlet. | autoLoad |
boolean | Whether the video automatically loads when the Screenlet appears in the app’s UI.The default
value is true. | offlinePolicy | string |The offline mode setting. See the Offline section for details. |

Delegate

Because images are files, Video Display Screenlet delegates its events to an object that conforms to the
FileDisplayScreenletDelegate protocol. This protocol lets you implement the followingmethods:

• - screenlet:onFileAssetResponse:: Called when the Screenlet receives the image file.

1828

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFileEntry.html

• - screenlet:onFileAssetError:: Called when an error occurs in the process. The NSError object de-
scribes the error.

129.19 Audio Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Audio Display Screenlet displays an audio file from a Liferay instance’s Documents andMedia Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

1829

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Themes

• Default

The Default Theme uses an iOS AVAudioPlayer to display the audio player. For the player components,
thisTheme uses UIButton, UISlider, and several UILabel instances.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | remote-only |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
cache-first |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• assetEntryId

If you don’t use assetEntryId, you must use these attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the audio file. |
className | string |The audio file’s fully qualified class name. Since files in a Documents andMedia Library
are DLFileEntry objects, their className is com.liferay.document.library.kernel.model.DLFileEntry. The
className and classPK attributes are required to instantiate the Screenlet. | classPK | number |The audio file’s
unique identifier. The className and classPK attributes are required to instantiate the Screenlet. | autoLoad |
boolean | Whether the audio file automatically loads when the Screenlet appears in the app’s UI.The default
value is true. | offlinePolicy | string |The offline mode setting. See the Offline section for details. |

1830

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFileEntry.html

Figure 129.24: Audio Display Screenlet using the Default Theme.

1831

Delegate

Audio Display Screenlet delegates its events to an object that conforms to the FileDisplayScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onFileAssetResponse:: Called when the Screenlet receives the audio file.

• - screenlet:onFileAssetError:: Called when an error occurs in the process. An NSError object de-
scribes the error.

129.20 PDF Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

PDF Display Screenlet displays a PDF file from a Liferay Instance’s Documents andMedia Library.

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

1832

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Module

• None

Themes

• Default

The DefaultTheme uses an iOS UIWebView for displaying the PDF file.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | remote-only |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
cache-first |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Required Attributes

• assetEntryId

If you don’t use assetEntryId, you must use these attributes:

• className

• classPK

Attributes

Attribute | Data type | Explanation | assetEntryId | number |The primary key of the PDF file. | className
| string | The PDF file’s fully qualified class name. Since files in a Documents and Media Library are
DLFileEntry objects, their className is com.liferay.document.library.kernel.model.DLFileEntry. The
className and classPK attributes are required to instantiate the Screenlet. | classPK | number |The PDF file’s
unique identifier. The className and classPK attributes are required to instantiate the Screenlet. | autoLoad |

1833

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFileEntry.html

Figure 129.25: PDF Display Screenlet using the Default Theme.

1834

boolean | Whether the PDF automatically loads when the Screenlet appears in the app’s UI.The default value
is true. | offlinePolicy | string |The offline mode setting. See the Offline section for details. |

Delegate

Because PDFs are files, PDF Display Screenlet delegates some events to an object that conforms to the
FileDisplayScreenletDelegate protocol. This protocol lets you implement the followingmethods:

• - screenlet:onFileAssetResponse:: Called when the Screenlet receives the PDF.

• - screenlet:onFileAssetError:: Called when an error occurs in the process. An NSError object de-
scribes the error.

129.21 File Display Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

File Display Screenlet shows a single file from a Liferay DXP instance’s Documents andMedia Library. Use
this Screenlet to display file types not covered by the other display Screenlets (e.g., DOC, PPT, XLS).

JSON Services Used

Screenlets in Liferay Screens call JSONweb services in the portal. This Screenlet calls the following services
andmethods.

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With entryId

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntry With classPK and className

1835

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Service Method Notes

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With entryQuery

ScreensassetentryService (Screens
compatibility plugin)

getAssetEntries With companyId, groupId,
and portletItemName

Module

• None

Themes

• Default

The Default View uses an iOS UIWebView for displaying the file.

Offline

This Screenlet supports offline mode so it can function without a network connection. For more information
on how offline mode works, see the tutorial on its architecture. Here are the offline mode policies that you
can use with this Screenlet:

Policy |What happens |When to use | remote-only |TheScreenlet loads the data from the Liferay instance.
If a connection issue occurs, the Screenlet uses the listener to notify the developer about the error. If the
Screenlet successfully loads the data, it stores it in the local cache for later use. | Use this policy when
you always need to show updated data, and show nothing when there’s no connection. | cache-only |The
Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet uses the listener to notify
the developer about the error. | Use this policy when you always need to show local data, without retrieving
remote information under any circumstance. | remote-first |The Screenlet loads the data from the Liferay
instance. If this succeeds, the Screenlet shows the data to the user and stores it in the local cache for later use.
If a connection issue occurs, the Screenlet retrieves the data from the local cache. If the data doesn’t exist
there, the Screenlet uses the listener to notify the developer about the error. | Use this policy to show the
most recent version of the data when connected, but show an outdated version when there’s no connection. |
cache-first |The Screenlet loads the data from the local cache. If the data isn’t there, the Screenlet requests
it from the Liferay instance and notifies the developer about any errors that occur (including connectivity
errors). | Use this policy to save bandwidth and loading time in case you have local (but probably outdated)
data. |

Attributes

Attribute | Data type | Explanation | assetEntryId | number | The primary key of the file. | className |
string |The file’s fully qualified class name. Since files in a Documents andMedia Library are DLFileEntry
objects, their className is com.liferay.document.library.kernel.model.DLFileEntry. The className and
classPK attributes are required to instantiate the Screenlet. | classPK | number |The file’s unique identifier.

1836

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/document/library/kernel/model/DLFileEntry.html

Figure 129.26: File Display Screenlet using the Default View.

1837

The className and classPK attributes are required to instantiate the Screenlet. | autoLoad | boolean |
Whether the file automatically loads when the Screenlet appears in the app’s UI.The default value is true. |
offlinePolicy | string |The offline mode setting. See the Offline section for details. |

Delegate

File Display Screenlet delegates some events to an object that conforms to the FileDisplayScreenletDelegate
protocol. This protocol lets you implement the followingmethods:

• - screenlet:onFileAssetResponse:: Called when the Screenlet receives the file.

• - screenlet:onFileAssetError:: Called when an error occurs in the process. An NSError object de-
scribes the error.

129.22 Web Screenlet for iOS

Requirements

• Xcode 9.3 or above
• iOS 11 SDK
• Liferay Portal 6.2 CE/EE, Liferay CE Portal 7.0/7.1, Liferay DXP 7.0+
• Liferay Screens Compatibility app (CE or EE/DXP).This app is preinstalled in Liferay CE Portal 7.0/7.1
and Liferay DXP 7.0+.

Compatibility

• iOS 9 and above

Xamarin Requirements

• Visual Studio 7.2
• Mono .NET framework 5.4.1.6

Features

Web Screenlet lets you display any web page. It also lets you customize the web page through injection of
local and remote JavaScript and CSS files. If you’re using Liferay DXP as backend, you can use Application
Display Templates in your page to customize its content from the server side.

Module

• None

Themes

• Default

The DefaultTheme uses an iOS WKWebView for displaying the web page.

1838

http://www.liferay.com/marketplace/-/mp/application/54365664
http://www.liferay.com/marketplace/-/mp/application/54369726

Figure 129.27: Web Screenlet using the Default Theme.

1839

Configuration

To learn how to useWeb Screenlet, follow the steps in the tutorial RenderingWeb Pages in Your iOS App.
That tutorial gives detailed instructions for using the configuration items described here.

Web Screenlet has WebScreenletConfiguration and WebScreenletConfigurationBuilder objects that you
canuse together to supply theparameters that theScreenletneeds towork. WebScreenletConfigurationBuilder
has the followingmethods, which let you supply the described configuration parameters:

Method |Returns |Explanation | addJs(localFile: String) | WebScreenletConfigurationBuilder | Adds a
local JavaScriptfilewith the suppliedfilename. | addCss(localFile: String) | WebScreenletConfigurationBuilder
| Adds a local CSS file with the supplied filename. | addJs(url: String) | WebScreenletConfigurationBuilder
| Adds a JavaScript file from the supplied URL. | addCss(url: String) | WebScreenletConfigurationBuilder
| Adds a CSS file from the supplied URL. | set(webType: WebType) | WebScreenletConfigurationBuilder |
Sets the WebType. | enableCordova() | WebScreenletConfigurationBuilder | Enables Cordova inside theWeb
Screenlet. | load() | WebScreenletConfiguration | Returns the WebScreenletConfiguration object that you
can set to the Screenlet instance. |

Note: If you want to add comments in the scripts, use the /**/ notation.

WebType

• WebType.liferayAuthenticated (default): Displays a Liferay DXP page that requires authentication.
The usermust therefore be logged in with Screens via Login Screenlet or a SessionContextmethod. For
this WebType, the URL youmust pass to the WebScreenletConfigurationBuilder constructor is a relative
URL. For example, if the full URL is http://screens.liferay.org.es/web/guest/blog, then the URL you
must supply to the constructor is /web/guest/blog.

• WebType.other: Displays any other page. For this WebType, the URL you must pass to the
WebScreenletConfigurationBuilder constructor is a full URL. For example, if the full URL is
http://screens.liferay.org.es/web/guest/blog, then youmust supply that URL to the constructor.

Attributes

Attribute | Data type | Explanation | autoLoad | boolean | Whether to load the page automatically when
the Screenlet appears in the app’s UI.The default value is true. | loggingEnabled | boolean | Whether logging
is enabled. | isScrollEnabled | boolean | Whether to enable scrolling on the page inside the Screenlet. |

Delegate

Web Screenlet delegates some events to an object that conforms to the WebScreenletDelegate protocol. This
protocol lets you implement the followingmethods:

• onWebLoad(_:url:): Called when the Screenlet loads the page.

func onWebLoad(_ screenlet: WebScreenlet, url: String) {

...

}

1840

• screenlet(_:onScriptMessageNamespace:onScriptMessage:): Called when the WKWebView sends a mes-
sage.

func screenlet(_ screenlet: WebScreenlet,

onScriptMessageNamespace namespace: String,

onScriptMessage message: String) {

...

}

• screenlet(_:onError:): Called when an error occurs in the process. The NSError object describes the
error.

func screenlet(_ screenlet: WebScreenlet, onError error: NSError) {

...

}

129.23 SyncManagerDelegate
The SyncManagerDelegate class is required to use Screenlets with offline mode. This class receives the events
produced in the synchronization process. This document describes the class’s methods.

Methods

The followingmethod is invoked when the synchronization process is started. The number of items to be
synced are passed.

syncManager(manager: SyncManager, itemsCount: UInt)

The followingmethod is invoked when an item synchronization is about to start.

syncManager(manager: SyncManager, onItemSyncScreenlet screenlet: String,

startKey: String, attributes: [String:AnyObject])

• screenlet: the screenlet name that stored this cache element
• startKey: the cache key where the item is stored
• attributes: some attributes stored together with the element. The specific attributes depend on the
type of the entry. For more details, read the screenlet reference documentation.

The followingmethod is invoked when an item synchronization is successfully completed.

syncManager(manager: SyncManager, onItemSyncScreenlet screenlet: String,

completedKey: String, attributes: [String:AnyObject])

• screenlet: the screenlet name that stored this cache element
• completedKey: the cache key where the item is stored
• attributes: some attributes stored together with the element. The specific attributes depend on the
type of the entry. For more details, read the screenlet reference documentation.

The followingmethod is invoked when an item synchronization fails.

syncManager(manager: SyncManager, onItemSyncScreenlet screenlet: String,

failedKey: String, attributes: [String:AnyObject], error: NSError)

• screenlet: the screenlet name that stored this cache element

1841

• failedKey: the cache key where the item is stored
• attributes: some attributes stored together with the element. The specific attributes will depend on
the type of the entry. For more details, read the screenlet reference documentation.

• error: the error occurred in the synchronization

The following method is invoked when an item synchronization detects a conflict. Themethod must
invoke asynchronously a continuation argument with the conflict action result.

syncManager(manager: SyncManager, onItemSyncScreenlet screenlet: String,

conflictedKey: String, remoteValue: AnyObject, localValue: AnyObject,

resolve: SyncConflictResolution -> ())

• screenlet: the screenlet name that stored this cache element
• conflictedKey: the cache key where the item is stored
• remoteValue: the value stored in the server for the item being synchronized
• localValue: the value stored in the cache for the item being synchronized
• resolve: this is the continuation function to be called with the action result.

Supported values for resolve are:

• UseRemote: the remote version is overwritten with the local one. Both the local cache and the portal
have the same version.

• UseLocal: the local version is overwritten with the remote one. Both the local cache and the portal have
the same version

• Discard: the local version is removed and the remote one isn’t overwritten.
• Ignore: data is not changed, so the next synchronization will detect the conflict again.

1842

https://en.wikipedia.org/wiki/Continuation-passing_style

Chapter 130

Liferay Faces

Liferay Faces is an umbrella project that provides support for the JavaServer™ Faces (JSF) standard within
Liferay Portal. It encompasses the following projects:

• Liferay Faces Bridge enables you to deploy JSF web apps as portlets without writing portlet-specific
Java code. It also contains innovative features that make it possible to leverage the power of JSF 2.x
inside a portlet application. Liferay Faces Bridge implements the JSR 329 Portlet Bridge Standard.

• Liferay Faces Alloy enables you to use AlloyUI components in a way that is consistent with JSF devel-
opment.

• LiferayFacesPortal enables you to leverage Liferay-specific utilities andUI components in JSF portlets.

In this section of reference documentation, you’ll learn more about each of these projects. You’ll also
learn about the Liferay Faces version scheme.

130.1 Liferay Faces Version Scheme

In this article, you’ll learn which Liferay Faces artifacts should be used with your portlet and explore the
Liferay Faces versioning scheme by discovering what each component of a versionmeans. Once you have the
versioning schememastered, you can view several example configurations.

Using The Liferay Faces Archetype Portlet

The Liferay Faces Archetype portlet can be used to determine the Liferay Faces artifacts and versions that
youmust include in your portlet. Select your preferred Liferay Portal version, JSF version, component suite
(optional), and build tool, and the portlet will provide youwith both a command to generate your portlet from
aMaven archetype and a list of dependencies that can be copied into your build files. In the next section,
you’ll be provided with compatibility information about each version of the Liferay Faces artifacts.

Liferay Faces Alloy

Provides a suite of JSF components that utilize AlloyUI.

1843

http://liferayfaces.org
http://alloyui.com/

Branch|Example Artifact|AlloyUI|JSF API|Additional Info| master (3.x)|com.liferay.faces.alloy-
3.0.1.jar|3.0.x|2.2+|AlloyUI 3.0.x is the version that comes bundled with Liferay Portal 7.0+.| 2.x|com.lif-
eray.faces.alloy-2.0.1.jar|2.0.x|2.1+|AlloyUI 2.0.x is the version that comes bundled with Liferay Portal 6.2.|
1.x|com.liferay.faces.alloy-1.0.1.jar|2.0.x|1.2|AlloyUI 2.0.x is the version that comes bundled with Liferay Portal
6.2.|

Liferay Faces Bridge

Provides the ability to deploy JSF web applications as portlets within Apache Pluto, the reference implemen-
tation for JSR 286 (Portlet 2.0) and JSR 362 (Portlet 3.0).

Branch|Example Artifacts|Portlet API|JSF API|JCP Specification|Additional Info| API: 5.xIMPL:
5.x|com.liferay.faces.bridge.api-5.0.0.jarcom.liferay.faces.bridge.impl-5.0.0.jar|3.0|2.2|JSR 378|The
Expert Group began work in September 2015 and the Specification is currently under development.| API: 4.xIMPL:
4.x|com.liferay.faces.bridge.api-4.1.0.jarcom.liferay.faces.bridge.impl-4.0.0.jar|2.0|2.2|JSR 329|Includes
non-standard bridge extensions for JSF 2.2.| API: 3.xIMPL: 3.x|com.liferay.faces.bridge.api-3.1.0.jarcom.lif-
eray.faces.bridge.impl-3.0.0.jar|2.0|2.1|JSR 329|Includes non-standard bridge extensions for JSF 2.1.| API:
2.xIMPL: 2.x|com.liferay.faces.bridge.api-2.1.0.jarcom.liferay.faces.bridge.impl-2.0.0.jar|2.0|1.2|JSR 329
(MR1)|Includes support forMaintenance Release 1 (MR1).| 1.x|N/A|1.0|1.2|JSR 301|N/A (Not Applicable) since Liferay
Faces Bridge has never implemented JSR 301.|

Liferay Faces Bridge Ext

Extension to Liferay Faces Bridge that provides compatibility with Liferay Portal and also takes advantage of
Liferay-specific features such as friendly URLs.

Branch |Example Artifact | Liferay Portal API | Bridge API | Portlet API |JSF API| 8.x|com.lif-
eray.faces.bridge.ext-8.0.0.jar|7.3.0+|5.x|3.0|2.3| 7.x|com.liferay.faces.bridge.ext-7.0.0.jar|7.3.0+|5.x|3.0|2.2|
6.x|com.liferay.faces.bridge.ext-6.0.0.jar|7.3.0+|4.x|2.0|2.2| 5.x|com.liferay.faces.bridge.ext-5.0.4.jar|7.0.x/7.1.x/7.2.x|4.x|2.0|2.2|
4.x|UNUSED|N/A|N/A|N/A|N/A| 3.x|com.liferay.faces.bridge.ext-3.0.1.jar|6.2.x|4.x|2.0|2.2| 2.x|com.lif-
eray.faces.bridge.ext-2.0.1.jar|6.2.x|3.x|2.0|2.1| 1.x|com.liferay.faces.bridge.ext-1.0.1.jar|6.2.x|2.x|2.0|1.2|

Liferay Faces Portal

Provides a suite of JSF components that are based on the JSP tags provided by Liferay Portal.

Branch|ExampleArtifact|LiferayPortal API | JSFAPI| 3.x|com.liferay.faces.portal-3.0.1.jar|7.0.x+|2.2+|
2.x|com.liferay.faces.portal-2.0.1.jar|6.2.x|2.1+| 1.x|com.liferay.faces.portal-1.0.1.jar|6.2.x|1.2|

Liferay Faces Util

Library that contains general purpose JSF utilities to support many of the sub-projects that comprise Liferay
Faces.

1844

https://github.com/liferay/liferay-faces-alloy/tree/master
https://github.com/liferay/liferay-faces-alloy/tree/2.x
https://github.com/liferay/liferay-faces-alloy/tree/1.x
https://portals.apache.org/pluto/
https://github.com/liferay/liferay-faces-bridge-api/tree/5.x
https://github.com/liferay/liferay-faces-bridge-impl/tree/5.x
https://www.jcp.org/en/jsr/detail?id=378
https://github.com/liferay/liferay-faces-bridge-api/tree/4.x
https://github.com/liferay/liferay-faces-bridge-impl/tree/4.x
https://www.jcp.org/en/jsr/detail?id=329
https://github.com/liferay/liferay-faces-bridge-api/tree/3.x
https://github.com/liferay/liferay-faces-bridge-impl/tree/3.x
https://www.jcp.org/en/jsr/detail?id=329
https://github.com/liferay/liferay-faces-bridge-api/tree/2.x
https://github.com/liferay/liferay-faces-bridge-impl/tree/2.x
https://www.jcp.org/en/jsr/detail?id=329
https://www.jcp.org/en/jsr/detail?id=301
https://liferay.dev/-/portal
https://github.com/liferay/liferay-faces-bridge-ext/tree/master
https://github.com/liferay/liferay-faces-bridge-ext/tree/7.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/6.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/5.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/4.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/3.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/2.x
https://github.com/liferay/liferay-faces-bridge-ext/tree/1.x
https://liferay.dev/-/portal
https://github.com/liferay/liferay-faces-portal/tree/3.x
https://github.com/liferay/liferay-faces-portal/tree/2.x
https://github.com/liferay/liferay-faces-portal/tree/1.x

Branch|Example Artifact| JSF API| 4.x|com.liferay.faces.util-3.1.0.jar|2.3| 3.x|com.liferay.faces.util-
3.1.0.jar|2.2| 2.x|com.liferay.faces.util-2.1.0.jar|2.1| 1.x|com.liferay.faces.util-1.1.0.jar|1.2|

Now that you know all about the Liferay Faces versioning scheme, youmay be curious as to how these
components interact with each other. Refer to the following figure to view the Liferay Faces dependency
diagram.

Figure 130.1: The Liferay Faces dependency diagram helps visualize how components interact and depend on each other.

Next, you can view some example configurations to see the new versioning scheme in action.

130.2 Understanding Liferay Faces Bridge

The Liferay Faces Bridge enables you to deploy JSF web apps as portlets without writing portlet-specific code.
It also contains innovative features that make it possible to leverage the power of JSF 2.x inside a portlet
application.

Liferay Faces Bridge is distributed in a .jar file. You can add Liferay Faces Bridge as a dependency to
your portlet projects, in order to deploy your JSF web applications as portlets within JSR 286 (Portlet 2.0)
compliant portlet containers, like Liferay Portal 5.2, 6.0, 6.1, 6.2, and 7.0.

The Liferay Faces Bridge project home page can be found here.

1845

https://github.com/liferay/liferay-faces-util/tree/4.x
https://github.com/liferay/liferay-faces-util/tree/3.x
https://github.com/liferay/liferay-faces-util/tree/2.x
https://github.com/liferay/liferay-faces-util/tree/1.x
https://web.liferay.com/community/liferay-projects/liferay-faces/bridge

To fully understand Liferay Faces Bridge, youmust first understand the portlet bridge standard. Because
the Portlet 1.0 and JSF 1.0 specs were being created at essentially the same time, the Expert Group (EG)
for the JSF specification constructed the JSF framework to be compliant with portlets. For example, the
ExternalContext.getRequest() method returns an Object instead of an javax.servlet.http.HttpServletRequest.
When this method is used in a portal, the Object can be cast to a javax.portlet.PortletRequest. Despite the
EG’s consciousness of portlet compatibility within the design of JSF, the gap between the portlet and JSF
lifecycles had to be bridged.

Portlet bridge standards and implementations evolved over time.
Starting in 2004, several different JSF portlet bridge implementations were developed in order to provide

JSF developers with the ability to deploy their JSF web apps as portlets. In 2006, the JCP formed the Portlet
Bridge 1.0 (JSR 301) EG in order to define a standard bridge API, as well as detailed requirements for bridge
implementations. JSR 301 was released in 2010, targeting Portlet 1.0 and JSF 1.2.

When the Portlet 2.0 (JSR 286) standard was released in 2008, it became necessary for the JCP to form
the Portlet Bridge 2.0 (JSR 329) EG. JSR 329 was also released in 2010, targeting Portlet 2.0 and JSF 1.2.

After the JSR 314 EG released JSF 2.0 in 2009 and JSF 2.1 in 2010, it became evident that a Portlet Bridge
3.0 standard would be beneficial. In 2015 the JCP formed JSR 378) which is defining a bridge for Portlet 3.0
and JSF 2.2. There are also variants of Liferay Faces Bridge that support Portlet 2.0 and JSF 1.2/2.1/2.2.

Liferay Faces Bridge is the Reference Implementation (RI) of the Portlet Bridge Standard. It also contains
innovative features that make it possible to leverage the power of JSF 2.x inside a portlet application.

Now that you’re familiar with some of the history of the Portlet Bridge standards, you’ll learn about the
responsibilities required of the portlet bridge.

A JSFportlet bridge aligns the correct phases of the JSF lifecyclewith eachphase of theportlet lifecycle. For
instance, if a browser sends anHTTP GET request to a portal page with a JSF portlet in it, the RENDER_PHASE is
perfomed in the portlet’s lifecycle. The JSF portlet bridge then initiates the RESTORE_VIEW and RENDER_RESPONSE
phases in the JSF lifecycle. Likewise, when an HTTP POST is executed on a portlet and the portlet enters the
ACTION_PHASE, then the full JSF lifecycle is initiated by the bridge.

Besides ensuring that the two lifecycles connect correctly, the JSF portlet bridge also acts as a mediator
between the portal URL generator and JSF navigation rules. JSF portlet bridges ensure that URLs created by
the portal comply with JSF navigation rules, so that a JSF portlet is able to switch to different views.

The JSR 329/378 standards defines several configuration options prefixed with the javax.portlet.faces
namespace. Liferay Faces Bridge defines additional implementation-specific options prefixed with the
com.liferay.faces.bridge namespace.

Liferay Faces Bridge is an essential part of the JSF development process for Liferay DXP.

Related Topics

Understanding Liferay Faces Alloy
Understanding Liferay Faces Portal
What is Service Builder?

130.3 Understanding Liferay Faces Alloy

Liferay Faces Alloy is distributed in a .jar file. You can add Liferay Faces Alloy as a dependency to your portlet
projects, in order to use AlloyUI in a way that is consistent with JSF development.

During the creation of a JSF portlet in Liferay IDE/Developer Studio, you have the option of choosing the
portlet’s JSF Component Suite. The options include JSF standard, ICEfaces, PrimeFaces, RichFaces, and Liferay
Faces Alloy.

1846

http://docs.oracle.com/javaee/7/api/javax/faces/context/ExternalContext.html#getRequest--
http://download.oracle.com/javaee/7/api/javax/servlet/http/HttpServletRequest.html
http://portals.apache.org/pluto/portlet-2.0-apidocs/javax/portlet/PortletRequest.html
http://www.jcp.org/en/jsr/detail?id=301
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=329
http://www.jcp.org/en/jsr/detail?id=314
http://www.jcp.org/en/jsr/detail?id=378
http://www.icesoft.org/java/projects/ICEfaces/overview.jsf
http://primefaces.org/
http://richfaces.jboss.org/

Figure 130.2: The different phases of the JSF Lifecycle are executed depending on which phase of the Portlet lifecycle is being executed.

If you selected the Liferay Faces Alloy JSF Component Suite during your portlet’s setup, the .jar file is
included in your portlet project.

The Liferay Faces Alloy project provides a set of UI components that utilize AlloyUI. For example, a brief
list of some of the supported aui: tags are listed below:

• Input: alloy:inputText, alloy:inputDate, alloy:inputFile
• Panel: alloy:accordion, alloy:column, alloy:fieldset, alloy:row
• Select: alloy:selectOneMenu, alloy:selectOneRadio, alloy:selectStarRating

If you want to utilize Liferay’s AlloyUI technology based on YUI3, you must include the Liferay Faces
Alloy .jar file in your JSF portlet project. If you selected Liferay Faces Alloy during your JSF portlet’s setup, you
have Liferay Faces Alloy preconfigured in your project, so you’re automatically able to use the alloy: tags.

As you can see, it’s extremely easy to configure your JSF application to use Liferay’s AlloyUI tags.

Related Topics

Creating a JSF Project Manually
Understanding Liferay Faces Bridge
Understanding Liferay Faces Portal

1847

130.4 Understanding Liferay Faces Portal
Liferay Faces Portal is distributed in a .jar file. You can add Liferay Faces Portal as a dependency for your
portlet projects to use its Liferay-specific utilities and UI components. When Liferay Faces Portal is included
in a JSF portlet project, the com.liferay.faces.portal.[version].jar file resides in the portlet’s library.

Some of the features included in Liferay Faces Portal are:

• Utilities: Provides the LiferayPortletHelperUtil which contains a variety Portlet-API and Liferay-
specific convenience methods.

• JSF Components: Provides a set of JSF equivalents for popular Liferay DXP JSP tags (not exhaustive):

– liferay-ui:captcha → portal:captcha

– liferay-ui:input-editor → portal:inputRichText

– liferay-ui:search → portal:inputSearch

– liferay-ui:header → portal:header

– aui:nav → portal:nav

– aui:nav-item → portal:navItem

– aui:nav-bar → portal:navBar

– liferay-security:permissionsURL → portal:permissionsURL

– liferay-portlet:runtime → portal:runtime

For more information, visit https://liferayfaces.org/web/guest/portal-showcase.

• Expression Language: Adds a set of EL keywords such as liferay for getting Liferay-specific info, and
i18n for integration with out-of-the-box Liferay internationalized messages.

Great! You now have an understanding of what Liferay Faces Portal is, and what it accomplishes in your
JSF application.

Related Topics

Creating a JSF Project Manually
Customizing Liferay Search
Understanding Liferay Faces Alloy

1848

https://liferayfaces.org/web/guest/portal-showcase

Figure 130.3: The required .jar files are downloaded for your JSF portlet based on the JSF UI Component Suite you configured.

1849

Chapter 131

Gradle

Liferay provides plugins that you can apply to your Gradle project. This reference documentation describes
how to apply and use Liferay’s Gradle plugins.

Important: If you’re using LiferayWorkspace to create Liferay apps,many Liferay Gradle plugins are
already applied by default. The com.liferay.workspace plugin provides the following plugins to all your apps
in a LiferayWorkspace:

• com.liferay.css.builder

• com.liferay.js.module.config.generator

• com.liferay.js.transpiler

• com.liferay.javadoc.formatter

• com.liferay.jspc

• com.liferay.lang.builder

• com.liferay.source.formatter

• com.liferay.soy

• com.liferay.soy.translation

• com.liferay.tlddoc.builder

• com.liferay.tld.formatter

• com.liferay.test.integration

• com.liferay.xml.formatter

Do not apply a Liferay Gradle plugin to an app that already has access to it.
Each article in this section describes how to apply the plugin, what Gradle tasks the plugin provides, the

plugin’s configuration properties, and the plugin’s dependencies.

131.1 App Javadoc Builder Gradle Plugin

TheApp Javadoc Builder Gradle plugin lets you generate API documentation as a single, combined HTML
document for an application that spans different subprojects, each one representing a different component
of the same application.

The plugin has been successfully tested with Gradle 4.10.2.

1851

Usage

To use the plugin, include it in the build script of the root project:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.app.javadoc.builder", version: "1.2.2"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.app.javadoc.builder"

The App Javadoc Builder plugin automatically applies the base and reporting-base plugins.

Project Extension

The App Javadoc Builder plugin exposes the following properties through the extension named
appJavadocBuilder:

Property Name | Type | Default Value | Description copyTags | boolean | true | Whether to copy the
custom block tags configuration from the subprojects. It sets the Javadoc -tag argument for the appJavadoc
task. doclintDisabled | boolean | true on JDK8+, false otherwise. |Whether to ignore Javadoc errors. It sets
the Javadoc -Xdoclint and -quiet arguments for the appJavadoc task. groupNameClosure | Closure<String> |
The subproject’s description, or the subproject’s name if the description is empty. | The closure invoked
in order to get the group heading for a subproject. The given closure is passed a Project as its parameter.
If groupPackages is false, this property is not used. groupPackages | boolean | true | Whether to separate
packages on the overview page based on the subprojects they belong to. It sets the -group argument for the
appJavadoc task. subprojects | Set<Project> | project.subprojects | The subprojects to include in the API
documentation of the app.

The same extension exposes the followingmethods:
Method | Description AppJavadocBuilderExtension onlyIf(Closure<Boolean> onlyIfClosure) | Includes

a subproject in the API documentation if the given closure returns true. The closure is evaluated at the
end of the subproject configuration phase and is passed a single parameter: the subproject. If the closure
returns false, the subproject is not included in the API documentation. AppJavadocBuilderExtension

onlyIf(Spec<Project> onlyIfSpec) | Includes a subproject in the API documentation if the given spec
is satisfied. The spec is evaluated at the end of the subproject configuration phase. If the spec is
not satisfied, the subproject is not included in the API documentation. AppJavadocBuilderExtension

subprojects(Iterable<Project> subprojects) | Include additional projects in the API documentation of the
app. AppJavadocBuilderExtension subprojects(Project... subprojects) | Include additional projects in the
API documentation of the app.

Tasks

The plugin adds two tasks to your project:
Name | Depends On | Type | Description appJavadoc | The javadoc tasks of the subprojects. | Javadoc

| Generates Javadoc API documentation for the app. jarAppJavadoc | appJavadoc | Jar | Assembles a JAR
archive containing the Javadoc files for this app.

The appJavadoc task is automatically configured with sensible defaults:

1852

https://docs.gradle.org/current/userguide/standard_plugins.html#N135C1
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#tag
docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#BEJEFABE
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html#CHDGFHAA
https://docs.gradle.org/current/javadoc/org/gradle/api/Project.html
docs.oracle.com/javase/8/docs/technotes/tools/unix/javadoc.html#CHDIGGII
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html

Property Name | Default Value classpath |The javadoc.classpath of all the subprojects. destinationDir |
${project.buildDir}/docs/javadoc options.encoding | "UTF-8" source |The javadoc.source of all the subpro-
jects. title | project.reporting.apiDocTitle

131.2 Baseline Gradle Plugin
The Baseline Gradle plugin lets you verify that the OSGi semantic versioning rules are obeyed by your OSGi
bundle.

When you run the baseline task, the plugin baselines the new bundle against the latest released non-
snapshot bundle (i.e., the baseline). That is, it compares the public exported API of the new bundle with the
baseline. If there are any changes, it uses the OSGi semantic versioning rules to calculate the minimum new
version. If the new bundle has a lower version, errors are thrown.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.baseline", version: "2.1.0"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.baseline"

The Baseline plugin automatically applies the java and reporting-base plugins.
Since the plugin needs to download the baseline, you have to configure a repository that hosts it; for

example, the central Maven 2 repository:

repositories {

mavenCentral()

}

Project Extension

The Baseline plugin exposes the following properties through the baselineConfiguration extension:
Property Name | Type | Default Value | Description allowMavenLocal | boolean | false | Whether to let

the baseline come from the local Maven cache (by default: ${user.home}/.m2). If the local Maven cache is
not configured as a project repository, this property has no effect. lowestBaselineVersion | String | "1.0.0"
| The greatest project version to ignore for the baseline check. If the project version is less than or equal
to the value of this property, the baseline task is skipped. lowestMajorVersion | Integer | Content of the
file ${project.projectDir}/.lfrbuild-lowest-major-version, where the default file name can be changed by
setting the project property baseline.lowest.major.version.file. | The lowest major version of the released
artifact to use in the baseline check. lowestMajorVersionRequired | boolean | false |Whether to fail the build
if the lowestMajorVersion is not specified.

If the lowestMajorVersion is not specified, the plugin runs the check using the most recent released
non-snapshot bundle as baseline, whichmatches the version range (,${project.version}). Otherwise, if

1853

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html#org.gradle.api.tasks.javadoc.Javadoc:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html#org.gradle.api.tasks.javadoc.Javadoc:destinationDir
https://docs.gradle.org/current/javadoc/org/gradle/external/javadoc/MinimalJavadocOptions.html#getEncoding()
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html#org.gradle.api.tasks.javadoc.Javadoc:source
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html#org.gradle.api.tasks.javadoc.Javadoc:title
http://semver.org/
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/standard_plugins.html#sec:base_plugins
https://docs.gradle.org/current/userguide/artifact_dependencies_tutorial.html#sec:repositories_tutorial
https://docs.gradle.org/current/userguide/dependency_management.html#sub:maven_local
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html#org.gradle.api.tasks.bundling.Jar:version
http://ant.apache.org/ivy/history/latest-milestone/settings/version-matchers.html

the lowestMajorVersion is equal to a value L and the project has version M.x.y (with L less or equal than M),
multiple checks are performed in order, using the following version ranges as baseline:

1. [L.0.0, (L + 1).0.0)

2. [(L + 1).0.0, (L + 2).0.0)

3. …
4. [(M - 2).0.0, (M - 1).0.0)

5. [(M - 1).0.0, M.0.0)

6. [M.0.0, M.x.y)

The first failing check fails the whole build.

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description baseline | jar | BaselineTask | Compares the public API of this

project with the public API of the previous released version, if found.
The baseline task is automatically configured with sensible defaults:
Property Name | Default Value baselineConfiguration | configurations.baseline bndFile |

${project.projectDir}/bnd.bnd newJarFile | project.tasks.jar.archivePath sourceDir |The first resources
directory of the main source set (by default: src/main/resources).

BaselineTask

TaskProperties PropertyName | Type |Default Value |Description baselineConfiguration | Configuration
| null | The configuration that contains exactly one dependency to the baseline bundle. bndFile | File |
null |The BND file of the project. If provided, the task will automatically update the Bundle-Version header.
forceCalculatedVersion | boolean | false | Whether to fail the baseline check if the Bundle-Version has been
excessively increased. ignoreExcessiveVersionIncreases | boolean | false | Whether to ignore excessive
package version increase warnings. ignoreFailures | boolean | false | Whether the build should not break
when semantic versioning errors are found. logFile | File | null |The file to which the results of the baseline
check are written. (Read-only) logFileName | String | "baseline/${task.name}.log" |The name of the file to
which the results of the baseline check are written. If the reporting-base plugin is applied, the file name is
relative to reporting.baseDir; otherwise, it’s relative to the project directory. newJarFile | File | null |The
file of the new OSGi bundle. reportDiff | boolean | true if the project property baseline.jar.report.level
has either value "diff" or "persist"; false otherwise | Whether to show a granular, differential report of
all changes that occurred in the exported packages of the OSGi bundle. reportOnlyDirtyPackages | boolean
| Value of the project property baseline.jar.report.only.dirty.packages if specified; true otherwise. |
Whether to show only packages with API changes in the report. sourceDir | File | null | The directory to
which the packageinfo files are generated or updated.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties to defer evaluation until task execution.

Helper Tasks

If the lowestMajorVersion property is specified with a value L, the plugin creates a series of helper tasks of
type BaselineTask at the end of the project evaluation, one for each major version between L and the major
version M of the project:

1854

(https://docs.gradle.org/current/userguide/java_plugin.html#sec:jar)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html#org.gradle.api.tasks.bundling.Jar:archivePath
http://bnd.bndtools.org/heads/bundle_version.html
https://docs.gradle.org/current/dsl/org.gradle.api.reporting.ReportingExtension.html#org.gradle.api.reporting.ReportingExtension:baseDir
http://bnd.bndtools.org/chapters/170-versioning.html#versioning-packages
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.gradle.org/current/userguide/build_lifecycle.html#N11BAE

1. Task baseline${L + 1}, which depends on baseline${L + 2} and uses the version range [(L + 1).0.0,

(L + 2).0.0) as baseline.
2. Task baseline${L + 2}, which depends on baseline${L + 3} and uses the version range [(L + 2).0.0,

(L + 3).0.0) as baseline.
3. …
4. Task baseline${M - 2}, which depends on baseline${M - 1} and uses the version range [(M - 2).0.0,

(M - 1).0.0) as baseline.
5. Task baseline${M - 1}, which depends on baseline${M} and uses the version range [(M - 1).0.0,

M.0.0) as baseline.
6. Task baseline${M}, which uses the version range [M.0.0, M.x.y) as baseline.

The baseline task is also configured to use the version range [L.0.0, (L + 1).0.0) as baseline, and to
depend on the task baseline${L + 1}. This means that running the baseline task runs the baseline check
against multiple versions, starting from the most recent M and going back to L.

Moreover, all tasks except baseline${M} have the property ignoreExcessiveVersionIncreases set to true.

Additional Configuration

There are additional configurations that can help you baseline your OSGi bundle.

Baseline Dependency

The plugin creates a configuration called baselinewith a default dependency to a released non-snapshot
version of the bundle:

• version range [L.0.0, (L + 1).0.0) if the lowestMajorVersion property is specified with a value L.
• version range (,${project.version}) otherwise.

It is possible to override this setting and use a different version of the bundle as baseline.

System Properties

It is possible to set the default values of the ignoreFailures property for a BaselineTask task via system
properties:

-D${task.name}.ignoreFailures=true

For example, run the following Bash command to execute the baseline check without breaking the build,
in case of errors:

./gradlew baseline -Dbaseline.ignoreFailures=true

131.3 Change Log Builder Gradle Plugin

The Change Log Builder Gradle plugin lets you generate and maintain a change log file based on the Git
commits in your project. A change log file generated by this plugin looks like this

1855

#

Bundle Version 1.0.1

#

9c77ff4c95cb1a325db3bdd089be105206e8b63c^..b421f00ac84b065685b131833fecc594fc01c760=LPS-123 LPS-1321

#

Bundle Version 1.0.2

#

b421f00ac84b065685b131833fecc594fc01c760^..bc15d8d84e12b9544f78e4e3743c510dbaec2d89=LPS-456

Every time the buildChangeLog task is executed, a new line is added to the change log, which lists all Git
commit prefixes (usually issue ticket IDs) that occurred in a certain range. The end of the range is always the
tip of the current branch. The start range can vary, depending on the case:

• If buildChangeLog has never been executed for the project, the change log does not exist. Therefore,
the most recent commit from two years ago is used for the range start.

• If a change log already exists for your project, the start range begins at the range end of the last line in
the change log.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.change.log.builder", version: "1.1.3"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.change.log.builder"

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildChangeLog | - | BuildChangeLogTask | Builds the change log

file for this project.
The buildChangeLog task is automatically configured with sensible defaults, depending on whether the

java plugin is applied:
Property Name | Default Value changeLogHeader | "Bundle Version ${project.version}" changeLogFile |
If the java plugin is applied:The META-INF/liferay-releng.changelog file in the first resources directory

of the main source set (by default, src/main/resources/META-INF/liferay-releng.changelog).
Otherwise: "${project.projectDir}/liferay-releng.changelog"
dirs | [project.projectDir]

1856

https://docs.gradle.org/current/userguide/java_plugin.html

BuildChangeLogTask

Task Properties Property Name | Type | Default Value | Description changeLogFile | File | null | The
change log file to build. changeLogHeader | String | null |The header for the new line in the change log. dirs
| FileCollection | [] |The directories to consider when listing the commits in the range specified. gitDir |
File | project.rootDir |The base directory to start searching for the .git directory. The search proceeds in
all the ancestors of the directory specified. rangeEnd | String | null |The hash of the last commit to consider.
If not set, it corresponds to the range end of the last line in the change log, or the most recent commit from
at least two years ago if the change log file does not exist yet. rangeStart | String | null |The hash of the first
commit to consider. If not set, it corresponds to the hash of the tip of the current branch. ticketIdPrefixes
| Set<String> | ["CLDSVCS", "LPS", "SOS", "SYNC"] |The valid prefix of the Git commit messages to add to
the change log. For example, if a commitmessage is "LPS-123 Bugfix", "LPS-123"will be added to the change
log.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties to defer evaluation until task execution.

Task Methods Method | Description BuildChangeLogTask dirs(Iterable<?> dirs) | Adds directories
to consider when listing the commits in the range specified. BuildChangeLogTask dirs(Object... dirs)

| Adds directories to consider when listing the commits in the range specified. BuildChangeLogTask

ticketIdPrefixes(Iterable<String> ticketIdPrefixes) | Adds valid prefixes of the Git commit messages
to add to the change log. BuildChangeLogTask ticketIdPrefixes(String... ticketIdPrefixes) | Adds valid
prefixes of the Git commit messages to add to the change log.

131.4 CSS Builder Gradle Plugin
TheCSS Builder Gradle plugin lets you run the Liferay CSS Builder tool to compile Sass files in your project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.css.builder", version: "3.0.0"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.css.builder"

Since the plugin automatically resolves the Liferay CSS Builder library as a dependency, you have to
configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

1857

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://github.com/liferay/liferay-portal/tree/master/modules/util/css-builder
http://sass-lang.com/

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildCSS | - | BuildCSSTask | Compiles the Sass files in this

project.
The plugin also adds the following dependencies to tasks defined by the java plugin:
Name | Depends On processResources | buildCSS
The buildCSS task is automatically configured with sensible defaults, depending on whether the java or

the war plugins are applied:
Property Name | Default Value baseDir |
If the java plugin is applied: The first resources directory of the main source set (by default:

src/main/resources).
If the war plugin is applied: project.webAppDir.
Otherwise: null

BuildCSSTask

Tasks of type BuildCSSTask extend JavaExec, so all its properties andmethods, such as args and maxHeapSize,
are available. They also have the following properties set by default:

Property Name | Default Value args | CSS Builder command line arguments classpath |
project.configurations.cssBuilder defaultCharacterEncoding | "UTF-8" main | "com.liferay.css.builder.CSSBuilder"
systemProperties | ["sass.compiler.jni.clean.temp.dir", true]

Task Properties Property Name | Type | Default Value | Description appendCssImportTimestamps | boolean
| true | Whether to append the current timestamp to the URLs in the @import CSS at-rules. It sets the
sass.append.css.import.timestamps argument. baseDir | File | null |The base directory that contains the
SCSSfiles to compile. It sets the sass.docroot.dir argument. cssFiles | FileCollection | - |The SCSSfiles to
compile. (Read-only) dirNames | List<String> | ["/"] |The name of the directories, relative to baseDir, which
contain the SCSS files to compile. All sub-directories are searched for SCSS files as well. It sets the sass.dir
argument. generateSourceMap | boolean | false | Whether to generate source maps for easier debugging.
It sets the sass.generate.source.map argument. importDir | File | null |The META-INF/resources directory
of the Liferay Frontend Common CSS artifact. This is required in order to make Bourbon and other CSS
libraries available to the compilation. importFile | File | configurations.portalCommonCSS.singleFile |The
Liferay Frontend Common CSS JAR file. If importDir is set, this property has no effect. importPath | File
| - | The value of the importDir property if set; otherwise importFile. It sets the sass.portal.common.path
argument. (Read-only) outputDirName | String | ".sass-cache/" |The name of the sub-directories where the
SCSS files are compiled to. For each directory that contains SCSS files, a sub-directory with this name is
created. It sets the sass.output.dir argument. outputDirs | FileCollection | - |The directories where the
SCSS files are compiled to. Usually, these directories are ignored by the Version Control System. (Read-
only) precision | int | 5 |The numeric precision of numbers in Sass. It sets the sass.precision argument.
rtlExcludedPathRegexps | List<String> | [] |The SCSS file patterns to exclude when converting for right-to-
left (RTL) support. It sets the sass.rtl.excluded.path.regexps argument. sassCompilerClassName | String |
null |The type of Sass compiler to use. Supported values are "jni" and "ruby". If not set, defaults to "jni".
It sets the sass.compiler.class.name argument.

Note: Liferay’s CSS Builder is supported for Oracle’s JDK and uses a native compiler for increased speed.
If you’re using an IBM JDK, youmay experience issues when building your Sass files (e.g., when building a

1858

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.css.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/JavaExec.html#setDefaultCharacterEncoding(java.lang.String)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:systemProperties
https://developers.google.com/web/tools/chrome-devtools/debug/readability/source-maps
https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-css/frontend-css-common
http://bourbon.io

theme). It’s recommended to switch to using the Oracle JDK, but if you prefer using the IBM JDK, you must
use the fallback Ruby compiler. You can do this two ways:

• If you’re working in a Liferay Workspace or using the Liferay Gradle Plugins plugin, set
sass.compiler.class.name=ruby in your gradle.properties file.

• Otherwise, set buildCSS.sassCompilerClassName='ruby' in the project’s build.gradle file.

The sass.compiler.class.name=rubyGradle property only works for modules, so if you’re using the Ruby
compiler in aWAR project (e.g., theme), youmust use the second option.

Be aware that the Ruby-based compiler doesn’t perform as well as the native compiler, so expect longer
compile times.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the int and String properties, to defer evaluation until task
execution.

Task Methods Method | Description BuildCSSTask dirNames(Iterable<Object> dirNames) | Adds
sub-directory names, relative to baseDir, which contain the SCSS files to compile. BuildCSSTask

dirNames(Object... dirNames) | Adds sub-directory names, relative to baseDir, which contain the SCSS
files to compile. BuildCSSTask rtlExcludedPathRegexps(Iterable<Object> rtlExcludedPathRegexps) |
Adds SCSS file patterns to exclude when converting for right-to-left (RTL) support. BuildCSSTask

rtlExcludedPathRegexps(Object... rtlExcludedPathRegexps) | Adds SCSS file patterns to exclude when
converting for right-to-left (RTL) support.

Additional Configuration

There are additional configurations that can help you use the CSS Builder.

Liferay CSS Builder Dependency

By default, the plugin creates a configuration called cssBuilder and adds a dependency to the latest released
version of the Liferay CSS Builder. It is possible to override this setting and use a specific version of the tool
by manually adding a dependency to the cssBuilder configuration:

dependencies {

cssBuilder group: "com.liferay", name: "com.liferay.css.builder", version: "3.0.0"

}

Liferay Frontend Common CSS Dependency

By default, the plugin creates a configuration called portalCommonCSS and adds a dependency to the latest
released version of the Liferay Frontend Common CSS artifact. It is possible to override this setting and use
a specific version of the artifact by manually adding a dependency to the portalCommonCSS configuration:

dependencies {

portalCommonCSS group: "com.liferay", name: "com.liferay.frontend.css.common", version: "2.0.1"

}

1859

https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

131.5 DB Support Gradle Plugin

TheDB Support Gradle plugin lets you run the Liferay DB Support tool to execute certain actions on a local
Liferay database. So far, the following actions are available:

• Cleans the Liferay database from the Service Builder tables and rows of a module.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.db.support", version: "1.0.5"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.db.support"

Since the plugin automatically resolves the Liferay DB Support library as a dependency, you have to
configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description cleanServiceBuilder | - | CleanServiceBuilderTask | Cleans the

Liferay database from the Service Builder tables and rows of a module.
The cleanServiceBuilder task is automatically configured with sensible defaults, depending on whether

the base plugin is applied:
Property Name | Default Value servletContextName |
If the base plugin is applied:The bundle symbolic name of the project inferred via the OsgiHelper class.
Otherwise: null
serviceXmlFile | "${project.projectDir}/service.xml"

CleanServiceBuilderTask

Tasks of type BuildDeploymentHelperTask extend JavaExec, so all its properties andmethods, such as args and
maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | The DB Support command line arguments. classpath |
project.configurations.dbSupport+ project.configurations.dbSupportTool main | "com.liferay.portal.tools.db.support.DBSupport"

1860

https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-db-support
https://docs.gradle.org/current/userguide/standard_plugins.html#N135C1
https://github.com/gradle/gradle/blob/master/subprojects/osgi/src/main/java/org/gradle/api/internal/plugins/osgi/OsgiHelper.java
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main

TaskProperties PropertyName | Type |Default Value |Description password | String | null |The user pass-
word for connecting to the Liferay database. It sets the --password argument. If propertiesFile is set, this
property has no effect. propertiesFile | File | null |The portal-ext.properties file that contains the JDBC
settings for connecting to the Liferay database. It sets the --properties-file argument. servletContextName
| String | null |The servlet context name (usually the value of the Bundle-Symbolic-Namemanifest header) of
themodule. It sets the --servlet-context-name argument. serviceXmlFile | File | null |The service.xml file
of themodule. It sets the --service-xml-file argument. url | String | null |The JDBCURL for connecting to
the Liferay database. It sets the --url argument. If propertiesFile is set, this property has no effect. userName
| String | null |The user name for connecting to the Liferay database. It sets the --user-name argument. If
propertiesFile is set, this property has no effect.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the int and String properties to defer evaluation until task
execution.

Additional Configuration

There are additional configurations that can help you use the Deployment Helper.

JDBC Drivers Dependency

The plugin creates a configuration called dbSupport, which can be used to provide the suitable JDBC driver
for your Liferay database:

dependencies {

dbSupport group: "mysql", name: "mysql-connector-java", version: "5.1.23"

dbSupport group: "org.mariadb.jdbc", name: "mariadb-java-client", version: "1.1.9"

dbSupport group: "org.postgresql", name: "postgresql", version: "9.4-1201-jdbc41"

}

Liferay DB Support Dependency

By default, the plugin creates a configuration called dbSupportTool and adds a dependency to the latest
released version of the Liferay DB Support. It is possible to override this setting and use a specific version of
the tool by manually adding a dependency to the dbSupportTool configuration:

dependencies {

dbSupportTool group: "com.liferay", name: "com.liferay.portal.tools.db.support", version: "1.0.8"

}

131.6 Dependency Checker Gradle Plugin

TheDependency Checker Gradle plugin lets you warn users if a specific configuration dependency is not
the latest one available from the Maven central repository. The plugin eventually fails the build if the
dependency age (the difference between the timestamp of the current version and the latest version) is
above a predetermined threshold.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

1861

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.dependency.checker", version: "1.0.3"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.dependency.checker"

Project Extension

The Dependency Checker Gradle plugin exposes the following properties through the extension named
dependencyChecker:

Property Name | Type | Default Value | Description ignoreFailures | boolean | true |Whether to print
an error message instead of failing the build when the dependency check fails, either for a network error or
because the dependency is out-of-date.

The same extension exposes the followingmethods:
Method | Description void maxAge(Map<?, ?> args) | Declares the max age allowed for a dependency.

The argsmapmust contain the following entries:
configuration: the configuration name
group: the dependency group
name: the dependency name
maxAge: an instance of groovy.time.Duration that represents the maximum age allowed for the depen-

dency
throwError: a boolean value representing whether to throw an error if the dependency is out-of-date

Additional Configuration

There are additional configurations that can help you use the Deployment Helper.

Project Properties

It is possible to set the default values of the ignoreFailures property via the project property
dependencyCheckerIgnoreFailures:

-PdependencyCheckerIgnoreFailures=false

131.7 Deployment Helper Gradle Plugin

TheDeployment Helper Gradle plugin lets you run the Liferay Deployment Helper tool to create a cluster
deployableWAR from your OSGi artifacts.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

1862

http://docs.groovy-lang.org/latest/html/api/groovy/time/Duration.html
https://github.com/liferay/liferay-portal/tree/master/modules/util/deployment-helper

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.deployment.helper", version: "1.0.5"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.deployment.helper"

Since the plugin automatically resolves the Liferay Deployment Helper library as a dependency, you have
to configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildDeploymentHelper | - | BuildDeploymentHelperTask | Builds

aWARwhich contains one or more files that are copied once theWAR is deployed.

BuildDeploymentHelperTask

Tasks of type BuildDeploymentHelperTask extend JavaExec, so all its properties andmethods, such as args and
maxHeapSize, are available. They also have the following properties set by default:

Property Name | Default Value args | The Deployment Helper command line arguments. classpath

| project.configurations.deploymentHelper deploymentFiles | The output files of the jar tasks of this
project and all its sub-projects. main | "com.liferay.deployment.helper.DeploymentHelper" outputFile |
"${project.buildDir}/${project.name}.war"

Task Properties Property Name | Type | Default Value | Description deploymentFiles | FileCollection | []
|The files or directories to include in theWAR and copy once theWAR is deployed. If a directory is added to
this collection, all the JAR files contained in the directory are included in theWAR. deploymentPath | File |
null |The directory to which the included files are copied. outputFile | File | null |TheWAR file to build.

The properties of type File support any type that can be resolved by project.file.

Task Methods Method | Description BuildDeploymentHelperTask deploymentFiles(Iterable<?>

deploymentFiles) | Adds files or directories to include in the WAR and copy once the WAR is deployed.
The values are evaluated as per project.files. BuildDeploymentHelperTask deploymentFiles(Object...

deploymentFiles) | Adds files or directories to include in theWAR and copy once theWAR is deployed. The
values are evaluated as per project.files.

Additional Configuration

There are additional configurations that can help you use the Deployment Helper.

1863

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/userguide/java_plugin.html#sec:jar
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object%5B%5D)
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object%5B%5D)

Liferay Deployment Helper Dependency

By default, the plugin creates a configuration called deploymentHelper and adds a dependency to the latest
released version of the Liferay Deployment Helper. It is possible to override this setting and use a specific
version of the tool by manually adding a dependency to the deploymentHelper configuration:

dependencies {

deploymentHelper group: "com.liferay", name: "com.liferay.deployment.helper", version: "1.0.4"

}

131.8 Go Gradle Plugin

TheGo Gradle plugin lets you run Go as part of your build.
The plugin has been successfully tested with Gradle 3.5.1 up to 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.go", version: "1.0.0"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.go"

Project Extension

TheGo Gradle plugin exposes the following properties through the extension named go:
Property Name | Type | Default Value | Description goDir | File | "${project.buildDir}/go" |The direc-

torywhere theGodistribution isunpacked. goUrl | String | "https://dl.google.com/go/go${go.goVersion}.${platform}-
${bitMode}.${extension} |The URL of the Go distribution to download. goVersion | String | "1.11.4" |The
Go distribution’s version to use. workingDir | File | "${project.projectDir}" |The directory that contains
the project’s Go source code.

Tasks

The plugin adds a series of tasks to your project:
Name | Depends On | Type | Description downloadGo | - | DownloadGoTask | Downloads and unpacks the

localGodistribution for the project. goBuild${programName} | downloadGo | ExecuteGoTask |Compiles packages
and dependencies for the Go program. goClean${programName} | downloadGo | ExecuteGoTask | Removes object
files for the Go program. goRun${programName} | downloadGo | ExecuteGoTask | Compiles and runs the Go
program. goTest${programName} | downloadGo | ExecuteGoTask | Tests packages for the Go program.

DownloadGoTask

The purpose of this task is to download and unpack a Go distribution.

1864

https://golang.org/

Task Properties Property Name | Type | Default Value | Description goDir | File | null | The directory
where the Go distribution is unpacked. goUrl | String | null |The URL of the Go distribution to download.

The File type properties support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties, to defer evaluation until task execution.

ExecuteGoTask

This is the base task to run Go in a Gradle build. All tasks of type ExecuteGoTask automatically depend on
downloadGo.

Task Properties Property Name | Type | Default Value | Description args | List<Object> | [] | The
arguments for the Go invocation. command | String | "go" | The file name of the executable to invoke.
environment | Map<Object, Object> | [] | The environment variables for the Go invocation. inheritProxy |
boolean | true |Whether to set the http_proxy, https_proxy, and no_proxy environment variables in the Go
invocation based on the values of the system properties https.proxyHost, https.proxyPort, https.proxyUser,
https.proxyPassword, https.nonProxyHosts, https.proxyHost, https.proxyPort, https.proxyUser, https.proxyPassword,
and https.nonProxyHosts. If these environment variables are already set, their values will not be overwritten.
goDir | File | go.goDir](#godir) | The directory that contains the executable to invoke. useGradleExec |
boolean |

If running in a Gradle Daemon: true
Otherwise: false
| Whether to invoke Go using project.exec, which can solve hanging problems with the Gradle Daemon.

workingDir | File | go.workingDir](#workingdir) |The working directory to use in the Go invocation.
The File type properties support any type that can be resolved by project.file. Moreover, it is possible

to use Closures and Callables as values for the String properties to defer evaluation until task execution.

TaskMethods Method | Description ExecuteGoTask args(Iterable<?> args) | Adds arguments for the Go
invocation. ExecuteGoTask args(Object... args) | Adds arguments for the Go invocation. ExecuteGoTask
environment(Map<?, ?> environment) | Adds environment variables for the Go invocation. ExecuteGoTask

environment(Object key, Object value) | Adds an environment variable for the Go invocation.

go𝑐𝑜𝑚𝑚𝑎𝑛𝑑{programName} Task

For each Go program in workingDir, four tasks of type ExecuteGoTask are added. Each of these tasks are
automatically configured with sensible defaults:

Property Name | Default Value args | ["${command}", "${programFile.absolutePath}"]

131.9 Gulp Gradle Plugin

TheGulp Gradle plugin lets you run Gulp tasks as part of your build.
The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.gulp", version: "2.0.59"

1865

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.gradle.org/current/userguide/gradle_daemon.html
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:exec(org.gradle.api.Action)
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
http://gulpjs.com/

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.gulp"

TheGulp plugin automatically applies the com.liferay.node plugin.

Tasks

The plugin adds one task rule to your project:
Name | Depends On | Type | Description gulp<Task> | downloadNode, npmInstall | ExecuteGulpTask |

Executes a named Gulp task.

ExecuteGulpTask

Tasks of type ExecuteGulpTask extend ExecuteNodeScriptTask, so all its properties andmethods, such as args
and inheritProxy, are available. They also have the following properties set by default:

Property Name | Default Value scriptFile | "node_modules/gulp/bin/gulp.js"
Gulp must be already installed in the node_modules directory of the project; otherwise, it will not be

downloaded by the task. In order to ensure Gulp is installed, you can add the Gulp dependency to the
project’s package.json file.

Task Properties Property Name | Type | Default Value | Description gulpCommand | String | null |The Gulp
task to execute.

It is possible to use Closures and Callables as values for the String properties to defer evaluation until
task execution.

131.10 Jasper JSPC Gradle Plugin
The Jasper JSPC Gradle plugin lets you run the Liferay Jasper JSPC tool to compile the JavaServer Pages (JSP)
files in your project. This can be useful to

• check for errors in the JSP files.
• pre-compile the JSP files for better performance.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.jasper.jspc", version: "2.0.5"

}

repositories {

maven {

1866

https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-node
https://docs.gradle.org/current/userguide/more_about_tasks.html#sec:task_rules
https://github.com/liferay/liferay-portal/tree/master/modules/util/jasper-jspc

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.jasper.jspc"

The Jasper JSPC plugin automatically applies the java plugin.
Since the plugin automatically resolves the Liferay Jasper JSPC library as a dependency, you have to

configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds two tasks to your project:
Name | Depends On | Type | Description compileJSP | generateJSPJava | JavaCompile | Compiles JSP files

to check for errors. generateJSPJava | jar | CompileJSPTask | Compiles JSP files to Java source files to check
for errors.

The generateJSPJava task is automatically configured with sensible defaults, depending on whether the
war plugin is applied:

Property Name | Default Value classpath | project.configurations.jspCTool destinationDir |
"${project.buildDir}/jspc" jspCClasspath | project.configurations.jspC webAppDir |

If the war plugin is applied: project.webAppDir.
Otherwise:The first resources directory of the main source set (by default, src/main/resources).
The compileJSP task is also configured with the following defaults:
PropertyName|DefaultValue classpath | project.configurations.jspCTool + project.configurations.jspC

destinationDir | compileJSP.temporaryDir source | generateJSPJava.outputs

CompileJSPTask

Tasks of type CompileJSPTask extend JavaExec, so all its properties andmethods, such as args and maxHeapSize,
are available. They also have the following properties set by default:

Property Name | Default Value main | "com.liferay.jasper.jspc.JspC"

Task Properties Property Name | Type | Default Value | Description destinationDir | File | null | The
directory where the the JSP files are compiled to. Package directories are automatically generated based on
the directories containing the uncompiled JSP files. It sets the -d argument. jspCClasspath | FileCollection
| null |The classpath to use for the JSP files compilation. webAppDir | File | null |The directory containing
the web application. All JSP files in the directory and its subdirectories are compiled. It sets the -webapp
argument.

The properties of type File support any type that can be resolved by project.file.

Additional Configuration

There are additional configurations that can help you use Jasper JSPC.

1867

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/current/userguide/java_plugin.html#sec:jar
https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html#org.gradle.api.tasks.compile.JavaCompile:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html#org.gradle.api.tasks.compile.JavaCompile:destinationDir
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html#org.gradle.api.tasks.compile.JavaCompile:source
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.css.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

JSP Compilation Classpath

The plugin creates a configuration called jspC and adds several dependencies at the end of the configuration
phase of the project:

• the JAR file of the project generated by the jar task.
• the output files of the main source set.
• the compileClasspath file collection of the main source set.

If necessary, it is possible to addmore dependencies to the jspC configuration.

Liferay Jasper JSPC Dependency

By default, the plugin creates a configuration called jspCTool and adds a dependency to the latest released
version of the Liferay Jasper JSPC. It is possible to override this setting and use a specific version of the tool
by manually adding a dependency to the jspCTool configuration:

dependencies {

jspCTool group: "com.liferay", name: "com.liferay.jasper.jspc", version: "1.0.11"

jspCTool group: "org.apache.ant", name: "ant", version: "1.9.4"

}

131.11 Javadoc Formatter Gradle Plugin
The Javadoc Formatter Gradle plugin lets you format project Javadoc comments using the Liferay Javadoc
Formatter tool. The tool lets you generate:

• Default @author tags to all classes.
• Comment stubs to classes, fields, andmethods.
• Missing @Override annotations.
• An XML representation of the Javadoc comments, which can be used by tools in order to index the
Javadocs of the project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.javadoc.formatter", version: "1.0.27"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.javadoc.formatter"

Since the plugin automatically resolves the Liferay Javadoc Formatter library as a dependency, you have
to configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

1868

https://docs.gradle.org/current/userguide/java_plugin.html#sec:jar
https://github.com/liferay/liferay-portal/tree/master/modules/util/javadoc-formatter
https://github.com/liferay/liferay-portal/tree/master/modules/util/javadoc-formatter
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@author
https://docs.oracle.com/javase/8/docs/api/java/lang/Override.html

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description formatJavadoc | - | FormatJavadocTask | Runs the Liferay Javadoc

Formatter to format files.

FormatJavadocTask

Tasks of type FormatJavadocTask extend JavaExec, so all its properties andmethods, like args and maxHeapSize,
are available. They also have the following properties set by default:

Property Name | Default Value args | Javadoc Formatter command line arguments classpath |
project.configurations.javadocFormatter main | "com.liferay.javadoc.formatter.JavadocFormatter"

Task Properties Property Name | Type | Default Value | Description author | String | "Brian Wing Shun

Chan" | The value of the @author tag to add at class level if missing. It sets the javadoc.author argument.
generateXML | boolean | false |Whether to generate aXML representation of the Javadoc comments. TheXML
files are generated in the src/main/resources directory only if the Java files are contained in src/main/java.
It sets the javadoc.generate.xml argument. initializeMissingJavadocs | boolean | false | Whether to add
comment stubs at the class, field, andmethod levels. If false, only the class-level @author is added. It sets
the javadoc.init argument. limits | List<String> | [] |The Java file name patterns, relative to workingDir,
to include when formatting Javadoc comments. The patterns must be specified without the .java file type
suffix. If empty, all Java files are formatted. It sets the javadoc.limit argument. lowestSupportedJavaVersion
| double | 1.7 | If a method is annotated with the @SinceJava annotation and its value argument is greater
than the value specified for the lowestSupportedJavaVersion property, then the @Override annotation is not
automatically added, even if it is missing. It sets the javadoc.lowest.supported.java.version argument. See
LPS-37353. outputFilePrefix | String | "javadocs" |The file name prefix of the XML representation of the
Javadoc comments. If generateXML is false, this property is not used. It sets the javadoc.output.file.prefix
argument. updateJavadocs | boolean | false | Whether to fix existing comment blocks by adding missing
tags. It sets the javadoc.update argument.

It is possible to use Closures and Callables as values for the String properties, to defer evaluation until
task execution.

TaskMethods Method | Description FormatJavadocTask dirNames(Iterable<Object> limits) | Adds Java
file name patterns, relative to workingDir, to includewhen formatting Javadoc comments. FormatJavadocTask
dirNames(Object... limits) |Adds Javafilenamepatterns, relative to workingDir, to includewhen formatting
Javadoc comments.

Additional Configuration

There are additional configurations that can help you use the Javadoc Formatter.

1869

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:workingDir
https://github.com/liferay/liferay-portal/blob/master/modules/util/javadoc-formatter/src/main/java/com/liferay/javadoc/formatter/SinceJava.java
https://issues.liferay.com/browse/LPS-37353

Liferay Javadoc Formatter Dependency

By default, the plugin creates a configuration called javadocFormatter and adds a dependency to the latest
released version of the Liferay Javadoc Formatter. It is possible to override this setting and use a specific
version of the tool by manually adding a dependency to the javadocFormatter configuration:

dependencies {

javadocFormatter group: "com.liferay", name: "com.liferay.javadoc.formatter", version: "1.0.32"

}

If the java plugin is applied, the javadocFormatter configuration automatically extends from the compile
configuration.

System Properties

It is possible to set the default values of the generateXML, initializeMissingJavadocs, limits, and
updateJavadocs properties for a FormatJavadocTask task via system properties:

• -D${task.name}.generate.xml=true

• -D${task.name}.init=SomeClassName1,SomeClassName2,com.liferay.portal.**

• -D${task.name}.limit=**/com/example/

• -D${task.name}.update=true

131.12 JS Module Config Generator Gradle Plugin
The JSModule Config Generator Gradle plugin lets you run the Liferay AMDModule Config Generator to
generate the configuration file needed to load AMD files via combo loader in Liferay.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.js.module.config.generator", version: "2.1.57"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.js.module.config.generator"

The JSModule Config Generator plugin automatically applies the com.liferay.node plugin.

Project Extension

The JS Module Config Generator plugin exposes the following properties through the extension named
jsModuleConfigGenerator:

Property Name | Type | Default Value | Description version | String | "1.2.1" |The version of the Liferay
AMDModule Config Generator to use.

1870

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_plugin_and_dependency_management
https://github.com/liferay/liferay-module-config-generator
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-node

Tasks

The plugin adds two tasks to your project:
Name | Depends On | Type | Description configJSModules | downloadLiferayModuleConfigGenerator,

processResources | ConfigJSModulesTask | Generates the configuration file needed to load AMD files via
combo loader in Liferay. downloadLiferayModuleConfigGenerator | downloadNode | DownloadNodeModuleTask |
Downloads the Liferay AMDModule Config Generator in the project’s node_modules directory.

By default, the downloadLiferayModuleConfigGenerator task downloads the version of liferay-

module-config-generator declared in the jsModuleConfigGenerator.version property. If the project’s
package.json file, however, already lists the liferay-module-config-generator package in its dependencies or
devDependencies, the downloadLiferayModuleConfigGenerator task is disabled.

The configJSModules task is automatically configured with sensible defaults, depending on whether the
java plugin is applied:

Property Name | Default Value moduleConfigFile | "${project.projectDir}/package.json" outputFile |
"${sourceSets.main.output.resourcesDir}/META-INF/config.json" sourceDir | "${sourceSets.main.output.resourcesDir}/META-
INF/resources"

The plugin also adds the following dependencies to tasks defined by the java plugin:
Name | Depends On classes | configJSModules
If the com.liferay.js.transpiler plugin is applied, the configJSModules task is configured to always run

after the transpileJS task.

ConfigJSModulesTask

Tasks of type ConfigJSModulesTask extend ExecuteNodeScriptTask, so all its properties and methods, such
as args, inheritProxy, and workingDir, are available. The ConfigJSModulesTask instances also implement the
PatternFilterable interface, which lets you specify include and exclude patterns for the files in sourceDir to
process.

They also have the following properties set by default:
PropertyName|DefaultValue includes | ["⁎⁎/*.es.js*", "⁎⁎/*.soy.js*"] scriptFile | "${downloadLiferayModuleConfigGenerator.moduleDir}/bin/index.js"
The purpose of this task is to run the Liferay AMDModule Config Generator from the included files in

sourceDir. The generator processes these files and creates a configuration file in the location specified by the
outputFile property.

TaskProperties PropertyName |Type |Default Value |Description configVariable | String | null |Thecon-
figuration variable to which the modules should be added. It sets the --config argument. customDefine |
String | "Liferay.Loader" |Thenamespace of the define(...) call to use in the JS files. It sets the --namespace
argument. ignorePath | boolean | false | Whether not to create module path and fullPath properties. It sets
the --ignorePath argument. keepFileExtension | boolean | false | Whether to keep the file extension when
generating the module name. It sets the --keepExtension argument. lowerCase | boolean | false | Whether
to convert file name to lower case before using it as the module name. It sets the --lowerCase argument.
moduleConfigFile | File | null |The JSON file which contains configuration data for the modules. It sets the
--moduleConfig argument. moduleExtension | String | null |The extension for the module file (e.g., .js). If
specified, use the provided string as an extension instead to get it automatically from the file name. It sets
the --extension argument. moduleFormat | String | null | The regular expression and value to apply to the
file name when generating the module name. It sets the --format argument. outputFile | File | null |The
file where the generated configuration is stored. It sets the --output argument. sourceDir | File | null |The
directory that contains the files to process.

1871

https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-js-transpiler
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/util/PatternFilterable.html
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/util/PatternFilterable.html#getIncludes()

Theproperties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the int and String properties to defer evaluation until task
execution.

131.13 JS Transpiler Gradle Plugin
The JS Transpiler Gradle plugin lets you run metal-cli to build Metal.js code, compile Soy files, and transpile
ES6 to ES5.

Important: If you’re using Liferay Workspace to create your app, the JS Transpiler Gradle plugin is
applied by default. Do not apply the JS Transpiler Gradle plugin if you’re using LiferayWorkspace.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.js.transpiler", version: "2.4.36"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.js.transpiler"

There are two JS Transpiler Gradle plugins you can apply to your project:

• JS Transpiler Plugin: builds Metal.js code, compiles Soy files, and transpiles ES6 to ES5:

apply plugin: "com.liferay.js.transpiler"

• JS Transpiler Base Plugin: provides a way to use Gradle dependencies (such as an external module or
project dependencies) in Node.js scripts:

apply plugin: "com.liferay.js.transpiler.base"

JS Transpiler Plugin

The JS Transpiler plugin automatically applies the JS Transpiler Base Plugin.
The plugin adds two tasks to your project:
Name | Depends On | Type | Description downloadMetalCli | downloadNode | DownloadNodeModuleTask

| Downloads metal-cli in the project’s node_modules directory. transpileJS | downloadMetalCli,
expandJSCompileDependencies, npmInstall, processResources | TranspileJSTask | Builds Metal.js code.

By default, the downloadMetalCli task downloads the version 1.3.1 of metal-cli. If the project’s
package.json file, however, already lists the metal-cli package in its dependencies or devDependencies, the
downloadMetalCli task is disabled.

1872

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://github.com/metal/metal-cli
http://metaljs.com/
https://docs.gradle.org/current/userguide/dependency_management.html#sub:module_dependencies
https://docs.gradle.org/current/userguide/dependency_management.html#sub:project_dependencies

The transpileJS task is automatically configured with sensible defaults, depending on whether the java
plugin is applied:

Property Name | Default Value sourceDir | The directory META-INF/resources in the first resources
directory of the main source set (by default, src/main/resources/META-INF/resources). workingDir |
"${sourceSets.main.output.resourcesDir}/META-INF/resources"

The plugin also adds the following dependencies to tasks defined by the java plugin:
Name | Depends On classes | transpileJS
The plugin adds a new configuration to the project called soyCompile. If one or more dependencies are

added to this configuration, they will be expanded into temporary directories and passed to the transpileJS
task as additional soyDependencies values.

JS Transpiler Base Plugin

The JS Transpiler Base plugin automatically applies the com.liferay.node plugin.
The plugin adds a new configuration to the project called jsCompile. If one or more dependencies are

added to this configuration, they will be expanded into sub-directories of the node_modules directory, with
names equal to the names of the dependencies.

The plugin also adds one task to your project:
Name | Depends On | Type | Description expandJSCompileDependencies | - | DefaultTask | Expands the

additional configured JavaScript dependencies. The task itself does not do any work, but depends on a
series of Copy tasks called expandJSCompileDependency${file}, which expand each dependency declared in
the jsCompile configuration into the node_modules directory.

All the tasks of type ExecuteNpmTask whose name starts with "npmRun" are configured to depend on
expandJSCompileDependencies. This means that, before running any script declared in the package.json file
of the project, all the jsCompile dependencies will be expanded into the node_modules directory.

Tasks

TranspileJSTask

Tasks of type TranspileJSTask extend ExecuteNodeScriptTask, so all its properties andmethods, such as args,
inheritProxy, and workingDir, are available. They also have the following properties set by default:

Property Name | Default Value scriptFile | "${downloadMetalCli.moduleDir}/index.js" soySrcIncludes
| ["⁎⁎/*.soy"] srcIncludes | ["⁎⁎/*.es.js*", "⁎⁎/*.soy.js*"]

The purpose of this task is to run the build command of metal-cli to build Metal.js code from sourceDir

into the workingDir directory.

Task Properties Property Name | Type | Default Value | Description bundleFileName | String | null |
The name of the final bundle file for formats (e.g., globals) that create one. It sets the --bundleFileName

argument. globalName | String | null |The name of the global variable that holds exported modules. It sets
the --globalName argument. This is only used by the globals format build. moduleName | String | null | The
name of the project that is being compiled. All built modules are stored in a folder with this name. It sets the
--moduleName argument. This is only used by the amd format build. modules | String | "amd" |The format(s)
that the source files are built to. It sets the --format argument. skipWhenEmpty | boolean | true | Whether to
disable the task and remove its dependencies if the sourceFiles property does not return any file at the end
of the project evaluation. sourceDir | File | null |The directory that contains the files to build. sourceFiles
| FileCollection | [] | The Soy and JS files to compile. (Read-only) sourceMaps | SourceMaps | enabled |
Whether to generate source map files. Available values include disabled, enabled, and enabled_inline.
soyDependencies | Set<String> | ["${npmInstall.workingDir}/node_modules/clay⁎/src/**/*.soy",

1873

https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-node
https://docs.gradle.org/current/javadoc/org/gradle/api/DefaultTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.Copy.html
https://docs.npmjs.com/misc/scripts

"${npmInstall.workingDir}/node_modules/metal⁎/src/**/*.soy"] | The path GLOBs of Soy files that
the main source files depend on, but that should not be compiled. It sets the --soyDeps argument.
soySkipMetalGeneration | boolean | false | Whether to just compile Soy files, without adding Metal.js
generated code, like the component class. It sets the --soySkipMetalGeneration argument. soySrcIncludes |
Set<String> | [] |The path GLOBs of the Soy files to compile. It sets the --soySrc argument. srcIncludes |
Set<String> | [] |The path GLOBs of the JS files to compile. It sets the --src argument.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the int and String properties to defer evaluation until task
execution.

Task Methods Method | Description TranspileJSTask soyDependency(Iterable<?> soyDependencies) |
Adds path GLOBs of Soy files that the main source files depend on, but that should not be compiled.
TranspileJSTask soyDependency(Object... soyDependencies) | Adds path GLOBs of Soy files that the main
source files depend on, but that should not be compiled. TranspileJSTask soySrcInclude(Iterable<?>

soySrcIncludes) | Adds path GLOBs of Soy files to compile. TranspileJSTask soySrcInclude(Object...

soySrcIncludes) | Adds path GLOBs of Soy files to compile. TranspileJSTask srcInclude(Iterable<?>

srcIncludes) | Adds path GLOBs of JS files to compile. TranspileJSTask srcInclude(Object... srcIncludes)

| Adds path GLOBs of JS files to compile.

131.14 JSDoc Gradle Plugin
The JSDoc Gradle plugin lets you run the JSDoc tool in order to generate documentation for your project’s
JavaScript files.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.jsdoc", version: "2.0.33"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

There are two JSDoc Gradle plugins you can apply to your project:

• Apply the JSDoc Plugin to generate JavaScript documentation for your project:

apply plugin: "com.liferay.jsdoc"

• Apply the App JSDoc Plugin in a parent project to generate the JavaScript documentation as a single,
combined HTML document for an application that spans different subprojects, each one representing
a different component of the same application:

apply plugin: "com.liferay.app.jsdoc"

Both plugins automatically apply the com.liferay.node plugin.

1874

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
http://usejsdoc.org/
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-node

JSDoc Plugin

The plugin adds two tasks to your project:
Name | Depends On | Type | Description downloadJSDoc | downloadNode | DownloadNodeModuleTask | Down-

loads JSDoc in the project’s node_modules directory. jsdoc | downloadJSDoc | JSDocTask | Generates API docu-
mentation for the project’s JavaScript code.

By default, the downloadJSDoc task downloads version 3.5.5 of the jsdoc package. If the project’s
package.json file, however, already lists the jsdoc package in its dependencies or devDependencies, the
downloadJSDoc task is disabled.

The jsdoc task is automatically configured with sensible defaults, depending on whether the java plugin
is applied:

Property Name | Default Value destinationDir |
If the java plugin is applied: "${project.docsDir}/jsdoc"
Otherwise: "${project.buildDir}/jsdoc"
sourceDirs |The directory META-INF/resources in the first resources directory of the main source set (by

default, src/main/resources/META-INF/resources).

AppJSDoc Plugin

To use the App JSDoc plugin, it is required to apply the com.liferay.app.jsdoc plugin in a parent project (that
is, a project that is a common ancestor of all the subprojects representing the various components of the
app). It is also required to apply the com.liferay.jsdoc plugin to all the subprojects that contain JavaScript
files.

The App JSDoc plugin adds three tasks to your project:
Name | Depends On | Type | Description appJSDoc | downloadJSDoc | JSDocTask | Generates API docu-

mentation for the app’s JavaScript code. downloadJSDoc | downloadNode | DownloadNodeModuleTask | Downloads
JSDoc in the app’s node_modules directory. jarAppJSDoc | appJSDoc | Jar | Assembles a JAR archive containing
the JavaScript documentation files for this app.

By default, the downloadJSDoc task downloads version 3.5.5 of the jsdoc package. If the project’s
package.json file, however, already lists the jsdoc package in its dependencies or devDependencies, the
downloadJSDoc task is disabled.

The appJSDoc task is automatically configured with sensible defaults:
Property Name | Default Value destinationDir | ${project.buildDir}/docs/jsdoc sourceDirs |The sum

of all the jsdoc.sourceDirs values of the subprojects.

Project Extension

TheApp JSDoc plugin exposes the following properties through the extension named appJSDocConfiguration:
Property Name | Type | Default Value | Description subprojects | Set<Project> | project.subprojects |

The subprojects to include in the JavaScript documentation of the app.
The same extension exposes the followingmethods:
Method | Description AppJSDocConfigurationExtension subprojects(Iterable<Project> subprojects) |

Include additional projects in the JavaScript documentation of the app. AppJSDocConfigurationExtension
subprojects(Project... subprojects) | Include additional projects in the JavaScript documentation of the
app.

1875

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html

Tasks

JSDocTask

Tasks of type JSDocTask extend ExecuteNodeScriptTask, so all its properties and methods, such as args,
inheritProxy, and workingDir, are available.

They also have the following properties set by default:
Property Name | Default Value scriptFile | "${downloadJSDoc.moduleDir}/jsdoc.js"

Task Properties Property Name | Type | Default Value | Description configuration | TextResource | null |
The JSDoc configuration file. It sets the --configure argument. destinationDir | File | null |The directory
where the JavaScript API documentationfiles are saved. It sets the --destination argument. packageJsonFile
| File | "${project.projectDir}/package.json" |The path to the project’s package file. It sets the --package
argument. sourceDirs | FileCollection | [] |The directories that contains the files to process. readmeFile |
File | null |The path to the project’s README file. It sets the --readme argument. tutorialsDir | File | null
|The directory in which JSDoc should search for tutorials. It sets the --tutorials argument.

The properties of type File support any type that can be resolved by project.file.

131.15 Lang Builder Gradle Plugin

The Lang Builder Gradle plugin lets you run the Liferay Lang Builder tool to sort and translate the language
keys in your project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.lang.builder", version: "3.0.12"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.lang.builder"

Since the plugin automatically resolves the Liferay Lang Builder library as a dependency, you have to
configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

See this page on the Liferay Developer Network for more information about usage of the Lang Builder
Gradle plugin.

1876

https://docs.gradle.org/current/dsl/org.gradle.api.resources.TextResource.html
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://github.com/liferay/liferay-portal/tree/master/modules/util/lang-builder

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildLang | - | BuildLangTask | Runs Liferay Lang Builder to

translate language property files.
The buildLang task is automatically configured with sensible defaults, depending on whether the java

plugin is applied:
Property Name | Default Value langDir |
If the java plugin is applied:The directory content in the first resources directory of the main source set

(by default: src/main/resources/content).
Otherwise: null

BuildLangTask

Tasks of type BuildLangTask extend JavaExec, so all its properties andmethods, such as args and maxHeapSize,
are available. They also have the following properties set by default:

Property Name | Default Value args | Lang Builder command line arguments classpath |
project.configurations.langBuilder main | "com.liferay.lang.builder.LangBuilder"

Task Properties Property Name | Type | Default Value | Description excludedLanguageIds | Set<String>
| ["da", "de", "fi", "ja", "nl", "pt_PT", "sv"] | The language IDs to exclude in the automatic trans-
lation. It sets the lang.excluded.language.ids argument. langDir | File | null | The directory where the
language properties files are saved. It sets the lang.dir argument. langFileName | String | "Language" |
The file name prefix of the language properties files (e.g., Language_it.properties). It sets the lang.file
argument. plugin | boolean | true | Whether to check for duplicate language keys between the project and
the portal. If portalLanguagePropertiesFile is not set, this property has no effect. It sets the lang.plugin
argument. portalLanguagePropertiesFile | File | null | The Language.properties file of the portal. It sets
the lang.portal.language.properties.file argument. translate | boolean | true | Whether to translate the
language keys and generate a language properties file for each locale that’s supported by Liferay. It sets
the lang.translate argument. translateSubscriptionKey | String | null |The subscription key for Microsoft
Translation integration. Subscription to the Translator Text Translation API onMicrosoft Cognitive Services
is required. Basic subscriptions, up to 2 million characters a month, are free. See here for more information.
It sets the lang.translate.subscription.key argument.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties, to defer evaluation until task execution.

TaskMethods Method|Description BuildLangTask excludedLanguageIds(Iterable<Object> excludedLanguageIds)

| Adds language IDs to exclude in the automatic translation. BuildLangTask excludedLanguageIds(Object...

excludedLanguageIds) | Adds language IDs to exclude in the automatic translation.

Additional Configuration

There are additional configurations that can help you use the Lang Builder.

Liferay Lang Builder Dependency

By default, the plugin creates a configuration called langBuilder and adds a dependency to the latest released
version of the Liferay Lang Builder. It is possible to override this setting and use a specific version of the tool
by manually adding a dependency to the langBuilder configuration:

1877

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
http://docs.microsofttranslator.com/text-translate.html
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

dependencies {

langBuilder group: "com.liferay", name: "com.liferay.lang.builder", version: "1.0.31"

}

131.16 Maven Plugin Builder Gradle Plugin

TheMaven Plugin Builder Gradle Plugin lets you generate the Maven plugin descriptor for any Mojos found
in your project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.maven.plugin.builder", version: "1.2.4"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.maven.plugin.builder"

Tasks

The plugin adds two tasks to your project:
Name | Depends On | Type | Description buildPluginDescriptor |compileJava, WriteMavenSettings |

BuildPluginDescriptorTask | Generates the Maven plugin descriptor for the project. WriteMavenSettings |
- | WriteMavenSettingsTask | Writes a temporary Maven settings file to be used during subsequent Maven
invocations.

TheMaven Plugin Builder Plugin automatically applies the java plugin.
The plugin also adds the following dependencies to tasks defined by the maven plugin:
Name|DependsOn install, uploadArchives, andall theother tasksof type Upload | buildPluginDescriptor
The buildPluginDescriptor task is automatically configured with sensible defaults:
PropertyName |Default Value classesDir | sourceSets.main.output.classesDir mavenEmbedderClasspath

| configurations.mavenEmbedder mavenSettingsFile | writeMavenSettings.outputFile outputDir |
The directory META-INF/maven in the first resources directory of the main source set (by default:
src/main/resources/META-INF/maven). pomArtifactId | The bundle symbolic name of the project in-
ferred via the OsgiHelper class. pomGroupId | project.group pomVersion | project.version (if it ends with
"-SNAPSHOT", the suffix will be removed) sourceDir |The first java directory of the main source set (by default:
src/main/java).

The plugin ensures that the processResources task always runs before buildPluginDescriptor to let
processResources copy the newly generated files in the buildPluginDescriptor.outputDir directory.

The writeMavenSettings task is also automatically configured with sensible defaults:
Property Name | Default Value localRepositoryDir | maven.repo.local system property nonProxyHosts

| http.nonProxyHosts system property outputFile | "${project.buildDir}/settings.xml" proxyHost |
http.ProxyHost or https.proxyHost system property (depending on the protocol of repositoryUrl)
proxyPassword | http.ProxyPassword or https.proxyPassword system property (depending on the protocol of

1878

https://maven.apache.org/ref/current/maven-plugin-api/plugin.html
https://maven.apache.org/general.html#What_is_a_Mojo
https://docs.gradle.org/current/userguide/java_plugin.html#sec:compile
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/maven_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.Upload.html
https://github.com/gradle/gradle/blob/master/subprojects/osgi/src/main/java/org/gradle/api/internal/plugins/osgi/OsgiHelper.java
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version

repositoryUrl) proxyPort | http.ProxyPort or https.proxyPort systemproperty (depending on the protocol of
repositoryUrl) proxyUser | http.ProxyUser or https.proxyUser system property (depending on the protocol
of repositoryUrl) repositoryUrl | repository.url system property

If running on JDK8+, the plugin also disables the doclint feature in all tasks of type Javadoc.

BuildPluginDescriptorTask

Tasks of type BuildPluginDescriptorTaskwork by generating a temporary pom.xml file based on the project,
and then invoking the Maven Embedder to build the Maven plugin descriptor.

It is possible to declare information for the plugin descriptor generation using either Java 5 Annotations
or Javadoc Tags.

TaskProperties Property Name | Type | Default Value | Description classesDir | File | null |The directory
that contains the compiled classes. It sets the value of the build.outputDirectory element in the gener-
ated pom.xml file. configurationScopeMappings | Map<String, String> | ["compile": "compile", "provided",

"provided"] | The mapping between the configuration names in the Gradle project and the dependency
scopes in the pom.xml file. It is used to add dependencies.dependency elements in the generated pom.xml file.
forcedExclusions | Set<String> | [] |The group:name:version notation of the dependencies to always exclude
from the ones added in the pom.xml file. It adds dependencies.dependency.exclusions.exclusion elements
to the generated pom.xml file. goalPrefix | String | null | The goal prefix for the Maven plugin specified
in the descriptor. It sets the value of the build.plugins.plugin.configuration.goalPrefix element in the
generated pom.xml file. mavenDebug | boolean | false | Whether to invoke the Maven Embedder in debug
mode. mavenEmbedderClasspath | FileCollection | null | The classpath used to invoke the Maven Embed-
der. mavenEmbedderMainClassName | String | "org.apache.maven.cli.MavenCli" |TheMaven Embedder’s main
class name. mavenPluginPluginVersion | String | "3.4" | The version of the Maven Plugin Plugin to use to
generate the plugin descriptor for the project. mavenSettingsFile | File | null | The custom settings.xml

file to use. It sets the --settings argument on the Maven Embedder invocation. outputDir | File | null |
The directory where the Maven plugin descriptor files are saved. pomArtifactId | String | null |The identi-
fier for the artifact that is unique within the group. It sets the value of the project.artifactId element in
the generated pom.xml file. pomGroupId | String | null |The universally unique identifier for the project. It
sets the value of the project.groupId element in the generated pom.xml file. pomRepositories | Map<String,
Object> | ["liferay-public": "http://repository.liferay.com/nexus/content/groups/public"] |The name
and URL of the remote repositories. It adds repositories.repository elements in the generated pom.xml

file. pomVersion | String | null | The version of the artifact produced by this project. It sets the value of
the project.version element in the generated pom.xml file. sourceDir | String | null | The directory that
contains the source files. It sets the value of the build.sourceDirectory element in the generated pom.xml file.
useSetterComments | boolean | true | Whether to allowMojo Javadoc Tags in the setter methods of the Mojo.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties, to defer evaluation until task execution.

Task Methods

Method | Description void configurationScopeMapping(String configurationName, String scope) | Adds
a mapping between a configuration name in the Gradle project and the dependency scope in the
pom.xml file. BuildPluginDescriptorTask forcedExclusions(Iterable<String> forcedExclusions) | Adds
group:name:version notations of dependencies to always exclude from the ones added in the pom.xml file.
BuildPluginDescriptorTask forcedExclusions(String... forcedExclusions) | Adds group:name:version nota-
tions of dependencies to always exclude from the ones added in the pom.xml file. BuildPluginDescriptorTask

1879

http://docs.oracle.com/javase/8/docs/technotes/tools/unix/javadoc.html#BEJEFABE
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
http://maven.apache.org/ref/3.3.9/maven-embedder/
https://maven.apache.org/plugin-tools/maven-plugin-tools-annotations/
https://maven.apache.org/plugin-tools/maven-plugin-tools-java/
http://maven.apache.org/ref/3.3.9/maven-model/maven.html#class_build
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_dependency
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_exclusion
https://maven.apache.org/plugin-tools/maven-plugin-plugin/examples/generate-descriptor.html
https://maven.apache.org/plugin-tools/maven-plugin-plugin/
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_project
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_project
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_repository
http://maven.apache.org/ref/3.3.3/maven-model/maven.html#class_project
http://maven.apache.org/ref/3.3.9/maven-model/maven.html#class_build
https://maven.apache.org/plugin-tools/maven-plugin-tools-java/
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

pomRepositories(Map<String, ?> pomRepositories | Adds names and URLs of remote repositories in the
pom.xml file. BuildPluginDescriptorTask pomRepository(String id, Object url) | Adds the name and URL
of a remote repository in the pom.xml file.

WriteMavenSettingsTask

Task Properties Property Name | Type | Default Value | Description localRepositoryDir | String | null |
Thedirectory of the system’s local repository. It sets the value of the localRepository element in the generated
settings.xml file. nonProxyHosts | String | null | The patterns of the host that should be accessed without
going through the proxy. It sets the value of the proxies.proxy.nonProxyHosts element in the generated
settings.xml file. outputFile | File | null |The generated settings.xml file. proxyHost | String | null |The
host name or address of the proxy server. It sets the value of the proxies.proxy.host element in the generated
settings.xmlfile. proxyPassword | String | null |Thepassword touse to access a protectedproxy server. It sets
the value of the proxies.proxy.password element in the generated settings.xml file. proxyPort | String | null
|The port number of the proxy server. It sets the value of the proxies.proxy.port element in the generated
settings.xml file. proxyUser | String | null |The user name to use to access a protected proxy server. It sets
the value of the proxies.proxy.username element in the generated settings.xml file. repositoryUrl | String |
null |The URL of the repository mirror. It sets the value of the mirrors.mirror.url element in the generated
settings.xml file.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties, to defer evaluation until task execution.

Additional Configuration

There are additional configurations that can help you use the Maven Plugin Builder.

Maven Embedder Dependency

By default, the plugin creates a configuration called mavenEmbedder and adds a dependency to the 3.3.9 version
of theMavenEmbedder. It is possible to override this setting anduse a specific version of the tool bymanually
adding a dependency to the mavenEmbedder configuration:

dependencies {

mavenEmbedder group: "org.apache.maven", name: "maven-embedder", version: "3.3.9"

mavenEmbedder group: "org.apache.maven.wagon", name: "wagon-http", version: "2.10"

mavenEmbedder group: "org.eclipse.aether", name: "aether-connector-basic", version: "1.0.2.v20150114"

mavenEmbedder group: "org.eclipse.aether", name: "aether-transport-wagon", version: "1.0.2.v20150114"

mavenEmbedder group: "org.slf4j", name: "slf4j-simple", version: "1.7.5"

}

System Properties

It is possible to set the default value of the mavenDebug property for a BuildPluginDescriptorTask task via
system property:

• -D${task.name}.maven.debug=true

For example, run the following Bash command to invoke the Maven Embedder in debugmode to attach
a remote debugger:

./gradlew buildPluginDescriptor -DbuildPluginDescriptor.maven.debug=true

1880

https://maven.apache.org/settings.html#Simple_Values
https://maven.apache.org/settings.html#Proxies
https://maven.apache.org/settings.html#Proxies
https://maven.apache.org/settings.html#Proxies
https://maven.apache.org/settings.html#Proxies
https://maven.apache.org/settings.html#Proxies
https://maven.apache.org/guides/mini/guide-mirror-settings.html#Using_A_Single_Repository
https://maven.apache.org/settings.html#Mirrors
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

131.17 Node Gradle Plugin

TheNode Gradle plugin lets you run Node.js and NPM as part of your build.
The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.node", version: "4.6.18"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.node"

Project Extension

TheNode Gradle plugin exposes the following properties through the extension named node:
Property Name | Type | Default Value | Description download | boolean | true | Whether to download and

use a local and isolated Node.js distribution instead of the one installed in the system. global | boolean |
false | Whether to use a single Node.js installation for the whole multi-project build. This reduces the time
required to unpack the Node.js distribution and the time required to download NPM packages thanks to a
shared packages cache. If download is false, this property has no effect. nodeDir | File |

If global is true: "${rootProject.buildDir}/node"
Otherwise: "${project.buildDir}/node"
| The directory where the Node.js distribution is unpacked. If download is false, this property has

no effect. nodeUrl | String | "http://nodejs.org/dist/v${node.nodeVersion}/node-v${node.nodeVersion}-
${platform}-x${bitMode}.${extension}" | The URL of the Node.js distribution to download. If download is
false, this property has no effect. nodeVersion | String | "5.5.0" | The version of the Node.js distribution
to use. If download is false, this property has no effect. npmArgs | List<String> | [] |The arguments added
automatically to every task of type ExecuteNpmTask. npmUrl | String | "https://registry.npmjs.org/npm/-
/npm-${node.npmVersion}.tgz" |The URL of the NPM version to download. If download is false, this property
has no effect. npmVersion | String | null |The version of NPM to use. If null, the version of NPM embedded
inside the Node.js distribution is used. If download is false, this property has no effect.

It is possible to override the default value of the download property by setting the nodeDownload project
property. For example, this can be done via command line argument:

./gradlew -PnodeDownload=false npmInstall

The same extension exposes the followingmethods:
Method | Description NodeExtension npmArgs(Iterable<?> npmArgs) | Adds arguments to automatically

add to every task of type ExecuteNpmTask. NodeExtension npmArgs(Object... npmArgs) | Adds arguments to
automatically add to every task of type ExecuteNpmTask.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for String, to defer evaluation until execution.

1881

https://nodejs.org/
https://www.npmjs.com/
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

Please note that setting the global property of the node extension via the command line is not supported.
It can only be set via Gradle script, which can be done by adding the following code to the build.gradle file
in the root of a project (e.g., LiferayWorkspace):

allprojects {

plugins.withId("com.liferay.node") {

node.global = true

}

}

Tasks

The plugin adds a series of tasks to your project:
Name | Depends On | Type | Description cleanNPM | - | Delete | Deletes the node_modules directory,

the npm-shrinkwrap.json file and the package-lock.json files from the project, if present. downloadNode | - |
DownloadNodeTask | Downloads and unpacks the local Node.js distribution for the project. If node.download is
false, this task is disabled. npmInstall | downloadNode | NpmInstallTask | Runs npm install to install the de-
pendencies declared in the project’s package.json file, if present. By default, the task is configured to run npm

install twomore times if it fails. npmRun${script} | npmInstall | ExecuteNpmTask | Runs the ${script}NPM
script. npmPackageLock | cleanNPM, npmInstall | DefaultTask | Deletes the NPM files and runs npm install

to install the dependencies declared in the project’s package.json file, if present. npmShrinkwrap | cleanNPM,
npmInstall | NpmShrinkwrapTask | Locks down the versions of a package’s dependencies in order to control
which dependency versions are used.

DownloadNodeTask

The purpose of this task is to download and unpack a Node.js distribution.

Task Properties Property Name | Type | Default Value | Description nodeDir | File | null |The directory
where the Node.js distribution is unpacked. nodeExeUrl | String | null |The URL of node.exe to download
when onWindows. nodeUrl | String | null |TheURL of theNode.js distribution to download. npmUrl | String
| null |The URL of the NPM version to download.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties, to defer evaluation until task execution.

ExecuteNodeTask

This is the base task to run Node.js in a Gradle build. All tasks of type ExecuteNodeTask automatically depend
on downloadNode.

Task Properties Property Name | Type | Default Value | Description args | List<Object> | [] |
The arguments for the Node.js invocation. command | String | "node" | The file name of the ex-
ecutable to invoke. environment | Map<Object, Object> | [] | The environment variables for the
Node.js invocation. inheritProxy | boolean | true | Whether to set the http_proxy, https_proxy, and
no_proxy environment variables in the Node.js invocation based on the values of the system prop-
erties https.proxyHost, https.proxyPort, https.proxyUser, https.proxyPassword, https.nonProxyHosts,
https.proxyHost, https.proxyPort, https.proxyUser, https.proxyPassword, and https.nonProxyHosts. If
these environment variables are already set, their values will not be overwritten. nodeDir | File |

If node.download is true: node.nodeDir
Otherwise: null

1882

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.Delete.html
https://docs.gradle.org/current/javadoc/org/gradle/api/DefaultTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)

|The directory that contains the executable to invoke. If null, the executable must be available in the sys-
tem PATH. npmInstallRetries | int | 0 |The number of times the node_modules is deleted, theNPMcached data
is verified (npm cache verify), and npm install is retried in case the Node.js invocation defined by this task
fails. This can help solving corrupted node_modules directories by re-downloading the project’s dependencies.
workingDir | File | project.projectDir |The working directory to use in the Node.js invocation.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties to defer evaluation until task execution.

TaskMethods Method | Description ExecuteNodeTask args(Iterable<?> args) | Adds arguments for the
Node.js invocation. ExecuteNodeTask args(Object... args) | Adds arguments for the Node.js invocation.
ExecuteNodeTask environment(Map<?, ?> environment) | Adds environment variables for the Node.js invo-
cation. ExecuteNodeTask environment(Object key, Object value) | Adds an environment variable for the
Node.js invocation.

ExecuteNodeScriptTask

The purpose of this task is to execute a Node.js script. Tasks of type ExecuteNodeScriptTask extend
ExecuteNodeTask.

Task Properties Property Name | Type | Default Value | Description scriptFile | File | null |The Node.js
script to execute.

The properties of type File support any type that can be resolved by project.file.

ExecuteNpmTask

The purpose of this task is to execute an NPM command. Tasks of type ExecuteNpmTask extend
ExecuteNodeScriptTaskwith the following properties set by default:

Property Name | Default Value command |
If nodeDir is null: "npm"
Otherwise: "node"
scriptFile |
If nodeDir is null: null
Otherwise: "${nodeDir}/lib/node_modules/npm/bin/npm-cli.js"or "${nodeDir}/node_modules/npm/bin/npm-

cli.js" onWindows.

Task Properties Property Name | Type | Default Value | Description cacheConcurrent | boolean |
If node.npmVersion is greater thanor equal to 5.0.0, or node.nodeVersion is greater thanor equal to 8.0.0:

true

Otherwise: false
| Whether to run this task concurrently, in case the version of NPM in use supports multiple concurrent

accesses to the same cache directory. cacheDir | File |
If nodeDir is null, or node.npmVersion is greater than or equal to 5.0.0, or node.nodeVersion is greater

than or equal to 8.0.0: null
Otherwise: "${nodeDir}/.cache"
|The location of NPM’s cache directory. It sets the --cache argument. Leave the property null to keep

the default value. logLevel | String | Value to mirror the log level set in the task’s logger object. |The NPM
log level. It sets the –loglevel argument. production | boolean | false | Whether to run in production mode
during the NPM invocation. It sets the --production argument. progress | boolean | true | Whether to show

1883

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.npmjs.com/misc/config#cache
https://docs.gradle.org/current/dsl/org.gradle.api.Task.html#org.gradle.api.Task:logger
https://docs.npmjs.com/misc/config#loglevel
https://docs.npmjs.com/misc/config#production

a progress bar during the NPM invocation. It sets the --progress argument. registry | String | null |The
base URL of the NPM package registry. It sets the --registry argument. Leave the property null or empty to
keep the default value.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties, to defer evaluation until task execution.

DownloadNodeModuleTask

The purpose of this task is to download a Node.js package. The packages are downloaded in the
${workingDir}/node_modules directory,which is equal, by default, to the node_modules directory of the project.
Tasks of type DownloadNodeModuleTask extend ExecuteNpmTask in order to execute the command npm install

${moduleName}@${moduleVersion}.
DownloadNodeModuleTask instances are automatically disabled if the project’s package.json file already

lists a module with the same name in its dependencies or devDependencies object.

Task Properties Property Name | Type | Default Value | Description moduleName | String | null |The name
of the Node.js package to download. moduleVersion | String | null |The version of the Node.js package to
download.

It is possible to use Closures and Callables as values for the String properties, to defer evaluation until
task execution.

NpmInstallTask

Purpose of these tasks is to install the dependencies declared in a package.json file. Tasks of type
NpmInstallTask extend ExecuteNpmTask in order to run the command npm install.

NpmInstallTask instances are automatically disabled if the package.json file does not declare any depen-
dency in the dependency or devDependencies object.

Task Properties Property Name | Type | Default Value | Description nodeModulesCacheDir | File | null |
The directory where node_modules directories are cached. By setting this property, it is possible to cache

the node_modules directory of a project and avoid unnecessary invocations of npm install, useful especially
in Continuous Integration environments.

The node_modules directory is cached based on the content of the project’s package-lock.json (or npm-
shrinkwrap.json, or package.json if absent). Therefore, if NpmInstallTask tasks inmultiple projects are config-
ured with the same nodeModulesCacheDir, and their package-lock.json, npm-shrinkwrap.json or package.json
declare the same dependencies, their node_modules caches will be shared.

This feature is not available if the com.liferay.cache plugin is applied.
nodeModulesCacheNativeSync | boolean | true | Whether to use rsync (on Linux/macOS) or robocopy (on

Windows) to cache and restore the node_modules directory. If nodeModulesCacheDir is not set, this property
has no effect. nodeModulesDigestFile | File | null |

If this property is set, the content of the project’s package-lock.json (or npm-shrinkwrap.json, or
package.json if absent) is checked with the digest from the node_modules directory. If the digests match, do
nothing. If the digests don’t match, the node_modules directory is deleted before running npm install.

This feature isnot available if the com.liferay.cacheplugin is appliedor if theproperty nodeModulesCacheDir
is set.

removeShrinkwrappedUrls | boolean | true if the registry property has a value, false otherwise. | Whether
to temporarily remove all the hard-coded URLs in the from and resolved fields of the npm-shinkwrap.json
file before invoking npm install. This way, it is possible to force NPM to download all dependencies from a

1884

https://docs.npmjs.com/misc/config#progress
https://docs.npmjs.com/misc/config#registry
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-cache

custom registry declared in the registry property. useNpmCI | boolean | false |Whether to run npm ci instead
of npm install. If the package-lock.json file does not exist, this property has no effect.

The properties of type File support any type that can be resolved by project.file.

NpmShrinkwrapTask

The purpose of this task is to lock down the versions of a package’s dependencies so that you can control
exactly which dependency versions are used when your package is installed. Tasks of type NpmShrinkwrapTask
extend ExecuteNpmTask to execute the command npm shrinkwrap.

The generated npm-shrinkwrap.json file is automatically sorted and formatted, so it’s easier to see the
changes with the previous version.

NpmShrinkwrapTask instances are automatically disabled if the package.json file does not exist.

Task Properties Property Name | Type | Default Value | Description excludedDependencies | List<String>
| [] |The package names to exclude from the generated npm-shrinkwrap.json file. includeDevDependencies |
boolean | true | Whether to include the package’s devDependencies. It sets the --dev argument.

It is possible to use Closures and Callables as values for the String properties to defer evaluation until
task execution.

TaskMethods Method|Description NpmShrinkwrapTask excludeDependencies(Iterable<?> excludedDependencies)

| Adds package names to exclude from the generated npm-shrinkwrap.json file. NpmShrinkwrapTask

excludeDependencies(Object... excludedDependencies) | Adds package names to exclude from the
generated npm-shrinkwrap.json file.

PublishNodeModuleTask

The purpose of this task is to publish a package to the NPM registry. Tasks of type PublishNodeModuleTask
extend ExecuteNpmTask in order to execute the command npm publish.

These tasks generate a new temporary package.json file in the directory assigned to the workingDir

property; then the npm publish command is executed. If the package.json file in that location does not exist,
the one in the root of the project directory (if found) is copied; otherwise, a new file is created.

The package.json is then processed by adding the values provided by the task properties, if not already
present in the file itself. It is still possible to override one ormorefields of the package.jsonfilewith the values
providedby the task properties by adding one ormore keys (e.g., "version") to the overriddenPackageJsonKeys
property.

Task Properties Property Name | Type | Default Value | Description moduleAuthor | String | null | The
value of the author field in the generated package.json file. moduleBugsUrl | String | null |The value of the
bugs.url field in the generated package.json file. moduleDescription | String | project.description | The
value of the description field in the generated package.json file. moduleKeywords | List<String> | [] | The
value of the keywords field in the generated package.json file. moduleLicense | String | null | The value of
the license field in the generated package.json file. moduleMain | String | null | The value of the main field
in the generated package.json file. moduleName | String | Name based on osgiHelper.bundleSymbolicName:
for example, if osgiHelper.bundleSymbolicName is "com.liferay.gradle.plugins.node", the default value for
the moduleName property is "liferay-gradle-plugins-node". | The value of the name field in the generated
package.json file. moduleRepository | String | null | The value of the repository field in the generated
package.json file. moduleVersion | String | project.version | The value of the version field in the gener-
ated package.json file. npmEmailAddress | String | null | The email address of the npmjs.com user that

1885

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://docs.npmjs.com/cli/shrinkwrap
https://docs.npmjs.com/cli/shrinkwrap#other-notes
https://www.npmjs.com/
https://docs.npmjs.com/cli/publish
https://docs.npmjs.com/files/package.json#people-fields-author-contributors
https://docs.npmjs.com/files/package.json#bugs
https://docs.npmjs.com/files/package.json#description-1
https://docs.npmjs.com/files/package.json#keywords
https://docs.npmjs.com/files/package.json#license
https://docs.npmjs.com/files/package.json#main
https://github.com/gradle/gradle/blob/master/subprojects/osgi/src/main/java/org/gradle/api/internal/plugins/osgi/OsgiHelper.java
https://docs.npmjs.com/files/package.json#name
https://docs.npmjs.com/files/package.json#repository
https://docs.npmjs.com/files/package.json#version

publishes the package. npmPassword | String | null | The password of the npmjs.com user that publishes
the package. npmUserName | String | null | The name of the npmjs.com user that publishes the package.
overriddenPackageJsonKeys | Set<String> | [] |The field values to override in the generated package.json file.

TaskMethods

Method Description

PublishNodeModuleTask

overriddenPackageJsonKeys(Iterable<String>

overriddenPackageJsonKeys)

Adds field values to override in the generated package.json file.

PublishNodeModuleTask

overriddenPackageJsonKeys(String...

overriddenPackageJsonKeys)

Adds field values to override in the generated package.json file.

npmRun${script} Task

For each script declared in the package.json file of the project, one task npmRun${script} of type
ExecuteNpmTask is added. Each of these tasks is automatically configured with sensible defaults:

Property Name | Default Value args | ["run-script", "${script}"]

If the java plugin is applied and the package.json file declares a script named "build", the script is
executed before the classes task but after the processResources task.

If the lifecycle-base plugin is applied and the package.json file declares a script named test, the script
is executed when running the check task.

131.18 Service Builder Gradle Plugin
The Service Builder Gradle plugin lets you generate a service layer defined in a Service Builder service.xml
file.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.service.builder", version: "2.2.46"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.service.builder"

The Service Builder plugin automatically applies the java plugin.
Since the plugin automatically resolves the Liferay Service Builder library as a dependency, you have to

configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

1886

https://docs.npmjs.com/misc/scripts
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/4.0/userguide/java_plugin.html#sec:java_resources
https://docs.gradle.org/current/javadoc/org/gradle/language/base/plugins/LifecycleBasePlugin.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-service-builder

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildService | - | BuildServiceTask | Runs the Liferay Service

Builder.
The buildService task is automatically configured with sensible defaults, depending on whether the war

plugin is applied, or whether the osgiModule property is true:
Property Name | Default Value apiDir |
If the war plugin is applied: ${project.webAppDir}/WEB-INF/service
Otherwise: null
hbmFile |
If osgiModule is true: ${buildService.resourcesDir}/META-INF/module-hbm.xml
Otherwise: ${buildService.resourcesDir}/META-INF/portlet-hbm.xml
implDir |The first java directory of the main source set (by default: src/main/java). inputFile |
If the war plugin is applied: ${project.webAppDir}/WEB-INF/service.xml
Otherwise: ${project.projectDir}/service.xml
modelHintsFile | The file META-INF/portlet-model-hints.xml in the first resources directory of the main

source set (by default: src/main/resources/META-INF/portlet-model-hints.xml). pluginName |
If osgiModule is true: ""
Otherwise: project.name
propsUtil |
If osgiModule is true: "${bundleSymbolicName}.util.ServiceProps"The bundleSymbolicName of the project

is inferred via the OsgiHelper class.
Otherwise: "com.liferay.util.service.ServiceProps"
resourcesDir | The first resources directory of the main source set (by default: src/main/resources).

springFile |
If osgiModule is true: the file META-INF/spring/module-spring.xml in the first resources directory of the

main source set (by default: src/main/resources/META-INF/spring/module-spring.xml)
Otherwise: the file META-INF/portlet-spring.xml in the first resources directory of the main source set

(by default: src/main/resources/META-INF/portlet-spring.xml)
sqlDir |
If the war plugin is applied: ${project.webAppDir}/WEB-INF/sql
Otherwise:The directory META-INF/sql in the first resources directory of the main source set (by default:

src/main/resources/META-INF/sql).
In the typical scenario of a data-driven Liferay OSGi application split in myapp-app, myapp-service and

myapp-webmodules, the service.xml file is usually contained in the root directory of myapp-service. In the
build.gradle of the samemodule, it is enough to apply the com.liferay.service.builder plugin as described,
and then add the following snippet to enable the use of Liferay Service Builder:

buildService {

apiDir = "../myapp-api/src/main/java"

testDir = "../myapp-test/src/testIntegration/java"

}

1887

https://docs.gradle.org/current/userguide/war_plugin.html
https://github.com/gradle/gradle/blob/master/subprojects/osgi/src/main/java/org/gradle/api/internal/plugins/osgi/OsgiHelper.java

While apiDir is required, the testDir property assignment can be left out, in which case Arquillian-based
integration test classes are generated.

BuildServiceTask

Tasks of type BuildWSDDTask extend JavaExec, so all its properties andmethods, such as args and maxHeapSize

are available. They also have the following properties set by default:
Property Name | Default Value args | Service Builder command line arguments classpath |

project.configurations.serviceBuilder main | "com.liferay.portal.tools.service.builder.ServiceBuilder"
systemProperties | ["file.encoding": "UTF-8"]

Task Properties Property Name | Type | Default Value | Description apiDir | File | null | A di-
rectory where the service API Java source files are generated. It sets the service.api.dir argument.
autoImportDefaultReferences | boolean | true | Whether to automatically add default references, like
com.liferay.portal.ClassName, com.liferay.portal.Resource and com.liferay.portal.User, to the ser-
vices. It sets the service.auto.import.default.references argument. autoNamespaceTables | boolean

| true | Whether to prefix table names by the namespace specified in the service.xml file. It sets the
service.auto.namespace.tablesargument. beanLocatorUtil | String | "com.liferay.util.bean.PortletBeanLocatorUtil"
| The fully qualified class name of a bean locator class to use in the generated service classes. It sets
the service.bean.locator.util argument. buildNumber | long | 1 | A specific value to assign the
build.number property in the service.properties file. It sets the service.build.number argument.
buildNumberIncrement | boolean | true | Whether to automatically increment the build.number property in
the service.properties file by one at every service generation. It sets the service.build.number.increment
argument. databaseNameMaxLength | int | 30 |The upper bound for database table and column name lengths
to ensure it works on all databases. It sets the service.database.name.max.length argument. hbmFile |
File | null | A Hibernate Mapping file to generate. It sets the service.hbm.file argument. implDir |
File | null | A directory where the service Java source files are generated. It sets the service.impl.dir

argument. inputFile | File | null | The project’s service.xml file. It sets the service.input.file

argument. modelHintsConfigs | Set | ["classpath*:META-INF/portal-model-hints.xml", "META-INF/portal-

model-hints.xml", "classpath*:META-INF/ext-model-hints.xml", "classpath*:META-INF/portlet-model-

hints.xml"] | Paths to the model hints files for Liferay Service Builder to use in generating the service layer.
It sets the service.model.hints.configs argument. modelHintsFile | File | null | Amodel hints file for the
project. It sets the service.model.hints.file argument. osgiModule | boolean | false | Whether to generate
the service layer for OSGi modules. It sets the service.osgi.module argument. pluginName | String | null | If
specified, a plugin can enable additional generation features, such as Clp class generation, for non-OSGi
modules. It sets the service.plugin.name argument. propsUtil | String | null |The fully qualified class name
of the service properties util class to generate. It sets the service.props.util argument. readOnlyPrefixes
| Set | ["fetch", "get", "has", "is", "load", "reindex", "search"] | Prefixes of methods to consider
read-only. It sets the service.read.only.prefixes argument. resourceActionsConfigs | Set | ["META-

INF/resource-actions/default.xml", "resource-actions/default.xml"] | Paths to the resource actions files
for Liferay ServiceBuilder to use in generating the service layer. It sets the service.resource.actions.configs
argument. resourcesDir | File | null | A directory where the service non-Java files are generated. It
sets the service.resources.dir argument. springFile | File | null | A service Spring file to generate. It
sets the service.spring.file argument. springNamespaces | Set | ["beans"] | Namespaces of Spring XML
Schemas to add to the service Spring file. It sets the service.spring.namespaces argument. sqlDir | File |
null | A directory where the SQL files are generated. It sets the service.sql.dir argument. sqlFileName |
String | "tables.sql" | A name (relative to sqlDir) for the file in which the SQL table creation instructions
are generated. It sets the service.sql.file argument. sqlIndexesFileName | String | "indexes.sql" |

1888

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:systemProperties

A name (relative to sqlDir) for the file in which the SQL index creation instructions are generated. It
sets the service.sql.indexes.file argument. sqlSequencesFileName | String | "sequences.sql" | A name
(relative to sqlDir) for the file in which the SQL sequence creation instructions are generated. It sets the
service.sql.sequences.file argument. targetEntityName | String | null | If specified, it’s the name of the
entity for which Liferay Service Builder should generate the service. It sets the service.target.entity.name
argument. testDir | File | null | If specified, it’s a directory where integration test Java source files
are generated. It sets the service.test.dir argument. uadDir | File | null | A directory where the
UAD (user-associated data) Java source files are generated. It sets the service.uad.dir argument.
uadTestIntegrationDir | File | null | A directory where integration test UAD (user-associated data) Java
source files are generated. It sets the service.uad.test.integration.dir argument.

Theproperties of type File supports any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties, to defer evaluation until task execution.

Additional Configuration

There are additional configurations that can help you use Service Builder.

Liferay Service Builder Dependency

By default, the plugin creates a configuration called serviceBuilder and adds a dependency to the latest
released version of Liferay Service Builder. It is possible to override this setting and use a specific version of
the tool by manually adding a dependency to the serviceBuilder configuration:

dependencies {

serviceBuilder group: "com.liferay", name: "com.liferay.portal.tools.service.builder", version: "1.0.292"

}

If you’re applying the com.liferay.gradle.plugins or com.liferay.gradle.plugins.workspace plugins to
your project, the Service Builder dependency is already added to the serviceBuilder configuration. Therefore,
if you try to apply a customized version of Service Builder, it’s not recognized; you must override the
configuration already applied.

To do this, youmust customize the classpath of the buildService task. If you’re supplying the customized
Service Builder plugin through a module named custom-sb-api, you could modify the buildService task like
this:

buildService {

apiDir = "../custom-sb-api/src/main/java"

classpath = configurations.serviceBuilder.filter { file -> !file.name.contains("com.liferay.portal.tools.service.builder") }

}

If you do this in conjunction with the serviceBuilder dependency configuration, the custom Service
Builder version is used.

131.19 Source Formatter Gradle Plugin

The Source Formatter Gradle plugin lets you format project files using the Liferay Source Formatter tool.
The plugin has been successfully tested with Gradle 4.10.2.

1889

https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins
https://github.com/liferay/liferay-portal/blob/master/modules/sdk/gradle-plugins-workspace
https://github.com/liferay/liferay-portal/tree/master/modules/util/source-formatter

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.source.formatter", version: "2.3.413"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.source.formatter"

Since the plugin automatically resolves the Liferay Source Formatter library as a dependency, you have to
configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds two tasks to your project:
Name | Depends On | Type | Description checkSourceFormatting | - | FormatSourceTask | Runs the Liferay

Source Formatter to check for source formatting errors. formatSource | - | FormatSourceTask | Runs the
Liferay Source Formatter to format the project files.

If desired, it is possible to check for source formatting errors while executing the check task by adding
the following dependency:

check {

dependsOn checkSourceFormatting

}

The same can be achieved by adding the following snippet to the build.gradle file in the root directory of
a LiferayWorkspace:

subprojects {

afterEvaluate {

if (plugins.hasPlugin("base") && plugins.hasPlugin("com.liferay.source.formatter")) {

check.dependsOn checkSourceFormatting

}

}

}

The tasks checkSourceFormatting and formatSource are automatically skipped if another task with the
same name is being executed in a parent project.

1890

https://docs.gradle.org/current/userguide/java_plugin.html#N15056

FormatSourceTask

Tasks of type FormatSourceTask extend JavaExec, so all its properties andmethods, like args and maxHeapSize

are available. They also have the following properties set by default:
Property Name | Default Value args | Source Formatter command line arguments classpath |

project.configurations.sourceFormatter main | "com.liferay.source.formatter.SourceFormatter"

Task Properties Property Name | Type | Default Value | Description autoFix | boolean | false | Whether
to automatically fix source formatting errors. It sets the source.auto.fix argument. baseDir | File | |The
Source Formatter base directory. It sets the source.base.dir argument. (Read-only) baseDirName | String |
"./" | The name of the Source Formatter base directory, relative to the project directory. fileExtensions
| List<String> | [] | The file extensions to format. If empty, all file extensions will be formatted. It
sets the source.file.extensions argument. files | List<File> | | The list of files to format. It sets the
source.files argument. (Read-only) fileNames | List<String> | null | The file names to format, relative
to the project directory. If null, all files contained in baseDir will be formatted. formatCurrentBranch |
boolean | false | Whether to format only the files contained in baseDir that are added or modified in the
current Git branch. It sets the format.current.branch argument. formatLatestAuthor | boolean | false |
Whether to format only the files contained in baseDir that are added or modified in the latest Git com-
mits of the same author. It sets the format.latest.author argument. formatLocalChanges | boolean | false |
Whether to format only the unstaged files contained in baseDir. It sets the format.local.changes argument.
gitWorkingBranchName | String | "master" |TheGitworking branchname. It sets the git.working.branch.name
argument. includeSubrepositories | boolean | false |Whether to format files that are in read-only subrepos-
itories. It sets the include.subrepositories argument. maxLineLength | int | 80 | The maximum number
of characters allowed in Java files. It sets the max.line.length argument. printErrors | boolean | true |
Whether to print formatting errors on the Standard Output stream. It sets the source.print.errors ar-
gument. processorThreadCount | int | 5 | The number of threads used by Source Formatter. It sets the
processor.thread.countargument. showDebugInformation | boolean | false |Whether to showdebug informa-
tion, if present. It sets the show.debug.information argument. showDocumentation | boolean | false |Whether
to show the documentation for the source formatting issues, if present. It sets the show.documentation

argument. showStatusUpdates | boolean | false | Whether to show status updates during source formatting,
if present. It sets the show.status.updates argument. throwException | boolean | false | Whether to fail the
build if formatting errors are found. It sets the source.throw.exception argument.

Additional Configuration

There are additional configurations that can help you use the Source Formatter.

Liferay Source Formatter Dependency

By default, the plugin creates a configuration called sourceFormatter and adds a dependency to the latest
released version of Liferay Source Formatter. It is possible to override this setting and use a specific version
of the tool by manually adding a dependency to the sourceFormatter configuration:

dependencies {

sourceFormatter group: "com.liferay", name: "com.liferay.source.formatter", version: "1.0.885"

}

System Properties

It is possible to set thedefault valuesof the fileExtensions, fileNames, formatCurrentBranch, formatLatestAuthor,
and formatLocalChanges properties for a FormatSourceTask task via system properties:

1891

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main

• -D${task.name}.file.extensions=java,xml

• -D${task.name}.file.names=README.markdown,src/main/resources/hello.txt

• -D${task.name}.format.current.branch=true

• -D${task.name}.format.latest.author=true

• -D${task.name}.format.local.changes=true

For example, run the following Bash command to format only the unstaged files in the project:

./gradlew formatSource -DformatSource.format.local.changes=true

131.20 Soy Gradle Plugin

The Soy Gradle plugin lets you compile Closure Templates into JavaScript functions. It also lets you use a
custom localizationmechanism in the generated .soy.js files by replacing goog.getMsg definitions with a
different function call (e.g., Liferay.Language.get).

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.soy", version: "3.1.8"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

There are two Soy Gradle plugins you can apply to your project:

• Apply the Soy Plugin to compile Closure Templates into JavaScript functions:

apply plugin: "com.liferay.soy"

• Apply the Soy Translation Plugin to use a custom localization mechanism in the generated .soy.js files:

apply plugin: "com.liferay.soy.translation"

Since the Soy Gradle plugin automatically resolves the Soy library as a dependency, you have to configure
a repository that hosts the library and its transitive dependencies. The Liferay CDN repository hosts them
all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

1892

https://developers.google.com/closure/templates/
https://developers.google.com/closure/templates/docs/translation#closurecompiler

Soy Plugin

The Soy plugin adds two tasks to your project:
Name | Depends On | Type | Description buildSoy | - | BuildSoyTask | Compiles Closure Templates into

JavaScript functions. wrapSoyAlloyTemplate | - configJSModules if com.liferay.js.module.config.generator
is applied - processResources if java is applied - transpileJS if com.liferay.js.transpiler is applied |
WrapSoyAlloyTemplateTask | Wraps the JavaScript functions compiled from Closure Templates into AlloyUI
modules.

The plugin also adds the following dependencies to tasks defined by the java plugin:
Name | Depends On classes | wrapSoyAlloyTemplate
The buildSoy task is automatically configured with sensible defaults, depending on whether the java

plugin is applied:
Property Name | Default Value includes | ["⁎⁎/*.soy"] source |
If the java plugin is applied: The first resources directory of the main source set (by default,

src/main/resources).
Otherwise: []
The wrapSoyAlloyTemplate task is disabled by default, and it is automatically configured with sensible

defaults, depending on whether the java plugin is applied:
Property Name | Default Value enabled | false includes | ["⁎⁎/*.soy.js"] source |
If the java plugin is applied: project.sourceSets.main.output.resourcesDir
Otherwise: []

Additional Configuration

There are additional configurations that can help you use the Soy library.

SoyDependency By default, the plugin creates a configuration called soy and adds a dependency to the
2015-04-10 version of the Soy library. It is possible to override this setting and use a specific version of the
tool by manually adding a dependency to the soy configuration:

dependencies {

soy group: "com.google.template", name: "soy", version: "2015-04-10"

}

Soy Translation Plugin

The Soy Translation plugin adds one task to your project:
Name|DependsOn|Type |Description replaceSoyTranslation | - configJSModules if com.liferay.js.module.config.generator

is applied - processResources if java is applied - transpileJS if com.liferay.js.transpiler is applied |
ReplaceSoyTranslationTask | Replaces goog.getMsg definitions with Liferay.Language.get calls.

The plugin also adds the following dependencies to tasks defined by the java plugin:
Name | Depends On classes | replaceSoyTranslation
The replaceSoyTranslation task is automatically configuredwith sensible defaults, dependingonwhether

the java plugin is applied:
Property Name | Default Value includes | ["⁎⁎/*.soy.js"] replacementClosure | Replaces goog.getMsg

definitions with Liferay.Language.get calls. source |
If the java plugin is applied: project.sourceSets.main.output.resourcesDir
Otherwise: []

1893

https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-js-module-config-generator
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-js-transpiler
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:includes
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:source
https://docs.gradle.org/current/dsl/org.gradle.api.Task.html#org.gradle.api.Task:enabled
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:includes
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:source
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-js-module-config-generator
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-js-transpiler
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:includes
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:source

Tasks

BuildSoyTask

Tasks of type BuildSoyTask extend SourceTask, so all its properties andmethods, such as include and exclude,
are available.

Task Properties Property Name | Type | Default Value | Description classpath | FileCollection |
project.configurations.soy |The classpath for executing the Liferay Portal Tools Soy Builder.

WrapSoyAlloyTemplateTask

Tasks of type WrapSoyAlloyTemplateTask extend SourceTask, so all its properties andmethods, such as include
and exclude, are available.

Task Properties Property Name | Type | Default Value | Description moduleName | String | null |The name
of the AlloyUI module. namespace | String | null |The namespace of the Closure Templates of the project.

It is possible to use Closures and Callables as values for the String properties to defer evaluation until
task execution.

ReplaceSoyTranslationTask

The ReplaceSoyTranslationTask task typefinds all the goog.getMsgdefinitions in theproject’s files and replaces
themwith a custom function call.

var MSG_EXTERNAL_123 = goog.getMsg('welcome-to-{$releaseInfo}', { 'releaseInfo': opt_data.releaseInfo });

A goog.getMsg definition looks like the example above, and it has the following components:

• variable name: MSG_EXTERNAL_123
• language key: welcome-to-{$releaseInfo}
• arguments object: { 'releaseInfo': opt_data.releaseInfo }

Tasks of type ReplaceSoyTranslationTask extend SourceTask, so all its properties andmethods, such as
include and exclude, are available.

Task Properties Property Name | Type | Default Value | Description replacementClosure | Closure<String>
| null |The Closure invoked in order to get the replacement for goog.getMsg definitions. The given Closure is
passed the variable name, language key, and arguments object as its parameters.

131.21 Target Platform Gradle Plugin

The Target Platform Gradle plugin helps with building multiple projects against a declared API target
platform. Java dependencies can be managed with Maven BOMs and OSGi modules can be resolved against
an OSGi distribution.

The plugin has been successfully tested with Gradle 4.10.2.

1894

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)
https://docs.gradle.org/current/javadoc/org/gradle/api/file/FileCollection.html
https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-soy-builder
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.target.platform", version: "1.1.13"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

There are two Target Platform Gradle plugins you can apply to your project:

• The Target PlatformPlugin helps to configure your projects to build against an established set of platform
artifacts, including Java and OSGi dependencies.

apply plugin: "com.liferay.target.platform"

• The Target Platform IDE Plugin is a superset of the Target Platform Plugin (it applies the above plugin)
and also adds IDE integration for searching and debugging source code in the target platform artifacts.

apply plugin: "com.liferay.target.platform.ide"

Since the plugin automatically resolves target platform configurations as dependencies, youmust con-
figure a repository that hosts these artifacts. The Liferay CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Target Platform Plugin

Theplugin applies the Spring DependencyManagement Plugin and then adds several specific configurations
to configure the BOMs that are imported to manage Java dependencies and the various artifacts used in
resolving OSGi dependencies. Also, a new resolve task is added to resolve all OSGi requirements against a
declared distribution artifact.

The plugin adds a series of configurations to your project:
Name | Description targetPlatformBOMs | Configures all the BOMs to import as managed de-

pendencies. targetPlatformBundles | Configures all the bundles in addition to the distro to resolve
against. targetPlatformDistro | Configures the distro JAR file to use as base for resolving against.
targetPlatformRequirements | Configures the list of JAR files to use as run requirements for resolving.

The plugin adds a task resolve of type ResolveTask to your project that performs an OSGi resolve
operation using the targetPlatformRequirements configuration as the basis of the requirements. The
targetPlatformBundles configuration is used as a repository for the resolver to resolve requirements. Lastly,
the targetPlatformDistro configuration is used to provide the distro artifact for the resolve process. The distro
is the artifact that provides all the OSGi capabilities of the target platform. All of these parameters are used
to create a bndrun file that can be used as input into the Bndrun resolve operation.

1895

https://github.com/spring-gradle-plugins/dependency-management-plugin

Target Platform IDE Plugin

The plugin applies the Target Platform and the eclipse plugins to your project, and also adds a special
targetPlatformIDE configuration, which is used to configure both the eclipse and idea plugin model in
Gradle to add all target platform artifacts to the classpath so they are visible to both Eclipse and IntelliJ’s Java
Model Search (for looking up sources to classes).

Project Extension

The Target Platform plugin exposes the following properties through the extension named targetPlatform:
Property Name | Type | Default Value | Description ignoreResolveFailures | boolean | true | Whether

to ignore resolve failures found when executing tasks of type ResolveTask. subprojects | Set<Project> |
project.subprojects | The subprojects to configure with target platform support, including dependency
management and the resolve task.

The same extension exposes the followingmethods:
Method |Description TargetPlatformExtension applyToConfiguration(Iterable<?> configurationNames)

| Adds additional configurations to configure the BOMs that are imported to manage Java depen-
dencies and the various artifacts used in resolving OSGi dependencies. TargetPlatformExtension

applyToConfiguration(Object... configurationNames) | Adds additional configurations to configure the
BOMs that are imported to manage Java dependencies and the various artifacts used in resolving OSGi
dependencies. TargetPlatformExtension onlyIf(Closure<Boolean> onlyIfClosure) | Includes a subproject
in the target platform configuration if the given closure returns true. The closure is evaluated at the end
of the subproject configuration phase and is passed a single parameter: the subproject. If the closure
returns false, the subproject is not included in the target platform configuration TargetPlatformExtension

onlyIf(Spec<Project> onlyIfSpec) | Includes a subproject in the target platform configuration if the given
spec is satisfied. The spec is evaluated at the end of the subproject configuration phase. If the spec is not
satisfied, the subproject is not included in the target platform configuration. TargetPlatformExtension

resolveOnlyIf(Closure<Boolean> resolveOnlyIfClosure) | Includes a subproject in the resolving process
(including both the requirements and bundles configuration) if the given closure returns true. The
closure is evaluated at the end of the subproject configuration phase and is passed a single parameter: the
subproject. If the closure returns false, the subproject is the resolution process. TargetPlatformExtension
resolveOnlyIf(Spec<Project> resolveOnlyIfSpec) | Includes a subproject in the resolving platform con-
figuration if the given spec is satisfied. The spec is evaluated at the end of the subproject configuration
phase. If the spec is not satisfied, the subproject is not included in the target platform configuration.
TargetPlatformExtension subprojects(Iterable<Project> subprojects) | Includes additional projects to be
configured with Target Platform support. TargetPlatformExtension subprojects(Project... subprojects)

| Includes additional projects to be configured with Target Platform support.

Tasks

ResolveTask

The purpose of this task is to resolve an OSGi module (or all OSGi modules of subprojects) against the avail-
able targetPlatformBundles and targetPlatformDistro configurations. Bydefault, the targetPlatformBundles
are all the artifacts created by all the subprojects. The targetPlatformDistro must be set explicitly to a
valid distribution artifact. When the task is performed, a bndrun file is generated using the specified
targetPlatformDistro as the -distro instruction; the -runrequirements are a set of osgi.identity require-
ments for the targetPlatformRequirements configuration. If the resolve operation is able to find a valid set of
-runbundles that match the -runrequirements, then the task passes successfully (the resolution is valid). If a

1896

https://docs.gradle.org/current/userguide/eclipse_plugin.html

set of run bundles can’t be found, the resolution has failed and the failed requirements are listed as output of
the task.

TaskProperties PropertyName|Type |DefaultValue |Description bndrunFile | File | null | If this property
is specified, it is used as the bndrun file to input into the resolver. bundlesFileCollection | FileCollection
| All JAR files of subprojects with jar task |The input to bndrun resolve operation. distroFileCollection |
FileCollection | null |The distro parameter for the generated bndrun file. ignoreFailures | boolean | false
| Whether the resolve task should ignore failing the build for resolution errors. offline | boolean | null |
Whether to run the bndrun resolve operation in offline mode. requirementsFileCollection | FileCollection
|

For the root project: All the output JAR files of the subprojects.
For subprojects:The output JAR file of the subproject.
| For each resolve operation, the requirements must be specified in the bndrun file; each of the JARs in

this collection generate an osgi.identify requirement in the bndrun file.

Additional Configuration

There are additional configurations that you can use to configure the target platform.

Target Platform BOMs Dependency

The plugin creates a configuration called targetPlatformBOMswith no defaults. You can use this dependency
to set which BOMs to import to configure your target platform.

dependencies {

targetPlatformBOMs group: "com.liferay", name: "com.liferay.ce.portal.bom", version: "7.1.0"

targetPlatformBOMs group: "com.liferay", name: "com.liferay.ce.portal.compile.only", version: "7.1.0"

}

Target Platform Bundles Dependency

The plugin creates a configuration called targetPlatformBundles. It is configured with default dependencies
to all resolvable bundles in a multi-project build (e.g., all projects in multi-project build that have a jar task).
This can be used to specify additional bundles that should be added to the set of bundles given to resolve
task to resolve against when checking for OSGi requirements.

dependencies {

targetPlatformBundles group: "com.google.guava", name: "guava", version: "23.0"

}

Target Platform Distro Dependency

The plugin creates a configuration called targetPlatformDistro. It is has no default so you must specify
which artifact you want to use as the distribution to resolve against.

dependencies {

targetPlatformDistro group: "com.liferay", name: "com.liferay.ce.portal.distro", version: "7.1.0"

}

If you have created your own custom distro JAR that is available locally, you can use the filesmethod to
add it to the configuration.

dependencies {

targetPlatformDistro files("custom-distro.jar")

}

1897

Target Platform Requirements Dependency

The plugin creates a configuration called targetPlatformRequirements. It is configured with default depen-
dencies to all resolvable bundles in a multi-project build (e.g., all projects in multi-project build that have a
jar task). This is can be used to specify additional bundles that should be added to the set of bundles given to
the resolve task to set as osgi.identity requirements.

dependencies {

targetPlatformRequirements group: "com.liferay", name: "com.liferay.other.bundle", version: "1.0"

}

131.22 Theme Builder Gradle Plugin
TheTheme Builder Gradle plugin lets you run the LiferayTheme Builder tool to build the Liferay theme files
in your project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.theme.builder", version: "2.0.7"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.theme.builder"

TheThemeBuilderpluginautomatically applies the warplugin. It also applies the com.liferay.css.builder
plugin to compile the Sass files in the theme.

Since the plugin automatically resolves the LiferayTheme Builder library as a dependency, you have to
configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildTheme | - | BuildThemeTask | Builds the theme files.
The plugin also adds the following dependencies to tasks defined by the com.liferay.css.builder and

war plugins:
Name | Depends On buildCSS | buildTheme war | buildTheme
The buildCSS dependency compiles the Sass files contained in the directory specified by the

buildTheme.outputDir property. Moreover, the war task is configured as follows

1898

https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-theme-builder
https://docs.gradle.org/current/userguide/war_plugin.html
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-css-builder
http://sass-lang.com/
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-css-builder#tasks
https://docs.gradle.org/current/userguide/war_plugin.html#sec:war_default_settings

• exclude the directory specified in the buildTheme.diffsDir property from theWAR file.
• include the files contained in the buildTheme.outputDir directory into theWAR file.
• include only the compiled CSS files, not SCSS files, into theWAR file.

The buildTheme task is automatically configured with sensible defaults:
PropertyName|DefaultValue diffsDir | project.webAppDir outputDir | "${project.buildDir}/buildTheme"

parentFile |Thefirst JARfile in the parentThemes configuration that containsa META-INF/resources/${buildTheme.parentName}
directory, or the first WAR file in the parentThemes configuration whose name starts with ${parentName}-

theme-. parentName | "_styled" templateExtension | "ftl" themeName | project.name unstyledFile | The first
JAR file in the parentThemes configuration that contains a META-INF/resources/_unstyled directory.

BuildThemeTask

Tasks of type BuildThemeTask extend JavaExec, so all its properties andmethods, such as args and maxHeapSize,
are available. They also have the following properties set by default:

Property Name | Default Value args | Theme Builder command line arguments classpath |
project.configurations.themeBuilder main | "com.liferay.portal.tools.theme.builder.ThemeBuilder"

Task Properties Property Name | Type | Default Value | Description diffsDir | File | null |The directory
that contains the files to copy over the parent theme. It sets the --diffs-dir argument. outputDir | File |
null |The directory where to build the theme. It sets the --output-dir argument. parentDir | File | null |
The directory of the parent theme. It sets the --parent-path argument. parentFile | File | null | The JAR
file of the parent theme. If parentDir is specified, this property has no effect. It sets the --parent-path

argument. parentName | String | null |The name of the parent theme. It sets the --parent-name argument.
templateExtension | String | null | The extension of the template files, usually "ftl" or "vm". It sets the
--template-extension argument. themeName | String | null |The name of the new theme. It sets the --name
argument. unstyledDir | File | null | The directory of Liferay Frontend Theme Unstyled. It sets the --

unstyled-dir argument. unstyledFile | File | null | The JAR file of Liferay Frontend Theme Unstyled. If
unstyledDir is specified, this property has no effect. It sets the --unstyled-dir argument.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties to defer evaluation until task execution.

Additional Configuration

There are additional configurations that can help you use the CSS Builder.

Liferay Theme Builder Dependency

Bydefault, the plugin creates a configuration called themeBuilder and adds adependency to the latest released
version of the LiferayTheme Builder. It is possible to override this setting and use a specific version of the
tool by manually adding a dependency to the themeBuilder configuration:

dependencies {

themeBuilder group: "com.liferay", name: "com.liferay.portal.tools.theme.builder", version: "1.1.7"

}

Parent Theme Dependencies

Bydefault, the plugin creates a configuration called parentThemes andaddsdependencies to the latest released
versions of the Liferay Frontend Theme Styled, Liferay Frontend Theme Unstyled, and Liferay Frontend

1899

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.css.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-theme/frontend-theme-unstyled
https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-theme/frontend-theme-unstyled
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.css.Object)
https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-theme/frontend-theme-styled
https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-theme/frontend-theme-unstyled
https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-theme/frontend-theme-classic
https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-theme/frontend-theme-classic

Theme Classic artifacts. It is possible to override this setting and use a specific version of the artifacts by
manually adding dependencies to the parentThemes configuration. For example,

dependencies {

parentThemes group: "com.liferay", name: "com.liferay.frontend.theme.styled", version: "VERSION"

parentThemes group: "com.liferay", name: "com.liferay.frontend.theme.unstyled", version: "VERSION"

parentThemes group: "com.liferay.plugins", name: "classic-theme", version: "VERSION"

}

Specifying dependency versions is not required when leveraging workspace’s Target Platform
functionality. All dependencies with the group ID com.liferay or com.liferay.portal are automatically
set when targeting a platform. For external theme dependencies (e.g., classic-theme with the group ID
com.liferay.plugins), you can find the version used by your specific Liferay DXP instance by leveraging the
Gogo shell. In a Gogo shell prompt, execute the following command:

lb -s theme

This lists the deployed theme bundles and their versions. Extract the versions for the themedependencies
you want to leverage and add them to your configuration.

131.23 TLDDoc Builder Gradle Plugin

The TLDDoc Builder Gradle plugin lets you run the Tag Library Documentation Generator tool in order to
generate documentation for the JSP Tag Library Descriptor (TLD) files in your project.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.tlddoc.builder", version: "1.3.3"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

There are two TLDDoc Builder Gradle plugins you can apply to your project:

• Apply the TLDDoc Builder Plugin to generate tag library documentation for your project:

apply plugin: "com.liferay.tlddoc.builder"

• Apply the App TLDDoc Builder Plugin in a parent project to generate the tag library documentation as
a single, combined HTML document for an application that spans different subprojects, each one
representing a different component of the same application:

apply plugin: "com.liferay.app.tlddoc.builder"

1900

https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-theme/frontend-theme-classic
https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-theme/frontend-theme-classic
http://web.archive.org/web/20070624180825/https://taglibrarydoc.dev.java.net/

Since theplugin automatically resolves theTagLibraryDocumentationGenerator library as adependency,
you must configure a repository that hosts the library and its transitive dependencies. The Liferay CDN
repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

TLDDoc Builder Plugin

The plugin adds three tasks to your project:
Name | Depends On | Type | Description copyTLDDocResources | - | Copy | Copies the tag library

documentation resources from src/main/tlddoc to the destination directory of the tlddoc task. tlddoc |
copyTLDDocResources, validateTLD | TLDDocTask | Generates the tag library documentation. validateTLD | - |
ValidateSchemaTask | Validates the TLD files in the project.

The tlddoc task is automatically configuredwith sensible defaults, depending onwhether the java plugin
is applied:

PropertyName |Default Valuewith the javaplugin destinationDir | ${project.docsDir}/tlddoc includes
| ["⁎⁎/*.tld"] source | project.sourceSets.main.resources.srcDirs

The validateTLD task is also automatically configured with sensible defaults, depending on whether the
java plugin is applied:

Property Name | Default Value includes |
If the java plugin is applied: ["⁎⁎/*.tld"]
Otherwise: []
source |
If the java plugin is applied: project.sourceSets.main.resources.srcDirs
Otherwise: null
By default, the tlddoc task generates the documentation for all the TLD files that are found in the

resources directories of the main source set. The documentation files are saved in build/docs/tlddoc and
include the files copied from src/main/tlddoc.

The copyTLDDocResources task lets you add references to images and other resources directly in the TLD
files. For example, if the project includes an image called breadcrumb.png in the src/main/tlddoc/images

directory, you can reference it in a TLD file contained in the src/main/resources directory:

<description>Hello World <![CDATA[</description>

App TLDDoc Builder Plugin

In order to use the App TLDDoc Builder plugin, it is required to apply the com.liferay.app.tlddoc.builder
plugin in a parent project (that is, a project that is a common ancestor of all the subprojects representing the
various components of the app). It is also required to apply the com.liferay.tlddoc.builder plugin to all the
subprojects that contain TLD files.

The App TLDDoc Builder plugin automatically applies the base plugin. It also adds three tasks to your
project:

Name | Depends On | Type | Description appTLDDoc | copyAppTLDDocResources, the validateTLD tasks of
the subprojects | TLDDocTask | Generates tag library documentation for the app. copyAppTLDDocResources | - |
Copy | Copies the tag library documentation resources defined as inputs for the copyTDLDocResources tasks
of the subprojects, aggregating them into the destination directory of the appTLDDoc task. jarAppTLDDoc |
appTLDDoc | Jar | Assembles a JAR archive containing the tag library documentation files for this app.

1901

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/standard_plugins.html#N135C1
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/TaskInputs.html#getFiles()
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html

The appTLDDoc task is automatically configured with sensible defaults:
Property Name | Default Value destinationDir | ${project.buildDir}/docs/tlddoc source |The sum of

all the tlddoc.source values of the subprojects

Project Extension

The App TLDDoc Builder plugin exposes the following properties through the extension named
appTLDDocBuilder:

Property Name | Type | Default Value | Description subprojects | Set<Project> | project.subprojects |
The subprojects to include in the tag library documentation of the app.

The same extension exposes the followingmethods:
Method | Description AppTLDDocBuilderExtension subprojects(Iterable<Project> subprojects) |

Include additional projects in the tag library documentation of the app. AppTLDDocBuilderExtension

subprojects(Project... subprojects) | Include additional projects in the tag library documentation of the
app.

Tasks

TLDDocTask

Tasks of type TLDDocTask extend JavaExec, so all its properties andmethods, such as args and maxHeapSize,
are available. They also have the following properties set by default:

Property Name | Default Value args | Tag Library Documentation Generator command line arguments
classpath | project.configurations.tlddoc main | "com.sun.tlddoc.TLDDoc" maxHeapSize | "256m"

The TLDDocTask class is also very similar to SourceTask, which means it provides a source property and
lets you specify include and exclude patterns.

Task Properties Property Name | Type | Default Value | Description destinationDir | File | null | The
directory where the tag library documentation files are saved. excludes | Set<String> | [] | The TLD file
patterns to exclude. includes | Set<String> | [] |The TLD file patterns to include. source | FileTree | [] |The
TLD files to generate documentation for, after the include and exclude patterns have been applied. xsltDir |
File | null |The directory that contains the customXSLT stylesheets used by the Tag Library Documentation
Generator to produce the final documentation files. It sets the -xslt argument.

The properties of type File support any type that can be resolved by project.file.

Task Methods The methods available for TLDDocTask are exactly the same as the one defined in the
SourceTask class.

ValidateSchemaTask

Tasks of type ValidateSchemaTask extend SourceTask, so all its properties andmethods, such as include and
exclude, are available.

Tasks of this type invoke the schemavalidate Ant task in order to validate XML files described by an XML
schema.

TaskProperties PropertyName |Type |Default Value |Description dtdDisabled | boolean | false |Whether
to disable DTD support. fullChecking | boolean | true | Whether to enable full schema checking. lenient |
boolean | false | Whether to only check if the XML document is well-formed. xmlParserClassName | String |

1902

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.tlddoc.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.tlddoc.Object)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)
http://ant.apache.org/manual/Tasks/schemavalidate.html

null |The class name of the XML parser to use. xmlParserClasspath | FileCollection | null |The classpath
with the XML parser.

It is possible to use Closures and Callables as values for the String properties to defer evaluation until
task execution.

Additional Configuration

There are additional configurations that can help you use the TLDDoc Builder.

Tag Library Documentation Generator Dependency

By default, the plugin creates a configuration called tlddoc and adds a dependency to the 1.3 version of the
Tag Library Documentation Generator. It is possible to override this setting and use a specific version of the
tool by manually adding a dependency to the tlddoc configuration:

dependencies {

tlddoc group: "taglibrarydoc", name: "tlddoc", version: "1.3"

}

131.24 TLD Formatter Gradle Plugin
The TLD Formatter Gradle plugin lets you format a project’s TLD files using the Liferay TLD Formatter tool.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.tld.formatter", version: "1.0.9"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.tld.formatter"

Since the plugin automatically resolves the Liferay TLD Formatter library as a dependency, you have to
configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description formatTLD | - | FormatTLDTask | Runs the Liferay TLD Formatter

to format files.

1903

https://github.com/liferay/liferay-portal/tree/master/modules/util/tld-formatter

FormatTLDTask

Tasks of type FormatTLDTask extend JavaExec, so all its properties andmethods, such as args and maxHeapSize,
are available. They also have the following properties set by default:

Property Name | Default Value args | TLD Formatter command line arguments classpath |
project.configurations.tldFormatter main | "com.liferay.tld.formatter.TLDFormatter"

Task Properties Property Name | Type | Default Value | Description plugin | boolean | true | Whether to
format all the TLD files contained in the workingDir directory. If false, all liferay-portlet-ext.tld files are
ignored. It sets the tld.plugin argument.

Additional Configuration

There are additional configurations that can help you use the TLD Formatter.

Liferay TLD Formatter Dependency

Bydefault, the plugin creates a configuration called tldFormatter and adds adependency to the latest released
version of Liferay TLD Formatter. It is possible to override this setting and use a specific version of the tool
by manually adding a dependency to the tldFormatter configuration:

dependencies {

tldFormatter group: "com.liferay", name: "com.liferay.tld.formatter", version: "1.0.5"

}

131.25 Whip Gradle Plugin
TheWhipGradle plugin lets you use the LiferayWhip library to ensure that unit tests fully cover your project’s
code. See here for a usage sample.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.whip", version: "1.0.7"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.whip"

Since the plugin automatically resolves the LiferayWhip library as a dependency, you have to configure a
repository that hosts the library and its transitive dependencies. The Liferay CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

1904

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:workingDir
https://github.com/liferay/liferay-portal/tree/master/modules/test/whip
https://github.com/liferay/liferay-portal/tree/master/modules/sdk/gradle-plugins-whip/src/gradleTest/smoke

By default,Whip is automatically applied to all tasks of type Test. If a task hasWhip applied andWhip
is enabled, thenWhip is configured as a Java Agent.

Project Extension

TheWhip Gradle plugin exposes the following properties through the extension named whip:
Property Name | Type | Default Value | Description version | String | latest.release | The version of

the LiferayWhip library to use.
The same extension exposes the followingmethods:
Method | Description void applyTo(Task task) | AppliesWhip to a task. The task instance must imple-

ment the JavaForkOptions interface.

Task Extension

If Whip is applied, the following task properties are available through the extension named whip:
Property Name | Type | Default Value | Description dataFile | File | test-coverage/whip.dat | enabled |

boolean | true | Whether to configureWhip as a Java Agent. excludes | List<String> | [] |The class name
patterns to exclude when checking for unit test code coverage. For example, a value could be ['.*Test',
'.*Test\\$.*', '.*\\$Proxy.*', 'com/liferay/whip/.*']. includes | List<String> | [] |The class name pat-
terns to include when checking for unit test code coverage. instrumentDump | boolean | false | whipJarFile |
File |The first file in the whip configuration whose name starts with com.liferay.whip-. | TheWhip JAR file.

The same extension exposes the followingmethods:
Method | Description WhipTaskExtension excludes(Iterable<Object> excludes) | Adds class name

patterns to exclude when checking for unit test coverage. WhipTaskExtension excludes(Object...

excludes) | Adds class name patterns to exclude when checking for unit test coverage. WhipTaskExtension
includes(Iterable<Object> includes) | Adds class name patterns to include when checking for unit test
coverage. WhipTaskExtension includes(Object... includes) | Adds class name patterns to include when
checking for unit test coverage.

Additional Configuration

There are additional configurations that can help you useWhip.

Liferay Whip Dependency

By default, theWhip Gradle plugin creates a configuration called whip and adds a dependency to the version
of LiferayWhip configured in the whip.version extension property. It is possible to override this setting and
use a specific version of the library by manually adding a dependency to the whip configuration:

dependencies {

whip group: "com.liferay", name: "com.liferay.whip", version: "1.0.1"

}

In order to leverage the sensible default of the whip.whipJarFile task property, the name of the depen-
dency must be com.liferay.whip. Otherwise, it will be necessary to set the value of the whip.whipJarFile
property manually.

1905

https://docs.gradle.org/current/javadoc/org/gradle/api/tasks/testing/Test.html
https://docs.gradle.org/current/javadoc/org/gradle/process/JavaForkOptions.html

131.26 WSDD Builder Gradle Plugin

TheWSDDBuilder Gradle plugin lets you run the LiferayWSDD Builder tool to generate the Apache Axis
Web Service Deployment Descriptor (WSDD) files from a Service Builder service.xml file.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.wsdd.builder", version: "1.0.13"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.portal.tools.wsdd.builder"

TheWSDD Builder plugin automatically applies the java plugin.
Since the plugin automatically resolves the LiferayWSDD Builder library as a dependency, you have to

configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description buildWSDD | compileJava | BuildWSDDTask | Runs the Liferay

WSDD Builder.
By default, the buildWSDD task uses the ${project.projectDir}/service.xml file as input. Then, it gener-

ates ${project.projectDir}/server-config.wsdd and the *_deploy.wsdd and *_undeploy.wsdd files in the first
resources directory of the main source set (by default: src/main/resources).

If the war plugin is applied, the task uses ${project.webAppDir}/WEB-INF/service.xml as input to gener-
ate ${project.webAppDir}/WEB-INF/server-config.wsdd. The *_deploy.wsdd and *_undeploy.wsdd files are still
generated in the first resources directory of the main source set.

LiferayWSDDBuildService requires anadditional classpath (configuredwith the buildWSDD.builderClasspath
property), to correctly generate theWSDD files. The buildWSDD task uses the following default value, which
creates an implicit dependency to the compileJava task:

tasks.compileJava.outputs.files + sourceSets.main.compileClasspath + sourceSets.main.runtimeClasspath

1906

https://github.com/liferay/liferay-portal/tree/master/modules/util/portal-tools-wsdd-builder
http://axis.apache.org/axis/
https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/java_plugin.html#sec:compile
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceSet.html#org.gradle.api.tasks.SourceSet:resources
https://docs.gradle.org/current/userguide/java_plugin.html#N1503E
https://docs.gradle.org/current/userguide/war_plugin.html

BuildWSDDTask

Tasks of type BuildWSDDTask extend JavaExec, so all its properties andmethods, such as args and maxHeapSize,
are available. They also have the following properties set by default:

Property Name | Default Value args | WSDD Builder command line arguments classpath |
project.configurations.wsddBuilder main | "com.liferay.portal.tools.wsdd.builder.WSDDBuilder"

Task Properties Property Name | Type | Default Value | Description builderClasspath | String | null | A
classpath that the LiferayWSDDBuilder uses to generateWSDD files. It sets the wsdd.class.path argument.
inputFile | File | null | A service.xml fromwhich to generate theWSDDfiles. It sets the wsdd.input.file ar-
gument. outputDir | File | null |Adirectorywhere the *_deploy.wsdd and *_undeploy.wsddfiles are generated.
It sets the wsdd.output.path argument. serverConfigFile | File | ${project.projectDir}/server-config.wsdd
| A server-config.wsdd file to generate. It sets the wsdd.server.config.file argument. serviceNamespace |
String | "Plugin" | A namespace for theWSDD Service. It sets the wsdd.service.namespace argument.

The properties of type File support any type that can be resolved by project.file. Moreover, it is possible
to use Closures and Callables as values for the String properties, to defer evaluation until task execution.

Additional Configuration

There are additional configurations that can help you use theWSDD Builder.

Liferay WSDD Builder Dependency

By default, the plugin creates a configuration called wsddBuilder and adds a dependency to the latest released
version of the LiferayWSDD Builder. It is possible to override this setting and use a specific version of the
tool by manually adding a dependency to the wsddBuilder configuration:

dependencies {

wsddBuilder group: "com.liferay", name: "com.liferay.portal.tools.wsdd.builder", version: "1.0.10"

}

131.27 WSDL Builder Gradle Plugin

TheWSDL Builder Gradle plugin lets you generate Apache Axis client stubs fromWeb Service Description
(WSDL) files.

The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.wsdl.builder", version: "2.0.3"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.wsdl.builder"

1907

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:maxHeapSize
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:args
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:classpath
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://axis.apache.org/axis/

TheWSDL Builder plugin automatically applies the java plugin.
Since the plugin automatically resolves the Apache Axis library as a dependency, you have to configure a

repository that hosts the library and its transitive dependencies. The Liferay CDN repository hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one main task to your project:
Name | Depends On | Type | Description buildWSDL | - | BuildWSDLTask | GeneratesWSDL client stubs.
By default, the buildWSDL task looks forWSDL files in the ${project.projectDir}/wsdl directory. If the

war plugin is applied, it looks in the ${project.webAppDir}/WEB-INF/wsdl directory.
For each WSDL file that can be found, the task generates client stubs via direct invocation of the

WSDL2Java tool, saving them in the first java directory of the main source set (by default: src/main/java).
If configured to do so, buildWSDL can instead save the client stub Java files in a temporary directory,

compile them, and package them in JAR files. The JAR files are named after the WSDL file and saved in
${project.projectDir}/lib, by default, or in ${project.webAppDir}/WEB-INF/lib, if the war plugin is applied.

BuildWSDLTask

Tasks of type FormatWSDLTask extend SourceTask, so all its properties and methods, such as include and
exclude, are available.

Task Properties Property Name | Type | Default Value | Description buildLibs | boolean | true | Whether
to package the client stub classes of eachWSDL file in JAR files, saved to the directory the destinationDir
property references. If false, the task generates the client stub Java files to the destinationDir directory.
destinationDir | File | null | A directory where the client stub Java files (if buildLibs is false) or the client
stub JAR files (if buildLibs is true) are saved. generateOptions.mapping | Map | [:] | Namespace-to-package
mappings (sets the --NStoPkg argument in theWSDL2Java invocation). It is possible to use a Closure or a
Callable, to defer evaluation until task execution.. generateOptions.noWrapped | boolean | false |Whether to
turnoff support for “wrapped”document/literal (sets the --noWrapped argument in theWSDL2Java invocation).
generateOptions.serverSide | boolean | false | Whether to emit server-side bindings for the web service
(sets the --server-side argument in theWSDL2Java invocation). generateOptions.verbose | boolean | false
| Whether to print informational messages (sets the --verbose argument in theWSDL2Java invocation).
includeSource | boolean | true | Whether to package the client stub Java files in the JAR file’s OSGI-OPT/src
directory. If buildLibs is false, this property has no effect. includeWSDLs | boolean | true | Whether to
configure the processResources task to include theWSDL files in the project JAR’s wsdl directory.

The properties of type File support any type that can be resolved by project.file.

Task Methods Method Signature | Description generateOptions.mapping(Object namespace, Object

packageName) | Adds a namespace-to-package mapping. generateOptions.mappings(Map mappings) | Adds
multiple namespace-to-package mappings.

Helper Tasks At the end of the project evaluation, a series of helper tasks are created for eachWSDL file
returned by the source property of the BuildWSDLTask tasks. The names of the helper tasks start with the
WSDL file name, without any extension.

1908

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/war_plugin.html
http://axis.apache.org/axis/java/user-guide.html#Client-side_bindings
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceSet.html#org.gradle.api.tasks.SourceSet:java
https://docs.gradle.org/current/userguide/java_plugin.html#N1503E
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)
https://docs.gradle.org/current/userguide/java_plugin.html#sec:resources
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/current/userguide/build_lifecycle.html#N11BAE
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:source

• ${WSDL file title}Generate of type JavaExec: invokesWSDL2Java to generate the client stubs for the
WSDL file.

If buildWSDLTask.buildLibs is true, the following helper tasks are also created:

• ${WSDL file title}Compile of type JavaCompile: compiles the client stub Java files for theWSDL file.
• ${WSDL file title}Jar of type Jar: packages in a JAR file called ${WSDL file title}-ws.jar, the client
stub for theWSDL file.

Additional Configuration

There are additional configurations that can help you useWSDL Builder.

Apache Axis Dependency

By default, the plugin creates a configuration called wsdlBuilder and adds the following dependencies:

• axis:axis-wsdl4j:1.5.1

• com.liferay:org.apache.axis:1.4.LIFERAY-PATCHED-1

• commons-discovery:commons-discovery:0.2

• commons-logging:commons-logging:1.0.4

• javax.activation:activation:1.1

• javax.mail:mail:1.4

• org.apache.axis:axis-jaxrpc:1.4

• org.apache.axis:axis-saaj:1.4

It is possible to override this setting and use a specific version of Apache Axis, by manually populating
the wsdlBuilder configuration with the desired dependencies.

131.28 XML Formatter Gradle Plugin

TheXML Formatter Gradle plugin lets you format a project’s XML files using the Liferay XML Formatter tool.
The plugin has been successfully tested with Gradle 4.10.2.

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.xml.formatter", version: "1.0.11"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.xml.formatter"

1909

https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://axis.apache.org/axis/java/reference.html#WSDL2Java_Reference
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Jar.html
https://github.com/liferay/liferay-portal/tree/master/modules/util/xml-formatter

Since the plugin automatically resolves the Liferay XML Formatter library as a dependency, you have to
configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds one task to your project:
Name | Depends On | Type | Description formatXML | - | FormatXMLTask | Runs the Liferay XML Formatter

to format the project files.
If the java plugin is applied, the task formats XML files contained in the resources directories of the main

source set (by default: src/main/resources/**/*.xml).

FormatXMLTask

Tasks of type FormatXMLTask extend SourceTask, so all its properties andmethods, such as include and exclude,
are available.

Task Properties Property Name | Type | Default Value | Description classpath | FileCollection |
project.configurations.xmlFormatter |The classpath for executing the main class. mainClassName | String
| "com.liferay.xml.formatter.XMLFormatter" | The fully qualified name of the XML Formatter Main class.
stripComments | boolean | false | Whether to remove all the comments from the XML files. It sets the
xml.formatter.strip.comments argument.

Additional Configuration

There are additional configurations that can help you use the XML Formatter.

Liferay XML Formatter Dependency

Bydefault, the plugin creates a configuration called xmlFormatter and adds adependency to the latest released
version of the Liferay XML Formatter. It is possible to override this setting and use a specific version of the
tool by manually adding a dependency to the xmlFormatter configuration:

dependencies {

xmlFormatter group: "com.liferay", name: "com.liferay.xml.formatter", version: "1.0.5"

}

131.29 XSD Builder Gradle Plugin

TheXSD Builder Gradle plugin lets you generate Apache XMLBeans bindings from XML Schema (XSD) files.
The plugin has been successfully tested with Gradle 4.10.2.

1910

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceSet.html#org.gradle.api.tasks.SourceSet:resources
https://docs.gradle.org/current/userguide/java_plugin.html#N1503E
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:include(java.lang.Iterable)
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.SourceTask.html#org.gradle.api.tasks.SourceTask:exclude(java.lang.Iterable)
https://docs.gradle.org/current/javadoc/org/gradle/api/file/FileCollection.html
https://xmlbeans.apache.org/

Usage

To use the plugin, include it in your build script:

buildscript {

dependencies {

classpath group: "com.liferay", name: "com.liferay.gradle.plugins.xsd.builder", version: "1.0.7"

}

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

}

apply plugin: "com.liferay.xsd.builder"

TheXSD Builder plugin automatically applies the java plugin.
Since the plugin automatically resolves the Liferay Service Builder library as a dependency, you have to

configure a repository that hosts the library and its transitive dependencies. The Liferay CDN repository
hosts them all:

repositories {

maven {

url "https://repository-cdn.liferay.com/nexus/content/groups/public"

}

}

Tasks

The plugin adds three tasks to your project:
Name | Depends On | Type | Description buildXSD | buildXSDCompile | BuildXSDTask | Generates XML-

Beans bindings and compiles them in a JAR file. buildXSDGenerate | cleanBuildXSDGenerate | JavaExec |
Invokes the XMLBeans Schema Compiler to generate Java types from XML Schema. buildXSDCompile |
buildXSDGenerate, cleanBuildXSDCompile | JavaCompile | Compiles the generated Java types.

By default, the buildXSD task looks for XSD files in the ${project.projectDir}/xsd directory, and saves
the generated JAR file as ${project.projectDir}/lib/${project.archivesBaseName}-xbean.jar.

If the war plugin is applied, the task looks for XSD files in the ${project.webAppDir}/WEB-INF/xsd direc-
tory, and saves the generated JAR file as ${project.webAppDir}/WEB-INF/lib/${project.archivesBaseName}-
xbean.jar.

BuildXSDTask

Tasks of type BuildXSDTask extend Zip. They also have the following properties set by default:
Property Name | Default Value appendix | "xbean" extension | "jar" version | null
For each task of type BuildXSDTask, the following helper tasks are created:

• ${buildXSDTask.name}Compile

• ${buildXSDTask.name}Generate

Task Properties Property Name | Type | Default Value | Description inputDir | File | null | A directory
containing XSD files fromwhich to generate Apache XMLBeans bindings.

The properties of type File support any type that can be resolved by project.file.

1911

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.JavaExec.html
https://xmlbeans.apache.org/docs/2.6.0/guide/tools.html#scomp
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/current/userguide/war_plugin.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:appendix
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:extension
https://docs.gradle.org/current/dsl/org.gradle.api.tasks.bundling.Zip.html#org.gradle.api.tasks.bundling.Zip:version
https://xmlbeans.apache.org/
https://docs.gradle.org/current/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)

Additional Configuration

There are additional configurations that can help you use the XSD Builder.

Apache XMLBeans Dependency

By default, the XSD Builder Gradle plugin creates a configuration called xsdBuilder and adds a dependency
to the 2.5.0 version of Apache XMLBeans. It is possible to override this setting and use a specific version of
the library by manually adding a dependency to the xsdBuilder configuration:

dependencies {

xsdBuilder group: "org.apache.xmlbeans", name: "xmlbeans", version: "2.6.0"

}

131.30 Felix Gogo Shell

To interact with Liferay DXP’s module framework on a local server machine, you can use the Felix Gogo shell
within Blade CLI.

Here’s the command syntax:

blade sh <gogoShellCommand>

If you’re not using Blade CLI, you can start the Gogo shell from a local telnet session.

telnet localhost 11311

To disconnect the session, execute the disconnect command.
Warning: Commands shutdown, close, and exit stop the OSGi framework. So make sure to use the

disconnect command to end the telnet Gogo Shell session.

Here are some useful Gogo shell commands:
help: lists all the available Gogo shell commands. Notice that each command has two parts to its name,

separated by a colon. For example, the full name of the help command is felix:help. The first part is the
command scope while the second part is the command function. The scope allows commands with the same
name to be disambiguated. E.g., scope allows the felix:refresh command to be distinguished from the
equinox:refresh command.

help [COMMAND_NAME]: lists information about a specific command including a description of the com-
mand, the scope of the command, and information about any flags or parameters that can be supplied when
invoking the command.

lb: lists all of the bundles installed in Liferay’s module framework. Use the -s flag to list the bundles
using the bundles’ symbolic names.

b [BUNDLE_ID]: lists information about a specific bundle including the bundle’s symbolic name, bundle
ID, data root, registered (provided) and used services, imported and exported packages, andmore

headers [BUNDLE_ID]: lists metadata about the bundle from the bundle’s MANIFEST.MF file
diag [BUNDLE_ID]: lists information about why the specified bundle is not working (e.g., unresolved

dependencies, etc.)
packages [PACKAGE_NAME]: lists all of the named package’s dependencies
scr:list: lists all of the components registered in the module framework (scr stands for service compo-

nent runtime)

1912

scr:info [COMPONENT_NAME]: lists information about a specific component including the component’s
description, services, properties, configuration, references, andmore.

services: lists all of the services that have been registered in Liferay’s module framework
inspect capability service [BUNDLE_ID]: lists services exposed by a bundle
install [PATH_TO_JAR_FILE]: installs the specified bundle into Liferay’s module framework
start [BUNDLE_ID]: starts the specified bundle
stop [BUNDLE_ID]: stops the specified bundle
uninstall [BUNDLE_ID]: uninstalls the specified bundle from Liferay’s module framework
system:getproperties: lists all of the system properties
For more information about the Gogo shell, please visit http://felix.apache.org/documentation/subproj

ects/apache-felix-gogo.html.

1913

http://felix.apache.org/documentation/subprojects/apache-felix-gogo.html
http://felix.apache.org/documentation/subprojects/apache-felix-gogo.html

Chapter 132

Maven

Liferay provides plugins that you can apply to your Maven project. This reference documentation describes
configuration properties for your Maven project’s pom.xml for each plugin. If you’re looking for instructions
on usingMaven with your Liferay modules, see the Maven tutorials.

132.1 Bundle Support Plugin

The Bundle Support plugin lets you use LiferayWorkspace as a Maven project. For more information on how
aMavenWorkspace works and the features it provides, see the MavenWorkspace tutorial.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.bundle.support</artifactId>

<version>3.2.5</version>

<executions>

<execution>

<id>clean</id>

<goals>

<goal>clean</goal>

</goals>

<phase>clean</phase>

<configuration>

</configuration>

</execution>

<execution>

<id>deploy</id>

<goals>

<goal>deploy</goal>

</goals>

<phase>pre-integration-test</phase>

<configuration>

</configuration>

</execution>

</executions>

</plugin>

1915

...

</plugins>

</build>

Goals

The plugin adds five Maven goals to your project:
Name | Description bundle-support:clean | Deletes a file from the deploy directory of a Liferay bundle.

bundle-support:create-token | Creates a token used to validate your user credentials when downloading
a DXP bundle. bundle-support:deploy | Deploys the Maven project to the specified Liferay DXP bundle.
bundle-support:dist | Creates a distributable Liferay DXP bundle archive file (e.g., ZIP). bundle-support:init
| Downloads and installs the specified Liferay DXP version.

clean Goal's Available Parameters

You can set the following parameters in the clean execution’s <configuration> section of the POM:
Parameter Name | Type | Default Value | Description liferayHome | String | bundles |The directory where

your Liferay DXP instance resides. This can be specified from the command line as -DliferayHome=. fileName
| String | ${project.artifactId}.${project.packaging} |The name of the file to delete from your bundle.

create-token Goal's Available Parameters

You can change the default parameter values of the create-token goal by creating an <execution> section
containing <configuration> tags. For example,

<execution>

<id>create-token</id>

<goals>

<goal>create-token</goal>

</goals>

<configuration>

</configuration>

</execution>

You can set the following parameters in the create-token execution’s <configuration> section of the POM:
Parameter Name | Type | Default Value | Description emailAddress | String | null |The email address to

use when downloading a DXP bundle. This email address must match the one registered for your DXP
subscription. force | boolean | false |Whether to override the existing token with a newly generated one.
password | String | null |The password to use when downloading a DXP bundle. This password must match
the one registered for your DXP subscription. passwordFile | File | null | The file to hold your password
used when downloading a DXP bundle. tokenFile | File | ${user.home}/.liferay/token | The file to hold
the Liferay bundle authentication token. tokenUrl | URL | https://releases-cdn.liferay.com/portal/7.0.6-
ga7/liferay-ce-portal-tomcat-7.0-ga7-20180507111753223.zip | The URL pointing to the bundle Zip to
download.

After executing the create-token goal, you’re prompted for your email address and password, both of
which are used to generate your token. It’s recommended to configure your email and password from the
command line rather than specifying them in your POM file.

deploy Goal's Available Parameters

You can set the following parameters in the deploy execution’s <configuration> section of the POM:
Parameter Name | Type | Default Value | Description liferayHome | String | bundles | The directory

where your Liferay DXP instance resides. This can be specified from the command line as -DliferayHome=.

1916

deployFile | File | ${project.build.directory}/${project.build.finalName}.${project.packaging} | The
packagedfile (e.g., JAR) todeploy to theLiferaybundle. outputFileName | String | ${project.artifactId}.${project.packaging}
|The name of the output file.

dist Goal's Available Parameters

You can change the default parameter values of the dist goal by creating an <execution> section containing
<configuration> tags. For example,

<execution>

<id>dist</id>

<goals>

<goal>dist</goal>

</goals>

<configuration>

</configuration>

</execution>

You can set the following parameters in the dist execution’s <configuration> section of the POM:
Parameter Name | Type | Default Value | Description liferayHome | String | bundles | The di-

rectory where your Liferay DXP instance resides. This can be specified from the command line as
-DliferayHome=. archiveFileName | String | null | The name for the generated archive file. cacheDir

| File | ${user.home}/.liferay/bundles | The directory where the downloaded bundle Zip files are
stored. configs | String | configs | The directory that contains the configuration files. deployFile | File
|${project.build.directory}/${project.build.finalName}.${project.packaging} | The packaged file (e.g.,
JAR) to deploy to the Liferay bundle. environment | String | ${liferay.workspace.environment} |The environ-
ment of your Liferay home deployment. (e.g., common, dev, local, prod, and uat). format | String | zip |The
format type to usewhen packaging the Liferay bundle as an archive. includeFolder | boolean | true |Whether
to add a parent folder to the archive. outputFileName | String | ${project.artifactId}.${project.packaging}
|The path to the archive file. password | String | null |The password if your Liferay bundle’s URL requires
authentication. stripComponents | int | 1 |The number of directories to strip when expanding your bundle.
token | boolean | false | Whether to use a token to download a Liferay DXP bundle. This should be set to
true when downloading a DXP bundle. tokenFile | File | ${user.home}/.liferay/token | The file to hold
the Liferay bundle authentication token. url | URL | ${liferay.workspace.bundle.url} | The URL of the
Liferay bundle to expand. userName | String | null | The user name if your Liferay bundle’s URL requires
authentication.

init Goal's Available Parameters

You can change the default parameter values of the init goal by creating an <execution> section containing
<configuration> tags. For example,

<execution>

<id>init</id>

<goals>

<goal>init</goal>

</goals>

<configuration>

</configuration>

</execution>

You can set the following parameters in the init execution’s <configuration> section of the POM:
Parameter Name | Type | Default Value | Description liferayHome | String | bundles | The directory

where your Liferay DXP instance resides. This can be specified from the command line as -DliferayHome=.

1917

cacheDir | File | ${user.home}/.liferay/bundles |The directory where the downloaded bundle Zip files are
stored. configs | String | configs |The directory that contains the configuration files. environment | String |
${liferay.workspace.environment} |The environment with the settings appropriate for current development
(e.g., common, dev, local, prod, and uat). password | String | null |The password if your Liferay bundle’s URL
requires authentication. stripComponents | int | 1 |The number of directories to strip when expanding your
bundle. token | boolean | false | Whether to use a token to download a Liferay DXP bundle. This should be
set to true when downloading a DXP bundle. tokenFile | File | ${user.home}/.liferay/token | The file to
hold the Liferay bundle authentication token. url | URL | ${liferay.workspace.bundle.url} |The URL of the
Liferay bundle to expand. userName | String | null | The user name if your Liferay bundle’s URL requires
authentication.

132.2 CSS Builder Plugin

TheCSS Builder plugin lets you compile Sass files in your project.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.css.builder</artifactId>

<version>3.0.0</version>

<executions>

<execution>

<id>default-build</id>

<phase>compile</phase>

<goals>

<goal>build</goal>

</goals>

</execution>

</executions>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the CSS Builder configuration here.

Goals

The plugin adds oneMaven goal to your project:
Name | Description css-builder:build | Compiles the Sass files in the project.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description appendCssImportTimestamps | boolean | true |

Whether to append the current timestamp to theURLs in the @importCSSat-rules. baseDir | File | "src/META-
INF/resources" |The base directory that contains the SCSS files to compile. dirNames | List<String> | ["/"] |

1918

http://sass-lang.com/
https://github.com/liferay/liferay-portal/blob/master/modules/util/css-builder/samples/pom.xml

The name of the directories, relative to baseDir, which contain the SCSS files to compile. generateSourceMap
| boolean | false | Whether to generate source maps for easier debugging. importDir | File | null | The
META-INF/resources directory of the Liferay Frontend Common CSS artifact. This is required in order to
make Bourbon and other CSS libraries available to the compilation. outputDirName | String | ".sass-cache/"
| The name of the sub-directories where the SCSS files are compiled to. For each directory that contains
SCSS files, a sub-directory with this name is created. precision | int | 9 |The numeric precision of numbers
in Sass. rtlExcludedPathRegexps | List<String> | | The SCSS file patterns to exclude when converting for
right-to-left (RTL) support. sassCompilerClassName | String | "jni" |The type of Sass compiler to use. Sup-
ported values are "jni" and "ruby". The Ruby Sass compiler requires com.liferay.sass.compiler.ruby.jar,
com.liferay.ruby.gems.jar, and jruby-complete.jar to be added to the classpath.

You can also manage the com.liferay.frontend.css.common default theme dependency provided by the
CSS Builder in your pom.xml. This can be modified by adding it as a project dependency:

<project>

...

<dependencies>

<dependency>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.css.common</artifactId>

<version>3.0.1</version>

<scope>provided</scope>

</dependency>

...

</dependencies>

</project>

There are additional Liferay theme-related dependencies you canmanage this way that are provided by
theTheme Builder. See this section for more information.

132.3 DB Support Plugin

TheDB Support plugin lets you run the Liferay DB Support tool to execute certain actions on a local Liferay
DXP database. The following actions are available:

• Cleans the Liferay database from the Service Builder tables and rows of a module.

Usage

To use the plugin, include it in your project’s pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.db.support</artifactId>

<version>1.0.6</version>

<configuration>

</configuration>

<dependencies>

<dependency>

<groupId>org.hsqldb</groupId>

<artifactId>hsqldb</artifactId>

<version>2.4.0</version>

</dependency>

</dependencies>

</plugin>

1919

https://developers.google.com/web/tools/chrome-devtools/debug/readability/source-maps
https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-css/frontend-css-common
http://bourbon.io

...

</plugins>

</build>

Also notice the configured plugin dependency. Youmust configure the JDBC driver used by your Liferay
DXP bundle so the DB Support plugin can properly manage your database. Replace the HSQLDB driver
listed above with your custom database’s JDBC driver.

Goals

The plugin adds oneMaven goal to your project:
Name | Description db-support:clean-service-builder | Cleans the Liferay DXP database from the

Service Builder tables and rows of a module.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description password | String | jdbc.default.password

| The user password for connecting to the Liferay DXP database. propertiesFile | File | null | The
portal-ext.properties file which contains the JDBC settings for connecting to the Liferay DXP database.
serviceXmlFile | File | null | The service.xml file of the module. servletContextName | String | null | The
servlet context name (usually the value of the Bundle-Symbolic-Namemanifest header) of the module. url |
String | jdbc.default.url |The JDBC URL for connecting to the Liferay DXP database. userName | String |
jdbc.default.username |The user name for connecting to the Liferay DXP database.

132.4 Deployment Helper Plugin
TheDeployment Helper plugin lets you create a cluster deployableWAR from your OSGi artifacts.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.deployment.helper</artifactId>

<version>1.0.4</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the Deployment Helper configuration here.

Goals

The plugin adds oneMaven goal to your project:
Name | Description deployment-helper:build | Builds aWARwhich contains one or more files that are

copied once theWAR is deployed.

1920

https://github.com/liferay/liferay-portal/blob/master/modules/util/deployment-helper/samples/pom.xml

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description deploymentFileNames | String | null |The files or

directories to include in theWAR and copy once theWAR is deployed. If a directory is added to this collection,
all the JAR files contained in the directory are included in the WAR. deploymentPath | String | null | The
directory to which the included files are copied. outputFileName | String | null |TheWAR file to build.

132.5 Javadoc Formatter Plugin

The Javadoc Formatter plugin lets you format project Javadoc comments. The tool lets you generate:

• Default @author tags to all classes.
• Comment stubs to classes, fields, andmethods.
• Missing @Override annotations.
• An XML representation of the Javadoc comments, which can be used by tools in order to index the
Javadocs of the project.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.javadoc.formatter</artifactId>

<version>1.0.32</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the Javadoc Formatter configuration here.

Goals

The plugin adds oneMaven goal to your project:
Name | Description javadoc-formatter:format | Runs the Liferay Javadoc Formatter to format files.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description author | String | "Brian Wing Shun Chan" | The

value of the @author tag to add at class level if missing. generateXml | boolean | false | Whether to generate
a XML representation of the Javadoc comments. The XML files are generated in the src/main/resources
directory only if the Java files are contained in src/main/java. initializeMissingJavadocs | boolean | false |
Whether to add comment stubs at the class, field, andmethod levels. If false, only the class-level @author is
added. inputDirName | String | "./" |The root directory to begin searching for Java files to format. limits
| String[] | [] |The Java file name patterns, relative to the working directory, to include when formatting

1921

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html#@author
https://docs.oracle.com/javase/8/docs/api/java/lang/Override.html
https://github.com/liferay/liferay-portal/blob/master/modules/util/javadoc-formatter/samples/pom.xml

Javadoc comments. The patterns must be specified without the .java file type suffix. If empty, all Java files
are formatted. outputFilePrefix | String | "javadocs" |The file name prefix of the XML representation of
the Javadoc comments. If generateXML is false, this property is not used. updateJavadocs | boolean | false |
Whether to fix existing comment blocks by adding missing tags.

132.6 Lang Builder Plugin
The Lang Builder plugin lets you sort and translate the language keys in your project.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.lang.builder</artifactId>

<version>1.0.31</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the Lang Builder configuration here.

Goals

The plugin adds oneMaven goal to your project:
Name | Description lang-builder:build | Runs Liferay Lang Builder to translate language property files.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description excludedLanguageIds | String[] | {"da", "de",

"fi", "ja", "nl", "pt_PT", "sv"} |The language IDs to exclude in the automatic translation. langDirName
| String | "src/content" | The directory where the language properties files are saved. langFileName |
String | "Language" | The file name prefix of the language properties files (e.g., Language_it.properties).
plugin | boolean | true |Whether to check for duplicate language keys between the project and the portal.
portalLanguagePropertiesFileName | String | null | The Language.properties file of the portal. translate |
boolean | true |Whether to translate the language keys and generate a language properties file for each locale
that’s supported by Liferay DXP. translateSubscriptionKey | String | null | The subscription key for Mi-
crosoft Translation integration. Subscription to the Translator Text Translation API onMicrosoft Cognitive
Services is required. Basic subscriptions, up to 2 million characters a month, are free.

132.7 Service Builder Plugin
The Service Builder plugin lets you generate a service layer defined in a Service Builder service.xml file. Visit
the Using Service Builder in a Maven Project tutorial to learnmore about applying Service Builder to your
Maven project.

1922

https://github.com/liferay/liferay-portal/blob/master/modules/util/lang-builder/samples/pom.xml

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.service.builder</artifactId>

<version>1.0.292</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the Service Builder configuration here.

Goals

The plugin adds oneMaven goal to your project:
Name | Description service-builder:build | Runs the Liferay Service Builder.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description apiDirName | String | "../portal-kernel/src"

| A directory where the service API Java source files are generated. autoImportDefaultReferences |
boolean | true | Whether to automatically add default references, like com.liferay.portal.ClassName,
com.liferay.portal.Resource and com.liferay.portal.User, to the services. autoNamespaceTables | boolean |
null | Whether to prefix table names by the namespace specified in the service.xml file. beanLocatorUtil |
String | "com.liferay.portal.kernel.bean.PortalBeanLocatorUtil" |The fully qualified class name of a bean
locator class to use in the generated service classes. buildNumber | long | 1 | A specific value to assign the
build.number property in the service.properties file. buildNumberIncrement | boolean | true | Whether to
automatically increment the build.number property in the service.properties file by one at every service
generation. databaseNameMaxLength | int | 30 |The upper bound for database table and column name lengths
to ensure it works on all databases. hbmFileName | String | "src/META-INF/portal-hbm.xml" | A Hibernate
Mapping file to generate. implDirName | String | "src" | A directory where the service Java source files are
generated. inputFileName | String | "service.xml" |Theproject’s service.xmlfile. modelHintsConfigs | String
| "classpath*:META-INF/portal-model-hints.xml, META-INF/portal-model-hints.xml, classpath*:META-

INF/ext-model-hints.xml, classpath*:META-INF/portlet-model-hints.xml" | Paths to the model hints files
for Liferay Service Builder to use in generating the service layer. modelHintsFileName | String | "src/META-
INF/portal-model-hints.xml" | A model hints file for the project. osgiModule | boolean | null | Whether to
generate the service layer for OSGi modules. pluginName | String | null | If specified, a plugin can enable
additional generation features, such as Clp class generation, for non-OSGi modules. propsUtil | String |
"com.liferay.portal.util.PropsUtil" |The fully qualified class name of the service properties util class to
generate. readOnlyPrefixes | String | "fetch, get, has, is, load, reindex, search" | Prefixes of methods
to consider read-only. resourceActionsConfigs | String | "META-INF/resource-actions/default.xml,

resource-actions/default.xml" | Paths to the resource actions files for Liferay Service Builder to use in
generating the service layer. resourcesDirName | String | "src" | A directory where the service non-Java
files are generated. springFileName | String | "src/META-INF/portal-spring.xml" | A service Spring file to

1923

https://github.com/liferay/liferay-portal/blob/master/modules/util/portal-tools-service-builder/samples/pom.xml

generate. springNamespaces | String | "beans" | Namespaces of Spring XML Schemas to add to the service
Spring file. sqlDirName | String | "../sql" | A directory where the SQL files are generated. sqlFileName

| String | "portal-tables.sql" | A name (relative to sqlDir) for the file in which the SQL table creation
instructions are generated. sqlIndexesFileName | String | "indexes.sql" | A name (relative to sqlDir) for
the file in which the SQL index creation instructions are generated. sqlSequencesFileName | String |
"sequences.sql" | A name (relative to sqlDir) for the file in which the SQL sequence creation instructions
are generated. targetEntityName | String | null | If specified, it’s the name of the entity for which Liferay
Service Builder should generate the service. testDirName | String | "test/integration" | If specified, it’s a
directory where integration test Java source files are generated.

132.8 Source Formatter Plugin

The Source Formatter plugin formats project files according to Liferay’s source formatting standards. For
more documentation on Source Formatter specific functionality, visit the tool’s documentation folder.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.source.formatter</artifactId>

<version>1.0.885</version>

<executions>

<execution>

<phase>process-sources</phase>

<goals>

<goal>format</goal>

</goals>

</execution>

</executions>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the Source Formatter configuration here.

Goals

The plugin adds oneMaven goal to your project:
Name | Description source-formatter:format | Runs the Liferay Source Formatter to format source

formatting errors.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description autoFix | boolean | true |Whether to automatically

fix source formatting errors. baseDir | String | "./" | The Source Formatter base directory. (Read-only)
fileNames | String[] | null | The file names to format, relative to the project directory. If null, all files

1924

https://github.com/liferay/liferay-portal/tree/master/modules/util/source-formatter/documentation
https://github.com/liferay/liferay-portal/blob/master/modules/util/source-formatter/samples/pom.xml

contained in baseDir will be formatted. formatCurrentBranch | boolean | false | Whether to format only
the files contained in baseDir that are added or modified in the current Git branch. formatLatestAuthor |
boolean | false | Whether to format only the files contained in baseDir that are added or modified in the
latest Git commits of the same author. formatLocalChanges | boolean | false | Whether to format only the
unstagedfiles contained in baseDir. gitWorkingBranchName | String | "master" |TheGitworking branch name.
includeSubrepositories | boolean | false | Whether to format files that are in read-only subrepositories.
maxLineLength | int | 80 |Themaximum number of characters allowed in Java files. printErrors | boolean |
true | Whether to print formatting errors on the Standard Output stream. processorThreadCount | int | 5 |
The number of threads used by Source Formatter. showDocumentation | boolean | false |Whether to show the
documentation for the source formatting issues, if present. throwException | boolean | false |Whether to
fail the build if formatting errors are found.

132.9 Theme Builder Plugin

TheTheme Builder plugin lets you build Liferay theme files in your project. Visit the BuildingThemes in a
Maven Project tutorial to learn more about applyingTheme Builder to your Maven project.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.theme.builder</artifactId>

<version>1.1.7</version>

<executions>

<execution>

<phase>generate-resources</phase>

<goals>

<goal>build</goal>

</goals>

<configuration>

</configuration>

</execution>

</executions>

</plugin>

...

</plugins>

</build>

You can view an example POM containing theTheme Builder configuration here.

Goals

The plugin adds oneMaven goal to your project:
Name | Description theme-builder:build | Builds the theme files.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description diffsDir | File | ${maven.war.src} |The directory

that contains the files to copy over the parent theme. name | String | ${project.artifactId} |The name of

1925

https://github.com/liferay/liferay-portal/blob/master/modules/util/portal-tools-theme-builder/samples/pom.xml

the new theme. outputDir | File | ${project.build.directory}/${project.build.finalName} |The directory
where to build the theme. parentDir | File | null |The directory of the parent theme. parentName | String |
null |The name of the parent theme. templateExtension | String | "ftl" |The extension of the template files,
usually "ftl" or "vm". unstyledDir | File | null |The directory of Liferay FrontendTheme Unstyled.

You can also manage the com.liferay.frontend.theme.styled and com.liferay.frontend.theme.unstyled

default theme dependencies provided by theTheme Builder in your pom.xml. They can bemodified by adding
them as project dependencies:

<project>

...

<dependencies>

...

<dependency>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.theme.styled</artifactId>

<version>3.0.4</version>

<scope>provided</scope>

</dependency>

<dependency>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.frontend.theme.unstyled</artifactId>

<version>3.0.4</version>

<scope>provided</scope>

</dependency>

</dependencies>

</project>

There is an additional Liferay theme-related dependency you canmanage this way that’s provided by the
CSS Builder. See this section for more information.

132.10 TLD Formatter Plugin

The TLD Formatter plugin lets you format a project’s TLD files.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.tld.formatter</artifactId>

<version>1.0.5</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the TLD Formatter configuration here.

Goals

The plugin adds oneMaven goal to your project:
Name | Description tld-formatter:format | Runs the Liferay TLD Formatter to format files.

1926

https://github.com/liferay/liferay-portal/tree/master/modules/apps/foundation/frontend-theme/frontend-theme-unstyled
https://github.com/liferay/liferay-portal/blob/master/modules/util/tld-formatter/samples/pom.xml

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description baseDirName | String | "./" | The base directory

to begin searching for TLD files to format. plugin | boolean | true | Whether to format all the TLD files
contained in the working directory. If false, all liferay-portlet-ext.tld files are ignored.

132.11 WSDD Builder Plugin

TheWSDD Builder plugin lets you generate the Apache AxisWeb Service Deployment Descriptor (WSDD)
files from a Service Builder service.xml file.

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.portal.tools.wsdd.builder</artifactId>

<version>1.0.10</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing theWSDD Builder configuration here.

Goals

The plugin adds oneMaven goal to your project:
Name | Description wsdd-builder:build | Runs the LiferayWSDD Builder to generate theWSDD files.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description classPath | String | null |The classpath that the

LiferayWSDD Builder uses to generateWSDD files. inputFileName | String | "service.xml" |The file from
which to generate theWSDD files. outputDirName | String | "src" |The directory where the *_deploy.wsdd
and *_undeploy.wsdd files are generated. serverConfigFileName | String | "server-config.wsdd" |The file to
generate. serviceNamespace | String | "Plugin" |The namespace for theWSDD Service.

132.12 XML Formatter Plugin

TheXML Formatter plugin lets you format a project’s XML files.

1927

http://axis.apache.org/axis/
https://github.com/liferay/liferay-portal/blob/master/modules/util/portal-tools-wsdd-builder/samples/pom.xml

Usage

To use the plugin, include it in your project’s root pom.xml file:

<build>

<plugins>

...

<plugin>

<groupId>com.liferay</groupId>

<artifactId>com.liferay.xml.formatter</artifactId>

<version>1.0.5</version>

<configuration>

</configuration>

</plugin>

...

</plugins>

</build>

You can view an example POM containing the XML Formatter configuration here.

Goals

The plugin adds oneMaven goal to your project:
Name | Description xml-formatter:format | Runs the Liferay XML Formatter to format the project files.

Available Parameters

You can set the following parameters in the <configuration> section of the POM:
Parameter Name | Type | Default Value | Description fileName | String | null |The XML file to format.

This plugin only lets you format one XML file at a time. stripComments | boolean | false | Whether to remove
all the comments from the XML file.

1928

https://github.com/liferay/liferay-portal/blob/master/modules/util/xml-formatter/samples/pom.xml

Chapter 133

Project Templates

Liferay provides project templates that you can use to generate starter projects formatted in an opinionated
way. These templates can be used by most build tools (e.g., Gradle,Maven, Liferay @ide@) to generate your
desired project structure.

Some popular project templates include

• API project
• Fragment project
• MVC Portlet project
• Service Builder project
• Template Context Contributor project
• Theme project (WAR)
• etc.

If you’re using Blade CLI, execute the following command to display a full list of project templates:

blade create -l

If you’re using Maven, you can view and use the project templates as Maven archetypes. Execute the
following command to list them:

mvn archetype:generate -Dfilter=liferay

Archetypes with the com.liferay.project.templates prefix are the latest templates offered by Liferay.
If you’re using Liferay@ide@,navigate to File →New → LiferayModule Project and view the project templates

from the Project Template Name drop-downmenu.
In this section of reference articles, each project template is outlined with the appropriate generation

command and folder structure. Visit the project template article you’re most interested in to start building
your own project!

133.1 Activator Template

In this article, you’ll learn how to create a Liferay activator as a Liferay module. To create a Liferay activator
via the command line using Blade CLI or Maven, use one of the commands with the following parameters:

1929

blade create -t activator -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.activator \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is activator. Suppose you want to create an activator project called
my-activator-project with a package name of com.liferay.docs.activator and a class name of Activator.
You could run the following command to accomplish this:

blade create -t activator -v 7.0 -p com.liferay.docs.activator -c Activator my-activator-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.activator \

-DgroupId=com.liferay \

-DartifactId=my-activator-project \

-Dpackage=com.liferay.docs.activator \

-Dversion=1.0 \

-DclassName=Activator \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

Note that in your class, you’re implementing the org.osgi.framework.BundleActivator interface.
After running the command above, your project’s directory structure looks like this:

• my-activator-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/activator

· Activator.java

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is functional and is deployable to a Liferay DXP instance. To build upon the
generated app,modify the project by adding logic and additional files to the folders outlined above.

1930

133.2 API Template
In this tutorial, you’ll learn how to create a Liferay API as a Liferay module. To create a Liferay API via the
command line using Blade CLI or Maven, use one of the commands with the following parameters:

blade create -t api -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.api \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is api. The api template creates a simple api module with an
empty public interface. For example, suppose you want to create an API project called my-api-projectwith a
package name of com.liferay.docs.api and a class name of MyApi. You could run the following command to
accomplish this:

blade create -t api -v 7.0 -p com.liferay.docs -c MyApi my-api-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.api \

-DgroupId=com.liferay \

-DartifactId=my-api-project \

-Dpackage=com.liferay.docs \

-Dversion=1.0 \

-DclassName=MyApi \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-api-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/api

1931

· MyApi.java

· resources
· com/liferay/docs/api

· packageinfo

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated app,modify the project by adding logic and additional files to the folders outlined above.

133.3 Control Menu Entry Template

In this article, you’ll learn how to create a Liferay Control Menu entry as a Liferay module. To create a Liferay
Control Menu entry via the command line using Blade CLI or Maven, use one of the commands with the
following parameters:

blade create -t control-menu-entry -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.control.menu.entry \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is control-menu-entry. Suppose youwant to create a controlmenu en-
tryproject called my-control-menu-entry-projectwithapackagenameof com.liferay.docs.entry.control.menu
and a class name of SampleProductNavigationControlMenuEntry. You could run the following command to
accomplish this:

blade create -t control-menu-entry -v 7.0 -p com.liferay.docs.entry -c Sample my-control-menu-entry-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.control.menu.entry \

-DgroupId=com.liferay \

-DartifactId=my-control-menu-entry-project \

-Dpackage=com.liferay.docs.entry \

-Dversion=1.0 \

-DclassName=Sample \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure would look like this:

1932

• my-control-menu-entry-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/entry/control/menu

· SampleProductNavigationControlMenuEntry.java

· resources

· content

· Language.properties

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is functional and is deployable to a Liferay DXP instance. To build upon the
generated app,modify the project by adding logic and additional files to the folders outlined above. You can
visit the control-menu-entry sample project for a more expanded sample of a Control Menu entry. Likewise,
see the Customizing the ControlMenu tutorial for instructions on customizing a ControlMenu entry project.

133.4 Form Field Template
In this article, you’ll learn how to create a Liferay form field as a Liferay module. To create a Liferay form field
via the command line using Blade CLI or Maven, use one of the commands with the following parameters:

blade create -t form-field -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.form.field \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is form-field. Suppose you want to create a form field project
called my-form-field-projectwith a package name of com.liferay.docs.form.field and a class name prefix
of MyFormField. You could run one of the following commands to accomplish this:

1933

blade create -t form-field -v 7.0 -p com.liferay.docs -c MyFormField my-form-field-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.form.field \

-DgroupId=com.liferay \

-DartifactId=my-form-field-project \

-Dpackage=com.liferay.docs \

-Dversion=1.0 \

-DclassName=MyFormField \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-form-field-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/form/field

· MyFormFieldDDMFormFieldRenderer.java

· MyFormFieldDDMFormFieldType.java

· resources

· content

· Language.properties

· META-INF

· resources

· config.js

· my-form-field-project.soy

· my-form-field-project_field.js

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is a working form field and is deployable to a Liferay DXP instance. To build upon
the generated app,modify the project by adding logic and additional files to the folders outlined above.

1934

133.5 Fragment Template

In this article, you’ll learn how to create a Liferay fragment as a Liferay module. You can learn more about
fragment modules in the Declaring a Fragment Host article and in section 3.14 of the OSGi Alliance’s core
specification document.

To create a Liferay fragment via the command line using Blade CLI or Maven, use one of the commands
with the following parameters:

blade create -t fragment -v 7.0 [-h hostBundleName] [-H hostBundleVersion] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.fragment \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is fragment. Suppose you want to create a fragment project called
my-fragment-projectwith a host bundle symbolic name of com.liferay.login.web and host bundle version
of 1.0.0. You could run the following command to accomplish this:

blade create -t fragment -v 7.0 -h com.liferay.login.web -H 1.0.0 my-fragment-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.fragment \

-DgroupId=com.liferay \

-DartifactId=my-fragment-project \

-Dversion=1.0 \

-Dpackage= \

-DhostBundleSymbolicName=com.liferay.login.web \

-DhostBundleVersion=1.0.0 \

-DliferayVersion=7.0

The folder structure is created, but there are no files. The only files created are the bnd.bnd and
build.gradle files, which specify your host bundle and its information, and your build tool’s files. After
running the command above, your project’s directory structure looks like this:

• my-fragment-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

1935

https://osgi.org/download/r6/osgi.core-6.0.0.pdf
https://osgi.org/download/r6/osgi.core-6.0.0.pdf

* main

· java -resources -META-INF -resources

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is functional and is deployable to a Liferay DXP instance. To build upon the
generated app,modify the project by adding logic and additional files to the folders outlined above.

133.6 FreeMarker Portlet Template

In this article, you’ll learn how to create a Liferay FreeMarker portlet application as a Liferay module. To
create a Liferay FreeMarker portlet application via the command line using Blade CLI or Maven, use one of
the commands with the following parameters:

blade create -t freemarker-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.freemarker.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kindof project is freemarker-portlet. Suppose youwant to create a FreeMarker port-
let project called my-freemarker-portlet-projectwithapackagenameof com.liferay.docs.freemarkerportlet
and a class name of MyFreemarkerPortlet. Also, you’d like to create a service of type javax.portlet.Portlet
that extends the com.liferay.util.bridges.freemarker.FreeMarkerPortlet class. Here, service means an
OSGi service, not a Liferay API. Another way to say service type is to say component type. You could run the
following command to accomplish this:

blade create -t freemarker-portlet -v 7.0 -p com.liferay.docs.freemarkerportlet -c MyFreemarkerPortlet my-freemarker-portlet-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.freemarker.portlet \

-DgroupId=com.liferay \

-DartifactId=my-freemarker-portlet-project \

-Dpackage=com.liferay.docs.freemarkerportlet \

-Dversion=1.0 \

-DclassName=MyFreemarkerPortlet \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

1936

• my-freemarker-portlet-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/freemarkerportlet

· constants

· MyFreemarkerPortletKeys.java

· portlet

· MyFreemarkerPortlet.java

· resources

· content

· Language.properties

· META-INF

· resources

· css

· main.scss

· templates

· init.ftl

· view.ftl

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated app,modify the project by adding logic and additional files to the folders outlined above.

133.7 Layout Template
In this article, you’ll learn how to create a Liferay layout template as aWAR project. To create a Liferay layout
template via the command line using Blade CLI or Maven, use one of the commands with the following
parameters:

blade create -t layout-template -v 7.0 projectName

or

1937

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.layout.template \

-DartifactId=[projectName] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is layout-template. Suppose you want to create a layout template
project called my-layout-template-project. You could run one of the following commands to accomplish
this:

blade create -t layout-template -v 7.0 my-layout-template-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.layout.template \

-DgroupId=com.liferay \

-DartifactId=my-layout-template-project \

-Dversion=1.0 \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-layout-template-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· webapp

· WEB-INF

· liferay-layout-templates.xml

· liferay-plugin-package.properties

· my-layout-template-project.png

· my-layout-template-project.tpl

– build.gradle

– [gradlew|pom.xml]

The generatedWAR is a working layout template and is deployable to a Liferay DXP instance. To build
upon the generated layout template,modify the project by adding logic and additional files to the folders
outlined above.

1938

133.8 MVC Portlet Template
In this article, you’ll learn how to create a Liferay MVC portlet application as a Liferay module. To create a
Liferay MVC portlet application via the command line using Blade CLI or Maven, use one of the commands
with the following parameters:

blade create -t mvc-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.mvc.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is mvc-portlet. Suppose you want to create an MVC portlet
project called my-mvc-portlet-project with a package name of com.liferay.docs.mvcportlet and a class
name of MyMvcPortlet. Also, you’d like to create a service of type javax.portlet.Portlet that extends the
com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet class. Here, servicemeans an OSGi service, not
a Liferay API. Another way to say service type is to say component type. You could run the following command
to accomplish this:

blade create -t mvc-portlet -v 7.0 -p com.liferay.docs.mvcportlet -c MyMvcPortlet my-mvc-portlet-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.mvc.portlet \

-DgroupId=com.liferay \

-DartifactId=my-mvc-portlet-project \

-Dpackage=com.liferay.docs.mvcportlet \

-Dversion=1.0 \

-DclassName=MyMvcPortlet \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-mvc-portlet-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

1939

· java

· com/liferay/docs/mvcportlet

· MyMvcPortlet.java

· resources

· content

· Language.properties

· META-INF

· resources

· init.jsp

· view.jsp

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated app,modify the project by adding logic and additional files to the folders outlined above.

133.9 npm Angular Portlet Template

In this article, you’ll learn how to create an npm Angular portlet as a Liferay module. To create an npm
Angular portlet via the command line using Blade CLI orMaven, use one of the commandswith the following
parameters:

blade create -t npm-angular-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.angular.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

The template for this kind of project is npm-angular-portlet. Suppose you want to create an npmAngular
portlet project called my-npm-angular-portletwith a package name of com.liferay.npm.angular and a class
name of MyNpmAngularPortlet. Also, you’d like to create a service of type javax.portlet.Portlet that extends
the com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet class. Here, servicemeans an OSGi service,
not a Liferay API.Anotherway to say service type is to say component type. You could run the following command
to accomplish this:

1940

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

blade create -t npm-angular-portlet -v 7.0 -p com.liferay.npm.angular -c MyNpmAngularPortlet my-npm-angular-portlet

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.angular.portlet \

-DgroupId=com.liferay \

-DartifactId=my-npm-angular-portlet \

-Dpackage=com.liferay.npm.angular \

-Dversion=1.0 \

-DclassName=MyNpmAngularPortlet \

-DpackageJsonVersion=1.0.0 \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-npm-angular-portlet

– [gradle|.mvn]

* wrapper

· [gradle|maven]-wrapper.jar

· [gradle|maven]-wrapper.properties

– src

* main

· java

· com/liferay/npm/angular

· constants

· MyNpmAngularPortletKeys.java

· portlet

· MyNpmAngularPortlet.java

· resources

· content

· Language.properties

· META-INF

· resources

· js

· app

· app.component.ts

· app.module.ts

· angular-loader.ts

· main.ts

· init.jsp

1941

· view.jsp

– .babelrc

– .npmbundlerrc

– bnd.bnd

– [build.gradle|pom.xml]

– [gradlew|mvnw]

– package.json

– tsconfig.json

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated portlet, modify the project by adding logic and additional files to the folders outlined
above.

133.10 npm Billboard.js Portlet Template

In this article, you’ll learn how to create an npm Billboard.js portlet as a Liferay module. To create an npm
Billboard.js portlet via the command line using Blade CLI or Maven, use one of the commands with the
following parameters:

blade create -t npm-billboardjs-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.billboardjs.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

The template for this kind of project is npm-billboardjs-portlet. Suppose you want to create
an npm Billboard.js portlet project called my-npm-billboardjs-portlet with a package name of
com.liferay.npm.billboardjs and a class nameof MyNpmBillboardjsPortlet. Also, you’d like to create a service
of type javax.portlet.Portlet that extends the com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet
class. Here, servicemeans an OSGi service, not a Liferay API. Another way to say service type is to say component
type. You could run the following command to accomplish this:

blade create -t npm-billboardjs-portlet -v 7.0 -p com.liferay.npm.billboardjs -c MyNpmBillboardjsPortlet my-npm-billboardjs-portlet

or

1942

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.billboardjs.portlet \

-DgroupId=com.liferay \

-DartifactId=my-npm-billboardjs-portlet \

-Dpackage=com.liferay.npm.billboardjs \

-Dversion=1.0 \

-DclassName=MyNpmBillboardjsPortlet \

-DpackageJsonVersion=1.0.0 \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-npm-billboardjs-portlet

– [gradle|.mvn]

* wrapper

· [gradle|maven]-wrapper.jar

· [gradle|maven]-wrapper.properties

– src

* main

· java

· com/liferay/npm/billboardjs

· constants

· MyNpmBillboardjsPortletKeys.java

· portlet

· MyNpmBillboardjsPortlet.java

· resources

· content

· Language.properties

· META-INF

· resources

· js

· data.json

· index.es.js

· init.jsp

· view.jsp

– .babelrc

– .npmbundlerrc

– bnd.bnd

– [build.gradle|pom.xml]

– [gradlew|mvnw]

– package.json

1943

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated portlet, modify the project by adding logic and additional files to the folders outlined
above.

133.11 npm Isomorphic Portlet Template

In this article, you’ll learn how to create an npm Isomorphic portlet as a Liferay module. To create an npm
Isomorphic portlet via the command line using Blade CLI or Maven, use one of the commands with the
following parameters:

blade create -t npm-isomorphic-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.isomorphic.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

The template for this kind of project is npm-isomorphic-portlet. Suppose you want to cre-
ate an npm Isomorphic portlet project called my-npm-isomorphic-portlet with a package name of
com.liferay.npm.isomorphic and a class name of MyNpmIsomorphicPortlet. Also, you’d like to create a service
of type javax.portlet.Portlet that extends the com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet
class. Here, servicemeans an OSGi service, not a Liferay API. Another way to say service type is to say component
type. You could run the following command to accomplish this:

blade create -t npm-isomorphic-portlet -v 7.0 -p com.liferay.npm.isomorphic -c MyNpmIsomorphicPortlet my-npm-isomorphic-portlet

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.isomorphic.portlet \

-DgroupId=com.liferay \

-DartifactId=my-npm-isomorphic-portlet \

-Dpackage=com.liferay.npm.isomorphic \

-Dversion=1.0 \

-DclassName=MyNpmIsomorphicPortlet \

-DpackageJsonVersion=1.0.0 \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-npm-isomorphic-portlet

1944

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

– [gradle|.mvn]

* wrapper

· [gradle|maven]-wrapper.jar

· [gradle|maven]-wrapper.properties

– src

* main

· java

· com/liferay/npm/isomorphic

· constants

· MyNpmIsomorphicPortletKeys.java

· portlet

· MyNpmIsomorphicPortlet.java

· resources

· content

· Language.properties

· META-INF

· resources

· js

· index.es.js

· init.jsp

· view.jsp

– .babelrc

– .npmbundlerrc

– bnd.bnd

– [build.gradle|pom.xml]

– [gradlew|mvnw]

– package.json

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated portlet, modify the project by adding logic and additional files to the folders outlined
above.

133.12 npm jQuery Portlet Template

In this article, you’ll learn how to create an npm jQuery portlet as a Liferay module. To create an npm
jQuery portlet via the command line using Blade CLI or Maven, use one of the commands with the following
parameters:

blade create -t npm-jquery-portlet -v 7.0 [-p packageName] [-c className] projectName

1945

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.jquery.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

The template for this kind of project is npm-jquery-portlet. Suppose you want to create an npm jQuery
portlet project called my-npm-jquery-portlet with a package name of com.liferay.npm.jquery and a class
name of MyNpmjQueryPortlet. Also, you’d like to create a service of type javax.portlet.Portlet that extends
the com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet class. Here, servicemeans an OSGi service,
not a Liferay API.Anotherway to say service type is to say component type. You could run the following command
to accomplish this:

blade create -t npm-jquery-portlet -v 7.0 -p com.liferay.npm.jquery -c MyNpmjQueryPortlet my-npm-jquery-portlet

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.jquery.portlet \

-DgroupId=com.liferay \

-DartifactId=my-npm-jquery-portlet \

-Dpackage=com.liferay.npm.jquery \

-Dversion=1.0 \

-DclassName=MyNpmjQueryPortlet \

-DpackageJsonVersion=1.0.0 \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-npm-jquery-portlet

– [gradle|.mvn]

* wrapper

· [gradle|maven]-wrapper.jar

· [gradle|maven]-wrapper.properties

– src

* main

· java

1946

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

· com/liferay/npm/jquery

· constants

· MyNpmjQueryPortletKeys.java

· portlet

· MyNpmjQueryPortlet.java

· resources

· content

· Language.properties

· META-INF

· resources

· js

· index.es.js

· init.jsp

· view.jsp

– .babelrc

– .npmbundlerrc

– bnd.bnd

– [build.gradle|pom.xml]

– [gradlew|mvnw]

– package.json

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated portlet, modify the project by adding logic and additional files to the folders outlined
above.

133.13 npm Metal.js Portlet Template

In this article, you’ll learn how to create an npm Metal.js portlet as a Liferay module. To create an npm
Metal.js portlet via the command line using Blade CLI orMaven, use one of the commandswith the following
parameters:

blade create -t npm-metaljs-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.metaljs.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

1947

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

The template for this kind of project is npm-metaljs-portlet. Suppose youwant to create an npmMetal.js
portlet project called my-npm-metaljs-portletwith a package name of com.liferay.npm.metaljs and a class
name of MyNpmMetaljsPortlet. Also, you’d like to create a service of type javax.portlet.Portlet that extends
the com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet class. Here, servicemeans an OSGi service,
not a Liferay API.Anotherway to say service type is to say component type. You could run the following command
to accomplish this:

blade create -t npm-metaljs-portlet -v 7.0 -p com.liferay.npm.metaljs -c MyNpmMetaljsPortlet my-npm-metaljs-portlet

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.metaljs.portlet \

-DgroupId=com.liferay \

-DartifactId=my-npm-metaljs-portlet \

-Dpackage=com.liferay.npm.metaljs \

-Dversion=1.0 \

-DclassName=MyNpmMetaljsPortlet \

-DpackageJsonVersion=1.0.0 \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-npm-metaljs-portlet

– [gradle|.mvn]

* wrapper

· [gradle|maven]-wrapper.jar

· [gradle|maven]-wrapper.properties

– src

* main

· java

· com/liferay/npm/metaljs

· constants

· MyNpmMetaljsPortletKeys.java

· portlet

· MyNpmMetaljsPortlet.java

· resources

· content

· Language.properties

1948

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

· META-INF

· resources

· js

· HelloWorld.soy

· index.es.js

· init.jsp

· view.jsp

– .babelrc

– .npmbundlerrc

– bnd.bnd

– [build.gradle|pom.xml]

– [gradlew|mvnw]

– package.json

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated portlet, modify the project by adding logic and additional files to the folders outlined
above.

133.14 npm Portlet Template
In this article, you’ll learn how to create an npm portlet as a Liferay module. To create an npmportlet via the
command line using Blade CLI or Maven, use one of the commands with the following parameters:

blade create -t npm-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

The template for this kind of project is npm-portlet. Suppose you want to create an npm port-
let project called my-npm-portlet with a package name of com.liferay.npm and a class name of
MyNpmPortlet. Also, you’d like to create a service of type javax.portlet.Portlet that extends the
com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet class. Here, servicemeans an OSGi service, not
a Liferay API. Another way to say service type is to say component type. You could run the following command
to accomplish this:

blade create -t npm-portlet -v 7.0 -p com.liferay.npm -c MyNpmPortlet my-npm-portlet

1949

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.portlet \

-DgroupId=com.liferay \

-DartifactId=my-npm-portlet \

-Dpackage=com.liferay.npm \

-Dversion=1.0 \

-DclassName=MyNpmPortlet \

-DpackageJsonVersion=1.0.0 \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-npm-portlet

– [gradle|.mvn]

* wrapper

· [gradle|maven]-wrapper.jar

· [gradle|maven]-wrapper.properties

– src

* main

· java

· com/liferay/npm

· constants

· MyNpmPortletKeys.java

· portlet

· MyNpmPortlet.java

· resources

· content

· Language.properties

· META-INF

· resources

· js

· index.es.js

· init.jsp

· view.jsp

– .babelrc

– .npmbundlerrc

– bnd.bnd

– [build.gradle|pom.xml]

– [gradlew|mvnw]

1950

– package.json

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated portlet, modify the project by adding logic and additional files to the folders outlined
above.

133.15 npm React Portlet Template

In this article, you’ll learn how to create an npm React portlet as a Liferay module. To create an npm React
portlet via the command line using Blade CLI or Maven, use one of the commands with the following
parameters:

blade create -t npm-react-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.react.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

The template for this kind of project is npm-react-portlet. Suppose you want to create an npm React
portlet project called my-npm-react-portletwith a package name of com.liferay.npm.react and a class name
of MyNpmReactPortlet. Also, you’d like to create a service of type javax.portlet.Portlet that extends the
com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet class. Here, servicemeans an OSGi service, not
a Liferay API. Another way to say service type is to say component type. You could run the following command
to accomplish this:

blade create -t npm-react-portlet -v 7.0 -p com.liferay.npm.react -c MyNpmReactPortlet my-npm-react-portlet

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.react.portlet \

-DgroupId=com.liferay \

-DartifactId=my-npm-react-portlet \

-Dpackage=com.liferay.npm.react \

-Dversion=1.0 \

-DclassName=MyNpmReactPortlet \

-DpackageJsonVersion=1.0.0 \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

1951

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

• my-npm-react-portlet

– [gradle|.mvn]

* wrapper

· [gradle|maven]-wrapper.jar

· [gradle|maven]-wrapper.properties

– src

* main

· java

· com/liferay/npm/react

· constants

· MyNpmReactPortletKeys.java

· portlet

· MyNpmReactPortlet.java

· resources

· content

· Language.properties

· META-INF

· resources

· js

· index.es.js

· init.jsp

· view.jsp

– .babelrc

– .npmbundlerrc

– bnd.bnd

– [build.gradle|pom.xml]

– [gradlew|mvnw]

– package.json

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated portlet, modify the project by adding logic and additional files to the folders outlined
above.

1952

133.16 npm Vue.js Portlet Template

In this article, you’ll learn how to create an npm Vue.js portlet as a Liferay module. To create an npm Vue.js
portlet via the command line using Blade CLI or Maven, use one of the commands with the following
parameters:

blade create -t npm-vuejs-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.vuejs.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

The template for this kind of project is npm-vuejs-portlet. Suppose you want to create an npm Vue.js
portlet project called my-npm-vuejs-portletwith a package name of com.liferay.npm.vuejs and a class name
of MyNpmVuejsPortlet. Also, you’d like to create a service of type javax.portlet.Portlet that extends the
com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet class. Here, servicemeans an OSGi service, not
a Liferay API. Another way to say service type is to say component type. You could run the following command
to accomplish this:

blade create -t npm-vuejs-portlet -v 7.0 -p com.liferay.npm.vuejs -c MyNpmVuejsPortlet my-npm-vuejs-portlet

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.npm.vuejs.portlet \

-DgroupId=com.liferay \

-DartifactId=my-npm-vuejs-portlet \

-Dpackage=com.liferay.npm.vuejs \

-Dversion=1.0 \

-DclassName=MyNpmVuejsPortlet \

-DpackageJsonVersion=1.0.0 \

-DliferayVersion=7.0

Important:This sample works for Liferay DXP 7.0 Fix Pack 44+ and Liferay Portal CE GA7+.
After running the command above, your project’s directory structure looks like this:

• my-npm-vuejs-portlet

– .mvn (only in Maven Blade CLI generated projects)

* wrapper

1953

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

· maven-wrapper.jar

· maven-wrapper.properties

– src

* main

· java

· com/liferay/npm/vuejs

· constants

· MyNpmVuejsPortletKeys.java

· portlet

· MyNpmVuejsPortlet.java

· resources

· content

· Language.properties

· META-INF

· resources

· lib

· index.es.js

· init.jsp

· view.jsp

– .babelrc

– .npmbundlerrc

– bnd.bnd

– [build.gradle|pom.xml]

– mvnw (only in Maven Blade CLI generated projects)
– mvnw.cmd (only in Maven Blade CLI generated projects)
– package.json

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated portlet, modify the project by adding logic and additional files to the folders outlined
above.

133.17 Panel App Template

In this article, you’ll learn how to create a Liferay panel app and category as a Liferay module. To create a
Liferay panel app and category via the command line using Blade CLI or Maven, use one of the commands
with the following parameters:

blade create -t panel-app -v 7.0 [-p packageName] [-c className] projectName

or

1954

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.panel.app \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is panel-app. Suppose you want to create a panel app project called
my-panel-app-projectwith a package name prefix of com.liferay.docs and a class name prefix of Sample. You
could run the following command to accomplish this:

blade create -t panel-app -v 7.0 -p com.liferay.docs -c Sample my-panel-app-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.panel.app \

-DgroupId=com.liferay \

-DartifactId=my-panel-app-project \

-Dpackage=com.liferay.docs \

-Dversion=1.0 \

-DclassName=Sample \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure would look like this

• my-panel-app-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/

· application/list

· SamplePanelApp.java

· SamplePanelCategory.java

· constants

· SamplePanelCategoryKeys.java

· SamplePortletKeys.java

· portlet

1955

· SamplePortlet.java

· resources

· content

· Language.properties

· META-INF

· resources

· init.jsp

· view.jsp

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is functional and is deployable to a Liferay DXP instance. The generated module,
by default, creates a panel category with a panel app in Liferay DXP’s Product Menu. To build upon the
generated app,modify the project by adding logic and additional files to the folders outlined above. You can
visit the Customizing the Product Menu tutorial for instructions on customizing a panel app project.

133.18 Portlet Configuration Icon

In this article, you’ll learn how to create a Liferay portlet configuration icon as a Liferay module. To create a
portlet configuration icon via the command line using Blade CLI or Maven, use one of the commands with
the following parameters:

blade create -t portlet-configuration-icon -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.portlet.configuration.icon \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is portlet-configuration-icon. Suppose you want to cre-
ate a portlet configuration icon project called my-portlet-config-icon with a package name of
com.liferay.docs.portlet.configuration.icon and a class name of SamplePortletConfigurationIcon.
You could run the following command to accomplish this:

blade create -t portlet-configuration-icon -v 7.0 -p com.liferay.docs -c Sample my-portlet-config-icon

or

1956

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.portlet.configuration.icon \

-DgroupId=com.liferay \

-DartifactId=my-portlet-config-project \

-Dpackage=com.liferay.docs \

-Dversion=1.0 \

-DclassName=Sample \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure would look like this

• my-portlet-config-icon

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/portlet/configuration/icon

· SamplePortletConfigurationIcon.java

· resources

· content

· Language.properties

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is functional and is deployable to a Liferay DXP instance. The generated module,
by default, creates a sample link in the HelloWorld portlet’s Options menu. To build upon the generated
app,modify the project by adding logic and additional files to the folders outlined above. You can visit the
portlet-configuration-icon sample project for a more expanded sample of a portlet configuration icon.

133.19 Portlet Template

In this article, you’ll learn how to create a Liferay portlet application as a Liferay module. To create a Liferay
portlet application via the command line using Blade CLI or Maven, use one of the commands with the
following parameters:

blade create -t portlet -v 7.0 [-p packageName] [-c className] projectName

or

1957

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/portlet-configuration-icon

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is portlet. Suppose you want to create a portlet project called
my-portlet-projectwith a package name of com.liferay.docs.portlet and a class name of MyPortlet. Also,
you’d like to create a service of type javax.portlet.Portlet that extends the javax.portlet.GenericPortlet
class. Here, servicemeans an OSGi service, not a Liferay API. Another way to say service type is to say component
type. You could run the following command to accomplish this:

blade create -t portlet -v 7.0 -p com.liferay.docs.portlet -c MyPortlet my-portlet-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.portlet \

-DgroupId=com.liferay \

-DartifactId=my-portlet-project \

-Dpackage=com.liferay.docs.portlet \

-Dversion=1.0 \

-DclassName=MyPortlet \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-portlet-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/portlet

· MyPortlet.java

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated app,modify the project by adding logic and additional files to the folders outlined above.

1958

133.20 Portlet Provider Template
In this article, you’ll learn how to create a Liferay portlet provider as a Liferay module. To create a Liferay
portlet provider via the command line using Blade CLI orMaven, use one of the commandswith the following
parameters:

blade create -t portlet-provider -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.portlet.provider \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is portlet-provider. Suppose you want to create a portlet provider
project called my-portlet-provider-project with a package name of com.liferay.docs.portlet and a class
name prefix of Sample. You could run the following command to accomplish this:

blade create -t portlet-provider -v 7.0 -p com.liferay.docs -c Sample my-portlet-provider-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.portlet.provider \

-DgroupId=com.liferay \

-DartifactId=my-portlet-provider-project \

-Dpackage=com.liferay.docs \

-Dversion=1.0 \

-DclassName=Sample \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure would look like this

• my-portlet-provider-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/portlet

1959

· SampleAddPortletProvider.java

· SamplePortlet.java

· resources

· META-INF

· resources

· init.jsp

· view.jsp

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is functional and is deployable to a Liferay DXP instance. To build upon the
generated app,modify the project by adding logic and additional files to the folders outlined above. You can
visit the Providing Portlets to Manage Requests tutorial for instructions on customizing a portlet provider
project.

133.21 Portlet Toolbar Contributor Template
In this article, you’ll learn how to create a Liferay portlet toolbar contributor as a Liferay module. To create a
portlet toolbar contributor entry via the command line using Blade CLI or Maven, use one of the commands
with the following parameters:

blade create -t portlet-toolbar-contributor -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.portlet.toolbar.contributor \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is portlet-toolbar-contributor. Suppose you want to create
a portlet toolbar contributor project called my-portlet-toolbar-contributor with a package name of
com.liferay.docs.portlet.toolbar.contributor and a class name of SamplePortletToolbarContributor. You
could run the following command to accomplish this:

blade create -t portlet-toolbar-contributor -v 7.0 -p com.liferay.docs -c Sample my-portlet-toolbar-contributor

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.portlet.toolbar.contributor \

-DgroupId=com.liferay \

-DartifactId=my-portlet-toolbar-contributor \

-Dpackage=com.liferay.docs \

-Dversion=1.0 \

-DclassName=Sample \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

1960

After running the command above, your project’s directory structure would look like this

• my-portlet-toolbar-contributor

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/portlet/toolbar/contributor

· SamplePortletToolbarContributor.java

· resources

· content

· Language.properties

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is functional and is deployable to a Liferay DXP instance. To build upon the
generated app,modify the project by adding logic and additional files to the folders outlined above. This
generated project, by default, creates a new button on the HelloWorld portlet’s toolbar. You can visit the
portlet-toolbar-contributor sample project for a more expanded sample of a portlet toolbar contributor.

133.22 REST Template

In this article, you’ll learn how to create a Liferay RESTful web service packaged in a Liferaymodule. To create
a Liferay RESTful web service via the command line using Blade CLI or Maven, use one of the commands
with the following parameters:

blade create -t rest -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.rest \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

1961

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/portlet-toolbar-contributor

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is rest. Suppose you want to create a RESTful web service project
called my-rest-project with a package name of com.liferay.docs.application and a class name prefix of
Rest. You could run one of the following commands to accomplish this:

blade create -t rest -v 7.0 -p com.liferay.docs -c Rest my-rest-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.rest \

-DgroupId=com.liferay \

-DartifactId=my-rest-project \

-Dpackage=com.liferay.docs \

-Dversion=1.0 \

-DclassName=Rest \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-rest-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/application

· RestApplication.java

· resources

· configuration

· com.liferay.portal.remote.cxf.common.configuration.CXFEndpointPublisherConfiguration-

cxf

· com.liferay.portal.remote.rest.extender.configuration.RestExtenderConfiguration-

rest

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is a working RESTful web service and is deployable to a Liferay DXP instance. To
build upon the generated app,modify the project by adding logic and additional files to the folders outlined
above.

1962

133.23 Service Template

In this article, you’ll learn how to create a Liferay service as a Liferay module. To create a Liferay service via
the command line using Blade CLI or Maven, use one of the commands with the following parameters:

blade create -t service -v 7.0 [-p packageName] [-c className] [-s serviceName] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.service \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DserviceName=[serviceName] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is service. Suppose you want to create a service project called my-

service-projectwith a package name of com.liferay.docs.service and a class name of Service. Also, you’d
like to create a service of type com.liferay.portal.kernel.events.LifecycleAction that also implements that
same service. You could run the following command to accomplish this:

blade create -t service -v 7.0 -p com.liferay.docs.service -c Service -s com.liferay.portal.kernel.events.LifecycleAction my-service-

project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.service \

-DgroupId=com.liferay \

-DartifactId=my-service-project \

-Dpackage=com.liferay.docs \

-Dversion=1.0 \

-DclassName=Service \

-DclassName=com.liferay.portal.kernel.events.LifecycleAction \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure would look like this

• my-service-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

1963

· java

· com/liferay/docs/service

· Service.java

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is functional and is deployable to a Liferay DXP instance. To build upon the
generated app,modify the project by adding logic and additional files to the folders outlined above.

133.24 Service Builder Template

In this article, you’ll learn how to create a Liferay portlet application that uses Service Builder as Liferay
modules. To create a Liferay Service Builder project via the command line using Blade CLI or Maven, use
one of the commands with the following parameters:

blade create -t service-builder -v 7.0 [-p packageName] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.service.builder \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DapiPath=[apiPath] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is service-builder. Suppose you want to create a Service Builder
project called taskswith a package name of com.liferay.docs.tasks. You could run the following command
to accomplish this:

blade create -t service-builder -v 7.0 -p com.liferay.docs.tasks tasks

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.service.builder \

-DgroupId=com.liferay \

-DartifactId=tasks \

-Dpackage=com.liferay.docs.tasks \

-Dversion=1.0 \

-DapiPath=com.liferay.api.path \

-DliferayVersion=7.0

This task creates the tasks-api and tasks-service folders. In many cases, a Service Builder project also
requires a -web folder to hold, for example, portlet classes. This should be createdmanually. After running
the command above, your project’s directory structure looks like this:

• tasks

1964

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– tasks-api

* bnd.bnd

* build.gradle

– tasks-service

* bnd.bnd

* build.gradle

* service.xml

– build.gradle

– [gradlew|pom.xml]

– settings.gradle

To generate your service and API classes for the *-api and *-servicemodules, replace the service.xml
file in the *-servicemodule. Depending on your build tool, you can build your services by executing

blade gw buildService

or

mvn service-builder:build

from the tasks root directory. Note that blade gw only works if the Gradle wrapper can be detected. To
ensure the availability of the Gradle wrapper, be sure to work in a LiferayWorkspace.

The mvn service-builder:build commandonlyworks if you’reusing the com.liferay.portal.tools.service.builder
plugin version 1.0.145+. Maven projects using an earlier version of the Service Builder plugin should update
their POM accordingly.

The generated module is functional and is deployable to a Liferay DXP instance. To build upon the
generated app,modify the project by adding logic and additional files to the folders outlined above.

Related Topics

Running Service Builder and Understanding the Generated Code
Using Service Builder in a Maven Project
Service Builder with Maven

1965

133.25 Service Wrapper Template

In this article, you’ll learn how to create a Liferay service wrapper as a Liferay module. To create a Liferay
servicewrapper via the command line using BladeCLI orMaven, use one of the commandswith the following
parameters:

blade create -t service-wrapper -v 7.0 [-p packageName] [-c className] [-s serviceWrapperClass] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.service.wrapper \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DserviceWrapperClass=[serviceWrapperClass] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is service-wrapper. Suppose you want to create a service wrapper
project called service-overridewith a package name of com.liferay.docs.serviceoverride and a class name
of UserLocalServiceOverride. Also, you’d like to create a serviceof type com.liferay.portal.kernel.service.ServiceWrapper
that extends the com.liferay.portal.service.UserLocalServiceWrapper class. You could run the following
command to accomplish this:

blade create -t service-wrapper -v 7.0 -p com.liferay.docs.serviceoverride -c UserLocalServiceOverride -s com.liferay.portal.kernel.service.UserLocalServiceWrapper service-

override

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.service.wrapper \

-DgroupId=com.liferay \

-DartifactId=service-override \

-Dpackage=com.liferay.docs.serviceoverride \

-Dversion=1.0 \

-DclassName=UserLocalServiceOverride \

-DserviceWrapperClass=com.liferay.portal.kernel.service.UserLocalServiceWrapper \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

Here, servicemeans an OSGi service, not a Liferay API. Another way to say service type is to say component
type.

After running the command above, your project’s directory structure looks like this:

• service-override

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

1966

– src

* main

· java

· com/liferay/docs/serviceoverride

· UserLocalServiceOverride.java

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated app,modify the project by adding logic and additional files to the folders outlined above.

133.26 Simulation Panel Entry Template

In this article, you’ll learn how to create a Liferay simulation panel entry as a Liferay module. To create a
simulation panel entry via the command line using Blade CLI or Maven, use one of the commands with the
following parameters:

blade create -t simulation-panel-entry -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.simulation.panel.entry \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is simulation-panel-entry. Suppose you want to cre-
ate a simulation panel entry project called my-simulation-panel-entry with a package name of
com.liferay.docs.application.list and a class name of SampleSimulationPanelApp. You could run
the following command to accomplish this:

blade create -t simulation-panel-entry -v 7.0 -p com.liferay.docs -c Sample my-simulation-panel-entry

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.simulation.panel.entry \

-DgroupId=com.liferay \

-DartifactId=my-simulation-panel-entry \

-Dpackage=com.liferay.docs \

-Dversion=1.0 \

-DclassName=Sample \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

1967

After running the command above, your project’s directory structure would look like this

• my-simulation-panel-entry

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/application/list

· SampleSimulationPanelApp.java

· resources

· content

· Language.properties

· META-INF

· resources

· simulation_panel.jsp

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is functional and is deployable to a Liferay DXP instance. To build upon the
generated app,modify the project by adding logic and additional files to the folders outlined above. You can
visit the simulation-panel-app sample project for amore expanded sample of a controlmenu entry. Likewise,
see the Extending the SimulationMenu tutorial for instructions on customizing a simulation panel entry
project.

133.27 Soy Portlet Template
In this article, you’ll learn how to create a Soy portlet application as a Liferay module. To create a Soy portlet
as a module via the command line using Blade CLI or Maven, use one of the commands with the following
parameters:

blade create -t soy-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.soy.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

1968

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/simulation-panel-app

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is soy-portlet. Suppose you want to create an Soy portlet
project called my-soy-portlet-project with a package name of com.liferay.docs.soyportlet and a class
name of MySoyPortlet. Also, you’d like to create a service of type javax.portlet.Portlet that extends the
com.liferay.portal.portlet.bridge.soy.SoyPortlet class. Here, servicemeans an OSGi service, not a Liferay
API. Another way to say service type is to say component type. You could run the following command to
accomplish this:

blade create -t soy-portlet -v 7.0 -p com.liferay.docs.soyportlet -c MySoyPortlet my-soy-portlet-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.soy.portlet \

-DgroupId=com.liferay \

-DartifactId=my-soy-portlet-project \

-Dpackage=com.liferay.docs.soyportlet \

-Dversion=1.0 \

-DclassName=MySoyPortlet \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-soy-portlet-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/soyportlet

· constants

· MySoyPortletKeys.java

· portlet

· action

· MySoyPortletNavigationMVCRenderCommand.java

· MySoyPortlet.java

· resources

· content

· Language.properties

1969

· META-INF

· resources

· Footer.es

· Footer.soy

· Header.es

· Header.soy

· Navigation.es

· Navigation.soy

· View.es

· View.soy

– bnd.bnd

– build.gradle

– package.json

– [gradlew|pom.xml]

The generated module is a working application and is deployable to a Liferay DXP instance. To build
upon the generated app,modify the project by adding logic and additional files to the folders outlined above.

133.28 Spring MVC Portlet Template

In this article, you’ll learn how to create a Liferay Spring MVC portlet application as a WAR. To create a
Liferay Spring MVC portlet via the command line using Blade CLI or Maven, use one of the commands with
the following parameters:

blade create -t spring-mvc-portlet -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.spring.mvc.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is spring-mvc-portlet. Suppose you want to create a SpringMVC
portlet project called my-spring-mvc-portlet-projectwithapackagenameof com.liferay.docs.springmvcportlet
and a class name of MySpringMvcPortlet. Also, you’d like to create a Spring-annotated portlet class named
MySpringMvcPortletViewController.

blade create -t spring-mvc-portlet -v 7.0 -p com.liferay.docs.springmvcportlet -c MySpringMvcPortlet my-spring-mvc-portlet-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.spring.mvc.portlet \

-DgroupId=com.liferay \

-DartifactId=my-spring-mvc-portlet-project \

1970

-Dpackage=com.liferay.docs.springmvcportlet \

-Dversion=1.0 \

-DclassName=MySpringMvcPortlet \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

After running the command above, your project’s directory structure looks like this:

• my-spring-mvc-portlet-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/springmvcportlet/portlet

· MySpringMvcPortletViewController

· resources

· content

· Language.properties

· webapp

· css

· main.scss

· WEB-INF

· jsp

· init.jsp

· view.jsp

· spring-context

· portlet

· my-spring-mvc-portlet-project.xml

· portlet-application-context.xml

· tld

· liferay-portlet.tld

· liferay-portlet-ext.tld

· liferay-security.tld

· liferay-theme.tld

· liferay-ui.tld

· liferay-util.tld

1971

· liferay-display.xml

· liferay-plugin-package.properties

· liferay-portlet.xml

· portlet.xml

· web.xml

· icon.png

– build.gradle

– [gradlew|pom.xml]

The generatedWAR is a working application and is deployable to a Liferay DXP instance. To build upon
the generated app,modify the project by adding logic and additional files to the folders outlined above. You
can visit the springmvc-portlet sample project for a more expanded sample of a SpringMVC portlet.

133.29 Template Context Contributor Template

In this article, you’ll learn how to create a Liferay template context contributor as a Liferay module. To create
a template context contributor via the command line using Blade CLI or Maven, use one of the commands
with the following parameters:

blade create -t template-context-contributor -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.template.context.contributor \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is template-context-contributor. Suppose you want to create
a template context contributor project called my-template-context-contributor with a package name of
com.liferay.docs.theme.contributor and a class name of SampleTemplateContextContributor. You could run
the following command to accomplish this:

blade create -t template-context-contributor -v 7.0 -p com.liferay.docs -c Sample my-template-context-contributor

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.template.context.contributor \

-DgroupId=com.liferay \

-DartifactId=my-template-context-contributor \

-Dpackage=com.liferay.docs \

-Dversion=1.0 \

-DclassName=Sample \

-Dauthor=Joe Bloggs \

-DliferayVersion=7.0

1972

After running the command above, your project’s directory structure would look like this

• my-template-context-contributor

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· java

· com/liferay/docs/theme/contributor

· SampleTemplateContextContributor.java

– bnd.bnd

– build.gradle

– [gradlew|pom.xml]

The generated module is functional and is deployable to a Liferay DXP instance. To build upon the
generated app,modify the project by adding logic and additional files to the folders outlined above. You can
visit the template-context-contributor sample project for a more expanded sample of a template context
contributor. Likewise, see the Context Contributors tutorial for instructions on customizing a template
context contributor project.

133.30 Theme Template
In this article, you’ll learn how to create a Liferay theme as aWAR project. To create a Liferay theme via the
command line using Blade CLI or Maven, use one of the commands with the following parameters:

blade create -t theme -v 7.0 projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.theme \

-DartifactId=[projectName] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is theme. Suppose you want to create a theme project called my-

theme-project as aWAR file. You could run the following command to accomplish this:

blade create -t theme -v 7.0 my-theme-project

or

1973

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/themes/template-context-contributor

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.theme \

-DgroupId=com.liferay \

-DartifactId=my-theme-project \

-Dversion=1.0 \

-DliferayVersion=7.0

After running the command above, your project’s folder structure looks like this:

• my-theme-project

– gradle (only in Blade CLI generated projects)

* wrapper

· gradle-wrapper.jar

· gradle-wrapper.properties

– src

* main

· resources

· resources-importer

· sitemap.json

· webapp

· css

· _custom.scss

· WEB-INF

· liferay-plugin-package.properties

· web.xml

– build.gradle

– [gradlew|pom.xml]

The generated theme is functional and is deployable to a Liferay DXP instance. To build upon the
generated project, modify the project by adding logic and additional files to the folders outlined above. You
can visit the simple-theme project for a more expanded sample of a theme. Likewise, see theThemes and
Layout Templates tutorial section for more information on creating themes.

133.31 Theme Contributor Template
In this article, you’ll learn how to create a Liferay theme contributor as a Liferay module. To create a theme
contributor via the command line using Blade CLI or Maven, use one of the commands with the following
parameters:

blade create -t theme-contributor -v 7.0 [--contributor-type contributorType] [-p packageName] projectName

or

1974

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.theme.contributor \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DcontributorType=[contributorType] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is theme-contributor. Suppose you want to create a theme contribu-
tor project called my-theme-contributorwith a package name of com.liferay.docs.theme.contributor and a
contributor type of my-contributor. You could run the following command to accomplish this:

blade create -t theme-contributor -v 7.0 --contributor-type my-contributor -p com.liferay.docs.theme.contributor my-theme-contributor

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.theme.contributor \

-DgroupId=com.liferay \

-DartifactId=my-theme-contributor \

-Dpackage=com.liferay.docs.theme.contributor \

-Dversion=1.0 \

-DcontributorType=my-contributor \

-DliferayVersion=7.0

After running the command above, your project’s folder structure would look like this:

• my-theme-contributor

– src

* main

· java

· com/liferay/docs/theme/contributor

· resources/META-INF/resources

· css

· my-contributor

· _body.scss

· _control_menu.scss

· _product_menu.scss

· _simulation_panel.scss

· my-contributor.scss

· js

· my-contributor.js

– bnd.bnd

– build.gradle (only in Gradle Blade CLI generated projects)
– mvnw (only in Maven Blade CLI generated projects)

1975

– mvnw.cmd (only in Maven Blade CLI generated projects)
– pom.xml (only in Maven-related projects)

The generated module is functional and is deployable to a Liferay DXP instance. To build upon the
generated app, modify the project by adding logic and additional files to the folders outlined above. You
can visit the BladeTheme Contributor sample project for a more expanded sample of a theme contributor.
Likewise, see theTheme Contributors tutorial for instructions on customizing a theme contributor project.

133.32 WAR Hook Template
In this article, you’ll learn how to create a LiferayWAR hook project. To create a LiferayWAR hook via the
command line using Blade CLI or Maven, use one of the commands with the following parameters:

blade create -t war-hook -v 7.0 [-p packageName] [-c className] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.war.hook \

-DartifactId=[projectName]

-Dpackage=[packageName] \

-DclassName=[className] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is war-hook. Suppose you want to create aWAR hook project called
my-war-hook-projectwith a package name of com.liferay.docs and a class name of MyWarHook. You could run
the following command to accomplish this:

blade create -t war-hook -v 7.0 -p com.liferay.docs -c MyWarHook my-war-hook-project

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.war.hook \

-DgroupId=com.liferay \

-DartifactId=my-war-hook-project \

-Dpackage=com.liferay.docs \

-DclassName=MyWarHook \

-Dversion=1.0 \

-DliferayVersion=7.0

After running the command above, your project’s folder structure looks like this:

• my-war-hook-project

– [gradle|.mvn]

* wrapper

· [gradle|maven]-wrapper.jar

· [gradle|maven]-wrapper.properties

1976

– src

* main

· java

· com/liferay/docs

· MyWarHookLoginPostAction

· MyWarHookStartupAction

· resources

· portal.properties

· webapp

· WEB-INF

· liferay-hook.xml

· liferay-plugin-package.properties

· web.xml

– [build.gradle|pom.xml]

– [gradlew|mvnw]

The generatedWAR hook is functional and is deployable to a Liferay DXP instance. To build upon the
generated project, modify the project by adding logic and additional files to the folders outlined above.
DeployingWAR hooks is supported for 7.0, however, it is recommended to optimize yourWAR hooks to
fragments or other applicable module projects. You can visit the Customizing section for info on how to do
this for many project types. See the Customizing Liferay Portal section for more information onWAR hooks.

133.33 WAR MVC Portlet Template

In this article, you’ll learn how to create a Liferay MVC portlet project as aWAR file. To create a Liferay MVC
portlet project as aWAR via the command line using Blade CLI or Maven, use one of the commands with the
following parameters:

blade create -t war-mvc-portlet -v 7.0 [-p packageName] projectName

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.war.mvc.portlet \

-DartifactId=[projectName] \

-Dpackage=[packageName] \

-DliferayVersion=7.0

You can also insert the -b maven parameter in the Blade command to generate a Maven project using
Blade CLI.

The template for this kind of project is war-mvc-portlet. Suppose you want to create aWARMVC portlet
project called my-war-mvc-portlet-project with a package name of com.liferay.docs.war.mvc and a class
name of MyWarMvcPortlet. You could run the following command to accomplish this:

blade create -t war-mvc-portlet -v 7.0 -p com.liferay.docs.war.mvc my-war-mvc-portlet-project

1977

or

mvn archetype:generate \

-DarchetypeGroupId=com.liferay \

-DarchetypeArtifactId=com.liferay.project.templates.war.mvc.portlet \

-DgroupId=com.liferay \

-DartifactId=my-war-mvc-portlet-project \

-Dpackage=com.liferay.docs.war.mvc \

-Dversion=1.0 \

-DliferayVersion=7.0

After running the command above, your project’s folder structure looks like this:

• my-war-mvc-portlet-project

– [gradle|.mvn]

* wrapper

· [gradle|maven]-wrapper.jar

· [gradle|maven]-wrapper.properties

– src

* main

· java

· com/liferay/docs/war/mvc

· resources

· content

· Language.properties

· webapp

· css

· .sass-cache

· main.css

· main_rtl.css

· main.scss

· WEB-INF

· tld

· liferay-portlet.tld

· liferay-portlet-ext.tld

· liferay-security.tld

· liferay-theme.tld

· liferay-ui.tld

· liferay-util.tld

· liferay-display.xml

· liferay-plugin-package.properties

· liferay-portlet.xml

1978

· portlet.xml

· web.xml

· init.jsp

· view.jsp

– [build.gradle|pom.xml]

– [gradlew|mvnw]

The generated WAR MVC portlet is functional and is deployable to a Liferay DXP instance. To build
upon the generated project,modify the project by adding logic and additional files to the folders outlined
above. DeployingWARMVC portlets is supported for 7.0, however, it is recommended to optimize your
WAR portlet to a module project, if possible. You can visit the From Liferay Portal 6 to 7 section for info on
how to do this.

1979

Chapter 134

Sample Projects

Note: This section of articles does not provide documentation for all sample projects residing in the
liferay-blade-samples repo. The documentation for these samples is in progress and will grow over time.

Liferay provides sample projects that target different integration points in Liferay DXP.These projects
reside in the liferay-blade-samplesGithub repository and can be easily copy/pasted to your local environment.
The sample projects are grouped into three different parent folders based on the build tools used to generate
them:

• gradle

• liferay-workspace

• maven

Note: The Liferay Workspace folder stores WAR-type samples in a separate folder named wars. The
Gradle andMaven tool folders mixWAR samples with the other sample types (apps, extensions, etc.).

For more information on these sample projects, visit the Liferay Sample Projects tutorial.

1981

https://github.com/liferay/liferay-blade-samples
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/wars

Chapter 135

Apps

This section focuses on Liferay sample applications. You can view these sample apps by visiting the apps
folder corresponding to your preferred build tool:

• Gradle sample apps
• LiferayWorkspace sample apps
• Maven sample apps

The following samples are documented:

• Greedy Policy Option Portlet
• Kotlin Portlet
• npm Samples
• Service Builder Samples
• Shared Language Keys
• Simulation Panel App
• SpringMVC Portlet

Visit a particular sample page to learn more!

135.1 Greedy Policy Option Application

The Greedy Policy Option sample provides two portlets that can be added to a Liferay DXP page: Greedy
Portlet and Reluctant Portlet.

Figure 135.1: The Greedy Policy Option app provides two portlets that only print text. You’ll dive deeper later to discover their interesting capabilities involving services.

1983

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/apps
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/apps

These two portlets do not provide anything useful out-of-the-box. They are, however, very effective at
demonstrating the ability to reference services using greedy and reluctant policy options. You’ll learn how to
do this later.

What API(s) and/or code components does this sample highlight?

This sample provides twomodules referencing services using greedy and reluctant policy options.

• service-reference: Provides an OSGi service interface called SomeService, a default implementation
of it, and portlets that refer to service instances. One portlet refers to new higher ranked instances
of the service automatically. The other portlet is reluctant to use new higher ranked instances and
continues to use its bound service. The reluctant portlet can, however, be configured dynamically to
use other service instances.

• higher-ranked-service: Has a higher ranked SomeService implementation.

Here are each module’s file structures:

• service-reference/

– bnd.bnd

– configs/

* com.liferay.blade.reluctant.vs.greedy.portlet.portlet.ReluctantPortlet.config →
ReluctantPortlet configuration file for Liferay DXP DE 7.0 Fix Pack 8 or later and Liferay
CE Portal 7.0 GA4 or later

* com.liferay.blade.reluctant.vs.greedy.portlet.portlet.ReluctantPortlet.cfg →
ReluctantPortlet configuration file for Liferay DXPDE 7.0 Fix Packs earlier than Fix Pack
8 and Liferay CE Portal 7.0 GA3 or earlier

– src/main/java/com/liferay/blade/reluctant/vs/greedy/portlet/

* api/

· SomeService.java → Service interface

* constants/

· ReluctantPortletVsGreedyPortletKeys.java → Portlet constants

* portlet/

· DefaultSomeService.java → Zero ranked service implementation
· GreedyPortlet.java → Refers to SomeService using a greedy service policy option
· ReluctantPortletPortlet.java → Refers to SomeService using a reluctant service pol-
icy option by default.

• higher-ranked-service/

– bnd.bnd

– src/main/java/com/liferay/blade/reluctant/vs/greedy/svc/HigherRankedService.java →
Service implementation with service ranking value of 100

1984

How does this sample leverage the API(s) and/or code component?

Here are the things you can learn using the sample modules:

1. Binding a component’s service reference to the highest ranked service instance that’s available initially.

2. Deploying a module with a higher ranked service instance for binding to greedy references immedi-
ately.

3. Configuring a component to reference a different service instance dynamically.

Let’s walk through the demonstration.

Binding a newly deployed component's service reference to the highest ranking service instance that's
available initially

On deploying a component that references a service, it binds to the highest ranking service instance that
matches its target filter (if specified).

The portlet classes refer to instances of interface SomeService. The doSomethingmethod returns a String.

public interface SomeService {

public String doSomething();

}

Class DefaultSomeService implements SomeService. Its doSomething method returns the String “I am
Default!”.

@Component

public class DefaultSomeService implements SomeService {

@Override

public String doSomething() {

return "I am Default!";

}

}

Whenmodule’s portlets refer to DefaultSomeService, they display the String “I amDefault!”.
The ReluctantPortlet class’s SomeService reference’s policy option is the default: static and reluctant.

This policy option keeps the reference bound to its current service instance unless that instance stops or the
reference is reconfigured to refer to a different service instance.

@Component(

immediate = true,

property = {

"com.liferay.portlet.display-category=category.sample",

"com.liferay.portlet.instanceable=true",

"javax.portlet.display-name=Reluctant Portlet",

"javax.portlet.init-param.template-path=/",

"javax.portlet.init-param.view-template=/view.jsp",

"javax.portlet.name=" + ReluctantVsGreedyPortletKeys.Reluctant,

"javax.portlet.resource-bundle=content.Language",

"javax.portlet.security-role-ref=power-user,user"

},

service = Portlet.class

)

public class ReluctantPortlet extends MVCPortlet {

1985

@Override

public void doView(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

renderRequest.setAttribute("doSomething", _someService.doSomething());

super.doView(renderRequest, renderResponse);

}

@Reference

private SomeService _someService;

}

The ReluctantPortlet’s method doView sets render request attribute doSomething to the value returned
from the SomeService instance’s doSomethingmethod (e.g., DefaultService returns “I am default!”).

The GreedyPortlet class is similar to ReluctantPortlet, except its SomeService reference’s policy option is
static and greedy (i.e., ReferencePolicyOption.GREEDY).

public class GreedyPortlet extends MVCPortlet {

@Override

public void doView(

RenderRequest renderRequest, RenderResponse renderResponse)

throws IOException, PortletException {

renderRequest.setAttribute("doSomething", _someService.doSomething());

super.doView(renderRequest, renderResponse);

}

@Reference (policyOption = ReferencePolicyOption.GREEDY)

private SomeService _someService;

}

The greedy policy option lets the component switch to using a higher ranked SomeService instance if one
becomes active in the system. The sectionDeploying amodule with a higher ranked service instance for binding to
greedy references immediately demonstrates this portlet switching to a higher ranked service.

It’s time to see this module’s portlets and service in action.

1. Stop module higher-ranked-service if it’s active.

2. Deploy the service-referencemodule.

3. Add the Reluctant Portlet from the Add → Applications → Sample category to a site page.
The portlet displays the message “SomeService says I am default!”–whose latter part comes from the
render request attribute set by the DefaultService instance.

4. Add the Greedy Portlet from the Add → Applications → Sample category to a site page.
The portlet displays themessage “SomeService says I am better, useme!”. Both portlets are referencing
a DefaultService instance.

Since DefaultService is the only active SomeService instance in the system, the portlets refer to it for their
SomeService fields.

The DefaultService and portlets Reluctant Portlet and Greedy Portlet are active. Let’s activate a higher
ranked SomeService instance and see how the portlets react to it.

1986

Figure 135.2: Reluctant Portlet displays the message “SomeService says I am default!”

Figure 135.3: Greedy Portlet displays the message “SomeService says I am better, use me!”

Deploying a module with a higher ranked service instance for binding to greedy references immediately

Module higher-ranked-service provides a SomeService implementation called HigherRankedService.
HigherRankedService’s service ranking is 100–that’s 100 more than DefaultService’s ranking 0. Its
doSomethingmethod returns the String “I am better, use me!”.

1. Deploy the higher-ranked-servicemodule.
2. Refresh your page that has the portlets Reluctant Portlet and Greedy Portlet.

Reluctant Portlet continues displaying message “SomeService says I am better, use me!”. It’s “reluctant” to
unbind from the DefaultService instance and bind to the newly activated HigherRankedService service.

Greedy Portlet displays a newmessage “SomeService says I am better, use me!”. The part of the message “I
am better, use me!” comes from the HigherRankedService instance to which it refers.

Figure 135.4: The Greedy Portlet is using a HigherRankedService instance

Next, learn how to bind the Reluctant Portlet to a HigherRankedService instance.

Configuring a component to reference a different service instance dynamically

The Reluctant Portlet is currently bound to a DefaultService instance. It’s “reluctant” to unbind from it and
bind to a different service. OSGi Configuration Administration lets you reconfigure service references to
filter on and bind to different service instances.

1987

The service-referencemodule’s configurationfiles and com.liferay.blade.reluctant.vs.greedy.portlet.portlet.ReluctantPortlet.config
and com.liferay.blade.reluctant.vs.greedy.portlet.portlet.ReluctantPortlet.cfg configure the
ReluctantPortlet component to use a HigherRankedService instance.

_someService.target=(component.name=com.liferay.blade.reluctant.vs.greedy.service.HigherRankedService)

Theservice configurationfilters ona servicewhose component.name is com.liferay.blade.reluctant.vs.greedy.service.HigherRankedService.
Note: For deploying to Liferay DXP DE 7.0 Fix Pack 8 or later or Liferay CE Portal 7.0 GA4 or later, use

file with suffix .config. For earlier versions, use the file with suffix .cfg.
Here are the steps to reconfigure ReluctantPortlet to use HigherRankedService:

1. Copy the configuration file to [Liferay-Home]/osgi/configs.
2. Refresh your browser.

Reluctant Portlet displays a newmessage “SomeService says I am better, use me!”.

Figure 135.5: Reluctant Portlet is using the HigherRankedService instance instead of a DefaultService instance.

Reluctant Portlet is using HigherRankedService instance instead of a DefaultService instance. You’ve con-
figured Reluctant Portlet to use a HigherRankedService instance!

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

135.2 Kotlin Portlet
TheKotlin Portlet sample provides an input form that accepts a name. Once submitting a name, the portlet
renders a greeting message.

What API(s) and/or code components does this sample highlight?

This sample highlights the use of the Kotlin programming language in conjunction with Liferay’s MVC
framework. Specifically, this sample leverages the MVCActionCommand interface.

How does this sample leverage the API(s) and/or code component?

This sample uses the MVC Action Command’s processAction(...) method to process the inputted text (i.e.,
name). The text is set as an attribute in the KotlinGreeterActionCommandKt.kt class using an ActionRequest

and then is retrieved in the JSP using a RenderRequest.

1988

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/greedy-policy-option-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/apps/greedy-policy-option-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/apps/greedy-policy-option-portlet
https://kotlinlang.org/
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/portlet/bridges/mvc/MVCActionCommand.html

Figure 135.6: After saving the inputted name, it’s is displayed as a greeting on the portlet page.

Where Is This Sample?

This sample is built with the following build tools:

• Gradle
• LiferayWorkspace

1989

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/kotlin-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/apps/kotlin-portlet

Chapter 136

npm Samples

This section focuses on Liferay npm sample portlets built with Gradle. You can view these samples by visiting
the gradle/apps/npm folder in the liferay-blade-samplesGithub repository.

The following npm samples are documented:

• Angular npm Portlet
• Billboard.js npm Portlet
• Isomorphic npm Portlet
• jQuery npm Portlet
• Metal.js npm Portlet
• React npm Portlet
• Simple npm Portlet
• Vue.js npm Portlet

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

Visit a particular sample page to learn more!

136.1 Angular npm Portlet

The Angular npm Portlet sample provides a portlet that uses the Angular framework to render its output.
This portlet showcases Angular’s speed and performance when rendering a user interface.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

Important:This sample works for Liferay DXP 7.0 Fix Pack 44+ and Liferay Portal CE GA7+.

1991

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/npm
https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify
https://angular.io/
https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

Figure 136.1: Type custom text in the field and watch it instantaneously displayed in the portlet.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-bundler tool
to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its package.json
file:

"scripts": {

"build": "tsc && liferay-npm-bundler"

},

Where Is This Sample?

This sample is built with the following build tool:

• Gradle

136.2 Billboard.js npm Portlet
The Billboard.js npm Portlet sample provides a portlet that uses the Billboard.js framework to render its
output.

This portlet showcases the power of graphing by displaying a set of default charts and amore advanced
custom chart. These are all built using Billboard.js.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

1992

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/npm/angular-npm-portlet
https://naver.github.io/billboard.js/
https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

Figure 136.2: The Billboard.js npm Portlet shows off some nice looking graphs using Billboard.js.

Important:This sample works for Liferay DXP 7.0 Fix Pack 44+ and Liferay Portal CE GA7+.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-bundler tool
to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its package.json
file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-npm-

bundler"

},

Where Is This Sample?

This sample is built with the following build tool:

1993

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler

• Gradle

136.3 Isomorphic npm Portlet

The Isomorphic npm Portlet sample provides a portlet that uses isomorphic code (i.e., can run from client
and/or server side) on the client side.

Figure 136.3: This sample portlet displays the results of running code designed for the server in the browser.

This portlet showcases running code designed to execute in the server in the browser. Note that this
portlet does not run JavaScript code in the server; it’s executing isomorphic JavaScript code in the browser.

1994

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/npm/billboardjs-npm-portlet
https://en.wikipedia.org/wiki/Isomorphic_JavaScript

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

Important:This sample works for Liferay DXP 7.0 Fix Pack 44+ and Liferay Portal CE GA7+.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.
You can domany things with isomorphic code. You can run it in

• the server only (e.g., Node.js)
• the client only (e.g., browser)
• both the server and client (e.g., Node.js + browser)

Isomorphic code cannot run server-side because Liferay DXP is Java based and cannot execute JavaScript
that way. This sample portlet shows how Liferay’s npm bundler can transform server-side code to make it
work in the client (e.g., emulates some of Node.js’ APIs in the client).

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-bundler tool
to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its package.json
file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-npm-

bundler"

},

Where Is This Sample?

This sample is built with the following build tool:

• Gradle

136.4 jQuery npm Portlet
The jQuery npm Portlet sample provides a portlet that uses the jQuery framework to render its output.

This portlet showcases the fast HTML document traversal jQuery offers.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

Important:This sample works for Liferay DXP 7.0 Fix Pack 44+ and Liferay Portal CE GA7+.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

1995

https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify
https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/npm/isomorphic-npm-portlet
https://jquery.com/
https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

Figure 136.4: Clicking on the portlet’s hand symbol displays a message.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-bundler tool
to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its package.json
file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-npm-

bundler"

},

Where Is This Sample?

This sample is built with the following build tool:

• Gradle

136.5 Metal.js npm Portlet
TheMetal.js npm Portlet sample provides a portlet that uses the Metal.js framework to render its output.

This portlet displays a Metal.js based dialog that has been rendered using SOY templates.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

Important:This sample works for Liferay DXP 7.0 Fix Pack 44+ and Liferay Portal CE GA7+.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-bundler tool
to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its package.json
file:

1996

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/npm/jquery-npm-portlet
https://metaljs.com/
https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify
https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler

Figure 136.5: Clicking the button returns displays a dialog window.

"scripts": {

"build": "metalsoy && babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-

npm-bundler"

},

Where Is This Sample?

This sample is built with the following build tool:

• Gradle

136.6 React npm Portlet

TheReact npm Portlet sample provides a portlet that uses the React framework to render its output.
This portlet showcases the how efficiently React can render components based on user interaction.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

Important:This sample works for Liferay DXP 7.0 Fix Pack 44+ and Liferay Portal CE GA7+.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

1997

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/npm/metaljs-npm-portlet
https://reactjs.org/
https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

Figure 136.6: You can play the game Tic-tac-toe with this sample portlet.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-bundler tool
to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its package.json
file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-npm-

bundler"

},

Where Is This Sample?

This sample is built with the following build tool:

• Gradle

136.7 Simple npm Portlet

The Simple npm Portlet sample provides a portlet that uses the isarray npm package when rendering its
output.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

Important:This sample works for Liferay DXP 7.0 Fix Pack 44+ and Liferay Portal CE GA7+.

1998

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/npm/react-npm-portlet
https://www.npmjs.com/package/isarray
https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

Figure 136.7: The portlet’s status and actions are displayed as output.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-bundler tool
to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its package.json
file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-npm-

bundler"

},

Where Is This Sample?

This sample is built with the following build tool:

• Gradle

136.8 Vue.js npm Portlet

TheVue.js npm Portlet sample provides a portlet that uses the Vue.js framework to render its output.
This portlet showcases Vue.js’s speed and performance when rendering a user interface.

Note:Theminifier fails on Liferay DXP 7.0 when JSDoc is present in a portlet. To resolve this, use Grunt
uglify to remove the JSDoc comments. This process may take a long time, depending on the number of files
that require an update.

Important:This sample works for Liferay DXP 7.0 Fix Pack 44+ and Liferay Portal CE GA7+.

1999

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/npm/simple-npm-portlet
https://vuejs.org/
https://gruntjs.com/getting-started
https://www.npmjs.com/package/grunt-contrib-uglify

Figure 136.8: Clicking the portlet’s button reverses the message.

What API(s) and/or code components does this sample highlight?

This sample leverages the npm development workflow support.

How does this sample leverage the API(s) and/or code component?

This sample uses the npm registry to download project dependencies and uses the liferay-npm-bundler tool
to bundle the project dependencies inside the OSGi bundle JAR file.

To accomplish the bundling, the project’s build process relies on a build script inside its package.json
file:

"scripts": {

"build": "babel --source-maps -d build/resources/main/META-INF/resources src/main/resources/META-INF/resources && liferay-npm-

bundler"

},

Where Is This Sample?

This sample is built with the following build tool:

• Gradle

2000

https://www.npmjs.com/
https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/npm/vuejs-npm-portlet

Chapter 137

Service Builder Samples

This section focuses on Liferay Service Builder sample projects built with various build tools. You can view
these samples by visiting the apps/service-builder folder corresponding to your preferred build tool:

• Gradle Service Builder sample apps
• Liferay Service BuilderWorkspace sample apps
• Maven Service Builder sample apps

The following Service Builder samples are documented:

• Service Builder application demonstrating Actionable Dynamic Query
• Service Builder application with JDBC connection
• Service Builder application with JNDI connection

Visit a particular sample page to learn more!

137.1 Service Builder Application Demonstrating Actionable Dy-
namic Query

This sample is similar to the basic Service Builder sample, which lets you perform CRUD (create, read,
update, delete) operations on service builder entities. Thedistinctive feature of the Service Builder Actionable
Dynamic Query (ADQ) sample is that it also lets you perform amass update on all existing service builder
entities.

To see the ADQ Service Builder sample in action, complete the following steps:

1. Add the sample to a page by navigating to Add () → Applications → Sample and dragging it to the page.

2. Select the app’s Add button and add an entity. Do this several times to create multiple entities.

3. Click theMass Update button and click Save to invoke the update.

After invoking the update, each entity’s field3 value (whose value is less than 100) is incremented.

You’ve leveraged the actionable dynamic query API in your sample!

2001

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/service-builder
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/apps/service-builder
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/apps/service-builder
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/service-builder/basic

Figure 137.1: This sample provides options to add entities and perform a mass update.

Figure 137.2: Clicking the Save button executes the mass update.

2002

What API(s) and/or code components does this sample highlight?

This sample demonstrates Liferay DXP’s actionable dynamic query API. Specifically, it demonstrates how to
create an ADQ, add criteria to an ADQ, specify an action for the ADQ, and execute the ADQ.

How does this sample leverage the API(s) and/or code component?

Anaction request is sent to the JSPPortletwith a cmd request parameter. When the JSPPortlet’s processAction
method processes the request, the value of the cmd parameter is parsed and then the portlet’s massUpdate
method is invoked. The massUpdatemethod, in turn, invokes the massUpdatemethod defined in the adq-

servicemodule’s BarLocalServiceImpl. This is where the sample leverages the actionable dynamic query
API:

public void massUpdate() {

ActionableDynamicQuery adq = getActionableDynamicQuery();

adq.setAddCriteriaMethod(

new ActionableDynamicQuery.AddCriteriaMethod() {

@Override

public void addCriteria(DynamicQuery dynamicQuery) {

dynamicQuery.add(RestrictionsFactoryUtil.lt("field3", 100));

}

});

adq.setPerformActionMethod(

new ActionableDynamicQuery.PerformActionMethod<Bar>() {

@Override

public void performAction(Bar bar) {

int field3 = bar.getField3();

field3++;

bar.setField3(field3);

updateBar(bar);

}

});

try {

adq.performActions();

}

catch (Exception e) {

e.printStackTrace();

}

}

For more information on the actionable dynamic query API, visit its dedicated tutorial.

137.2 Service Builder Application Using External Database via JDBC
This sample demonstrates how to connect a Liferay Service Builder application to an external database via a
JDBC connection. Here, an external database means any database other than Liferay DXP’s database. For
this sample to work correctly, you must prepare such an external database and configure Liferay DXP to use
it. Follow the steps below to make the required preparations before deploying the application.

1. Create the external database to which your Service Builder application will connect. For example,
create a MariaDB database called external. Add a table to this database called countrywith a BIGINT

2003

column called Id and a VARCHAR(255) column called Name. Add at least one record to this table. Here are
the MariaDB commands to accomplish this:

create database external character set utf8;

use external;

create table country(id bigint not null primary key, name varchar(255));

insert into country(id, name) values(1, 'Australia');

Make sure that your database commands were successful: Running select * from country; should
return the record you added.

2. Create a portal-ext.properties file in your Liferay DXP instance’s [LIFERAY_HOME] folder (this folder
should be marked by the presence of a .liferay-home file). In your portal-ext.properties file, define
the details of your JDBC data source connection:

jdbc.ext.driverClassName=org.mariadb.jdbc.Driver

jdbc.ext.password=userpassword

jdbc.ext.url=jdbc:mariadb://localhost/external?useUnicode=true&characterEncoding=UTF-8&useFastDateParsing=false

jdbc.ext.username=yourusername

Note that Liferay DXP’s primary data source is specified by the jdbc.default prefix. These details are
often specified in a portal-setup-wizard.properties file. Here, we’ve chosen to use the jdbc.ext prefix
for our alternate data source.

3. Create a com.liferay.blade.samples.jdbcservicebuilder.service-log4j-ext.xml in your Liferay in-
stance’s [LIFERAY_HOME]/osgi/log4 folder. Create this folder if it doesn’t yet exist. Add this content to
the XML file that you created:

<?xml version="1.0"?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<category name="com.liferay.blade.samples.jdbcservicebuilder.service.impl">

<priority value="INFO" />

</category>

</log4j:configuration>

ThisXMLfiledefines the log level for the classes in the com.liferay.blade.samples.jdbcservicebuilder.service.impl
package. The com.liferay.blade.samples.jdbcservicebuilder.service.impl.CountryLocalServiceImpl
is the class that will produce log messages when the sample portlet is viewed.

Now your sample is ready for deployment! Make sure to build and deploy each of the three modules that
comprise the sample application:

• jdbc-api

• jdbc-service

• jdbc-web

After these modules have been deployed, add the -web portlet to a Liferay DXP page.
A sample table is printed in the portlet’s view, representing the info inputted into the database.

2004

Figure 137.3: This sample prints out the values previously inputted into the database.

What API(s) and/or code components does this sample highlight?

This sample demonstrates two ways to access data from an external database defined by a JDBC connection:

• extract data directly from the raw data source by explicitly specifying a SQL query.
• read data using the helper methods that Service Builder generates in your application’s persistence
layer.

How does this sample leverage the API(s) and/or code component?

Once you’ve added the -web portlet to a page, the CountryLocalService.useJDBC method is invoked. This
method accesses the database defined by the JDBC connection you specified and logs information about the
rows in the country table to Liferay DXP’s log.

The first way of accessing data from the external database is to extract it directly from the raw data source
by explicitly specifying a SQL query. This technique is demonstrated by the CountryLocalServiceImpl.useJDBC
method. That method obtains the Spring-defined data source that’s injected into the countryPersistence
bean, opens a new connection, and reads data from the data source. This is the technique used by the sample
application to write the data to Liferay DXP’s log.

The second way of accessing data from the external database is to read data using the helper methods
that Service Builder generates in your application’s persistence layer. This technique is demonstrated
by the UseJDBC.getCountries method which first obtains an instance of the CountryLocalService OSGi
service and then invokes countryLocalService.getCountries. The countryLocalService.getCountries and
countryLocalService.getCountriesCountmethods are two examples of the persistence layer helper methods
that Service Builder generates. This is the technique used by the sample application to actually display the
data. The portlet’s view.jsp uses the <search-container> JSP tag to display a list of results. The results are
obtained by the UseJDBC.getCountriesmethodmentioned above.

137.3 Service Builder Application Using External Database via JNDI

This sample demonstrates how to connect a Liferay Service Builder application to an external database via a
JNDI connection. Here, an external database means any database other than Liferay DXP’s database. For
this sample to work correctly, you must prepare such an external database and configure Liferay DXP to use
it. Follow the steps below to make the required preparations before deploying the application.

1. Create the external database to which your Service Builder application will connect. For example,
create a MariaDB database called external. Add a table to this database called regionwith a BIGINT
column called Id and a VARCHAR(255) column called Name. Add at least one record to this table. Here are
the MariaDB commands to accomplish this:

2005

create database external character set utf8;

use external;

create table region(id bigint not null primary key, name varchar(255));

insert into region(id, name) values(1, 'Tasmania');

Make sure that your database commands were successful: Running select * from region; should
return the record you added.

2. Now you need to define a JNDI connection to your database. The way this is done depends on your
application server. Here we demonstrate how to specify the JNDI connection for Tomcat. First, edit
your [LIFERAY_HOME]/tomcat-8.0.32/conf/server.xml file and add this resource element inside of the
<GlobalNamingResources> element:

<Resource

name="jdbc/externalDataSource"

auth="Container"

type="javax.sql.DataSource"

factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"

driverClassName="org.mariadb.jdbc.Driver"

url="jdbc:mariadb://localhost/external"

username="yourusername"

password="yourpassword"

maxActive="20"

maxIdle="5"

maxWait="10000"

/>

Replace the specified username and password with the correct values for your database.

3. Edit your [LIFERAY_HOME]/tomcat-8.0.32/conf/context.xml file and add this resource link element
inside of the <Context> element:

<ResourceLink name="jdbc/externalDataSource" global="jdbc/externalDataSource" type="javax.sql.DataSource"/>

Now your data source is defined at Tomcat’s scope.

4. Create a com.liferay.blade.samples.jndiservicebuilder.service-log4j-ext.xml in your Liferay DXP
instance’s [LIFERAY_HOME]/osgi/log4 folder. Create this folder if it doesn’t yet exist. Add this content
to the XML file that you created:

<?xml version="1.0"?>

<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/">

<category name="com.liferay.blade.samples.jndiservicebuilder.service.impl">

<priority value="INFO" />

</category>

</log4j:configuration>

ThisXMLfiledefines the log level for the classes in the com.liferay.blade.samples.jndiservicebuilder.service.impl
package. The com.liferay.blade.samples.jndiservicebuilder.service.impl.RegionLocalServiceImpl
is the class that will produce log messages when the sample portlet is viewed.

2006

Now your sample is ready for deployment! Make sure to build and deploy each of the three modules that
comprise the sample application:

• jndi-api

• jndi-service

• jndi-web

After these modules have been deployed, add the jndi-web portlet to a Liferay DXP page.

Figure 137.4: This sample prints out the values previously inputted into the database.

A sample table is printed in the portlet’s view, representing the info inputted into the database.

What API(s) and/or code components does this sample highlight?

This sample demonstrates two ways to access data from an external database defined by a JNDI connection:

• extract data directly from the raw data source by explicitly specifying a SQL query.
• read data using the helper methods that Service Builder generates in your application’s persistence
layer.

How does this sample leverage the API(s) and/or code component?

Once you’ve added the jndi-web portlet to a page, the RegionLocalServiceUtil.useJNDImethod is invoked.
This method accesses the database defined by the JNDI connection you specified and logs information about
the rows in the region table to Liferay DXP’s log.

The first way of accessing data from the external database is to extract data directly from
the raw data source by explicitly specifying a SQL query. This technique is demonstrated by the
RegionLocalServiceImpl.useJNDI method. That method obtains the Spring-defined data source that’s
injected into the regionPersistence bean, opens a new connection, and reads data from the data source.
This is the technique used by the sample application to write the data to Liferay DXP’s log.

The second way of accessing data from the external database is to read data using the helper
methods that Service Builder generates in your application’s persistence layer. This technique is demon-
strated by the UseJNDI.getRegions method which first obtains an instance of the RegionLocalService

OSGi service and then invokes regionLocalService.getRegions. The regionLocalService.getRegions and
regionLocalService.getRegionsCount methods are two examples of the persistence layer helper methods
that Service Builder generates. This is the technique used by the sample application to actually display the
data. The portlet’s view.jsp uses the <search-container> JSP tag to display a list of results. The results are
obtained by the UseJNDI.getRegionsmethodmentioned above.

2007

137.4 Shared Language Keys

The Shared Language Keys sample provides a JSP portlet that displays language keys.

Figure 137.5: The sample JSP portlet displays three language keys.

The language keys displayed in the portlet come from two different modules.

What API(s) and/or code components does this sample highlight?

This sample is broken into twomodules:

• language

• language-web

The language-webmodule provides a JSP portlet with unique language keys that it displays. The language
module provides a resource module which only holds language keys. Its sole purpose is to share language
keys with the JSP portlet provided in language-web. This sample conveys Liferay’s recommended approach to
sharing language keys through OSGi services.

How does this sample leverage the API(s) and/or code component?

Youmust deploy both language-web and languagemodules to simulate this sample’s targeted demonstration.
First, note the language keys provided by eachmodule:

• language-web

– blade_language_web_LanguageWebPortlet.caption=Hello from BLADE Language Web!

– blade_language_web_override_LanguageWebPortlet.caption=I have overridden the key from

BLADE Language Module!

• language

– blade_language_LanguageWebPortlet.caption=Hello from the BLADE Language Module!

– blade_language_web_override_LanguageWebPortlet.caption=Hello from the BLADE Language

Module but you won't see me!

2008

Figure 137.6: The Language Web portlet displays three phrases, two of which are shared from a different module.

When you place the sample BLADE LanguageWeb portlet on a Liferay DXP page, you’re presented with
three language keys.

The first message is provided by the language-webmodule. The second message is from the language
module. The third message is provided by both modules; as you can see, the language-web’s message is used,
overriding the languagemodule’s identically named language key.

This sample shows what takes precedence when displaying language keys. The order for this example
goes

1. language-webmodule language keys
2. languagemodule language keys
3. Liferay DXP language keys

So how does sharing language keys work?
Bydefault, the ResourceBundleLoaderAnalyzerPlugin expandsmoduleswith /content/Language.properties

files to add provided capabilities:

• bundle.symbolic.name

• resource.bundle.base.name

Then the deployed LanguageExtender scans modules with those capabilities to automatically register an
associated ResourceBundleLoader.

You can leverage this functionality to use keys from common language modules by republishing an
aggregate ResourceBundleLoader. This can be done two ways:

1. Via Components

You can get a reference to the registered service in your components as detailed in the Overriding
a Module’s Language Keys tutorial. The main disadvantage of this approach is that it forces you to
provide a specific implementation of the ResourceBundleLoader, making it harder to modularize in the
future.

2. Via Provide Capability

The same LanguageExtender that registers the services supports an extended syntax that lets you register
an aggregate of a collection of bundles:

-liferay-aggregate-resource-bundles: \

blade.language

This approach has the advantage of easier extensibility. When language keys change, only the common
language modules must be built and redeployed for the modules referencing them to recognize their
updates.

For more information on sharing language keys, visit the Internationalization tutorials.

2009

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

137.5 Simulation Panel App

The Simulation Panel App provides new functionality in @product’s Simulation Menu. When deploying this
sample with no customizations, the Simulation Sample feature is provided in the Simulation Menu with four
options.

Figure 137.7: A simulation panel app adds new functionality to the Simulation Menu.

What API(s) and/or code components does this sample highlight?

This sample leverages the PanelApp API.

How does this sample leverage the API(s) and/or code component?

This sample leverages the PanelApp interface as an OSGi service via the @Component annotation:

@Component(

immediate = true,

property = {

"panel.app.order:Integer=500",

"panel.category.key=" + SimulationPanelCategory.SIMULATION

},

service = PanelApp.class

)

There are also two properties provided via the @Component annotation:

• panel.app.order: the order in which the panel app is displayed among other panel apps in the chosen
category. Entries are ordered from top to bottom. For example, an entry with order 1will be listed
above an entry with order 2. If the order is not specified, it’s chosen at random based on which service
was registered first in the OSGi container.

• panel.category.key: the host panel category for your panel app, which should be the SimulationMenu
category.

2010

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/shared-language-keys
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/apps/shared-language-keys
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/apps/shared-language-keys
@app-ref@/web-experience/latest/javadocs/com/liferay/application/list/PanelApp.html

The simulation panel app extends the BaseJSPPanelApp,which provides a skeletal implementation of the
PanelApp interface with JSP support. JSPs, however, are not the only way to provide frontend functionality to
your panel categories/apps. You can create your own class implementing PanelApp to use other technologies,
such as FreeMarker.

To learn more about Liferay Portal’s product navigation using panel categories and panel apps, see the
Customizing the Product Menu tutorial. For more information on extending the SimulationMenu, see the
Extending the SimulationMenu tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

137.6 Spring MVC Portlet

The SpringMVC portlet provides a way to add various different fields into the database and display them
in a table. This project is a SpringMVC based portlet WAR that implements the same functionality as the
apps/service-builder/basic-web sample project. It manages JSP pages for display, uses a Spring-annotated
portlet class, and invokes the apps/service-builder/basic-apimodule to call services.

Note: If you’re planning to package this sample usingMaven, youmust complete a few additional steps to
avoid build errors. This sample relies on the service-builder/basic-apimodule. Since the basic-api bundle
is not available on Liferay’s CDN repo or Maven Central, this sample can not reference it, resulting in build
failures.

To satisfy this dependency, youmust install the bundle dependency to your local ~/.m2 repo, along with
the parent BND plugin and root Maven project. Here are the steps to accomplish this:

1. Run mvn clean install on maven/apps/service-builder/basic-api.
2. Run mvn clean install on maven/parent.bnd.bundle.plugin.
3. Run mvn clean install -N in the root liferay-blade-samples/maven folder.

Now you can build this sample successfully.

Figure 137.8: Click Add and fill out the sample fields to generate a custom entry in the portlet’s table.

2011

https://docs.liferay.com/ce/apps/web-experience/latest/javadocs/com/liferay/application/list/BaseJSPPanelApp.html
https://docs.liferay.com/ce/apps/web-experience/latest/javadocs/com/liferay/application/list/PanelApp.html
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/simulation-panel-app
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/apps/simulation-panel-app
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/apps/simulation-panel-app

Unlike the service-builder/basic-webmodule, SpringMVC portlets must be delivered as portlet WAR
projects. This project builds to aWAR file but leverages all of the LiferayWorkspace tools and Gradle to build
the WAR. You must build and deploy the service-builder/basic-api and service-builder/basic-service

modules for this sample to work properly. For more information on using SpringMVC portlets in Liferay
DXP, visit the SpringMVC tutorial.

What API(s) and/or code components does this sample highlight?

This sample demonstrates a Liferay DXP portlet built using the SpringWebMVC framework.

How does this sample leverage the API(s) and/or code component?

You can easily modify this sample by customizing its SpringMVCPortletViewController Java class or any of its
JSPs stored in the src/main/webapp/WEB-INF/jsp folder. For more information on customizing this sample,
see the Javadoc listed in this sample’s SpringMVCPortletViewController Java class.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

2012

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/apps/springmvc-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/wars/springmvc-portlet
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/apps/springmvc-portlet

Chapter 138

Extensions

This section focuses on Liferay sample extensions. You can view these sample extensions by visiting the
extensions folder corresponding to your preferred build tool:

• Gradle sample extensions
• LiferayWorkspace sample extensions
• Maven sample extensions

The following samples are documented:

• Control Menu Entry
• Document Action
• Gogo Shell Command
• Indexer Post Processor
• Model Listener
• Screen Name Validator

Visit a particular sample page to learn more!

138.1 Control Menu Entry

The Control Menu Entry sample provides a customizable button that is added to Liferay Portal’s default
Control Menu. When deploying this sample with no customizations, an additional button is added to the
User (right side) portion of the Control Menu.

Figure 138.1: The User area of the Control Menu is provided an additional link button when the Control Menu Entry sample is deployed to Liferay DXP.

The button navigates the user to Liferay’s website: https://www.liferay.com.

2013

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/extensions
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/extensions

What API(s) and/or code components does this sample highlight?

This sample leverages the ProductNavigationControlMenuEntry API.

How does this sample leverage the API(s) and/or code component?

This sample first leverages the ProductNavigationControlMenuEntry interface as an OSGi service via the
@Component annotation:

@Component(

immediate = true,

property = {

"product.navigation.control.menu.category.key=" + ProductNavigationControlMenuCategoryKeys.USER,

"product.navigation.control.menu.entry.order:Integer=1"

},

service = ProductNavigationControlMenuEntry.class

)

There are also two properties provided via the @Component annotation:

• product.navigation.control.menu.category.key: the category in which your entry should reside. The
default Control Menu provides three categories: SITES (left portion), TOOLS (middle portion), and
USER (right portion).

• product.navigation.control.menu.entry.order:Integer: the order in which your entry will be dis-
played in the category. Entries are ordered from left to right. For example, an entry with order
1will be listed to the left of an entry with order 2. If the order is not specified, it’s chosen at random
based on which service was registered first in the OSGi container.

This sample also implements the ProductNavigationControlMenuEntry interface. The followingmethods
are implemented:

• getIcon(HttpServletRequest)

• getLabel(Locale)

• getURL(HttpServletRequest)

• isShow(HttpServletRequest)

Refer to this sample’s BladeProductNavigationControlMenuEntry class for Javadocs describing these meth-
ods. For more information on how to customize Liferay Portal’s Control Menu, visit the Customizing the
Control Menu tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

2014

@app-ref@/web-experience/latest/javadocs/com/liferay/product/navigation/control/menu/ProductNavigationControlMenuEntry.html
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/control-menu-entry
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/extensions/control-menu-entry
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/extensions/control-menu-entry

138.2 Document Action

TheDocument Action sample shows how to add a context menu option to an entry in the Documents and
Media portlet. When deploying this sample with no customizations, an additional menu option is available
in the Documents andMedia Admin portlet and the Documents andMedia portlet. This sample creates a
Blade Basic Info option that displays basic information about the entry (e.g., file name, type, version, etc.).
For example, the Admin portlet provides the new option as illustrated in the images below:

Figure 138.2: The new Blade Basic Info option is available from the entry’s Options menu.

Likewise, the Documents andMedia portlet provides the same option after selecting Show Actions from
the portlet’s Configuration menu.

What API(s) and/or code components does this sample highlight?

This sample leverages the PortletConfigurationIcon API.

How does this sample leverage the API(s) and/or code component?

There are four Java classes used in this sample:

• BladeActionConfigurationIcon: Adds the new context menu option to the Document Detail screen
options () (top right corner) of the Documents andMedia Admin portlet. See the Configuring Your
Admin App’s Actions Menu tutorial for more details.

• BladeActionDisplayContext: Adds the Display Context for the document action. More about Display
Contexts are described later.

• BladeActionDisplayContextFactory: Adds the Display Context factory for the document action.

2015

@product-ref@/portal-kernel/com/liferay/portal/kernel/portlet/configuration/icon/PortletConfigurationIcon.html

Figure 138.3: The new option is also available from the portlet’s Document Details.

Figure 138.4: You can access the new Blade Basic Info option from the Documents and Media portlet added to a page.

2016

Figure 138.5: The Documents And Media portlet provides the option from its Document Detail too.

• BladeDocumentActionPortlet: Provides the portlet class, which extends the GenericPortlet. This class
generates what is shown when the context menu option is selected.

A Display Context is a Java class that controls access to a portlet screen’s UI elements. For example, the
Document Library would use Display Contexts to provide its screens all their UI elements. It would use one
Display Context for its document edit screen, another for its document view screen, etc. A portlet ideally
uses a different Display Context for each of its screens.

A screen’s JSP calls on the Display Context (DC) to get elements to render and to decide whether to render
certain types of elements. Some of the DCmethods return a collection of UI elements (e.g., a menu object of
menu items), while other DCmethods return booleans that determine whether to show particular element
types. TheDC decides which objects to display, while the JSP organizes the rendered objects and implements
the screen’s look and feel. You don’t have to decide which elements to display in your JSP; simply call the DC
methods to populate UI components with objects to render.

To customize or extend a portlet screen that uses a DC, you can extend the DC and override the methods
that control access to the elements that interest you. For example, you can turn off displaying certain types
of elements (e.g., actions) by overriding the DCmethod that makes that decision. You can add new custom
elements (e.g., new actions) or remove existing elements (e.g., a delete action) from a collection of elements
a DC method returns. The beauty of customizing via a DC is that you don’t have to modify the JSP. You
only modify the particular methods that are related to the UI customization goals. And JSP updates won’t
break the DC customizations. Replacing a JSP, on the other hand, can lead to missing an important JSP
modification that a new Liferay version introduces.

As you create custom portlets, youmay want to implement DCs. You can benefit from the separation
of concerns that DCs provide and customers can extend your portlet DCs to specify which UI elements to
display. And they don’t need to worry about missing out on the updates youmake to the JSPs.

2017

https://portals.apache.org/pluto/portlet-2.0-apidocs/javax/portlet/GenericPortlet.html

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

138.3 Gogo Shell Command

The Gogo Shell Command sample demonstrates adding a custom command to Liferay DXP’s Gogo shell
environment. All Liferay DXP installations have a Gogo shell environment, which lets system administrators
interact with Liferay DXP’s module framework on a local server machine.

This example adds a new custom Gogo shell command called usercount under the blade scope. It prints
out the number of registered users on your Liferay DXP installation.

To test this sample, follow the instructions below:

1. Start a Liferay DXP installation.

2. Using a command line tool, connect to your local Gogo shell. For example, you can do this by executing
telnet localhost 11311.

3. Run help to view all the available commands. The sample Gogo shell command is listed.

Figure 138.6: The sample Gogo shell command is listed with all the available commands.

4. Execute usercount to execute the new custom command. The number of users on your running Liferay
Portal installation is printed.

2018

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/document-action
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/extensions/document-action
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/extensions/document-action

Figure 138.7: The outcome of executing the usercount command.

What API(s) and/or code components does this sample highlight?

This sample demonstrates creating a new Gogo shell command by leveraging osgi.command.* properties in a
Java class.

How does this sample leverage the API(s) and/or code component?

To add this new Gogo shell command, youmust implement the logic in a Java class with the following two
properties:

• osgi.command.function: the command’s name, which must match the method name in the registered
service implementation.

• osgi.command.scope: the general scope or namespace for the command.

These properties are set in your class’s @Component annotation like this:

@Component(

property = {"osgi.command.function=usercount", "osgi.command.scope=blade"},

service = Object.class

)

The logic for the usercount command is specified in the method with the same name:

public void usercount() {

System.out.println(

"# of users: " + getUserLocalService().getUsersCount());

}

This method uses Declarative Services to get a reference for the UserLocalService to invoke the
getUsersCountmethod. This lets you find the number of users currently in the system.

For more information on using the Gogo shell, see the Using the Felix Gogo Shell tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

2019

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/gogo
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/extensions/gogo
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/extensions/gogo

138.4 Indexer Post Processor
TheIndexer Post Processor sample demonstrates using the IndexerPostProcessor interface,which is provided
to customize search queries and documents before they’re sent to the search engine, and/or customize result
summaries when they’re returned to end users. This basic demonstration prints a message in the log when
one of the *IndexerPostProcessormethods is called.

To see this sample’smessages in LiferayDXP’s log, youmust add a logging category to theportal. Navigate
to Control Panel → Configuration → Server Administration and click on Log Levels → Add Category. Then fill out the
form:

• Logger Name: com.liferay.blade.samples.indexerpostprocessor
• Log Level: INFO

Once you save the new logging category, you can witness the sample indexer post processor in action.
For example, you can test the sample’s BlogsIndexerPostProcessor implementation by creating a blog entry.
When you publish the blog, the followingmessage is logged in the console:

18:27:30,737 INFO [http-nio-8080-exec-8][BlogsIndexerPostProcessor:76] postProcessDocument

What API(s) and/or code components does this sample highlight?

This sample leverages the IndexerPostProcessor API.

How does this sample leverage the API(s) and/or code component?

This sample contains four implementations of the IndexerPostProcessor interface:

• BlogsIndexerPostProcessor

• MultipleEntityIndexerPostProcessor

• MultipleIndexerPostProcessor

• UserEntityIndexerPostProcessor

All these classes leverage the interface as an OSGi service via the @Component annotation. For example,
the @Component annotation of the UserEntityIndexerPostProcessor looks like this:

@Component(

immediate = true,

property = {

"indexer.class.name=com.liferay.portal.kernel.model.User",

"indexer.class.name=com.liferay.portal.kernel.model.UserGroup"

},

service = IndexerPostProcessor.class

)

There’s one property type provided via the @Component annotation:

• indexer.class.name: the fully qualified class name of the indexed entity or an Indexer class itself.

This sample’s implementations of the IndexerPostProcessor interface override the followingmethods:

• postProcessContextBooleanFilter

• postProcessContextQuery

• postProcessDocument

2020

@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/search/IndexerPostProcessor.html

• postProcessFullQuery

• postProcessSearchQuery(BooleanQuery, BooleanFilter)

• postProcessSearchQuery(BooleanQuery, SearchContext)

• postProcessSummary

For more information on Liferay’s Search API, refer to the Introduction to Liferay Search tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

138.5 Model Listener
TheModel Listener sample demonstrates adding a custommodel listener to a Liferay Portal out-of-the-box
entity. When deploying this sample with no customizations, a custommodel listener is added to the portal’s
layouts, listening for onBeforeCreate events. This means that any page creation will trigger this listener,
which will execute before the new page is created.

For example, if a new page is added with the nameMyTest Page, the following message is printed to the
console:

Figure 138.8: The sample model listener’s message in the console.

You can also verify that the model listener sample was executed by navigating to the new page’s Configure
Page → SEO option. TheHTML Title field looks like this:

What API(s) and/or code components does this sample highlight?

This sample leverages the ModelListener API.

How does this sample leverage the API(s) and/or code component?

Model Listeners are used to listen for persistence events onmodels and take actions as a result of those events.
Actions can be executed on an entity’s database table before or after a create, remove, update, addAssociation,
or removeAssociation event. It’s possible to have more than one model listener on a single model too; the
execution order is not guaranteed.

There are two steps to create a newmodel listener:

• Implement a Model Listener class
• Register the new service in Liferay’s OSGi runtime

This sample adds the model listener logic in a new Java class named CustomLayoutListener that extends
BaseModelListener.

2021

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/indexer-post-processor
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/extensions/indexer-post-processor
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/extensions/indexer-post-processor
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/ModelListener.html
@platform-ref@/7.0-latest/javadocs/portal-kernel/com/liferay/portal/kernel/model/BaseModelListener.html

Figure 138.9: The page’s HTML title updated by the model listener sample.

public class CustomLayoutListener extends BaseModelListener<Layout> {

@Override

public void onBeforeCreate(Layout model) throws ModelListenerException {

System.out.println(

"About to create layout: " + model.getNameCurrentValue());

model.setTitle("Title generated by model listener!");

}

}

Important things to note in this code snippet are

• The entity to be targeted by this model listener is specified as the parameterized type (e.g., Layout).
• The overriddenmethods dictate the type of event(s) that are listened for (e.g., onBeforeCreate); they
also trigger the logic execution.

2022

Thefinal step is registering the service in Liferay’s OSGi runtime, which is accomplished by the following
annotation (if using Declarative Services):

@Component(immediate = true, service = ModelListener.class)

For more information onmodel listeners, see the Creating Model Listeners tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

138.6 Screen Name Validator
The Screen Name Validator sample provides a way to validate a user’s inputted screen name. During valida-
tion, the screen name is tested client-side and server-side.

This sample checks if a user’s screen name contains reserved words that are configured in the Control
Panel → Configuration → System Settings → Foundation → ScreenName Validatormenu. The default values for the
screen name validator’s reserved words are admin and user.

Figure 138.10: Enter reserved words for the screen name validator.

You can test this sample by following the following steps:

1. Deploy the Screen Name Validator to your portal installation.
2. Navigate to the Control Panel → Users → Users and Organizationsmenu.

2023

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/model-listener
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/extensions/model-listener
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/extensions/model-listener

3. Create a new user by selecting the AddUser () button.
4. Adding a screen name that contains the word admin or user.

Figure 138.11: The error message displays when inputting a reserved word for the screen name.

What API(s) and/or code components does this sample highlight?

This sample leverages the ScreenNameValidator API.

How does this sample leverage the API(s) and/or code component?

Tocustomize this sample,modify its com.liferay.blade.samples.screenname.validator.internal.CustomScreenNameValidator
class.

Youcanalso customize this sample’s configurationbyaddingmoreproperties in its com.liferay.blade.samples.screenname.validator.CustomScreenNameConfiguration
class.

For more information on customizing the Validation sample to fit your needs, see the Javadoc provided
in this sample’s Java classes.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

138.7 Servlet

The Servlet sample provides an OSGiWhiteboard Servlet in Liferay DXP.When deploying this sample and
configuring the servlet, aHelloWorldmessage is displayed when accessing the servlet page URL. Log info is
also outputted to your console.

To configure the servlet in Liferay DXP, complete the following steps:

1. Navigate to the Control Panel → Configuration → Server Administration → Log Levels.

2. Select Add Category.

3. Insert com.liferay.blade.samples.servlet.BladeServlet for the Logger Name and INFO for the Log Level.

4. Navigate to the http://localhost:8080/o/blade/servlet URL.

2024

@product-ref@/portal-kernel/com/liferay/portal/kernel/security/auth/ScreenNameValidator.html
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/screen-name-validator
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/extensions/screen-name-validator
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/extensions/screen-name-validator

Figure 138.12: The servlet displays Hello World from the configured servlet page URL.

Figure 138.13: The servlet also logs info in the console.

What API(s) and/or code components does this sample highlight?

This sample leverages the HttpServlet API.

How does this sample leverage the API(s) and/or code component?

To customize this sample,modify its com.liferay.blade.samples.servlet.BladeServlet class. This class ex-
tends the HttpServlet class. Creating your own servlet for Liferay DXP is useful when you need to implement
servlet actions. For example, if youwanted to implement the CMIS server by yourself with Apache Chemistry,
you would need to implement your own servlet, managing requests at a low level.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

2025

https://tomcat.apache.org/tomcat-5.5-doc/servletapi/javax/servlet/http/HttpServlet.html
https://chemistry.apache.org/
https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/extensions/servlet
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/extensions/servlet
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/extensions/servlet

Chapter 139

Overrides

This section focuses on Liferay sample overrides. You can view these sample overrides by visiting the
overrides folder corresponding to your preferred build tool:

• Gradle sample overrides
• LiferayWorkspace sample overrides
• Maven sample overrides

The following samples are documented:

• Core JSP Override
• Module JSP Override
• Resource Bundle Override

Visit a particular sample page to learn more!

139.1 Core JSP Override

The Core JSP Override sample lets you override core/kernel JSPs by adding them to the module’s META-
INF/jsps folder. This module overrides the Liferay DXP’s bottom.jsp file by inserting the bottom-ext.jsp

file in the META-INF/jsps/html/common/themes folder. When deploying this sample with no customizations,
sample text is added to the bottom of Liferay’s default theme.

For more information on how to customize Liferay’s Core using JSP overrides, visit the Overriding Core
JSPs tutorial.

What API(s) and/or code components does this sample highlight?

This sample leverages the CustomJspBag API.
Important: Using core JSP overrides should be a last resort option only when there is no other way to

customize functionality in your Liferay installation. It’s up to the maintainer of this JSP override to properly
maintain and adapt to changes in the underlying JSP implementation.

2027

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/overrides
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/overrides
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/overrides
@platform-ref@/7.0-latest/javadocs/portal-impl/com/liferay/portal/deploy/hot/CustomJspBag.html

Figure 139.1: Deploying a core JSP override overrides core functionality, like Liferay DXP’s default theme.

How does this sample leverage the API(s) and/or code component?

Youcaneasilymodify this sampleby customizing its com.liferay.blade.samples.corejsphook.BladeCustomJspBag
Java class or adding additional JSPs in the configured JSP folder. You canmodify the custom JSP folder’s
path by editing the BladeCustomJspBag.getCustomJspDir()method to return a different folder path.

For more information on customizing the Core JSP Override sample to fit your needs, see the Javadoc
listed in this sample’s BladeCustomJspBag class.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

2028

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/overrides/core-jsp-override
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/overrides/core-jsp-override
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/overrides/core-jsp-override

139.2 Module JSP Override

The Module JSP Override sample conveys Liferay’s recommended approach to override an application’s
JSP by leveraging OSGi fragment modules. This example overrides the default login.jsp file in the
com.liferay.login.web bundle by adding the red text changed to the Sign In form.

Figure 139.2: The customized Sign In form with the new changed text.

What API(s) and/or code components does this sample highlight?

This sample demonstrates how to create a fragment host module and configure it to override an existing
module’s JSP.

How does this sample leverage the API(s) and/or code component?

You can create your own JSP override by

• Declaring the fragment host.
• Providing the JSP that will override the original one.

2029

To properly declare the fragment host in the bnd.bnd file, youmust specify the host module’s (where the
original JSP is located) Bundle Symbolic Name and the host module’s exact version to which the fragment
belongs. In this example, this is configured like this:

Fragment-Host: com.liferay.login.web;bundle-version="1.0.0"

Then you must provide the new JSP intended to override the original one. Be sure to mimic the
host module’s folder structure when overriding its JAR. For this example, since the original JSP is in the
folder /META-INF/resources/login.jsp, the new JSP file resides in the folder src/main/resources/META-

INF/resources/login.jsp.
If needed, you can also target the original JSP following one of the two possible naming conventions:

original or portal. This pattern looks like

<liferay-util:include

page="/login.original.jsp"

servletContext="<%= application %>"

/>

or

<liferay-util:include

page="/login.portal.jsp"

servletContext="<%= application %>"

/>

This approach can be used to override any application JSP (i.e., JSPs residing in a module). You can
also add new JSPs to an existing module with this technique. If you need to override a core JSP, see the
core-jsp-override sample.

For more information on using fragment bundles to override application JSPs, see the Overriding App
JSPs tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

139.3 Resource Bundle Override
This example overrides the default add-blog-entry language key (English and Spanish) for Liferay DXP’s
default Blogs application. After deploying this sample hook to Liferay DXP, the Blogs application’s Add Blog
Entry button is modified to displayOverriden Add Blog Entry. If you change Liferay DXP’s default language to
Spanish, the modified language key is translated to display in that language. For example, the text changes
to Añadir entrada sobreescrita.

For reference, the Blogs application’s language keys are stored in the liferay-portal Github repo’s
modules/apps/collaboration/blogs/blogs-web/src/main/resources/content folder.

What API(s) and/or code components does this sample highlight?

This sample leverages the ResourceBundleLoader API.

2030

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/overrides/module-jsp-override
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/overrides/module-jsp-override
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/overrides/module-jsp-override
https://github.com/liferay/liferay-portal
@product-ref@/portal-kernel/com/liferay/portal/kernel/util/ResourceBundleLoader.html

Figure 139.3: The customized Blogs application displays the new add-blog-entry language key in English.

How does this sample leverage the API(s) and/or code component?

This sample conveys the recommended approach to override an application’s language keys file for any
module that is deployed to Liferay DXP’s OSGi runtime (not applicable to Liferay DXP’s core language keys).

The steps to override applications’ language keys are

• Implement a resource bundle loader.
• Register the service.
• Provide the new language keys that will override the original ones.

Theresourcebundle loader is a class that should implement the interface com.liferay.portal.kernel.util.ResourceBundleLoader.
Specifically, you must implement the loadResourceBundle method, which returns the loaded resource
bundle:

@Override

public ResourceBundle loadResourceBundle(String languageId) {

return _resourceBundleLoader.loadResourceBundle(languageId);

}

Thenyoumust set the resourcebundle loader to load the resourcebundles as an AggregateResourceBundleLoader.

@Reference(target = "(&(bundle.symbolic.name=com.liferay.blogs.web)(!(component.name=com.liferay.blade.samples.hook.resourcebundle.ResourceBundleLoaderComponent)))")

public void setResourceBundleLoader(

ResourceBundleLoader resourceBundleLoader) {

_resourceBundleLoader = new AggregateResourceBundleLoader(

new CacheResourceBundleLoader(

new ClassResourceBundleLoader(

"content.Language",

ResourceBundleLoaderComponent.class.getClassLoader())),

resourceBundleLoader);

}

The @Reference annotation targets the original Blogs module by specifying its symbolic name
com.liferay.blogs.web. This sample’s owncomponentname (i.e., com.liferay.blade.samples.hook.resourcebundle.ResourceBundleLoaderComponent)
is not targeted to use this resource bundle.

Also note the required parameters to set the resource bundle loader:

• The base language file name (e.g., content.Language).
• The classloader for your resource bundle loader.
• The resource bundle loader from the method’s parameter.

2031

The class should also register the resource bundle loader in the OSGi runtime. This is done by setting the
following three properties:

• bundle.symbolic.name: The symbolic name of the target module (i.e., the module’s keys you’re overrid-
ing).

• resource.bundle.base.name: The resource bundle base name that points to your language files.
• servlet.context.name: The servlet context name of the target module.

These properties are set in your class’s @Component annotation like this:

@Component(

immediate = true,

property = {

"bundle.symbolic.name=com.liferay.blogs.web",

"resource.bundle.base.name=content.Language",

"servlet.context.name=blogs-web"

}

)

Lastly, the new language.properties files should be added to the folder src/content for each locale’s
keys you want to override. Since this example’s goal is to only override the English and Spanish keys, the
Language_en.properties and Language_es.properties are added.

This approach can be used to override any application’s language keys (i.e., language.properties files
that are inside a module deployed to Liferay DXP’s OSGi runtime). If you need to override Liferay DXP’s core
language keys, see the Modifying Global Language Keys tutorial.

For more information on using a resource bundle to override an application’s language keys, see the
Overriding a Module’s Language Keys tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

2032

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/overrides/resource-bundle-override
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/overrides/resource-bundle-override
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/overrides/resource-bundle-override

Chapter 140

Themes

This section focuses on Liferay sample themes. You can view these sample themes by visiting the themes
folder corresponding to your preferred build tool:

• Gradle sample themes
• LiferayWorkspace sample themes
• Maven sample themes

The following samples are documented:

• SimpleTheme
• Template Context Contributor
• Theme Contributor

Visit a particular sample page to learn more!

140.1 Simple Theme

The SimpleTheme sample provides the base files for a theme, using theTheme Builder Gradle plugin. When
deploying this sample with no customizations, a theme based off of the _styled base theme is created.

For more information on themes, visit the Introduction toThemes tutorial.

What API(s) and/or code components does this sample highlight?

This sample demonstrates a way to create a simple theme in Liferay DXP.

How does this sample leverage the API(s) and/or code component?

To modify this sample, add the images, js, or templates folder, along with your modified files, to
the src/main/webapp folder. The sample already provides the src/main/resources/resources-importer,
src/main/webapp/WEB-INF, and src/main/webapp/css folders for you. Add your style modifications to the
provided css/_custom.scss file. For a complete explanation of a theme’s files, see the Theme Reference
Guide.

2033

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/themes
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/themes
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/themes

Figure 140.1: A theme based off of the Styled base theme is created when the Theme Blade sample is deployed to Liferay Portal.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

140.2 Template Context Contributor

The Template Context Contributor sample injects a new variable into Liferay DXP’s theme context. When
deploying this sample with no customizations, you can use the ${sample_text} variable from any theme.

What API(s) and/or code components does this sample highlight?

Many developers prefer using templating frameworks like FreeMarker and Velocity, but don’t have access to
the common objects offered to those working with JSPs. Context contributors allow non-JSP developers an
easy way to inject variables into their Liferay templates.

This sample leverages the TemplateContextContributor API.

How does this sample leverage the API(s) and/or code component?

You can easily modify this sample by customizing its BladeTemplateContextContributor.java Java class. For
example, the default context contributor sample provides the ${sample_text} variable by injecting it into
Liferay’s contextObjects, which is a map provided by default to offer common variables to non-JSP template
developers. You can easily inject your own variables into the contextObjects map usable by any theme
deployed to Liferay DXP.

Are youworkingwith templates that aren’t themes (e.g., ADTs,DDM templates, etc.)? You can change the
context inwhich your variables are injected bymodifying the property attribute in the @Component annotation.
If you want your variable available for all templates, change it to

property = {"type=" + TemplateContextContributor.TYPE_GLOBAL}

Formore information on customizing the Template Context Contributor sample to fit your needs, see the
Javadoc listed in this sample’s com.liferay.blade.samples.theme.contributorBladeTemplateContextContributor

2034

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/themes/simple-theme
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/wars/simple-theme
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/themes/simple-theme
@product-ref@/portal-kernel/com/liferay/portal/kernel/template/TemplateContextContributor.html

class. Formore information on context contributors and how to create them in Liferay DXP, visit the Context
Contributors tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

140.3 Theme Contributor

TheTheme Contributor sample contributes updates to the UI of the theme body, Control Menu, Product
Menu, and Simulation Panel. When deploying this sample with no customizations, the colors of the theme
and aforementionedmenus are updated.

Figure 140.2: Your Liferay DXP pages and menu fonts now have a yellow tint.

Also, there’s a simple JavaScript update that is provided, which logs a message to the browser’s console
window that statesHello BladeTheme Contributor!.

Figure 140.3: The message is printed to your browser’s console window using JavaScript.

What API(s) and/or code components does this sample highlight?

This sample demonstrates a way to contribute updates to a Liferay DXP theme. Theme Contributors let you
package UI resources (e.g., CSS and JS) independent of a theme to include on a Liferay DXP page.

2035

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/themes/template-context-contributor
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/themes/template-context-contributor
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/themes/template-context-contributor

How does this sample leverage the API(s) and/or code component?

Tomodify this sample, replace the corresponding JS or SCSSfilewith the JavaScript or styles that youwant, or
add your own JS or SCSSfiles. For example, this sample provides an update to theControlMenu’s background-
color in its src/main/resources/META-INF/resources/css/blade.theme.contributor/_control_menu.scss file:

body {

.control-menu {

background-color: darkkhaki;

}

}

All of the SCSS files used in this sample are imported into the main blade.theme.contributor.scss file:

@import "bourbon";

@import "mixins";

@import "blade.theme.contributor/body";

@import "blade.theme.contributor/control_menu";

@import "blade.theme.contributor/product_menu";

@import "blade.theme.contributor/simulation_panel";

If youaddyourown SCSSfiles, youmust add themto the list of imports in the blade.theme.contributor.scss
file.

Likewise, the sample blade.theme.contributor.js logs amessage to your browser’s consolewindowusing
the following JS logic:

console.log('Hello Blade Theme Contributor!');

For more information onTheme Contributors, visit theTheme Contributors tutorial.

Where Is This Sample?

There are three different versions of this sample, each built with a different build tool:

• Gradle
• LiferayWorkspace
• Maven

140.4 Third Party Packages Portal Exports
The com.liferay.portal.bootstrapmodule exports many third party Java packages that can cause problems
if used improperly. If your WAR’s Gradle file, for example, uses the compile scope for a dependency that
Liferay’s OSGi runtime already provides, the dependency JAR is included in the WAR’s WEB-INF/lib and
deployed in the resultingWAB, and two versions of dependency classes wind up on the classpath. This can
cause weird errors that are hard to debug.

To find a list of the packages exported by com.liferay.portal.bootstrap, go to the source file
modules/core/portal-bootstrap/system.packages.extra.bnd. If you don’t have access to the source
code, the same list (in a less user-friendly format) is in the META-INF/system.packages.extra.mf file in
[LIFERAY_HOME]/osgi/core/com.liferay.portal.bootstrap.jar. These packages are installed and available in
Liferay’s OSGi runtime. If your module orWAR uses one of them, specify the corresponding dependency as
being “provided” (provided by Liferay DXP). Here’s how to specify a provided dependency:

Maven: <scope>provided</scope>
Gradle: providedCompile
Now you can safely leverage third party packages Liferay DXP provides!

2036

https://github.com/liferay/liferay-blade-samples/tree/7.0/gradle/themes/theme-contributor
https://github.com/liferay/liferay-blade-samples/tree/7.0/liferay-workspace/themes/theme-contributor
https://github.com/liferay/liferay-blade-samples/tree/7.0/maven/themes/theme-contributor

Related topics

Resolving a Plugin’s Dependencies
Configuring Dependencies

140.5 Resolving Common Output Errors Reported by the resolve
Task

LiferayWorkspace provides the resolveGradle task to validatemodules. This is very useful for finding issues
and reporting them as output before deployment. For more information on running this task from Liferay
Workspace, see the ValidatingModules Against the Target Platform tutorial section. For general help with
OSGi related issues, visit the Troubleshooting FAQ tutorial section.

For help interpreting the resolve task’s output, see the list below for common output errors, what they
mean, and how to fix them.

Missing Import Error

When your module refers to an unavailable import, the container throws this error. For example, suppose
you have a module test-service that depends on the com.google.common.base package. If the container can’t
find that package, it throws this error:

Resolution exception in project 'modules:test-service': Unresolved requirements in root project 'modules:test-service':

Mandatory:

[osgi.wiring.package] com.google.common.base; version=[23.0.0,24.0.0)

[osgi.identity] test.service

This kind of error can also occur when separate modules require different versions of another module. If
you havemodule A requiringmodule Test version 1 andmodule B requiringmodule Test version 4, without running
the resolver, both modules A and B would compile successfully. When they were deployed, however, one
would fail in the OSGi runtime because both dependencies cannot be satisfied. These types of scenarios are
difficult to diagnose, but with the resolve task, can be found with ease.

To fix missing import errors, you may need to adjust the export and/or import configuration of your
modules. Also, see the ResolvingThird Party Library Package Dependencies tutorial for more information
on resolving import errors. Sometimes, this kind of error can be solved by editing the resolve task’s list of
capabilities. See the Depending onThird Party Libraries Not Included in Liferay DXP section to learn how to
do this.

Missing Service Reference

If yourmodule references a non-existent service, an error is thrown. This is helpful because service reference
issues are hard to diagnose during deployment without using the Gogo Shell.

For example, if your module test-portlet references a service (e.g., test.api.TestApi) it does not have
access to, the following error is thrown:

Resolution exception in project 'modules:test-portlet': Unresolved requirements in project 'modules:test-portlet':

Mandatory:

[osgi.identity] test.portlet

[osgi.service] objectClass=test.api.TestApi

To fix this, you must make the service available to your module. If you’re expecting the service to be
provided by your target platform, check to make sure it’s being provided. If it’s a service provided by a

2037

custommodule, check that service provider module and ensure it’s correctly providing that service to your
module. To check the target platform for available services, follow the steps below:

1. Start your target platform instance.

2. Start the Gogo shell from a local telnet session (e.g., telnet localhost 11311).

3. List all services containing a keyword by running services | grep "SERVICE_NAME". It’s easiest to
do this rather than listing all services since there are usually too many to sift through.

4. You can also list services provided by a component. Run lb -s to list all provided bundles by their
bundle symbolic name (BSN). Find the BSN for the desired component and then run scr:info <BSN>.

If you’re unable to track down yourmissing service, it may be provided by a customized Liferay DXP core
feature or an external Liferay DXP feature. If this is the case, it isn’t included in the target platform’s default
capabilities. You canmake the custom service capability available to reference by generating a new custom
distro JAR.

Missing Fragment Host

Referring to a non-existent fragment host throws an error. For example, if your test.login fragment is
configured tomodify a fragment host named com.liferay.login.web that cannot be referenced, the following
error is thrown:

Resolution exception in project 'modules:test.login': Unresolved requirements in project 'modules:test-login':

Mandatory:

[osgi.identity] test.login

[osgi.wiring.host] com.liferay.login.web; version=1.0.10

Configuring a fragment host in your module is typically done with the Fragment-Host header in the
bnd.bnd file:

Fragment-Host: com.liferay.login.web;bundle-version="[1.0.0,1.0.1)"

To fix this, inspect your target platform to ensure it includes the JAR you’re attempting to add a fragment
for. Your fragment host header may be referencing an incorrect bundle symbolic name (BSN) or version. The
easiest way to check this is by using the Gogo Shell. Follow the steps below to find the bundle symbolic name:

1. Start your target platform instance.

2. Start the Gogo shell from a local telnet session (e.g., telnet localhost 11311).

3. List all installed bundles by BSN with the command lb -s. You can search through the output to find
the BSN. If you already know the BSN and want to check the version, run lb -s | grep "<BSN>".

Once you know the correct BSN/version to reference, update your Fragment-Host header to resolve the
error.

For more information on fragments, see the JSP Overrides Using OSGi Fragments tutorial.

2038

140.6 CKEditor Plugin Reference Guide

This reference guide provides a list of the default CKEditor plugins bundled with Liferay DXP’s AlloyEditor.
Each plugin below links to its plugin.js file for reference:

• about
• allyhelp
• allyhelpbtn
• ajaxsave
• autocomplete
• basicstyles
• bbcode
• bidi
• blockquote
• clipboard
• colorbutton
• colordialog
• contextmenu
• creole
• dialogadvtab
• div
• elementspath
• enterkey
• entities
• filebrowse
• find
• flash
• floatingspace
• font
• format
• forms
• horizontalrule
• htmlwriter
• image
• iframe
• indent
• itemselector
• justify
• link
• list
• liststyle
• lfrpopup
• magicline
• media
• newpage
• pagebreak
• pastefromword
• pastetext

2039

https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/about/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/a11yhelp/plugin.js
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/a11yhelpbtn/plugin.js
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/ajaxsave/plugin.js
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/autocomplete/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/basicstyles/plugin.js
https://github.com/liferay/liferay-portal/tree/7.0.x/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/bbcode/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/bidi/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/blockquote/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/clipboard/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/colorbutton/plugin.js
https://github.com/ckeditor/ckeditor-dev/tree/master/plugins/colordialog/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/contextmenu/plugin.js
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/creole/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/dialogadvtab/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/div/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/elementspath/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/enterkey/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/entities/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/filebrowser/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/find/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/flash/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/floatingspace/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/font/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/forformat/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/forms/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/horizontalrule/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/htmlwriter/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/image/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/iframe/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/indindent/plugin.js
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/itemselector/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/justify/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/link/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/list/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/liststyle/plugin.js
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/lfrpopup/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/magicline/plugin.js
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/media/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/newpage/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/pagebreak/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/pastefromword/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/pastetext/plugin.js

• preview
• removeformat
• resize
• restore
• selectall
• showblocks
• showborders
• smiley
• sourcearea
• specialchar
• stylescombo
• tab
• table
• tabletools
• templates
• toolbar
• undo
• wikilink
• wysiwygarea

Note: The following CKEditor plugins are not available for inline mode in AlloyEditor at this time;
however, you can still use them in the classic CKEditor:

• maximize
• print
• save

To use the Classic CKEditor instead of AlloyEditor, there are a few properties you can use, depending on
the portlet. Add the properties that you need to your portal-ext.properties file:

editor.wysiwyg.default=ckeditor

editor.wysiwyg.portal-impl.portlet.ddm.text_html.ftl=ckeditor

editor.wysiwyg.portal-web.docroot.html.portlet.announcements.edit_entry.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.portlet.blogs.edit_entry.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.portlet.mail.edit.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.portlet.mail.edit_message.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.portlet.message_boards.edit_message.html.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.taglib.ui.discussion.jsp=ckeditor

editor.wysiwyg.portal-web.docroot.html.taglib.ui.email_notification_settings.jsp=ckeditor

140.7 Item Selector Criterion and Return Types

Liferay DXP bundles have apps and app suites containing ItemSelectorCriterion classes and
ItemSelectorReturnType classes developers can use.

Item Selector Criterion Classes

Collaboration App SuiteModules:

• com.liferay.item.selector.criteria.api:

2040

https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/preview/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/removeformat/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/resize/plugin.js
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/restore/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/selectall/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/showblocks/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/showborders/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/smiley/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/sourcearea/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/specialchar/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/stylescombo/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/tab/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/table/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/tabletools/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/templates/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/toolbar/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/undo/plugin.js
https://github.com/liferay/liferay-portal/blob/7.0.x/modules/apps/foundation/frontend-editor/frontend-editor-ckeditor-web/src/main/resources/META-INF/resources/_diffs/plugins/wikilink/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/wysiwygarea/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/maximize/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/print/plugin.js
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/save/plugin.js
https://github.com/liferay/liferay-portal/blob/7.0.x/portal-impl/src/portal.properties#L6030-L6039
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html

– ImageItemSelectorCriterion: Image file entity type.

– AudioItemSelectorCriterion: Audio file entity type.

– FileItemSelectorCriterion: Document Library file entity type.

– UploadItemSelectorCriterion: Uploadable file entity type.

– URLItemSelectorCriterion: URL entity type.

– VideoItemSelectorCriterion: Video file entity type.

• com.liferay.wiki.api has wiki criterion.

WebExperience App SuiteModules:

• com.liferay.site.item.selector.api has site criterion.

• com.liferay.layout.item.selector.api has layout criterion.

• com.liferay.journal.item.selector.api has web content criterion.

If there’s no criterion class for your entity, you can create your own ItemSelectorCriterion class (tutorial
coming soon).

Item Selector Return Type Classes

TheLiferayCollaboration app suite’s com.liferay.item.selector.criteria.apimodule includes the following
return types:

• Base64ItemSelectorReturnType: Base64 encoding of the entity as a String.

• FileEntryItemSelectorReturnType: File entry information as a JSON object.

• URLItemSelectorReturnType: URL of the entity as a String.

• UUIDItemSelectorReturnType: Universally Unique Identifier (UUID) of the entity as a String.

If there’s no return type class thatmeets yourneeds, you can implement your own ItemSelectorReturnType
class (tutorial coming soon).

140.8 Breaking Changes
This document presents a chronological list of changes that break existing functionality, APIs, or contracts
with third party Liferay developers or users. We try our best to minimize these disruptions, but sometimes
they are unavoidable.

The breaking changes covered in this article apply to both the commercial and open source versions of
Liferay.

Here are some of the types of changes documented in this file:

• Functionality that is removed or replaced
• API incompatibilities: Changes to public Java or JavaScript APIs

2041

@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/image/criterion/ImageItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/audio/criterion/AudioItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/criteria/file/criterion/FileItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/upload/criterion/UploadItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/url/criterion/URLItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/video/criterion/VideoItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/wiki/item/selector/criterion/package-summary.html
@app-ref@/web-experience/latest/javadocs/com/liferay/site/item/selector/criterion/package-summary.html
@app-ref@/web-experience/latest/javadocs/com/liferay/layout/item/selector/criterion/package-summary.html
@app-ref@/web-experience/latest/javadocs/com/liferay/journal/item/selector/criterion/package-summary.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorCriterion.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/package-summary.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/Base64ItemSelectorReturnType.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/FileEntryItemSelectorReturnType.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/URLItemSelectorReturnType.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/criteria/UUIDItemSelectorReturnType.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html
@app-ref@/collaboration/latest/javadocs/com/liferay/item/selector/ItemSelectorReturnType.html

• Changes to context variables available to templates
• Changes in CSS classes available to Liferay themes and portlets
• Configuration changes: Changes in configuration files, like portal.properties, system.properties,
etc.

• Execution requirements: Java version, J2EE Version, browser versions, etc.
• Deprecations or end of support: For example, warning that a certain feature or API will be dropped in
an upcoming version.

• Recommendations: For example, recommending using a newly introduced API that replaces an old
API, in spite of the old API being kept in Liferay Portal for backwards compatibility.

Breaking Changes List

The liferay-ui:logo-selector Tag Requires Parameter Changes

• Date: 2013-Dec-05
• JIRA Ticket: LPS-42645

What changed? The Logo Selector tag now supports uploading an image, storing it as a temporary file,
cropping it, and canceling edits. The tag no longer requires creating a UI to include the image. Consequently,
the editLogoURL parameter is no longer needed and has been removed. The tag now uses the following
parameters to support the new features:

• currentLogoURL: the URL to display the image being stored
• maxFileSize: the size limit for the logo to be uploaded
• tempImageFileName: the unique identifier to store the temporary image on upload

Who is affected? Plugins or templates that are using the liferay-ui:logo-selector tag need to update
their usage of the tag.

How should I updatemy code? You should remove the parameter editLogoURL and include (if neccessary)
the parameters currentLogoURL, maxFileSize, and/or tempImageFileName.

Example
Old way:

<portlet:renderURL var="editUserPortraitURL" windowState="<%= LiferayWindowState.POP_UP.toString() %>">

<portlet:param name="struts_action" value="/users_admin/edit_user_portrait" />

<portlet:param name="redirect" value="<%= currentURL %>" />

<portlet:param name="p_u_i_d" value="<%= String.valueOf(selUser.getUserId()) %>" />

<portlet:param name="portrait_id" value="<%= String.valueOf(selUser.getPortraitId()) %>" />

</portlet:renderURL>

<liferay-ui:logo-selector

defaultLogoURL="<%= UserConstants.getPortraitURL(themeDisplay.getPathImage(), selUser.isMale(), 0) %>"

editLogoURL="<%= editUserPortraitURL %>"

imageId="<%= selUser.getPortraitId() %>"

logoDisplaySelector=".user-logo"

/>

Newway:

<liferay-ui:logo-selector

currentLogoURL="<%= selUser.getPortraitURL(themeDisplay) %>"

defaultLogoURL="<%= UserConstants.getPortraitURL(themeDisplay.getPathImage(), selUser.isMale(), 0) %>"

imageId="<%= selUser.getPortraitId() %>"

2042

logoDisplaySelector=".user-logo"

maxFileSize="<%= PrefsPropsUtil.getLong(PropsKeys.USERS_IMAGE_MAX_SIZE) / 1024 %>"

tempImageFileName="<%= String.valueOf(selUser.getUserId()) %>"

/>

Whywas this changemade? This change helps keep a unified UI and consistent experience for uploading
logos in the portal. The logos can be customized from a single location and used throughout the portal. In
addition, the change adds new features such as image cropping and support for canceling image upload.

Merged Configured Email Signature Field into the Body of Email Messages from Message Boards and
Wiki

• Date: 2014-Feb-28
• JIRA Ticket: LPS-44599

What changed? The configuration for email signatures of notifications fromMessage Boards andWiki has
been removed. An automatic update process is available that appends existing signatures into respective
email message bodies for Message Boards and Wiki notifications. The upgrade process only applies to
configured signatures in the database. In case you declared signatures in portal properties (e.g., portal-
ext.properties), you must make the manual changes explained below.

Who is affected? Users and system administrators who have configured email signatures for Message
Boards or Wiki notifications are affected. System administrators who have configured portal properties
(e.g., portal-ext.properties) must make the manual changes described below.

How should I updatemy code? You should modify your portal-ext.properties file to remove the prop-
erties message.boards.email.message.added.signature, message.boards.email.message.updated.signature,
wiki.email.page.added.signature, and wiki.email.page.updated.signature. Then, you should append the
contents of the signatures to the bodies you had previously configured in your portal-ext.properties file.

Example
Old way:

wiki.email.page.updated.body=A wiki page was updated.

wiki.email.page.updated.signature=For any doubts email the system administrator

Newway:

wiki.email.page.updated.body=A wiki page was updated.\n--\nFor any doubts email the system administrator

Whywas this changemade? This change helps simplify the user interface. The signatures can still be set
inside the message body. There was no real benefit in keeping the signature and body fields separate.

Removed get and format Methods that Used PortletConfig Parameters

• Date: 2014-Mar-07
• JIRA Ticket: LPS-44342

What changed? All the methods get() and format()which had the PortletConfig as a parameter have been
removed.

2043

Who is affected? Any invocations from Java classes or JSPs to these methods in LanguageUtil and
UnicodeLanguageUtil are affected.

How should I updatemy code? Replace invocations to these methods with invocations to methods of the
same name that take a ResourceBundle parameter, instead of taking a PortletConfig parameter.

Example
Old call:

LanguageUtil.get(portletConfig, locale, key);

New call:

LanguageUtil.get(portletConfig.getResourceBundle(locale), key);

Whywas this changemade? The removedmethods didn’t work properly and would never work properly,
since they didn’t have all the information they required. Since we expected the methods were rarely used, we
thought it better to remove themwithout deprecation than to leave them as buggy methods in the API.

Web Content Articles Now Require a Structure and Template

• Date: 2014-Mar-18
• JIRA Ticket: LPS-45107

What changed? Web content is now required to use a structure and template. A default structure and
template named BasicWeb Content was added to the global scope, and can be modified or deleted.

Whoisaffected? Applications that use the Journal API to createweb contentwithout a structure or template
are affected.

How should I updatemy code? You should always use a structure and template when creating web content.
You can still use the BasicWeb Content from the global scope (using the structure key basic-web-content), but
you should keep in mind that users canmodify or delete it.

Whywas this changemade? This change gives users the flexibility to modify the default structure and
template.

Changed the AssetRenderer and Indexer APIs to Include the PortletRequest and PortletResponse Parame-
ters

• Date: 2014-May-07
• JIRA Ticket: LPS-44639 and LPS-44894

What changed? The getSummary()method in the AssetRenderer API and the doGetSummary()method in
the Indexer API have changed andmust include a PortletRequest and PortletResponse parameter as part of
their signatures.

Who is affected? Thesemethods must be updated in all AssetRenderer and Indexer implementations.

2044

How should I updatemy code? Add a PortletRequest and PortletResponse parameter to the signatures of
these methods.

Example 1
Old signature:

protected Summary doGetSummary(Document document, Locale locale, String snippet, PortletURL portletURL)

New signature:

protected Summary doGetSummary(Document document, Locale locale, String snippet, PortletRequest portletRequest, PortletResponse portletResponse)

Example 2
Old signature:

public String getSummary(Locale locale)

New signature:

public String getSummary(PortletRequest portletRequest, PortletResponse portletResponse)

Why was this change made? Some content (such as web content) needs the PortletRequest and
PortletResponse parameters in order to be rendered.

Only One Portlet Instance's Settings is Used Per Portlet

• Date: 2014-Jun-06
• JIRA Ticket: LPS-43134

What changed? Previously, some portlets allowed separate setups per portlet instance, regardless of
whether the instances were in the same page or in different pages. For some of the portlet setup fields,
however, it didn’t make sense to allow different values in different instances. The flexibility of these fields was
unnecessary and confused users. As part of this change, these fields have been moved from portlet instance
setup to Site Administration.

The upgrade process takes care of making the necessary database changes. In the case of several portlet
instances having different configurations, however, only one configuration is preserved.

For example, if you configured three Bookmarks portlets where the mail configuration was the same,
upgrade will be the same and you won’t have any problem. But if you configured the three portlet instances
differently, only one configuration will be chosen. To find out which configuration is chosen, you can check
the log generated in the console by the upgrade process.

Since configuring instances of the same portlet type differently is highly discouraged and notoriously
problematic, we expect this change will inconvenience only a very lowminority of portal users.

Who is affected? Affected users are those who have specified varying configurations for multiple portlet
instances of a portlet type, that stores configurations at the layout level.

How should I updatemy code? The upgrade process chooses one portlet instance’s configurations and
stores it at the service level. After the upgrade, you should review the portlet’s configuration andmake any
necessary modifications.

Whywas this changemade? Unifying portlet and service configuration facilitates managing them.

2045

DDM Structure Local Service API No Longer Has the updateXSDFieldMetadata operation

• Date: 2014-Jun-11
• JIRA Ticket: LPS-47559

What changed? The updateXSDFieldMetadata() operation was removed from the DDM Structure Local
Service API.

DDM Structure Local API users should reference a structure’s internal representation; any call to modify
a DDM structure’s content should be done through the DDMFormmodel.

Who is affected? Applications that use the DDM Structure Local Service API might be affected.

How should I update my code? You should always use DDMForm to update the DDM Structure con-
tent. You can retrieve it by calling ddmStructure.getDDMForm(). Perform any changes to it and then call
DDMStructureLocalServiceUtil.updateDDMStructure(ddmStructure).

Whywas this changemade? This change gives users the flexibility to modify the structure content without
concerning themselves with the DDM Structure’s internal content representation of data.

The aui:input Tag for Type checkbox No Longer Creates a Hidden Input

• Date: 2014-Jun-16
• JIRA Ticket: LPS-44228

What changed? Whenever the aui:input tag is used to generate an input of type checkbox, only an input
tag will be generated, instead of the checkbox and hidden field it was generating before.

Who is affected? Anyone trying to grab the previously generated fields is affected. The change mostly
affects JavaScript code trying to add some additional actions when clicking on the checkboxes.

How should I updatemy code? In your front-end JavaScript code, follow these steps:

• Remove the Checkbox suffix when querying for the node in any of its forms, like A.one(...), $(...),
etc.

• Remove any action that tries to set the value of the checkbox on the previously generated hidden field.

Whywas this changemade? This change makes generated formsmore standard and interoperable since
it falls back to the checkboxes default behavior. It allows the form to be submitted properly even when
JavaScript is disabled.

Using util-taglib No Longer Binds You to Using portal-kernel's javax.servlet.jsp Implementation

• Date: 2014-Jun-19
• JIRA Ticket: LPS-47682

2046

What changed? Several APIs in portal-kernel.jar contained references to the javax.servlet.jsp package.
This forced util-taglib, which depended onmany of the package’s features, to be bound to the same JSP
implementation.

Due to this, the following APIs had breaking changes:

• LanguageUtil

• UnicodeLanguageUtil

• VelocityTaglibImpl

• ThemeUtil

• RuntimePageUtil

• PortletDisplayTemplateUtil

• DDMXSDUtil

• PortletResourceBundles

• ResourceActionsUtil

• PortalUtil

Who is affected? This affects anyone calling the classes listed above.

How should I update my code? Code invoking the APIs listed above should be updated to use an
HttpServletRequest parameter instead of the formerly used PageContext parameter.

Whywas this changemade? As stated previously, the use of the javax.servlet.jsp API in portal-kernel

prevented the use of any other JSP impl within plugins (OSGi or otherwise). This limited what Liferay could
change with respect to providing its own JSP implementation within OSGi.

Changes in Exceptions Thrown by User Services

• Date: 2014-Jul-03
• JIRA Ticket: LPS-47130

What changed? In order to provide more information about the root cause of an exception, several ex-
ceptions have been extended with static inner classes, one for each cause. As a result of this effort, some
exceptions have been identified that really belong as static inner subclasses of existing exceptions.

Who is affected? Client code which is handling any of the following exceptions:

• DuplicateUserScreenNameException

• DuplicateUserEmailAddressException

How should I update my code? Replace the old exception with the equivalent inner class exception as
follows:

• DuplicateUserScreenNameException → UserScreenNameException.MustNotBeDuplicate

• DuplicateUserEmailAddressException → UserEmailAddressException.MustNotBeDuplicate

Whywas this changemade? This change provides more information to clients of the services API about
the root cause of an error. It provides a more helpful error message to the end-user and it allows for easier
recovery, when possible.

2047

Removed Trash Logic from DLAppHelperLocalService Methods

• Date: 2014-Jul-22
• JIRA Ticket: LPS-47508

What changed? The deleteFileEntry() and deleteFolder()methods in DLAppHelperLocalService deleted
the corresponding trash entry in the database. This logic has been removed from these methods.

Who is affected? Every caller of the deleteFileEntry() and deleteFolder()methods is affected.

How should I update my code? There is no direct replacement. Trash operations are now accessible
through the TrashCapability implementations for each repository. The following code demonstrates using a
TrashCapability instance to delete a FileEntry:

Repository repository = getRepository();

TrashCapability trashCapability = repository.getCapability(

TrashCapability.class);

FileEntry fileEntry = repository.getFileEntry(fileEntryId);

trashCapability.deleteFileEntry(fileEntry);

Note that the deleteFileEntry() and deleteFolder()methods in TrashCapability not only remove the
trash entry, but also remove the folder or file entry itself, and any associated data, such as assets, previews,
etc.

Whywas this changemade? This change wasmade to allow different kinds of repositories to support trash
operations in a uniformway.

Removed Sync Logic from DLAppHelperLocalService Methods

• Date: 2014-Sep-05
• JIRA Ticket: LPS-48895

What changed? The moveFileEntry() and moveFolder()methods in DLAppHelperLocalService fired Liferay
Sync events. These methods have been removed.

Who is affected? Every caller of the moveFileEntry() and moveFolder()methods is affected.

How should I update my code? There is no direct replacement. Sync operations are now accessible
through the SyncCapability implementations for each repository. The following code demonstrates us-
ing a SyncCapability instance to move a FileEntry:

Repository repository = getRepository();

SyncCapability syncCapability = repository.getCapability(

SyncCapability.class);

FileEntry fileEntry = repository.getFileEntry(fileEntryId);

syncCapability.moveFileEntry(fileEntry);

2048

Whywas this changemade? There are repositories that don’t support Liferay Sync operations.

Removed the .aui Namespace from Bootstrap

• Date: 2014-Sep-26
• JIRA Ticket: LPS-50348

What changed? The .aui namespace was removed from prefixing all of Bootstrap’s CSS.

Who is affected? Theme and plugin developers that targeted their CSS to rely on the namespace are
affected.

How should I update my code? Theme developers can still manually add an aui.css file in their _diffs
directory, and add it back in. The aui CSS class can also be added to the $root_css_class variable.

Whywas this changemade? Due to changes in the Sass parser, the nesting of third-party libraries was
causing some syntax errors which broke other functionality (e.g., RTL conversion). There was also a lot of
additional complexity for a relatively minor benefit.

Moved MVCPortlet, ActionCommand and ActionCommandCache from util-bridges.jar to portal-kernel.jar

• Date: 2014-Sep-26
• JIRA Ticket: LPS-50156

What changed? The classes from package com.liferay.util.bridges.mvc in util-bridges.jarwere moved
to a new package com.liferay.portal.kernel.portlet.bridges.mvc in portal-kernel.jar.

Old classes:

com.liferay.util.bridges.mvc.ActionCommand

com.liferay.util.bridges.mvc.BaseActionCommand

New classes:

com.liferay.portal.kernel.portlet.bridges.mvc.BaseMVCActionCommand

com.liferay.portal.kernel.portlet.bridges.mvc.MVCActionCommand

In addition, com.liferay.util.bridges.mvc.MVCPortlet is deprecated, but was made to extend
com.liferay.portal.kernel.portlet.bridges.mvc.MVCPortlet.

The classes in the com.liferay.portal.kernel.portlet.bridges.mvc package have been renamed to add
the MVCprefix. Thesemodificationsweremade after this breaking change, and can be referenced in LPS-56372.

Who is affected? This will affect any implementations of ActionCommand.

How should I update my code? Replace imports of com.liferay.util.bridges.mvc.ActionCommand with
com.liferay.portal.kernel.portlet.bridges.mvc.MVCActionCommandand imports of com.liferay.util.bridges.mvc.BaseActionCommand
with com.liferay.portal.kernel.portlet.bridges.mvc.BaseMVCActionCommand.

Whywas this changemade? This change was made to avoid duplication of an implementable interface in
the system. Duplication can cause ClassCastExceptions.

2049

https://issues.liferay.com/browse/LPS-56372

Convert Process Classes Are No Longer Specified via the convert.processes Portal Property, but Are
Contributed as OSGi Modules

• Date: 2014-Oct-09
• JIRA Ticket: LPS-50604

What changed? The implementation class com.liferay.portal.convert.ConvertProcess was renamed
com.liferay.portal.convert.BaseConvertProcess. An interfacenamed com.liferay.portal.convert.ConvertProcess
was created for it.

The convert.processes key was removed from portal.properties. Consequentially, ConvertProcess im-
plementations must register as OSGi components.

Who is affected? This affects any implementations of the former ConvertProcess class, including
ConvertProcess class implementations in EXT plugins. Until version 6.2, this type of service could only be
implemented with an EXT plugin, given that the ConvertProcess class resided in portal-impl.

How should I updatemy code? You should replace extends com.liferay.portal.convert.ConvertProcess

with extends com.liferay.portal.convert.BaseConvertProcessandannotate the classwith @Component(service=ConvertProcess.class).
Then turn your EXT plugin into an OSGi bundle and deploy it to the portal. You should see your convert

process in the configuration UI.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal by means of an OSGi container.

Migration of the Field Type from the Journal Article API into a Vocabulary

• Date: 2014-Oct-13
• JIRA Ticket: LPS-50764

What changed? The field type from the Journal Article entity has been removed. The Journal API no longer
supports this parameter. A new vocabulary calledWebContent Types is created whenmigrating from previous
versions of Liferay, and the types from the existing articles are kept as categories of this vocabulary.

Who is affected? This affects any caller of the removed methods JournalArticle.getType() and
JournalFeed.getType(), and callers of ArticleTypeException’s methods, that attempt to use the former type
parameter of the JournalArticle or JournalFeed service.

How should I update my code? If your logic was not affected by the type, you can simply remove the
type parameter from the Journal API call. If your logic was affected by the type, you should now use the
AssetCategoryService to obtain the category of the journal articles.

Whywas this changemade? Web Content Types had to be updated in a properties file and could not be
translated easily. Categories provide a much more flexible behavior and a better UI. In addition, all the
features, such as filters, developed for categories can be used now in asset publishers and faceted search.

2050

Removed the getClassNamePortletId(String) Method from PortalUtil Class

• Date: 2014-Nov-11
• JIRA Ticket: LPS-50604

What changed? The getClassNamePortletId(String)method from the PortalUtil class has been removed.

Who is affected? This affects any plugin using the method.

How should I updatemy code? If you are using the method, you should implement it yourself in a private
utility class.

Whywas this changemade? This change was needed in order to modularize the portal. Also, the method
is no longer being used inside Liferay Portal.

Removed the Header Web Content and Footer Web Content Preferences from the RSS Portlet

• Date: 2014-Nov-12
• JIRA Ticket: LPS-46984

What changed? The Header Web Content and Footer Web Content preferences from the RSS portlet have
been removed. The portlet now supports Application Display Templates (ADT), which provide templating
capabilities that can apply web content to the portlet’s header and footer.

Who is affected? This affects RSS portlets that are displayed on pages and that use these preferences. These
preferences are no longer used in the RSS portlet.

How should I updatemy code? Even though these preferences have been removed, an ADT can be created
to produce the same result. Liferay will publish this ADT so that it can be used in the RSS portlet.

Whywas this changemade? The support for ADTs in the RSS portlet not only covers this use case, but also
covers many other use cases, providing a much simpler way to create custom preferences.

Removed the createFlyouts Method from liferay/util.js and Related Resources

• Date: 2014-Dec-18
• JIRA Ticket: LPS-52275

What changed? The Liferay.Util.createFlyoutsmethod has been completely removed from core files.

Whoisaffected? Thisonly affects thirdpartydeveloperswhoare explicitly calling Liferay.Util.createFlyouts
for the creation of flyout menus. It will not affect any menus in core files.

How should I updatemy code? If you are using the method, you can achieve the same behavior with CSS.

Whywas this changemade? Thismethod was removed due to there being no working use cases in Portal,
and its overall lack of functionality.

2051

Removed Support for Flat Thread View in Discussion Comments

• Date: 2014-Dec-30
• JIRA Ticket: LPS-51876

What changed? Discussion comments are now displayed using the Combination thread view, and the
number of levels displayed in the tree is limited.

Whoisaffected? This affects installations that specify portal property setting discussion.thread.view=flat,
which was the default setting.

How should I updatemy code? There is no need to update anything since the portal property has been
removed and the combination thread view is now hard-coded.

Whywas this changemade? Flat view comments were originally implemented as an option to tree view
comments, which were having performance issues with comment pagination.

Portal now uses a new pagination implementation that performs well. It allows comments to display in
a hierarchical view,making it easier to see reply history. Therefore, the flat thread view is no longer needed.

Removed Asset Tag Properties

• Date: 2015-Jan-13
• JIRA Ticket: LPS-52588

What changed? The Asset Tag Properties have been removed. The service no longer exists and the Asset Tag
Service API no longer has this parameter. The behavior associated with tag properties in the Asset Publisher
and XSL portlets has also been removed.

Who is affected? This affects any plugin that uses the Asset Tag Properties service.

How should I updatemy code? If you are using this functionality, you can achieve the same behavior with
Asset Category Properties. If you are using the Asset Tag Service, remove the String[] tag properties parameter
from your calls to the service’s methods.

Whywas this changemade? The Asset Tag Properties were deprecated for the 6.2 version of Liferay Portal.

Removed the asset.publisher.asset.entry.query.processors Property

• Date: 2015-Jan-22
• JIRA Ticket: LPS-52966

What changed? The asset.publisher.asset.entry.query.processors property has been removed from
portal.properties.

Who is affected? This affects any hook that uses the asset.publisher.asset.entry.query.processors prop-
erty.

2052

Howshould I updatemy code? If you are using this property to register Asset Entry Query Processors, your
AssetEntryQueryProcessormust implement the com.liferay.portlet.assetpublisher.util.AssetEntryQueryProcessor
interface andmust specify the @Component(service=AssetEntryQueryProcessor.class) annotation.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal.

Replaced the ReservedUserScreenNameException with UserScreenNameException.MustNotBeReserved in
UserLocalService

• Date: 2015-Jan-29
• JIRA Ticket: LPS-53113

Whatchanged? Previous toLiferay 7, severalmethodsof UserLocalService could throwa ReservedUserScreenNameException
when a user set a screen name that was not allowed. That exception has been deprecated and replaced with
UserScreenNameException.MustNotBeReserved.

Whoisaffected? Thisaffectsdeveloperswhohavewritten code that catches the ReservedUserScreenNameException
while calling the affected methods.

How should I updatemy code? You should replace catching exception ReservedUserScreenNameException

with catching exception UserScreenNameException.MustNotBeReserved.

Whywasthischangemade? Anewpatternhasbeendefined for exceptions thatprovideshigher expressivity
in their names and also more information regarding why the exception was thrown.

The new exception UserScreenNameException.MustNotBeReserved has all the necessary information about
why the exception was thrown and its context. In particular, it contains the user ID, the problematic screen
name, and the list of reserved screen names.

Replaced the ReservedUserEmailAddressException with UserEmailAddressException Inner Classes in User
Services

• Date: 2015-Feb-03
• JIRA Ticket: LPS-53279

What changed? Previous to Liferay 7, several methods of UserLocalService and UserService could
throw a ReservedUserEmailAddressException when a user set an email address that was not allowed.
That exception has been deprecated and replaced with UserEmailAddressException.MustNotUseCompanyMx,
UserEmailAddressException.MustNotBePOP3User, and UserEmailAddressException.MustNotBeReserved.

Whoisaffected? Thisaffectsdeveloperswhohavewritten code that catches the ReservedUserEmailAddressException
while calling the affected methods.

How should I update my code? Depending on the method you’re calling and the context in which
you’re calling it, you should replace catching exception ReservedUserEmailAddressExceptionwith catching
exception UserEmailAddressException.MustNotUseCompanyMx, UserEmailAddressException.MustNotBePOP3User,
or UserEmailAddressException.MustNotBeReserved.

2053

Whywas this changemade? A new pattern has been defined for exceptions. This pattern requires using
higher expressivity in exception names and requires that each exception providemore information regarding
why it was thrown.

Each new exception provides its context and has all the necessary information about why the excep-
tion was thrown. For example, the UserEmailAddressException.MustNotBeReserved exception contains the
problematic email address and the list of reserved email addresses.

Replaced ReservedUserIdException with UserIdException Inner Classes

• Date: 2015-Feb-10
• JIRA Ticket: LPS-53487

Whatchanged? The ReservedUserIdExceptionhasbeendeprecatedandreplacedwith UserIdException.MustNotBeReserved.

Who is affected? This affects developers who have written code that catches the ReservedUserIdException
while calling the affected methods.

Howshould I updatemy code? You should replace catching exception ReservedUserIdExceptionwith catch-
ing exception UserIdException.MustNotBeReserved.

Whywasthischangemade? Anewpatternhasbeendefined for exceptions thatprovideshigher expressivity
in their names and also more information regarding why the exception was thrown.

The new exception UserIdException.MustNotBeReserved provides its context and has all the necessary
information about why the exception was thrown. In particular, it contains the problematic user ID and the
list of reserved user IDs.

Moved the AssetPublisherUtil Class and Removed It from the Public API

• Date: 2015-Feb-11
• JIRA Ticket: LPS-52744

What changed? The class AssetPublisherUtil from the portal-kernelmodule has been moved to the mod-
ule AssetPublisher and it is no longer a part of the public API.

Who is affected? This affects developers who have written code that uses the AssetPublisherUtil class.

Howshould I updatemy code? This AssetPublisherUtil class should no longer be used from othermodules
since it contains utility methods for the Asset Publisher portlet. If needed, you can define a dependency with
the Asset Publisher module and use the new class.

Whywas this changemade? This change has been made as part of the modularization efforts to decouple
the different parts of the portal.

Removed Operations That Used the Fields Class from the StorageAdapter Interface

• Date: 2015-Feb-11
• JIRA Ticket: LPS-53021

2054

What changed? All operations that used the Fields class have been removed from the StorageAdapter

interface.

Who is affected? This affects developers who have written code that directly calls these operations.

How should I updatemy code? You should update your code to use the DDMFormValues class instead of the
Fields class.

Whywas this changemade? This change has beenmade due to the deprecation of the Fields class.

Created a New getType Method That is Implemented in DLProcessor

• Date: 2015-Feb-17
• JIRA Ticket: LPS-53574

What changed? The DLProcessor interface has a newmethod getType().

Who is affected? This affects developers who have created a DLProcessor.

How should I updatemy code? You should implement the newmethod and return the type of processor.
You can check the class DLProcessorConstants to see processor types.

Why was this change made? Previous to Liferay 7, developers were forced to extend one of the exist-
ing DLProcessor classes and developers using the extended class had to check the instance of that class to
determine its processor type.

With this change, developers no longer need to extend any particular class to create their own DLProcessor
and their processor’s type can be clearly specified by a constant from the class DLProcessorConstants.

Changed the Usage of the liferay-ui:restore-entry Tag

• Date: 2015-Mar-01
• JIRA Ticket: LPS-54106

What changed? The usage of the taglib tag liferay-ui:restore-entry serves a different purpose now. It
renders the UI to restore elements from the Recycle Bin.

Who is affected? This affects developers using the tag liferay-ui:restore-entry.

How should I updatemy code? You should replace your calls to the tag with code like the listing below:

<aui:script use="liferay-restore-entry">

new Liferay.RestoreEntry(

{

checkEntryURL: '<%= checkEntryURL.toString() %>',

duplicateEntryURL: '<%= duplicateEntryURL.toString() %>',

namespace: '<portlet:namespace />'

}

);

</aui:script>

2055

In the above code, the checkEntryURL should be an ActionURL of your portlet, which checks whether the
current entry can be restored from the Recycle Bin. The duplicateEntryURL should be a RenderURL of your
portlet, that renders the UI to restore the entry, resolving any existing conflicts. In order to generate that
URL, you can use the tag liferay-ui:restore-entry, which has been refactored for this usage.

Whywas this changemade? This change allows the Trash portlet to be an independent module. Its actions
and views are no longer used by the tag; they are now the responsability of each plugin.

Added Required Parameter resourceClassNameId for DDM Template Search Operations

• Date: 2015-Mar-03
• JIRA Ticket: LPS-52990

What changed? The DDM template search and searchCount operations have a new parameter called
resourceClassNameId.

Whoisaffected? Thisaffectsdeveloperswhohavedirect calls to the DDMTemplateServiceor DDMTemplateLocalService.

How should I update my code? You should add the resourceClassNameId parameter to your calls. This
parameter represents the resource that owns the permission for the DDM template. For example, if the
template is a WCM template, the resourceClassNameId points to the JournalArticle’s classNameId. If the
template is aDDL template, the resourceClassNameIdpoints to the DDLRecordSet’s classNameId. If the template
is an ADT template, the resourceClassNameId points to the PortletDisplayTemplate’s classNameId.

Whywas this changemade? This change was made in order to implement model resource permissions for
DDM templates, such as VIEW, DELETE, PERMISSIONS, and UPDATE.

Replaced the Breadcrumb Portlet's Display Styles with ADTs

• Date: 2015-Mar-12
• JIRA Ticket: LPS-53577

What changed? The custom display styles of the breadcrumb tag added using JSPs no longer work. They
have been replaced by Application Display Templates (ADT).

Who is affected? This affects developers that use the following properties:

breadcrumb.display.style.default=horizontal

breadcrumb.display.style.options=horizontal,vertical

How should I updatemy code? To style the Breadcrumb portlet, you should use ADTs instead of using
custom styles in your JSPs. ADTs can be created from the UI of the portal by navigating to Site Settings →
Application Display Templates. ADTs can also be created programatically.

Whywas this changemade? ADTs allow you to change an application’s look and feel without changing its
JSP code.

2056

Changed Usage of the liferay-ui:ddm-template-selector Tag

• Date: 2015-Mar-16
• JIRA Ticket: LPS-53790

What changed? The attribute classNameId of the liferay-ui:ddm-template-selector taglib tag has been
renamed className.

Who is affected? This affects developers using the liferay-ui:ddm-template-selector tag.

How should I updatemy code? In your liferay-ui:ddm-template-selector tags, rename the classNameId
attribute to className.

Whywas this changemade? Application Display Templates were being referenced by their UUID, which
was usually not known by the developer. Referencing all DDM templates by their class name simplifies using
this tag.

Changed the Usage of Asset Preview

• Date: 2015-Mar-16
• JIRA Ticket: LPS-53972

What changed? Instead of directly including the JSP referenced by the AssetRenderer’s getPreviewPath
method to preview an asset, you now use a taglib tag.

Who is affected? This affects developers who have written code that directly calls an AssetRenderer’s
getPreviewPathmethod to preview an asset.

Howshould Iupdatemycode? JSP code that previews an asset by calling an AssetRenderer’s getPreviewPath
method, such as in the example code below,must be replaced:

<liferay-util:include

page="<%= assetRenderer.getPreviewPath(liferayPortletRequest, liferayPortletResponse) %>"

portletId="<%= assetRendererFactory.getPortletId() %>"

servletContext="<%= application %>"

/>

To preview an asset, you should instead use the liferay-ui:asset-display tag, passing it an instance of
the asset entry and an asset renderer preview template. Here’s an example of using the tag:

<liferay-ui:asset-display

assetEntry="<%= assetEntry %>"

template="<%= AssetRenderer.TEMPLATE_PREVIEW %>"

/>

Whywas this changemade? This change simplifies using asset previews.

Added New Methods in the ScreenNameValidator Interface

• Date: 2015-Mar-17
• JIRA Ticket: LPS-53409

2057

What changed? The ScreenNameValidator interface has new methods getDescription(Locale) and
getJSValidation().

Who is affected? This affects developers who have implemented a custom screen name validator with the
ScreenNameValidator interface.

How should I updatemy code? You should implement the newmethods introduced in the interface.

• getDescription(Locale): returns a description of what the screen name validator validates.

• getJSValidation(): returns the JavaScript input validator on the client side.

Whywas this changemade? Previous to Liferay 7, validation for user screen name characters was hard-
coded in UserLocalService. A new portal property named users.screen.name.special.characters has been
added to provide configurability of special characters allowed in screen names.

In addition, developers can now specify a custom input validator for the screen name on the client side
by providing a JavaScript validator in getJSValidation().

Replaced the Language Portlet's Display Styles with ADTs

• Date: 2015-Mar-30
• JIRA Ticket: LPS-54419

What changed? The custom display styles of the language tag added using JSPs no longer work. They have
been replaced by Application Display Templates (ADT).

Who is affected? This affects developers that use the following properties:

language.display.style.default=icon

language.display.style.options=icon,long-text

Howshould I updatemy code? To style the Language portlet, you should use ADTs instead of using custom
styles in your JSPs. ADTs can be created from the UI of the portal by navigating to Site Settings → Application
Display Templates. ADTs can also be created programatically.

Whywas this changemade? ADTs allow you to change an application’s look and feel without changing its
JSP code.

Added Required Parameter groupId for Adding Tags, Categories, and Vocabularies

• Date: 2015-Mar-31
• JIRA Ticket: LPS-54570

What changed? TheAPI for adding tags, categories, and vocabularies now requires passing the groupId
parameter. Previously, it had to be included in the ServiceContext parameter passed to the method.

2058

Who is affected? This affects developers who have direct calls to the followingmethods:

• addTag in AssetTagService or AssetTagLocalService
• addCategory in AssetCategoryService or AssetCategoryLocalService
• addVocabulary in AssetVocabularyService or AssetVocabularyLocalService
• updateFolder in JournalFolderService or JournalFolderLocalService

How should I update my code? You should add the groupId parameter to your calls. This pa-
rameter represents the site in which you are creating the tag, category, or vocabulary. It can
be obtained from the themeDisplay or serviceContext using themeDisplay.getScopeGroupId() or
serviceContext.getScopeGroupId(), respectively.

Whywas this changemade? This change was made in order improve the API.The groupId parameter was
always required, but it was hidden by the ServiceContext object.

Removed the Tags that Start with portlet:icon-

• Date: 2015-Mar-31
• JIRA Ticket: LPS-54620

What changed? The following tags have been removed:

• liferay-portlet:icon-close

• liferay-portlet:icon-configuration

• liferay-portlet:icon-edit

• liferay-portlet:icon-edit-defaults

• liferay-portlet:icon-edit-guest

• liferay-portlet:icon-export-import

• liferay-portlet:icon-help

• liferay-portlet:icon-maximize

• liferay-portlet:icon-minimize

• liferay-portlet:icon-portlet-css

• liferay-portlet:icon-print

• liferay-portlet:icon-refresh

• liferay-portlet:icon-staging

Who is affected? This affects developers who have written code that uses these tags.

How should I updatemy code? The tag liferay-ui:icon can replace the call to the previous tags. All the
previous tags have been converted into Java classes that implement the methods that the icon tag requires.

See the modules portlet-configuration-icon-* in the modules/apps/web-experience/portlet-

configuration folder.

Whywas this changemade? These tags were used to generate the configuration icon of portlets. This
functionality will now bemanaged fromOSGi modules instead of tags since OSGi modules provide more
flexibility and can be included in any app.

2059

Changed the Default Value of the copy-request-parameters Init Parameter for MVC Portlets

• Date: 2015-Apr-15
• JIRA Ticket: LPS-54798

What changed? The copy-request-parameters init parameter’s default value is now set to true in all portlets
that extend MVCPortlet.

Who is affected? This affects developers that have created portlets that extend MVCPortlet.

How should I updatemy code? To continue using the property the same way you did before this change
was implemented, you’ll need to change the default property. To change the property, set the init parameter
to false in your class extending MVCPortlet:

javax.portlet.init-param.copy-request-parameters=false

Whywas this changemade? This change was made to allow for backwards compatibility.

Removed Portal Properties Used to Display Sections in Form Navigators

• Date: 2015-Apr-16
• JIRA Ticket: LPS-54903

What changed? The following portal properties (and the equivalent PropsKeys and PropsValues) that were
used to decide what sections would be displayed in the form-navigator have been removed:

• company.settings.form.configuration

• company.settings.form.identification

• company.settings.form.miscellaneous

• company.settings.form.social

• journal.article.form.add

• journal.article.form.update

• journal.article.form.default.values

• layout.form.add

• layout.form.update

• layout.set.form.update

• organizations.form.add.identification

• organizations.form.add.main

• organizations.form.add.miscellaneous

• organizations.form.update.identification

• organizations.form.update.main

• organizations.form.update.miscellaneous

• sites.form.add.advanced

• sites.form.add.main

• sites.form.add.miscellaneous

• sites.form.add.seo

• sites.form.update.advanced

• sites.form.update.main

• sites.form.update.miscellaneous

2060

• sites.form.update.seo

• users.form.add.identification

• users.form.add.main

• users.form.add.miscellaneous

• users.form.my.account.identification

• users.form.my.account.main

• users.form.my.account.miscellaneous

• users.form.update.identification

• users.form.update.main

• users.form.update.miscellaneous

The sections and categories of form navigators are now OSGi components.

Who is affected? This affects administrators whomay have added, removed, or reordered sections using
those portal properties. Developers using the constants defined in PropsKeys or PropsValues for those portal
properties will also be affected.

How should I update my code? Since those properties no longer exist, you cannot rely on them.
References to the constants of PropsKeys and PropsValues will need to be updated. You can use
FormNavigatorCategoryUtil and FormNavigatorEntryUtil to obtain a list of the available sections and
categories for a form navigator instance.

Changes to remove or reorder specific sections will need to be done through the OSGi console to update
the service ranking or stop the components.

Adding new sections with Liferay Hooks will still work as a legacy feature, but the recommended way is
using OSGi components to add new sections.

Why was this change made? The old mechanism to add new sections to form-navigator tags was very
limited because it could only depend on portal for services and utils due to the new section that was rendered
from the portal classloader.

There was a need to add new sections and categories to form-navigator tags via OSGi plugins in a more
extensible way, allowing the developer to include new sections to access to their own utils and services.

Removed the Type Setting breadcrumbShowParentGroups from Groups

• Date: 2015-Apr-21
• JIRA Ticket: LPS-54791

What changed? The type setting breadcrumbShowParentGroupswas removed from groups and is no longer
available in the site configuration. Now, it is only available in the breadcrumb configuration.

Who is affected? This affects all site administrators that have set the showParentGroups preference in Site
Administration.

How should I updatemy code? There are no code updates required. This should only be updated at the
portlet instance level.

Whywas this changemade? This change was introduced to support the new Settings API.

2061

Changed Return Value of the Method getText of the Editor's Window API

• Date: 2015-Apr-28
• JIRA Ticket: LPS-52698

What changed? Themethod getText now returns the editor’s content, without any HTMLmarkup.

Who is affected? This affects developers that are using the getTextmethod of the editor’s window API.

How should I updatemy code? To continue using the editor the same way you did before this change was
implemented, you should change calls to the getTextmethod to instead call the getHTMLmethod.

Whywas this changemade? This change was made in the editor’s window API to provide a proper getText
method that returns just the editor’s content, without any HTMLmarkup. This change is used for the blog
abstract field.

Moved the Contact Name Exception Classes to Inner Classes of ContactNameException

• Date: 2015-May-05
• JIRA Ticket: LPS-55364

What changed? The use of classes ContactFirstNameException, ContactFullNameException, and
ContactLastNameException has beenmoved to inner classes in a new class called ContactNameException.

Who is affected? This affects developers who may have included one of the three classes above in their
code.

How should I updatemy code? While the old classes remain for backwards-compatibility, they are being
deprecated. You’re encouraged to use the new pattern of inner classes for exceptions wherever possible. For
example, instead of using ContactFirstNameExeception, use ContactNameException.MustHaveFirstName.

Whywas this changemade? This change was made in accordance with the new exceptions pattern being
applied throughout Portal. It also allows the new localized user name configuration feature to be thoroughly
covered by exceptions for different configurations.

Removed USERS_LAST_NAME_REQUIRED from portal.properties in Favor of language.properties Con-
figurations

• Date: 2015-May-07
• JIRA Ticket: LPS-54956

What changed? The USERS_LAST_NAME_REQUIRED property has been removed from portal.properties and
the corresponding UI. Required names are now handled on a per-language basis via the language.properties
files. It has also been removed as an option from the Portal Settings section of the Control Panel.

Who is affected? This affects anyone who uses the USERS_LAST_NAME_REQUIRED portal property.

2062

HowshouldIupdatemycode? If youneed to require theuser’s lastname, list it on the lang.user.name.required.field.names
line of the appropriate language.properties files:

lang.user.name.required.field.names=last-name

Whywas this changemade? Portal property USERS_LAST_NAME_REQUIRED didn’t support the multicultural
user name configurations introduced in LPS-48406. Language property files (e.g., language.properties) now
support these configurations. Control of all user name configuration, except with regards to first name, is
relegated to language property files. First name is required and always present.

Removed Methods getGroupLocalRepositoryImpl and getLocalRepositoryImpl from RepositoryLocalSer-
vice and RepositoryService

• Date: 2015-May-14
• JIRA Ticket: LPS-55566

What changed? Themethods getGroupLocalRepositoryImpl(...) and getLocalRepositoryImpl(...) have
been removed from RepositoryLocalService and RepositoryService. Although the methods are related to
the service, they belong in a different level of abstraction.

Who is affected? This affects anyone who uses those methods.

How should I updatemy code? The removedmethods were generic and had long signatures with optional
parameters. They now have one specialized version per parameter and are in the RepositoryProvider service.

Example
Old call:

RepositoryLocalServiceUtil.getRepositoryImpl(0, fileEntryId, 0)

New call:

RepositoryProviderUtil.getLocalRepositoryByFileEntryId(fileEntryId)

Whywas this changemade? This changewasmade to enhance the Repository API and facilitate decoupling
the API from the Document Library, as a part of the portal modularization effort.

Removed addFileEntry Method from DLAppHelperLocalService

• Date: 2015-May-20
• JIRA Ticket: LPS-47645

What changed? The addFileEntrymethod has been removed from DLAppHelperLocalService.

Who is affected? This affects anyone who calls the addFileEntrymethod.

How should I updatemy code? If you need to invoke the addFileEntrymethod as part of a custom reposi-
tory implementation, use the provided repository capabilities instead. See LiferayRepositoryDefiner for
examples on their use.

For other use cases, youmay need to explicitly invoke each of the service methods used by addFileEntry.

2063

Why was this change made? The logic inside the addFileEntry method was moved, out from
DLAppHelperLocalService and into repository capabilities, to further decouple core repository imple-
mentations from additional (optional) functionality.

Indexers Called from Document Library Now Receive FileEntry Instead of DLFileEntry

• Date: 2015-May-20
• JIRA Ticket: LPS-55613

What changed? Indexers that previously received a DLFileEntry object (e.g., in the addRelatedEntryFields
method) no longer receive a DLFileEntry, but a FileEntry.

Who is affected? This affects anyone who implements an Indexer handling DLFileEntry objects.

How should I updatemy code? You should try to use methods in FileEntry or exported repository capabil-
ities to obtain the value you were using. If no capability exists for your use case, you can resort to calling
fileEntry.getModel() and casting the result to a DLFileEntry. However, this breaks all encapsulation and
may result in future failures or compatibility problems.

Old code:

@Override

public void addRelatedEntryFields(Document document, Object obj)

throws Exception {

DLFileEntry dlFileEntry = (DLFileEntry)obj;

long fileEntryId = dlFileEntry.getFileEntryId();

New Code:

@Override

public void addRelatedEntryFields(Document document, Object obj)

throws Exception {

FileEntry fileEntry = (FileEntry)obj;

long fileEntryId = fileEntry.getFileEntryId();

Whywas this changemade? This change was made to enhance the Repository API andmake decoupling
fromDocument Library easier whenmodularizing the portal.

Removed permissionClassName, permissionClassPK, and permissionOwner Parameters from MBMessage
API

• Date: 2015-May-27
• JIRA Ticket: LPS-55877

What changed? The parameters permissionClassName, permissionClassPK, and permissionOwner have been
removed from theMessage Boards API and Discussion tag.

Who is affected? This affects anyone who invokes the affected methods (locally or remotely) and any view
that uses the Discussion tag.

2064

How should I updatemy code? It suffices to remove the parameters from the method calls (for consumers
of the API) or the attributes in tag invocations.

Whywas this changemade? Those API methods were exposed in the remote services, allowing any con-
sumer to bypass the permission system by providing customized className, classPK, or ownerId parameters.

Moved Indexer.addRelatedEntryFields and Indexer.reindexDDMStructures, and Removed Indexer.get-
QueryString

• Date: 2015-May-27
• JIRA Ticket: LPS-55928

What changed? Method Indexer.addRelatedEntryFields(Document, Object) has been moved into
RelatedEntryIndexer.

Indexer.reindexDDMStructures(List<Long>) has beenmoved into DDMStructureIndexer.
Indexer.getQueryString(SearchContext, Query)hasbeen removed, in favorof calling SearchEngineUtil.getQueryString(SearchContext,

Query)

Who is affected? This affects any code that invokes the affectedmethods, as well as any code that imple-
ments the interface methods.

How should I updatemy code? Any code implementing Indexer.addRelatedEntryFields(...) should im-
plement the RelatedEntryIndexer interface.

Any code calling Indexer.addRelatedEntryFields(...) should determine first if the Indexer is an instance
of RelatedEntryIndexer.

Old code:

mbMessageIndexer.addRelatedEntryFields(...);

New code:

if (mbMessageIndexer instanceof RelatedEntryIndexer) {

RelatedEntryIndexer relatedEntryIndexer =

(RelatedEntryIndexer)mbMessageIndexer;

relatedEntryIndexer.addRelatedEntryFields(...);

}

Any code implementing Indexer.reindexDDMStructures(...) should implement the DDMStructureIndexer
interface.

Any code calling Indexer.reindexDDMStructures(...) should determine first if the Indexer is an instance
of DDMStructureIndexer.

Old code:

mbMessageIndexer.reindexDDMStructures(...);

New code:

if (journalIndexer instanceof DDMStructureIndexer) {

DDMStructureIndexer ddmStructureIndexer =

(DDMStructureIndexer)journalIndexer;

ddmStructureIndexer.reindexDDMStructures(...);

}

2065

Any code calling Indexer.getQueryString(...) should call SearchEngineUtil.getQueryString(...).
Old code:

mbMessageIndexer.getQueryString(...);

New code:

SearchEngineUtil.getQueryString(...);

Whywas this changemade? The addRelatedEntryFields and reindexDDMStructuresmethods were not re-
lated to core indexing functions. They were functions of specialized indexers.

The getQueryStringmethod was an unnecessary convenience method.

Removed mbMessages and fileEntryTuples Attributes from app-view-search-entry Tag

• Date: 2015-May-27
• JIRA Ticket: LPS-55886

What changed? The mbMessages and fileEntryTuples attributes from the app-view-search-entry tag have
been removed. Related methods getMbMessages, getFileEntryTuples, and addMbMessage have also been re-
moved from the SearchResult class.

Who is affected? This affects developers that use the app-view-search-entry tag in their views, have devel-
oped hooks to customize the tag JSP, or have developed a portlet that uses that tag. Also, any custom code
that uses the SearchResult class may be affected.

HowshouldIupdatemycode? Thenewattributes commentRelatedSearchResultsand fileEntryRelatedSearchResults
should be used instead. The expected value is the one returned by the getCommentRelatedSearchResults and
getFileEntryRelatedSearchResultsmethods in SearchResult.

When adding comments to the SearchResult, the new addCommentmethod should be used instead of the
addMbMessagemethod.

Whywas this changemade? As part of the modularization efforts, references to MBMessage needed to be
removed for the Message Boards portlet to be placed into its own OSGi bundle.

Replaced Method getPermissionQuery with getPermissionFilter in SearchPermissionChecker, and get-
FacetQuery with getFacetBooleanFilter in Indexer

• Date: 2015-Jun-02
• JIRA Ticket: LPS-56064

What changed? Method SearchPermissionChecker.getPermissionQuery(long, long[], long, String,

Query, SearchContext) has been replaced by SearchPermissionChecker.getPermissionBooleanFilter(long,

long[], long, String, BooleanFilter, SearchContext).
Method Indexer.getFacetQuery(String, SearchContext)hasbeen replacedby Indexer.getFacetBooleanFilter(String,

SearchContext).

Who is affected? This affects any code that invokes the affectedmethods, as well as any code that imple-
ments the interface methods.

2066

HowshouldIupdatemycode? Anycodecalling/implementing SearchPermissionChecker.getPermissionQuery(...)
should instead call/implement SearchPermissionChecker.getPermissionBooleanFilter(...).

Any code calling/implementing Indexer.getFacetQuery(...) should instead call/implement
Indexer.getFacetBooleanFilter(...).

Why was this change made? Permission constraints placed on search should not affect the score for
returned search results. Thus, these constraints should be applied as search filters. SearchPermissionChecker
is also a very deep internal interface within the permission system. Thus, to limit confusion in the logic for
maintainability, the SearchPermissionChecker.getPermissionQuery(...) method was removed as opposed to
deprecated.

Similarly, constraints applied to facets should not affect the scoring or facet counts. Since
Indexer.getFacetQuery(...) was only utilized by the AssetEntriesFacet, and used to reduce the impact
of changes for SearchPermissionChecker.getPermissionBooleanFilter(...), the method was removed as
opposed to deprecated.

Added userId Parameter to Update Operations of DDMStructureLocalService and DDMTemplateLocalSer-
vice

• Date: 2015-Jun-05
• JIRA Ticket: LPS-50939

What changed? A new parameter userId has been added to the updateStructure and updateTemplatemeth-
ods of the DDMStructureLocalService and DDMTemplateLocalService classes, respectively.

Who is affected? This affects any code that invokes the affectedmethods, as well as any code that imple-
ments the interface methods.

HowshouldIupdatemycode? Anycodecalling/implementing DDMStructureLocalServiceUtil.updateStructure(...)
or DDMTemplateLocalServiceUtil.updateTemplate(...) should pass the new userId parameter.

Why was this change made? For the service to keep track of which user is modifying the structure or
template, the userId parameter was required. In order to add support to structure and template versions,
audit columns were also added to suchmodels.

Removed Method getEntries from DL, DLImpl, and DLUtil Classes

• Date: 2015-Jun-10
• JIRA Ticket: LPS-56247

What changed? Themethod getEntries has been removed from the DL, DLImpl, and DLUtil classes.

Who is affected? This affects any caller of the getEntriesmethod.

How should I updatemy code? Youmay use the SearchResultUtil class to process the search results. Note
that this class is not completely equivalent; if you need exactly the same behavior as the removedmethod,
you will need to add custom code.

2067

Whywas this changemade? The getEntriesmethod was no longer used, and contained hardcoded refer-
ences to classes that will be moved into OSGi bundles.

Removed WikiUtil.getEntries Method

• Date: 2015-Jun-10
• JIRA Ticket: LPS-56242

What changed? Themethod getEntries() has been removed from class WikiUtil.

Who is affected? Any JSP hook or ext plugin that uses this method is affected. As the class was located in
portal-impl, regular portlets and other safe extension points won’t be affected.

Howshould I updatemy code? You should review the JSP or ext plugin, updating it to remove any reference
to the new class andmimicking the original JSP code. In case you need equivalent functionality to the one
provided by WikiUtil.getEntries() youmay use the SearchResultUtil class. While not totally equivalent, it
offers similar functionality.

Why was this change made? The WikiUtil.getEntries()method was no longer used, and it contained
hardcoded references to classes that will be moved into OSGi modules.

Removed render Method from ConfigurationAction API

• Date: 2015-Jun-14
• JIRA Ticket: LPS-56300

What changed? Themethod render has been removed from the interface ConfigurationAction.

Who is affected? This affects any Java code calling the method render on a ConfigurationAction class, or
Java classes overriding the rendermethod of a ConfigurationAction class.

How should I update my code? The method render was used to return the path of a JSP, includ-
ing the configuration of a portlet. That method is now available for configurations extending the
BaseJSPSettingsConfigurationAction class, and is called getJspPath.

If any logic was added to override the rendermethod, it can now be added in the includemethod.

Whywas this changemade? This changewas part of neededmodifications to support adding configuration
for portlets based on other technology different than JSP (e.g., FreeMarker). Themethod include can now be
used to create configuration UIs written in FreeMarker or any other framework.

Removed ckconfig Files Used for CKEditor Configuration

• Date: 2015-Jun-16
• JIRA Ticket: LPS-55518

What changed? The files ckconfig.jsp, ckconfig-ext.jsp, ckconfig_bbcode.jsp, ckconfig_bbcode-ext.jsp,
ckconfig_creole.jsp, and ckconfig_creole-ext.jsp have been removed and are no longer used to configure
the CKEditor instances created using the liferay-ui:input-editor tag.

2068

Who is affected? This affects any hook or plugin-ext overriding these files to modify the editor configura-
tion.

How should I updatemy code? Depending on the changes, different extensionmethods are available:

• For CKEditor configuration options, an implementation of EditorConfigContributor can be created to
pass or modify the expected parameters.

• For CKEditor instance manipulation (setting attributes, adding listeners, etc.), the DynamicInclude ex-
tension point #ckeditor[_creole|_bbcode]#onEditorCreated has been added to provide the possibility
of injecting JavaScript, when needed.

Whywas this changemade? This change is part of a greater effort to provide mechanisms to extend and
configure any editor in Liferay Portal in a coherent and extensible way.

Renamed ActionCommand Classes Used in the MVCPortlet Framework

• Date: 2015-Jun-16
• JIRA Ticket: LPS-56372

What changed? The classes located in the com.liferay.portal.kernel.portlet.bridges.mvc package have
been renamed to include theMVC prefix.

Old Classes:

• BaseActionCommand

• BaseTransactionalActionCommand

• ActionCommand

• ActionCommandCache

New Classes:

• BaseMVCActionCommand

• BaseMVCTransactionalActionCommand

• MVCActionCommand

• MVCActionCommandCache

Also, the property action.command.name has been renamed to mvc.command.name. The code snippet below
shows the new property in its context.

@Component(

immediate = true,

property = {

"javax.portlet.name=" + InvitationPortletKeys.INVITATION,

"mvc.command.name=view"

},

service = MVCActionCommand.class

)

Who is affected? This affects any Java code calling the ActionCommand classes used in the MVCPortlet frame-
work.

2069

How should I updatemy code? You should update the old ActionCommand class names with the newMVC
prefix.

Why was this change made? This change adds consistency to the MVC framework, and makes it self-
explanatory what classes should be used for the MVC portlet.

Extended MVC Framework to Use Same Key for Registering ActionURL and ResourceURL

• Date: 2015-Jun-16
• JIRA Ticket: LPS-56372

What changed? Previously, a single ActionCommandwas valid for both ActionURL and ResourceURL. Now you
must distinguish both an ActionURL and ResourceURL as different actions, which means you can register both
with the same key.

Who is affected? This affects developers that were using the ActionCommand for actionURLs and resourceURLs.

Howshould Iupdatemycode? You should replace the ActionCommands used for actionURLs and resourceURLs
to use MVCActionCommand and MVCResourceCommand, respectively. For example, for the new MVCResourceCommand,
you’ll need to use the resourceID of the resourceURL instead of using ActionRequest.ACTION_NAME.

Old Code:

<liferay-portlet:resourceURL copyCurrentRenderParameters="<%= false %>" var="exportRecordSetURL">

<portlet:param name="<%= ActionRequest.ACTION_NAME %>" value="exportRecordSet" />

<portlet:param name="recordSetId" value="<%= String.valueOf(recordSet.getRecordSetId()) %>" />

</liferay-portlet:resourceURL>

New Code:

<liferay-portlet:resourceURL copyCurrentRenderParameters="<%= false %>" id="exportRecordSet" var="exportRecordSetURL">

<portlet:param name="recordSetId" value="<%= String.valueOf(recordSet.getRecordSetId()) %>" />

</liferay-portlet:resourceURL>

Whywas this changemade? This change was made to extend the MVC framework to have better support
for actionURLs and resourceURLs.

Changed Java Package Names for Portlets Extracted as Modules

• Date: 2015-Jun-29
• JIRA Ticket: LPS-56383 and others

What changed? The Java package names changed for portlets that were extracted as OSGi modules in 7.0.
Here is the complete list:

• com.liferay.portlet.bookmarks → com.liferay.bookmarks

• com.liferay.portlet.dynamicdatalists → com.liferay.dynamicdatalists

• com.liferay.portlet.journal → com.liferay.journal

• com.liferay.portlet.polls → com.liferay.polls

• com.liferay.portlet.wiki → com.liferay.wiki

Who is affected? This affects developers using the portlets API from their own plugins.

2070

How should I updatemy code? Update the package imports to use the new package names. Any literal
usage of the portlet className should also be updated.

Whywas this changemade? Package names have been adapted to the new condition of Liferay portlets as
OSGi services.

Removed the DLFileEntryTypes_DDMStructures Mapping Table

• Date: 2015-Jul-01
• JIRA Ticket: LPS-56660

What changed? The DLFileEntryTypes_DDMStructuresmapping table is no longer available.

Who is affected? This affects developers using the Document Library File Entry Type Local Service API.

How should I updatemy code? Update the calls to addDDMStructureLinks, deleteDDMStructureLinks, and
updateDDMStructureLinks if you want to add, delete, or update references between DLFileEntryType and
DDMStructures.

Whywas this changemade? This change was made to reduce the coupling between the two applications.

Removed render Method from AssetRenderer API and WorkflowHandler API

• Date: 2015-Jul-03
• JIRA Ticket: LPS-56705

What changed? The method render has been removed from the interfaces AssetRenderer and
WorkflowHandler.

Who is affected? This affects any Java code calling the method render on an AssetRenderer or
WorkflowHandler class, or Java classes overriding the rendermethod of these classes.

How should I update my code? The method render was used to return the path of a JSP, including the
configuration of a portlet. That method is now available for the same AssetRender API extending the
BaseJSPAssetRenderer class, and is called getJspPath.

If any logic was added to override the rendermethod, it can now be added in the includemethod.

Whywas this changemade? This change was part of neededmodifications to support adding asset ren-
derers and workflow handlers for portlets based on other technology different than JSP (e.g., FreeMarker).
The method include can now be used to create asset renderers or workflow handlers with UIs written in
FreeMarker or any other framework.

Renamed ADMIN_INSTANCE to PORTAL_INSTANCES in PortletKeys

• Date: 2015-Jul-08
• JIRA Ticket: LPS-56867

Whatchanged? Theconstant PortletKeys.ADMIN_INSTANCEhasbeen renamedas PortletKeys.PORTAL_INSTANCES.

2071

Who is affected? This affects developers using the old constant in their code; for example, creating a direct
link to it. This is not common and usually not a good practice, so this should not affect many people.

How should I updatemy code? You should rename the constant ADMIN_INSTANCE to PORTAL_INSTANCES every-
where it is used.

Whywas this changemade? This change was part of neededmodifications to extract the Portal Instances
portlet from the Admin portlet. The constant’s old name was not accurate, since it originated from the old
Admin portlet. Since the Portal Instances portlet is now extracted to its ownmodule, the old name no longer
resembles its usage.

Removed Support for filterFindBy Generation or InlinePermissionUtil Usage for Tables When the Primary
Key Type Is Not long

• Date: 2015-Jul-21
• JIRA Ticket: LPS-54590

Whatchanged? ServiceBuilder and inline permissionfilter support has been removed for non-longprimary
key types.

Who is affected? This affects code that is using int, float, double, boolean, or short type primary keys in
the service.xmlwith inline permissions.

How should I updatemy code? You should change the primary key type to long.

Whywas this changemade? Inline permissioning was using the joinmethod between two different data
types and that caused significant performance degradation with filterFindBy queries.

Removed Vaadin 6 from Liferay Core

• Date: 2015-Jul-31
• JIRA Ticket: LPS-57525

What changed? The bundled Vaadin 6.x JAR file has been removed from portal core.

Who is affected? This affects developers who are creating Vaadin portlet applications in Liferay Portal.

How should I updatemy code? You should upgrade to Vaadin 7, bundle your vaadin.jarwith your plugin,
or deploy Vaadin libraries to Liferay’s OSGi container.

Why was this change made? Vaadin 6.x is outdated and there are no plans for any new projects to be
created with it. Therefore, developers should begin using Vaadin 7.x.

Replaced the Navigation Menu Portlet's Display Styles with ADTs

• Date: 2015-Jul-31
• JIRA Ticket: LPS-27113

2072

What changed? The custom display styles of the navigation tag added using JSPs no longer work. They
have been replaced by Application Display Templates (ADT).

Who is affected? This affects developers that use portlet properties with the following prefix:

navigation.display.style

This also affects developers that use the following attribute in the navigation tag:

displayStyleDefinition

How should I update my code? To style the Navigation portlet, you should use ADTs instead of using
custom styles in your JSPs. ADTs can be created from the UI of the portal by navigating to Site Settings →
Application Display Templates. ADTs can also be created programatically.

Developers should use the ddmTemplateGroupId and ddmTemplateKey attributes of the navigation tag to set
the ADT that defines the style of the navigation.

Whywas this changemade? ADTs allow you to change an application’s look and feel without changing its
JSP code.

Renamed URI Attribute Used to Generate AUI Tag Library

• Date: 2015-Aug-12
• JIRA Ticket: LPS-57809

What changed? TheURI attribute used to identify the AUI taglib has been renamed.

Who is affected? This affects developers that use the URI http://alloy.liferay.com/tld/aui in their JSPs,
XMLs, etc.

How should I updatemy code? You should use the new AUI URI declaration:
Old:

http://alloy.liferay.com/tld/aui

New:

http://liferay.com/tld/aui

Whywas this changemade? To stay consistent with other taglibs provided by Liferay, the AUI .tld file was
modified to start with the prefix liferay-. Due to this change, the XML files used to automatically generate
the AUI taglib were modified, changing the AUI URI declaration.

Removed Support for runtime-portlet Tag in Body of Web Content Articles

• Date: 2015-Sep-17
• JIRA Ticket: LPS-58736

What changed? The tag runtime-portlet is no longer replaced by a portlet if it is found in the body of a web
content article.

2073

Who is affected? This affects any web content in the database (JournalArticle table) that uses this tag.

How should I updatemy code? Embedding another portlet is only supported from a template. You should
embed the portlet by passing its name in a call to theme.runtime or using the right tag in FreeMarker.

Example
In Velocity:

$theme.runtime("145")

In FreeMarker:

<#assign liferay_portlet = PortalJspTagLibs["/WEB-INF/tld/liferay-portlet-ext.tld"] />

<@liferay_portlet["runtime"] portletName="145" />

Whywas this changemade? This change improves the performance of web content articles while enforcing
a single way to embed portlets into the page for better testing.

Removed the liferay-ui:control-panel-site-selector Tag

• Date: 2015-Sep-23
• JIRA Ticket: LPS-58210

What changed? The tag liferay-ui:control-panel-site-selector has been deleted.

Who is affected? This affects developers who use this tag in their code.

How should I updatemy code? You should consider using the tag liferay-ui:my-sites, or create your own
markup using the GroupService API.

Whywas this changemade? This tag is no longer used and will no longer be maintained properly.

Removed Methods Related to Control Panel in PortalUtil

• Date: 2015-Sep-23
• JIRA Ticket: LPS-58210

What changed? The followingmethods have been deleted:

• getControlPanelCategoriesMap

• getControlPanelCategory

• getControlPanelPortlets

• getFirstMyAccountPortlet

• getFirstSiteAdministrationPortlet

• getSiteAdministrationCategoriesMap

• getSiteAdministrationURL

• isCompanyControlPanelVisible

Who is affected? This affects developers that use any of the methods listed above.

2074

How should I updatemy code? In order to work with applications displayed in the Product Menu, develop-
ers should call the PanelCategoryRegistry and PanelAppRegistry classes located in the application-list-api
module. These classes allow developers to interact with categories and applications in the Control Panel.

Whywas this changemade? Thesemethods are no longer used and they will not work properly since they
cannot call the application-list-api from the portal context.

Removed ThemeDisplay Methods Related to Control Panel and Site Administration

• Date: 2015-Sep-23
• JIRA Ticket: LPS-58210

What changed? The followingmethods have been deleted:

• getControlPanelCategory

• getURLSiteAdministration

Who is affected? This affects developers that use either of the methods listed above.

How should I updatemy code? Site Administration is not a site per se; some applications are displayed in
that context. To create a link to an application that is displayed in Site Administration, developers should use
the method PortalUtil.getControlPanelURL. In order to obtain the first application displayed in a section of
the ProductMenu, developers should use the application-list-apimodule to call the PanelCategoryRegistry
and PanelAppRegistry classes.

Whywas this changemade? Thesemethods are no longer used and they will not work properly since they
cannot call the application-list-api from the portal context.

Removed Control Panel from List of Sites Returned by Methods Group.getUserSitesGroups and User.get-
MySiteGroups

• Date: 2015-Sep-23
• JIRA Ticket: LPS-58862

What changed? The following methods had a boolean parameter to determine whether to include the
Control Panel group:

• Group.getUserSitesGroups

• User.getMySiteGroups

This boolean parameter should no longer be used.

Who is affected? This affects developers that use either of the methods listed above passing the
includeControlPanel parameter as true.

2075

How should I updatemy code? If you don’t need the Control Panel, remove the false parameter. If you
still want to obtain a link to the Control Panel, you should do it in a different way.

The Control Panel is not a site per se; some applications are displayed in that context. To create
a link to an application that is displayed in the Control Panel, developers should use the method
PortalUtil.getControlPanelURL. In order to obtain the first application displayed in a section of the Product
Menu, developers should use the application-list-api module to call the PanelCategoryRegistry and
PanelAppRegistry classes.

Whywas this changemade? TheControl Panel is no longer a site per se, but just a context in which some
applications are displayed. This concept conflicts with the idea of returning a site called Control Panel in the
Sites API.

Changed Exception Thrown by Documents and Media Services When Duplicate Files are Found

• Date: 2015-Sep-24
• JIRA Ticket: LPS-53819

What changed? When a duplicate file entry is found by Documents and Media (D&M) services, a
DuplicateFileEntryExceptionwill be thrown. Previously, the exception DuplicateFileExceptionwas used.

The DuplicateFileException is now raised only by Store implementations.

Who is affected? Any caller of the addFileEntrymethods in DLApp and DLFileEntry local and remote services
is affected.

HowshouldIupdatemycode? Change theexception type from DuplicateFileException to DuplicateFileEntryException
in try-catch blocks surrounding calls to D&M services.

Whywas this changemade? The DuplicateFileException exception was used in two different contexts:

• When creating a new file through D&M and a row in the database already existed for a file entry with
the same title.

• When the stores tried to save a file and the underlying storage unit (a file in the case of FileSystemStore)
already existed.

This made it impossible to detect and recover from store corruption issues, as they were undifferentiable
from other errors.

Removed All References to Windows Live Messenger

• Date: 2015-Oct-15
• JIRA Ticket: LPS-30883

What changed? All references to the msnSn column in the Contacts table have been removed from portal. All
references toWindows Live Messenger have been removed from properties, tests, classes, and the frontend.
Also, the getMsnSn and setMsnSnmethods have been removed from the Contact and LDAPUsermodels.

The following classes have been removed:

• MSNConnector

2076

• MSNMessageAdapter

The following constants have been removed:

• CalEventConstants.REMIND_BY_MSN

• ContactConverterKeys.MSN_SN

• PropsKeys.MSN_LOGIN

• PropsKeys.MSN_PASSWORD

The followingmethods have been removed:

• Contact.getMsnSn

• Contact.setMsnSn

• LDAPUser.getMsnSn

• LDAPUser.setMsnSn

The followingmethods have been changed:

• AdminUtil.updateUser

• ContactLocalServiceUtil.addContact

• ContactLocalServiceUtil.updateContact

• UserLocalServiceUtil.addContact

• UserLocalServiceUtil.updateContact

• UserLocalServiceUtil.updateUser

• UserServiceUtil.updateUser

Who is affected? This affects developers who use any of the classes, constants, or methods listed above.

How should I update my code? When updating or adding a user or contact using one of the changed
methods above, remove the msnSn argument from the method call. If you are using one of the removed items
above, you should remove all references to them from your code and look for alternatives, if necessary. Lastly,
remove any references to the msnSN column in the Contacts table from your SQL queries.

Whywas this changemade? Since Microsoft dropped support forWindows Live Messenger, Liferay will
no longer continue to support it.

Removed Support for AIM, ICQ, MySpace, and Yahoo Messenger

• Date: 2015-Oct-22
• JIRA Ticket: LPS-59716

What changed? Liferay no longer supports integration withMySpace and AIM, ICQ, and YahooMessenger
instantmessaging services. The corresponding aimSn, icqSn, mySpaceSn, and ymSn columns have been removed
from the Contacts table.

The following classes have been removed:

• AIMConnector

• ICQConnector

• YMConnector

2077

The following constants have been removed:

• CalEventConstants.REMIND_BY_AIM

• CalEventConstants.REMIND_BY_ICQ

• CalEventConstants.REMIND_BY_YM

• ContactConverterKeys.AIM_SN

• ContactConverterKeys.ICQ_SN

• ContactConverterKeys.MYSPACE_SN

• ContactConverterKeys.YM_SN

• PropsKeys.AIM_LOGIN

• PropsKeys.AIM_PASSWORD

• PropsKeys.ICQ_JAR

• PropsKeys.ICQ_LOGIN

• PropsKeys.ICQ_PASSWORD

• PropsKeys.YM_LOGIN

• PropsKeys.YM_PASSWORD

The followingmethods have been removed:

• getAimSn

• getIcqSn

• getMySpaceSn

• getYmSn

• setAimSn

• setIcqSn

• setMySpaceSn

• setYmSn

The followingmethods have been changed:

• updateUser

• addContact

The following portal properties have been removed:

• aim.login

• aim.password

• icq.jar

• icq.login

• icq.password

• ym.login

• ym.password

Who is affected? This affects developers who use any of the classes, constants, methods, or properties
listed above.

2078

How should I update my code? When updating or adding a user or contact using one of the changed
methods above, remove the aimSn, icqSn, mySpaceSn, and ymSn arguments from the method call. If you are
using one of the removed items above, you should remove all references to them from your code and look
for alternatives, if necessary. Lastly, remove from your SQL queries any references to former Contacts table
columns aimSn, icqSn, mySpaceSn, and ymSn.

Also, a reference to any one of the removed portal properties above no longer returns a value.

Whywas this changemade? The services removed in this change are no longer popular enough to merit
continued support.

Removed All Methods from SchedulerEngineHelper that Explicitly Schedule Jobs Using SchedulerEntry or
Specify MessageListener Class Names

• Date: 2015-Oct-29
• JIRA Ticket: LPS-59681

What changed? The followingmethods were removed from SchedulerEngine:

• SchedulerEngineHelper.addJob(Trigger, StorageType, String, String, Message, String, String,

int)

• SchedulerEngineHelper.addJob(Trigger, StorageType, String, String, Object, String, String,

int)

• SchedulerEngineHelper.schedule(SchedulerEntry, StorageType, String, int)

Who is affected? This affects developers that use the above methods to schedule jobs into the
SchedulerEngine.

How should I updatemy code? You should update your code to call one of these methods:

• SchedulerEngineHelper.schedule(Trigger, StorageType, String, String, Message, int)

• SchedulerEngineHelper.schedule(Trigger, StorageType, String, String, Object, int)

Instead of simply providing the class name of your scheduled job listener, you should follow these steps:

1. Instantiate your MessageListener.

2. Call SchedulerEngineHelper.register(MessageListener, SchedulerEntry) to register your SchedulerEventMessageListener.

Whywas this changemade? The deleted methods provided facilities that aren’t compatible with using
declarative services in an OSGi container. The new approach allows for proper injection of dependencies
into scheduled event message listeners.

Removed the asset.publisher.query.form.configuration Property

• Date: 2015-Nov-03
• JIRA Ticket: LPS-60119

What changed? The asset.publisher.query.form.configuration property has been removed from
portal.properties.

2079

Who is affected? This affects any hook that uses the asset.publisher.query.form.configuration property.

How should I updatemy code? If you are using this property to generate the UI for an Asset Entry Query
Processor, your Asset Entry Query Processor must now implement the includemethod to generate the UI.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal.

Removed Hover and Alternate Style Features of Search Container Tag

• Date: 2015-Nov-03
• JIRA Ticket: LPS-58854

What changed? The following attributes andmethods have been removed:

• The attribute hover of the liferay-ui:search-container tag.
• Themethod isHover() of the SearchContainerTag class.
• The attributes classNameHover, hover, rowClassNameAlternate, rowClassNameAlternateHover,
rowClassNameBody, rowClassNameBodyHover of the liferay-search-container JavaScript module.

Who is affected? This affects developers that use the hover attribute of the liferay-ui:search-container
tag.

How should I updatemy code? You should update your code changing the CSS selector that defines how
rows look on hover to use the :hover and :nth-of-type CSS pseudo selectors instead.

Whywas this changemade? Browsers support better ways to style content on hover in a way that doesn’t
penalize performance. Therefore, this changewasmade to increase the performance of hovering over content
in Liferay.

Removed AppViewMove and AppViewSelect JavaScript Modules

• Date: 2015-Nov-03
• JIRA Ticket: LPS-58854

What changed? The JavaScript modules AppViewMove and AppViewSelect have been removed.

Who is affected? This affects developers that use these modules to configure select andmove actions inside
their applications.

How should I updatemy code? If you are using any of these modules, you canmake use of the following
SearchContainer APIs:

• Listen to the rowToggled event of the search container to be notified about changes to the search
container state.

• Configure your search containermove options creating a RowMover and define the allowedmove targets
and associated actions.

• Use the registerAction method of the search container to execute your move logic when the user
completes amove action.

2080

Whywas this changemade? The removed JavaScript modules contained too much logic and were difficult
to decipher. It was also difficult to add this to an existing app. With this change, every app using a search
container can use this functionality much easier.

Removed the mergeLayoutTags Preference from Asset Publisher

• Date: 2015-Nov-20
• JIRA Ticket: LPS-60677

What changed? The mergeLayoutTags preference has been removed from the Asset Publisher.

Who is affected? This affects any Asset Publisher portlet that uses this preference.

How should I updatemy code? There is nothing to update since this functionality is no longer used.

Whywas this changemade? In previous versions of Liferay, some applications such as Blogs andWiki
shared the tags of their entries within the page. The Asset Publisher was able to use them to show other
assets with the same tags. This functionality has changed, so the preference is no longer used.

Removed the liferay-ui:navigation Tag and Replaced with liferay-site-navigation:navigation Tag

• Date: 2015-Nov-20
• JIRA Ticket: LPS-60328

What changed? The liferay-ui:navigation tag has been removed and replaced with the liferay-site-
navigation:navigation tag.

Who is affected? Plugins or templates that are using the liferay-ui:navigation tag need to update their
usage of the tag.

How should I updatemy code? You should import the liferay-site-navigation tag library (if necessary)
and update the tag namespace from liferay-ui:navigation to liferay-site-navigation:navigation.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal by means of an OSGi container.

Removed Software Catalog Portlet and Services

• Date: 2015-Nov-21
• JIRA Ticket: LPS-60705

What changed? The Software Catalog portlet and its associated services are no longer part of Liferay’s
source code or binaries.

Who is affected? This affects portals which were making use of the Software Catalog portlet to manage
a catalog of their software. Developers who were making use of the software catalog services from their
custom code are also affected.

2081

How should I update my code? There is no direct replacement for invocations to the Software Catalog
services. In cases where it is really needed, it is possible to obtain the code from a previous release and
include it in the custom product (subject to licensing).

Whywas this changemade? The Software Catalog was developed to implement the very first versions of
what later become Liferay’s Marketplace. It was later replaced and has not been used by Liferay since then.
It has also been usedminimally outside of Liferay. The decision was made to remove it so Liferay could be
more lightweight and free time to focus on other areas of the product that addmore value.

Removed the liferay-ui:asset-categories-navigation Tag and Replaced with liferay-asset:asset-categories-
navigation

• Date: 2015-Nov-25
• JIRA Ticket: LPS-60753

What changed? The liferay-ui:asset-categories-navigation tag has been removed and replaced with the
liferay-asset:asset-categories-navigation tag.

Whoisaffected? Plugins or templates that are using the liferay-ui:asset-categories-navigation tag need
to update their usage of the tag.

How should I update my code? You should import the liferay-asset tag library (if necessary) and up-
date the tag namespace from liferay-ui:asset-categories-navigation to liferay-asset:asset-categories-
navigation.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal by means of an OSGi container.

Removed the liferay-ui:trash-empty Tag and Replaced with liferay-trash:empty

• Date: 2015-Nov-30
• JIRA Ticket: LPS-60779

What changed? The liferay-ui:trash-empty tag has been removed and replaced with the liferay-

trash:empty tag.

Who is affected? Plugins and templates that are using the liferay-ui:trash-empty tag need to update their
usage of the tag.

How should I updatemy code? You should import the liferay-trash tag library (if necessary) and update
the tag namespace from liferay-ui:trash-empty to liferay-trash:empty.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal by means of an OSGi container.

2082

Removed the liferay-ui:trash-undo Tag and Replaced with liferay-trash:undo

• Date: 2015-Nov-30
• JIRA Ticket: LPS-60779

What changed? The liferay-ui:trash-undo taglib has been removed and replaced with the liferay-

trash:undo tag.

Who is affected? Plugins and templates that are using the liferay-ui:trash-undo tag need to update their
usage of the tag.

How should I updatemy code? You should import the liferay-trash tag library (if necessary) and update
the tag namespace from liferay-ui:trash-undo to liferay-trash:undo.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal by means of an OSGi container.

Removed the getPageOrderByComparator Method from WikiUtil

• Date: 2015-Dec-01
• JIRA Ticket: LPS-60843

What changed? The getPageOrderByComparatormethod has been removed from WikiUtil.

Who is affected? This affects developers that use this method in their code.

HowshouldIupdatemycode? Youshouldupdate your code to invoke WikiPortletUtil.getPageOrderByComparator(String,
String).

Whywas this changemade? As part of the modularization efforts it has been considered that that this
logic belongs to wiki-webmodule.

Custom AUI Validators Are No Longer Implicitly Required

• Date: 2015-Dec-02
• JIRA Ticket: LPS-60995

What changed? The AUI Validator tag no longer forces custom validators (e.g., name="custom") to be re-
quired, and are now optional by default.

Who is affected? This affects developers using custom validators, especially ones who relied on the field
being implicitly required via the custom validator.

2083

How should I updatemy code? There are several cases where you should update your code to compensate
for this change. First, blank value checking is no longer necessary, so places where blank values are checked
should be updated.

Old Code:

<aui:input name="privateVirtualHost">

<aui:validator errorMessage="please-enter-a-unique-virtual-host" name="custom">

function(val, fieldNode, ruleValue) {

return !val || val != A.one('#<portlet:namespace />publicVirtualHost').val();

}

</aui:validator>

</aui:input>

New Code:

<aui:input name="privateVirtualHost">

<aui:validator errorMessage="please-enter-a-unique-virtual-host" name="custom">

function(val, fieldNode, ruleValue) {

return val != A.one('#<portlet:namespace />publicVirtualHost').val();

}

</aui:validator>

</aui:input>

Also, instead of using custom validators to determine if a field is required, you should now use a condi-
tional required validator.

Old Code:

<aui:input name="file" type="file" />

<aui:input name="title">

<aui:validator errorMessage="you-must-specify-a-file-or-a-title" name="custom">

function(val, fieldNode, ruleValue) {

return !!val || !!A.one('#<portlet:namespace />file').val();

}

</aui:validator>

</aui:input>

New Code:

<aui:input name="file" type="file" />

<aui:input name="title">

<aui:validator errorMessage="you-must-specify-a-file-or-a-title" name="required">

function(fieldNode) {

return !A.one('#<portlet:namespace />file').val();

}

</aui:validator>

</aui:input>

Lastly, custom validators that assumed validationwould always runmust now explicitly pass the required
validator. This is done by passing in the <aui:validator name="required" /> element. The <aui:input> tag
listed below is an example of how to explicity pass the required validator:

<aui:input name="vowelsOnly">

<aui:validator errorMessage="must-contain-only-the-following-characters" name="custom">

function(val, fieldNode, ruleValue) {

var allowedCharacters = 'aeiouy';

var regex = new RegExp('[^' + allowedCharacters + ']');

return !regex.test(val);

}

</aui:validator>

<aui:validator name="required" />

</aui:input>

2084

Whywas this changemade? A custom validator caused the field to be implicitly required. This meant that
all validators for the field would be evaluated. This created a condition where you could not combine custom
validators with another validator for an optional field.

For example, imagine an optional field which has an email validator, plus a custom validator which
checks for email addresses within a specific domain (e.g., example.com). There was no way for this optional
field to pass validation. Even if you handled blank values in your custom validator, that blank value would
fail the email validator.

This change requires most custom validators to be refactored, but allows greater flexibility for all devel-
opers.

Moved Recycle Bin Logic Into a New DLTrashService Interface

• Date: 2015-Dec-02
• JIRA Ticket: LPS-60810

What changed? All Recycle Bin logic in Documents andMedia services was moved from DLAppService into
the new DLTrashService service interface. All movedmethods have the same name and signatures.

Who is affected? This affects any local or remote caller of DLAppService.

How should I updatemy code? As all methods have been simply moved into the new service, calling the
equivalent method on DLTrashService suffices.

Whywas this changemade? Documents andMedia services have complex interdependencies that result in
circular dependencies. Until now, DLAppServicewas responsible for exposing theRecycle Bin logic, delegating
it to other components. The problemwas, the components depended on DLAppService to implement their
logic. Extracting the services from DLAppServicewas the only sensible solution to this circularity.

Deprecated the liferay-ui:flags Tag and Replaced with liferay-flags:flags

• Date: 2015-Dec-02
• JIRA Ticket: LPS-60967

What changed? The liferay-ui:flags tag has been deprecated and replaced with the liferay-flags:flags
tag.

Who is affected? Plugins or templates that are using the liferay-ui:flags tag need to update their usage
of the tag.

How should I updatemy code? You should import the liferay-flags tag library (if necessary) and update
the tag namespace from liferay-ui:flags to liferay-flags:flags.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal by means of an OSGi container.

2085

Removed the liferay-ui:diff Tag and Replaced with liferay-frontend:diff

• Date: 2015-Dec-14
• JIRA Ticket: LPS-61326

What changed? The liferay-ui:diff tag has been removed and replaced with the liferay-frontend:diff
tag.

Who is affected? Plugins and templates that are using the liferay-ui:diff tag need to update their usage
of the tag.

How should I update my code? You should import the liferay-frontend tag library (if necessary) and
update the tag namespace from liferay-ui:diff to liferay-frontend:diff.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal by means of an OSGi container.

Taglibs Are No Longer Accessible via the theme Variable in FreeMarker

• Date: 2016-Jan-06
• JIRA Ticket: LPS-61683

What changed? The ${theme} variable previously injected in the FreeMarker context providing access to
various tags and utilities is no longer available.

Who is affected? This affects FreeMarker templates that are using the ${theme} variable.

How should I updatemy code? All the tags and utility methods formerly accessed via the ${theme} variable
should now be accessed directly via tags.

Example 1

${theme.runtime("com.liferay.portal.kernel.servlet.taglib.ui.BreadcrumbEntry", portletProviderAction.VIEW, "", default_preferences)}

can be replaced by:

<@liferay_portlet["runtime"]

defaultPreferences=default_preferences

portletProviderAction=portletProviderAction.VIEW

portletProviderClassName="com.liferay.portal.kernel.servlet.taglib.ui.BreadcrumbEntry"

/>

Example 2

${theme.include(content_include)}

can be replaced by:

<@liferay_util["include"] page=content_include />

Example 3

${theme.wrapPortlet("portlet.ftl", content_include)}

2086

can be replaced by:

<@liferay_theme["wrap-portlet"] page="portlet.ftl">

<@liferay_util["include"] page=content_include />

</@>

Example 4

${theme.iconHelp(portlet_description)}

can be replaced by:

<@liferay_ui["icon-help"] message=portlet_description />

Example 5

${nav_item.icon()}

can be replaced by:

<@liferay_theme["layout-icon"] layout=${nav_item.getLayout()} />

Whywasthischangemade? Previously, the {$theme} variablewasbeing injectedwith the VelocityTaglibImpl
class. This created coupling between template engines and coupling between specific tags and template
engines at the same time.

FreeMarker already offers native support for tags which cover all the functionality originally provided by
the {$theme} variable. Removing this coupling helps future development while still keeping all the existing
functionality.

Portlet Configuration Options May Not Always Be Displayed

• Date: 2016-Jan-07
• JIRA Ticket: LPS-54620 and LPS-61820

What changed? The portlet configuration options (e.g., configuration, export/import, look and feel, etc.)
were always displayed in every view of the portlet and couldn’t be customized.

With Lexicon, the configuration options displayed are based on the portlet’s context, so not all options
will always be displayed.

Who is affected? This affects portlets that should always display all configuration options no matter which
view of the portlet is rendered.

How should I updatemy code? If you don’t apply any change to your source code, you will experience the
following behaviors based on the portlet type:

• Struts Portlet: If you’ve defined a view-action init parameter, the configuration options are only
displayed for that particular view when invoking a URL with a parameter struts_actionwith the value
indicated in the view-action init parameter and also in the default view of the portlet (when there is
no struts_action parameter in the request).

2087

• LiferayMVCPortlet: If you’ve defined a view-template init parameter, the configuration options are
only displayed when that template is rendered by invoking a URL with a parameter mvcPathwith the
value indicated in the view-template init parameter. and also in the default view of the portlet (when
there is no mvcPath parameter in the request).

• If it’s a portlet using any other framework, the configuration options are always displayed.

In order to keep the old behavior of adding the configuration options in every view, you need to add the
init parameter always-display-default-configuration-iconswith the value true.

Whywas this changemade? Lexicon patterns require the ability to specify different configuration options
depending on the view of the portlet by adding or removing options. This can be easily achieved by using the
PortletConfigurationIcon classes.

The getURLView Method of AssetRenderer Returns String Instead of PortletURL

• Date: 2016-Jan-08
• JIRA Ticket: LPS-61853

What changed? The AssetRenderer interface’s getURLViewmethod has changed and now returns String
instead of PortletURL.

Who is affected? This affects all custom assets that implement the AssetRenderer interface.

How should I updatemy code? You should update the method signature to reflect that it returns a String
and you should adapt your implementation accordingly.

In general, it should be as easy as returning portletURL.toString().

Why was this change made? The API was forcing implementations to return a PortletURL, making it
difficult to return another type of link. For example, in the case of Bookmarks, developers wanted to
automatically redirect to other potential URLs.

Removed the icon Method from NavItem

• Date: 2016-Jan-11
• JIRA Ticket: LPS-61900

What changed? The NavItem interface has changed and the method icon that would render the nav item
icon has been removed.

Who is affected? This affects all themes using the nav_item.icon()method.

How should I updatemy code? You should update your code to call the method nav_item.iconURL to return
the image’s URL and then use it as you prefer.

Example:

<img alt="Page Icon" class="layout-logo" src="<%= nav_item.iconURL()" />

To keep the previous behavior in Velocity:

2088

$theme.layoutIcon($nav_item.getLayout())

To keep the previous behavior in FreeMarker:

<@liferay_theme["layout-icon"] layout=nav_item_layout />

Whywas this changemade? TheAPI was forcing developers to have a dependency on a taglib, which didn’t
allow for much flexibility.

Renamed Packages to Fix the Split Packages Problem

• Date: 2016-Jan-19
• JIRA Ticket: LPS-61952

What changed? Split packages are caused when two or more bundles export the same package name and
version. When the classloader loads a package, exactly one exporter of that package is chosen; so if a package
is split across multiple bundles, then an importer only sees a subset of the package.

Who is affected? The portal-kernel and portal-impl folders have many packages with the same name.
Therefore, all of these packages are affected by the split package problem.

How should I update my code? You should rename duplicated package names if they currently exist
somewhere else.

Example

• com.liferay.counter → com.liferay.counter.kernel

• com.liferay.mail.model → com.liferay.mail.kernel.model

• com.liferay.mail.service → com.liferay.mail.kernel.service

• com.liferay.mail.util → com.liferay.mail.kernel.util

• com.liferay.portal.exception → com.liferay.portal.kernel.exception

• com.liferay.portal.jdbc.pool.metrics → com.liferay.portal.kernel.jdbc.pool.metrics

• com.liferay.portal.kernel.mail → com.liferay.mail.kernel.model

• com.liferay.portal.layoutconfiguration.util→ com.liferay.portal.kernel.layoutconfiguration.util

• com.liferay.portal.layoutconfiguration.util.xml→ com.liferay.portal.kernel.layoutconfiguration.util.xml

• com.liferay.portal.mail → com.liferay.portal.kernel.mail

• com.liferay.portal.model → com.liferay.portal.kernel.model

• com.liferay.portal.model.adapter → com.liferay.portal.kernel.model.adapter

• com.liferay.portal.model.impl → com.liferay.portal.kernel.model.impl

• com.liferay.portal.portletfilerepository → com.liferay.portal.kernel.portletfilerepository

2089

• com.liferay.portal.repository.proxy → com.liferay.portal.kernel.repository.proxy

• com.liferay.portal.security.auth → com.liferay.portal.kernel.security.auth

• com.liferay.portal.security.exportimport → com.liferay.portal.kernel.security.exportimport

• com.liferay.portal.security.ldap → com.liferay.portal.kernel.security.ldap

• com.liferay.portal.security.membershippolicy→ com.liferay.portal.kernel.security.membershippolicy

• com.liferay.portal.security.permission → com.liferay.portal.kernel.security.permission

• com.liferay.portal.security.permission.comparator→ com.liferay.portal.kernel.security.permission.comparator

• com.liferay.portal.security.pwd → com.liferay.portal.kernel.security.pwd

• com.liferay.portal.security.xml → com.liferay.portal.kernel.security.xml

• com.liferay.portal.service.configuration → com.liferay.portal.kernel.service.configuration

• com.liferay.portal.service.http → com.liferay.portal.kernel.service.http

• com.liferay.portal.service.permission → com.liferay.portal.kernel.service.permission

• com.liferay.portal.service.persistence.impl→ com.liferay.portal.kernel.service.persistence.impl

• com.liferay.portal.theme → com.liferay.portal.kernel.theme

• com.liferay.portal.util → com.liferay.portal.kernel.util

• com.liferay.portal.util.comparator → com.liferay.portal.kernel.util.comparator

• com.liferay.portal.verify.model → com.liferay.portal.kernel.verify.model

• com.liferay.portal.webserver → com.liferay.portal.kernel.webserver

• com.liferay.portlet → com.liferay.portal.kernel.portlet

• com.liferay.portlet.admin.util → com.liferay.admin.kernel.util

• com.liferay.portlet.announcements → com.liferay.announcements.kernel

• com.liferay.portlet.asset → com.liferay.asset.kernel

• com.liferay.portlet.backgroundtask.util.comparator→ com.liferay.background.task.kernel.util.comparator

• com.liferay.portlet.blogs → com.liferay.blogs.kernel

• com.liferay.portlet.blogs.exception → com.liferay.blogs.kernel.exception

• com.liferay.portlet.blogs.model → com.liferay.blogs.kernel.model

• com.liferay.portlet.blogs.service → com.liferay.blogs.kernel.service

• com.liferay.portlet.blogs.service.persistence → com.liferay.blogs.service.persistence

• com.liferay.portlet.blogs.util.comparator → com.liferay.blogs.kernel.util.comparator

2090

• com.liferay.portlet.documentlibrary → com.liferay.document.library.kernel

• com.liferay.portlet.dynamicdatamapping → com.liferay.dynamic.data.mapping.kernel

• com.liferay.portlet.expando → com.liferay.expando.kernel

• com.liferay.portlet.exportimport → com.liferay.exportimport.kernel

• com.liferay.portlet.imagegallerydisplay.display.context→ com.liferay.image.gallery.display.kernel.display.context

• com.liferay.portlet.journal.util → com.liferay.journal.kernel.util

• com.liferay.portlet.layoutsadmin.util → com.liferay.layouts.admin.kernel.util

• com.liferay.portlet.messageboards → com.liferay.message.boards.kernel

• com.liferay.portlet.messageboards.constants → com.liferay.message.boards.kernel.constants

• com.liferay.portlet.messageboards.exception → com.liferay.message.boards.kernel.exception

• com.liferay.portlet.messageboards.model → com.liferay.message.boards.kernel.model

• com.liferay.portlet.messageboards.service → com.liferay.message.boards.kernel.service

• com.liferay.portlet.messageboards.service.persistence→ com.liferay.message.boards.kernel.service.persistence

• com.liferay.portlet.messageboards.util → com.liferay.message.boards.kernel.util

• com.liferay.portlet.messageboards.util.comparator→ com.liferay.message.boards.kernel.util.comparator

• com.liferay.portlet.mobiledevicerules → com.liferay.mobile.device.rules

• com.liferay.portlet.portletconfiguration.util → com.liferay.portlet.configuration.kernel.util

• com.liferay.portlet.rolesadmin.util → com.liferay.roles.admin.kernel.util

• com.liferay.portlet.sites.util → com.liferay.sites.kernel.util

• com.liferay.portlet.social → com.liferay.social.kernel

• com.liferay.portlet.trash → com.liferay.trash.kernel

• com.liferay.portlet.useradmin.util → com.liferay.users.admin.kernel.util

• com.liferay.portlet.ratings → com.liferay.ratings.kernel

• com.liferay.portlet.ratings.definition → com.liferay.ratings.kernel.definition

• com.liferay.portlet.ratings.display.context → com.liferay.ratings.kernel.display.context

• com.liferay.portlet.ratings.exception → com.liferay.ratings.kernel.exception

• com.liferay.portlet.ratings.model → com.liferay.ratings.kernel.model

• com.liferay.portlet.ratings.service → com.liferay.ratings.kernel.service

• com.liferay.portlet.ratings.service.persistence→ com.liferay.ratings.kernel.service.persistence

• com.liferay.portlet.ratings.transformer → com.liferay.ratings.kernel.transformer

2091

Whywas this changemade? This change was necessary to solve the current split package problems and
prevent future ones.

Removed the aui:column Tag and Replaced with aui:col

• Date: 2016-Jan-19
• JIRA Ticket: LPS-62208

What changed? The aui:column tag has been removed and replaced with the aui:col tag.

Who is affected? Plugins or templates that are using the aui:column tag must update their usage of the tag.

How should I updatemy code? You should import the aui tag library (if necessary) and update the tag
namespace from aui:column to aui:col.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal by means of an OSGi container.

The title Field of FileEntry Models is Now Mandatory

• Date: 2016-Jan-25
• JIRA Ticket: LPS-62251

What changed? The title field of file entries was optional as long as a source file name was provided. To
avoid confusion, the title is now required by the API and is filled automatically by the UI when a source file
name is present.

Who is affected? This affects any user of the local or remote API. Users of theWeb UI are unaffected.

How should I updatemy code? You should pass a non-null, non-empty string for the title parameter of
the addFileEntry and updateFileEntrymethods.

Why was this change made? The title field was marked as mandatory, but it was possible to create a
document without filling it, as the backend would infer a value from the source file name automatically. This
was considered confusing from a UX perspective.

DLUtil.getImagePreviewURL and DLUtil.getThumbnailSrc Can Return Empty Strings

• Date: 2016-Jan-28
• JIRA Ticket: LPS-62643

What changed? The DLUtil.getImagePreviewURL and DLUtil.getThumbnailSrc methods return an empty
string if there are no previews or thumbnails for the specific image, video, or document.

Previously, if there were no previews or thumbnails, these methods would return a URL to an image
based on the document.

Whoisaffected? Thisaffects anydeveloper invoking DLUtil.getImagePreviewURLor DLUtil.getThumbnailSrc.

2092

How should I updatemy code? You should be aware that the method could return an empty string and act
accordingly. For example, you could display the documents-and-media Lexicon icon instead.

Whywas this changemade? In order to display the documents-and-media Lexicon icon in Documents and
Media, this change was necessary.

Removed the aui:button-item Tag and Replaced with aui:button

• Date: 2016-Feb-04
• JIRA Ticket: LPS-62922

What changed? The aui:button-item tag has been removed and replaced with the aui:button tag.

Who is affected? Plugins or templates that are using the aui:button-item tag must update their usage of
the tag.

How should I updatemy code? You should import the aui tag library (if necessary) and update the tag
namespace from aui:button-item to aui:button.

Whywas this changemade? This change was made as a part of the ongoing strategy to remove deprecated
code.

Removed the WAP Functionality

• Date: 2016-Feb-05
• JIRA Ticket: LPS-62920

What changed? TheWAP functionality has been removed.

Who is affected? This affects developers that use theWAP functionality.

How should I update my code? If you are using any of the following methods, you need to remove the
parameters in those methods related toWAP.

• LayoutLocalServiceUtil.updateLookAndFeel

• LayoutRevisionLocalServiceUtil.addLayoutRevision

• LayoutRevisionLocalServiceUtil.updateLayoutRevision

• LayoutRevisionServiceUtil.addLayoutRevision

• LayoutServiceUtil.updateLookAndFeel

• LayoutSetLocalServiceUtil.updateLookAndFeel

• LayoutSetServiceUtil.updateLookAndFeel

• ThemeLocalServiceUtil.getColorScheme

• ThemeLocalServiceUtil.getControlPanelThemes

• ThemeLocalServiceUtil.getPageThemes

• ThemeLocalServiceUtil.getTheme

Whywas this changemade? This change was made becauseWAP is an obsolete functionality.

2093

Removed the aui:layout Tag with No Direct Replacement

• Date: 2016-Feb-08
• JIRA Ticket: LPS-62935

What changed? The aui:layout tag has been removed with no direct replacement.

Who is affected? Plugins or templates that are using the aui:layout tag must remove their usage of the
tag.

How should I update my code? There is no direct replacement. You should remove all usages of the
aui:layout tag.

Whywas this changemade? This change was made as a part of the ongoing strategy to remove deprecated
tags.

Deprecated the liferay-portlet:icon-back Tag with No Direct Replacement

• Date: 2016-Feb-10
• JIRA Ticket: LPS-63101

What changed? The liferay-portlet:icon-back tag has been deprecated with no direct replacement.

Who is affected? Plugins or templates that are using the liferay-portlet:icon-back tagmust remove their
usage of the tag.

How should I update my code? There is no direct replacement. You should remove all usages of the
liferay-portlet:icon-back tag.

Whywas this changemade? This change was made as a part of the ongoing strategy to deprecate unused
tags.

Deprecated the liferay-security:encrypt Tag with No Direct Replacement

• Date: 2016-Feb-10
• JIRA Ticket: LPS-63106

What changed? The liferay-security:encrypt tag has been deprecated with no direct replacement.

Who is affected? Plugins or templates that are using the liferay-security:encrypt tag must remove their
usage of the tag.

How should I update my code? There is no direct replacement. You should remove all usages of the
liferay-security:encrypt tag.

Whywas this changemade? This change was made as a part of the ongoing strategy to deprecate unused
tags.

2094

Removed the Ability to Specify Class Loaders in Scripting

• Date: 2016-Feb-17
• JIRA Ticket: LPS-63180

What changed?

• com.liferay.portal.kernel.scripting.ScriptingExecutor no longer uses the provided class loaders in
the eval methods.

• com.liferay.portal.kernel.scripting.Scripting no longer uses the provided class loaders and servlet
context names in eval and exec methods.

Who is affected?

• All implementations of com.liferay.portal.kernel.scripting.ScriptingExecutor are affected.
• All classes that call com.liferay.portal.kernel.scripting.Scripting are affected.

How should I updatemy code? You should remove class loader and servlect context parameters from calls
to the modifiedmethods.

Whywas this changemade? This change was made since custom class loader management is no longer
necessary in the OSGi container.

User Operation and Importer/Exporter Classes and Utilities Have Been Moved or Removed From portal-
kernel

• Date: 2016-Feb-17
• JIRA Ticket: LPS-63205

What changed?

• com.liferay.portal.kernel.security.exportimport.UserImporter, com.liferay.portal.kernel.security.exportimport.UserExporter,
and com.liferay.portal.kernel.security.exportimport.UserOperation have beenmoved from portal-
kernel to the portal-security-export-import-api module.

• com.liferay.portal.kernel.security.exportimport.UserImporterUtiland com.liferay.portal.kernel.security.exportimport.UserExporterUtil
have been removed with no replacement.

Who is affected?

• All implementations of com.liferay.portal.kernel.security.exportimport.UserImporter or
com.liferay.portal.kernel.security.exportimport.UserExporter are affected.

• All code thatuses com.liferay.portal.kernel.security.exportimport.UserImporterUtil, com.liferay.portal.kernel.security.exportimport.UserExporterUtil,
com.liferay.portal.kernel.security.exportimport.UserImporter, or com.liferay.portal.kernel.security.exportimport.UserExporter
is affected.

2095

How should I updatemy code? If you are in an OSGi module, you can simply inject the UserImporter or
UserExporter references

@Reference

private UserExporter_userExporter;

@Reference

private UserImporter _userImporter;

If you are in a legacyWAR orWAB, you will need a snippet like:

Bundle bundle = FrameworkUtil.getBundle(getClass());

BundleContext bundleContext = bundle.getBundleContext();

ServiceReference<UserImporter> serviceReference =

bundleContext.getServiceReference(UserImporter.class);

UserImporter userImporter = bundleContext.getService(serviceReference);

Why was this change made? The change was made to improve modularity of the user import/export
subsystem in the product.

Deprecated Category Entry for Users

• Date: 2016-Feb-22
• JIRA Ticket: LPS-63466

What changed? The category entry for Site Administration → Users has been deprecated in favor of Site
Administration →Members.

Who is affected? All developers who specified a control-panel-entry-category to be visible in Site Admin-
istration → Users are affected.

How should I update my code? You should change the entry from site_administration.users to
site_administration.members to make it visible in the category.

Whywasthischangemade? Thischange standardizesnamingconventions and separates concepts between
Users in the Control Panel and Site Members.

Deprecated Category Entry for Pages

• Date: 2016-Feb-25
• JIRA Ticket: LPS-63667

What changed? The category entry for Site Administration → Pages has been deprecated in favor of Site
Administration → Navigation.

Who is affected? All developers who specified a control-panel-entry-category to be visible in Site Admin-
istration → Pages are affected.

2096

How should I update my code? You should change the entry from site_administration.pages to
site_administration.navigation to make it visible in the category.

Whywas this changemade? This change standardizes naming conventions and separates concepts in
Product Menu

Removed the com.liferay.dynamic.data.mapping.util.DDMXMLUtil Class

• Date: 2016-Mar-03
• JIRA Ticket: LPS-63928

What changed? The class com.liferay.dynamic.data.mapping.util.DDMXMLUtil has been removed with no
replacement.

Who is affected? All code that uses com.liferay.dynamic.data.mapping.util.DDMXMLUtil is affected.

How should I updatemy code? In an OSGi module, simply inject the DDMXML reference:

@Reference

private DDMXML _ddmXML;

In a legacyWAR orWAB, you need to get a DDMXML service reference from the bundle context:

Bundle bundle = FrameworkUtil.getBundle(getClass());

BundleContext bundleContext = bundle.getBundleContext();

ServiceReference<UserImporter> serviceReference =

bundleContext.getServiceReference(DDMXML.class);

DDMXML ddmXML = bundleContext.getService(serviceReference);

Whywas this changemade? This change was made to improve modularity of the dynamic data mapping
subsystem.

FlagsEntryService.addEntry Method Throws PortalException

• Date: 2016-Mar-04
• JIRA Ticket: LPS-63109

What changed? The method FlagsEntryService.addEntry now throws a PortalException if the
reporterEmailAddress is not a valid email address.

Who is affected? Any caller of the method FlagsEntryService.addEntry is affected.

How should I updatemy code? You should consider checking for the PortalException in try-catch blocks
and adapt your code accordingly.

Whywas this changemade? This change prevents providing an incorrect email address when adding flag
entries.

2097

Removed PHP Portlet Support

• Date: 2016-Mar-10
• JIRA Ticket: LPS-64052

What changed? PHP portlets are no longer supported.

Who is affected? This affects any portlet using the class com.liferay.util.bridges.php.PHPPortlet.

How should I updatemy code? You should port your PHP portlet to a different technology.

Whywas this changemade? This change simplifies future maintenance of the portal. This support could
be added back in the future as an independent module.

Removed Liferay Frontend Editor BBCode Web, Previously Known as Liferay BBCode Editor

• Date: 2016-Mar-16
• JIRA Ticket: LPS-48334

What changed? The following things have been changed:

• Removed the com.liferay.frontend.editor.bbcode.webOSGi bundle
• Removed all hardcoded references/logic for the editor
• Added a log warning and logic to upgrade the editor property to ckeditor_bbcode if the old bbcode is
being used. This log warning and logic will be removed in the future, along with LPS-64099.

Whoisaffected? Thisaffects anyonewhohas theproperty editor.wysiwyg.portal-web.docroot.html.portlet.message_boards.edit_message.bb_code.jsp
set to bbcode in portal properties (e.g., portal-ext.properties).

How should I updatemy code? You should modify your portal-ext.properties file to remove the property
editor.wysiwyg.portal-web.docroot.html.portlet.message_boards.edit_message.bb_code.jsp.

Whywas this changemade? Since Liferay Frontend Editor BBCodeWeb has been deprecated since 6.1, it
was time to remove it completely. This frees up development and support resources to focus on supported
features.

Removed the asset.entry.validator Property

• Date: 2016-Mar-17
• JIRA Ticket: LPS-64370

What changed? The property asset.entry.validator has been removed from portal.properties.

Who is affected? This affects any installation with a customized asset validator.

2098

https://issues.liferay.com/browse/LPS-64099

How should I update my code? You should create a new OSGi component that implements
AssetEntryValidator and define for which models it will be applicable by using the model.class.name

OSGi property, or an asterisk if it applies to any model.
If you were using the MinimalAssetEntryValidator, this functionality can still be added by deploying the

module asset-tags-validator.

Whywas this changemade? This change has been made as part of the modularization efforts to decouple
different parts of the portal.

Removed the swfupload and video_player Utilities

• Date: 2016-May-13
• JIRA Ticket: LPS-54111

What changed? The utilities swfupload and video_player have been removed.

Who is affected? This affects anyone who is using the swfupload AlloyUI module or any of the associated
swfupload_f*.swf and mpw_player.swf flash movies.

How should I update my code? There are better, more standard ways to achieve upload currently. For
instance, you can use A.Uploader to manage your uploads consistently across browsers.

For audio/video reproduction, you should update your code to use A.Audio and A.Video.

Whywas this changemade? This change removes outdated code no longer being used in the platform. In
addition, this change avoids future security issues from outdated flash movies.

Moved Journal Portlet Properties to OSGi Configuration

• Date: 2016-Jul-29
• JIRA Ticket: LPS-58672

What changed? All Journal portlet properties have beenmoved to an OSGi configuration.

Who is affected? This affects anyone who is overriding the Journal portlet’s portlet.properties file.

How should I updatemy code? Instead of overriding the Journal portlet’s portlet.properties file, you can
manage the properties from Portal’s configuration administrator. This can be accessed by navigating to
Liferay’s Control Panel → System Settings →WebExperience and selecting the appropriateWeb Content category.

Why was this change made? This change was made as part of modularization efforts to ease portlet
configuration changes.

Moved the liferay-ui:journal-article Tag to Journal

• Date: 2016-Nov-24
• JIRA Ticket: LPS-69321

2099

http://alloyui.com/api/classes/Uploader.html
http://alloyui.com/api/classes/A.Audio.html
http://alloyui.com/api/classes/A.Video.html

What changed? The liferay-ui:journal-article tag has beenmoved to the Journal (Web Content) applica-
tion.

Who is affected? This affects developers using the liferay-ui:journal-article tag.

How should I updatemy code? You should use the liferay-journal:journal-article tag instead.
Example
Old code:

<liferay-ui:journal-article

articleId="<%= article.getArticleId() %>"

/>

New code:

<liferay-journal:journal-article

articleId="<%= article.getArticleId() %>"

groupId="<%= article.getGroupId() %>"

/>

If you still want to use the liferay-ui:journal-article tag, you must deploy the journal-taglibmodule
to your Liferay installation.

Why was this change made? This change was made as part of the modularization efforts for the Web
Content application.

Deprecated the liferay-ui:captcha Tag and Replaced with liferay-captcha:captcha

• Date: 2016-Nov-29
• JIRA Ticket: LPS-69383

What changed? The liferay-ui:captcha tag has been deprecated and replaced with the liferay-

captcha:captcha tag.

Who is affected? Plugins or templates that are using the liferay-ui:captcha tag need to update their usage
of the tag.

Howshould I updatemy code? You should import the liferay-captcha tag library (if necessary) and update
the tag namespace from liferay-ui:captcha to liferay-captcha:captcha.

Whywas this changemade? This change was made as a part of the ongoing strategy to modularize Liferay
Portal by means of an OSGi container.

Moved Shopping File Uploads Portlet Properties to OSGi Configuration

• Date: 2016-Dec-08
• JIRA Ticket: LPS-69210

What changed? The Shopping file uploads portlet properties have beenmoved from Server Administration
to an OSGi configuration named ShoppingFileUploadsConfiguration.java in the shopping-apimodule.

2100

Who is affected? This affects anyone who is using the following portlet properties:

• shopping.image.extensions

• shopping.image.large.max.size

• shopping.image.medium.max.size

• shopping.image.small.max.size

How should I update my code? Instead of overriding the portal.properties file, you can manage the
properties from Portal’s configuration administrator. This can be accessed by navigating to Liferay’s Control
Panel → Configuration → System Settings → Shopping Cart Images and editing the settings there.

If you would like to include the new configuration in your application, follow the instructions for making
your applications configurable in Liferay 7.0.

Whywas this changemade? This change wasmade as part of the modularization efforts to ease portal
configuration changes.

Moved the Expando Custom Field Tags to liferay-expando Taglib

• Date: 2016-Dec-12
• JIRA Ticket: LPS-69400

What changed? The following tags have been deprecated and replaced:

• liferay-ui:custom-attribute

• liferay-ui:custom-attribute-list

• liferay-ui:custom-attributes-available

Who is affected? Plugins and templates that are using the aforementioned tags must update their usage
of the tag.

Howshould I updatemy code? You should import the liferay-expando tag library (if necessary) and update
the tag namespace from liferay-ui to liferay-expando:

• liferay-ui:custom-attribute → liferay-expando:custom-attribute

• liferay-ui:custom-attribute-list → liferay-expando:custom-attribute-list

• liferay-ui:custom-attributes-available → liferay-expando:custom-attributes-available

Whywas this changemade? This change was made as part of the ongoing strategy to modularize Liferay
Portal by means of an OSGi container.

Moved Journal File Uploads Portlet Properties to OSGi Configuration

• Date: 2017-Jan-04
• JIRA Ticket: LPS-69209

What changed? The Journal File Uploads portlet properties have been moved from Server Administration
to an OSGi configuration named JournalFileUploadsConfiguration.java in the journal-servicemodule.

2101

Who is affected? This affects anyone who is using the following portlet properties:

• journal.image.extensions

• journal.image.small.max.size

How should I update my code? Instead of overriding the portal.properties file, you can manage the
properties from Portal’s configuration administrator. This can be accessed by navigating to Liferay’s Control
Panel → Configuration → System Settings →WebContent File Uploads and editing the settings there.

If you would like to include the new configuration in your application, follow the instructions for making
your applications configurable in Liferay 7.0.

Whywas this changemade? This change wasmade as part of the modularization efforts to ease portal
configuration changes.

Deprecated the aui:tool Tag with No Direct Replacement

• Date: 2017-Feb-02
• JIRA Ticket: LPS-70422

What changed? The aui:tool tag has been deprecated with no direct replacement.

Who is affected? Plugins or templates that are using the aui:tool tag must remove their usage of the tag.

Howshould Iupdatemycode? There is no direct replacement. You should remove all usages of the aui:tool
tag.

Whywas this changemade? This change was made as a part of the ongoing strategy to deprecate unused
tags.

Build Auto Upgrade

• Date: 2017-Aug-17
• JIRA Ticket: LPS-73967

What changed? The build.auto.upgrade property in service.properties for Liferay Portal 6.x Service
Builder portlets applies Liferay Service schema changes on rebuilding the services and redeploying the
portlets.

Since 7.0, the per portlet property build.auto.upgrade is deprecated.
This change reintroducesBuildAutoUpgrade in anewglobal property schema.module.build.auto.upgrade

in the [Liferay_Home]/portal-developer.properties file.
Setting global property schema.module.build.auto.upgrade to true applies module schema changes for

redeployed modules whose service build numbers have incremented. The build.number property in the
module’s service.properties file indicates the service build number.

Who is affected? This feature is available for developers to use in development only.
WARNING: DONOT USE the Build Auto Upgrade feature in production. Liferay DOES NOT support

Build Auto Upgrade in production.

2102

HowshouldIupdatemycode? Touse this feature indevelopment, set global property schema.module.build.auto.upgrade
in [Liferay_Home]/portal-developer.properties to true, increment your module’s build.number in the
service.properties file, and deploy the module.

Whywas this changemade? This change was made so that 7.0 developers could test database schema
changes on the fly, without having to write upgrade processes.

Removed Exports from Dynamic Data Lists Web

• Date: 2017-Nov-27
• JIRA Ticket: LPS-75778

Whatchanged? The Dynamic Data Lists Webmoduleno longer exports the com.liferay.dynamic.data.lists.web.asset
package.

Who is affected? This change affects anyone who is using the com.liferay.dynamic.data.lists.web.asset
package. Thisparticularly affects anyoneusing com.liferay.dynamic.data.lists.web.asset.DDLRecordAssetRendererFactory
andcasting the return AssetRenderer to com.liferay.dynamic.data.lists.web.asset.DDLRecordAssetRenderer.

How should I updatemy code? There are no replacements for this package; youmust remove all usages.
DDLRecordAssetRendererFactory can still be used as an OSGi service; however, you can no longer cast the
returned AssetRenderer to DDLRecordAssetRenderer.

Whywas this changemade? This change was made to clean up LPKG dependencies.

Deprecated the social.activity.sets.enabled Property with No Direct Replacement

• Date: 2018-Jan-24
• JIRA Ticket: LPS-63635

What changed? The social.activity.sets.enabled property is no longer recognized by the Social Activity
portlet. From Liferay Portal 7.0 onwards, Social Activity Sets will always be used.

Who is affected? This change affects anyone who has set the social.activity.sets.enabled property to
false.

How should I updatemy code? No changes are necessary.

Whywas this changemade? The Social Activity portlet had two different versions with slightly different
behaviors; one used in Liferay Portal and the other one in Social Office. To sync both components, and
simplify its internal logic, activity sets are always enabled by default, with no option to disable them.

Removed Description HTML Escaping in PortletDisplay

• Date: 2018-Jul-17
• JIRA Ticket: LPS-83185

What changed? The portlet description stored in PortletDisplay.java is no longer escaped automatically.

2103

Who is affected? This affects anyone who used the portlet description’s escaped value to generate HTML. A
small UI change could occur, as some characters may be unescaped.

How should I update my code? If you were using the portletDescription value to generate HTML, you
should escape it using the proper escape sequence: HtmlUtil.escape.

Whywas this changemade? This change corrects a best practice violation regarding content escaping.

Removed Cache Bootstrap Feature

• Date: 2020-Jan-8
• JIRA Ticket: LPS-96563

What changed? The cache bootstrap feature has been removed. These properties can no longer be used to
enable/configure cache bootstrap:

ehcache.bootstrap.cache.loader.enabled, ehcache.bootstrap.cache.loader.properties.default,
ehcache.bootstrap.cache.loader.properties.${specific.cache.name}.

Who is affected? This affects anyone using the properties listed above.

How should I updatemy code? There’s no direct replacement for the removed feature. If you have code
that depends on it, youmust implement it yourself.

Whywas this changemade? This change was made to avoid security issues.

140.9 What Changed Between Liferay npm Bundler 1.x and 2.x

This reference doc outlines the key changes between liferay-npm-bundler version 1.x and 2.x.

Automatically Formatting Modules for AMD

In version series 1.x of the bundler it was the developer’s responsibility to wrap project modules in an AMD
define() call. However, since 2.x the bundler does it for you, so the only requisite is that the project’s code is
transpiled/written for CommonJS modules model (the standard model for module handling in Node.js, that
uses require() calls to loadmodules).

Isolating Project Dependencies

Package names are prefixed with the bundle name since version 2.0.0 of the bundler, but were left intact
in previous versions. This strategy is used to isolate packages from different bundles. You can still deploy
bundler 1.x packages (without prefix), and they will still work as they did for previous versions of the bundler.

2104

Improved Peer Dependency Support

In bundler 1.x, there was only one shared peer dependency package available between portlets. With isolated
dependencies per portlet, it’s easy to honor peer dependencies perfectly. Peer dependencies can be resolved
exactly as stated in projects because their names are prefixedwith the project’s name. This is possible because
of the new liferay-npm-bundler-plugin-inject-peer-dependencies plugin. It scans all JS modules for require
calls. If the bundler finds a required package in the main.js file, but it is not declared in the package.json,
it resolves it to the proper version that is found in the node_modules folder. The plugin then injects a new
dependency in the output package.json for the required package.

Note that injected dependency version constraints are the specific version number required, without
caret or any other semantic version operator. This is to honor the exact peer dependency found in the project.
Injecting more relaxed semantic version expressions could lead to unstable results.

Manually De-duplicating Through Importing

Namespacing means that each portlet gets its own dependencies. Only using the bundler this way obtains
the same functionality as standard bundlers like webpack or Browserify, so you wouldn’t need a specific tool
like liferay-npm-bundler. Since Liferay DXP is a portlet based architecture, sharing dependencies among
different portlets would be very beneficial.

In bundler 1.x that deduplication was made automatically, but there was no control over it. However,
with version 2.x, youmay now import packages from an external OSGi bundle, instead of using your own.
This lets you put shared dependencies in one project, and reference them from the rest. ThoughThis new
way of de-duplication is not automatic, it leads to full control (during build time) of how each package is
resolved.

2105

https://github.com/liferay/liferay-npm-build-tools/tree/master/packages/liferay-npm-bundler-plugin-inject-peer-dependencies

	Contents
	Preface
	Conventions
	Publisher Notes

	Developer Tutorials
	Introduction to Liferay Development
	Leveraging a Suite of Products, Frameworks and Libraries
	Build Websites, Intranets, Collaborative Environments, Mobile Apps, and More
	Creating Your Own Applications and Extending the Existing Ones
	Fundamentals
	Liferay as a Development Platform

	Introduction to Front-End Development
	JavaScript
	Lexicon
	Templates
	Themes
	Front-End Extensions

	JavaScript in Liferay DXP
	MetalJS
	ES2015
	AlloyUI
	jQuery

	Metal.js
	Related Topics

	Starting Module Development
	Setting up a Liferay Workspace
	Creating a Module
	Building and Deploying a Module
	Redeploying Module Changes Automatically
	Related Articles

	Configuring Dependencies
	Finding Core Artifacts
	Finding Liferay App and Independent Artifacts
	Configuring Dependencies
	Related Topics

	Finding Extension Points
	Locate the Related Module and Component
	Finding Extension Points in a Component

	From Liferay Portal 6 to 7
	What Hasn't Changed and What Has
	Embracing a Modular Architecture

	Benefits of 7.0 for Liferay Portal 6 Developers
	Simpler and Leaner
	Modular Development Paradigm
	Enhanced Reusability
	More Extensible, Easier to Maintain
	Optimized for Your Tooling of Choice
	Powerful Configurability

	OSGi and Modularity for Liferay Portal 6 Developers
	Modules as an Improvement over Traditional Plugins
	Leveraging Dependencies
	OSGi Services and Dependency Injection with Declarative Services
	Dynamic Deployment
	Example: Building an OSGi Module
	Learning More about OSGi

	Improved Developer Tooling: Liferay Workspace, Maven Plugins and More
	From the Plugins SDK to Liferay Workspace
	Developing Modules with Liferay Workspace
	What's New in 7.0 for Maven Users
	Using Other Build Systems and IDEs

	Planning Plugin Upgrades and Optimizations
	Upgrade and Optimization Phases
	Upgrade and Optimization Paths
	Upgrading Plugins to 7.0
	Upgrading Your Development Environment
	Migrating Plugins SDK Projects to Liferay Workspace
	Upgrading Build Dependencies
	Fixing Upgrade Problems
	Resolving a Plugin's Dependencies
	Resolving Breaking Changes

	Upgrading Hook Plugins
	Upgrading Customization Modules
	Upgrading Core JSP Hooks
	Upgrading App JSP Hooks
	Upgrading Service Wrappers
	Upgrading Core Language Key Hooks
	Upgrading Portlet Language Key Hooks
	Upgrading Model Listener Hooks
	Upgrading Servlet Filter Hooks
	Upgrading Portal Property and Event Action Hooks
	Converting StrutsActionWrappers to MVCCommands

	Upgrading Themes
	Upgrading Your Theme from Liferay Portal 6.1 to 7.0
	Upgrading Your Theme from Liferay Portal 6.2 to 7.0
	Upgrading Layout Templates
	Upgrading Frameworks and Features
	Upgrading JNDI Data Source Usage
	Upgrading Service Builder Service Invocation
	Upgrading Service Builder
	Migrating Off of Velocity Templates

	Upgrading Portlet Plugins
	Upgrading a GenericPortlet
	Upgrading a Servlet-based Portlet
	Upgrading a Liferay MVC Portlet
	Upgrading Portlets that use Service Builder
	Upgrading a Liferay JSF Portlet
	Upgrading a Struts Portlet
	Upgrading a Spring MVC portlet
	Upgrading Web Plugins
	Upgrading Ext Plugins
	Upgrading the Liferay Maven Build

	Optimizing Plugins for 7.0
	Migrating Traditional Plugins to Workspace Web Applications

	Modularizing Plugins
	Modularizing an Existing Portlet
	Migrating Data Upgrade Processes to the New Framework for Modules
	Migrating a Theme from the Plugins SDK to the Liferay Theme Generator
	Migrating a Theme from the Plugins SDK to Workspace
	Customization with Ext Plugins

	Developing a Web Application
	Development Setup Overview

	Creating a Working Prototype
	Writing Your First Liferay DXP Application
	Creating an Add Entry Button
	Generating Portlet URLs
	Linking to Another Page
	Triggering Portlet Actions
	Creating a Form
	Implementing Portlet Actions
	Displaying Guestbook Entries

	Generating the Back-end
	What is Service Builder?
	Generating Model, Service, and Persistence Layers
	Implementing Service Methods

	Refactoring the Prototype
	Organizing Folders for Larger Applications
	Defining the Component Metadata Properties
	Creating Portlet Keys
	Integrating the New Back-end
	Updating the View
	Fitting it All Together

	Writing an Administrative Portlet
	Creating the Classes
	Adding Metadata
	Updating Your Service Layer
	Defining Portlet Actions
	Creating a User Interface

	Using Resources and Permissions
	Configuring Your Permissions Scheme
	Permissions in the Service Layer
	Creating Permissions Helper Classes
	Permissions in JSPs

	Displaying Messages and Errors
	Creating Language Keys
	Adding Failure and Success Messages
	Adding Messages to JSPs

	Leveraging Search
	Enabling Search and Indexing for Guestbooks
	Understanding Search and Indexing
	Creating a Guestbook Indexer
	Handling Indexing in the Guestbook Service Layer

	Enabling Search and Indexing for Guestbook Entries
	Creating an Entry Indexer
	Handling Indexing in the Entry Service Layer

	Updating Your User Interface For Search
	Adding a Search Bar to the Guestbook Portlet
	Creating a Search Results JSP for the Guestbook Portlet

	Assets: Integrating with Liferay's Framework
	Enabling Assets at the Service Layer
	Handling Assets at the Guestbook Service Layer
	Handling Assets at the Entry Service Layer

	Implementing Asset Renderers
	Implementing a Guestbook Asset Renderer
	Implementing an Entry Asset Renderer

	Adding Asset Features to Your User Interface
	Creating JSPs for Displaying Custom Assets in the Asset Publisher
	Enabling Tags, Categories, and Related Assets for Guestbooks
	Enabling Tags, Categories, and Related Assets for Guestbook Entries
	Enabling Comments and Ratings for Guestbook Entries

	Generating Web Services
	Creating Remote Services with Service Builder

	Implementing Permission Checks
	Implementing Permission Checks at the Service Layer
	Securing Service Calls at the Portlet Layer

	Using Workflow
	Supporting Workflow at the Service Layer
	Setting the Guestbook Status
	Setting the Entry Workflow Status
	Retrieving Guestbooks and Entries by Status

	Handling Workflow
	Creating a Workflow Handler for Guestbooks
	Creating a Workflow Handler for Guestbook Entries

	Displaying Approved Workflow Items
	Displaying Guestbook Status
	Displaying Approved Entries

	Enabling Staging and Export/Import
	Creating Staged Models
	Creating the Entry Staged Model Data Handler
	Creating the Guestbook Staged Model Data Handler
	Updating Permissions to Support Staging
	Configuring XStream
	Defining System Events for Deletions
	Creating the Portlet Data Handler

	Writing an Android App for Liferay DXP
	Beginning Android Development for Your Liferay DXP Instance
	Setting up the Guestbook Portlet
	Building the Guestbook Mobile SDK
	Creating the Android Project
	Installing the Guestbook Mobile SDK and Liferay Screens for Android
	Designing Your App
	Using Login Screenlet for Authentication

	Creating Guestbook List Screenlet
	Getting Started with Guestbook List Screenlet
	Creating Guestbook List Screenlet's UI
	Creating Guestbook List Screenlet's Interactor
	Creating Guestbook List Screenlet's Screenlet Class

	Creating Entry List Screenlet
	Getting Started with Entry List Screenlet
	Creating Entry List Screenlet's UI
	Creating Entry List Screenlet's Interactor
	Creating Entry List Screenlet's Screenlet Class

	Using the Guestbook List and Entry List Screenlets
	Understanding GuestbooksActivity's UI
	Preparing GuestbooksActivity for Guestbook List Screenlet
	Using Guestbook List Screenlet
	Creating a Fragment for Entry List Screenlet
	Using Entry List Screenlet

	Writing an iOS App with Liferay Screens
	Beginning iOS Development for Your Portal
	Setting up the Guestbook Portlet
	Building the Guestbook Mobile SDK
	Creating the iOS Project
	Installing Liferay Screens and the Guestbook Mobile SDK
	Designing Your App
	Using Login Screenlet for Authentication
	Creating the Guestbooks Scene

	Creating Guestbook List Screenlet
	Getting Started with Guestbook List Screenlet
	Creating Guestbook List Screenlet's UI
	Creating Guestbook List Screenlet's Connector
	Creating Guestbook List Screenlet's Interactor
	Creating Guestbook List Screenlet's Delegate
	Creating the Screenlet Class

	Creating Entry List Screenlet
	Getting Started with Entry List Screenlet
	Creating Entry List Screenlet's UI
	Creating Entry List Screenlet's Connector
	Creating Entry List Screenlet's Interactor
	Creating Entry List Screenlet's Delegate
	Creating the Screenlet Class

	Using Your Screenlets
	Creating the Entries Scene
	Using Guestbook List Screenlet
	Using Entry List Screenlet

	Tooling
	Liferay @ide@
	Installing Liferay @ide@
	Creating a Liferay Workspace with Liferay @ide@
	Setting Proxy Requirements for Liferay @ide@
	Updating Liferay @ide@
	Creating Modules with Liferay @ide@
	Creating Themes with Liferay @ide@
	Deploying Modules with Liferay @ide@
	Managing Module Projects with Liferay @ide@
	Installing a Server in Liferay @ide@
	Searching Liferay DXP Source in Liferay @ide@
	Debugging Liferay DXP Source in Liferay @ide@
	Enabling Code Assist Features in Your Project
	Using Gradle in Liferay @ide@
	Using Maven in Liferay @ide@
	Using Front-End Code Assist Features in @ide@

	Blade CLI
	Installing Blade CLI
	Installing Blade CLI with Proxy Requirements
	Creating a Liferay Workspace with Blade CLI
	Creating Projects with Blade CLI
	Deploying Modules with Blade CLI
	Managing Your Liferay Server with Blade CLI
	Updating Blade CLI
	Converting Plugins SDK Projects with Blade CLI

	Liferay Workspace
	Installing Liferay Workspace
	Configuring a Liferay Workspace
	Setting Proxy Requirements for Liferay Workspace
	Development Lifecycle for a Liferay Workspace
	Managing the Target Platform for Liferay Workspace

	Validating Modules Against the Target Platform
	Resolving Your Modules
	Modifying the Target Platform's Capabilities
	Including the Resolver in Your Gradle Build
	Validating Modules Outside of Workspace
	Updating Liferay Workspace

	Maven
	Installing Liferay Maven Artifacts
	Generating New Projects Using Archetypes
	Creating a Module JAR Using Maven
	Deploying a Module Built with Maven to Liferay DXP
	Creating a Maven Repository
	Deploying Liferay Maven Artifacts to a Repository
	Using Service Builder in a Maven Project
	Compiling Sass Files in a Maven Project
	Building Themes in a Maven Project
	Maven Workspace

	IntelliJ IDEA
	Installing the Liferay IntelliJ Plugin
	Creating a Liferay Workspace with IntelliJ IDEA
	Creating Projects with IntelliJ IDEA
	Installing a Server in IntelliJ IDEA
	Deploying Projects with IntelliJ IDEA

	Liferay Sample Projects
	Liferay Upgrade Planner
	Using the Upgrade Planner with Proxy Requirements

	Portlets
	Liferay MVC Portlet
	MVC Layers and Modularity
	Liferay MVC Command Classes
	Liferay MVC Portlet Component
	A Simpler MVC Portlet
	Creating an MVC Portlet
	MVC Action Command
	MVC Render Command
	MVC Resource Command

	Liferay Soy Portlet
	Creating a Soy Portlet

	The State Object
	Understanding The State Object's Architecture
	Configuring Portlet Template Parameter State Properties
	Configuring Soy Portlet Template Parameters on the Client Side

	Spring MVC
	Packaging a Spring MVC Portlet
	Spring MVC Portlets in Liferay
	Calling Services from Spring MVC
	Related Topics

	JSF Portlets with Liferay Faces
	Generating a JSF Project from the Command Line
	Generating a JSF Project Using @ide@
	Creating a JSF Project Manually
	Services in JSF

	Making URLs Friendlier
	Creating Friendly URL Routes
	Implementing a Friendly URL Mapper
	Friendly URLs in Action
	Automatic Single Page Applications
	Creating Layouts inside Custom Portlets

	Using JavaScript in Your Portlets
	Using ES2015 in Your Portlets
	Preparing Your JavaScript Files for ES2015
	Using ES2015 Modules in your Portlet

	Using npm in Your Portlets
	liferay-npm-bundler
	Adding liferay-npm-bundler to Your Portlet
	Configuring liferay-npm-bundler
	The Structure of OSGi Bundles Containing npm Packages
	Understanding How liferay-npm-bundler Formats JavaScript Modules for AMD
	How Liferay DXP Publishes npm Packages
	Understanding How Liferay DXP Exposes Configuration For Liferay AMD Loader
	Related Topics

	Using the NPMResolver API in Your Portlets
	Referencing an npm Module's Package to Improve Code Maintenance
	Obtaining an OSGi bundle's Dependency npm Package Descriptors

	Applying Lexicon Styles to your App
	Configuring Your Application's Title and Back Link
	Applying Lexicon Patterns to Your Forms, Navigation, and Search
	Applying the Add Button Pattern

	Adding the Management Bar
	Implementing the Management Bar Display Styles
	Implementing a Management Bar Navigation Filter
	Implementing a Management Bar Sort Filter
	Disabling the Management Bar
	Configuring Your Admin App's Actions Menu
	Setting Search Container Animations
	Using Lexicon Icons in Your App

	Customizing
	Customizing JSPs
	Using Liferay's API to Override a JSP
	Overriding a JSP Without Using Liferay's API
	Customizing JSPs with Dynamic Includes
	JSP Overrides Using Portlet Filters
	JSP Overrides Using OSGi Fragments
	JSP Overrides Using Custom JSP Bag
	Overriding Liferay DXP's Default YUI and AUI Modules
	Overriding Liferay Services (Service Wrappers)
	Overriding Language Keys
	Overriding Portal Properties using a Hook
	Overriding MVC Commands
	Overriding lpkg files
	Creating Model Listeners

	Application Display Templates
	Implementing Application Display Templates

	Mobile
	Android Apps with Liferay Screens
	Preparing Android Projects for Liferay Screens
	Using Screenlets in Android Apps
	Using Views in Android Screenlets
	Using Offline Mode in Android
	Architecture of Liferay Screens for Android
	Architecture of Offline Mode in Liferay Screens
	Creating Android Screenlets
	Creating Android List Screenlets
	Creating Android Views
	Packaging Your Android Screenlets
	Using Liferay Push in Android Apps
	Accessing the Liferay Session in Android
	Adding Custom Interactors to Android Screenlets
	Rendering Web Content in Your Android App
	Rendering Web Pages in Your Android App
	Using Web Screenlet with Cordova in Your Android App
	Adding Offline Mode Support to Your Android Screenlet
	Android Best Practices
	Liferay Screens for Android Troubleshooting and FAQs

	iOS Apps with Liferay Screens
	Preparing iOS Projects for Liferay Screens
	Using Screenlets in iOS Apps
	Using Themes in iOS Screenlets
	Using Offline Mode in iOS
	Architecture of Liferay Screens for iOS
	Creating iOS Screenlets
	Supporting Multiple Themes in Your Screenlet
	Adding Screenlet Actions
	Create and Use a Connector with Your Screenlet
	Add a Screenlet Delegate
	Using and Creating Progress Presenters
	Creating and Using Your Screenlet's Model Class
	Creating iOS List Screenlets
	Using Custom Cells with List Screenlets
	Sorting Your List Screenlet
	Creating Complex Lists in Your List Screenlet
	Creating iOS Themes
	Packaging iOS Themes
	Accessing the Liferay Session in iOS
	Adding Custom Interactors to iOS Screenlets
	Rendering Web Content in Your iOS App
	Rendering Web Pages in Your iOS App
	Using Web Screenlet with Cordova in Your iOS App
	iOS Best Practices

	Using Xamarin with Liferay Screens
	Preparing Xamarin Projects for Liferay Screens
	Using Screenlets in Xamarin Apps
	Using Views in Xamarin.Android
	Using Themes in Xamarin.iOS
	Creating Xamarin Views and Themes
	Liferay Screens for Xamarin Troubleshooting and FAQs

	Mobile SDK
	Creating Android Apps that Use the Mobile SDK
	Making Liferay and Custom Portlet Services Available in Your Android App
	Invoking Liferay Services in Your Android App
	Invoking Services Asynchronously from Your Android App
	Sending Your Android App's Requests Using Batch Processing
	Creating iOS Apps that Use the Mobile SDK
	Making Liferay and Custom Portlet Services Available in Your iOS App
	Invoking Liferay Services in Your iOS App
	Invoking Services Asynchronously from Your iOS App
	Sending Your iOS App's Requests Using Batch Processing
	Building Mobile SDKs

	Service Builder
	What is Service Builder?

	Service Builder Persistence
	Defining an Object-Relational Map with Service Builder
	Running Service Builder and Understanding the Generated Code
	Iterative Development
	Understanding ServiceContext
	Customizing Model Entities With Model Hints
	Custom SQL
	Dynamic Query
	Configuring service.properties
	Connecting Service Builder to External Data Sources

	Business Logic with Service Builder
	Creating Local Services
	Invoking Local Services
	Finding and Invoking Liferay Services

	Data Access
	Data Scopes

	Web Services
	Service Builder Web Services
	Creating Remote Services
	Invoking Remote Services
	Service Security Layers
	Registering JSON Web Services
	Invoking JSON Web Services
	JSON Web Services Invoker
	JSON Web Services Invocation Examples
	Configuring JSON Web Services
	SOAP Web Services
	JAX-WS and JAX-RS
	Liferay WebSocket Whiteboard

	Asset Framework
	Related Topics
	Adding, Updating, and Deleting Assets for Custom Entities
	Implementing Asset Categorization and Tagging
	Relating Assets
	Implementing Asset Priority
	Rendering an Asset

	Liferay's Workflow Framework
	Creating a Workflow Handler
	Updating the Service Layer
	Workflow Status and the View Layer

	Export/Import and Staging
	Decision to Implement Staging
	Understanding Staged Models
	Generating Staged Models Using Service Builder
	Creating Staged Models Manually
	Understanding Data Handlers
	Developing Data Handlers
	Initiating New Processes with ExportImportConfiguration Objects
	Using the Export/Import Lifecycle Listener Framework

	Configuration
	Making Your Applications Configurable
	Implementing Configuration Actions
	Transitioning from Portlet Preferences to the Configuration API

	Social
	Applying Social Bookmarks
	Adding Comments to your App
	Rating Assets
	Implementing Ratings Type Selection and Value Transformation
	Flagging Inappropriate Asset Content

	Item Selector
	Selecting Entities Using the Item Selector
	Creating Custom Item Selector Entities
	Creating Custom Item Selector Views

	Adaptive Media
	Displaying Adapted Images in Your App
	Finding Adapted Images
	Changing Adaptive Media's Image Scaling

	Liferay Forms
	Form Field Types
	Anatomy of a Field Type Module
	Creating Form Field Types
	Adding Settings to Form Field Types

	Search
	Basic Search Concepts
	Liferay Search API
	Search Adapter API
	Transactional Search
	Customizing Liferay Search

	Application Security
	Adding Permissions to Resources

	Authentication Pipelines
	Auto Login
	Password-Based Authentication Pipelines
	Writing a Custom Login Portlet
	Service Access Policies
	Using JSR Roles in a Portlet

	Internationalization
	Localizing Your Application
	Automatically Generating Language Files
	Using Liferay's Language Settings

	WYSIWYG Editors
	Adding a WYSIWYG Editor to a Portlet
	Modifying an Editor's Configuration
	Adding New Behavior to an Editor

	AlloyEditor
	Creating and Contributing new Buttons to AlloyEditor
	Using the Default CKEditor Plugins Bundled with AlloyEditor

	JavaScript Module Loaders
	Configuring Modules for Liferay DXP's Loaders
	Using External Libraries
	Liferay AMD Module Loader
	Loading Modules with AUI Script in Liferay DXP

	Liferay JavaScript APIs
	Liferay ThemeDisplay
	Working with URLs in JavaScript
	Liferay DXP JavaScript Utilities
	Invoking Liferay Services

	Front-End Taglibs
	Using the Liferay UI Taglib
	Using the Liferay Util Taglib

	HTML Forms
	Forms and Validation
	Creating Forms with Liferay's Taglibs
	Form Navigator Extensions
	Creating Form Navigator Contexts

	Themes and Layout Templates
	Themes
	Liferay Theme Generator
	Themelets
	Importing Resources with a Theme
	Using Developer Mode with Themes
	Theme Contributors
	Context Contributors
	Macros
	Theme Builder
	Creating a Theme Thumbnail
	Specifying Color Schemes in your Theme
	Making Themes Configurable with Settings

	Layout Templates
	Layout Templates with the Liferay Theme Generator
	Creating Layout Templates Manually

	Portlets and Themes
	Portlet Decorators
	Adding Portlet Decorators to a Theme
	Applying Portlet Decorators to Embedded Portlets
	Theming Portlets
	Embedding Portlets in Themes

	Lexicon CSS and Themes
	Importing Lexicon CSS into a Theme

	Product Navigation
	Customizing the Product Menu
	Customizing the Control Menu
	Extending the Simulation Menu
	Providing the User Personal Bar

	Testing
	Unit Testing with JUnit

	Arquillian Extension for Liferay Example
	Arquillian Example Sample Portlet
	Arquillian Integration Test Example
	Arquillian Functional Test Example
	JaCoCo Code Coverage Example
	Running the Arquillian Example
	Liferay Slim Runtime
	Injecting Service Components into Tests

	Modularity and OSGi
	The Benefits of Modularity
	OSGi and Modularity

	OSGi Basics for Liferay Development
	Liferay Portal Classloader Hierarchy
	Bundle Classloading Flow
	Resolving Third Party Library Package Dependencies
	Overriding Reluctant Service References
	Using the WAB Generator
	Importing Packages
	Exporting Packages
	Semantic Versioning
	Service Trackers
	Waiting on Lifecycle Events

	Troubleshooting FAQ
	Modules
	Services and Components
	Resolving Bundle Requirements
	Resolving Bundle-SymbolicName Syntax Issues
	Resolving ClassNotFoundException and NoClassDefFoundError in OSGi Bundles
	Identifying Liferay Artifact Versions for Dependencies
	Connecting to JNDI Data Sources
	Adjusting Module Logging
	Implementing Logging
	Declaring Optional Import Package Requirements
	Why Aren't my Module's JavaScript and CSS Changes Showing?
	Why Aren't JSP overrides I Made Using Fragments Showing?
	Detecting Unresolved OSGi Components
	Using Files to Configure Module Components
	Calling Non-OSGi Code that Uses OSGi Services
	Patching DXP Source Code
	Liferay DXP Failed to Initialize Because the Database Wasn't Ready
	Using OSGi Services from EXT Plugins
	Sort Order Changed with a Different Database

	Data Upgrades
	Creating Data Upgrade Processes for Modules
	Upgrade Processes for Former Service Builder Plugins
	Upgrading Data Schemas in Development

	Back-end Frameworks
	Device Recognition API

	Message Bus
	Messaging Destinations
	Message Listeners
	Sending Messages

	Audience Targeting
	Accessing the Content Targeting API
	Creating New Audience Targeting Rule Types
	Tracking User Actions with Audience Targeting
	Best Practices for Metrics
	Best Practices for Rules

	Customizable Web Applications
	Providing Portlets to Manage Requests

	Developer Reference
	Development Reference
	Java APIs
	Taglibs

	Liferay API Modules
	API Modules Table

	Portlet Descriptor to OSGi Service Property Map
	Classes Moved from portal-service.jar
	Theme Gulp Tasks
	Theme Reference Guide
	Theme Files

	Screenlets in Liferay Screens for Android
	Login Screenlet for Android
	Sign Up Screenlet for Android
	Forgot Password Screenlet for Android
	User Portrait Screenlet for Android
	DDL Form Screenlet for Android
	DDL List Screenlet for Android
	Asset List Screenlet for Android
	Web Content Display Screenlet for Android
	Web Content List Screenlet for Android
	Image Gallery Screenlet for Android
	Rating Screenlet for Android
	Comment List Screenlet for Android
	Comment Display Screenlet for Android
	Comment Add Screenlet for Android
	Asset Display Screenlet for Android
	Blogs Entry Display Screenlet for Android
	Image Display Screenlet for Android
	Video Display Screenlet for Android
	Audio Display Screenlet for Android
	PDF Display Screenlet for Android
	Web Screenlet for Android
	Android Breaking Changes

	Screenlets in Liferay Screens for iOS
	Login Screenlet for iOS
	Sign Up Screenlet for iOS
	Forgot Password Screenlet for iOS
	User Portrait Screenlet for iOS
	DDL Form Screenlet for iOS
	DDL List Screenlet for iOS
	Asset List Screenlet for iOS
	Web Content Display Screenlet for iOS
	Web Content List Screenlet for iOS
	Image Gallery Screenlet for iOS
	Rating Screenlet for iOS
	Comment List Screenlet for iOS
	Comment Display Screenlet for iOS
	Comment Add Screenlet for iOS
	Asset Display Screenlet for iOS
	Blogs Entry Display Screenlet for iOS
	Image Display Screenlet for iOS
	Video Display Screenlet for iOS
	Audio Display Screenlet for iOS
	PDF Display Screenlet for iOS
	File Display Screenlet for iOS
	Web Screenlet for iOS
	SyncManagerDelegate

	Liferay Faces
	Liferay Faces Version Scheme
	Understanding Liferay Faces Bridge
	Understanding Liferay Faces Alloy
	Understanding Liferay Faces Portal

	Gradle
	App Javadoc Builder Gradle Plugin
	Baseline Gradle Plugin
	Change Log Builder Gradle Plugin
	CSS Builder Gradle Plugin
	DB Support Gradle Plugin
	Dependency Checker Gradle Plugin
	Deployment Helper Gradle Plugin
	Go Gradle Plugin
	Gulp Gradle Plugin
	Jasper JSPC Gradle Plugin
	Javadoc Formatter Gradle Plugin
	JS Module Config Generator Gradle Plugin
	JS Transpiler Gradle Plugin
	JSDoc Gradle Plugin
	Lang Builder Gradle Plugin
	Maven Plugin Builder Gradle Plugin
	Node Gradle Plugin
	Service Builder Gradle Plugin
	Source Formatter Gradle Plugin
	Soy Gradle Plugin
	Target Platform Gradle Plugin
	Theme Builder Gradle Plugin
	TLDDoc Builder Gradle Plugin
	TLD Formatter Gradle Plugin
	Whip Gradle Plugin
	WSDD Builder Gradle Plugin
	WSDL Builder Gradle Plugin
	XML Formatter Gradle Plugin
	XSD Builder Gradle Plugin
	Felix Gogo Shell

	Maven
	Bundle Support Plugin
	CSS Builder Plugin
	DB Support Plugin
	Deployment Helper Plugin
	Javadoc Formatter Plugin
	Lang Builder Plugin
	Service Builder Plugin
	Source Formatter Plugin
	Theme Builder Plugin
	TLD Formatter Plugin
	WSDD Builder Plugin
	XML Formatter Plugin

	Project Templates
	Activator Template
	API Template
	Control Menu Entry Template
	Form Field Template
	Fragment Template
	FreeMarker Portlet Template
	Layout Template
	MVC Portlet Template
	npm Angular Portlet Template
	npm Billboard.js Portlet Template
	npm Isomorphic Portlet Template
	npm jQuery Portlet Template
	npm Metal.js Portlet Template
	npm Portlet Template
	npm React Portlet Template
	npm Vue.js Portlet Template
	Panel App Template
	Portlet Configuration Icon
	Portlet Template
	Portlet Provider Template
	Portlet Toolbar Contributor Template
	REST Template
	Service Template
	Service Builder Template
	Service Wrapper Template
	Simulation Panel Entry Template
	Soy Portlet Template
	Spring MVC Portlet Template
	Template Context Contributor Template
	Theme Template
	Theme Contributor Template
	WAR Hook Template
	WAR MVC Portlet Template

	Sample Projects
	Apps
	Greedy Policy Option Application
	Kotlin Portlet

	npm Samples
	Angular npm Portlet
	Billboard.js npm Portlet
	Isomorphic npm Portlet
	jQuery npm Portlet
	Metal.js npm Portlet
	React npm Portlet
	Simple npm Portlet
	Vue.js npm Portlet

	Service Builder Samples
	Service Builder Application Demonstrating Actionable Dynamic Query
	Service Builder Application Using External Database via JDBC
	Service Builder Application Using External Database via JNDI
	Shared Language Keys
	Simulation Panel App
	Spring MVC Portlet

	Extensions
	Control Menu Entry
	Document Action
	Gogo Shell Command
	Indexer Post Processor
	Model Listener
	Screen Name Validator
	Servlet

	Overrides
	Core JSP Override
	Module JSP Override
	Resource Bundle Override

	Themes
	Simple Theme
	Template Context Contributor
	Theme Contributor
	Third Party Packages Portal Exports
	Resolving Common Output Errors Reported by the resolve Task
	CKEditor Plugin Reference Guide
	Item Selector Criterion and Return Types
	Breaking Changes
	What Changed Between Liferay npm Bundler 1.x and 2.x

